"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Logistic regression\n",
"\n",
"Let's assume O-rings independently fail with the same probability which solely depends on temperature. A logistic regression should allow us to estimate the influence of temperature."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
23
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
21
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-3.9210
\n",
"
\n",
"
\n",
"
Date:
Tue, 26 May 2020
Deviance:
3.0144
\n",
"
\n",
"
\n",
"
Time:
10:19:52
Pearson chi2:
5.00
\n",
"
\n",
"
\n",
"
No. Iterations:
6
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
5.0850
7.477
0.680
0.496
-9.570
19.740
\n",
"
\n",
"
\n",
"
Temperature
-0.1156
0.115
-1.004
0.316
-0.341
0.110
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Tue, 26 May 2020 Deviance: 3.0144\n",
"Time: 10:19:52 Pearson chi2: 5.00\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n",
" family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The maximum likelyhood estimator of the intercept and of Temperature are thus $\\hat{\\alpha}=5.0849$ and $\\hat{\\beta}=-0.1156$. This **corresponds** to the values from the article of Dalal *et al.* The standard errors are $s_{\\hat{\\alpha}} = 7.477$ and $s_{\\hat{\\beta}} = 0.115$, which is **different** from the $3.052$ and $0.04702$ reported by Dallal *et al.* The deviance is $3.01444$ with 21 degrees of freedom. I cannot find any value similar to the Goodness of fit ($G^2=18.086$) reported by Dalal *et al.* There seems to be something wrong. Oh I know, I haven't indicated that my observations are actually the result of 6 observations for each rocket launch. Let's indicate these weights (since the weights are always the same throughout all experiments, it does not change the estimates of the fit but it does influence the variance estimates)."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
23
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
21
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-23.526
\n",
"
\n",
"
\n",
"
Date:
Tue, 26 May 2020
Deviance:
18.086
\n",
"
\n",
"
\n",
"
Time:
10:19:58
Pearson chi2:
30.0
\n",
"
\n",
"
\n",
"
No. Iterations:
6
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
5.0850
3.052
1.666
0.096
-0.898
11.068
\n",
"
\n",
"
\n",
"
Temperature
-0.1156
0.047
-2.458
0.014
-0.208
-0.023
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -23.526\n",
"Date: Tue, 26 May 2020 Deviance: 18.086\n",
"Time: 10:19:58 Pearson chi2: 30.0\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068\n",
"Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n",
" family=sm.families.Binomial(sm.families.links.logit),\n",
" var_weights=data['Count']).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Good, now I have recovered the asymptotic standard errors $s_{\\hat{\\alpha}}=3.052$ and $s_{\\hat{\\beta}}=0.047$.\n",
"The Goodness of fit (Deviance) indicated for this model is $G^2=18.086$ with 21 degrees of freedom (Df Residuals).\n",
"\n",
"**I have therefore managed to fully replicate the results of the Dalal *et al.* article**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Predicting failure probability\n",
"The temperature when launching the shuttle was 31°F. Let's try to estimate the failure probability for such temperature using our model.:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred)\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"source": [
"This figure is very similar to the Figure 4 of Dalal *et al.* **I have managed to replicate the Figure 4 of the Dalal *et al.* article.**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Computing and plotting uncertainty"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Following the documentation of [Seaborn](https://seaborn.pydata.org/generated/seaborn.regplot.html), I use regplot."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VPW9+P/XmTWTSUIWsgAJYQs7ogVRVERRRNkVqQJVq2LVVvttrfeqt9ar9qr1/nrtrW1vK1rrWlrBhSWKVlBwQ3GNBMIeCEsWsmcy21l+f0wyEhJgEjKZJe/n45FH5pycOfl8IDPv+Wzvj2IYhoEQQghxHFOkCyCEECI6SYAQQgjRIQkQQgghOiQBQgghRIckQAghhOiQBAghhBAdCluAuO+++5g8eTKzZ8/u8OeGYfBf//VfTJ8+nTlz5lBcXByuogghhOiCsAWIq666imeeeeaEP9+0aROlpaW88847/PrXv+bBBx8MV1GEEEJ0QdgCxNlnn02fPn1O+PP169czf/58FEXhzDPPpKGhgcrKynAVRwghRCdFbAyioqKCnJyc4HFOTg4VFRWnfJ7Pr+Lza/hVDb+qo2o6mqaj6Qa6biALw4UQontYIvWLO3ojVxTllM+ra/RRUdV4yusUBZSWByYABRSUwHlFwdTy/bvjwGOT6bvHZpMSUpm6U2ZmMlUh1C9WSf1iVzzXDXpH/TorYgEiJyeH8vLy4HF5eTlZWVnddn/DAKPlgf7d2U7fR1HApCiYTUogeJhaHisKFnPrsUwGE0LEn4gFiGnTpvHSSy8xa9YsvvnmG5KTk7s1QHQXwwDNMND0EwcXhUBrw2w2YTErWMymlq+eb4EIIUR3CVuAuOuuu/jss8+ora3lwgsv5M4770RVVQAWLVrE1KlT2bhxI9OnT8fhcPDoo4+GqyhhZwCqbqDqGl5/259ZTApWiyn4ZTGbJGgIIWKCEmvpvitrmkMag4hWigJWswmb1YzdasJqMbf5eW/oB5X6xaZ4rhv0jvp1VsS6mHorwwCfquNTdZrcYFLAbjVjt5mxW82nvoEQQvQQCRARphvg9mm4fRqKApYEGx6fit1qlq4oIURESYCIIoYBbq9KXZMPk0nBYTPjsFuwmGWWlBCi50mAiFK6buDyqLg8gdZEksPSbrxCCCHCSQJEDPD6Nbx+DZvFhNNhlbEKIUSPkAARQ3yqjq/R29KisGK1SNeTECJ8JEDEoNYWhcNuIdlhxWSSwWwhRPeTj6AxzO1VOVrvxu1VI10UIUQckgAR43QD6l0+ahu9aLp+6icIIUSIJEDECa9fo7reg9evRbooQog4IQEijugG1DZ6aXL7T32xEEKcggSIONTk9lPT4EGPrTRbQogoIwEiTvlUnZoGj4xLCCG6TAJEHFM1g+oGL35VgoQQovMkQMQ5XTeoafTgk8FrIUQnSYDoBQwDapu8EiSEEJ0iAaKXaA0SflWChBAiNBIgehHDgJpGCRJCiNBIgOhljJa1EqomA9dCiJOTANEL6QbUNXplnYQQ4qQkQPRSqm5Q1+jFkCAhhDgBCRC9mE/VaWiWtBxCiI5JgOjl3F6VZo+kCxdCtCcBQtDY7JPV1kKIdiRACAygvkkGrYUQbUmAEEBg0LrB5Yt0MYQQUUQChAjy+DTZvlQIESQBQrTR0OyTFOFCCEAChDiOYUCDS6a+CiFiMEA89Mxmvt51VBZ4hZHXL11NQgiwRLoAnXWgopEDFY18tauK+VMGk5acEOkixaWGZh82qwmzKeY+QwghuknMvfotZgWAXQfr+d8VRXz07RGZnhkG0tUkhIi5APHg0skMykkGwK/qFH6yn6fXbONovTvCJYs/Xr+G1yepwYXorWIuQPTr62TpnNHMnzIYu9UMwP7yRv6w8ltpTYRBY7NPxnuE6KViLkAAmBSFSaOy+X8Lz6Agtw8Afi3Qmni2cDt1Td4IlzB+qLqBS3I1CdErhTVAbNq0iRkzZjB9+nSWLVvW7ueNjY3cdtttzJ07l1mzZvHqq6926v6pSXZ+eMVIrrpwSLA1sfdwA0+uLOLr3TLTqbu4PH5ZGyFELxS2AKFpGg8//DDPPPMMhYWFrF27lt27d7e55uWXX2bo0KGsXr2aF198kccffxyfr3PpHhRFYeLILH569RkM6hcYm/D4NF7ZsJtX3tuNxyeffk+XYUCjpAUXotcJW4AoKioiPz+fvLw8bDYbs2bNYv369W2uURQFl8uFYRi4XC769OmDxdK1mbdpyXaWzhrNFecMxGwKzHT6Znc1f3z1W8oqm067Pr2dx6dJxlchepmwrYOoqKggJycneJydnU1RUVGba5YsWcLtt9/OlClTcLlc/O53v8MUwrz79HTnCX827+ICJozO4ZnVWymvbqam0ctTq4uZP3Uol04aiElRul6pHnKy+kVSgt1CesrprzvJzEzuhtJEr3iuXzzXDeK/fp0VtgDRUf+/ctyb84cffsioUaN44YUXOHDgADfeeCMTJ04kKSnppPeuqXGd9OeJVhO3zR1D4Sf72VJSia4bvPbebrbtOcrVFw0jMSF61wempztPWb9I8jZ7sZi73vDMzEymqqqxG0sUXeK5fvFcN+gd9eussHUx5eTkUF5eHjyuqKggKyurzTWvvfYal112GYqikJ+fT25uLnv37u2W32+zmrnywiEsurQgOIBdcqCOP75WRFll/P4RhJvLLWMRQvQWYQsQ48aNo7S0lLKyMnw+H4WFhUybNq3NNf369eOTTz4B4OjRo+zbt4/c3NzuLceQDO5YMI7+GYkA1DX5WLZ6G5uLy2WWUxd4fBqqJmMRQvQGYetrsVgsPPDAAyxduhRN01iwYAEFBQUsX74cgEWLFvHjH/+Y++67jzlz5mAYBnfffTfp6endXpaMlARunTeWNzfv59NtFWi6weqPSimrbGL+lCFYLTG5HCQiDMDlUenjtEW6KEKIMFOMGPsYXVnTTMVp9BN+vesor2/ai7/lU3D/jESWXDY8apL+RfsYBIAC9E1N6FIiv97Qzxuv9YvnukHvqF9n9bqPzmcW9OW2+WNIT7YDcLi6mT+9tpW9h+sjXLLY0dqKEELEt14XIAD6ZTj5yVXjGJ6XCkCzV+XZwhI2bys/xTNFK7dXRddjqvEphOikXhkgABx2C9fPGMGF4/sDoBsGqz8s5Y0P9kpaiRAYRiAFhxAifvXaAAFgMilcfs5Avj9tWHCfic+2V/LcWyWyo1oImr2qZM8VIo716gDR6sxhffnR3DGkJFoB2HOogT+/sZXqBk+ESxbdDAOaZSxCiLglAaJFbmYSt1/53XqJo/Ue/vz6VkrLGyJcsujW7FVlPYkQcUoCxDH6OG38aO4YRg9KA1oHr7fz7d7qCJcseum6Id1xQsQpCRDHsVnNLJ4+nCln9ANA1Qz+8e4uPiw6Ip+UT6DJI60IIeKRBIgOmBSFK87NZ875g1CUwLz/Nzfvp/CT/TIo24FAK0L2rhYi3kiAOInJY3JYMn041pbspR9vLeeVDbslF1EHmjx+aUUIEWckQJzC6EHpLJ0zikR7IG1V0Z5qXli3A69PPjEfS1oRQsQfCRAhyMtK5tZ5Y0hNCiSo232onqfXbqNJUl+3Ia0IIeKLBIgQZaY6uHXeWLLTHAAcPupi2epi6pq8ES5Z9JBWhBDxRQJEJ7ROg83PCWRFPFrv4alVxRytc0e4ZNFDWhFCxA8JEJ3ksFu4cebIYKK/epePp1YXc/hodKfo7im6buCR8Rkh4oIEiC6wWcz84LLhjBuSAQRSXz+zdptsZdpCFs4JER8kQHSRxWzimmnDOHtkYJ9tj0/jr4Xb2XtYUnP4VB2/KlOBhYh1EiBOg8mkMH/KYM4fmwOAz6/z/Fsl7Cyri3DJIq9ZWhFCxDwJEKdJURRmTs7norMGAODXdF58ewclB2ojXLLI8vgkFbgQsU4CRDdQFIXLzs7jsrPzANB0g5ff2cn20poIlyxyDAM80ooQIqZJgOhGF501gCvOGQi0BIl/7aJ4X+8NErJXhBCxTQJEN5syvj+zJucDgW1Ml7+7i629NF24qht4/TLlVYhYJQEiDM4f14855w0CAkHiH+t399qWhEx5FSJ2SYAIk8ljc5h7/iDgu5bEtl44JuH1aei6DFYLEYskQITRuWNy2rQklr+7q9cNXBuA2yetCCFikQSIMJs8NofZ5wXGJDTd4O/v7up16yTcMlgtREySANEDzhvbLzhwrekGL72zg92H6iNcqp6j6gY+GawWIuZIgOgh54/rx4xJgXUSqmbw4ts72Hek96TlkMFqIWKPBIgeNPXMAVwyIRcAv6rz/LqSXpPgz+PTZGW1EDFGAkQPm/a9AUw9sz8QyN30tzdLOFId/6nCDcAjmwkJEVMkQPSw1rQcrQn+PD6NZwu3U9kLNh2SbiYhYosEiAhoTfA3sSVVuMuj8mzhdmoaPBEuWXj5NR2/Kq0IIWKFBIgIURSF+RcM5oyhgU2HGlw+ni3cTn2c73Et+ZmEiB0SICLIZFJYePFQRuWnAVDT6OX3//wqrt9E3V5V9qwWIkaEFCBuvvlm3nvvvU6/sDdt2sSMGTOYPn06y5Yt6/CaTz/9lHnz5jFr1ix+8IMfdOr+8cBsMnHtJQUM6Z8CwOEqF8+9tR1vnO7rrOkGPr/sNidELAgpQFxzzTU8//zzXHrppSxbtoza2lNvhqNpGg8//DDPPPMMhYWFrF27lt27d7e5pqGhgYceeog///nPFBYW8vvf/75rtYhxVouJ6y4bQV5WEgAHq1y8+M6OuN22U1JvCBEbQgoQl112Gc899xxPP/00lZWVzJ49m3//939n69atJ3xOUVER+fn55OXlYbPZmDVrFuvXr29zzZo1a5g+fTr9+wemfWZkZJxGVWKb3WbmhstH0j/TCcDeww28smF3XCa6kwR+QsQGS1eeZLVasdvt3HPPPUyZMoV777233TUVFRXk5OQEj7OzsykqKmpzTWlpKaqqct111+Fyubj++uuZP3/+KX9/erqzK8WOeunA/7vmLP6/l77gaJ2b4tIa3tpSxg8uH4miKJEuXrdJS3fiTLKT5LBGuihhkZmZHOkihE081w3iv36dFVKAeOedd3jppZeorq5m8eLFFBYW4nQ6UVWVyy67rMMA0dF4xfFvcpqmUVxczHPPPYfH4+Haa69l/PjxDB48+KTlqamJ34Vl6elObrh8BE+tKqbJ7eejbw5jBi5v2aku1qWnO6mpcdFY7yajT0Kki9PtMjOTqaqKz9Xx8Vw36B3166yQAsTKlSu55ZZbmDJlStsnWyzcf//9HT4nJyeH8vLy4HFFRQVZWVntrklLSyMxMZHExEQmTpxISUnJKQNEvMtISeDGmSN5es02PD6NTd8cxumwMOWM/pEuWrfxazqqpmMxy0Q6IaJVSK/Op556ql1waDVt2rQOz48bN47S0lLKysrw+XwUFha2u/aSSy7h888/R1VV3G43RUVFDB06tJNViE/9Mpxcf/kILOZAq+utzQf4cmdVhEvVvZplZbUQUS2kALF48WLq679LT11XV8eSJUtO+hyLxcIDDzzA0qVLmTlzJldccQUFBQUsX76c5cuXAzB06FCmTJnC3LlzWbhwIVdffTXDhw8/jerEl0E5KSy6dDimlp651zbuYceBU88gixUeWRMhRFRTjBBeofPmzWPVqlWnPNcTKmuaqYjjfsLWPvpjfbGjklc37gXAajZx8+xRDMyOzcG04+vXx2nDYe/SXImoFM/92PFcN+gd9euskFoQuq7T3NwcPHa5XGhafC7kikYTRmRx+aTAILVf03l+3Q4qa+MjuZ8nThcEChEPQgoQs2fP5qabbmLVqlWsWrWKm2++mblz54a7bOIYU8b344Jx/YBAuoq/vRkfeZu8fg1Nj88FgULEupDa9rfeeitZWVls2LABwzC49tprQ1qvILqPoihcfu5Amtx+vt59lHqXj7+9VcKtc8fEfBeN26uR5JDZTEJEm5DfWa688kquvPLKcJZFnIJJUbhq6hBcHj+7DtZTWevmhbd3cNPMUVgtsfsG6/aqcbtoTohYFlKAqK6u5sUXX6SsrAxV/W5qYm/NnRRJFrOJxZcO55m12zh01MX+8kb+uWEXiy8djskUm6utNd3A69ewW82RLooQ4hghBYg777yToUOHMnnyZMxmeRFHmt1m5oYrRvKXVVupafCyrbSWNR+XMvf8QTGbksPtVSVACBFlQgoQDQ0N/PrXvw53WUQnJDms3DhzFH95Yysuj8qn2yro47Rx0VkDIl20LvH6NQzDiNkAJ0Q8CqnjuqCggIqKinCXRXRSRkoCN1wxElvL+MM7W8r4YkdlhEvVNYYRCBJCiOgRcgti7ty5nHXWWdjt9uB5GYOIvNzMJBZPH84L63agGwavb9pLksPKiIFpkS5ap3l8Ggm22J6RJUQ8CenVOHv2bGbPnh3usoguGp6XylVTh7Dy/T3oBix/dxdL54wmNzMp0kXrFOlmEiK6hBQgZHpr9Pve8EwaXD7e2VKGTw2str5t3hgyUmInpXZrN5O0IoSIDiGNQZSWlrJo0aJgNtbi4mL+8Ic/hLVgovOmntmfc0dnA+By+3nuzRKa3P4Il6pzJPWGENEjpADx4IMPcvvtt5OcHEj2NGrUKNatWxfWgonOUxSF2ecNYvSgwPhDdYOHF9aV4Iuhwd/WbiYhROSFFCAaGxu58MILg33DJpMJq1VWvkYjk0nhmmkF5Ldkez1Y5WL5+l1oMbIHtMxmEiJ6hBQgzGYzfr8/GCAqKiowmWI3tUO8s1pMXDdjOH1btvTccaCO1R/ui5lP5tLNJER0CHnDoDvuuIPa2lr+8Ic/sHjxYm666aZwl02chsQEKzfOHElyS46jLSWVbPjyUIRLFRqvT0OPkWAmRDwLabrI/Pnzyc3N5b333sPtdvP4448zceLEcJdNnKa05MBCumVrivH5ddZ/cZA+ThsTR2ad+skRZBBIveFMkG5MISIp5PmEEydOlKAQg/r3dbJk+nCefyuwkO6ND/aSnBj9C+ncHgkQQkRaSAFiwYIFHS5eWrlyZbcXSHS/gtxUFkwdwooYWkin6gZen4bdJgn8hIiUkALEPffcE3zs9XopLCwkKyu6uylEW2cNz6Q+xhbSNXtVCRBCRFBIAWLSpEltji+44AIZpI5BU8/sT73Lx6fbKoIL6W6dNyZqN+vx+jVUTcdilhlzQkRCl155TU1NlJWVdXdZRJgpisKcGFtI1+xVT32RECIsOj0Goes6Bw8e5MYbbwxrwUR4tC6k+2vhNg5UNAUX0v3gshGYo3BHutbtSE2SwE+IHtfpMQiz2Uxubi7Z2dlhK5QIL6vFxPUzRvDU6mKq6jzsOFDHqg/2cuWFQ6Iuk6phgMerkigzmoTocV0agxCxLzHByg+vGMVfVm2lsdnP5zuqSHHauHRiXqSL1k6zRwKEEJEQUoA499xzO/xk2Zq7/5NPPun2gonwS0u288MrRrJs9Ta8fo0NXx4iOdHGOaOjq3Wo6gZevyZ7VgvRw0IKEIsWLaKuro5rrrkGwzB49dVXyc7OZubMmeEunwizfhlOfnDZcJ57qwRNN1j90T6SE62MHpQe6aK10exRJUAI0cNCmsW0ZcsW/vM//5ORI0cyatQo7r//fjZu3MiAAQMYMGBAuMsowmzogD5cfdFQINDn/4/1u9hf3hjhUrXl82touh7pYgjRq4QUICorK6mpqQke19TUUFVVFbZCiZ43flhfZk3OB0DVDJ5fV0JFTXOES/WdQH6m6J2OK0Q8CqmL6YYbbmDevHlcfPHFAGzcuJFbb701rAUTPe/8cf1ocPn4oOgIHp/Gc28FFtKlJtkjXTQAmj1+nAmWqJtpJUS8CilALFmyhAkTJrBlyxYMw2DJkiWMGDEi3GUTETDjnIE0uf18teso9S4fz71Vwo/mjCExIfL7ROtGYK8Ihz3yZRGiNwj5lZabm4umaYwZMyac5RERZlIUrpo6hCa3n10H66msdfPC2yXcNGsUNkvkB4ndXlUChBA9JKQxiI0bNzJr1izuvPNOAL799ltuu+22sBZMRI7ZZGLx9OHkZjoBOFDRxPJ3d0XFILFP1fGrkS+HEL1BSAHiySefZOXKlaSkpAAwbtw4Dhw4ENaCiciyW83ccMXINtuWvr5pb1RsWyr5mYToGSEn68vMzGxzbLPZur0wIro4E6zcOHMUKc7A//WXO4/y1qcHIh4kPD5VtiQVogeEFCCcTidHjx4Nzh759NNPSU5OPuXzNm3axIwZM5g+fTrLli074XVFRUWMGjWKdevWhVhs0VNaV1s77IHxhw+LjrDpm8MRLVNrfiYhRHiFFCB+8YtfcMstt3Dw4EGuu+467r777jYJ/DqiaRoPP/wwzzzzDIWFhaxdu5bdu3d3eN1vf/tbLrjggq7VQIRdTnoi188YibVlX4a3PytjS0llRMvU7JEAIUS4hTQdZPz48bzwwgt8+eWXAJx11lnB8YgTKSoqIj8/n7y8QPK3WbNmsX79eoYNG9bmuhdffJEZM2bw7bffdqX8oofk5ySzeHoBL769M7i3tcNmZuyQjIiUR/IzCRF+pwwQmqbx/e9/n1dffZWpU6eGfOOKigpycnKCx9nZ2RQVFbW75t133+X555/vVIBIT3eGfG0sitb6TU53YrFZeHZ1MYYBr7y3m74ZTkYP7lyQ6K76JdjMZPRxdMu9ulNm5qm7X2NVPNcN4r9+nXXKAGE2m0lLS8Pr9WK3h76itqOBzONXwD7yyCPcfffdmM2d+xRYU+Pq1PWxJD3dGdX1G5qTzOzzB7Hmo1JUzeDPrxZx86xRDMwO7YXV3fXze3yYTdGzJWlmZjJVVdGVx6q7xHPdoHfUr7NC6mIaNGgQS5YsYcaMGSQmJgbPL1my5ITPycnJoby8PHhcUVFBVlZWm2u2bt3KXXfdBUBtbS0bN27EYrFw6aWXdqoSomdNHpOD26vy7ucH8as6z71Vwi1zRtMvo+dbPs0eleREmVEnRDiEFCBcLhcFBQXs3bs35BuPGzeO0tJSysrKyM7OprCwkP/5n/9pc82GDRuCj++9914uuugiCQ4x4uKzBuDxanz4bSBv09/eLOFHc0bTN7Vnu3xatySV/ExCdL+TBojf/OY33HvvvTz22GN89NFHnH/++aHf2GLhgQceYOnSpWiaxoIFCygoKGD58uVAYI8JEbsUReGKcwfi9ql8saOKJrefvxZu50dzx5CW3HPJ/XQjkOU1