diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..9fd116e9d12110990ba7e3ee342634337a69052b 100644
--- a/module2/exo1/toy_notebook_fr.ipynb
+++ b/module2/exo1/toy_notebook_fr.ipynb
@@ -1,6 +1,132 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "hideCode": false,
+ "hidePrompt": false
+ },
+ "source": [
+ "# Toy_notebook_fr"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "hideCode": false,
+ "hidePrompt": false
+ },
+ "source": [
+ "\\date{March 28, 2019}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 1 A propos du calcul de $\\pi$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 1.1 En demandant à la lib maths\n",
+ "\n",
+ "Mon ordinateur m’indique que $\\pi$ vaut -approximativement-"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from math import *\n",
+ "print(pi)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 1.2 En utilisant la méthode des aiguilles de Buffon\n",
+ "\n",
+ "Mais calculé avec la **méthode** des aiguilles de Buffon, on obtiendrait comme **approximation** :"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "np.random.seed(seed=42)\n",
+ "N = 10000\n",
+ "x = np.random.uniform(size=N, low=0, high=1)\n",
+ "theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
+ "2/(sum((x+np.sin(theta))>1)/N)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 1.3 Avec un argument \"fréquentiel\" de surface\n",
+ "\n",
+ "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2 ≤ 1]=\\pi/4$ (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "np.random.seed(seed=42)\n",
+ "N = 1000\n",
+ "x = np.random.uniform(size=N, low=0, high=1)\n",
+ "y = np.random.uniform(size=N, low=0, high=1)\n",
+ "accept = (x*x+y*y) <= 1\n",
+ "reject = np.logical_not(accept)\n",
+ "\n",
+ "fig, ax = plt.subplots(1)\n",
+ "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
+ "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
+ "ax.set_aspect('equal')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n",
+ "en moyenne, $X^2 + Y^2$ est inférieur à $1$ :"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "4*np.mean(accept)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
"metadata": {
+ "hide_code_all_hidden": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
@@ -22,4 +148,3 @@
"nbformat": 4,
"nbformat_minor": 2
}
-