{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import os\n",
"import urllib.request\n",
"import isoweek"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"\n",
"data_file = \"syndrome_vericelle.csv\"\n",
"if os.path.exists(data_file):\n",
" pass\n",
"else:\n",
" urllib.request.urlretrieve(data_url, data_file)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"data = pd.read_csv(data_file, skiprows=1)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" week | \n",
" indicator | \n",
" inc | \n",
" inc_low | \n",
" inc_up | \n",
" inc100 | \n",
" inc100_low | \n",
" inc100_up | \n",
" geo_insee | \n",
" geo_name | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 202204 | \n",
" 7 | \n",
" 9487 | \n",
" 6658 | \n",
" 12316 | \n",
" 14 | \n",
" 10 | \n",
" 18 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 1 | \n",
" 202203 | \n",
" 7 | \n",
" 13972 | \n",
" 10680 | \n",
" 17264 | \n",
" 21 | \n",
" 16 | \n",
" 26 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 2 | \n",
" 202202 | \n",
" 7 | \n",
" 8495 | \n",
" 6026 | \n",
" 10964 | \n",
" 13 | \n",
" 9 | \n",
" 17 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 3 | \n",
" 202201 | \n",
" 7 | \n",
" 13793 | \n",
" 10597 | \n",
" 16989 | \n",
" 21 | \n",
" 16 | \n",
" 26 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 4 | \n",
" 202152 | \n",
" 7 | \n",
" 13239 | \n",
" 9611 | \n",
" 16867 | \n",
" 20 | \n",
" 15 | \n",
" 25 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
"0 202204 7 9487 6658 12316 14 10 18 \n",
"1 202203 7 13972 10680 17264 21 16 26 \n",
"2 202202 7 8495 6026 10964 13 9 17 \n",
"3 202201 7 13793 10597 16989 21 16 26 \n",
"4 202152 7 13239 9611 16867 20 15 25 \n",
"\n",
" geo_insee geo_name \n",
"0 FR France \n",
"1 FR France \n",
"2 FR France \n",
"3 FR France \n",
"4 FR France "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" week | \n",
" indicator | \n",
" inc | \n",
" inc_low | \n",
" inc_up | \n",
" inc100 | \n",
" inc100_low | \n",
" inc100_up | \n",
" geo_insee | \n",
" geo_name | \n",
"
\n",
" \n",
" \n",
" \n",
" 1621 | \n",
" 199101 | \n",
" 7 | \n",
" 15565 | \n",
" 10271 | \n",
" 20859 | \n",
" 27 | \n",
" 18 | \n",
" 36 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 1622 | \n",
" 199052 | \n",
" 7 | \n",
" 19375 | \n",
" 13295 | \n",
" 25455 | \n",
" 34 | \n",
" 23 | \n",
" 45 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 1623 | \n",
" 199051 | \n",
" 7 | \n",
" 19080 | \n",
" 13807 | \n",
" 24353 | \n",
" 34 | \n",
" 25 | \n",
" 43 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 1624 | \n",
" 199050 | \n",
" 7 | \n",
" 11079 | \n",
" 6660 | \n",
" 15498 | \n",
" 20 | \n",
" 12 | \n",
" 28 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 1625 | \n",
" 199049 | \n",
" 7 | \n",
" 1143 | \n",
" 0 | \n",
" 2610 | \n",
" 2 | \n",
" 0 | \n",
" 5 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up inc100 inc100_low \\\n",
"1621 199101 7 15565 10271 20859 27 18 \n",
"1622 199052 7 19375 13295 25455 34 23 \n",
"1623 199051 7 19080 13807 24353 34 25 \n",
"1624 199050 7 11079 6660 15498 20 12 \n",
"1625 199049 7 1143 0 2610 2 0 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"1621 36 FR France \n",
"1622 45 FR France \n",
"1623 43 FR France \n",
"1624 28 FR France \n",
"1625 5 FR France "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.tail()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"week int64\n",
"indicator int64\n",
"inc int64\n",
"inc_low int64\n",
"inc_up int64\n",
"inc100 int64\n",
"inc100_low int64\n",
"inc100_up int64\n",
"geo_insee object\n",
"geo_name object\n",