GnJFCRFvFOMkq56uvPJKXn/99XaPI6myppmKOO4njPYxiOPpusE/N+zi272BdPAZKQncMnc0KSfo9glH/Sxmhb5RMlgdz/3Y8Vw36B3166yTju4dGzsivXpWRCeTSWHhxcMYMTAVgOoGD88Wbsfl8fdYGVTNwOeXvSKE6G4nDRA+n489e/awe/fuNo9bv4QAsJhNLL50OEP6B9bGVNa6+Vvhdtw9uNrZJQvnhOh2J+1imjZt2omfqCisX78+LIU6Geliil5ev8bf3tzOgYomAPKykrhp5ijstu+mMYezfpmpCRGf8hrP3RTxXDfoHfXrrJOO7B07y0iIU7FbzfzwipH8de12Dh11UVbZxPPrSvjhFSOx9cCKZ5nyKkT3ip4VRiIuJNgs3DhzJDnpgfUypeWNvPD2Dnxq+McImr2S5VWI7iRzA0W3S0ywctOsUTy9ZhtVdW72Hm7gpbd3ct2M09umdtfBOj4vqaS20Utasp2JI7MoyE0N/twwAusinAnW062CiKCt+6r5sOgIVXVuMlMdXHBGP8Z2Mp2L6B7SghBhkeSwcvPsUcENh3Yfqueld3bg72JLYtfBOt7+rIzqBi+6AdUNXt7+rIxdB+vaXCdZXmPb1n3VvLpxLxW1bnQDKmrdvLpxL1v3VUe6aL2SBAgRNimJNpbOHk1GS5DYdbCev7z2bZe2DP38BOnFjz+v6UaPzp4S3evDoiOdOi/CSwKECKsUZyBIpKcEVlcX761uaUl0LkjUNnpDPi+tiNhVVec+wXlPD5dEgAQI0QP6HBckdh2s58VODlyfKH1HR+f9mi4L52JU5glyeWWmJvRwSQRIgBA9JDXJzi2zR5OVFngD2H2onhfW7Qj5jXziyKxOnZeFc7HpgjP6deq8CC8JEKLH9Emyc9fiCcGB672HG3jurRK8vlMHiYLcVGZMyiMjxY5JgYwUOzMm5bWZxXQsr1+TVkQMGjs4gwVTh5Cd5sCkKGSnOVgwdYjMYoqQk66kjkaykjq2pac7KT1Yy1/Xbgv2K+dlJfHDK0bisHfvrGuLSSGjT0KPpgKP59W48Vw36B316yxpQYgel5Jo45Y5Y4KL6coqm3hm7Taa3N2b4E/VDZplRpMQXSYBQkREksPK0tmjGZAZ2IXuSHUzT6/ZRr3L162/p8ntR9M7P61WCCEBQkRQYoKlZT/rJCAwxXHZ6mKqG7pvSqNhQIOr51KPCxFPJECIiArkbhrFsAF9gMC6hmWriimvae623+H1a3h80tUkRGdJgBARZ7eauf7yEYwelAZAo9vP02uKOVDRfQOGDS6fdDUJ0UkSIERUsJhNLLp0ON8b3hcI7DP917Xb2XGgtlvurxtQ39S94xtCxDsJECJqmE0KV00dyvnjcoDAiugX397BVzuruuX+PlXv9plSQsQzCRAiqpgUhZnn5jNjUh4Q+OS/4v09bPr6cLfsi+5y+2UBnRAhkgAhoo6iKEw9cwALpg7B1LLGbd1nB1jzUSm6fnpBwgDqXT7ZWEiIEEiAEFFrwogsfnDZCKyWwJ/p5m0VvPyvnae9O52mGzQ1S1eTEKciAUJEtZH5aSydPRpnQiANx/b9tfx17XYam09vwLnZq0pXkxCnIAFCRL28rCRumz82uPFQWWUTf1lVTMVprpWod/m6ZVxDiHglAULEhIyUBG6bN4b87EDCsdpGL39ZVdxuy9HO0HSDRulqEuKEJECImOFMCOxzfeawwFoJr1/j+bdK+KS4vMstgWavGlK6cSF6IwkQIqZYzCYWXjyUSybkAoFpsGs+KmXVh/tQta6tlK5zebu0T7YQ8U4ChIg5iqJwyYRcrr1kGBax8CRbAAAeZUlEQVRzYB7sZ9srefbN7V1aCGcYUNvkPe0ptELEGwkQImadMbQvt84dQ4rTBkDpkUb+7/VvOVTV1Ol76bpBbaNXBq2FOIYECBHTBmQm8ZMrx5KXFUgZXtfk46nVxXzZhfQcfk2nrklmNgnRSgKEiHnJiTZumTOas0dmAaBqBivf39OlcQmvX6O20SsrrYVAAoSIExaziSsvHMKVUwZjbsnP8em2CpatLqa20dupe/lUnZoGj4xJiF5PAoSIK2ePyuZHc0fTp2Vc4mCViz++VkRJJ9OGq5pBTYNH9pAQvVpYA8SmTZuYMWMG06dPZ9myZe1+vnr1aubMmcOcOXO49tprKSkpCWdxRC+Rl5XMHQvGUZAb2KXO7dV4Yd0O3tq8v1NdTqpuUNPg7fL0WSFiXdgChKZpPPzwwzzzzDMUFhaydu1adu/e3eaa3NxcXnrpJdasWcPtt9/Or371q3AVR/QyzgQrN1w+kksm5NKSEJYPio6wbHUxNZ3Y81prmd0kQUL0RmELEEVFReTn55OXl4fNZmPWrFmsX7++zTXf+9736NMn8CnvzDPPpLy8PFzFEb2QyRRYL3HjrFEkO6xAoMvpD69+y9e7j4Z8H003qGmUxXSi97GE68YVFRXk5OQEj7OzsykqKjrh9StXruTCCy8M6d7p6c7TLl80k/p1r0npTkYO6cvzhdso3luN16/xyobd7CtvZNFlI0hMsIZ0HwOwOawkJ9owtW5U0YHMzORuKnn0iee6QfzXr7PCFiA6mkuuKB2/qDZv3szKlSv5+9//HtK9a2pcp1W2aJae7pT6hcmiS4bxcVYSb392AE032LKtgp37a1l48VCG9O8T0j1qCLRMkh1WHPb2L5/MzGSqqhq7ueTRIZ7rBr2jfp0Vti6mnJycNl1GFRUVZGVltbuupKSE+++/n//7v/8jLS0tXMURApOicMEZ/fjxlWPJSnMAgZTff127nbUfl4a8EZGuG9S7fDI2IeJe2ALEuHHjKC0tpaysDJ/PR2FhIdOmTWtzzeHDh7nzzjv57//+bwYPHhyuogjRRr8MJz+5chznjQ10gRrAx1vL+cPKb9lfHvonSK9fo7reQ5PbL6uvRVwKWxeTxWLhgQceYOnSpWiaxoIFCygoKGD58uUALFq0iD/96U/U1dXx0EMPAWA2m3nttdfCVSQhgqwWE7PPG8TI/DRe27iHuiYf1Q0elq0uZvLYHKafnYfdaj7lfQygye2n2eMnMcFKhiyuE3FEMWLso09lTTMVcdxPKGMQPa94XzVvbT5AzTErrpMcFvr2SUDVDNKS7UwcmUVBbuop79U3IwlPsxdnguWEY24d2bqvmg+LjlBV5yYz1cEFZ/Rj7OCMLtWnu639pJT3vzqEy6PiTLBw0VkDmD15UKSL1e1kDKK9sLUghIgFuw7W8d5Xh0mwW0hXoL7Jh6YbNLlVmtxNOOxm/JrB25+VAZwySOiGQZPbj8erkuK0YQuhFbJ1XzWvbtwbPK6odQePIx0k1n5SytqPSoHAJJOmZn/wOB6DhGhLUm2IXu3zksrg4wSbhcw0RzCXEwRWYVfWNuNy+9myvSLk+6otayfqm049kP1h0ZFOne9J7391qFPnRXyRACF6teMT+ZkUBZMJzOZAAkAIbChU7/Kxo6yessrOdUG4fYGB7JMFiqo69wnOh77iO1xOtAGTqwsbM4nYIwFC9GppyfZ258wmE1azmczUBFKcNlqHEvyqzp/fKGbl+3tobPaF/DsMAoHiaL2H2kYv/uOm02amOjp8XmZqQsi/I1ySHB0vInSe4LyILxIgRK82cWT7tTmJCZbgIHOSw0pWqoME23djCV/urOKJf37Dxq8PdTr9htevUd3gpabBg8enAnDBGf06vPZE53vSRWcN6NR5EV/MDz744IORLkRnuNx+XJ349BZrHA4b7jhuvkdb/TJSEkhLtlPX6MXr00hPsTPte7mMGJgWPNe3TwIzJg1kwohMDle5cHlUNN1gz6EGvt5VhdNhJSvNgaIoIddP0w08Po1mr0pmqoOcdAe1jV7cXo2sNAeXnzMw4gPUAMPzUkGBw9UuVE3H6bBy2aSBcTlA7XTaaY7j9xans31r+VRkmmuUicZpoN0p1uun6Qafbavg3S8O4vaqwfMDMp3MOHsgk87o36X6KYDNasZhN2O3mjs1Rban9IZpoPFev86Saa5CdILZpDB5bA5nFvTl/a8O8fHWcjTd4FCVi2ff3M5HxeVMO2tAcI/sUBkEup+8fg2TAgl2Cw6bBatFeoFF5EiAEKILHHYLV5ybzzmjs/nX52V8s7sagB37a9mxv5aRA9O4ZMIABmR2LlAA6AY0e1SaPSoWk0KC3UKCzRycVSVET5EAIcRpSE9J4JppBVw4vj/vbCljx4E6AEoO1FJyoJZR+Wlc/L0B5HYhUEBgPUWT20+T24/VbMJhN2OzSrAQPUMChBDdoF+GkxsuH0lNs5/XNuxi7+EGALbvr2X7/loKcvsw9cwBDO6X3OXxBb+m42/WAT9mk4LNYsJmNWOzmjCbJGCI7icBQohuNCw3laWzR7PvSAPrvzgYDBS7Dtaz62A9A7OTmHJGf0blp51006FT0XQDt0/D7QusqbCYFKxWMwk2c0hJBoUIhQQIIcJgcL+UYKDY+PVhdpYFup4OVDTx8r92kpGSwPnjcvje8MyQ8jWdiqobqF4Vt1fFZFJIsJlx2MxYLRIsRNdJgBAijAb3S2FwvxQOH3Wx8etDbN1Xg2FAdYOH1R+V8s6WMiaOzOLc0dmkp3TPymldN4KD3CaTgt1qJsFqxmo1YYrC6bMiekmAEKIH9O/rZNGlw6lp8PDR1nK+KKnEp+p4fBofFh3ho6IjjBiYxqTRWQzPTT2t7qdj6bqBu6VlAWAxK9gsZqwWE1aLSQa7xUlJgBCiB6WnJDDnvEFcOiGXz0sq+aS4nLomHwbfzXxKTbIxcWQWE4Zn0iep86tfT0bVDFRNhZYchQqBpIRmsxL4blICX2ZFBr6FBAghIsFhtzBlfH/OH9ePkgO1bC6uYPehegDqmny8+/lB1n9+kGG5fZgwIotR+WlhWTRn0DI7SgNom0RQAcxmBavFjM1iwq/qGIYRlau8RXjEXICw2wJ/rIYBhmGgG0bgcaQLJkQXmEwKowelM3pQOtX1Hj7bXsEXO6to9qgYfDf7KcFmZuyQDM4q6Et+TnKPjCUYfNficHvBXNtMba0bkynQ2jC1tjZMChaz0nIsrY54EnO5mIAO86W0CRaGga4TPA58P+ZnxwWX1u89qd3Lu+VEerqT2uNz+Rz3ZqCc4HFHJ5RjThiGgUHghW/oRkSCaqznYjqV7qifquls31/LFzuq2HWwrt3fZh+njXFDMzhjaAYD+jp77BN9KHVToKWLyhTsqlJQMGj7GgsMsSgoSiBImpRAoOmusZeukFxM7cVcC+JEFEXBfJovFL2lKXL8H/N3v+O44/bvxh09DJYvFJl9k7D2ULRqEyT1tsFUb32sR0dA7U0sZhPjhmQwbkgG9S4fX++q4qtdR6msDWwsVO/y8WHRET4sOkJ6sp0xg9MZOySdAZlJEZ+lZNAy5VbXTnltRxSFlhaJKfAaaqmPorRs5qQEXkvhCiqt7wGtL+Cuvo7jRdy0IOJFLH2K0Q0jGFjateCOCTCabqBqOrohLYiuMgyDI9XNfL3rKN/urabe1T4tdYrTxqj8NEblpzGkf0q3z1CK1v+7Y1stikLwb5CW861dYUDww06wW7r1b1U36JOayNHqplP/vtYgRUvrp+VLCf5cadNjYbScCwa3lu/KCY/DE4S60oKQABFlYilAdJZuGKSlOTlS3oCq66iqjqoHgky86Ik3Ud0wKKtoomhPNVv3VdPY3H7/CZvFxLDcPozIS2V4Xmq3zIaK1gDRXaKpfscGoZMFk1BiSes7/OCB6Z0uR9x0MYnoZ1IUbFYziQlt/+z0YAsjMHZ0oi4+aN/NB8d3A7R/0XR0L90ItGw0TUfXA62fWIlTJkUhPyeZ/JxkZp2Xz8HKJor31VC8r4aalj22farOttJatpXWApCd5qAgN5VhuX0YlJPcLau3RfgEW+KBo4iVQwKEiDiTScFmivwbVkfdZMd2Fai6garq+DU9asZgTIrCwOxkBmYnc/k5A6msc1PSkiCwrLIpWM6KWjcVtW4+/PYIZpNCXnYSQ/qlMKR/CnlZybLvhOiQBAghWnRmooOq6TR7VTxeNWpaHoqikJ2WSHZaIlPPHECzR2X3oTp2ltWxq6yexpatUDXdoPRII6VHGtnw5SEsZoXczCTyc5IZlBMINg67vDUICRBCdInFbCIl0Uayw4rHp+H2qvhUPdLFaiMxwcIZQ/tyxtC+GIZBRa2bPYfq2X2wntLyRryB1XGomkFpeSOl5Y1sbHluZqqDgdlJDMxKIjcriay0xMhVRESMBAghToOiKDjsFhx2C6qm40iw0mBSoGVaJhCcwRXpcuakJ5KTnsj54/qh6QaHj7rYe7ie0iON7K9oxOP7bmpqVZ2bqjo3X+yoAsBqNjGwXzJZqQ4G9HXSv6+TzFRHcHaQiE8SIIToJhazidRkO36Po93P/KqOT9Xw+rSoaGmYTQp5WUnkZSUx9czAoH1FTTP7yxs5UNHEgcpGahq8wev