diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index d86ece20df82b908d8e08f6db5542f9c4f2ec7a1..27902e0be47c60bc62cddd369edc8095b7fde19b 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 46, "metadata": {}, "outputs": [ { @@ -53,7 +53,7 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpathToLocalInputData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mprint\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m\"the defined local data-file is not available; by default, select the data-file available at the prescribed url !\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0murllib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0murlretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_url\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpathToLocalInputData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpathToLocalInputData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0mprint\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m\"the defined local data-file is not available; by default, select the data-file available at the prescribed url !\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0murllib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrequest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0murlretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_url\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpathToLocalInputData\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0mpathToInputData\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata_url\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/urllib/request.py\u001b[0m in \u001b[0;36murlretrieve\u001b[0;34m(url, filename, reporthook, data)\u001b[0m\n\u001b[1;32m 256\u001b[0m \u001b[0;31m# Handle temporary file setup.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 257\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 258\u001b[0;31m \u001b[0mtfp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'wb'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 259\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 260\u001b[0m \u001b[0mtfp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtempfile\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mNamedTemporaryFile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdelete\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'C:/Users/hpascalj/__DataSets/incidence-PAY-3.csv'" ] @@ -72,7 +72,8 @@ "import urllib.request\n", "if not os.path.exists(pathToLocalInputData):\n", " print (\"the defined local data-file is not available; by default, select the data-file available at the prescribed url !\")\n", - " urllib.request.urlretrieve(data_url, pathToLocalInputData)\n" + " urllib.request.urlretrieve(data_url, pathToLocalInputData)\n", + " pathToInputData = data_url" ] }, { @@ -106,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -1071,7 +1072,7 @@ "[1529 rows x 10 columns]" ] }, - "execution_count": 38, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -1085,30 +1086,1046 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées." + "Y a-t-il des points manquants dans ce jeux de données ? " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { - "cell_type": "markdown", + "cell_type": "raw", "metadata": {}, "source": [ - "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple." + "# FYI en fait , dans ce jeu de données, il n'y a aucun point à éliminer" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02020127792955661029212816FRFrance
1202011710198756812828151119FRFrance
220201079011669111331141018FRFrance
32020097136311054416718211626FRFrance
4202008710424770813140161220FRFrance
520200778959657411344141018FRFrance
620200679264692511603141018FRFrance
720200578505631410696131016FRFrance
82020047799158311015112915FRFrance
920200375968410078369612FRFrance
10202002765344530853810713FRFrance
1120200179835701912651151119FRFrance
122019527794152461063612816FRFrance
1320195175823367579719612FRFrance
14201950764244276857210713FRFrance
15201949766214540870210713FRFrance
1620194875542338377018511FRFrance
172019477753650581001411715FRFrance
182019467263813163960426FRFrance
1920194574492261563697410FRFrance
2020194475728362778299612FRFrance
2120194374834275169177410FRFrance
22201942762793989856910713FRFrance
232019417413020306230639FRFrance
242019407421122186204639FRFrance
252019397313713104964528FRFrance
262019387307814164740528FRFrance
2720193779701621778102FRFrance
28201936712772632291204FRFrance
29201935792201857102FRFrance
.................................
14991991267176081130423912312042FRFrance
15001991257161691070021638281838FRFrance
15011991247161711007122271281739FRFrance
1502199123711947767116223211329FRFrance
1503199122715452995320951271737FRFrance
1504199121714903897520831261636FRFrance
15051991207190531274225364342345FRFrance
15061991197167391124622232291939FRFrance
15071991187213851388228888382551FRFrance
1508199117713462887718047241632FRFrance
15091991167148571006819646261834FRFrance
1510199115713975978118169251832FRFrance
1511199114712265768416846221430FRFrance
151219911379567604113093171123FRFrance
1513199112710864733114397191325FRFrance
15141991117155741118419964271935FRFrance
15151991107166431137221914292038FRFrance
1516199109713741878018702241533FRFrance
1517199108713289881317765231531FRFrance
1518199107712337807716597221529FRFrance
1519199106710877701314741191226FRFrance
1520199105710442654414340181125FRFrance
15211991047791345631126314820FRFrance
15221991037153871048420290271836FRFrance
15231991027162771104621508292038FRFrance
15241991017155651027120859271836FRFrance
15251990527193751329525455342345FRFrance
15261990517190801380724353342543FRFrance
1527199050711079666015498201228FRFrance
15281990497114302610205FRFrance
\n", + "

1529 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202012 7 7929 5566 10292 12 8 \n", + "1 202011 7 10198 7568 12828 15 11 \n", + "2 202010 7 9011 6691 11331 14 10 \n", + "3 202009 7 13631 10544 16718 21 16 \n", + "4 202008 7 10424 7708 13140 16 12 \n", + "5 202007 7 8959 6574 11344 14 10 \n", + "6 202006 7 9264 6925 11603 14 10 \n", + "7 202005 7 8505 6314 10696 13 10 \n", + "8 202004 7 7991 5831 10151 12 9 \n", + "9 202003 7 5968 4100 7836 9 6 \n", + "10 202002 7 6534 4530 8538 10 7 \n", + "11 202001 7 9835 7019 12651 15 11 \n", + "12 201952 7 7941 5246 10636 12 8 \n", + "13 201951 7 5823 3675 7971 9 6 \n", + "14 201950 7 6424 4276 8572 10 7 \n", + "15 201949 7 6621 4540 8702 10 7 \n", + "16 201948 7 5542 3383 7701 8 5 \n", + "17 201947 7 7536 5058 10014 11 7 \n", + "18 201946 7 2638 1316 3960 4 2 \n", + "19 201945 7 4492 2615 6369 7 4 \n", + "20 201944 7 5728 3627 7829 9 6 \n", + "21 201943 7 4834 2751 6917 7 4 \n", + "22 201942 7 6279 3989 8569 10 7 \n", + "23 201941 7 4130 2030 6230 6 3 \n", + "24 201940 7 4211 2218 6204 6 3 \n", + "25 201939 7 3137 1310 4964 5 2 \n", + "26 201938 7 3078 1416 4740 5 2 \n", + "27 201937 7 970 162 1778 1 0 \n", + "28 201936 7 1277 263 2291 2 0 \n", + "29 201935 7 922 0 1857 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "1499 199126 7 17608 11304 23912 31 20 \n", + "1500 199125 7 16169 10700 21638 28 18 \n", + "1501 199124 7 16171 10071 22271 28 17 \n", + "1502 199123 7 11947 7671 16223 21 13 \n", + "1503 199122 7 15452 9953 20951 27 17 \n", + "1504 199121 7 14903 8975 20831 26 16 \n", + "1505 199120 7 19053 12742 25364 34 23 \n", + "1506 199119 7 16739 11246 22232 29 19 \n", + "1507 199118 7 21385 13882 28888 38 25 \n", + "1508 199117 7 13462 8877 18047 24 16 \n", + "1509 199116 7 14857 10068 19646 26 18 \n", + "1510 199115 7 13975 9781 18169 25 18 \n", + "1511 199114 7 12265 7684 16846 22 14 \n", + "1512 199113 7 9567 6041 13093 17 11 \n", + "1513 199112 7 10864 7331 14397 19 13 \n", + "1514 199111 7 15574 11184 19964 27 19 \n", + "1515 199110 7 16643 11372 21914 29 20 \n", + "1516 199109 7 13741 8780 18702 24 15 \n", + "1517 199108 7 13289 8813 17765 23 15 \n", + "1518 199107 7 12337 8077 16597 22 15 \n", + "1519 199106 7 10877 7013 14741 19 12 \n", + "1520 199105 7 10442 6544 14340 18 11 \n", + "1521 199104 7 7913 4563 11263 14 8 \n", + "1522 199103 7 15387 10484 20290 27 18 \n", + "1523 199102 7 16277 11046 21508 29 20 \n", + "1524 199101 7 15565 10271 20859 27 18 \n", + "1525 199052 7 19375 13295 25455 34 23 \n", + "1526 199051 7 19080 13807 24353 34 25 \n", + "1527 199050 7 11079 6660 15498 20 12 \n", + "1528 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 16 FR France \n", + "1 19 FR France \n", + "2 18 FR France \n", + "3 26 FR France \n", + "4 20 FR France \n", + "5 18 FR France \n", + "6 18 FR France \n", + "7 16 FR France \n", + "8 15 FR France \n", + "9 12 FR France \n", + "10 13 FR France \n", + "11 19 FR France \n", + "12 16 FR France \n", + "13 12 FR France \n", + "14 13 FR France \n", + "15 13 FR France \n", + "16 11 FR France \n", + "17 15 FR France \n", + "18 6 FR France \n", + "19 10 FR France \n", + "20 12 FR France \n", + "21 10 FR France \n", + "22 13 FR France \n", + "23 9 FR France \n", + "24 9 FR France \n", + "25 8 FR France \n", + "26 8 FR France \n", + "27 2 FR France \n", + "28 4 FR France \n", + "29 2 FR France \n", + "... ... ... ... \n", + "1499 42 FR France \n", + "1500 38 FR France \n", + "1501 39 FR France \n", + "1502 29 FR France \n", + "1503 37 FR France \n", + "1504 36 FR France \n", + "1505 45 FR France \n", + "1506 39 FR France \n", + "1507 51 FR France \n", + "1508 32 FR France \n", + "1509 34 FR France \n", + "1510 32 FR France \n", + "1511 30 FR France \n", + "1512 23 FR France \n", + "1513 25 FR France \n", + "1514 35 FR France \n", + "1515 38 FR France \n", + "1516 33 FR France \n", + "1517 31 FR France \n", + "1518 29 FR France \n", + "1519 26 FR France \n", + "1520 25 FR France \n", + "1521 20 FR France \n", + "1522 36 FR France \n", + "1523 38 FR France \n", + "1524 36 FR France \n", + "1525 45 FR France \n", + "1526 43 FR France \n", + "1527 28 FR France \n", + "1528 5 FR France \n", + "\n", + "[1529 rows x 10 columns]" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -1134,7 +2151,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "metadata": {}, "outputs": [], "source": [ @@ -1164,10 +2181,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 57, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -1191,7 +2206,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": {}, "outputs": [], "source": [ @@ -1211,25 +2226,71 