"dtype: object\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" week | \n",
" indicator | \n",
" inc | \n",
" inc_low | \n",
" inc_up | \n",
" inc100 | \n",
" inc100_low | \n",
" inc100_up | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 1626.000000 | \n",
" 1626.0 | \n",
" 1626.000000 | \n",
" 1626.000000 | \n",
" 1626.000000 | \n",
" 1626.000000 | \n",
" 1626.000000 | \n",
" 1626.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 200626.720787 | \n",
" 7.0 | \n",
" 12433.839483 | \n",
" 7840.616236 | \n",
" 17064.530750 | \n",
" 20.406519 | \n",
" 12.865314 | \n",
" 28.009840 | \n",
"
\n",
" \n",
" std | \n",
" 899.691590 | \n",
" 0.0 | \n",
" 6628.865434 | \n",
" 5146.637997 | \n",
" 8398.872725 | \n",
" 10.997742 | \n",
" 8.526863 | \n",
" 13.953634 | \n",
"
\n",
" \n",
" min | \n",
" 199049.000000 | \n",
" 7.0 | \n",
" 161.000000 | \n",
" 0.000000 | \n",
" 597.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 25% | \n",
" 199838.250000 | \n",
" 7.0 | \n",
" 7162.250000 | \n",
" 3514.750000 | \n",
" 10573.250000 | \n",
" 12.000000 | \n",
" 6.000000 | \n",
" 17.000000 | \n",
"
\n",
" \n",
" 50% | \n",
" 200626.500000 | \n",
" 7.0 | \n",
" 12366.000000 | \n",
" 7760.000000 | \n",
" 17028.000000 | \n",
" 20.000000 | \n",
" 13.000000 | \n",
" 28.000000 | \n",
"
\n",
" \n",
" 75% | \n",
" 201415.750000 | \n",
" 7.0 | \n",
" 16966.750000 | \n",
" 11521.750000 | \n",
" 22474.250000 | \n",
" 28.000000 | \n",
" 19.000000 | \n",
" 37.000000 | \n",
"
\n",
" \n",
" max | \n",
" 202204.000000 | \n",
" 7.0 | \n",
" 36298.000000 | \n",
" 25490.000000 | \n",
" 54240.000000 | \n",
" 61.000000 | \n",
" 44.000000 | \n",
" 90.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" week indicator inc inc_low inc_up \\\n",
"count 1626.000000 1626.0 1626.000000 1626.000000 1626.000000 \n",
"mean 200626.720787 7.0 12433.839483 7840.616236 17064.530750 \n",
"std 899.691590 0.0 6628.865434 5146.637997 8398.872725 \n",
"min 199049.000000 7.0 161.000000 0.000000 597.000000 \n",
"25% 199838.250000 7.0 7162.250000 3514.750000 10573.250000 \n",
"50% 200626.500000 7.0 12366.000000 7760.000000 17028.000000 \n",
"75% 201415.750000 7.0 16966.750000 11521.750000 22474.250000 \n",
"max 202204.000000 7.0 36298.000000 25490.000000 54240.000000 \n",
"\n",
" inc100 inc100_low inc100_up \n",
"count 1626.000000 1626.000000 1626.000000 \n",
"mean 20.406519 12.865314 28.009840 \n",
"std 10.997742 8.526863 13.953634 \n",
"min 0.000000 0.000000 1.000000 \n",
"25% 12.000000 6.000000 17.000000 \n",
"50% 20.000000 13.000000 28.000000 \n",
"75% 28.000000 19.000000 37.000000 \n",
"max 61.000000 44.000000 90.000000 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(data.dtypes)\n",
"data.describe()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" week | \n",
" indicator | \n",
" inc | \n",
" inc_low | \n",
" inc_up | \n",
" inc100 | \n",
" inc100_low | \n",
" inc100_up | \n",
" geo_insee | \n",
" geo_name | \n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
"Index: []"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"missing_data = data.loc[data.isna().any(axis=1), :]\n",
"missing_data"
]
},
{
"cell_type": "markdown",
"metadata": {
"hidePrompt": false
},
"source": [
"We confirmed that there was no missing data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Changing week format: from YYYYWW to time period"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def from_int_to_period(weekdate):\n",
" date = str(weekdate)\n",
" date = isoweek.Week(int(date[:4]), int(date[4:]))\n",
" return pd.Period(date.day(0), \"W\")\n",
"\n",
"period = data.loc[:, \"week\"].apply(from_int_to_period)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"data.loc[:, \"week\"] = period\n",