9ms6eg/XsOVgfPGcxK2SlJdIvPZGcjESy0xPJTnOQ5LD2uvUC8UoChBA9oDV7qjPBiq4beHwaXr+Gz69FRZoYk6LQL8NJvwwn544JnGty+zlU1URZZROHqlwcrna1mVKraoFWyOGjbaeGJiZYyEpzkJXqIDP4lUCfJHvEF/KJzpEAIUQPM5kUEhMsJCZY0A0Dn1/D69fx+qJnwBsgyWFlxMA0RgxMAyAtLZHSsloOH3Vx6KiL8ppmjlQ3U9vobfO8Zo8aHAQ/lsWs0LePg4yUBDL62MlISSA9JYH0FDspTrt0V0UhCRBCRJBJUUiwWUiwAU4bPr+Gx6/h8WlRt4BQURT6JNnpk2Rn1KDvFl15fCoVNW7Ka5qpqG2moiYwftHkbruAT9UMymuaKa9pbndvk6KQmmwjNclOWrI9+L1PUuBcH6dN9q6IAAkQQkQRm9WMzWomJTEwbuH1a3h8KqoWXcHiWAk2S3Dh3rGaPWpwsPtovZuqOg9H6z3UNHjQjgt+umFQ0+BtM+5xPGeChT5OGylOG8mJge8piVaSE20ktX53WCSjbDeSACFElGodt0hyBMYtvH4tONitaZHJxtsZiQkdBw5dN2ho9nG03kNto5eahkDQqGvyUdvobdfyaOXyqLg8Koer27dAjuWwW0hyWElyWHE6LDgTAo8TEyw4EywkJlhJtFuC3XxWs0kG1U9AAoQQMcBkap1OGzg2DAO/qqNqOn4tkDIkGqbThsJkUkhNCnQjdcSnatQ1+ahv8lLf5KOuyUu9y0eDy0e9y0d9ky+4hqMjrVusVtW5QyqPxRz4t01KtGGzmHDYLDjs5kDXn91Mgq3lsc0c/LJbLditppb9acwRTVMeThIghIhBSkteq+NzKum6gabrqNp3WXRVTUfTYydFu81iJis1MAvqRHx+jcZmP/UuH01uH43Nfhqb/TS523653P523VnHUzUj+PyuslpM2K1mbNbW74GNzY7/brWY2uwJfuyXxdzyuOW7peVx65awkZgBFtYAsWnTJh555BF0XWfhwoX86Ec/avNzwzB45JFH2LhxIwkJCfzmN79hzJgx4SySEHFr675qPiw6QlWdm8xUBxec0Y+xgzP4a+E2tmyvxKfqWM0K3xuRyYQRmXyytYKj9W7SUxKYOCKTYQNS2Xmwjs9LKqlt9JKWbGfiyCwOVjXx2bYKmn0aiTYzk0Znc/FZuScsx64O7gG0O1eQmxry8wtyU3nvq4OBcnhVEu2Wk5aj9R41DZ7AoHp+GpmpDnYfqqdkfy2NzX5sVhPpyQlYLSbcPhW/atDY7MPtVfH6Ojf92K/q+FUdQmu0dEnrPhmW1v3DW75bWjdoMitYTKaW/cQDu/tZWh+bTYwbkd3p3xm2dN+apjFjxgz+9re/kZ2dzdVXX80TTzzBsGHDgtds3LiRF198kaeffppvvvmGRx55hBUrVpzy3vGaDhviO903SP3CZeu+al7duLfdeWeChe0tGV1bGQTGBzKP+4Q+YUQmn5dUfnedAfUuLy63H5OiBPc5ALhkYh7TzhqAzncJDSHwxvz2Z2Vt7uvxqSiA3db28+iMSXntgkRHzwfISXfw7Z7qducv+t6AdkHiRPcYMziN4n217c63luPYdN87y2pZ92lZmw20DN1g7JB0UpPswXUsXn9g8WPr+FDrsU/VA18t56PBmv+Z1+nnhK0FUVRURH5+Pnl5eQDMmjWL9evXtwkQ69evZ/78+SiKwplnnklDQwOVlZVkZWWFq1hCxKUPi450eL5kf/s3RAC3R2137v2vDpGcaAseKwq43CqGAYpJaTOQ+9n2Cr5/8bA2zzcMg9c37cFibtsV4vYGfldigrXN+W92H2XC8CwCCd4DAemb3UeP6c//7rNrR8EBYMv2Smaek9/m6q92VnWYFn7L9kqcDmu781/trGLMoPRA11BLVtuvdx0NfBI/Lpl8vcvH3PMHd1iWYx37sVs3AlmAff5A4GidaND6uN2XprWMLwW6CP0tGYS1Y45VLbCXSmDsqeV7S5eiprXtZjwdYQsQFRUV5OTkBI+zs7MpKio66TU5OTlUVFScMkB0ZWekWCL1i22RqF9tk6/DlN260cEeGi27qR1/vcujkp6ScNzzA28wrcGh9XuzR+2wnnUufwfjIoACdlvb800elfy8tDbnGt0qCbb2qd9V3cBmaX/e49MYNrhv23p4tQ6z0R6t99C3g3GNZp/GiKGZAMGfu7zbOryH+5hre4OwBYiOeq6On0oWyjVCiFN74mdTI10E4PTL0R31iJZ7xIOwrSjJycmhvLw8eNxRy+D4a8rLy6V7SQghokTYAsS4ceMoLS2lrKwMn89HYWEh06ZNa3PNtGnTeOONNzAMg6+//prk5GQJEEIIESXC1sVksVh44IEHWLp0KZqmsWDBAgoKCli+fDkAixYtYurUqWzcuJHp06fjcDh49NFHw1UcIYQQnRS2aa5CCCFim2S1EkII0SEJEEIIIToU1bmYvF4vS5YswefzBVdm//SnP6Wuro6f//znHDp0iAEDBvC///u/9OnTJ9LF7ZLW8Zns7GyeeuqpuKrbtGnTcDqdmEwmzGYzr732WlzVr6Ghgfvvv5+dO3eiKAqPPvoogwcPjov67d27l5///OfB47KyMn76058yf/78uKjfc889x4oVK1AUheHDh/PYY4/hdrvjom4Azz//PCtWrMAwDBYuXMgPf/jDLr32oroFYbPZeP7551m9ejVvvPEGH3zwAV9//TXLli1j8uTJvPPOO0yePJlly5ZFuqhd9sILLzB06NDgcTzVDQJ/qKtWreK1114D4qt+jzzyCFOmTGHdunWsWrWKoUOHxk39hgwZwqpVq4L/dw6Hg+nTp8dF/SoqKnjhhRd49dVXWbt2LZqmUVhYGBd1A9i5cycrVqxgxYoVrFq1ivfff5/S0tIu1S+qA4SiKDidTgBUVUVVVRRFCaboAJg/fz7vvvtuJIvZZeXl5bz//vtcffXVwXPxUrcTiZf6NTU1sWXLluD/nc1mIyUlJW7qd6xPPvmEvLw8BgwYEDf10zQNj8eDqqp4PB6ysrLipm579uxh/PjxOBwOLBYLZ599Nv/617+6VL+oDhAQ+I+cN28e5513Hueddx7jx4+nuro6uF4iKyuLmpqaCJeyax599FH+7d/+DdMxO2DFS91a3XzzzVx11VX885//BOKnfmVlZaSnp3Pfffcxf/58fvnLX9Lc3Bw39TtWYWEhs2fPBuLj/y87O5ubbrqJiy++mAsuuICkpCQuuOCCuKgbwPDhw/n888+pra3F7XazadMmysvLu1S/qA8QZrOZVatWsXHjRoqKiti5c2eki9Qt3nvvPdLT0xk7dmykixI2y5cv5/XXX+fpp5/m5ZdfZsuWLZEuUrdRVZVt27axaNEi3njjDRwOR8x2SZyMz+djw4YNXH755ZEuSrepr69n/fr1rF+/ng8++AC3282qVasiXaxuM3ToUJYuXcpNN93E0qVLGTFiBGZz+zxWoYj6ANEqJSWFc845hw8++ICMjAwqKwNpiSsrK0lPTz/Fs6PPl19+yYYNG5g2bRp33XUXmzdv5u67746LurXKzg7kn8/IyGD69OkUFRXFTf1ycnLIyclh/PjxAFx++eVs27YtburXatOmTYwZM4a+fQMJ8eKhfh9//DG5ubmkp6djtVq57LLL+Oqrr+Kibq0WLlzI66+/zssvv0xqair5+fldql9UB4iamhoaGhoA8Hg8fPzxxwwZMiSYogPgjTfe4JJLLolkMbvkF7/4BZs2bWLDhg088cQTnHvuufz2t7+Ni7oBNDc309TUFHz80UcfUVBQEDf1y8zMJCcnh717A3swfPLJJwwdOjRu6teqsLCQWbNmBY/joX79+/fnm2++we12YxhGXP7fVVcH0qMfPnyYd955h9mzZ3epflG9krqkpIR7770XTdMwDIPLL7+cO+64g9raWn72s59x5MgR+vXrx+9//3tSUzvenSoWfPrppzz77LM89dRTcVO3srIyfvKTnwCBcaTZs2dz++23x039ALZv384vf/lL/H4/eXl5PPbYY+i6Hjf1c7vdXHTRRbz77rskJwdSe8fL/9+TTz7Jm2++icViYdSoUTzyyCO4XK64qBvA4sWLqaurw2KxcN999zF58uQu/d9FdYAQQggROVHdxSSEECJyJEAIIYTokAQIIYQQHZIAIYQQokMSIIQQQnQoqrO5CnEyCxcuxOfz4ff7KS0tpaCgAIDRo0fz2GOPRbh0oSkuLqasrCyuViqL+CHTXEXMO3jwIAsWLODTTz+NdFHaUVUVi+XEn8NWrFjBxx9/zO9+97tuv7cQp0v+ukRcWrlyJf/4xz/QNI2UlBQeeughBg0axIoVK1i3bh1Op5OdO3fSr18//uM//oPHH3+csrIyxo8fz+OPP46iKNx99904HA4OHDhAeXk555xzDr/61a+wWq00Njby6KOPsmvXLrxeL+eddx733HMPJpOJRYsWMWnSJL766isSExN58skng4sEvV4v48eP56GHHqKhoYE//elPuFwu5s2bxznnnMOSJUtYvHgxH330EQD79+8PHu/fv59FixZxzTXXsHnzZq666irmzZvHE088weeff47P52PUqFE8+OCDOByOCP8PiLhgCBHjysrKjEmTJgWPN2/ebNx6662G1+s1DMMw1q9fbyxZssQwDMN45ZVXjEmTJhnl5eWGYRjGTTfdZMyfP99obGw0fD6fMXPmTGPz5s2GYRjGL37xC2PevHmGy+UyfD6fcf311xt///vfDcMwjHvuucdYs2aNYRiGoWma8dOf/tRYuXKlYRiGce211xo//vGPDVVVgz+vq6sLPr7rrruMV155JVien/3sZ8Gyl5aWGuedd16Hx6Wlpcbw4cONdevWBX/+5JNPGk899VTw+LHHHjN+//vfn94/qBAtpAUh4s6GDRvYtm0bCxcuBMAwDFwuV/DnEyZMCCYSHD16NB6Ph6SkJABGjBjBgQMHOOeccwCYOXMmiYmJQCCH/vvvv8+iRYt47733KC4u5umnnwYCucIGDhwY/B1z5swJZtDUdZ1ly5bx4Ycfous6dXV1Xd6pLDExkRkzZrSpq9vtprCwEAhkXx0zZkyX7i3E8SRAiLhjGAbf//73ueOOOzr8ud1uDz42mUztjlVVPeF9FUUBAm/6Tz31FP379+/w2tagArBq1SqKior4+9//jtPp5I9//CNHjhzp8Hlmsxld14PHXq/3hPdtLdOvf/1rzj777A7vJ8TpkGmuIu60Zq2sqKgAAskCt27d2qV7vfXWW7jdbvx+P2vWrAm2LKZNm8ayZcvQNA0IZB4uKyvr8B6NjY2kpaXhdDqpr68PftoHcDqdNDY2Bo+zsrLweDzBe61du/aUdX322WeDgaSpqYk9e/Z0qa5CHE8ChIg75557LnfccQe33norc+fOZc6cObz//vtduteECRO4/fbbmT17Nnl5ecEtRn/1q1+h6zrz5s1jzpw53HLLLVRVVXV4jyuvvJK6ujpmz57NXXfd1ebT/vnnn09jYyNz587l0UcfxWazce+993LDDTdw3XXXYbVaT1q+2267jaFDh3L11VczZ84clixZwr59+7pUVyGOJ9NchTiBu+++mwkTJrBo0aJIF0WIiJAWhBBCiA5JC0IIIUSHpAUhhBCiQxIghBBCdEgChBBCiA5JgBBCCNEhCRBCCCE69P8DNrSqc6nmqFEAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.set(color_codes=True)\n",
"plt.xlim(30,90)\n",
"plt.ylim(0,1)\n",
"sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**I think I have managed to correctly compute and plot the uncertainty of my prediction.** Although the shaded area seems very similar to [the one obtained by with R](https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/tree/master/challenger.pdf), I can spot a few differences (e.g., the blue point for temperature 63 is outside)... Could this be a numerical error ? Or a difference in the statistical method ? It is not clear which one is \"right\"."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Hide code",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}