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXmcHkWZ//d533cymdz3DSSQAIZEAoQQkPuMoFwra7w4fqwoi6t4LqjrgktUVhRlXVDkFuUQcbmR+w6J4UhCEiEnSUjIQe5rJjNv/f7orrerq+vqnveYyVtfPmHet97qqurq6nrquYkxBg8PDw8PDxG5Wg/Aw8PDw6PjwRMHDw8PD48EPHHw8PDw8EjAEwcPDw8PjwQ8cfDw8PDwSMATBw8PDw+PBDxx8PDw8PBIwBMHDw8PD48EPHHw8PDw8EigUOsBZMWAAQPYyJEjaz0MDw8Pj06FN954Yz1jbKCtXqclDiNHjsSsWbNqPQwPDw+PTgUiet+lnhcreXh4eHgk4ImDh4eHh0cCnjh4eHh4eCTgiYOHh4eHRwKeOHh4eHh4JOCJg4eHh4dHAp44eHh4eHgk4ImDR91gxYYdeOm9dbUehodHp0CndYLz8EiL437+PIoMWPazM2o9FA+PDg/POXjUDYqs1iPw8Og88MTBw8PDwyMBTxw8PDw8PBKwEgci6kpEM4loNhHNI6Krw/KriOgDIno7/He6cM2VRLSIiN4lotOE8sOIaG742w1ERGF5IxHdF5bPIKKR5b9VDw8PDw9XuHAOzQBOZIwdDGACgClENDn87XrG2ITw3+MAQERjAUwFcBCAKQBuJKJ8WP8mAJcAGBP+mxKWXwxgI2NsNIDrAVzb/lvz8PDw8MgKK3FgAbaFXxvCfybV3lkA7mWMNTPGlgJYBGASEQ0F0IsxNp0xxgDcBeBs4Zo7w88PADiJcxUeHh4eHtWHk86BiPJE9DaAtQCeZozNCH/6GhHNIaLbiKhvWDYcwArh8pVh2fDws1weu4Yx1gpgM4D+inFcQkSziGjWunXeXt3Dw8OjUnAiDoyxNsbYBAAjEHAB4xCIiPZDIGpaDeAXYXXViZ8Zyk3XyOO4mTE2kTE2ceBAayIjD4+y4cX31mHj9pZaD8PDo2pIZa3EGNsE4AUAUxhja0KiUQTwewCTwmorAewlXDYCwKqwfISiPHYNERUA9AawIdWdeHhUCNubW3HBbTNx0R1/r/VQPDyqBhdrpYFE1Cf83ATgZAD/CHUIHOcAeCf8/DCAqaEF0igEiueZjLHVALYS0eRQn3A+gIeEay4IP38GwHOhXsLDo+ZobQuW4pJ12yw1PTz2HLiEzxgK4M7Q4igH4H7G2KNE9AcimoBA/LMMwFcAgDE2j4juBzAfQCuAyxhjbWFblwK4A0ATgCfCfwBwK4A/ENEiBBzD1DLcm4dHWeFPKx71BCtxYIzNAXCIovxLhmumAZimKJ8FYJyifBeA82xj8fCoCbhGzFMHjzqC95D2qEu8tXwjzrjhZexsabPW5UbVnjZ41BM8cfCoS/z40fmYt2oL5q/eYq3rHW486hGeOHjUJby5g4eHGZ44eHg4whvQedQTPHHwqDswxtCRg7Os3LgD/3bPW9i1264P8fCoFDxx8Kg7FFk2sVK1+IarHp6PR2av8ilNPWoKTxw86g5pxUNemORRj/DEwaPukHaz96oGj3qEJw4edQdxs0+je6gekfDUyKP28MTBo+7A0m6+LON1Hh6dGJ44eNQd0nIA1ScKHdiUyqNu4IlDJ8N7a7biw827aj2MuoTXPXjUE1yisnp0IJx6/UsAgGU/O6PGI+m8SM05VJ0oeCrkUXt4zsGj7lBk2QRFfsv2qCd44uBRd0htylqRUZjgdQ4etYcnDh51h9ROcF7ZUDd44I2VWLFhR62H0SHgiYNH3UHc6lOd0b2fwx6NVZt24jt/no3L/vRmrYfSIeCJg0fdIb0pK//rN+09GTxX+OK1Plc44EAciKgrEc0kotlENI+Irg7L+xHR00S0MPzbV7jmSiJaRETvEtFpQvlhRDQ3/O0GosA/lYgaiei+sHwGEY0s/616eITIuMdXT7pUO53Dl26dgYOvfqpm/dcSnPj7I0AAF86hGcCJjLGDAUwAMIWIJgO4AsCzjLExAJ4Nv4OIxgKYCuAgAFMA3EhE+bCtmwBcAmBM+G9KWH4xgI2MsdEArgdwbRnurex4ev4aLF7nTxWdHQzpwrLWkynrywvXY/PO3TXrv5bgz9mrmAJYiQMLwHfEhvAfA3AWgDvD8jsBnB1+PgvAvYyxZsbYUgCLAEwioqEAejHGprNAw3eXdA1v6wEAJ3GuoiPhy3fNwkm/eLHWw/BoJzq+h3SADvgK7NHw4sM4nHQORJQnorcBrAXwNGNsBoDBjLHVABD+HRRWHw5ghXD5yrBsePhZLo9dwxhrBbAZQP8sN+ThYUMx49Gw2luGt5KqLvh8+2kP4EQcGGNtjLEJAEYg4ALGGaqrjjvMUG66Jt4w0SVENIuIZq1b5xOheGRD6ne/6puF5xhqCU8bAqSyVmKMbQLwAgJdwZpQVITw79qw2koAewmXjQCwKiwfoSiPXUNEBQC9AWxQ9H8zY2wiY2ziwIED0wzdoxNh667d2Li9pWLtZ7VWqh4q1+OzC9ZgQwXntjODJT7UN1yslQYSUZ/wcxOAkwH8A8DDAC4Iq10A4KHw88MApoYWSKMQKJ5nhqKnrUQ0OdQnnC9dw9v6DIDnWAfmqX/8yHys2rSz1sPYY3HET57FIf/1dKprvnHvW3h49ip7RcRlymnk+tVekuXWOWxrbsXFd87CRbfPLGu7ewpKCmlPHQC4Bd4bCuDO0OIoB+B+xtijRDQdwP1EdDGA5QDOAwDG2Dwiuh/AfACtAC5jjPFM6ZcCuANAE4Anwn8AcCuAPxDRIgQcw9Ry3FylcNurS/Hemq24+1+OKEt7KzbsQGMhh0G9upalvc6OHS1t9koSHnp7FR56exXOPHiYvbLw7rts+LU6ppSLGK3dsgsbd+zGsD7B+lrk7fg18DoHEVbiwBibA+AQRflHAE7SXDMNwDRF+SwACX0FY2wXQuLSWdDSVixbW8f89/MAfKTVamHNluZM11VvzygvxzD5p8+iyIB5VwcuR61Fv/up4IlCHN5DOiv8Quq0uPbJf5Q+u4huWNVPlOXtSKYFnjiowaS/9Q5PHDIiqzmkR+3RWEi37Gv1qMutc+C30eaJgxKRE5yfH8ATh8zwy6fzomtD3l6pA6Dcm1SW9h6bsxp3TV9W1nF0dPh3O4DPBJcR/nTRedHYkEu1Aewp+Rxs96FSVPMIpecfObL8A+pgqL74sGPDcw4Z4ddP58WIPk21HoIFlVldpk3vkdmrcPIv6zs0jCcKcXjikBH5GsS98c5L7UO/7l0AAPsN6pHqulpxidWMrTR/9Zaq9dVR4YlDHJ44ZEQhX33icMdry6re556EfC54Zqk9pPeUTWNPuY8KwTu/xeGJQ0Y05P3UdVbU6yZQr/ftij3mEFAm+B0uIzxx6HzgvF6xmCyrB/jNzyMN/A6XEYVcPW0rexbS2vm7bqo7Wlox8orH8OdZK2LlT89fg23Nran6rAQ8bTDDE884PHHIiIaUjlQeHQff+8ucirTLw3L85vlFpbKl67fjy3fNwnfun12RPgHgyXc+xMsL1SHsv37PW6XPrWUM+eKx58P7OWREg+ccOh1EhmHdVvf4Sq6yetWK2B5yDMs37HDuLy2+evcbANSxucRItd//6zsVG8OeAK+TicMffzOi4HUOVcWitdtwx6tL29WGGPJk9eZdxrp/X7YBm3cEuZTfXL6xXf0CHUOk88yCNdrfvEjFz4EMv8NlRC38HOoZZ/7mFVz1yPx2teEqVtndVsR5v52OC+8I8h58877sIqH2LpO/vLESD7650l6xzNjRUnsdSbXhaUMcnjhkhGdB24/7Z63Aa4vXO9XlOR7a45CmUkSrNm9e763lmzL1U84T6Lf/PBvfqqC+QoexP/obZi1LJGPco+FD4sThdQ4Z4ddR+/G9BwLFcJo8FoxlP423OT40sVoaJe6exkxecFt9ZYwTV8dL761DW5HhhAMH1Ww8tYYnDhnhaUNt0J55Lzru8yIR2d3m3uOedmDYniEjX2eG+PzODwljPSfg8mKljNjTNoLOgvbk0Wh1pA5iH67XVAIvvLu2Zn17eFiJAxHtRUTPE9ECIppHRN8Iy68iog+I6O3w3+nCNVcS0SIiepeIThPKDyOiueFvN1AYWYyIGonovrB8BhGNLP+tlhc10Tl4itSuKXD1fSsKFdM4zJVLrMTv8Y8zlpenwQ6EzTt3Y+n67bUehgb+/RLhwjm0Avg2Y+xjACYDuIyIxoa/Xc8YmxD+exwAwt+mAjgIwBQANxIRz65yE4BLAIwJ/00Jyy8GsJExNhrA9QCubf+tlRcJZVUN1pFP4FWdDHziPHf0lJpzV26u9RBS4ZwbX8UJ171Q62Eo4c9ecViJA2NsNWPszfDzVgALAAw3XHIWgHsZY82MsaUAFgGYRERDAfRijE1nwU57F4CzhWvuDD8/AOAkqma8Ygd0ANrgLaSqBJEAFTMQB9VzSmMJk2blL/iwc4XaXrLOzjV8/69z8etnFlZhNHH4tyuOVDqHUNxzCIAZYdHXiGgOEd1GRH3DsuEAxOAyK8Oy4eFnuTx2DWOsFcBmAP3TjK3SkBeON3urLviGWelpX7hmK55bEMn603AOpPCRVpWVEx3qBFUm/GnGclz/zHtV79e/0nE4Ewci6gHgLwAuZ4xtQSAi2g/ABACrAfyCV1VczgzlpmvkMVxCRLOIaNa6depYMpWCTAxqwjl0wMU7f9UWPDpnlb1iO1GKqFrhSTjl+pdisZfSBukrB9LcYi4jg/3HGe9num5Phj/wxeFEHIioAQFh+CNj7EEAYIytYYy1McaKAH4PYFJYfSWAvYTLRwBYFZaPUJTHriGiAoDeABIeOIyxmxljExljEwcOHOh2hxVCLdZRRxR/n37Dy/jan96yVywTqj0FKyoYE6kcyCp8/UEniLN0y8tLsGt39cxpO+DrVVO4WCsRgFsBLGCM/VIoHypUOwcAX20PA5gaWiCNQqB4nskYWw1gKxFNDts8H8BDwjUXhJ8/A+A51sHIeEKsVJMx1G5KtjW34ku3zqiZeSVXQVV7WXz+lhn2ShLaO8SOpW2rHa55bAF+9+KS6vT16HxcUaFovZ0VLk5wnwDwJQBziejtsOz7AD5HRBMQ7JPLAHwFABhj84jofgDzEVg6XcYY4+T/UgB3AGgC8ET4DwiIzx+IaBECjmFq+24rPVrbinhq/hp8ctwQZe7ehEK6BrSrluRy+Uc78PLC9dje3IrjD6i+12gkVip3u+XbiWuxqe/phGR3lcKM3/JK+4I67omwEgfG2CtQ6wQeN1wzDcA0RfksAOMU5bsAnGcbSyXxh9ffx9WPzMcvzjsY/3TYiMTv8qm9Evt0W5GV8hx3NPD73xhGKq1Kn4wlCXWH4icrgzSHgHIRt2pzpcpnq0D3RvMWxRjDvFVbMG5473INzSOE95AOsWVnEIVS56CTeGEr8C61tJpPSbWUtKXpetn67Zix5KOy9lmyVuoE1KGaj6mzcg66OZLXePfGvLpiiEfnrMan/ucVPDK78kYR9QZPHEL0bgpOKJt3up2MK7FJ2YlD2bt0BrcSciFQx1/3Aj578+tl6xOITsgdUSlvQpbNuybiqSobxeqCIMrFNu5i8bptAAITZI/ywhOHEF0KwQlFjKXzwrtrMfKKx/CeYuFVYqNubjNbZvRuaih/p47g91vNvVnVl4o4uRCsDmbf0OFQbY5MZ5KcKLU8N55XpbMdGjoDPHEIwRereFJ58p0PAQBvvL9RoZAu/xhsnAPPWz2kV9fyd25BxDm0v62W1iJuemGxc58ASlov1SbgMqZq0IZy9ZFK59BJ5UquYiUbcqGOzjUcu4c7PHEIwRelSh/MmEoh3f7FuHLjDvxdSKjSbCEOEQFrd9epsHrzTpxz42sAynPfd7y2FNc++Q9rPdX7nrX/Wm8dafauNBtdRyINL7y7Fss/cvML0TkXplXt5UqcQ62f8J4Hn88hBF+rouyVb8ItrW34UMo5XI61ePS1z8e+u+ocqr0hzFwaETDTfW/Y3oJC3j66bc1ujk0KxkG5W7g8imqIlVSEKwsh76wikgtv/ztyBCz5qT0HglaslPLe+WGuUo+3WGQl7qTe4IlDCGY4latyF1diLdqIAz9tdVRRwqH/9TS6FMrHjMYU0gaxkgt0l5VzKpWcTobxpiFk7TkxV2Ljcw+Lri5PcOiG9lpai/hg004A5jAn73+0HRfe/nfcd8lkDEopkm1jDLkOxZ9VD16sFIIvLddYNe09qVz9yLxEWYvF4adWrLPYrW0INgKngs7RSXW/WSOevrxQHYurElPaXi4lzXPmdXta/AFUqGU4cvke121tRktrMdXzuPqRebhr+vvK9kTcNf19LF2/HQ+9nd7ctRaxtToKPHEIURIrOR8S2rdobn91WaLMtrHuKetUnuI/vq4OAifeLhf3Zdl3V2/eif93x6xU14wa0B1d8uleD9XQMomVUtDX659emLmfWm588mZ++LRn8G/3vJmoJxPaS+9+Awf8MAisMEMQd5pCq3dtCJ5jc2v6OE31rMvwxCFEpJCuDuegQkd1gqu0maMuVzETpiMSK6m4CTOufHBu6jFR6X/uKNfzSbMhLQ8DA2YRD5UjBeqmHS2ZguOplO5/m7fGmjfliXc+LBlu9OwacUsmOtcYmqlf99R7uOHZdHkiPOfgEVkCOdavxJKxbQppHNHKibhYqf19JyJiaNpUEoJMMnzDb7onSWrLNWM/6arr28nQUJbQ3VlEgDIm/PhpfP736R0etaasKWaxR6NIHOycAwD88ul0eSLqmDZ44sChFivpX7hKbNC2hch/r+V6rWbfcbGSoV6FBpU1V4JqOGk2vSw2+1licu0sUzjsN5dvSn2NeCIX36U0ty7es4k4FHLZt7ksmQD3FHjiEIKvLdcN4fl3sycb0hEWG8HhC7WWYtBq9h23VtLbs9s2XtOvuvshpDcZLpe1UhY5dyFH+Ghbc6prdu2uTsRTFWKpWEXOVKrnPhWGg5zzqJLQEerbX12K+as6V4rWtPDEIQTfYKphJqpb8HbOISQOVY+gWdXuSiifWCn9RUSUYS2UZ7yuh1VR1r968y4cds0z+L+3PnDup5yJdOat2pyqvk5UKT9z01Q4i4Dbae6rwtWPzMfpN7ycuV0V1m7Z5RzbrRqoe+KwcM1WjP7+4yXPTpE7rxSd0DsA2XQO8b/VAot9Ln/n2tsWyk1pQitBvNrz6GMbX4b5ct3MPqeQ9c9Y6h4Nt5zE4YwbXkmUfbBpJ158L+KwxfuKiZWEa7KGDjG9q+1ZH9UMyzHpJ8/iuJ8/X7X+bKh74nDf31egtcjw2NzVALLLmdPAYS9UopzxjbIiTd86hadrBFBlHCX37p2ga4+oPGKlLHAVK72VQdYvohwKaROmXP8SLrhtZum7SBDEe2Tx00cMJkLpbjyS/cGorJXEMV3z6PyyWjRtqmK+FBvqnjiU8gQoFdJmZGVX9WIli+y89HP1qMPG7S248YVF0RhSXPudP89uV9+qwHsd2eycD01cQ2nH29pWxDsf2GXZqkjBYe/OfVWaA93a3Br73qYRH4mbd5qNXJznShksqKx9xXm75ZWlmLUske5+j4AnDpKiM81pMeui0xEBZ52DpR5jDLe8vAQjr3gMX/tT0rFIxPptzVi7dZf293//yxwsWRclQFq31V3p+cyCNU71XDgp/lyqZcbbnvwG7Rni60vcNppTr38peychYhuxYczlChUvbrSibN3kgW+eS0exktvwlFCJlerF98ETh/BvlrhF5faetG18fIy2Xhev24ZrHlsAIMiUZcLEa57BpGnPan/fJp3+ygHXKVYpA5VmolZiafpN/SNlMFcy92O/fsm6bVj2kToToSvScL6ue1y5JK3iRvtPN00vfWZuNCqBOOdgMjuXxpFic1fVld/7jhrrrL2wEgci2ouInieiBUQ0j4i+EZb3I6KniWhh+LevcM2VRLSIiN4lotOE8sOIaG742w0UzioRNRLRfWH5DCIaWf5b1d1g8KeSViUytA5AVs6B13NTXFcK59z4KgDg+X+sNdZztyax1+EvYCZrpYxnx7Sv/PTF65N9p+h6yq9exg//7x1rvXLI4QG12E7dX4pGDVBttM2tbRIXkUKs5FhPfv4PvrnSuQ/VeDznEKEVwLcZYx8DMBnAZUQ0FsAVAJ5ljI0B8Gz4HeFvUwEcBGAKgBuJiCeCvQnAJQDGhP+mhOUXA9jIGBsN4HoA15bh3lKBn2pUogwdsnIOerGSTefAwnrm9supVFc1xRWhqzfrxVHGNh3rqaOyqrgJ84QcM2ag69CE/ih1hFl19F73NWILvMhhev6ZdWZV2O9UG+3nfz8Dk38aca5yDdP8PTU/ElumsVZ6bbG7RZdSrJTgHJyb61Swrn7G2GrG2Jvh560AFgAYDuAsAHeG1e4EcHb4+SwA9zLGmhljSwEsAjCJiIYC6MUYm86CVXKXdA1v6wEAJ3GuotLg7GhbdCx3vjbriUorY3fWOZgrZvGWzYKszmeu05Y165uMHoaIpabmGlIG3ovaTFriLFy7LVNbKph0RGl0Ja5zmdVpU4bqxP3G+xuNY3LtwnTX7bHKUoqVpLI9lDak0zmE4p5DAMwAMJgxthoICAiAQWG14QBWCJetDMuGh5/l8tg1jLFWAJsB9Ff0fwkRzSKiWevWZfdQjrcZ/55muVebc3ANn9FR8iU7bz6aOxLvgwx1rToHt2HEQMjOGVUa37j37bK0E9vjMih000pXXHwG5Oer6+O6v70b+246Sy5eFyfMacRCKmsl+fo9VcrkTByIqAeAvwC4nDFmsrVTPSVmKDddEy9g7GbG2ETG2MSBA9OLClSQO1aJMnTIShwy6xwcqUM5ZaJpFH2J3zUDdRcrCdcYdA7WuzUMVBs+o0zHwUrsG+sNYTLSKaTbJ1ZKu/6dgsDKnINmYL95fpGyXAU5TIhMpEyHKRexUqujOLCzwYk4EFEDAsLwR8bYg2HxmlBUhPAv106uBLCXcPkIAKvC8hGK8tg1RFQA0BtAVYyHkxFC3a+17cEjr3gM//VoUg6texFtYpoofIYZ1fLqLBeHoieW6bmEcqE9xEEXGqJcaDbERCq3KfZFnxipXXBpiYMb5yB9d+zCJEqVn4EsFjL1oRYrxb/XMmlSJeFirUQAbgWwgDH2S+GnhwFcEH6+AMBDQvnU0AJpFALF88xQ9LSViCaHbZ4vXcPb+gyA51gFZSOf/d10/PqZMEmK9Dql6dQ0RP7bra8sTfyW3c/B3i9QHs6hHNPf3lO5SuqhDp+RTfdRDZSrb/Eed7SUx7zY5RkTKLOOTO7HJcLpxh0tse+uUVFNucvlFuQ1JBOt33z+EG1dVf1y5MUQMWdl+zzfywUXzuETAL4E4EQiejv8dzqAnwE4hYgWAjgl/A7G2DwA9wOYD+BJAJcxxngQl0sB3IJASb0YwBNh+a0A+hPRIgDfQmj5VAkwxjBj6QZc/4w6rnu5OAfTaUIvw3Xb9K2cg8ML9dG2Zrz0nl5vM+rKx/GDv5qT5Ii9yIpF+fcsyJLYRwXztOpEX8nNZsygHhl6j7BhewtGXvEY7pm5PPW14j2YQm2n89Ox1zE158o58Gou6/Ib98T1KeUgrgliIO3l8rh4ciDVb0CSYLW2lff4ceZvXsWT75j9k6oBa+JZxtgr0HOrJ2mumQZgmqJ8FoBxivJdAM6zjaUckJ26kgpp84O+8KiRuOO1ZQD0L0dbkeHtFXrqrw+8Z+y6dEJxJSImnHvTa3g/DDaou/6PM5bj6NEDrG0BQQDDBFxPlpryoiITnFLUZGtfuEZ8fiYQAZedsB/+9/nFzv2o+44+c7+Qu19/H5+btHe6doTP5Qq17b65Z+N0xX5yICex0oqN8TXpLLoyVHONPMAhmjArOQeZOFRArLRM825WE3XnIS1zgDLVs63FccN7R20JlduKrLRofvn0uzjvt9MT19r6cPaQtozRhTjoCAMAbNsVENAcuduPz1TEl9EqpF1TsSoESy56nv1/8ERsLsVLxgzuge+cur+1bwKQl8bpKmpjmm/fDmNN7c6gwHTdJNPoSvTxmYT2kJ3T5eC1XOZPNjtNQ4C0/Vv8EuQ+xNzhSmslWYdh6Ptb972N/37yH9rfdfjZE+mvKTfqjjgkNqyUG0A+B/zknPFh3aj8iJ88U3LmmbPSHNtet2naXoTWMoqVTNiyK/BYNfkHAPGX4sE3k3kE2pOBC9ARQZXOIf69pa2IFRt2KtskxPM0aB83USIvs6rq+bfNxC+eelfxi7793RnEEM7EIYVK+n+es1v8GA8HjjSOD90l4qh8CncmyIZq8m/yLcnvS5dCVEPF7chiJdP79uBbH+DGFxZrf+/IqD/iYFko4u+qFy1HVMr5IC6K9dtaSkHprCaeGTmHkmzTxjm0U5nc3BrItLs25C01zWhscFxemvH+9a0P8OicVdiya3cieq4NLW2RXD72TFOcrGVPc1XfL723zmmTFZGFc6il64qub3fOIai3cqOaYGfpOzkWe/8cCc5Bulh87iqFuBxt1mWM5cydUS3UH3Fo5+8BcdCnrDSVl/rQvmzmvrnOwaYXufXlpeaGLFDn007C9lI0OoafmLFUbbV86ytL8bU/vYVv3z9bsFZSDSRZpEs96UobCPHET4D7KVaMXKu6orWN4cl3VuN8IdeBDc6ewmV21yUiA6eb7lSfZYNMS4CUbVhocTIchsA5KBbcsvXx4IgunPr3HphjrdPRYFVI72mwyR9tazGfo9Sn2MQYHF+2tiLDKb98Ed+bcgCmjBvqpHPY0dKKZy0B8azjY/G/WdGzq1uoZx1x4Fi9OTpxZhEzxDytJT2KQarkJFZKMw6O3W1FfPVucyh1Ge5ipfLC1J6r9PLqR+ahsZDHI7NX2Stn7MMoVpI5B+muEqlJRV2ig0LahVN/fYl7PKeOgvojDtJ300KnkXS4AAAgAElEQVRRncJyBCvnYFsrrgt+265WLFm/HVc8OBdTxg110jlcmnLTUcE1WJyt1qgB3ZXlP/+bXkavQo4Egqwch0IurHkIFP5nA8EsVtre3JpJ0QhkFCsJn/t374KPtkf+AEN6dcWHWyoX6iOrGJTjnpkr7JW0fbseBgycg/RTQqEsPQ4W+02h40rRN0efbuXJiVFN1J9YyayPtiJHVPLG1G3yrtFVZTzwhjqUMK/OdQ6m9qeniDipQ1rnpqy/uyJH0YbumkNau6FJrzZ3hpRBRJg0ql+sTOz7/Ntm4s7p75uGHY4jOZAspo9i38P7NqFnaCzQJZ9D98ZIN6Rbz4N6NhqttLTKYjJZKxmHXBa4dmHUOSSIgfnkb+Mc5PZcaH2+ncYZtUDnG3E7kWQxpd+FB6/aiMRTbLljK/3jQ8m0UBpcq4NYqRyIK3CzCyrKtXnEhuBKuBSRUYHAUkhs75VFyRwMHIfu3Tf2XRQnyE5/XImfHEcSzYK5pvPJWNiAGItEXvkcOc/zeRP30v523yz16d7EZZU72ZWyD8ebM3G78jDlDX+n5HEudqnOIW1uTz2G6hykyom6Iw7yGkqYzgmfVQsjn4sU0tpQxrYhuK6DkuyfheNxOKJo3uV7Zy43OuaJKKVMJfOitVtllY9z4GITZRhvZd/i79GX3W1FJ7m8qo7JBPX3Ly1RlqumQFxXrhu76BXNwFAIiUMhR7H2TLk8Bvfqij9/9Ui3DgHcfuHhvMPkeFracPurS53bygqX+RnQo4uxnkqXJ2LzTr31kZIrlb87EYf2/V4L1B1xkJ+BvFDkU6aMnEActOykbSE4y/Tj9UQ3/bQb7xUPzsXZ//sq1m7ZhcvvfSvVtVnhuvEdOKSn8XfRGc157jQvuKu8X7XHmmLoyOaNrnB9jmJCnGIx4hxygoEEAO3hgPfimghqZP9uOOHAQcEBQTHnv3jqXfy+nVZxLrjNgQARkUUhHYf8zm/ZGRepyc6tifZkzsFhoZvW7aK127Dv9x+3tlFt1B1xsAXdEh+i6qHnKArypdpovn3/bDRbNiB3r8/g767WIrbu2h3jcrKeNG54biH+722z1YizzsGyUbsOsZclgX3MukipX0gWis9Z/FUWK2n7VOyybQbOYdUmtULYHmnXPpZkmxHBLOQo4cltQtpEULram3baHdqqBUJKhbRUIJvYik0pdQ7SM3UiDpoqW3ftzmTFVQ3UHXGQH5Is07z79SgomkpxmCcqOYdxObO4MP/y5krMtohvXE+LfINraS1i/FVPxRZhVi60T1MXax1x8evkypt2tGCpZO8toiFPZRMriXtf2pANMgKxkn2DlDeA08cPwW4D56B9wS3D1d3PRZ8YqR8bY6VNPp+Le3Lb7q2QIUugTeF/xScPTN1mufCD0z+GnI1zkBXSiQOhvr7SWomZv6ugygS4a3cbxl/1FH79rNoowlXfUinUH3EQPp943Qv4nUZWDKhl/ERUcu7icfXTPsOs8WJEsYbeVNOMHl3V1sti4DybQg4ApvzqZaOJYiGXc+ZAZlr8HHIxsVISap2Dmsva3VbM5CiWI8oUfVN1Rf/udgL9qY8PxeEj+2p/bxBCVLtwDnwO0uYXJ4O1EsfogT1w+cljnNs8ZexgqyjRFZP37Q8iW2yl+HeTKBmQ1r+Sc5Dac1zot7wc32tsVmumw0g1UH/EQXiQSwwnXwA4YHCvRFk+F3EOu0LOIX0sI3V9edOQ11xc55CySwtOuf4loe2gcQJpvUttdvWFPKWyZlmyTp9jOSYKSSmSA4BrBX8E17hG8gm8kCO0FhkYY+2OXdXSZifykGJAiSgyhv49GgEEcbBinINl708vVrLXL+QJA8LxuLVZPlDod2R6IuIcHzyiN+QlwLnEm790GJ7+5rGxA5Sac4iXuQbJu+axBVguBLy0cdY1pg31SBzc66oSiORzQNcwZtCuEueQbrPQ2+DHkeQcou8LVpsytabvWzUOBpY5TlNDPpdqXsR8zfIG9/LCyNzU1c9BR0WyJpvnduqtRZbKiU01NjGTm26KAmdLfZsDegQHiYn79IMQRNSU1BUAYnVdYdvEGvK5VBxJYAWXfhwqRD5HbpxDty6FmESgrchw9SNBtsZ9B3bHmME9MWGvPvivs8eVfje1lxaiybPtjOFqfFEp1B1xcAE/LaheCiJC1zAZCFdkpc6lqyMOCdlo/PfNghLwhXeTiXqWf7QjZkOv7MNhwcUUchlPyfmcWQ5sgmmbcW1TN+xArJT+7NqrKThNthVZKic21Xy7cA5Eek9uhmB+n/nWsfjtlw7D/oN7xn4zoVxiJfG+GvK5VKK6ILtceTa+HBFyORhvXJzjQj7ODd/4/CIhFlZ0E2d+fBgAJLgMoHwm2lbOoba0of6Ig8tz5adlVd284CHNN860G6jri2FSSHVVRDw99ufPJ8qG9OrqPrAS7AppGxpSEgdXxzvbRsWhi5Ta2sYyiTWG9W4CEBCXcjos6VrKEaBzqmWMgUAYPagnejQWMO3s8cJvUb23louOeqHpa1ri4FDHlKJT2WZZOYdQ/OnYYCEXF0EtEsSZIqfG5z5LcikTxGttQ66Gk6EJ9UccUpycVTVVcX7SygZdxUomG2/XcNqDesVlwab1xokRp0lrtjTjgwxhlgEgn093OvyG4HthDvamOsoli3QpULPENQIQOxCkeWWtzk+a4RBIu5EzxEVvTV3ywm9Rh+fc+Jp0lZo4iIENlf1Z7qEhl0tFcF2U3K7g76OrE1w+l4uHxxAuFA8l8gFQhOue/a4c8cAwLhVc82VUClbiQES3EdFaInpHKLuKiD6Qckrz364kokVE9C4RnSaUH0ZEc8PfbqDwSRBRIxHdF5bPIKKR5b3FOEzPY69+wemQv2Cqh9elkCstolLi9NRiJXV9ufj2V5dp21BxDi59mYLeqTgmMcBbGjTkcqnYYrEf0+m2vYepccN7pxKBPPDVI/HUN48tnSoZS/fSysM9ffwQ6feoRk8huVIQPVZDHJj5NxNUlx350+fSXSChSyGlzgHlM3Pmsc5U8ZH45lxkwJSDhmDe1aehQTKUiBEHqV3AzVpJh2/d/3aiTGxuT9A53AFgiqL8esbYhPDf4wBARGMBTAVwUHjNjUTEjzU3AbgEwJjwH2/zYgAbGWOjAVwP4NqM9+IE03RzDoAxYMaSj/ArRVC20YN6xDYKwL6Byi/CIoXNs6qeCtyiaWBPN+uQNO9gm0HXwnH2hGEY0bfJ2lahHX4O5tSk2V/Wp795LC76xEi3U25YaeLIfth/cM+SRVCRsVQvrTxeObueuEEMEJ4pEdBFI64JxEpq2Gzj5TDkNrjU7tYln84EqYycQz5HaMjl0CpxhA+++QFO+9VLeO4fawK/kDyhe2MBOYrHoopzDvF2ATdrJQD4v7fimRB3tLRi3qqk0cj81VGWyE6vc2CMvQTAbIge4SwA9zLGmhljSwEsAjCJiIYC6MUYm86CGbkLwNnCNXeGnx8AcBKZhM7thOuGpfMizufECKFB2T//Tp8vGgBmSUHaZi3bqKznMjIeBttVlJVmgfETlemSvKP/QiEl5yDCSByyNQkA2Hdgj0DRm2F58WuKLB3B3SAdHOTonHF/DPEUS5h2zviSVVLsGujnSG/sEPaf8dUyvTfdLelkZRBQNupABDQUkj4ofGNesm57wGkJnes4B5H74fOkkkKqpuLy++JcgvzcOb553+yoHWWNCJ1Z5/A1IpoTip24t85wAKJn1MqwbHj4WS6PXcMYawWwGUD/dozLCJfpDtj26PuCH8cZpxLnELamWwgcstyytVjEoJ6NuPviI1IPzsV0L9YkY1jrGOvfJZmQLRgfR3s4BxOUKgfHbtpz4oi4xXTM/rfunx37Lnso6zLWtRaLGNyrK64RlM2lekx/L7p1wWM/paUNLomtunXJpzRlNfsl/OhTY53byucIhVwuZgEGxEUyDNHGL3tT60y1OYflEj5DhY3b7eFFsmaMrBayEoebAOwHYAKA1QB+EZarVggzlJuuSYCILiGiWUQ0a906tcLRBjc7/zjbLir8goEEf1xPxokNoRgs0vHDe0v92pGWOBQZc3bSicRq+rZzjiIB2SpEhM1hKk2EzTTg+1dWD+mg//aZMspOaDpPbu5D06AQLRUZ0yurNWPj/h2piYMDSW0spFRIwzyHafN8d8nnEpwDb54o0DHwNnPS4UYnVgLCcOiKxSj63eiwYUd0YDxj/FBlHavOoTNyDoyxNYyxNsZYEcDvAUwKf1oJQAwaPwLAqrB8hKI8dg0RFQD0hkaMxRi7mTE2kTE2ceDAgVmGDtPWJp6STAs053KcEusnTosMOQJImn2XxWBLNCSDsciT24aSQtpQx9VssGBwgtPJ0kswNK/6Ka3iLgsHkSsdCNqnJkwQh9jn6BsP0a3yaGa64xbs66Jbl2zJHxPNCgVElGpDt1krpeFCckQo5ElrhfZfj87H9ubWGOeg0znI/eYpqegG3IjDRkGaoAsVYtMPdXidgwqhDoHjHADckulhAFNDC6RRCBTPMxljqwFsJaLJoT7hfAAPCddcEH7+DIDnWAVJpk1kAgQLd/1WvaiILyHXhycvuiLjTk7S2BzaysI57GxxIw4lnYNVrGRvKwi8p/7N5kRm9nZtD+eQXbAU6RxYu9j9pFhJzTn0CLO76TZK3Yneti56NBbw9DePdRlq0I8gTuOYvvijduUpDzgH/e9pdOZEwOJ12zDr/Y2Yt0qt7F2/rSXGNermXJ5qouzB77YJIdy7FLIJaGqtc7AeI4joHgDHAxhARCsB/CeA44loAoL9bBmArwAAY2weEd0PYD6AVgCXMcb4znQpAsunJgBPhP8A4FYAfyCiRQg4hqnluDEdXKb7obc/wJPzPoyV/e3yY0usuZxDelDPRqwteVkmIesciowhlzPnKNahYLC/VoGxeKIYE0qe4Ubuyiwv5jAppE2LfvPO3Ubi0R6dQwkOREKuESV4ap+JYVKsFP985sHDcO6hw3HYPkGKUnW4EH3YcZeRjRnsHvQuJxyYOD73+9cV9dLpHNL8HtyvhhgWGdZsCd69R+esxkHDAlGtvIQ4MQ3MaDX9Sk89yLKnn9GXv3cC7n79fWXwTpE46YiDVedg/LXysBIHxtjnFMW3GupPAzBNUT4LwDhF+S4A59nGUS4YT8Xh4lBFCT1AYA3FjQIARvbvbiQOspldkTHkSe/kZILctw1Fxkryaxs4C22iO84K6ZxeIW0ibP+jCV/MUQ7bb5dZl3sRxUrtGYKJcwCCUBTHHzBI+zsfmz7uUrrB2YwpSDoI6eul6tb4HGUCWmSAThJZEIJF7RBO64l0wILOQXcv8pw25HOJWFzi/A7q1ajd+MUeGjQBrWznOx+yu8pIu7moFIIQNwrYX5wk5xD3tE4zNh6qwJlzcBifPE6rQpoBw/uYfR10sZW27NqNjbpk9rCHP1ZyDsYrkmi3QtpSV7lmQsjXxjmHJEegMlkuMqYXK2nOAWdPGKYs//JdszQjDZBSveYEk1iJKElAdcES7774CPQTIhk/+GbkayC3z8PsG3M/SFPaq6mALbv0KURNXIi4sTdm5Rw6o86hM8NF1inWUYWpkE8Ytoe8WyFWCjxg9WPTvRDcTj6NzkFX96Bh8ZDkJWslQ3uuCul8Th0+46ePmy2n/jxrpfH3x+asjn1vbSsmOLNyQN56STgQtOelfeeDzbHvMeKg6FfVlclgQnsq1rAa739kDlvPiZDtnlPpcwx6K0LypH3Ti4uVdY8eMwAA0BS+o1tjnEMcvE4uF58jcdgywe3T1CUW7BKIH14Cxbr6RsRSLXdh4xwUFeav2oK/L3N1O2sfPHEQoFrgKuIgs9q2Q7ycNIiFpogJnYPweZsmJ3E+5UmuWNSfJk8QxBeAsPBtYiWp7IIj90nUk61COO6ZuTxZKEB33xyyIvTInz2H437+gvEaGS7mmTIicZ7ZQ9qmsE8+87hyNKEUVbTBkN4JTu/8Zp4L2adHB1Urqk1RdCJV90eJQH4fbdOLbIGIU9unf7dSmfwM+HtM0ro0KaR7NBawTeIcYoQFdqdDAOiiESupOPSXv3dC9LvimtNveBnn/dbsdFsu1B9xSCmEaDJwDqW91MY5SDbY3M9BXIsXHz0qthp0p2HOOaTJs6A7TV52wujY9zYHhbSKLf/SkSOTFQ2y3XJinUHXo0P7/Rz09b54xD7G+1bJ0zkC/5r478cdEJhs9xIS0ATNx+u9+N3jjalZ9Ul+1PW53iPimDSXh1DNaYOizzd+eLJRb9VaZAnOwaabi2KdRWVrJMdP7qsUiLSiimJ2RbkfFWcgHrTIIKIS14BeIZ0sE73Na22tVH/EIeV83/TFQxNlcviM2Ss3J+qIkB10uFhJXIxdCrnYQtQpkQsZTFl1VeWQ0PxFsYXmKDKG7S3RiUq18eRsxuw1hAttmCEZJbj6OeQNzn/8dxGyE5y8Dzbkc/j0wcNKmd/4NfKU79O/O4b1adKuCx1xUOmupl95In54xscAJC3zdFBxAypRVmMhH2zQhrZknY1r9jrxyTwncZicc8hRXCwqHtxUokT5tmXOweWwqfMtUc1pv+5dcOnx+wFon9l2OZDNI2YPhWoJ7q8w+4v8IZgUM1+N7c0ya5pUSMtKOp3jWikAnKNCusj02dxkUQMnSKaW+aa/SVAqq95dQu1PPuVESZRYNL+0tiRHKp8XDp24SD7t6urpRHl8XCqoiMPQ3pGxgepUroJqPLJimdezid4K0qnFldMztcmjGMse/iLnkBTpJQl9Qudg4RyevPwYrUhPdy3XBXZKJ7jODJf9SqyierCiBYdszaDCE+/Elajcz4GIcEyoVJMP2rs0vgn7DQwD77nqHJjJdE8mDkGfttAGcnsqtt81zAbH4SP72isBOHb/rJ7xEbKJlYK/NoU03xB1cyifppPhM+xzyZP9yDAxa/pwG5oLeJuKcZrqiZCDDAIhcbBkgpN1Dnkyz6mLRVW3LoLOQXh5RK5e1jmqxF8sIVbSKKTD4r36dtMaA9jey1qfreqOczCeZlWnMZ3IBPwlteN5KaUn93MAgDsumoQiY/j1MwtjC020VnrhO8djSO+umPvBZowe2APXPLYglROcXqwUHz1PMWpqWaWEU51KeUwbEY/MVke6PXxkX2di1797MkppWqg2LRkXHz0q9t31hY1Ce6tt8+WpEptbv61ZGQZCnksz56Ae4JjBPZTlNu5O1q/pdDzOnAPIyjnIOge+vmTdXRo0NQRbnawzEx0uVfdg4hwA/X3w4hyRlnO447VlyvKYT00NUX+cg+E31wMlr8fFQ2nBw2cAYTz6MAdvnN2Nvo0c0B1dG/I4fGS/WF4BFzDGnAmJC+eQUyRWUc2BagNQxbcHAnlwGh1Ke6HatBJ1pJ2d0xMb58A3tm3NrbhOkVgpKVYKGuMmrg+8kTTlFUWOi9dtw6Ydu/XcmmZwn5+0t7J8uyW0imyZd+5Nr+pqJkrUuih7bCWZOBARlq3fjuUbdhjHakJJIS1xvvsLRDOpc0iKCOX1p7sPXo9IL9KTn/V9l0wu9avqq9qoP+LgMOG2rUM8RYrvqBxgq1/3Ljjz4KTzkUqhKPep29DzuahvE86aMAznH7mP0c9BBicOry76qFR22kGDE+OU9R2qg7jKqkknKjPJymWUQw7rquAUEYutFG4J3zx5/0Q9HlTwphcW4zfPJ/NY60KmyHqpeOdRvWsenQ8AWLs1GYY9R6Q1JsgaV0oOn7FigzqlqFJXouFuYHAeA5LEu1dTAcdf9wJO/uWL6r7Dv6Z3m4uVAg/pqFw0VU9YKynalNe+lnMIy03EQcZe/bqV+jW1XS3UH3EoQxuiQ5S4np68PB7QjDGGgT0bFdm/1CGXdeyuCL7ObKasrW2sJALq1bXBWJejOVRI/+H197V1iJKcg1Ivg+TJp1mnZDeceGWkPU3NVViSuXAOskxfZcqqVMRb5OOyyTu/nwZDcDZxrby5fBMAYHtzci5Vorx2w9laKQnVJZHzp7q9Yb27JjgHmzd+qT/Db02CtZKo7ygaxEoqDkd+LfUpf0POAeRMHHj/HUXnUH/EQTHhk0YGQc4OHtHHqY3SBgCzQ1VLazGxSba0FvHqoo+wZZcUQkJambLjHIfOtHCr1N7mnbtLCrO9+0XOQd86JXna5XAJ7a0SF+lMWZOcg/6e3HUo9npDe3ctKfpXbU6edF1eVnmjUCX7MemjGhX+MUByvfDb0TlKBddEz5uPvVWxPuRTcTlQukVNuz//zMeDMSoPO8mLeDRi3WM8dJ++CZGeXHfq4Xvhb9JBTFVPRFMXtROc+Fl+NqpxygcjXcpckXNwFT2XwooLIsxaou6Ig2qVnz5+CN78j1MwaVQ/TY0kuCWDaZ/ZubstsZk+OidQyr63Jp5HWmaNZd8IjhJxkHYBWYTRu1tDaYMWF3Q3OXGRAJXY58Kj4opZ1e2qNgaVVZOKAPzpy0cgl0uKlQ7ZW02oxT1xzspNyjpDe3ctfVabU6ofmhhwUa6hSvajyuPNm+amkzbwKZI3RLlNXq9EHBTrw6SQdsW5hwyPfRfvW4XzJgbpW5Scg6YPk86B54QWId/TsfsPjAXCjA5r+nuPOIc40dKF0uDtJp3g4t+/OHkf9OpawNihUiiaEnep5xx0omWvc6gRVPOdzxH6de+SysSRb7wmWS5XWIsLTLfpy+Z4Np2D/LPc7k/OGV+KQBnPdhUf78R9IhNS1cn+yP3648XvHl/6rjoF6ayVxBG9uXyjMjTGUfsNUIqV/vPTByXqAvEX5szfqJWj4iapOt3rXrqrHp6nLAfiokR+tSqgGu+usZAkwiP7d0NDQToVOxxFRNNPU8j2fI6suTJs+OVnJ0h9B8gSlVV3TRCwTm0okSNKzJFcTcdlmW69W0whrR5j0s/B7AQHBDqLSaP6J57ir559r9SGzlpp9CDJgoxif7yfQ7Whmm++gaSJucNZfRPnMKhnIyCz+pr6pQBn4Xf+kl99ZnyTlM3cln+0Axu2t+DWV5bG6vVuaii9CDFzPanfO//fJLz03ROQz5FWJ7BP/+7R9Yrx63xB+Ib/6qL1OPfG1xJeq9E9BZv5Q29HUTWzbAAczaHobsm6bUrOQedAKBK5pFgpOs2ZraH5Wkpiyrih+O5pB8bHwviY9G3mcqKeI2hZDuYIBJ7F5Q5CWJJ/A1i6Xh+kT00c9HUZgAWrk9ZrOaKEE5x8cGjUcGUmx1Cdh3QsHIYsVlKIUFVdyP4QS9Zti4uVNLvs6VL6UDFbXYDaUoe683NQvdj8YUSnd/tDyYUnYx3jcPtFh+OAwT1x1/T3nZ5xvO9IBn+c5PQVeeoGvx/78+e1oiLOtZiUbt0bC+jeWEDXQs4p74OKU1JbK0Vz/YVbZhjb5NZKV/xlbqlMJ2ZxeTZzQ7PQaY8twMXHjEr8bksqrxtj0D/AH6hOnKbD108anQilIId9v/afxiuujMRukVgp+awKuWQuZcAsSrSCH0aKDGf/r86MVX2w0j2qwKpKTWT3H9wjET5DricfHHhtXapQIOLyZPNUE+cAlYe0gjrIl534ixeFNvVipWRCogB87TdrIjNXC3VIHBTseIk4pJArEbdWUl/DI57KyUV0PchnBX7aVy2svCSj36GxVefKt1iIAE3/+ZybUlh1vdrm3l3+zfUTYsY6nRIvTcBBIjVXo49cqm9L5SHtqn+J2tBvoHyu+nfX6THsYqVCnkpGBYvXRTqthPgiBcQxy+Gr44NMFpk8mhlTK9W/fMy+2CHpvuR1JCv7OVE3cnSlU3k0Ntm6Sxl4TzZlVXRiW+si4ewZC6CovoZbF251iL5QSXixkoA0zFyOgoo3Ph+PNS+b3cnKN77py2EgkjqH4MVRnaBz5LZJ8sXtsunnDJnbVOMUwTfgU8ZGPhGB2M3aXNC3wrJpSO+u+N2XDsMr/35CrNylTXGM0x5fkPhdd5+yOCPeZqTrYaWyZD2++ah/UxEHzjkE35X6G8StXwD1KbkgEPiTwtPrvgO7446LJinuKAnVmJ11DooybRBACsyhlRttjhTZ8uJ1ZM7hj/9yBACgXw+797yoYN/dVoydzuV7UB34VXlWVOInEaJuSuTidQ51vZs6CXEgotuIaC0RvSOU9SOip4loYfi3r/DblUS0iIjeJaLThPLDiGhu+NsNFL5tRNRIRPeF5TOIaGR5bzEO1UMUvRldwZPePLNgTaz88a8fEzOzy1F80+UWQb+WFX+SxYWJc7CdVB7816PCesFLYFJIx9uMl007J8rq+sXJe+Pui49Qcwk5wvQrT8T/fv5QXH7yGFxz9jhj3Jlk36p4TcBpBw3BiL7dYuW2Nm/43CHCy0iYo/Bz0BFLkTbI3ag5B/VGroNqs+HdmNYgF2ECwLDw8PGdUw9I1Cvkc4kQE00N+Vi2NBOUXGE4J7ZHqTRl1dQNrNOY1jiD+znsO6B72I5Z57D/4J44e8IwJ78A8Tke//MX8PLC9cI9xOuqMr21KMObmA+UorhSZ0YLRHPMuQvZPL3acOEc7gAwRSq7AsCzjLExAJ4Nv4OIxgKYCuCg8JobiYjzgDcBuATAmPAfb/NiABsZY6MBXA/g2qw34wKVdUib9GK60Iic5rTQu1tD3MwO8UXARSdNGjmwbK2kOs1yma0KvZsacOjefUv1ZM5BRwD5Bj1vVbSZnj4uUphdc/Z4HD1mgHZuhvZuQpdCDpefvD++OHkf62lKvh95w9aJlWwn2EKOhMQu6jpDBFNXESb/B1WyH7n9kw4cJBg36NsQwZ8jJ3q6UCT8vns3NWDfgd3xSUmZCagV0psMKVmT/aiIHT9pZ+ActI6cgSe3NlpwjvDY14/GbRceHvYd/11tJWYO5lcap2BY8MGmncrfou/J/WK3inOA+0FIvOcE5xB+5/kfdNkgqwUrcWCMvQRAzp5siOoAACAASURBVEt3FoA7w893AjhbKL+XMdbMGFsKYBGASUQ0FEAvxth0FszAXdI1vK0HAJxEuuNtOaDiHMLVl8paSXHS1lSMfeWBy3R5ZTn4qUoXn0bXt1h97ZZmFJk9u1o4UBRZPDyCKkmJSWkbH4c5r0GsZ4VYSQdbrokRfZvQNTQj1bV51H4D8MXJyVhD4sYsXxr5lwgiHgDfPS06wR8wpGfMQVIGb/6cQ4bjnw4dEasn2sUnrhPuhTE94dy6qxUL127Da4uj07Aun/Xkffspy3Vjtj0e1ZB01+TDVJ3is3zl30/A/V85svT9oGG9SydoeeNVrUsifegQ1Thd1pvqgKPiHGDhHESIBFNnCcU5J5OCfaclJlY5kFXnMJgxthoAwr883+RwACuEeivDsuHhZ7k8dg1jrBXAZgD9M47LCtVD5KfWVGIlxalCBVEBNm/VZtz+6rLw+uQpRTUmlSkmZ8vV/UX131u7FQCweJ05T3A0zrgcWJfBygUBx+T2yvDNQoQoV87H2PKgnupU9fjXj8HHR/QpjVv0Mv+VJMabuE9ycxRlvPLQ+bTGxEoUZNPjXudidj+ReE/cpy/eu+aTpWd+/Wcn4DOHjYjdD980dKInrgw2mU/PWhbkFvnj6+ZUrABw3P6DEmUmbsd2MpatsK7727vYuqsVowf1wKP/dnSizTbGYgrpEX27lZxQS+ORLPM4VGbOKuWxCmlCU8j5HHa0tJaew9TD94q36Xq4iZnRxi8a3CswRijkgsi1LYYotA++Zc61Xg6UWyGtWl/MUG66Jtk40SVENIuIZq1bt05VxQrVosgSCVgW7fz4LLXTlpg1br4mKqlYj4/PqnPQsA4i0fnX40cnf9f0z1l9cfHqkrW4IGdJenPK2MH4z0+PjfqWdQ5C3+eFGykQzc/1z7yXaJMHPoziT0W/yXJ3FWHfYrDGERWZD83m/hjxZ5YjvQe7TGjlsBS8uoppfiWUi6/ZsksblwuIRJYj+kVGETrRjVL5bCizccmHhh7tw0KRHffYP+eQ4Rg3vHesLjdAcA4XLpdruGlezySOSRUOWyI4Y3/0N3ztT28BAC44aqRYzfkgJHrYi3P6r8fvV3r2REGkZpFz2Li9Bd++f3bpuz4nePmQlTisCUVFCP9y76aVAPYS6o0AsCosH6Eoj11DRAUAvZEUYwEAGGM3M8YmMsYmDhyYLemLalMoiZVK5m72iS9Ioav3G6g2F+RN3fnaMvx5lp7aR+x70GbJWsnBlFUEjykEaE7+WoW03Zs6qOe2KEU5uQo/O3c8LvrEqFI/4v1846Qx2ut4mx9sTMZM4psGH2ObIT+wCuLcyeuEq3627NyN3724JBx3fExEUXY/0aFQNQ+i9RMg6hyS4zonDGmxrbkVYrh3Gb8/fyKA+MlaG6VVWaZ/3qpHeaponUaEM8YPTejSxijMaHmbLa0WPYY0RxyqjZEfMF5ZuB77//AJbZuq2GRH7tsfy352RrJ/6BkC8d1KwTgASJovK9vP52L6jeufeQ9/eTPaP7JEFk6LrMThYQAXhJ8vAPCQUD41tEAahUDxPDMUPW0losmhPuF86Rre1mcAPMcqmDxV1TJPy8en22XiZb8A3Yh5Uz9+dD5mLlPSvFjfbpyD/kR4leBRrYuW+h+fGos/f/XIeHm4QWdRPKrrmTkH8Sc5fIYcxVYEH9/DmsRBQEQk4lm+pP4VYxvQI+ljEI0xuanIIpccETZsbwEAXPdUxNmoCHl0Ko6fIlWn4n3Dg0dbMXBo1C3PU8YORkESOdqyp9kQicmS7fzuS4fFvpsOLfF6wV+TTB0Q9QPxRtXhWoI5fHmhm0RBHKfOgpkMu76oMxR1Qi7g7654X/LzaMhTbH7k+TfF4ioXXExZ7wEwHcABRLSSiC4G8DMApxDRQgCnhN/BGJsH4H4A8wE8CeAyxhg/Ql0K4BYESurFADh5vxVAfyJaBOBbCC2fKgVxirt3yWPmD07CUaOjVJ2AO+cgbj46/YOrbl1U/D3wxko8u2At8jnSnt51L72ogFSHlA6ynB0+Mi7fDUI0MKtSzz3CpFknI2+y5cznwImi+HLJo1abNIsV4r/xuVSFImkTTv2qvAyqIcun4qKBc+CbaWsbM4qVguvjc6kVK6nMcJXrRc85yGsziO0UX0Cme9fl9+DQcS1qi67gMKLqj3NUsWtF4qCZT845bNrRghueXRj7TTzAqAL0yXjmW8dhQOiH8cb7gW7ItJYb8rmY8jvBPTlkM2wvrB7SjLHPaX46SVN/GoBpivJZAMYpyncBOM82jnJB3FRzOcKgnpFZI39hXOL95/NunIP7CS06hX7nz4FsUacQFpO69OxaKClSu3fJxxSDrpZFpTYZszrXOd8PmRc/i72c7jJbHVE899Aomii/b/HlciHScipOEfx6lVkwJ0aFfA4FxWlYHbo63qcompLBN4IgcZP5ucriPN3hXNWGWecQvwfRB6bUpqPFEI+m+90H5hjr6fQDqttXBW/kOGq//rF6cpta4hC2+YO/voPH5sbzwIvvmQvnMHpQj5LD3ZPvfIjJ+/aXIifEx9CQz8XEbgnuqQPrHDot4uKM+ATzry7zXsjlYqdI3dpwNY9VmQzqFkBMrCRc8J3TDpDqpSUOdosPV07IxN0AwEBBhCMnfTd1oQ99keSYdrfq21Q1Yxovv1yVc/grx+2HC48aiQuPGqk80amalU+wkVJbRRyivm3BHmVvcx3R1eV31o7TAflc0sFw1IDuiXqrNyez2KmgCxeu9iKn0JJMT4iBiCjGiYO6f845JHKvQNY5uJlic06WX2s6PHUpxBXScvuG9B9lQ93FVoqzk/GfTPJVGTmCxDm0T7YbtRN91nEwoimrybpItYB0xIrAFdLm8bnrHNSL/+8/OBl9uzXETq7pxErqinmpPSDOOSTTcybbYYbfVUpuno2te2OhpOtRPTKlQlr6zSxW4qa5zOjnwK83hWjgcPW+1b0TqnWUF4w0zhg/FC+9tw77D+6prJcGib6Vola3A5pKya0bD9/0beFnRDNaU7pX7r1eyBHmrdqMe2ZGJsdpdQ6V08pGqDviIMoG5UXharYHBJxDmwPn4PoekIJ1yGuUTqIpa4wTStyPm+iAlzPYYza5i5UiMZkIVYIcm1gpfhI29wdE8yA6Chm5kSIz+o4EYwwaEDkHlXOhmiPRt8d/42tJyTkIIi0XzkEco25jU9nQq+Yoykqm77M0zly0LtuKrBTqQ4aczEcHVx8LIOI+bVX5LcaVwSadQzI2Gc9+F68XYOHaeBIvEbydhnwOZ9zwSuy3ob3jcyWbssrz3968HS6oP7GSMKdJR7TwVOEw8YnEKrpNy1WspCjTcQ7cKmTeqs2xiKyyGCqNXJKLgWwvYhpTVsDthJO3bMwiXHIz82kTT3HyqMVWeCRT02Pn99NmcYpRDU+VFS6pc4iXi+CHGE4cTKI9onj0VJe1zKGLrhv0HWcpleMUCFNrsag9kcvl+pDzCNtyIQ7QKqTFAyG/n7++9YFQpmsUSs5hr37xeF+8b8B8yPl6aKI9XEotevuFh+Nzk/aKlQUKaT0HqIpoW27UHXGIsZMycSjVsS/GQp5iL4zeWind+MR21m9r0bbZxhim3vx6rFzmHHShGFQoxbtxYKFdoMt1rW6TnHJJmNoT75V/3tYiEAfDwLl4SGw6YSHDzWMt8yOvg+F9mvC/Xzg0UU9mFDnRU22o3Gxx6frteH3JBiPnQESlEC2AyVrJrYxntJNzC6jCgOcEzqG1yLTmlmJ5r64FvPHDU9RjVBgB6KAK19KjsYBTxw4upQgN6gV/X138kbVNbo4tz6FsKCJm6jMR4zMPHgYgGTrnhAMHJdan7OcgP0Zd0MJyou6IQ8xaSdY5aBRgKsicg95aqfwn7eiUL41Jo2C3lfFy2QlOXc/tfnTeraa6LtAqpGM6h7BvQ+f8RQUi3YSJa4pOsdELq0q4I4/vgUuPTIgMgLh1mnidSSn8/b/OjX3XjVNUoH7/9I9p6rlNOud65Fg+sik0EIXiBoINXaszE/ru2bVBG4Sy5OnuRBzioU0A4KvH7Yubz58YFzkqRFV6UWX4u1RB3txFzsE01ijFr/1+GgokKaTj17jMSXtRhzqHCMcfGI8vk4pzyGVPjmOqJ7bYXxNqOU/JUBdA8tSZRvHHlcK2k7Hz/aTgHOSNqk+3+H3zU2rPxoK2PVGEpN744td1FU6T/OU3mbKqdA7KuXJQ3AJIhMLmREfJOThwhOJvPHzEHy6ehGPGqCMJuHKAnHNwCd4oOobubitq82OYs6+JY3TnHHjintteXZq4Pl4vea3WmCQcq/yck8Qh4lpELmO8FDYk0h1FZScdmIxxBQRipW1CrK9a6BzqjziEc/r78yfi+APUCXdcNjRXziGtQlpcqCdoFg4XK5niEQV9pyAOoROcLQfxio07nNrjXe9otkePlOfo3EOGx75ffPQojB/RG3+asbxkIy9j7gdR3CpTxjUV+OZjEiupdA4q1l4u0T0C2UyTt6WKoqoznFCBBLm/SeekFCspCjnn4EocijHOQU0cxM3etkZzhESOChXE07upbRXBMHEOKp2D7EkvWitxxvL+rxyZCCRYUu4L7fUKE/vIaMjnSqK8tiKLcYNPXn4MhvRSh50vJ+pOrMRf3+F9mkqhcTkiNtLeiqu1UhYPaQ55fBz5XCBWssWcUV3e1EV9HuBOcKZIkADw8ntROOgDh/RMRNzk4CfmXUKMod9+8TB1XWHcg3o2JolcjjB53/6h6EB90uvdJDr/Jfsw3RU/7ZkOY66cQ4KoaNqTuVQuQlA9c5k4mE7SwWaq50JMUK1VnpLTZKLJIR6YTDoHHq6cj9c2JlkZrqwX6gfEWE5K6yvFAVB3GOS6BHG+zxg/NMHZEgSxUkl3lGyvZFggWJyt3pyMEQaEuTnCfv/z4XfwwrtRWJADh/RKjKESqDviwB+iUh6P6OHZkM/FE6uUK4aN2IwuFj9PjpOMOSP3HV3/byeOxg9O/xg+pUgSw/svskiOLnqVitguKHm/ecr+iYib0RiDv6JytE839SlJpUxW1gtPpqq9sUtBVDqm4xxueTkIpBcXK0lcWdjmo3OimE4qLithmKDV8YScYvh9d3hTqg1V3uRNysgckTEXSFpwEcp2Jw4wDGHBgixvojjs3EOGl8KU/9NhI9A3XAu2w5Mpjphcr8gYegg5mtWe1EGh6CC5TZOOk3MO4roQo7Fy8FN+EH6GxfoRIZok88gMG7er/U3E/NZ/eeMDZZ1Ko/6IQ/hXtSb5i2kTrQCBHFi04Ggv5yCGSOCYpwnxncvxIHlSucGUtUdjAV8+dl9t6AW+GPmpk2fhkvHV4/YrfTaFGeHmlN+49+1SmY4TEpsxTZcp1LPIqh80LEmwTMrme2auwI6WVieFtGhBJpskAslnonU6DIuveXQ+gGjNqXwA5OdqMmPMUaRgNxEH1Z2eI4nzgGgNiWv9ok+MVLYpmtwGnEN0L7/87ARcd97BQt3gN9vrQUROljkqayVT/CjRQXJWGOtIVZch/kxFyyeOEX2bsK25FRt37C5xGcqAmYJCuoclFWieIq/rakRgVaH+iIPBKoTLSF1knPkcxeLGa62VHMfFn/8jQrTRNzSLlp+SZPGCvIjETcW2wEohJ9oYejc1xBS2Ik7+WBSm2RTjZ9lHQYKhpeujREO67Heyt7RpjEXG8NDbyYisPJ8AAHz71P0Tv9ue6Ngf/Q1PvPNhVD+hc0iOS7WZJuXe6v74fa4NOSu+Aao4B7kNk1gp2EyziZW+e1oyLzV/NmII8uEa5zZRbNJWLBoPD5wrdtE5uPo5JD2pVe0FhW4pOIMNWiTGKp8VrjfY3tyKW15ZEutHhMg5cGOTLx+7r7JnMQJDjWhDHRIHTf5fIFqwLgsnL3EOx+3fPqsQvv6veWyBta4qOQ6gUEgLT9dOHAJR1UfbW7TiLEDK0Ga4OR4MUCQIOs5Bp5RTjbHIGP4wfVms/LrzDsY3To4IgmpTcjERXiuIwJJ9J8tUBEMWK5m8b0XsLrrrHEybZS4XHW6MnIOiCVPf4lrX3ROvO2flZry3Zpuxf/6bVecAR6tASsY30uXjBtTxktR145GKZQc4IL7pv74kCMtv4hzaigxdCjkcunefUk6TRF3hHU8TQLOcqFtrJdV0czZYmSdWQkAcgtPUf3xqrMFWu/wPlpuyqsp1fdsizeaI8JqDY5DoAGR6+bl1SxfB6kIXZXaoYHlhiqzAc05skjK2HTikZ2wsPOlOzPooVToWdd8irj5TnfnPUeWQyGXAZeCqDVpeQ2aFNDkppPv1SCo0lYmluFhJcFLUtcrrnvfb6db+CyXi4KBzcPRzAGAN4Mj7WykkixqhEA8CkaI5zjkk33PO7Yn7hureRT+HtqIl9HouInYuFn+VQB1yDgGUOofw4dnizPO6fNMzbbyupEG1ecmmtqU2NUo6k5+D7fThSsPi+SL0F3UNFcTc2mXMoB7YR3HqAuIvnCncSI4C3YG8WTh5gqekDQcMiQeMk6dvr37qDcVFtAEg4RHeWiyCSJ/IJl7XIFYSfjety89P2jtRpky/Ge4QolhJB/l603vE79OukI7niFDF5gIiTnX2ys2lMmX+dUV3usyDXOdgOyvmFATULFYK1onpneREcdfuNqfDaiVQf8Sh9PImHww/ta3YsAPduuTx9o/Ubv1AoFDji8F0QlItElexx3dOTcqAeX/K0MTyd6HAhXNwgahkNGWj+tXUCQCA4X0CruAn5443KMPFcZjHWGRJj9UuBdUmEC9LyzeICeSBIH6/SBh1m1rSlFVdr0Ea8+42pg1Il5ZzMAXx48jnSBvTKFZPIaPXNSsvh/fW6IPQcf2eddVR3DpLZzTw4ZZkGHB1zop42VeO2xdnK3RHQdfcZNy8evj739IWEUMlYSoFMQzzcljXOsPlgkFHtVF3xIHDZK20vaUNowZ0N9oSF3JUougmGb1q9T/29WMSZarlp9t8xQ1AxMYdcXGLKGayZY7KkljKtPkM7tUVDfkoZpJOGQ3IxMF8mlKZsnZT+G7IzbjoHOLXJ8dxxCgxaYx6nF89fr/Yd9Lc9oFDgtS03C6/ubVNO0fy4cOUXjN+IDA/VJfjgFLnYKnLIRoj6Ora1p2sX9PRxR0KPwxdrmmOLoUcrvzkx7S6MM452KwXS5xDq0WsJOgmig5ipSJzT3taCdQdcTDpHMSTm+2kLYbTNm28qgUgiyy0feiUmYRYNFaOAZIcOW6tZO4ri27ERcm9MxQt6PQNgHS6NtFZCgK7ySe57kriIHMO7dM5AHFirbv1AT0a8R+fGhuNw9De8QcMLOmqdu0ulkRwMuRHY1aci6JEQ+eO4PP44nvrEmUy0qSuzGqtpOMcVB7cSjGZUNTVsCaBSOdgU3mUOAeBOKj6lqPruhyE5Do/PEMdK6sSqD+FdMlaSSHuiW345kUrEg8Xkz2OLilSOJmsQrYIStmzJwzDt045AHv3j8v0xQVaiZyztpDgOaKS3Nl03+L02eIGqfwcujUmN1W5lbScgwriczaKbERa53A/gJlzkPu6Yeohxjaj8Vo2vzIbS8iP+N9OHG2om0Ln0GbnHNYpCKbqvRS5BB0x5ggsoJjVejFf0ssInIPSUopKJrdFZtYDco5pq0D0DhzSE/9yjNr0tRJo145BRMuIaC4RvU1Es8KyfkT0NBEtDP/2FepfSUSLiOhdIjpNKD8sbGcREd1A5V61AszWSu4vVj7nRkjEdg4e0RuPaMJNqHYv3SzkiLBLWIhFhgRhCOoJ43V4CdPCLhKIlJJGzkHo2zQKnVhJJRaQCUhvR3NZE1yfufjSu9wPECgzVTb0QPzZjR3aC1PGDdG2ubsonl4NnVvGZoLNdwMIFPbf1ujMgOi9sJqyUtxaSMc5nH/kyESZ6hmJa0U33yIY7NaL/OAlEged9WKeougGVp2DtNB/9OmxmtqVQTmOkycwxiYwxiaG368A8CxjbAyAZ8PvIKKxAKYCOAjAFAA3EhGfwZsAXAJgTPhvShnGpYQpfEYsD7FlZlw5B5HgXHr8aK1IKc3BNkcUC6GsuzaLE1wa2AhowDmYzVjlvlWKxVK9UA4r6luW/vR0ZV1u63/igYNwx0WH4+C9+ijrpYGojHc1QjDT3OB+Nu/YjcfmrsbidWoZfRpR0RKhDWvGtazUweLnALgfrmxDICK8vSIKtqhb6yqvbdWBRzReaCzYOAdDhwJUSnttAqNcENa8zSpWSqbOPWq/AfbBlBGV0DmcBeDO8POdAM4Wyu9ljDUzxpYCWARgEhENBdCLMTadBceCu4Rryo7IVsmsrLIv7niCcR0aHEVVacQeyzdsL8nyAbe8yuWyVoq3b/6dKDh1EQE9G/Und3H+tmri3PD2ioL1yBGj+mnnnkfEbOqSx/EHqKPbpoUYfM7FwQtwM82dt2qztg4QV2rbnpNos2+yJqsEVDk1dCik0DmIZr99NUYiRJToU/WMuuSjTdvGOQSB9+zgW4FIHLRBM7nerGizJnOLDl1JtJc4MABPEdEbRHRJWDaYMbYaAMK//M0cDmCFcO3KsGx4+FkuT4CILiGiWUQ0a926bFp8zpaaHGSAdDoHExpip037uETobLplE0Ee0EyGeI+2+/loexQzyJVOWF/ssM+hvbpq2ey0/TEW+UXo5geIiHKaVKk2iM/c1K441abuiYJDgYvcPbrGXPfTQhIj3QZVasv4a/rr0hyuXJ3gROI6ZlAP/OnLR2jruuQzEU2IB/c0h70mcstfzdfC0/M/tNQM7ru16JYLvLMTh08wxg4F8EkAlxHRsYa6qqlghvJkIWM3M8YmMsYmDhyodhCzwTTd4gnNKoaJ/a5vVXxJTC/CMVL4jaU/PR29utrl5HdcdDhO0JyM8ymI3XwhyN/kUeqIrIn2HbkRXZwmuZ4NXEZ/YCia++m5461tmoj4xUePSpR1bchpNyBRgVkOsRLfAGzzGHuOlqnqJozRRhyyYt8B3ZXlaQ4jroH3xGb+eeJeGNFX7UgZ1JWIg0qsJMyJ6XABhNZK5uEF/YSDfD4Mq33I3noRJk+larNWCizz9HGsqoF2rR7G2Krw71oAfwUwCcCaUFSE8O/asPpKAKJn0QgAq8LyEYryysCgc6gM5+DW5n4De5SS3By7/0DjCXGSkKKxZ1e9wVma8Blid7/5vN4aRte++vewb8uO5nqCzVEgr93dVsThI/uip4F48rGZ5lx2dAOAiz4xSivbbXR0AHQXKwViCxelrHiNCSKHZlvD4hrrqwmnLuO2CyfiqNHq+cny/lg5B+F3m2I4QRwsCmnbuhQz29nqibjseLOVVlvo5W8WTQYHoSNGJdOxVguZiQMRdSeinvwzgFMBvAPgYQAXhNUuAPBQ+PlhAFOJqJGIRiFQPM8MRU9biWhyaKV0vnBN2WEyZRWf1Ywl5jhDrhEvRSWm7UXYEsrb1xvs2AHg0xMi0UH/7vrTTyzaaQrioHIqU8H2ckWnd7vi2gVcrBTkCrC1Gfx1tSriMBHbBsegg84K6ZAT+kwYi8ilPdtc2bg0Fa785IF460enOtXlznsqxKzjHP2ErBZvwu/NVpPSeJ+q5yuaC9tEjl0KOec4a7HvhvcicGA1J0Pi9VQpSquJ9vg5DAbw13CTLQD4E2PsSSL6O4D7iehiAMsBnAcAjLF5RHQ/gPkAWgFcxhjjWtVLAdwBoAnAE+G/isBkyiq+eFsMilHAnXNwtY0HgGcWrAEAzF+tzuOganOAhTVWXaOCeMJ1dYnoarH24Pdr9CBHfAP9V8nDWNVeS1sR3RrNS9eFc1BtDqZ7EuXVrkTHNO85IjdrGKENmxzaNtci+O2nUcuYNjTKwDmYOCv5d5u/gdylSl8gEnjbgamxkHMyFJHfa5OVWD4XhH9pbWNGsR8PMvnw7MoJUWzITBwYY0sAHKwo/wjASZprpgGYpiifBWBc1rGkAX/WpnC+Lnj3w61Rm4YF5BrFNA3ETa27Q3wcwP4iuDqiibDrEoK/BZtiVOjucAMbzdtraS2iwVFkYtqcldYsBpPbBmdT1uQ4dPVclI5ie7rENNG40gsD0liqmTY+sRWbsyc/Edu6Xr4hyll+yliz1Zn8TDbtSIblbkjJObhAdl60HUjaGENLW9FIyMtpSJEVdRc+o+horWSDSzx4QLJwcTD9dIEcntrpmhSyXdd5MMVLEtt0VVwD0CrXgYjANbcWHeTF/K/Bv0IxLtNYXYmD64tNiHv8/uHiSep6KdalK0cLRAHtbJvg5yZFuhmbKITDZib62JzVAKKkUDZ8ctwQHLaPWf4ur1vVOyoSLTFstwqu0QxkfwnTHK3avAsPvLES67Y2Y/YKvQkzf4wuwRErhbojDq5iJRtcuYCGFDoHV+sSvvjShOJotNl0xzgHtzZt3AiXETdbQqDzvm0iETGLl40bicRK+jrKEAeGNl2NC1yTswQK6Yg66Gz40yCNbwMP4GdbR184Yp/SZ9MaFefE5mBWas+R03EJoy/jUx8fligTn+FbK8xcmJiXvE+3Bvzl0iOV9WRC6Pr+mMTHfA2pYqhVC/VHHPgHJefg3o6oEJ1kEIXEg7VZ2FjHzZ63k4bztHqDip/LxNKu3xYo1sUY+yqkMWUFAqJjEytFxMHEOSTLTLoMcWO0WSE5gRBL2lQO01POOUze127lwkU7Ns7B2epN+MklNAXgfs+DLD4JQFJ90697ktiKa1sVsFGEyBl//cQxWs4lGaOp/e+PyTCiWqg74sBZB3Xy8WycQ/8eeqWwSERs3IarMpG/oGl0GLaXNY2/za+nTsA/T1Q73mWB621E4aPbnPUYxtAmCuow5SB93KJ/nhiJV0xRXlcIcnITZCLSowwbQhqdAxex2oiDc0wp4X5supFffXaCyxBL+OYpybzgMlwc1kSoAjaK6N7oZhbsSgjT9oF4BQAADy9JREFUYHAvOzGsNGpPnqoMUyY4EbpMXxyudKRLBcRKUf7dFMTBwjmoMsvpcNaE4ThrgjpBSjY4yugFsZKrCCqNbuCQvfsYN8phfZowpFdXfLhll5GYtqpyuCrHGFdI97BYYLnA1QoIiA4ENq7SVcEuOsepQmiL6K9IU2rCkN7pOQcbmiwGFcMEBzTTOkoj3nWFiwNspVF3nINJ5yDipi8cZvzdxTkGSBcGPC1xSCVWspxuXO+nEuDTYg8jEfxtaSta/Rz43Zh1A/HvJo9rjqvOHIsBPRoxwMAtfl6Q0ZtAIGfiYPK6FcHXW5q1YeMcXDnqvYQ0sLYNk691l6ZdHfRsByAZNgIq6oBM64iIYqJl0z39/DMfL33eb6Da0xywv6/VQO1HUGVEsZXMC8PmWj953yDExAmaPM8cceJgHpurMjGfQaxkOx3WMo4Lfxa22+H3y5h9rraGliquAfIAN0ufKeOGYtYPTzZuqLYkMhy5XFycVw4LKE7j03CVto08iwW2bXNzNROde9WpePWKE53qDurl5vNz7yWTAbj4jERjtCnEJzt6MovP+ObzJ2rr2SwBq4H6FStZ6tleri8csTdO/thgK7vb4Bi9FYhe0tsu1C8aQIyFXz7rKq6cfP1KpYtKRVHyZk5hbmvjsl4I49zMXLoBl52g61furzyKeHeiHTg69exa0AZP5OBjveTYfY31eOTYNCKq7hbZe5aIvbZTPA85b1O8mkKkyEjLeduOQ6LoUk7B296+AaC/QmHO4WrtVUnUH3EwxFYS4RKXxkUOGsvG5viSmYKLAcCAnsGictmD5l51qtMpjc9LtcM8A9Hm4xqrCXC35zflW06EWyjTrbuKYYL+glhR1s0lbNLkBwIA20LP/u4piIPNlj6L8+bVZx5k/P3gvfrg6NEDcNWZ5U9g84vzDsbZh+h1YvxubAps0WFOF2yQY1drxFmMH95bW09c46YEVCLn8LfLjy3lGq8m6o84hH9t8sZyeTNXos39BvbAQcN64WwHpXCakxfgbndeCVgJtmhSmeGkZmov6L+6hJEndAlCKVgOI+FfWy7sY/YfgIY8KZPf6NBkMenMMi3jRug3SCDgbO7+F3347fagsSFn1REA9tzQorjtzIOTPhMiXl+yofTZROhFS0PTehOJQ0OenH1nyon6Iw6OGulKEAcbq89t7G1dN+RzeOzrx5RrWDFUgnO41BAvCYi4K9uci++yzc+BI42zWrXfP6LAEKC1aA8kSBF1MGJo7yYsnKbOjqdDtzKFVBeRxlO73HCdS7tYyT0OE7d8+vIxo4z1eDu2vUAUK1Uq9LoNtdd61AhpTqnlgi2P8Y1fOBTfOmV/7Dew+iwkRyWIw/dO0+cSBiI6bduExMBrrpyDbZP66nER4XIx/ywnckSRl7KjI1oljMp6WdZltiyBtSMOYipQFUr3YxErpbmH08K83hcfbdYJ8X3FShwEhX6t5rIOOYfgr1UhXUayec3Z4/Dw7FXW08fwPk34+kljytdxBlRCrOSa6cwejiOS67o6DNperFEDIv1Ouc8DLhYnPMSIa74Nm1gpDXp2LWDrrtaa5BevBLhUwHbSHhrqCk8ZO7hsfX/xiL1x3mEjrMEo+VzbDmGiSKsWekCgHomDIZ+DiCynJR2+OHkffHGym+17rVEL2SZ/Jraum4VcwuUSW4iHx3ISh6f/f3v3H6RVVcdx/P0FRHRFfgm4ofxoFBIQUVYmS0EbqTCDJnSyHEFpJm1sMmmaNHOyKWewzMkfzRgVpJXaNNaEZTFqqWOZCIoKEqDmKMYopSJi/mD89sc9j3vZ58e9z3Lvc+/Dfl4zz+zds/c5z/nu2WfPPee555yLZzE0Ya2kaG3/qABJPaElcyay5cVHOObwdPMd0vjLV09OnKwGNNzitZ4iew5JDdPogwfx6OVzEnvyAO8f2bHH5lr1mFmqvTTS3oa+57LvxQzw9L3GIWXPoahxvr6oMlSSNJQX33gl7bBS0vSNSWHLUehepTQLR44enHjOHktxP/tyzW1LK2aMG87qy07NomjvGTl4/8T5PJC8BlFZ/C9cPKS5jXdYg9tI4+5ZMjvTGxXe6zk00XgW1dD2uf+AaZfP6Gtu/+IJXHxq8vo1eXj33XS9ufhOYEm3IVa2AD1/duMPw48dO+y9K8g0u35l6YVXu5eMfnnX2y197WY005s890Pj8ytIgh1vRL/DYR3ZLT2R9R1saRaE7KmZDZyy1B6XBBmaO/VQJo4+qBSTTMpkxrjhievlN+vuJbN48bXGW55C+rkn8aW/k95cSxdMY+mCaQ3PqfjEtE5ueei5lq+d/99Yg7AgYRJc0ZbMmcjUMfW3CK24Yt4UrkiY45CXKz99NFev2sShJVi0rp7uYaX0zylqFKPPNQ7jRnQwbkTjCS1pljuWZEeMGswRo5KHVyp77nYmTCqMX9mffkzn3hUu5opPTuFzM8cmTj7MWvyK8MySNw5F3yiRximTRiVOEixaZUb4m+8k91JvXjyTAf1MjYOZfRy4FugP/NTdlxZRjs3fnVvoh2l90ZihB/D9M6Zxygcav7E/c/xYbl39PJDtqpUDB/RjaoNZrXmJ35rb6gl4UoxKr+aQFKvSzprYeN22vJWicTCz/sCPgDnAVuBhM1vp7k+2uixpFwSTbJ0Z2yuhnukZ3qlTJj8/7/iiiyAtMqxjID9Z2JV6ld0ilaJxAGYCT7n7MwBmdhswH2h54yDldv/XTmn5B8d56RxyAPBKpndJSfllOb8iT2VpHMYAz8e+3wrks/CKtLWxI1r7uUCevj1vCp1DBjE7Ydl3kSKUZQyl1oBr1eWUmX3BzNaY2Zrt27e3oFgi+RnWMZBLTztKc2qklMryV7kViA86Hwb8u+dJ7r7M3bvcvWvkSF1tiYjkpSyNw8PAkWY2wcwGAmcBKwsuk4hIn1WKzxzcfbeZfQlYRXQr63J331BwsURE+qxSNA4A7n4ncGfR5RARkfIMK4mISImocRARkSpqHEREpIoaBxERqWJJ6+KXlZntBDbV+NFY4LkUWQwBdmR4Xl55Kp7sXjvrPNPGksdr55Gn4snuvDzyzCqeSe6evFyyu7flA1hTJ317yucvy/K8HPNUPCWNJ20sikfxlCmeev87ez72xWGlV1Oed0fG5+WVp+LJ7rWzzjNtLHm8dh55Kp7szssjzzziqaudh5XWuHtX2vR2pXjKa1+KBRRP2WUVT9p82rnnsKzJ9HaleMprX4oFFE/ZZRVPqnzatucgIiL5aeeeg4iI5KT0jYOZLTezl8xsfSztGDN70MyeMLM7zOzgkD7QzFaE9MfM7OTYc2aE9KfM7DoraNPeDOO518w2mdm68ChkZ3UzO9zM/mpmG81sg5ldFNKHm9ldZrYlfB0We86loR42mdnHYumF1lHGsRReP83GY2Yjwvmvm9kNPfIq/P2TcTztWD9zzGxtqIe1ZvaRWF7Z10/aW6OKegCzgOOA9bG0h4HZ4Xgx8J1wfCGwIhyPAtYC/cL3q4ETiDYW+hMwt83juRfoKkH9dALHhePBwGZgMvA94JKQfglwVTieDDwG7A9MAJ4G+pehjjKOpfD66UU8HcCJwAXADT3yKvz9k3E87Vg/xwLvC8dTgRfyrJ/S9xzc/X7g5R7Jk4D7w/FdwIJwPBm4JzzvJaJbv7rMrBM42N0f9Og3eTPwqbzLXksW8bSgmKm5+zZ3fyQc7wQ2Em37Oh+4KZx2E92/7/nAbe7+lrv/C3gKmFmGOsoqllaWuZFm43H3Xe7+APBmPJ8y1E0oXybxlEUv4nnU3SuboG0ABpnZ/nnVT+kbhzrWA/PC8Zl07yL3GDDfzAaY2QRgRvjZGKLd5iq2hrSyaDaeihWhS3x5Ed38nsxsPNHVzUPAaHffBtGbgKjnA7X3Cx9DyepoL2OpKE39pIynnlLVDex1PBXtXD8LgEfd/S1yqp92bRwWAxea2Vqi7tjbIX050S9mDfBD4O/AblLuUV2gZuMBONvdjwZOCo9zWlriHszsIOB24Cvu/lqjU2ukeYP0lssgFihR/TQRT90saqQV9v7JIB5o4/oxsynAVcD5laQap+11/bRl4+Du/3T3j7r7DOBWorFe3H23u1/s7tPdfT4wFNhC9A/2sFgWNfeoLkov4sHdXwhfdwK3UOBwhpntR/TH/St3/21IfjF0dyvDEi+F9Hr7hZeijjKKpTT102Q89ZSibiCzeNq2fszsMOB3wEJ3fzok51I/bdk4VO4sMLN+wDeBG8P3B5pZRzieA+x29ydD12ynmX0wdB8XAr8vpvTVmo0nDDMdEtL3A04nGpoqouwG/AzY6O7XxH60ElgUjhfR/fteCZwVxkonAEcCq8tQR1nFUpb66UU8NZWhbiC7eNq1fsxsKPBH4FJ3/1vl5NzqZ28/0c77QXQlvQ14h6iF/DxwEdEn+5uBpXRP5htPtFLrRuBuYFwsny6iP4CngRsqz2nHeIjuwlgLPE70wdS1hLtkCojnRKIu7OPAuvA4DRhB9GH6lvB1eOw5l4V62ETsroqi6yirWMpSP72M51miGyZeD3+fk8tQN1nG0671Q3ThuCt27jpgVF71oxnSIiJSpS2HlUREJF9qHEREpIoaBxERqaLGQUREqqhxEBGRKmocRHJgZheY2cImzh9vsZV6RYo2oOgCiOxrzGyAu99YdDlE9oYaB5EawkJofyZaCO1YogmKC4GjgGuAg4D/AOe6+zYzu5do7asPAyvNbDDwurtfbWbTiWa9H0g0SWmxu79iZjOI1s96A3igddGJJNOwkkh9k4Bl7j4NeI1of43rgTM8WgdrOXBl7Pyh7j7b3X/QI5+bga+HfJ4AvhXSVwBfdvcT8gxCpDfUcxCp73nvXsPml8A3iDZZuSus8NyfaCmUil/3zMDMhhA1GveFpJuA39RI/wUwN/sQRHpHjYNIfT3XltkJbGhwpb+ribytRv4ipaFhJZH6xppZpSH4LPAPYGQlzcz2C2vr1+XuO4BXzOykkHQOcJ+7vwrsMLMTQ/rZ2RdfpPfUcxCpbyOwyMx+TLRC5vXAKuC6MCw0gGgTpg0J+SwCbjSzA4FngPNC+nnAcjN7I+QrUhpalVWkhnC30h/cfWrBRREphIaVRESkinoOIiJSRT0HERGposZBRESqqHEQEZEqahxERKSKGgcREamixkFERKr8H23NV8yiUt3oAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] }, { - "cell_type": "markdown", + "cell_type": "raw", "metadata": {}, "source": [ - "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été." + "Un zoom sur les dernières années montre mieux la situation des pics au printemps. Le creux des incidences se trouve en été." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4JFd97/09XUvvrV0jzUizz9gzHu8LBmMgGC+QEGPAicm9ARISE+K8rG8W3tyb8Oa9voHkBhKSwE2CCYaQ2AbMaxIbjIOxsfE2Y48949lXjUbSaGtJvdd67h9Vp7p6b0ktdan7fJ5HjzTVXZrqUvf5ne9vJZRScDgcDofjxtfsC+BwOByO9+DGgcPhcDglcOPA4XA4nBK4ceBwOBxOCdw4cDgcDqcEbhw4HA6HUwI3DhwOh8MpgRsHDofD4ZTAjQOHw+FwShCbfQFLpbe3l27evLnZl8HhcDhripdffnmGUtpX63lr1jhs3rwZ+/bta/ZlcDgczpqCEDJSz/O4W4nD4XA4JXDjwOFwOJwSuHHgcDgcTgncOHA4HA6nBG4cOBwOh1MCNw4cDofDKYEbBw6Hw+GUwI1DEfvOxnFkItHsy+BwOJymwo1DEX/6g0P4ix8dbfZlcDgcTlPhxqGIrGpgOqU0+zI4HA6nqazZ9hkrhaKbyGpGsy+Dw+Fwmgo3DkUouolEVgOlFISQZl8Oh8PhNAXuVipC1Q2ohomkojf7UjgcDqdp1DQOhJBhQshPCSFHCCGHCCGfsI9/jhAyRgh51f56l+uczxJCThJCjhFCbnUdv5oQctB+7MvE3poTQvyEkAft4y8SQjY3/qXWh6KbAIDZlNqsS+BwOJymU49y0AF8hlK6C8D1AO4hhOy2H/sSpfQK++sxALAfuwvAJQBuA/AVQohgP/+rAO4GsMP+us0+/hEAc5TS7QC+BOALy39pi4dSCtVgxoEHpTkcTvtS0zhQSicopa/YPycBHAGwocoptwN4gFKqUErPADgJ4DpCyCCAGKX0eUopBfBNAO9xnXO//fN3AdxEmuDw1wwKSq2fZ7hy4HA4bcyiYg62u+dKAC/ah36PEHKAEPJ1QkiXfWwDgFHXaeftYxvsn4uPF5xDKdUBLADoWcy1NQKmGgBgNs2VA4fDaV/qNg6EkAiA7wH4JKU0ActFtA3AFQAmAPwVe2qZ02mV49XOKb6Guwkh+wgh+6anp+u99LpRXCmsPObA4XDambqMAyFEgmUYvk0pfRgAKKWTlFKDUmoC+CcA19lPPw9g2HX6EIBx+/hQmeMF5xBCRAAdAOLF10Ep/UdK6TWU0mv6+mqOQF00BcqBxxw4HE4bU0+2EgFwH4AjlNIvuo4Pup52B4DX7Z9/AOAuOwNpC6zA80uU0gkASULI9fbv/CCAR1znfMj++f0AnrTjEquKqueNw0yaKwcOh9O+1FMEdwOAXwdwkBDyqn3s/wHwAULIFbDcP2cBfBQAKKWHCCEPATgMK9PpHkop89d8DMA3AAQB/ND+Aizj8y1CyElYiuGu5b2spaHoXDlwOBwOUIdxoJQ+i/IxgceqnHMvgHvLHN8HYE+Z4zkAd9a6lpWGKQdZ8PGYA4fDaWt4hbQLRbcEzkBHALPcrcThcNoYbhxcMLfSYEcAcxkVuitAzeFwOO0ENw4umFtpQ2cQlALxDFcPHA6nPeHGwYWjHDoDAICZJDcOHA6nPeHGwQVTDutilnFI5LRmXg6Hw+E0DW4cXDDl0B2WAQBp3rabw+G0Kdw4uGDKoTtkGYcUNw4cDqdN4cbBhWqnsnZHuHHgcDjtDTcOLrhbicPhcCy4cXDB3EqdQaYcjGpP53A4nJaFGwcXim7CRwBZ9CEsC0jluHLgcDjtSdsZhzMzaTy491zZx1TDhCxatyQSELlbicPhtC1tZxx+fOgC/vB7BzGVyJU8pmgG/KI17jrsF5FSuXHgcDjtSdsZh+u3WtNHXzxTMkuoUDn4uXLgcDjtS9sZh0vWxxDxi3jh9GzJY4puwm8bh7As8pgDh8NpW9rOOIiCD9ds7qpoHJhyCPtFXufA4XDalrYzDoDlWjo1ncZ0snDam6qbkAXrlkQDItI85sDhcNqUtjUOAPDimUL1oOgm/BILSAtI8zoHDofTprSlcdizPoaoX8QDL43CNKlzXNUN+AXuVuJwOJy2NA6i4MMfvPNiPHtyBvc9e8Y5ruom/JKdrSSLUHXTqZpuRUyT4mvPnEaStybncDhFtKVxAID/+oaNuPWSdfiLx486cxsUV8wh7BcBtHZ/pWOTSfyPR4/gP49MNvtSOByOx2hb40AIwS27B6AZFPNpyzioemGFNNDanVkXstbrns9w5cBpLt/4+RmMxjPNvgyOi7Y1DgAQlK3gc1azAs/uOocIUw4tnLGU4MaB4wFSio7P/fth/OC18WZfCsdFexsHqdA4qEV1DgBauhAuYb82piDq4fB4ArMppfYTOZw6yarW56+VXbhrkbY2DgFmHOw3Z2H7DOuxVnYr5ZWDWvc5/+VrL+Bvnzy5UpfEaUNy9uYso/LUcS/R5sbBevk5ewKcu/FexC8BQEvXOrBA/HydyiGR0zCX0TA+n13Jy+K0GXnj0LobsbVIWxsHFnPIlVEOYVs5tLLUTWSt11ZvzGFi3upkO5XkbiVO42Bu3TRXDp6ivY2DK+ZgmhSaQUsC0slWNg62cqgVc7j973+Oh185j/EFSzEUtx3hcJZDTrNqiTIt/Flbi3DjAMs4qIb1Bi0OSLe2cqgdc9ANE6+NzuOZEzOOcphOKqCUVjyHw1kMXDl4k7Y2DqyPUk4zodiV0KwIThJ8kEVfaxsHl3JwtxFxw4zm6ekUJmzloBrmojKcOJxqsJhDlhsHT1HTOBBChgkhPyWEHCGEHCKEfMI+3k0IeYIQcsL+3uU657OEkJOEkGOEkFtdx68mhBy0H/syIYTYx/2EkAft4y8SQjY3/qWWEnSMgwHFDkozgwEA0Rbvr8RiDiYFkhVSdhWNGYc0xufz0/O4a4nTKHKOcmjdz9papB7loAP4DKV0F4DrAdxDCNkN4I8A/IRSugPAT+x/w37sLgCXALgNwFcIIWzF/SqAuwHssL9us49/BMAcpXQ7gC8B+EIDXltNJIFA8BFkVcPpocQa7wGt33wvkdPgI9bP89nyriWmqJKKjoNj8xDsE3hQmtMonGylFs4MXIvUNA6U0glK6Sv2z0kARwBsAHA7gPvtp90P4D32z7cDeIBSqlBKzwA4CeA6QsgggBil9HlqOay/WXQO+13fBXATUxUrCSEEQUlAVjOcRZA13gMs49DSbqWshvWdQQCVM5aYogKA45Mp7FwXBcCVA6dxMHcST2X1FouKOdjunisBvAhgHaV0ArAMCIB++2kbAIy6TjtvH9tg/1x8vOAcSqkOYAFAT5n//25CyD5CyL7p6enFXHpFApIPOS2vHGSXcoj4hZZVDqZJkVR0bOwOAahc66AUdaW9YrgDADCVzJV7OoezaHL2eyyjGjzRwUPUbRwIIREA3wPwSUppotpTyxyjVY5XO6fwAKX/SCm9hlJ6TV9fX61LrotAkXJg2UqApRxatWozpeqgFHnjUCFjiUl+xvb+KIKSwJUDp2Ew5aCb1EmA4DSfuowDIUSCZRi+TSl92D48abuKYH+fso+fBzDsOn0IwLh9fKjM8YJzCCEigA4A8cW+mKUQlIQC5cAqpAEgLLeuW4mlsQ7bxqFS9lGxcljfEUBf1M9jDpyGkXO5LnnGkneoJ1uJALgPwBFK6RddD/0AwIfsnz8E4BHX8bvsDKQtsALPL9mupyQh5Hr7d36w6Bz2u94P4Em6SvoyKAsFAWm3cgjJQssqB5adNOwohwrGwc5W6g7LAIDBziD6o35MJbhx4DSGnOszxmsdvEM9yuEGAL8O4O2EkFftr3cB+DyAmwkhJwDcbP8blNJDAB4CcBjAjwDcQyllf/GPAfgarCD1KQA/tI/fB6CHEHISwKdhZz6tBgFRsOsc7FRWsT0C0kw59IZlRPxizYD0rkErEM2UwzTvzMppEKxCGuBV0l5CrPUESumzKB8TAICbKpxzL4B7yxzfB2BPmeM5AHfWupaVICALSGS1qsqBUopVSJ5aVVi77lhQQkdQqpnK+uvXb8Ibt/agL+pHf9SPn5+cWbVr5bQ2WVdcq16l/r2Xz6MjKOEdu9et1GW1PTWNQ6sTlHyYShjOmzLoKoIL+0UnSOaORbQCTDnEAhI6QxIWaiiHiwdiuG3PIACgL+pHIqcjpxlO23MOZ6m4kx7qLYT7+6dOYrgrxI3DCtLW7TMAOHUOc3a2TldIdh4L2V1bW7E4h7XOiAVFdIakyqmsWmn9R2/EDwCIp+ufA8HhVCKrGRDt4sp6P2vxtFpQg8NpPG1vHAJ2ttJCVgMhQDSQF1NhuXVHhbLWGRG/iM6g7BjHYpQyWVzRgDXrolLLjXZgNJ7hOfkNQtFMJ+Ghns+abpiYz2gFsQrdMPHQ3lFuMBoINw6Sla00n9HQEZTg8+VjCyF7pkMrZiwlchoifhGi4KvLreQO1EdsA5pS2rP53th8Fm/9y5/iqWONKcRsd7KagR5bjdaTyjpnv1fd7qj/ODCBP/jeAfzsOI+FNYq2Nw5B2cpWms9qBS4lwKUcWjCDIpHVHJXUHbaUQ7nOrGx35jYO7LxEmyqHCws5mBQYmU03+1JagpxmoMdRDrWNA3Nnqq4anIf3jwHgbV0aCTcOkgDVMBFPK+gISgWPOTGHFlMO8bSK/aPz6LSNYVdIhknLF8IpugHBRyC62opE7VkXqTY1Dkk7XhOvc4IepzpZzUCXbRzqSWWdTVsGgCmHqUQOz56wVNwMT7FuGG1vHNgc6QsLOXSGCo1DKw78SSs63vfV53AunsGnb94JAOiJWB/MeJm4g6KZBaoB4DEH9rrj6cKFiFKKf3vpHJ+xvUhymoloQIQs+JDR6lcOLB72g9fGYVJA9BHMcuPQMNreOLDU1YmFHDrbQDkcnkjgzEwaX3jfpbjZTgNk7rS5MtlHil5qHNo95pA3DoX362cnZvDZhw/iuy+fL3capwI5zUBAFBCUhbqUA7vvTDk8dWwaFw9EsbEnhJkUz6BrFG1f58Dy9DOq4bhZGI5yaKFsJc3ebQ12BJ1jLFNktqxxMEpqPMKyAELaWTnYbiXX/aKU4q//8zgA7vdeLDnNQFD2ISwLdcUcZlOFyiGZ07AuFkBWNbhbqYFw5SDnF76KMYcWqnNgXS8lVwyB+XsrKYeAVPg2IYQg4hfb2DiUKoefnZjB/nPzALjfezFohgndpAiIAkJ+sa5sJXbfdZNCN0xkNQNBSUBvVOb3voG0vXJwV0QXxxxCLVjnoBlWRpLbVdQdqhVzKK2CjgWktjUOiTLK4YnDFxD1i9ixLsIXqEXAXENBWbCVQ/0BacCaBZHVDARlARG/iNn07Ipda7vR9srB3f6hOJVV8FmT4lop5qCVUQ5BWUBQEhAv469VdKOgOpoR8YttH3OYy2hO+u98RkNf1I/BziD3ey8C1lfJL7GYQ/1uJQBQNANZ1Wrj0hORMZ/RnPc4Z3lw4+AyDh1FygEAwn6hpbKVWG64JBQ2EuwOywXK4aUzcSRzWtmANGDVOrTqlLxasJiDYVJHRSxkNXSEJPRF/JjhMYe6Ye1ZgpJgzU+pohwePTCBl0fmChRbTjeRVQ2EZIG3dWkwbW8cCtxKwVLjEJJbaxpcuZgDYBfC2R+qlKLjA//0Ah7cO2obh1K3UiTQvjEHd/EfC+IvZK0K+96IjKSil0zQ45SHKYeA5KsZc/jvj7yOz//wCOJpFWE7HpjTjHzMwU7J5gkBjYEbB9kdc5BLHg/JraUcmOQuVgNdYdkp6ppNKTBMiumUgpxmVFAOUhsXwelOkH6uyDj0Ra3dK4871GYqmXOMQVASEJIqxxwWshriaRWvnJvHXEbF+k4r2y6Z02FS63PMlEO5rDvO4ml74+DOxCmnHFptjrSmV1AOIckp6mK9axJZ3VIOFWIO7do+I5nTsKk7DCC/EM1nNHQGJWeB4nEH4NkTM3jmRPn+UwsZDTd+4ad4YO8oAMu9G/JXjjmwViWGSWFSayIhAKdhZFASnP5M3K3XGNreODC3EiHW4JtiQnVmUKwVWLaSVEY5zKUto8B2w4msVrbOAQBigfYNSCeyGjb2WONV42mrJ1Uix9xKfIFi/O2TJ/ClJ46XfWw6lYOim3julNUoLyBZ2UZpVYdRpsfX2dlMwb83dAYAAPPMOMh5t9Jsmt/7RtD2xoEFpGMBCYKvdNpbWBZbtM6h8LX2hGWkFB2Knp9tkchpZdtnAJZyyGlm22WGUEqRUnRs6s4bh2ROB6VAR0hGb4u6lZbSnjynmxXjUgt2y/gRe9EPSD4Md4dgUqsdejFnZyzlcOOOXgD5Ik62oQnaxkUWfQXZTJyl0/bGwS/6QEhpjQMj5BdaKivHyVbylSoHwPqwxV1+dKsIrlQ5sM6s7RZ3SKsGTGpNwwvJAuJp1WlY2BGUnO6irWQcHtx7Dm/+wk8XPStBrWIcWJYXIygJ2NYXAQCcmk6VPP/sbBqDHQHctmcAALDRNs5sSFVAEkAIQV+EzzdvFG1vHAghCIhC2XgDYCuHlnIrmZAEUjC3AnAVwqVVzDsxB+ZWKqMc2rT5HktjjQYkK/23yDgEJAHRgOhkzPzo9Qt45988s6YV1qnpNMbms3ju5OIKzFTdqLixShR1AA5IArb1he3/L28cXh6JYzKRw8hsBpt6QviVa4bx9Q9fg0uHOgDk3Uqsm0FPRObKoUG0vXEALH9lR5lMJcBSDvX0e1krWMah9M/O+ivNZVSn3oEph0p1DgCQVLSycyBaFWYMowHRMQ7zWet+MfXZF/E7AelvvXAWRyYSFSftfWffKH586MIqXPnSYWm5jy/yOhXdREopH0MoTmYISgI6QzJ6IzJOTeXnZPz2N1/GH3z3AM7OpLG5JwxJ8OHtF69z1CxLnmBZhz1hmcccGgQ3DrD858wdUExYFqHqreNbV/XqxiGeVp2A9FxGA6VW9WoxbKbDk0emcPmf/RhPHJ5cwav2DnnlIJZVDoA1Y3s6pWA2peD5U7P2eeV30Pc9ewbffvHcKlz50mHppk8cniy70FeCuTDLqYdyygEAtvVFHOVgmBTxtIqnj09jNq1ic2/YeT7bsMy7spUAO7uwhWKEzYQbBwD/687L8fGbdpR9rNXadqsGLWscWH7+ZCJXssst71ayjMPD+8eQzOm4519fcRbCVobteGN2ZtJUMue44Zhx6Iv6MZNS8PihSbC1tJJxUHTT8wVzOXuRn02reHlkru7zWPJDJePgF33ot9937D22rT9vHIoNyGY7QwyASznks5XYca/fz7UCNw4ArtvSjS2uXYkb1ra7VeIOmlHeTdQRlBANiDgXzzgZIIxKRXAAcGYmjd2DMXSFJNz37JmVuWgPwRasWEDEpu4QJhMKJhM5AG7lIGNiPodvPn8WLLRTvNAx1DVgHLKqgY3dIciiD/c9e7ruzCXV1VK7mEROQywo4aKBKPyiz4mBbeuLYC6jYTalOMFmplLLKQd3thL7nvX4/VwrcONQA6Yc0i0iVVlAuhhCCDb1hDAym8FcRi1oX162fYY/39D3xp292NQTbou6h3zMQcIWO4D66ug8/KLP2c2+cVsvRB/B0QtJJ7vGrRySOc0xCJZy8LbLUtEN9EZkfPrmnXj80CQefmWszvOYcSinHHTEAiJu3NGLneuizvF8UDrtuIw+dfNO/OYNW7DdzmYCrCJOwUdK3EoByef5+7lW4MahBmG59ZRDObcSAGzqDmNkNo25jFog4ctVSLOANABcvbELIbm1utdWwh2QZmrztdH5glTo2/YM4MDnbsFLf3wTPvvOXfZ5ecP5X+97CX/xo2MArIwer+90s6rVEvu3b9yK67Z043P/fshRBZUwTOrEJ8qlOzPl8Ns3bsW//19vdo6701lZLOfy4U78ybt3F8wxB4CA6HOSRZhbiSmHpdRlcArhxqEGIX9rKYdKAWkA2NgTwkg8A82g2NRTKuHd+EWfo0Cu2tRlp/y2xj0qh26Y+PaLI5hM5JxW7pvte5TI6SWDoggh6I8GnPoRd17/+HzWcUWphvfdSjndGuMp+AjefdkgkjndWbgr4TYexTUNgOVm6whKIKRQxW7oDEIWfTg7k3b+j0o1SH5XdwP2HmXHlBrGi1Obth/2U4vOYD6LpxVQDVrSOoOxqTsEtuEqUA5l3EqEEEQDktMyIlTn/N+1yv7Refzx91+H4COIBkQQQhD2ixiIBXAhkSsxDoywLMBXNFI1pxpQdGt3q9rDarxMVjUQkPPZQACQVnQniaEcbuNQ1q2U0ws2IAyfzy5kSyolgf5iAvb7OGgXwAH5QHVOM8oWb3LqhyuHGmzossr0x+ZLS/rXIppuwl/JreT6sBYohzJuJcAyIG+7qA8A60Hl7UWuHjKqju/vP1/ilpi1q24Nkxa41JhrqSNYPhW63EjVrGZA0a3xmCbNzzTwKjnNREAsNA61uga4q6krZSvFguX3pn1RP6bqMA5+VxCaEXSMg7fv6VqgpnEghHydEDJFCHnddexzhJAxQsir9te7XI99lhBykhByjBByq+v41YSQg/ZjXya2qSeE+AkhD9rHXySEbG7sS1weHUEJUb+Isblssy+lIWiGCUksDUgDwCaXWthYQzkAwIMffSP++F2WT71SL35FNxbddqGZ/O2TJ/GpB1/DkYlkwfG4nRVz8UDU6cgK5DNoKi1ggBW8ZtlKbGayopnO7lo1TOj2lxfraXKagaBsLRUsBlerjb1SoBwK3UqUUixkNcQC5e9Zf9RSDgtZDRG/WNENylxJboXAuix73VW3FqhHOXwDwG1ljn+JUnqF/fUYABBCdgO4C8Al9jlfIYSwv9xXAdwNYIf9xX7nRwDMUUq3A/gSgC8s8bWsGBu6ghibbyHjUOHDNhALQLY/cD1h2dkhl4s5AFbGCAsShiQBqmGWBCo//dBr+K379zXq8leUhYyGbz0/AgBOTIDB8um/97E34esfvtY5vrUO4xALSk59BHMhKUX3Kqeb+PRDr+ETD+xvwCtpLFnNcCkHOwZXI0FDdRm54oB0VjOgm7RsF2SAKYcc5rNq1fvKjEJILlUOXnfVrQVqGgdK6c8AxOv8fbcDeIBSqlBKzwA4CeA6QsgggBil9Hlq6fVvAniP65z77Z+/C+AmUhylajJDXUGcbxHloFQJSPt8BMO2G607LDsfzEAFt5KbkO1ucKuHeFrF469fwMRCrtJpnuKbz591XCBTycJrjqdVhGQBYbvzJ4O5lSoFTQErs4ntnnP2/VE0o2ABzWkGzs6m8crIfENeS6OglNrKwVp0I07MofriWy3mkLA7slZWDgHMZTRMJ5Wq95VtWtwDu9wxB87yWE7M4fcIIQdst1OXfWwDgFHXc87bxzbYPxcfLziHUqoDWADQs4zrajgbOoMt5VaSKxgHwIo1+Ij1wWUf3kpuJTdsbGNGyy8Ejx4Yh25ST7pKitEME/c/fxY3bLfeelOJwv48cxkVXWX6b7Fah2qLWCwgligHVS9UDlnValJ3IZHzVNq0apgwaX7RdQekq6EUZCsVGQfbUFaLOQDA6el0Xcqh0K3ElUOjWKpx+CqAbQCuADAB4K/s4+V2/LTK8WrnlEAIuZsQso8Qsm96uvyEqZVgQ1cQSaV2+t5aQDNowc63mKs2dmJ7fwQ+H3E+mJXcSm6CZYoF//9Xx63/cw2kFT55dAozKRUfefMWdASlkrbPc2nV6T/lZmtvGH/+3kvx7svWV/zdsYDkKIesq/jNHYtRdMPpCXR2xjvJDyywW2wcagWk3YavuDgyka0eaGYtNcbms1WNLlO0Ibk05uD1IP9aYEnGgVI6SSk1KKUmgH8CcJ390HkAw66nDgEYt48PlTlecA4hRATQgQpuLErpP1JKr6GUXtPX17eUS18SGzqt4OxaVA97z8ZxeDzh/LtShTTjd9+2HY99/EYA+Z1dfcqh0K00Np/FyyNzEH2kwH3iVb6zbxT9UT/esqPP8nkXKYd4RnNqFtwQQvCB6zaWfYxhuZVs5cDcSrpRsLvOqqazGz8zky79JU2CuWfYohuus2MAMw7u185wlEMFt5I7RbZSFhiQf18WZCvJXDk0iiUZBzuGwLgDAMtk+gGAu+wMpC2wAs8vUUonACQJIdfb8YQPAnjEdc6H7J/fD+BJ6rHyxnw669ozDn/yyCH85eNHnX9XC0gDVtyBBZkd5VBPzEEuDFSembYWuB3rojWraZvNVCKHnx6bxvuuHoIoWM3gimMOc2kV3VV2sdWI2sqBUlqgHArcSpqRv3czpcNumgUzDmwBFgUf/KKvZkCaqaK+iL9yzKGScojljUM9ysFtHFjgnMcclk/NIjhCyL8BeBuAXkLIeQB/CuBthJArYLl/zgL4KABQSg8RQh4CcBiADuAeSin7K30MVuZTEMAP7S8AuA/AtwghJ2Ephrsa8cIayZBtHM7PeUfu10siq0F0DfapFpAuhhmHajEKRqioQSGbcdAf9TsjHr3KU8enYZgU77nCCoP1R/3YV9R9dC6tVlUH1YgGRJjUmiKXq2Ac5jKq08H1jIfcSllHOeQX4IhfrBlzYK+tOyzjdNHff8HVvLAcPWG3cqgWkLZjDjJXDitBTeNAKf1AmcP3VXn+vQDuLXN8H4A9ZY7nANxZ6zqaSU9YRkDyrUm3UrFvuFJX1nK8+/L1CMliydS4coSLWpuzAqa+qN/zbiW20DFfd38sgKmkAkopCCHWuEtFd6blLRa2Q07mNGRVu7ZBNwvcSu7pZd5SDtY1unfn4XqMg/0374nIeO38vHMvgXzMIVrBrSSLPmdWRqUJjYAr5lBWOXj7PbcW4O0z6oAQgvWda6/WgVKKlKIX7FC1CvMcynHZUCcuG+qs67lsx8aCqqxbZn/U7zRhE+owMs2A3R/mPuuP+qHqptMzib2W5SgHwHKnuHe0bsPNKrCDkoCzsx5SDmqpcgj7RaRqxByY4euJ+KEZtGAWeSKnISgJVRMj+iJ+yzhUdSvZMQd3QFrmRXCNgrfPqJOhrlDZweeDlGp8AAAgAElEQVReRtFNGKbl586qhrNI12scFoNTOcvcShnNqQsA4Ol0VraQMfcZC4hO23EHNja1XLZSPUQDLuXgWrTcMx5m7d5du9fH7Dne3ujlldMLA9IAEPELdaey9kase3lwbMFJjFio0jqDweIO1QPSpRXSsuADIdw4NAJuHOrkbTv7cHwyheOTydpP9gjuQOBcRnUW6ErtM5YD617ruJWyGjqDkrPgetm1pOgGBFcgnhkHlrHEmi6Wq3OoB2fedk53iuCAQuUwYyuHPetjALyTsZQraokNACFZrF0hzZSDbVB/85/3OtXfEws5DHQEq57fZxuVepSDO5WVEIKAyKfBNQJuHOrk9ivWQ/QRfO/l87Wf7BHcu7t4WnUW6HoCzItFtoevOAHpjIqOkOy4Drxc66DqhXGY/mgAADCVtBZsNm1sqcqBpWwmipVDzu1WsgzQxYOWcfBKRb6jHMSlBaR7ItY9Syo6zs6mYZgUI7MZbOwOVTsdfY5yqBKQLtN4D7AMGQ9ILx9uHOqkJ+LH2y7qx8P7x6B7eBfsJlVkHNgCXc3Xu1QIIQUDf+YzGrpCkuPC0gxPZScXoOhmwT1hLo2pIrdSV3hpqawsKyeRK4w5uBvSzaYtQ8SG3RT3dmoWLIDuVg5hv1B3nQPLPIoGRGgGxWg8g7H5LDbVMA6XrO9AT1iuapDLtc8ArFbePCC9fLhxWATvv3oDppMKXjpTb6up5lJiHOwFeiViDgDsmQ4ut1JIchZdL9c6KFqhcoj6RQQkH6Yd5bBct5I7W8ltHEqVw2BHAAHJhwse6UflFMGJ9WUrmSYFpRSKbkD0EVw+3IFfe8NG/NntlwAAnj89C8OkNZXDuy8bxN4/fkfVmQzl2mcAVmprqyiH/+8/DuPubzancSXPVloEbNZtcWsFr+LuhmkZBzvmsELGIezyRc9nNHQEZaca28sxB9UwC6rACSHoi/rx4pk4Xh6JI55WEQ1Ubh1di4BkTc1LZPUCXzgLSPtFn6NOIq4BQl7AqXOQ3QFp6+/sTk9lfPgbe7GxO4iAaGUjhWQR//OOSzFuZ/o9c8JqezNcwzgQQlCr/SYz6KES5SBAaRHjcPRCAuPzzXkvcOWwCNji4OVdsBu3cpjLqE4GSbX2Gcsh5BeQVa0JZ/MZKw1RdtxK3r1nim6UuNp++fL1ODqRxPu++jwefuX8kuMNgLXQxQISFrJa2VTWWFByJvCF/AIGOgKeUQ6KZoCQwjhVSLaK+op35/G0imdOTOPkVAqqUeiqY+3gnz0xA6BwXshSYUquWNEFZaFl3EqJrN60RozcOCwCZhx007v+czds8fERK1VSW8GANACEJGtHmVatfv1da9StBAC/f+vFePm/vwMfftNmJHI6OpfoUmJ0hWXMZ9QSt5LgI04bbEkg8IuC55SDewwnYKWyAqX9lZ45MQ1KrQVN1Qu7//p8BJu6Q0jkdEgCwUAssOxru3ZzF77zO2/EJXaGFyMg+VrGrZTIaU2bzc7dSouA7bi9vAt2w4zDYEcQc27jsAIBacDa9bpz9DuDsisg7d17plaoGo8GJHzuly/B7vUxRP3L+6h0h6yKX1m0XEyaQZHMafCLPpd7xPo/1nUEMJVQyrptVpucZpb49CvNkX76uOUySioaFN0s6cm1qSeME1MpDHWFGlIQSQjBtZu7S44HJcGp0F/rJLJa2QmLqwFXDotAXGNupbSiw0eseRSzqxBzYNlKzuxfV7aSl2MOimZWNZi/cs0w3nnpYMXH66ErLGEuoyKnGU5hVzKnQxZ9JYN0BmIBqIbp1Fc0E6Yc3JRr222aFD87brmMkrlS5QBYM8cB1AxGLxe/1BoBaUopkjkdukmbsuZw47AI5DXmVkrmdIT9InoiMubSKlR9pbOVRGQU3TEOXa46By8bVEU36mpLvhysXkFWzIEVdiVzOmTBVzKCk7lcvOBaymlGiQKIlBn4c3gigZmUgvUdASRzuh3HKbynm+ypeSttHIKS0BLzHNg4VQBNUQ/cOCwCx63k4YXOTUrREfWL6LKbmDlFcCtQIQ1YzfcymuF0ZC0MSHvXoCp6/c0Il0p3WMZcRkVGNZxmcixoy5QDcysNdNjGoYlB6YWMhpNTKWtEaCW3kitQuvesld59yyUDMEyK+YxWosZWSzm0SsyBtTYHCicsrhbcOCwC5if1sv/cTVqxlYO9MLH0PllYmV1yUBaRUQzM2cqhMyg5rTq8fM9UvbpbqRF0hWQYJsVUonAusiz6nMXXcSt1NF85fOXpk3jvV36OjGqUxhzKDPw5cH4B/VG/k+49k1JKDO4l6zuwqSeEN2wtjRM0kqDUGu0zEq4iyWYEpblxWASEEMiCD9oacSulFB2RgIiukAyT5pu7rURvJcBaNFTDxIxdPNbhUg7ediuZq+JWAqy/ibuZnCz4HLcNy9fvi/jhI8BkE5VDPKUikdNxfDJZWTm43EoHzs/jsqEOp4/UbEotMQ7dYRlP//4v1N3pd6kEbOPgsZlhi8ZdQc/dSmsASSBryq0UsWMOQN5NsWIxB3vRmFjIIiQL8IvC2ghIl8msaTTudt/ufkF+SShRDqLgQ2/E31TlkLF33jMptaAjK1AakE7mNJyeSeOyoc787ApFX7GU6VoEJAEm9fZ7rh4K3ErcOHgfUfCtmYB0KmcZB7ZrZcZhxeoc7J3v2HzW8as7jfc8/EFVdGPFFzL3oKCIX3Cm8/kFX767qD+/Qx/oCOBConmV+BmXKqjlVjo4tgBKUaAcgJVLma4Fu961XghX6FbiMQfPIwm+NbMjYcqB5aKPL1gtDFYylRUARmYzTtHYmnErrbBycFdYB2TBcbm4Yw5hVy1FfzSAqWYqB9dOtdg4iIIPASk/R/rA+QUA1nComGu620oH+SvBlM5ajzu4531wt9IaYK25lcJ+0WlBzdpAr1gRnJ1tc34ui619Vtqi5HHlQCm1W3avTswBsAKmrN20O1uJDUwCgFhQLGjMt9q4s32KYw6A5QJjbqWD5xcw3B1Ed1gumAvdLOUQdJTDGjcOuea6lXiF9CKR1ohbiVKKtKIjGhDt1tnEGXO6Ur2Vrt3chfdetQFv3dmHd9lFY15PZWUqcKV3uSHZakSn6qZlHJhyEPIV0m7lEHUtvs2gUDmUrx5nxuvIRAJ71nc4xxnNdiut9XTWArdSE14LNw6LRBLImnArZTUDJrUWHEII+iJ+jK9wQLozJOOLv3JFwTFmiBSPqi12XSttHAgh6A7JuJDIISjn5ycXKgfXQJ2AZRya1UIjqxrojfgxk1LKKodoQHSyaeIZ1XFdsg60mkFXLGW6FsFWiTlkdQTtau8sjzl4H0nwrQm3EmvXzTJg3D1wVjOLhBBiLxbeuWevjy04uzJ1lYwDkM9YcisHv+iukM7v1SJ+CYZJm7bAZVQdV2+yUk5DZfpKWcZBd1o8sFgDIcRRDysdx6mEv1ViDjkN6+zBUzxbaQ2wVtxKzCXBskf67LiD6CPwNaDp2WKQPWRQT0wmcfvf/xz3/scRAHnlsBoukG57klzQTvNl/29xbyXAUg6A1cSuGWRUA5t7wvi7X7sS771qQ8njEb+lHDKqAcOkBVlK7OdmpbIGW8StlLS7AfvF5lR8c+OwSLy2C64EMw4syMlGX66US6kakticDK/95+ZKsqTufewIDJPiB6+NI5HTnKrxlQ5IA/m5AwUxB1e2kntoDesCm2pCUNowKRTdRFAW8EuXrXcSGtywmAOLO8RctRtMRTQ75pBrUjfTRpHIaogGRGsmNlcO3kcUfJ5Oy2Q4biV7F9cfZcZh9f3XkuBbdYM6lczhvV99Dg/uPecce/bEDJ46No1fvnw9spqBR14dX7WANAD02G6lgCQ4rg9Z9OH6rT345Dt24MqNXc5zI2U6n64WLKe+eMKaG+ZWYu65csqhWamsA7EAfMRqBriWSeQ0xIISQpLA3UprAXmNuZXYIsN2f83YzcmCz+kIu1pY8xCA18fyC8QzJ6YhCz785Z2XYfdgDP/64jnHp78a98WJObjcSn7Bcit98h07C66BGfVmKAe2Sw3KlfNVogEJKVcHXnd9g+NWapJx6ArLeOO2Hjx6YGJNt9BIZK1YDlcOa4S14laasvsbsQUprxyaYBya4FaaswcOHZ1MOscSOQ0dIQl+UcC7L1+PIxMJpw/UariVeiLW3yAsi44/vtICyox6sinKwVqIwlWUA6tnmLALK8u5lZqlHADgXZcO4vRMGkcvJGs/2aNYykG0WuHzbCXvs1bcSmdn0vCLPgzaswFYzKEZu7lmFA6yQTknJpMwbaW3kNWcvka9dr8pZkRXI7Pm9ivW469/9QoMdASc/6+SUYo2UTkw41DLrQTkCysL3UrNjTkAwK2XDMBHgMcOTjTtGpZDTjOg6qajHLhbaQ2wVtxKZ2fT2NQTcjKT+tpNOdjGIaMaGJ3LAGAy3VrEmJGYSq5svyk3sYCE91xpZf64A9LlaGbMIWvPDqjlVgKAcbuw0u1WigVZtlJz6hwAoDfix/Vbe/DjQ5NNu4bl4AT6AyJCcnMm23HjsEjWilvpzEwam3vCzr97I34Q0qRspSYEpOOuGcLMteBWDuz79CoqBzfuVNZyODGHJrqV6lEOzDh4TTkAwJ4NHTg7m16TcQcW6I8FJWf87mpT869HCPk6IWSKEPK661g3IeQJQsgJ+3uX67HPEkJOEkKOEUJudR2/mhBy0H7sy8Qu+ySE+AkhD9rHXySEbG7sS2wsoody9ithmBSj8Sy29OaNgyT40B2SITchW0lugituLq06i9sx2ziw7A/AmjUBuIzDKsQc3LjbZ5R/XIAs+JrSX4ktROUqoxnMAIzNZyGLvoLmfM3OVmIMdgSg6KYzfGotMW/HzGJBCUFJ9GxA+hsAbis69kcAfkIp3QHgJ/a/QQjZDeAuAJfY53yFEMLeNV8FcDeAHfYX+50fATBHKd0O4EsAvrDUF7MaSGtg2M/4fBaqYRYYB8ByLbWLWymeUTHQEcCmnpBjHMopBxZzWO1drjuVtRJWC43VX9jqSWVlbq+xuWyBSwlofp0DY9CeqMeC5msJFssZ7graykHHmZk0Xjg9u2rXUPOvRyn9GYB40eHbAdxv/3w/gPe4jj9AKVUopWcAnARwHSFkEECMUvo8tTTeN4vOYb/ruwBuIs1oJlMn8hpwK52ZSQMANhcZh/dcuQE371636tfTDLfSXFpFd0jGReuiOHohAdOkSGQ1Z+Fi3/PKYXUXMuaPr2oc/GKTA9KVYw4sdpNWDSfGwLhkfQw710Wwtej9t9oMdAQBABPzzWt9vlRGZq042VBXyHEr/eXjR/HJB15dtWtYauO9dZTSCQCglE4QQvrt4xsAvOB63nn7mGb/XHycnTNq/y6dELIAoAfAzBKvbUVpllspmdMwl9awsaf2cPazs5ZxKFYOv/PWbStybbWw2mesrtqKp1UMd4ewpS+Mp45NI6XqMGleMYRka+DOdKo5xiGfrVTDODQjIM2Mg7+2W6n4ZwAY7g7hx59668pc3CJwlEMT52IslZHZDAZiAQQkAUFZgKKbODKRxHRKgWnSVWmB0+hPRLkrplWOVzun9JcTcjchZB8hZN/09PQSL3F5NMut9L8eP4Y7/+G5up57ZiaNkCw4tQ3NphntM+YylnLojwagGiZG49ZOjO1yCSHoCEpOLGTV3Uo1spUAy63UzJhDqErMISD5nGl27hkOXqI34ofoI7jgIbfS/c+dxcsjczWfNxrPYGO3tRFk7r0zM2kYJsVCdnVcjUv9REzariLY36fs4+cBDLueNwRg3D4+VOZ4wTmEEBFAB0rdWAAASuk/UkqvoZRe09fXt8RLXx7MrbTaGRCvnJvHZEKBotcOTJ2dSWNTT7gprZ7LIQlkVQPSlFLMZTR0hWXHQJ6cSgEonN/s/nm1m8Q5FdJVjEOzZjpkVGtsqljlnljdVy2j4C6A8xKCj2BdLOAZtxKlFPc+dgQP7R2t+dyReNrxEhSnFM+mV2d87FI/ET8A8CH75w8BeMR1/C47A2kLrMDzS7YLKkkIud6OJ3yw6Bz2u94P4Enq4dwzUfCBUisjaLVQddMJqrLirmqcmk5jS29t99Nq4RdXN+aQUa0Cou6wVGIcCvPx85W8q21I89lKVYK+gWa5lXSnU2w1ok78xpvKAbBmcU8seMM4zGc0qLpZs9NuTjMwmVAc5VCcNTaTqr0GNIJ6Uln/DcDzAC4ihJwnhHwEwOcB3EwIOQHgZvvfoJQeAvAQgMMAfgTgHkop2+p+DMDXYAWpTwH4oX38PgA9hJCTAD4NO/PJq7Bsn9UshDs+mXTcMjPJ6m+M8fkszsUzuMrVxK3ZrPbcbWZAu0KyU/x3YtI2DsFS49CMrJqucGHWVDmaGZCulqnEcJRDwJvKAbDiDhc8EnOYtAsuE9nqf1PmAi12KzFmUqujHGqafErpByo8dFOF598L4N4yx/cB2FPmeA7AnbWuwyuwrqaqYZYMXl8M8bQKUSB1fbAOjS84P8/UkJQ/P2nF8d+8o3fJ19ZoVntAEuur1B2W0W+3Dzk5XdmttNo1DgDw1p39eOSeG6omGEQCIpKKju/vP49jF1L4o3devCrXltGMOpWDWPDdiwx2BPDE4cmmTdRzc8FWMMlceeVAKcWZmTTOMePguJWsv0VHUMJCVsOsV5QDpxCmHJa72H30W/vwuUcO1fVcd2fRcm8Mw6S4838/h688dRI/PzmD3oiVwukVZNG3qjOkHeUQlhHxW+0HztrpvbEC49C8Yi3BR3D5cGfV50T9IlTdxD88fRrf2VfbT90oMoruzAGphuNW8mjMAbDSWRXddLrHNpPJBDMO5ZXDMydm8Pa/ehp/99OTAFzKwd6EXru5Cz4CzHpFOXAKaZRb6fR0uu6CtINjC7h0QwcOji0USMonDk9i9/oYDozOY+/ZObw2uoCgLOBtF/U1fZfkhrmVVmv35iiHUL4j7dnZDAjJD9EB3MrBm3skVmh29EISgo+s2v3LqItTDl52K613CuFyTofiZjGZsD67iQrK4aljVgbm/nPzCMuCM/+D1ZtcPBDDq6PzmKkj7tgIvPmp8DAicystQzmouonZtFpXvxTdMHFkIoHrtnQjIPmcXUNG1fHRb+3Dr3/tRfz9UyexoTMIUSBYyGq4Ybt3XEpAfvFdLfUQT1sfPrYYsLhD1C8W5Id3NDHmUA8R16JrmBSJVYo/ZLU6Yw5+77uVBjxUJc1iH5X+js+dmsH2/ghk0Yfh7pCzEeiP+SH4CK7c2ImesN9pM7/SePev6lFYyuNysm+mXQt8LU5Np6HoJi7d0GG9MWy30unpNEwKnLbdJX92+yVIKwa+9MRxvGVHc9J8K8HiNJphrvhCPLGQxWQiB8FHnCwaNuio2P2xVpQDYyGjVQ1gN4qMamCoaxHZSh52K63vtKqkx+abbxwm7ZiDqpvIaUZBzHImpeDohSR+/9aLsL0/AsGlENfFAnj+j96Ovqgf9z17BrOrpBy4cVgkjXArMd9jPcrh4JgVjN6zoQO9Ub/jVmKpmR9961YcPL+A9189hKAk4P1XDzk7Za/A7pmqmwiv4KVNLGRxw+efhElZF9rCduXFC2t+KE3zWktXo3hHPpdR66qQr8UXnzgOVTdLAtwvnJ7F6ek0sqqBoFRPzMH7bqX+qB8hWcDp6XSzL8XJVgKsuIPbODx/yuqZ9KZtPQXjYhkssaI34seB8/MrfKUW3Dgskka4laYSTDnUNg6vjy0gJAvY0htGb1jGuL37ODmVgo8An755Z8Hi5jXDAOTdNitd6zA+n4VJgbfs7MObt/c4x9k9KV7EHOWwyu2664Uph8uHO/Ha6DzmG1QZ+7Pj0zg/l8Ef3nZRQQzj68+ewZNHpyAKpC630mBnEKKPOIOTvAghBNv6IjhlZ6s1kwsLCoKSNZshmdMKPqvPnZpB1C/i0g0dVX9HT0T2Tp0Dp5BGuJXYgJl63Eqvjy1g92AMgo+gN+J3Yg4np1LY3BP27K7XjaMcVtg4sPzxT71jB+5+S76PVH8l5cBiDk3oVFsPQ11BRAMi7rzaai7A2jgvl4yqYyalOhsNxth8FrpJkdPMuozDL146iJ985q3O+FOvsq0v3HTloBkmZtMKtvdHABRmLBkmxZNHp/DGbT1Vq9IBSzmkFB25VRj+481PhYdppFspp5lVK60Nk+LwRAJ77N1Eb1RGPK3CNClOTqewzX6jeR3Z5VZaSVjPmWIfOJPkxd1Dva4ceiJ+HPjTW3DbngEAaFg6ZlqxFpYDo4XuCbdfvlpHVobgI9jU09zOq/WwrS+CsflsU+YwM6aTCigFdtifWXfG0s9OTGMyoeCOKzdUOt2BqbTViDt481PhYZhbaTl1DsytBKDq+L8zM2lkVMMxDj1hP3STYjat4uxM2tmFeB15lbKVmHEoVgiVlAMb+ONl9UUIQad93XMNUg5pe5F87Xy+uDKt6Jh3BbzrUQ5rBbaJaqZ6YJlK29eVKofv7BtFd1jGTbtqt9PvsYN2q1HrwI3DImmEi2TSlYqWqdI753UnGB0DAPTai9zLI3PQTYrtfWvDOEgNcMXVQ4Iph0B541B8PCKLIMS7biWGKPgQ9YsNUw4ZphxcgU2mGj70ps0gxKoubxW22Z+TZsYdWKbSjn6rOJVVSc+mFDxxeBJ3XLmhrky+Hls5rEYLDR6QXiRsIdGXsQuecvV6qRaUfn1sAX7R5xiBXvsD++IZK7NhrSgHlsqqrIJbKSgJJR+ynogff/ru3XhH0c7M5yPY0Bn0ZBC/mM6w1JCYg6qbzsbm4PkFZzbAmD157K07+/DOPQPY2ud9d1G9bOoJwUestPBmwVzJxTGH507NQjMo3nNFbZcSYMUcgNVpvseNwyIRXTn7S2UykUNf1I/ppOJI/HK8Pr6AXYMxJ0jFlMPjr18AgLUTc1ilbCX3GNBifuOGLWWPP/yxN5UMq/EinUG5IdlKzO9+8UAURy8kcWY2jW19EZy3lcNQVxDr7BhNqxCQBAx3h5qqHKZTCkQfwcbuEAjJq1xmNOpNUe6L+nHXtcPY1L3yXZe9rac9yHLdSopuYC6jYYsdyKukHEyT4tBYoiC1jZXTTyRy+MRNO0qKpLxKIzK86iGRW3yRWH8sUFeriGbTGZIw1wC3EmsBftOufgg+gi8+cRyUUozNZSEJBH0ezzxaKtv6Ijg11UTjkFTQG7EqnSOy6FRJTyUV+EVf3W3PA5KAz7/vMrxha0/tJy8TbhwWyXLdSmxm8WZ73kIl43AunkFS0Z14A2D5gf/7L+3Gv/7W9fjUzTuX9P83A2kVs5WKM5Jahc6Q3BC3Enu/7RqM4TO37MSjBybw4N5RjM1nMdgRXJXxk81gY3cI5+dWrkpa1U18+J9fwkFXkN/NdFLJ19sEJcetNJXIoT/m91QvNEZrfpJWkOW6lVjzrS29lkuoUkD6dbtN9yXr88qBEIKPvLm8e8TLMLfSysccdGzobC2XCKMrJDUkIM2UQ9gv4nfesg3PHJ/Bn//wKNZ3BrHBbjXRikQDItKqvmLNC6eSOTx1bBrXbenGpUOlhWzTKcVRZdGA6KSyTiUVp72L1+DKYZEsN/OG+Ri31FAOB8cWIAs+7PRQ6+2lMtgRQEgW8A9Pn1rR4p1EVvN0n5/l0BmUkMhpy55AyDKVwrLVhPAzt+zEQlbDkYkENnS1rnEI+0VQWj11fDlk7c+xO03djVs5RAOik61kGQdvuvK4cVgkef/50j6kbMoTW/QrFeYcGkvgooGoZzuGLobOkIy/uetKHBhbwJ888vqK/T+JKgHptU5nSAal+UDmUskrByvOcvWmLmeuRCsrh7Adn1upsavM6EwlS6fOmSbFTEotaONS4FbixqE1WK5baSSeQVdIcjJCyikHSikOji0UxBvWOjfvXodfvnw9fmr3rG80hkmRVHRPN4FbDp2hxhTCsc0IG+ZDCMFv32i5KodXIQOmWYTtpANWHd5oqimHuYwKw6QlbqWcZiCR050Kfq/BjcMiWa5baTSewcbukDM0PF1kHB7aO4qbvvg0FrKaUxndKgzEAk4V83IYm8/izv/9nBPcB/I76lZVDl324KLlprOmXTEHxrv2DOJLv3o53nXpwLJ+t5dhrze9QsohYyuHyTLKgdUk9NmxhaitHNj716t1Ntw4LJL8bIKluZVGZjPY2BOGz0esDo1FbqXv7x9DMqfjnl/Yhl+6bP2yr9dLdIQkp5f9cth/bg57z87hpTNx5xgL8LWqcWDKYbkZS2wzwtxKgFUMeMeVQ3X1U1qrRFbYOORcyoHSwrWh2AjEgiKSOd2JP3K3UotACIHoI0tSDpphYmw+6xSwhP1CiXKYSSm4emMXfv/Wi1tuoWOvZ7lZN2xG9ElX3nqlpnutQidTDsu8dxlFByFwlGu74CiHFWq+x2IOim5iIavhUw++iscPWcWq0ynLCOQD0hIMk+LsrBV/5NlKLYQk+JZkHMbnszBM6lRDBmXB8VUyZlIKeqOt09fGDTMOy3Utzdoy3V3xWqnpXqvQqHuXUgyEZdGTefUryUrHHNyxw5fOxPH9/WP43W+/gscOTpQoB/a3ZL3T+mNcObQMokCW5FYasXcKjnKQxQKZqxkm5jKa0z+l1WjUAldOObBZDq1qHNjUteQy50hnVL2lOq7WSyNiDpphVtwUul2lTx+3ki6GuoL41IOv4tRUGkFJcAzUG+3q5odfOQ/RR9Ad8uZmkBuHJSAvUTmM2GmsrAd+UBYK8q7ZoteqxqEzaH0IGmUcTs+kYNp5/3m3Umv6zSXBh4Dkc/Ljl0pK0ddM25VG0ohU1k8/9Bo+/m/7yz7m9gA8dWwago/g8++9DIpu4j8OjKMvmq+C3twbxuVDHUjkdPRG/J6tSufGYQks1a00Gs9AFn1OAKpYOTD52arGIR9zWF5QdTZt3aecZjqtplvdrTly5XAAABg8SURBVATks1yWQ0Y1EPK3oXKwd+31jOatxLELCbw2Wn5+c8a1yRubz2Jrbxhv2NKNwY4A0qpRMkr1l+0urF51KQHcOCwJUSBL6q00MpvGxu6Qs1MIyULBm3U6xXyT3pSZy6WRbiXWhJDFHRI5DZJAWjrQalXWLs84pBTdqXFoJ0TBB7/oW5ZbaTqpYCKRg6KXGpisaiAaEB0jtGswBp+P4J17BgGUpqv+0mWDIMS7mUoANw5LQhZ8S+rKOjKbKWi1W2wcZlpcOUQDYkG74qUST6u4ZnMXgHzcgbXrbuVAazQgFYyXXAoZVS+ocWgnIn5xyW4lFg+kFBiNlzbwy2kGgpLgFLTtGrQKWFntSLFxWBcL4ONv34E7rhxa0vWsBtw4LAFJ8C1aOWRUHSenUrhoIN8rKeQXC41DqrVjDj4fQSwgLUs5mCbFXEbDjv4oukKSM8BlIau1bHU0I9YA5ZBWjLY1DiG/sGS30qxruM65eBr//PMz+PwPjzrHMqqBkCw4RmDXoPU5v2pjF266uB9v3t5X8js/dfNO/OJlg0u6ntWgPd8ly8TKVlqccth/bh66SXHtlm7nWEgSCnorzaQUK6uhhT+8HcHlGYeFrNV8rjssY0d/FEcmEgCAE5NJDLVw+wfAUl7j88trO51WdMf10W6E5aUrB/dYzpHZDP7lhRHMplX84W0XgRCCrGYgIAmOm2i3rRx8PoL7Pnzt8i++CXDlsASkJbiVXjoTh49Yjc4YTDmwjJtWrnFgdASlZbWAmLUzlXoiMq7b0o2DYws4N5vB8ckU3uAyvK1I1L/8gHRaaW+30lJjDu5WLQfPL+DUdBrzGc15P+Y0A0FZwGVDHbhoXdSzLTEWw7KMAyHkLCHkICHkVULIPvtYNyHkCULICft7l+v5nyWEnCSEHCOE3Oo6frX9e04SQr5MPO44lpfgVnrpTBy7BmMFrg+Wb56zA1wzKaVlXUqM5SoHlsbaHZZxw/ZeGCbF3z55AgBa3zgs061kmhQZzWhb5RDyiyUdCeqFJYvEAqJT+QzkY15Z261091u24UefvLElYl+NUA6/QCm9glJ6jf3vPwLwE0rpDgA/sf8NQshuAHcBuATAbQC+Qghh79KvArgbwA7767YGXNeKsVi3kqqb2D86h2s3Fy5exVWbM0m19Y1DaLnGwfqQdodlXLWpEwHJh4f3j8Ev+nDZUGejLtOTRAMSspoBfYlNH7OaAUrRxspBWLZyuGpTV4GBYcYhoxpOplwrGAZgZdxKtwO43/75fgDvcR1/gFKqUErPADgJ4DpCyCCAGKX0eWp1rPqm6xxPstg6h9fHF5DTTFxXtLMN2imFrICmXZTDcrKVWNC+J+yHXxRw3ZYeGCbFVRu7WmL2RTUigeUVcrG+QqE2NQ7FdUWLYSalIOIXnYSSiweiCMmCk0qds2MOrcRyP00UwI8JIS8TQu62j62jlE4AgP293z6+AcCo69zz9rEN9s/Fxz2LZRzqdysdHreCplcMF+5sHeWg6tANE/GMir5IG8QcMlpJ58pqvDwSx9kZKyuJuZW6wpZ77s3brVYEb9ja2i4lYPktNPJT4FprEauX8DJjDr0RGZu6re4GV23qwta+cN6tpBkt15ZkucbhBkrpVQDeCeAeQshbqjy3nNaiVY6X/gJC7iaE7COE7JueXpmhMfUgLdKtxBa04iBVNJAf4BLPqKAU6G2BQFY1OoISdJMuKqXw4//2Kr70n8cBWPcy6hfhF60P4s27B9AVkvCOXetW5Hq9RMw2DkutdUiVmeXQTrAuyIvZmDDYmM/NdtPMK4c7sb0vglNl3EqtwrKMA6V03P4+BeD7AK4DMGm7imB/n7Kffh7AsOv0IQDj9vGhMsfL/X//SCm9hlJ6TV9fad7warFYtxJb0NigIMaOdREAwPELScwkW7vGgdG5yCppw6S4kMg5Pt/ZtIpul7ra0hvG/j+5peUGI5WDbSaWrBzYLIc2rJAGLKNomBSKvviYzUzKMg7XbenGf/vFXfily9Zje38E4ws5pBXdSmXlysGCEBImhETZzwBuAfA6gB8A+JD9tA8BeMT++QcA7iKE+AkhW2AFnl+yXU9JQsj1dpbSB13neJLOkITZlFr3DmQ+o6IrXOou6o/60R2WcWQiiWOTlutps92Ur1VZbAuNeNoascjUVzytoLvMvWwHlutWYj2tWrU5YS2WM/DHciv5IQo+/NaNWxGUBWzvtzZ3J6ZSUHUTIam17utyXs06AN+3I/MigH+llP6IELIXwEOEkI8AOAfgTgCglB4ihDwE4DAAHcA9lFLmW/gYgG8ACAL4of3lWbb0hpFUdEynlLoGdcQzGrpCpdW7hBDsGoziyIUEZNFXEPBqVRZrHNjAdpZPPptSMdQVXJmL8zh55bA0t9LEgnUvBzva8/6xSXdpxUBPpP7zFN2a9dxXpOq39Vm/5NC4NZchKLdWQsSSjQOl9DSAy8scnwVwU4Vz7gVwb5nj+wDsWeq1rDZb7TfF6el0XcZhPqNW3O3uGojhWy+MQNFMXLmxE4JH2/c2itgip8Gxge3xtArTpJhKKrjKVUjYTixXOYzPZyGLPqdpYbsRsbvRLibbSzdMXLCNanE8cLDTMrJn7BYuPObAwdZey/Vz2n5T1CKeVisO9Ng1GIOimzg2mcSVG1t/0VvsLGSmHAyTYiatIJ5Wsc6jYxVXmrxxWJpyGJvPYn1HwLPzA1aapYwK/Y1v7MWtf/0zAChRDhG/iIhfxNlZ2zi0WCyntV7NKrGhMwi/6MNp15jKasylVWcGcDGseyNQ2FqjVRmIBeAXfQUjPqvBlAMAHL9gnePlHvgriV8UIIu+ZSmH9Z3t6VIC3G6l+u6fbph46UwcPWEZqmHi4sFSl++6mB+nZ7hy4Nj4fARbesPOm6Iaim4grRroDpfvGLq9PwJJICCktA6iFREFHy4aiOLwRAKUUnztmdMYma18Hydt5QDAabK3rk2NA2B3Zl2kW+S5kzMAgPH5XFsbh3xAur406rOzaSi6ic/cchH2/bebMdRV2thxsCOIc/b431aLObTWq1lFtvaF61IOzLdeSTnIog/b+6PY2R9t6SlmbnYPxnB4PIFT0yn8j0eP4As/OlrxuVMJBcwLwoxDPXGeViUakDCdVPDOv3kG/+VrL+DRAxNVn//owQn82tdexCvn5jCZbG/jEPazdjX1GdfDE0kAheq+mHWxAHS7cWawxbKVuHFYIlt7Ixidy0KtkTM9l8k3iqvEvXfswZ+/79KGXp+X2b0+hrmMhu+9MgYAePzQJCYWyreinkoqTgLAYWYc2lg5RAMinj4+jSMTCRweT+DjD+yHYVZOqT4+aS1wjx6YAKXAhs72NaysvqPegPSRiQQkgTgpq+UY6Mi/F4O8zoEDWMrBMCnOxau7llh+fmeZVFbGVRu7cFUbBKMZbCf27RdG0B2WYVKKb79wruxzp5MKLrbTe09NpyD4CHrC7W0cVN1Eb8SPe35hOwyTVu1VdWrKen8+dtBSGO2sHGJBCX1RPx47OFFXjdKRiQS29UWq9uwacKUF85gDB0A+nZX1VqkEcyu1a+FWOdhin8jpuGX3Otx08To8sPdcyQeWUoqpZA5DXSFE/SI0g6I3Ird8um81on5rk/GuSwec91S1mpHTM9b7k9U4tLNxEHwEn7l5J/aNzOHRg9XdcYBlHHZXcSkBVoIFg/dW4gAALloXRXdYxt/99GRV15Izf6BCzKEdiQYkbLSntr1pey/evL0HMynVKXRjzGU0aAa1KsntlhnrYu3rFgHy6azvvnx9Pi24gnHQDRNnZzJOIBYA1rdpARzjzmuGsWswhs//8GhV9RBPq5hMKFXjDUChceBdWTkALP/i/7zjUrw+lsCXf3Ki4vNYPn+lgHS7wnZkb9rWg2HbUJyLZwqew2oc1sUCzi65nYPRAHDpUAcuH+rA1Ru70BGsrhzOz2WhGiZ+8VJrTnF3WG45v/hiEXwEd107jPNzWUy5pru5OTS+gHsfPQKgejAaANbxmAOnHLftGcAvXjaIf/75GWcXQinF7X//czy41/Khx9MaIn6x5WcNLJZff+MmfOKmHeiN+B0VMVpkHCbtGof+mN+JM7RzMBoAPvjGzXjk994Mn4842W2VCgqZS+n2K9ZDEgjWt3Ew2g1re1Gp1uaeb7+Cfz8wjpt3r6tZe9Qb9kO03Zw85sAp4Bp7MhRziUynFLw2Oo+/++lJmCbFfEatGoxuV27Y3otP3bwTAJz88WLjcMHOYOqP+p2WD+1aHV0O9r6qpBxYMHr3+hiu39qDS9ugc209bOu3OhycKtPhgFKKiYUcfuNNm/FPH7ymphrw+QjWxQKQRV/LxcJaKzG3CQy7FrbeiB8jdkHMaDyLp09MI16lrxLHIigL6I34MRovTGd9ZWQesYCIoa6QE3Nod+XgxmliWKFP1anpFHrCMjpDMr7xG9ehxdauJTMQCyAkC2XrlJKKDkU3S2avVGNdzL/k6XxehiuHZTLUbQX4RueshY1NLAtIPvzL8yOYy2jo4vGGmmzsDpbEHJ47PYPrt/bY6assIM2NA0MSfAjLQsWA9ImplONCEXykZWYbLxdCCLb2hcsqBzY3ZDHGYbAj2JLT9bhxWCZMOZyfsxa2kdkMBB/Bb96wBT85OoWD5+fLtuvmFDLcHcLoXN44jMYzGI1n8aZt1hhQ9mFt92ylYjpDckmHW0opvvjjY3h5ZK5kbjnHYmtvpKxycIzDIoZu/e4vbMP/e/uaaSpdN9w4LJOwX0R3WHZcImdn0xjqCuKT79iJ//uWnQhIAnasa+0ZDY1guCuEiYUc9p2N49MPvorHD10AYMUmAOCW3QP4i/dfVjPvvN3oCEolMYeHXxnDl588iV+9ZhiffMeOJl2Zt9nWF8HYfBY5rbDP0lKUwyXrO3Dz7tYbU8tjDg1guCtYoBw29YQhiz783tt34Hfeug0+LudrsrE7BMOk+Mx3XsPIbAbff3UMvRG/07ogKAv4lWuGa/yW9sMyDoXZSv/y4gh29Efw+fddyl1JFdjaFwalwJmZdEG66lKMQ6vClUMDGOoOYTSeAaUUZ2fTzhBywOpC2q798xcDi92MzGZw445eUArcsL2HL2416AxJBW6l45NJ7D83j1+9dpjfuypscw3scjOdUiAJpG2aYFaDK4cGMNwVwo8PXcBMSkUyp2NTi8+BXglY7CYoCfi7D1yFY5NJbOnl97EWnaFCt9KDe0chCQR3XLmhiVflfbb0hkFIafub6aSCvoifG1Zw49AQhruD0AyKl87EAaBAOXDqY7AjgKhfxB1XbUBHSOKB1DqJBSXMZzVQSkEIwb+/No63X9yPnkUEVNuRoCxgY3cIxyYTBcenkwp3Kdlw49AA2K732ZPTAMCVwxIQBR8e+8SNvI5hkXQGZai6iZxmQtENTCWVtpgo2Ah2DcRwxJ7ZwJhOKhjs4BlxAI85NATWG+j7+8cg+AiGu9u7udlSGe4OwS+2Xr74SuKukj5j19hs6a08f4CTZ9dgDGdn08i4ZkpPp7hyYHDl0AA2dAaxZ0MMHUEJv3bdJr7AcVYNp79SVnUZB65c62HXYBSUAkcvJHHVxi4YJsXs/2nvXmOkOus4jn9/7LJWKPeL0oIilViwarFEqbYlqakR31RTE9kYwfqiF62Xd7bGxL4xscQ2lWKCpMW0alo01QhYi9hotd7BEui6KQVES0uATZHLEkXs3xfnGZwyu8DsnN1zDvP7JCcz88zZZ/7PP2fnP+fMmee4OJzm4pCDrs5RbPzctUWHYW1oYt0UGnv7+hklTk9kaGdXO4W1d/9RujpGMbpjFK+GT2OtcXEwq7AJddd02NPXz6zJYzwD8HmaOen1jLuok009B7h7fc/pvbBmfh19IfNWZFZh9ZPv/a2v34eUmiCJeW8cz693HiIC+o5nPyb0nkPGxcGswmoXkap95+Di0Jx5M7Kpbe64/q18ME2B4fm7Mj6sZFZhY7s6GNPVwc97DnDi5H+Z4+LQlCXvmMHfXznBLdfN4eSpV1ny/MHTZx+2OxcHswqTxO2LL+PezTsBn8barEVzprBoTjbz75gu+OiCmQVHVB4+rGRWcbcuvoy5aYLC2VP9qdfy4T0Hs4rr6hzFyu4FbNz+MpdO9A8wLR+lKQ6SPgR8E+gAHoyIrxccklllzJsx/jVTT5u1qhSHlSR1AN8ClgDzgW5J84uNysysfZWiOADvAXZFxJ6IOAk8BtxYcExmZm2rLMXhUuDFusf7UttrSLpF0hZJWw4dOjRiwZmZtZuyFIeBrqwRDQ0RayJiYUQsnDZt2giEZWbWnspSHPYB9RcIngm8XFAsZmZtryzF4c/AXElvkdQFLAXWFxyTmVnbKsWprBFxStIdwCayU1nXRkRPwWGZmbWtUhQHgIh4Anii6DjMzAwU0fC9byVIOgY8nx5OAI7k2H3Z+5sK9OXYX57xlT13NXnlsArjbaftrwr9FZW/2uu+OSLOfUZPRFRyAbbU3V+Tc99l729Lzv3lFl/Zc5d3Dqsw3nba/irSXyH5a/Z1y/KFdKs2tFl/ecszPueuXP0NV595KnsO2y1/QLUPK22JiIVFx1GEdh57XpzDoXPuWlNU/pp93SrvOawpOoACtfPY8+IcDp1z15qi8tfU61Z2z8HMzIZPlfcczMxsmLg4lICkWZJ+KalXUo+kL6T2yZI2S3oh3U5K7VPS+sclrarrZ5ykbXVLn6T7ixrXSMorh+m5bkk7JG2X9KSkqUWMaaTknLuPp7z1SFpRxHhG2hDyd4OkrWkb2yrp+rq+rkrtuyStlDTQvHMjI89TqrwM+VS0GcC70/1xwE6y61qsAO5M7XcC96T7Y4FrgNuAVWfpdytwXdHjq1IOyX4YehCYmh6vAO4uenwVyd0U4B/AtPT4YeADRY+vhPlbAFyS7l8BvFTX15+Aq8kmI/0ZsKSocXnPoQQiYn9E/CXdPwb0kk1ZfiPZPxjp9iNpnf6IeAb412B9SpoLTAd+M4yhl0aOOVRaxqZPbeO5wCeBzDF3c4CdEVGbT/8XwE3DHH7hhpC/ZyOitk31ABdJep2kGcD4iPh9ZJXikdrfFMHFoWQkzSb7ZPFH4A0RsR+yDZDszf58dQPr0kbWVlrJYUT8B7gd2EFWFOYDDw1juKXS4va3C7hc0mxJnWRvbLPO8TcXlCHk7ybg2Yj4N1lB2Vf33IDXtRkpLg4lIuli4HHgixFxtMXulgKPth5VtbSaQ0mjyYrDAuASYDtwV65BllSruYuIw2S5W0e2x7oXOJVnjGXWbP4kvR24B7i11jTAaoV9uHNxKIn0pvQ48P2I+FFqPpB2NUm3B8+zr3cBnRGxdViCLamccnglQETsTntdPwDeN0whl0Ze219EbIiI90bE1WRzn70wXDGXSbP5kzQT+DGwLCJ2p+Z9ZNeyqSn0ujYuDiWQjm0/BPRGxH11T60Hlqf7y4GfnGeX3bTZXkOOOXwJmC+pNjHZDWTHkC9YeW5/kqan20nAZ4AH8422fJrNn6SJwE+BuyLit7WV06GnY5IWpT6Xcf7/8/kr+pt+LwHZmR9BdghjW1o+THb2x1Nkn76eAibX/c1e4BXgONknjvl1z+0BLi96XFXNIdlZOL2prw3AlKLHV6HcPQr8NS1Lix5bGfMHfAXor1t3GzA9PbcQeA7YDawi/VC5iMW/kDYzswY+rGRmZg1cHMzMrIGLg5mZNXBxMDOzBi4OZmbWwMXBbBhIuk3SsibWny3pueGMyawZnUUHYHahkdQZEauLjsOsFS4OZgNIE6g9STaB2gKyaZiXAfOA+4CLgT7gUxGxX9KvgN8B7wfWSxoHHI+Ib0i6ElgNjCH7cdOnI+KwpKuAtcAJ4JmRG53Zufmwktng3gasiYh3AkeBzwIPAB+LiNob+9fq1p8YEYsj4t4z+nkE+FLqZwfw1dT+HeDzkc1DZFYq3nMwG9yL8f+5b74HfJns4iyb0wW6OoD9deuvO7MDSRPIisbTqelh4IcDtH8XWJL/EMyGxsXBbHBnzi1zDOg5yyf9/ib61gD9m5WGDyuZDe5NkmqFoBv4AzCt1iZpdJqTf1ARcQQ4LOna1PRJ4OmI+CdwRNI1qf0T+YdvNnTeczAbXC+wXNK3yWbWfADYBKxMh4U6gfvJLvV4NsuB1ZLGkM2Ye3NqvxlYK+lE6tesNDwrq9kA0tlKGyPiioJDMSuEDyuZmVkD7zmYmVkD7zmYmVkDFwczM2vg4mBmZg1cHMzMrIGLg5mZNXBxMDOzBv8DU7ItG7kgl9cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -1242,7 +2303,7 @@ ] }, { - "cell_type": "markdown", + "cell_type": "raw", "metadata": {}, "source": [ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n", @@ -1258,20 +2319,18 @@ "Comme l'incidence de syndrome grippal est très faible en été, cette\n", "modification ne risque pas de fausser nos conclusions.