"data = data.rename(columns={\"week\": \"period\"})"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"sorted_data = data.set_index(\"period\").sort_index()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" indicator | \n",
" inc | \n",
" inc_low | \n",
" inc_up | \n",
" inc100 | \n",
" inc100_low | \n",
" inc100_up | \n",
" geo_insee | \n",
" geo_name | \n",
"
\n",
" \n",
" period | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 1990-12-03/1990-12-09 | \n",
" 7 | \n",
" 1143 | \n",
" 0 | \n",
" 2610 | \n",
" 2 | \n",
" 0 | \n",
" 5 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 1990-12-10/1990-12-16 | \n",
" 7 | \n",
" 11079 | \n",
" 6660 | \n",
" 15498 | \n",
" 20 | \n",
" 12 | \n",
" 28 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 1990-12-17/1990-12-23 | \n",
" 7 | \n",
" 19080 | \n",
" 13807 | \n",
" 24353 | \n",
" 34 | \n",
" 25 | \n",
" 43 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 1990-12-24/1990-12-30 | \n",
" 7 | \n",
" 19375 | \n",
" 13295 | \n",
" 25455 | \n",
" 34 | \n",
" 23 | \n",
" 45 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 1990-12-31/1991-01-06 | \n",
" 7 | \n",
" 15565 | \n",
" 10271 | \n",
" 20859 | \n",
" 27 | \n",
" 18 | \n",
" 36 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" indicator inc inc_low inc_up inc100 inc100_low \\\n",
"period \n",
"1990-12-03/1990-12-09 7 1143 0 2610 2 0 \n",
"1990-12-10/1990-12-16 7 11079 6660 15498 20 12 \n",
"1990-12-17/1990-12-23 7 19080 13807 24353 34 25 \n",
"1990-12-24/1990-12-30 7 19375 13295 25455 34 23 \n",
"1990-12-31/1991-01-06 7 15565 10271 20859 27 18 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"period \n",
"1990-12-03/1990-12-09 5 FR France \n",
"1990-12-10/1990-12-16 28 FR France \n",
"1990-12-17/1990-12-23 43 FR France \n",
"1990-12-24/1990-12-30 45 FR France \n",
"1990-12-31/1991-01-06 36 FR France "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted_data.head()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" indicator | \n",
" inc | \n",
" inc_low | \n",
" inc_up | \n",
" inc100 | \n",
" inc100_low | \n",
" inc100_up | \n",
" geo_insee | \n",
" geo_name | \n",
"
\n",
" \n",
" period | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" 2021-12-27/2022-01-02 | \n",
" 7 | \n",
" 13239 | \n",
" 9611 | \n",
" 16867 | \n",
" 20 | \n",
" 15 | \n",
" 25 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 2022-01-03/2022-01-09 | \n",
" 7 | \n",
" 13793 | \n",
" 10597 | \n",
" 16989 | \n",
" 21 | \n",
" 16 | \n",
" 26 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 2022-01-10/2022-01-16 | \n",
" 7 | \n",
" 8495 | \n",
" 6026 | \n",
" 10964 | \n",
" 13 | \n",
" 9 | \n",
" 17 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 2022-01-17/2022-01-23 | \n",
" 7 | \n",
" 13972 | \n",
" 10680 | \n",
" 17264 | \n",
" 21 | \n",
" 16 | \n",
" 26 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
" 2022-01-24/2022-01-30 | \n",
" 7 | \n",
" 9487 | \n",
" 6658 | \n",
" 12316 | \n",
" 14 | \n",
" 10 | \n",
" 18 | \n",
" FR | \n",
" France | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" indicator inc inc_low inc_up inc100 inc100_low \\\n",
"period \n",
"2021-12-27/2022-01-02 7 13239 9611 16867 20 15 \n",
"2022-01-03/2022-01-09 7 13793 10597 16989 21 16 \n",
"2022-01-10/2022-01-16 7 8495 6026 10964 13 9 \n",
"2022-01-17/2022-01-23 7 13972 10680 17264 21 16 \n",
"2022-01-24/2022-01-30 7 9487 6658 12316 14 10 \n",
"\n",
" inc100_up geo_insee geo_name \n",
"period \n",
"2021-12-27/2022-01-02 25 FR France \n",
"2022-01-03/2022-01-09 26 FR France \n",
"2022-01-10/2022-01-16 17 FR France \n",
"2022-01-17/2022-01-23 26 FR France \n",
"2022-01-24/2022-01-30 18 FR France "
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sorted_data.tail()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Checking data periods"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"for p1, p2 in zip(sorted_data.index[:-1], sorted_data.index[1:]):\n",
" delta = p2.to_timestamp() - p1.end_time\n",
" if delta > pd.Timedelta('1s'):\n",
" print(p1, p2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As expected, there is only one instance where the time difference between the end and start of 2 consecutive periods is > 0: it corresponds to the week that was removed from the dataset due to missing values.\n",
"Everything seems consistent, we can now analyze the sorted dataset."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Data Analysis"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), \"W\") for y in range(1991, sorted_data.index[-1].year)]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"year = []\n",
"yearly_incidence = []\n",
"for week1, week2 in zip(first_september_week[:-1],\n",
" first_september_week[1:]):\n",
" one_year = sorted_data['inc'][week1:week2-1]\n",
" assert abs(len(one_year)-52) < 2\n",
" yearly_incidence.append(one_year.sum())\n",
" year.append(week2.year)\n",
"yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1992 832939\n",
"1993 643387\n",
"1994 661409\n",
"1995 652478\n",
"1996 564901\n",
"1997 683434\n",
"1998 677775\n",
"1999 756456\n",
"2000 617597\n",
"2001 619041\n",
"2002 516689\n",
"2003 758363\n",
"2004 777388\n",
"2005 628464\n",
"2006 632833\n",
"2007 717352\n",
"2008 749478\n",
"2009 842373\n",
"2010 829911\n",
"2011 642368\n",
"2012 624573\n",
"2013 698332\n",
"2014 685769\n",
"2015 604382\n",
"2016 782114\n",
"2017 551041\n",
"2018 542312\n",
"2019 584066\n",
"2020 221186\n",
"2021 376290\n",
"dtype: int64"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"yearly_incidence"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG9JJREFUeJzt3X+QXeV93/H3x8jGQI2sHytG1qKKrhRmhEuQtSMpihu3UlgpbcYiE5hsqcq21owKQcEJfzQiaUdTmM5Ap4NTjQYYDQQEigwqsQcljQxrqSZphVesLAwIrGg32GKNilazsoLdKbHIt3/c56Kzq9Xdc/fXvefez2vmzj33u+d57nl0Vvu9z49zriICMzOzPD5R6wMwM7PicNIwM7PcnDTMzCw3Jw0zM8vNScPMzHJz0jAzs9ycNMzMLDcnDTMzy81Jw8zMcptR6wOYbHPnzo1FixbV+jDMzArlyJEjZyKiZaz9Gi5pLFq0iN7e3lofhplZoUj6UZ79PDxlZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZg1iMde7udQ/5lhsUP9Z3js5f4aHZE1IicNswZxY+tMtuw5+nHiONR/hi17jnJj68waH5k1koa7TsOsWa1um8uO25exZc9RNq5cyO6ek+y4fRmr2+bW+tCsgbingbv11jhWt81l48qFbD/Yx8aVC50wbNI5aeBuvTWOQ/1n2N1zknvWLGZ3z8mLPgyV+YOSjZeTBsO79Q+/dJwte466W2+FU/6ws+P2Zdzbcf3Hv9OjJQ5/ULLxctJI3K23ont94NywDzvlD0OvD5y7aF9/ULLx8kR4MrJbv6ptjv8DWaHc+aW2i2Kr2+Ze8vc4+0HpnjWL/ftuubinQXXderNGkXf+wyzLSYPquvVmjcAflGy8FBG1PoZJ1d7eHv4+DbPKHnu5nxtbZw4bkjrUf4bXB86NOsxljU/SkYhoH3M/Jw0zM8ubNDw8ZWZmueVKGpJ+T9IxSW9K+rqkT0uaLalb0on0PCuz/32S+iQdl7QuE18u6Y30s+2SlOKXS3ouxXskLcqU6UrvcUJS1+Q13czMqjVm0pC0ALgHaI+IzwOXAZ3AVuBARCwBDqTXSFqafn4DsB54RNJlqbpHgc3AkvRYn+KbgLMRsRj4GvBQqms2sA1YCawAtmWTk5mZTa+8w1MzgCskzQCuBN4DNgC70s93Abek7Q3AsxHxYUS8A/QBKyTNB66OiFeiNJHy9Igy5bqeB9amXsg6oDsihiLiLNDNhURjZmbTbMykERE/Bv4rcBI4BZyLiJeAayLiVNrnFDAvFVkAvJupYiDFFqTtkfFhZSLiPHAOmFOhLjMzq4E8w1OzKPUErgM+B1wlaWOlIqPEokJ8vGWyx7hZUq+k3sHBwQqHZmZmE5FneOpXgXciYjAifg58A1gNvJ+GnEjPp9P+A8C1mfKtlIazBtL2yPiwMmkIbCYwVKGuYSJiZ0S0R0R7S0tLjiaZmdl45EkaJ4FVkq5M8wxrgbeBfUB5NVMX8ELa3gd0phVR11Ga8D6chrA+kLQq1XPHiDLlum4FDqZ5jxeBDkmzUo+nI8XMzMbFt4WfmDxzGj2UJqe/B7yRyuwEHgRulnQCuDm9JiKOAXuBt4BvAXdHxEepuruAxylNjvcD+1P8CWCOpD7gXtJKrIgYAh4AXk2P+1PMzGxcfFv4ifEV4da0fCuN5lVOFP5a3At8RbjZGPyJs3n5+3PGz9+nYU0r+0VE/sTZXPz9OePnnoY1NX/ibD6+LfzEOGlYU/MXETUff3/OxHgi3JpW9hPn6ra5F702ayaeCLemVM0afH/iNKuek4blUpQLoqpZEXXnl9ou6lGsbpvr5bZmFThpWC5FWZ6aXRH18EvHPdxkNsmcNCyXIv0xbrQVUUXp5VlzcNKw3Iryx7jRVkQVpZdnzcEX91luRbggauQKqFVtc+q6V5SHL0K0euKehuVSlAuiGnVFVFF6edb4fJ2G5eKb+9WWb7BnUy3vdRpOGmZ1zhch2nTwxX1mDaJRh9ysmNzTMDMz9zTMzGzyOWmYmVluThpmNeCrvK2onDTMasBXeVtR+YpwsxrwVd5WVO5pmNWIr/K2InLSMKuRRruxojWHMZOGpOslvZZ5/K2k35U0W1K3pBPpeVamzH2S+iQdl7QuE18u6Y30s+2SlOKXS3ouxXskLcqU6UrvcUJS1+Q236w2inIvL7ORxkwaEXE8Im6KiJuA5cD/Bb4JbAUORMQS4EB6jaSlQCdwA7AeeETSZam6R4HNwJL0WJ/im4CzEbEY+BrwUKprNrANWAmsALZlk5NZUTXzVd5eOVZs1Q5PrQX6I+JHwAZgV4rvAm5J2xuAZyPiw4h4B+gDVkiaD1wdEa9E6TL0p0eUKdf1PLA29ULWAd0RMRQRZ4FuLiQas8Jq5q+a9cqxYqt29VQn8PW0fU1EnAKIiFOS5qX4AuC7mTIDKfbztD0yXi7zbqrrvKRzwJxsfJQyZlZAXjlWbLl7GpI+BXwZ+O9j7TpKLCrEx1sme2ybJfVK6h0cHBzj8Mys1rxyrLiqGZ76NeB7EfF+ev1+GnIiPZ9O8QHg2ky5VuC9FG8dJT6sjKQZwExgqEJdw0TEzohoj4j2lpaWKppkZrWQd+WY5z/qTzVJ419yYWgKYB9QXs3UBbyQiXemFVHXUZrwPpyGsj6QtCrNV9wxoky5rluBg2ne40WgQ9KsNAHekWJWgf+jWT2rZuWY5z/qT66kIelK4GbgG5nwg8DNkk6knz0IEBHHgL3AW8C3gLsj4qNU5i7gcUqT4/3A/hR/ApgjqQ+4l7QSKyKGgAeAV9Pj/hSzCvwfzepZNSvHsvMfD7903F8+VQf8fRoNKu/Xg/prXK0IHn7pONsP9nHPmsXc23F9rQ+nIfn7NJpc3olG90qs3vnK+friGxY2qJH/0Va1zRk1cXj5o9Wzkd+Hvqptjoeoasw9jQZU7S0qvPzR6lUzXzlfrzyn0YCqnafIO/9hZo0r75yGk8YUKcoE88ju/8jXZtYcPBFeY0WZYHb338yq4Z7GFPKwj5kVhXsadSDPBLOv3jazInHSmEJ51pcXZRjLzAx8ncaUybu+3NdJmFmRuKdRhWqGkqq9v46vk7B65OFTG8lJowrVDCVV881svk2C1SsPn9pIXj1VpcleEeXrJKzeeRVgc/DqqSky2UNJvk6isTTicI6HTy3LSaNKkz2UVM0wltVGNYmgEYdzPHxqWU4aVaj2RoDWGKpJBI32pUH+nbeRnDSq4KGk5lRtImik4ZxqfucbcWjOLuakUQUPJU2uIv2RqSYRNNJwTjW/8404NGcXc9KwSZc3GRTpj0zeRNDMwzmNNjRno3PSsEmXNxkU5Y9MNYmg2YcwG2lozkbn6zRsSlSztv/hl46z/WAf96xZzL0d10/zkY6tKN+NUg98TUdx5b1Ow/eesimR/cR5z5rFl/zDkfe7zGtptMSwum1u3R1nrfn7vJuDh6dsSuSZA2jm8f9GVMuhuSItqii6XElD0mclPS/pB5LelvRLkmZL6pZ0Ij3Pyux/n6Q+ScclrcvEl0t6I/1suySl+OWSnkvxHkmLMmW60nuckNQ1eU23qZI3GTT7+H+jqeXqwiItqii6XHMaknYBfxURj0v6FHAl8AfAUEQ8KGkrMCsifl/SUuDrwArgc8C3gV+IiI8kHQa+CnwX+Atge0Tsl/TbwI0RcaekTuA3IuK3JM0GeoF2IIAjwPKIOHupY/WcRu15DsBqwfMpEzNp956SdDXwK8ATABHxdxHxE2ADsCvttgu4JW1vAJ6NiA8j4h2gD1ghaT5wdUS8EqVM9fSIMuW6ngfWpl7IOqA7IoZSougG1o91zFZbvp7FasErt6ZHnuGpfwQMAk9KOirpcUlXAddExCmA9Dwv7b8AeDdTfiDFFqTtkfFhZSLiPHAOmFOhrmEkbZbUK6l3cHAwR5PMrNE00kWV9SxP0pgBfAF4NCKWAT8DtlbYX6PEokJ8vGUuBCJ2RkR7RLS3tLRUODQza0ReVDF98iSNAWAgInrS6+cpJZH305AT6fl0Zv9rM+VbgfdSvHWU+LAykmYAM4GhCnWZmX2sKIsqGmGV15hJIyL+D/CupPJVV2uBt4B9QHk1UxfwQtreB3SmFVHXAUuAw2kI6wNJq9J8xR0jypTruhU4mOY9XgQ6JM1Kq7M6UszM7GNFmUdrhFVeeS/u+x3gT9LKqb8B/i2lhLNX0ibgJHAbQEQck7SXUmI5D9wdER+leu4CngKuAPanB5Qm2Z+R1Eeph9GZ6hqS9ADwatrv/ogYGmdbzcxqKnvrnKKu8vJtRMzMplk93jrHX/dqZlaHir7Ky0nDzGyaNMIqLycNM7NpUpRVXpV4TqNAfHsOM5sqntNoQI2wXM/Mis3fp1EgjbBcz8yKzT2NgvFN2cyslpw0Cqboy/XMiqIRbvkxFZw0CqQRluuZFYXnEEfn1VMF4tVTZtOrmb7YyaunGlBRbspm1ijyziE201CWk4aZ2SXknUNspqEsL7k1MxtFdg5xddtcVrXNGfY6q5mWw7unYWY2impv+dEsy+Hd0zAzG8Voc4Wr2+ZeMhmMHMpa1TanIROHexpmZhPUTMvhnTTMzCaoEe5em5ev0zAzM1+nYY2lmdbBm9UzJw0rhGZaB29Wz7x6ygqhmdbBm9Uz9zSsMJplHbxZPXPSsMLwbeHNai9X0pD0Q0lvSHpNUm+KzZbULelEep6V2f8+SX2Sjktal4kvT/X0SdouSSl+uaTnUrxH0qJMma70HickdU1Ww61YmmkdvFk9q6an8c8i4qbMkqytwIGIWAIcSK+RtBToBG4A1gOPSLoslXkU2AwsSY/1Kb4JOBsRi4GvAQ+lumYD24CVwApgWzY5WfNopnXwZvVsIsNTG4BdaXsXcEsm/mxEfBgR7wB9wApJ84GrI+KVKF0c8vSIMuW6ngfWpl7IOqA7IoYi4izQzYVEY03Et4U3qw95k0YAL0k6Imlzil0TEacA0vO8FF8AvJspO5BiC9L2yPiwMhFxHjgHzKlQ1zCSNkvqldQ7ODiYs0lmZlatvEtufzki3pM0D+iW9IMK+2qUWFSIj7fMhUDETmAnlK4Ir3BsZmY2Abl6GhHxXno+DXyT0vzC+2nIifR8Ou0+AFybKd4KvJfiraPEh5WRNAOYCQxVqMvMzGpgzKQh6SpJnylvAx3Am8A+oLyaqQt4IW3vAzrTiqjrKE14H05DWB9IWpXmK+4YUaZc163AwTTv8SLQIWlWmgDvSDEzM6uBPMNT1wDfTKtjZwB7IuJbkl4F9kraBJwEbgOIiGOS9gJvAeeBuyPio1TXXcBTwBXA/vQAeAJ4RlIfpR5GZ6prSNIDwKtpv/sjYmgC7TUzswnwXW7NzMx3uTUzs8nnpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma55U4aki6TdFTSn6fXsyV1SzqRnmdl9r1PUp+k45LWZeLLJb2RfrZdklL8cknPpXiPpEWZMl3pPU5I6pqMRpuZ2fhU09P4KvB25vVW4EBELAEOpNdIWgp0AjcA64FHJF2WyjwKbAaWpMf6FN8EnI2IxcDXgIdSXbOBbcBKYAWwLZuczMxseuVKGpJagX8BPJ4JbwB2pe1dwC2Z+LMR8WFEvAP0ASskzQeujohXIiKAp0eUKdf1PLA29ULWAd0RMRQRZ4FuLiQaMzObZnl7Gn8E/Hvg7zOxayLiFEB6npfiC4B3M/sNpNiCtD0yPqxMRJwHzgFzKtRlZmY1MGbSkPTrwOmIOJKzTo0Siwrx8ZbJHuNmSb2SegcHB3MeppmZVStPT+OXgS9L+iHwLLBG0m7g/TTkRHo+nfYfAK7NlG8F3kvx1lHiw8pImgHMBIYq1DVMROyMiPaIaG9pacnRJDMzG48xk0ZE3BcRrRGxiNIE98GI2AjsA8qrmbqAF9L2PqAzrYi6jtKE9+E0hPWBpFVpvuKOEWXKdd2a3iOAF4EOSbPSBHhHipmZWQ3MmEDZB4G9kjYBJ4HbACLimKS9wFvAeeDuiPgolbkLeAq4AtifHgBPAM9I6qPUw+hMdQ1JegB4Ne13f0QMTeCYzcxsAlT6QN842tvbo7e3t9aHYWZWKJKORET7WPv5inAzswJ77OV+DvWfGRY71H+Gx17un5L3c9IwMyuwG1tnsmXP0Y8Tx6H+M2zZc5QbW2dOyftNZE7DzMxqbHXbXHbcvowte46yceVCdvecZMfty1jdNndK3s89DTOzglvdNpeNKxey/WAfG1cunLKEAU4aZmaFd6j/DLt7TnLPmsXs7jl50RzHZHLSMDMrsPIcxo7bl3Fvx/UfD1VNVeJw0jAzK7DXB84Nm8Moz3G8PnBuSt7P12mYmZmv0zAzs8nnpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZiZWW5jJg1Jn5Z0WNL3JR2T9J9SfLakbkkn0vOsTJn7JPVJOi5pXSa+XNIb6WfbJSnFL5f0XIr3SFqUKdOV3uOEpK7JbLyZmVUnT0/jQ2BNRPwicBOwXtIqYCtwICKWAAfSayQtBTqBG4D1wCOSLkt1PQpsBpakx/oU3wScjYjFwNeAh1Jds4FtwEpgBbAtm5zMzGx6jZk0ouSn6eUn0yOADcCuFN8F3JK2NwDPRsSHEfEO0AeskDQfuDoiXonS1wU+PaJMua7ngbWpF7IO6I6IoYg4C3RzIdGYmdk0yzWnIekySa8Bpyn9Ee8BromIUwDpeV7afQHwbqb4QIotSNsj48PKRMR54Bwwp0JdZmZWA7mSRkR8FBE3Aa2Ueg2fr7C7RquiQny8ZS68obRZUq+k3sHBwQqHZmZmE1HV6qmI+AnwHUpDRO+nISfS8+m02wBwbaZYK/BeireOEh9WRtIMYCYwVKGukce1MyLaI6K9paWlmiaZmVkV8qyeapH02bR9BfCrwA+AfUB5NVMX8ELa3gd0phVR11Ga8D6chrA+kLQqzVfcMaJMua5bgYNp3uNFoEPSrDQB3pFiZmZWAzNy7DMf2JVWQH0C2BsRfy7pFWCvpE3ASeA2gIg4Jmkv8BZwHrg7Ij5Kdd0FPAVcAexPD4AngGck9VHqYXSmuoYkPQC8mva7PyKGJtJgMzMbP5U+0DeO9vb26O3trfVhmJkViqQjEdE+1n6+ItzMzHJz0jAzs9ycNMzMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNycNMzPLzUnDzMxyc9IwM7PcnDTMzCw3Jw0zM8vNScPMzHJz0jAzs9ycNMzMLDcnDTMzy81Jw8zMcnPSMDOrQ4+93M+h/jPDYof6z/DYy/01OqISJw0zszp0Y+tMtuw5+nHiONR/hi17jnJj68yaHteMmr67mZmNanXbXHbcvowte46yceVCdvecZMfty1jdNremx+WehplZnVrdNpeNKxey/WAfG1curHnCACcNM7O6daj/DLt7TnLPmsXs7jl50RxHLThpmJnVofIcxo7bl3Fvx/UfD1XVOnGMmTQkXSvpf0p6W9IxSV9N8dmSuiWdSM+zMmXuk9Qn6bikdZn4cklvpJ9tl6QUv1zScyneI2lRpkxXeo8Tkroms/FmZvXq9YFzw+YwynMcrw+cq+lxKSIq7yDNB+ZHxPckfQY4AtwC/BtgKCIelLQVmBURvy9pKfB1YAXwOeDbwC9ExEeSDgNfBb4L/AWwPSL2S/pt4MaIuFNSJ/AbEfFbkmYDvUA7EOm9l0fE2Usdb3t7e/T29o7/X8TMrAlJOhIR7WPtN2ZPIyJORcT30vYHwNvAAmADsCvttotSIiHFn42IDyPiHaAPWJGSz9UR8UqUMtXTI8qU63oeWJt6IeuA7ogYSomiG1g/1jGbmdnUqGpOIw0bLQN6gGsi4hSUEgswL+22AHg3U2wgxRak7ZHxYWUi4jxwDphToS4zM6uB3ElD0j8A/hT43Yj420q7jhKLCvHxlske22ZJvZJ6BwcHKxyamZlNRK6kIemTlBLGn0TEN1L4/TTkVJ73OJ3iA8C1meKtwHsp3jpKfFgZSTOAmcBQhbqGiYidEdEeEe0tLS15mmRmZuOQZ/WUgCeAtyPi4cyP9gHl1UxdwAuZeGdaEXUdsAQ4nIawPpC0KtV5x4gy5bpuBQ6meY8XgQ5Js9LqrI4UMzOzGsizeuqLwF8BbwB/n8J/QGleYy+wEDgJ3BYRQ6nMHwJfAc5TGs7an+LtwFPAFcB+4HciIiR9GniG0nzJENAZEX+TynwlvR/Af46IJ8c43kHgRznbX2/mArW/emdyNVqbGq090HhtarT2wPS06R9GxJhDNWMmDZs+knrzLHkrkkZrU6O1BxqvTY3WHqivNvmKcDMzy81Jw8zMcnPSqC87a30AU6DR2tRo7YHGa1OjtQfqqE2e0zAzs9zc0zAzs9ycNKaYpD+WdFrSm5nYL0p6Jd3x988kXZ3in5L0ZIp/X9I/zZT5Trpr8GvpMW+Ut5ty03HX4wK3p5DnSNKctP9PJe0YUVfhztEY7SnqObpZ0pF0Lo5IWpOpa3rPUUT4MYUP4FeALwBvZmKvAl9K218BHkjbdwNPpu15lO7q+4n0+jtAex20Zz7whbT9GeCvgaXAfwG2pvhW4KG0vRT4PnA5cB3QD1yWfnYY+CVKt4vZD/xawdtT1HN0FfBF4E5gx4i6iniOKrWnqOdoGfC5tP154Me1OkfuaUyxiPhLShcsZl0P/GXa7gZ+M20vBQ6kcqeBn1C6LXzdiOm56/G0maz2TO9RV1ZtmyLiZxHxv4D/l62nqOfoUu2pJ+No09GIKN9C6RjwaZXuujHt58hJozbeBL6ctm/jwv21vg9skDRDpVuwLGf4vbeeTF3q/1iLYYKRNHV3Pa6JCbanrIjn6FKKeo7GUvRz9JvA0Yj4kBqcIyeN2vgKcLekI5S6pn+X4n9M6aT3An8EHKJ0KxaAfxUR/xj4J+nxr6f1iEfQ1N71eNpNQnuguOfoklWMEivCOaqk0OdI0g3AQ8C/K4dG2W1Kz5GTRg1ExA8ioiMillP6lsP+FD8fEb8XETdFxAbgs8CJ9LMfp+cPgD3UcEhEU3/X42k1Se0p8jm6lKKeo0sq8jmS1Ap8E7gjIvpTeNrPkZNGDZRXbEj6BPAfgMfS6yslXZW2bwbOR8Rbabhqbop/Evh1SkNctTj26bjr8bSZrPYU/ByNqsDn6FL1FPYcSfos8D+A+yLif5d3rsk5mspZdj8CSj2JU8DPKX0q2ETpe9L/Oj0e5MJFlouA45Qmxb5N6a6TUFoNcgR4ndIk2H8jrdipQXu+SKn7+zrwWnr8c0rftHiAUs/oADA7U+YPKfWmjpNZ2UFpkv/N9LMd5X+HIranAc7RDykt2Php+j1dWvBzdFF7inyOKH24/Flm39eAebU4R74i3MzMcvPwlJmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpbb/wduVTkZ2/XWuAAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"yearly_incidence.plot(style=\"x\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2020 221186\n",
"2021 376290\n",
"2002 516689\n",
"2018 542312\n",
"2017 551041\n",
"1996 564901\n",
"2019 584066\n",
"2015 604382\n",
"2000 617597\n",
"2001 619041\n",
"2012 624573\n",
"2005 628464\n",
"2006 632833\n",
"2011 642368\n",
"1993 643387\n",
"1995 652478\n",
"1994 661409\n",
"1998 677775\n",
"1997 683434\n",
"2014 685769\n",
"2013 698332\n",
"2007 717352\n",
"2008 749478\n",
"1999 756456\n",
"2003 758363\n",
"2004 777388\n",
"2016 782114\n",
"2010 829911\n",
"1992 832939\n",
"2009 842373\n",
"dtype: int64"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"yearly_incidence.sort_values()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEICAYAAACQzXX2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEfJJREFUeJzt3X2QJHV9x/H3l7tDgQVFD+4qLuYIGiMRFPcMPlSQA8vyAbVEEx+AYEpzpnwixpSVpFQ0xofEi6WxIClElFLjqmiioPGh4p6KGuQWLRQJakRwJVISY3SJCsg3f/x6cW/hdntvd3bme/V+VXVtz2zP9Pc7PfPpnp7umchMJEm17DfsAiRJy2d4S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFbR+UHe8cePG3LJly27X3XzzzRx00EGDmuWasIfRYA+jwR5W3/T09E2ZedhS0w0svLds2cKuXbt2u27nzp2ceOKJg5rlmrCH0WAPo8EeVl9EXNdnOnebSFJBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S2to8+YtRAQRwfT09B3jgx42b94y7Na1ygZ2hqWkO7vxxuuAuR/93jlvfNDzjTWZj9aOW96SVJDhLUkFGd6SVJDhLUkFGd6SVJDhLUkFGd6SVJDhLUkFGd6SVJDhLUkFGd6SVJDhLUkFGd6SVJDhLUkFGd6SVJDhLUkFGd6SVJDhLUkF9Q7viHhpRFwVEV+PiPdFxN0HWZgkac96hXdE3Ad4CbA1Mx8ErAOeOcjCJEl7tpzdJuuBAyJiPXAgcMNgSpIkLSUy+/16dUScBbwO+Bnwqcw87S6m2Q5sB9i0adPE5OTkbv+fnZ1lbGxspTUPlT2Mhqo9TE9PAxMAjI/PMjOzVj1MMzExser3WnU5zDdqPWzbtm06M7cuOWFmLjkAhwKfAQ4DNgD/Apy+2G0mJiZyoampqTtdV409jIaqPQAJmZC5Y8fUHeODHxhIP1WXw3yj1gOwK3vkct/dJo8Brs3MH2bmrcCHgUcue5UiSVoVfcP7euDhEXFgRARwMnD14MqSJC2mV3hn5mXARcAVwNe62503wLokSYtY33fCzDwbOHuAtUiSevIMS0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqyPCWpIIMb0kqqHd4R8Q9I+KiiPiPiLg6Ih4xyMIkSXu2fhnTvhX4RGY+PSL2Bw4cUE2SpCX0Cu+IOAQ4AXgOQGbeAtwyuLIkSYuJzFx6ooiHAOcB3wAeDEwDZ2XmzQum2w5sB9i0adPE5OTkbvczOzvL2NjY6lQ+JPYwGqr2MD09DUwAMD4+y8zMWvVwBbD0a325xsfHmZmZWXSaDRv259hjj1n1ea+WUXsubdu2bTozty45YWYuOQBbgduA47vLbwVeu9htJiYmcqGpqak7XVeNPYyGqj0ACZmQuWPH1B3jgx8YyP3264FhP+yLGrXnErAre+Ry3w8sZ4CZzLysu3wR8NDlrE0kSaunV3hn5g+A70XEA7qrTqbtQpEkDcFyjjZ5MfDe7kiT7wB/OJiSJElL6R3emflV2r5vSdKQeYalJBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBVkeEtSQYa3JBW0rPCOiHUR8ZWIuGRQBUmSlrbcLe+zgKsHUYgkqb/e4R0R48ATgfMHV44kqY/IzH4TRlwEvAE4GPizzDzlLqbZDmwH2LRp08Tk5ORu/5+dnWVsbGylNQ+VPYyGlfRw5ZVf49Zbb1nlipZjAoDx8VlmZtZqOUzfMd/V1K+HK4B+ObO69gNuX3Kq8fFxZmZmVnXOGzbsz7HHHrNXt922bdt0Zm5dcsLMXHIATgHO7cZPBC5Z6jYTExO50NTU1J2uq8YeRsNKegASckjDr+a9Y8fUUOa7mkO/Hob1ePeb72CWAyt5fu7KXDqX++42eRTw5Ij4LjAJnBQR71nO2kSStHp6hXdm/kVmjmfmFuCZwGcy8/SBViZJ2iOP85akgtYv9waZuRPYueqVSJJ6c8tbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgrqFd4RcURETEXE1RFxVUScNejCJEl7tr7ndLcBL8vMKyLiYGA6Ij6dmd8YYG2SpD3oteWdmf+VmVd04z8FrgbuM8jCJEl7Fpm5vBtEbAE+BzwoM3+y4H/bge0AmzZtmpicnNzttrOzs4yNja2g3OGzh9Gwkh6mp6eBidUtqP/c75j3+PgsMzNrtRwG03O/Hob1ePeb72CWwzQTE3vX87Zt26Yzc+uSE2Zm7wEYoz0ipy417cTERC40NTV1p+uqsYfRsJIegIQc0vCree/YMTWU+a7m0K+HYT3e/eY7mOXASp6fuzKXzuPeR5tExAbgQ8B7M/PDy12bSJJWT9+jTQJ4B3B1Zr55sCVJkpbSd8v7UcAZwEkR8dVueMIA65IkLaLXoYKZeSkQA65FktSTZ1hKUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkEjGd6bN28hIoYybN68ZZ/veXp6unzPC3tYziDtC3r9DNpau/HG64Ac0ryH8+Je25537javmj3vXMFtDXDVN5Jb3pKkxRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklRQ7/COiMdFxDUR8e2I+PNBFiVJWlyv8I6IdcA5wOOBo4FnRcTRgyxMkrRnfbe8fwf4dmZ+JzNvASaBpwyuLEnSYiJz6V/gjoinA4/LzOd1l88Ajs/MFy2Ybjuwvbv4AOCaBXe1EbhppUUPmT2MBnsYDfaw+n49Mw9baqL1Pe8s7uK6O6V+Zp4HnLfHO4nYlZlbe85zJNnDaLCH0WAPw9N3t8kMcMS8y+PADatfjiSpj77hfTlw/4g4MiL2B54JfHRwZUmSFtNrt0lm3hYRLwI+CawDLsjMq/ZifnvcpVKIPYwGexgN9jAkvT6wlCSNFs+wlKSCDG9JKsjwlqSCRj68I+KkiDhy2HWsRPUeqtc/Z1/owx5Gwyj0MLIfWHbfnTIJ/Bi4HTg7Mz873KqWp3oP1eufsy/0YQ+jYZR6GJkt74gYj4hD5l31DOBDmXkC7cF6VkQ8YjjV9VO9h+XUHxF3ddbtSKi+HMAeRsUo9zD08I6IB0bEx4FLgb+KiLkvvPo5cGA3/gHadw88fBRDo3oPe1N/juBbturLAexhVFToYSjhHREHzbv4EGAmM7cAnwF2dNf/CPhFRBycmT8CvglsArasYal7VL2HReqf4s71j3X1f4sRqX9O9eUA9oA97JU1C++IODQi3hURlwNvjIjDurXVscAXuq25jwI/jogn0h6Ug4Fjurv4Fu3bv25Zq5oXqt7DIvUfM6/+j9xF/cd2d/HNYdY/p/pyAHvo7sIeVmAtt7xPAG4DnkD7lsK/BA7patg87234hcCzgS8DP6X9AASZ+SXgJOAna1jzQtV72FP966hR/5zqywHswR5WKjNXdaAFwfOBz9K+23tjd/0HgJd040cCb+z+/zDafqV13f/GgB9293Mf4GrgRcA7gXOBA1e75n2th+r170t92IM9DGoYxJb3KcCTgdcAjwD+trv+08Aju/HvAZ8HHp+Zl9PWeNsAMnMWuAx4WGZ+HziDtk/pB8ArMvP/BlDzvtZD9fr3pT7swR4Gou+PMexm7miDiHgY7a3E54GPZeYvgN8EvpOZn4mIa4E3RcRjgWngqRGxMTNviohvATdHxH2BtwGnR8ThtO8K/2/a2xMycxewa4V97nM9VK9/X+uj68UefE2vmWVvec97gE4ALqAdOvMY4A3dJLcD34yIAzLzWtrbi2Np+4luoB0nCfBL2luQ/YAP0b6W8TRgAjgvM2/f666W7mFd18OjaW97SvXQ1ZURcSJFl0HXxyHV+4iIe3d/Hwm8q2gPh0fEvSNiK23fbsUe9q/8mt4rffat0I5r/GPgn4A/AjYAfwK8sPv/ocCVwHG0B+GNwJbuf6fQHoCN3fjXgHvQdvJ/HNh/3nz2G9T+IeAg4Hm0BfIy2ocS1Xo4GPgY7fvUAV5aqf55z6UzgX+jnexQqg9+dVby79H2ie6k/V5rtefSQcBzaLsN/hd4YsEeNgAvAC4G/gG4H3BWpR5WMiy55R0Rm4FLgBOBd9N25p9K2290G0Bm/g/wEeAl3ZPhcOCB3V18Dng0cEtmXgK8A7gIOIe2lr91bl45uC3Vg2hhcRLwduCxwNNoH0rcXqGHzgHA3YCjImIjcBRtK6FE/RGxAbgKeDrwpsx8Wvev4+bNf6T7yMyMiHsAvw+8JTNPzMxraFtmJXqIiPvRdimcDLwC+D5wPe0DuzLPJ+CFtNf0W2i/qXtqd/mXhXrYez3WbgfQfil+7vJzaDv7zwS+PO/6XwNu6MZfSDt19NDu9hcD95037ca1XksB95w3/nLaAj2tWA9nAm8CXgk8F3gScHmV+rv5fhg4bcF1zwAuq9IHbWvvtd343Jb4qVV6oAX03eZdvoC2Qn1KlR66eV4M/EE3/lzgxd1zqcxreiVDn33ePwe+3B24Du1tyPGZeSFtC3AzQGbeAFwVEcdn5jnAt4H30368+NLMvH7uDjPzph7zXVWZ+eOIOCQi3kXbbbKRtvCOiohNo9zDvMd+P+A/aVuvJ2XmxcCRo17/AhcAZ0fE30XEzoh4FfDvtN9IPbyrbdT7uAn43Yg4DZiOiAtpW3u/1b0jGukeMvOX2T7Em9tnH7QvWrqYthxKvKaBfwXOjIgPAq8GHgx8ndbDYV1do97D3lvGWm5uC+NC4Kxu/N3A33Tj9wLOp1uT0fZHPQi4+7DXUAv6eAHt7eF5tH3gXwReRXsCj3QPwAdpW033oB2v+grak/WVxZbBJ2knQxxBeyGdBXyp0HK4f1fv39O24p4NvJl2HPDLaSvZke5hQT9fAU7txt9T6TXdvYYvoG2MvRo4G7ime36VWg7LHXofbZKZGRHjwGbaGo/uwSIiLqHtU16X3ZosM2/NzK9n5s/7zmMtZOa52T5tPpe2n/IfaW+hPsoI9xARY7QtvrcDn6B9Un488Czg0Ii4mBGuf4GnZubrM/N7wOtph3G9jQLLoXM97XTo9dn2q17SXXcJ7QPZCj0QEXOv/0tpH/YBvK79q8zz6WhgZ7at5nfSNm7eR53n0t5b5lruSbQvaNlAW+M9jvZgPRt46LDXRMvs5QjgU8C9u8unA8cNu65F6r077V3P+bQPmk4EPjXv/yNd/yJ9/Trtw6R7VeqDdnr0dDd+T9o7iOMq9dDVeiBtxXnqgutPG/Ueuuz5U+D87vJG2oblkdWWw94My/oxhoj4AvAbwHdpx0a+JjOv7H0HQ9YdJXAybWVzNG3XyTmZeeuiNxxB3UkEpwKTmfmDYdezHBFxN9qK/wzgt2mHeZ2bmbcNtbBliojX0V4Px9E2BM7OtiVeSkRcA7wqM98/dx7HsGvqKyKOor2Ob6Eti38G/jrbGZH7tN7h3R3mdTZwLfCe7D7wqCQi1tO+3+AXtB7KvXWKiHXA7ZVeYHclIp5PO0zz3RWXw5yIeABwXcUe5p1w9xDah+C3VXxedRsy9we+mJk/G3Y9a2VkfwZNkrRnQ/8lHUnS8hneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBf0/rfiR0fMCQRgAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"yearly_incidence.hist(xrot=20, color=\"b\", edgecolor=\"k\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"celltoolbar": "Hide code",
"hide_code_all_hidden": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}