{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import isoweek\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "data_raw = pd.read_csv(\"https://gitlab.inria.fr/learninglab/mooc-rr/mooc-rr-ressources/-/raw/master/module3/Practical_session/Subject6_smoking.csv?inline=false\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'data_raw' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdata_raw\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'data_raw' is not defined" ] } ], "source": [ "data_raw" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([['Yes', 'Alive', 21.0],\n", " ['Yes', 'Alive', 19.3],\n", " ['No', 'Dead', 57.5],\n", " ...,\n", " ['Yes', 'Dead', 62.1],\n", " ['No', 'Dead', 88.6],\n", " ['No', 'Alive', 39.1]], dtype=object)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_raw.values" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "data_raw.values[:,0]= str(data_raw.values[:,0])" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "data_raw.values[:,1]=str(data_raw.values[:,1])" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "k=0\n", "l=0\n", "for j in range(0,1314):\n", " if 'Yes' in data_raw.values[j,0]:\n", " l=l+1\n", " if 'Dead' in data_raw.values[j,1]:\n", " k=k+1" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'k' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;34m(\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0ml\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'k' is not defined" ] } ], "source": [ "(k/l)*100 " ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "a=0\n", "b=0\n", "for j in range(0,1314):\n", " if 'No' in data_raw.values[j,0]:\n", " a=a+1\n", " if 'Dead' in data_raw.values[j,1]:\n", " b=b+1" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'b' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'b' is not defined" ] } ], "source": [ "(b/a)*100" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "le resultat est surprenant car on a trouvé que le taux de mortalité des femmes non fumeuses est plus grand que celles des fumeuses.\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'data' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1314\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m>=\u001b[0m\u001b[0;36m18\u001b[0m \u001b[0;34m&\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m<=\u001b[0m\u001b[0;36m34\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'Yes'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'data' is not defined" ] } ], "source": [ "i = 0\n", "s = 0\n", "z = 0\n", "r = 0\n", "x = 0\n", "h = 0\n", "t = 0\n", "y = 0\n", "for j in range(0,1314):\n", " if int(data.values[j,2])>=18 & int(data.values[j,2])<=34:\n", " if 'Yes' in data.values[j,0]:\n", " s = s+1\n", " if 'Dead' in data.values[j,1]:\n", " i=i+1\n", " if int(data.values[j,2])>=35 & int(data.values[j,2])<=54:\n", " if 'Yes' in data.values[j,0]:\n", " z = z+1\n", " if 'Dead' in data.values[j,1]:\n", " r=r+1\n", " if int(data.values[j,2])>=55 & int(data.values[j,2])<=64:\n", " if 'Yes' in data.values[j,0]:\n", " x=x+1\n", " if 'Dead' in data.values[j,1]:\n", " h=h+1\n", " if int(data.values[j,2])>=65:\n", " if 'Yes' in data.values[j,0]:\n", " y=y+1\n", " if 'Dead' in data.values[j,1]:\n", " t=t+1" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "ename": "ZeroDivisionError", "evalue": "division by zero", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" ] } ], "source": [ "(i/s)*100,(r/z)*100,(h/x)*100,(t/y)*100" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "i = 0\n", "s = 0\n", "z = 0\n", "r = 0\n", "x = 0\n", "h = 0\n", "t = 0\n", "y = 0\n", "for j in range(0,1314):\n", " if int(data.values[j,2])>=18 & int(data.values[j,2])<=34:\n", " if 'No' in data.values[j,0]:\n", " s = s+1\n", " if 'Dead' in data.values[j,1]:\n", " i=i+1\n", " if int(data.values[j,2])>=35 & int(data.values[j,2])<=54:\n", " if 'No' in data.values[j,0]:\n", " z = z+1\n", " if 'Dead' in data.values[j,1]:\n", " r=r+1\n", " if int(data.values[j,2])>=55 & int(data.values[j,2])<=64:\n", " if 'No' in data.values[j,0]:\n", " x=x+1\n", " if 'Dead' in data.values[j,1]:\n", " h=h+1\n", " if int(data.values[j,2])>=65:\n", " if 'No' in data.values[j,0]:\n", " y=y+1\n", " if 'Dead' in data.values[j,1]:\n", " t=t+1" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "ename": "ZeroDivisionError", "evalue": "division by zero", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mh\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero" ] } ], "source": [ "(i/s)*100,(r/z)*100,(h/x)*100,(t/y)*100" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "le resultat est surprenant car on a trouvé que le taux de mortalité n'a pas varié pour les fumeuses de 18 à 64 ans mais seulement pour celles qui sont plus grand que 65 ans le taux a augmenté beaucoup;même chose pour les non fumeuses.\n", "On peut conclure que les cigarettes ont un effet indirect sur la santé qui peut être remarqué après longtemps,et d'autre part le système immunitaire peut resister aux efftets toxiques de la cigarettes pour une certaine période de vie. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "oui,on peut concluresur la nocivité du tabagisme." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }