{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "# Toy_notebook_fr" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "\\date{March 28, 2019}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1 A propos du calcul de $\\pi$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.1 En demandant à la lib maths\n", "\n", "Mon ordinateur m’indique que $\\pi$ vaut -approximativement-" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from math import *\n", "print(pi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.2 En utilisant la méthode des aiguilles de Buffon\n", "\n", "Mais calculé avec la **méthode** des aiguilles de Buffon, on obtiendrait comme **approximation** :" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "np.random.seed(seed=42)\n", "N = 10000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.3 Avec un argument \"fréquentiel\" de surface\n", "\n", "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2 ≤ 1]=\\pi/4$ (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", "\n", "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n", "en moyenne, $X^2 + Y^2$ est inférieur à $1$ :" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "4*np.mean(accept)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }