From 0188de7d873cd459a3374ebdba687245e2ff6fec Mon Sep 17 00:00:00 2001 From: de005631c87798887a112e0e26e250dc Date: Wed, 1 Apr 2020 15:45:34 +0000 Subject: [PATCH] first commit --- module2/exo1/toy_notebook_fr.ipynb | 129 ++++++++++++++++++++++++++++- 1 file changed, 127 insertions(+), 2 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 0bbbe37..9fd116e 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -1,6 +1,132 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "# Toy_notebook_fr" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "\\date{March 28, 2019}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1 A propos du calcul de $\\pi$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.1 En demandant à la lib maths\n", + "\n", + "Mon ordinateur m’indique que $\\pi$ vaut -approximativement-" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from math import *\n", + "print(pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.2 En utilisant la méthode des aiguilles de Buffon\n", + "\n", + "Mais calculé avec la **méthode** des aiguilles de Buffon, on obtiendrait comme **approximation** :" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "np.random.seed(seed=42)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.3 Avec un argument \"fréquentiel\" de surface\n", + "\n", + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2 ≤ 1]=\\pi/4$ (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "np.random.seed(seed=42)\n", + "N = 1000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "y = np.random.uniform(size=N, low=0, high=1)\n", + "accept = (x*x+y*y) <= 1\n", + "reject = np.logical_not(accept)\n", + "\n", + "fig, ax = plt.subplots(1)\n", + "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", + "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", + "ax.set_aspect('equal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n", + "en moyenne, $X^2 + Y^2$ est inférieur à $1$ :" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "4*np.mean(accept)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { + "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", @@ -22,4 +148,3 @@ "nbformat": 4, "nbformat_minor": 2 } - -- 2.18.1