\n", "\n", - "Encore un petit détail: les données commencent an octobre 1984, ce qui\n", - "rend la première année incomplète. Nous commençons donc l'analyse en 1985." + "Encore un petit détail: les données commencent an octobre 1990, ce qui\n", + "rend la première année incomplète. Nous commençons donc l'analyse en 1991." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 66, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", - " for y in range(1985,\n", + " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, @@ -1286,7 +2345,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 67, "metadata": {}, "outputs": [], "source": [ @@ -1310,9 +2369,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHvhJREFUeJzt3X+QVeWd5/H3B9uAOmDAgBEQcaLDBM2EhK7GxN2srhPAZEuwRjNER9mJVRijmSS1VQlU2MJSJhtTSdwQSxcSfysqw4bSHSWKONa4u6ShiSaIhKETSYugtNWMYGbp2PDdP85z5XbbdN/u0933R39eVafu6e89z8N5OF39vc/znPscRQRmZmZ5jCj3CZiZWfVzMjEzs9ycTMzMLDcnEzMzy83JxMzMcnMyMTOz3JxMzMwsNycTMzPLzcnEzMxyqyv3CQy0D33oQzF16tRyn4aZWVXZunXrWxExvr/lay6ZTJ06laampnKfhplZVZH0+zzlPcxlZma5OZmYmVluTiZmZpabk4mZmeVWUjKR9A1J2yW9LOkRSaMk3SzpdUkvpe1zRccvkdQsaaekOUXxmZK2pfdWSFKKj5T0WIo3SppaVGahpF1pWzhwTTczs4HSazKRNAn4O6A+Is4HTgAWpLdvj4gZaXsqHT89vX8eMBe4U9IJ6fi7gEXAuWmbm+LXAQci4hzgduC2VNc4YBkwC2gAlkkam6/JZpbX/oOH+cLKTew/dLjcp2IVotRhrjrgJEl1wMnA3h6OnQc8GhHtEfEq0Aw0SDoDGBMRmyJ7vOMDwPyiMven/bXAJanXMgfYEBFtEXEA2MCxBGRmZbJi4y627G5jxbO7yn0qViF6/Z5JRLwu6ftAC/D/gGci4hlJnwZuknQt0AT8l/QHfxLwi6Iq9qTYu2m/a5z0+lr69zokvQ2cVhzvpsx7JC0i6/EwZcqU3ppkZv00bel62juOvvfzQ40tPNTYwsi6EexcfmkZz8zKrZRhrrFkPYezgYnAKZL+hmzI6iPADGAf8INCkW6qiR7i/S1zLBCxKiLqI6J+/Ph+f4HTzHrxwjcv5rIZExl1YvanY9SJI5g3YyIvfOviMp+ZlVspw1x/CbwaEa0R8S7wM+DTEfFmRByJiKPAT8jmNCDrPZxZVH4y2bDYnrTfNd6pTBpKOxVo66EuMyuDCWNGMXpkHe0dRxlZN4L2jqOMHlnHhNGjyn1qVmalJJMW4AJJJ6d5jEuAHWkOpOBy4OW0/wSwIN2hdTbZRPvmiNgHHJJ0QarnWuDxojKFO7WuAJ5L8ypPA7MljU09pNkpZmZl8tY77Vw96yzWfeVCrp51Fq3vtJf7lKwClDJn0ihpLfBLoAN4EVgF/FTSDLJhp93A9en47ZLWAK+k42+MiCOpuhuA+4CTgPVpA7gbeFBSM1mPZEGqq03SrcCWdNwtEdGWp8Fmls/Ka+rf218+//wynolVEmUdgNpRX18fXujRzKxvJG2NiPrej+yevwFvZma5OZmYmVluTiZmZpabk4mZmeXmZGJmZrk5mZiZWW5OJmZmlpuTSREvq23DlX/3LS8nkyJeVtuGK//uW17+BjzvX1a7wMtqW63z774V+BvwA8DLattw5d99GyhOJnhZbRu+/LtvA6XXVYOHi8Ky2lc1TGH15hZaPRFpw4R/920geM7EzMw8Z2JmZuXnZGJmZrk5mZiZWW5OJmZmlpuTiZmZ5VZSMpH0DUnbJb0s6RFJoySNk7RB0q70Orbo+CWSmiXtlDSnKD5T0rb03gpJSvGRkh5L8UZJU4vKLEz/xi5JCweu6WZmNlB6TSaSJgF/B9RHxPnACcACYDGwMSLOBTamn5E0Pb1/HjAXuFPSCam6u4BFwLlpm5vi1wEHIuIc4HbgtlTXOGAZMAtoAJYVJy0zM6sMpQ5z1QEnSaoDTgb2AvOA+9P79wPz0/484NGIaI+IV4FmoEHSGcCYiNgU2ZdbHuhSplDXWuCS1GuZA2yIiLaIOABs4FgCMjOzCtFrMomI14HvAy3APuDtiHgGOD0i9qVj9gETUpFJwGtFVexJsUlpv2u8U5mI6ADeBk7roS4zM6sgpQxzjSXrOZwNTAROkfQ3PRXpJhY9xPtbpvgcF0lqktTU2traw6mZmdlgKGWY6y+BVyOiNSLeBX4GfBp4Mw1dkV73p+P3AGcWlZ9MNiy2J+13jXcqk4bSTgXaeqirk4hYFRH1EVE/fvz4EppkZmYDqZRk0gJcIOnkNI9xCbADeAIo3F21EHg87T8BLEh3aJ1NNtG+OQ2FHZJ0Qarn2i5lCnVdATyX5lWeBmZLGpt6SLNTzMzMKkivqwZHRKOktcAvgQ7gRWAV8CfAGknXkSWcK9Px2yWtAV5Jx98YEUdSdTcA9wEnAevTBnA38KCkZrIeyYJUV5ukW4Et6bhbIqItV4vNzGzAedVgMzPzqsFWGfYfPMwXVm5iv5+FYTYsOZnYgFixcRdbdrex4tld5T4VMysDP2nRcpm2dD3tHUff+/mhxhYeamxhZN0Idi6/tIxnZmZDyT0Ty+WFb17MZTMmMurE7Fdp1IkjmDdjIi986+Iyn5nZ0PAQb8bJxHKZMGYUo0fW0d5xlJF1I2jvOMrokXVMGD2q3KdmNiQ8xJvxMJfl9tY77Vw96yyuapjC6s0ttA7zT2g2PHiItzPfGmxm1g/7Dx5m+VM7eGb7Gxx+9yijThzBnPM+zLc//9Gq7Jn71mAzszLwEG9nHuYyM+snD/Ee42EuG7b2HzzMTY+8yB1XfWLYfpo0K/Awl1k/+S4cs4HjYS4bdnwXjtnAc8/Ehh1/0dJs4DmZ2LDju3DMBp6HuWxY8l04ZgPLd3OZmZnv5jIzs/JzMjEzs9ycTMzMLDcnEzMzy63XZCJpmqSXiraDkr4u6WZJrxfFP1dUZomkZkk7Jc0pis+UtC29t0KSUnykpMdSvFHS1KIyCyXtStvCgW2+mZkNhF6TSUTsjIgZETEDmAn8G7AuvX174b2IeApA0nRgAXAeMBe4U9IJ6fi7gEXAuWmbm+LXAQci4hzgduC2VNc4YBkwC2gAlkkam7PNZmY2wPo6zHUJ8NuI+H0Px8wDHo2I9oh4FWgGGiSdAYyJiE2R3Y/8ADC/qMz9aX8tcEnqtcwBNkREW0QcADZwLAGZmVmF6GsyWQA8UvTzTZJ+Lemeoh7DJOC1omP2pNiktN813qlMRHQAbwOn9VBXJ5IWSWqS1NTa2trHJpnVJj+b3IZSyclE0geAy4B/SKG7gI8AM4B9wA8Kh3ZTPHqI97fMsUDEqoioj4j68ePHH7cNZsOJV0W2odSX5VQuBX4ZEW8CFF4BJP0E+Mf04x7gzKJyk4G9KT65m3hxmT2S6oBTgbYUv6hLmef7cM5mw45XRbZy6Msw1xcpGuJKcyAFlwMvp/0ngAXpDq2zySbaN0fEPuCQpAvSfMi1wONFZQp3al0BPJfmVZ4GZksam4bRZqeYmR2HV0W2ciipZyLpZOCzwPVF4e9JmkE27LS78F5EbJe0BngF6ABujIgjqcwNwH3AScD6tAHcDTwoqZmsR7Ig1dUm6VZgSzruloho63szzYYPr4ps5eCFHs1KUG2P+L3+wSbGjx7VaVXkldf0ew0/GwbyLvToZGJWgqXrtvHw5haubpjC8ss/Vu7TMRtweZOJn2di1gNPZpuVxmtzmfXAk9lmpXEyMeuBJ7PNSuNhLrNe+BG/Zr3zBLyZmfmxvWZmVn5OJmZmlpuTiZmZ5eZkYmZmuTmZmJlZbk4mZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmVpX2HzzMF1ZuYr+Xt6kITiZmVpVWbNzFlt1trHh2V7lPxfBCj2ZWZfyMmcrknomZVRU/Y6Yy9ZpMJE2T9FLRdlDS1yWNk7RB0q70OraozBJJzZJ2SppTFJ8paVt6b4UkpfhISY+leKOkqUVlFqZ/Y5ekhQPbfLPq4nkCP2OmUvWaTCJiZ0TMiIgZwEzg34B1wGJgY0ScC2xMPyNpOrAAOA+YC9wp6YRU3V3AIuDctM1N8euAAxFxDnA7cFuqaxywDJgFNADLipOW2XDjeYJM4Rkz675yIVfPOovWd9rLfUrDXp+eZyJpNrAsIi6UtBO4KCL2SToDeD4ipklaAhAR/y2VeRq4GdgN/FNE/HmKfzGVv75wTERsklQHvAGMJ0tKF0XE9anMyvTvPHK8c/TzTKwWdZ0nKPA8gQ2UoX6eyQKg8If89IjYB5BeJ6T4JOC1ojJ7UmxS2u8a71QmIjqAt4HTeqjLbFjxPIFVupKTiaQPAJcB/9Dbod3Eood4f8sUn9siSU2SmlpbW3s5PbPq43kCq3R96ZlcCvwyIt5MP7+ZhrdIr/tTfA9wZlG5ycDeFJ/cTbxTmTTMdSrQ1kNdnUTEqoioj4j68ePH96FJZtXD8wRWyfryPZMvcmyIC+AJYCHw3fT6eFF8taQfAhPJJto3R8QRSYckXQA0AtcCP+5S1ybgCuC5iIg0l/Kdokn32cCSPrbRrCasvObYcPby+eeX8UzM3q+kZCLpZOCzwPVF4e8CayRdB7QAVwJExHZJa4BXgA7gxog4ksrcANwHnASsTxvA3cCDkprJeiQLUl1tkm4FtqTjbomItn6008zMBlGf7uaqBr6by8ys74b6bi4zM7P3cTIxM7PcnEyGgJfAMLNa52QyBLwEhpnVOi9BP4gqbans/QcPc9MjL3LHVZ/wl93MbEC5ZzKIKm0JDPeQzGywuGcyiCplCYxK6yGZWe1xz2SQVcISGJXWQzIrB98IM7jcMxlklbAERqX0kMzKqXiYd/nlHyv36dQcJ5NhotBDuqphCqs3t9DqT2c2THiYd2h4ORUzq2n7Dx5m+VM7eGb7Gxx+9yijThzBnPM+zLc//1H3zot4ORUzsx54mHdoeJjLzGqeh3kHn4e5zMzMw1xmZlZ+TibWLd+Tb2Z94WRi3fLSK0PDSdtqhSfgrRPfkz+0/EU6qxWegLdOfE9+fqWsztw1aRc4aVu5eAK+TGp1eML35OdXyhCh10uzWlNSMpH0QUlrJf1G0g5Jn5J0s6TXJb2Uts8VHb9EUrOknZLmFMVnStqW3lshSSk+UtJjKd4oaWpRmYWSdqVt4cA1PZ9anlOohMUpC6opaU9bup6pi5/kocYWIrIhwqmLn2Ta0vXvO9ZJ22pNScNcku4HXoiIn0r6AHAy8HXgnYj4fpdjpwOPAA3AROBZ4M8i4oikzcDXgF8ATwErImK9pK8AfxERX5a0ALg8Iv5a0jigCagHAtgKzIyIA8c718Ee5hrs4Qk/wKqzpeu28fDmFq5umFLxcwp9HSK8/sEmxo8e1emLdMULg5oNpbzDXL1OwEsaA3wG+M8AEfFH4I+pU9GdecCjEdEOvCqpGWiQtBsYExGbUr0PAPOB9anMzan8WuCO1GuZA2yIiLZUZgMwlyxZlcUL37z4uH8wBoInZDPVeCNAX3sblbCitNlAKWWY60+BVuBeSS9K+qmkU9J7N0n6taR7JI1NsUnAa0Xl96TYpLTfNd6pTER0AG8Dp/VQV9kM1vBEX4ZIhoNqnVOopCHCSlFNQ5XWf6Ukkzrgk8BdEfEJ4A/AYuAu4CPADGAf8IN0fHddlugh3t8y75G0SFKTpKbW1tYemjIwBuMPRrX+8Rws1TqnsPKaepbPP5/pE8ewfP75HraitucX7ZhSvmeyB9gTEY3p57XA4oh4s3CApJ8A/1h0/JlF5ScDe1N8cjfx4jJ7JNUBpwJtKX5RlzLPdz3BiFgFrIJszqSENuUyGMMT1frHczB5cb7qVo1DldZ/vSaTiHhD0muSpkXETuAS4BVJZ0TEvnTY5cDLaf8JYLWkH5JNwJ8LbE4T8IckXQA0AtcCPy4qsxDYBFwBPBcRIelp4DtFQ2izgSV5G12p/MezM88pVLfBnl+0ylLqN+C/Cjyc7uT6HfC3wApJM8iGnXYD1wNExHZJa4BXgA7gxog4kuq5AbgPOIls4r0wIXA38GCarG8DFqS62iTdCmxJx91SmIyvRf7jabXEve3hxd+AN7NB49ufq0feW4OdTMzMzMupmJlZ+TmZmJlZbk4mZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmZpabk4mZVQyvMFy9nEzMrGJ4heHqVeraXGZmg8YrDFc/90zMrOz8PJ/q52RiZmVXaSsMe+6m75xMzKwiVNIjjz1303deNdjMLOk6d1MwHOZuvGqwmdkA8dxN/zmZmJkllTZ3U02cTGzIeXLTKlklzd1UE8+Z2JBbum4bD29u4eqGKSy//GPlPh0zY4jmTCR9UNJaSb+RtEPSpySNk7RB0q70Orbo+CWSmiXtlDSnKD5T0rb03gpJSvGRkh5L8UZJU4vKLEz/xi5JC/vbUCu/aUvXM3XxkzzU2EJE9sW0qYufZNrS9eU+NTPLqdRhrh8BP4+IPwc+DuwAFgMbI+JcYGP6GUnTgQXAecBc4E5JJ6R67gIWAeembW6KXwcciIhzgNuB21Jd44BlwCygAVhWnLSsunhy06x29ZpMJI0BPgPcDRARf4yIfwXmAfenw+4H5qf9ecCjEdEeEa8CzUCDpDOAMRGxKbKxtQe6lCnUtRa4JPVa5gAbIqItIg4AGziWgKzKeHLTrHaVsjbXnwKtwL2SPg5sBb4GnB4R+wAiYp+kCen4ScAvisrvSbF3037XeKHMa6muDklvA6cVx7spY1WoMLl5VcMUVm9uodWT8GY1oZRkUgd8EvhqRDRK+hFpSOs41E0seoj3t8yxf1BaRDZ8xpQpU3o4NSu3ldccm99bPv/8Mp6JmQ2kUuZM9gB7IqIx/byWLLm8mYauSK/7i44/s6j8ZGBvik/uJt6pjKQ64FSgrYe6OomIVRFRHxH148ePL6FJZmY2kHpNJhHxBvCapGkpdAnwCvAEULi7aiHweNp/AliQ7tA6m2yifXMaEjsk6YI0H3JtlzKFuq4AnkvzKk8DsyWNTRPvs1PMzMwqSKnPM/kq8LCkDwC/A/6WLBGtkXQd0AJcCRAR2yWtIUs4HcCNEXEk1XMDcB9wErA+bZBN7j8oqZmsR7Ig1dUm6VZgSzruloho62dbzcxskPhLi2Zm5oUezcys/JxMzMxqQLnXvHMyMTOrAeV+oFepE/BmZlaBuj7Q66HGFh5qbBnyB3q5Z2JmVsUqZc07JxMzsypWKWveeZjLzKzKVcKad/6eiZmZ+XsmZmZWfk4mZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmZpabk4mZmeXmZGJmZrk5mZiZDZFyLxM/mJxMzMyGSLmXiR9MXpuryu0/eJibHnmRO676xJAv7GZmpamUZeIHk3smVa6WP+mY1YpKWSZ+MJWUTCTtlrRN0kuSmlLsZkmvp9hLkj5XdPwSSc2SdkqaUxSfmepplrRCklJ8pKTHUrxR0tSiMgsl7UrbwoFqeLWbtnQ9Uxc/yUONLURkn3SmLn6SaUvXl/vUzKyLSlkmfjD1pWdycUTM6LKq5O0pNiMingKQNB1YAJwHzAXulHRCOv4uYBFwbtrmpvh1wIGIOAe4Hbgt1TUOWAbMAhqAZZLG9qOdNWc4fNIxqyWFZeLXfeVCrp51Fq3vtJf7lAbUYMyZzAMejYh24FVJzUCDpN3AmIjYBCDpAWA+sD6VuTmVXwvckXotc4ANEdGWymwgS0CPDMJ5V5Xh8EnHrJasvObY5/Dl888v45kMjlJ7JgE8I2mrpEVF8Zsk/VrSPUU9hknAa0XH7EmxSWm/a7xTmYjoAN4GTuuhLqP2P+mYWfUotWdyYUTslTQB2CDpN2RDVreSJZpbgR8AXwLUTfnoIU4/y7wnJbhFAFOmTOm5JTWk1j/pmA131XS3Zkk9k4jYm173A+uAhoh4MyKORMRR4CdkcxqQ9R7OLCo+Gdib4pO7iXcqI6kOOBVo66Gurue3KiLqI6J+/PjxpTTJzKziVdPdmr32TCSdAoyIiENpfzZwi6QzImJfOuxy4OW0/wSwWtIPgYlkE+2bI+KIpEOSLgAagWuBHxeVWQhsAq4AnouIkPQ08J2iIbTZwJKcbTYzq2jV+L2UUoa5TgfWpbt464DVEfFzSQ9KmkE27LQbuB4gIrZLWgO8AnQAN0bEkVTXDcB9wElkE++F+1jvBh5Mk/VtZHeDERFtkm4FtqTjbilMxpuZ1aoXvnkxy5/awTPb3+Dwu0cZdeII5pz3Yb79+Y+W+9SOq9dkEhG/Az7eTfyaHsr8PfD33cSbgPcN7kfEYeDK49R1D3BPb+dpZlYrqvFuTS+nYmZWgQp3a17VMIXVm1torfDFIRXxvpujqlp9fX00NTWV+zTMzKqKpK1dvpTeJ16by8zMcnMyMTOz3JxMzMwsNycTMzPLzcnEzMxyczIxM7PcnEzMzCw3JxMzM8vNycTMzHJzMjEzs9ycTMzMLDcnEzMzy83JxMzMcnMyMTOz3JxMzMwsNycTMzPLzcnEzMxyczKxmrH/4GG+sHIT+yv88aZmtaikZCJpt6Rtkl6S1JRi4yRtkLQrvY4tOn6JpGZJOyXNKYrPTPU0S1ohSSk+UtJjKd4oaWpRmYXp39glaeFANdxqz4qNu9iyu40Vz+4q96mYDTslPQNe0m6gPiLeKop9D2iLiO9KWgyMjYhvSZoOPAI0ABOBZ4E/i4gjkjYDXwN+ATwFrIiI9ZK+AvxFRHxZ0gLg8oj4a0njgCagHghgKzAzIg4c71z9DPjhZ9rS9bR3HH1ffGTdCHYuv7QMZ2RWfcr5DPh5wP1p/35gflH80Yhoj4hXgWagQdIZwJiI2BRZBnugS5lCXWuBS1KvZQ6wISLaUgLZAMzNcc5Wg1745sVcNmMio07Mfp1HnTiCeTMm8sK3Li7zmZkNH6UmkwCekbRV0qIUOz0i9gGk1wkpPgl4rajsnhSblPa7xjuViYgO4G3gtB7q6kTSIklNkppaW1tLbJLVigljRjF6ZB3tHUcZWTeC9o6jjB5Zx4TRo8p9ambDRl2Jx10YEXslTQA2SPpND8eqm1j0EO9vmWOBiFXAKsiGuXo4N6tRb73TztWzzuKqhims3txCqyfhzYZUSckkIvam1/2S1pHNh7wp6YyI2JeGsPanw/cAZxYVnwzsTfHJ3cSLy+yRVAecCrSl+EVdyjxfauNs+Fh5zbGh3uXzzy/jmZgNT70Oc0k6RdLowj4wG3gZeAIo3F21EHg87T8BLEh3aJ0NnAtsTkNhhyRdkOZDru1SplDXFcBzaV7laWC2pLHpbrHZKWZmZhWklJ7J6cC6dBdvHbA6In4uaQuwRtJ1QAtwJUBEbJe0BngF6ABujIgjqa4bgPuAk4D1aQO4G3hQUjNZj2RBqqtN0q3AlnTcLRHRlqO9ZmY2CEq6Nbia+NZgM7O+K+etwWZmZoCTiZmZDQAnEzMzy63m5kwktQK/L/d55PQh4K1ej6putd7GWm8f1H4bh1v7zoqI8f2trOaSSS2Q1JRnIqwa1Hoba719UPttdPv6xsNcZmaWm5OJmZnl5mRSmVaV+wSGQK23sdbbB7XfRrevDzxnYmZmublnYmZmuTmZDBFJ90jaL+nlotjHJW1KjzL+X5LGpPgHJN2b4r+SdFFRmefT45BfStuEbv65ISfpTEn/JGmHpO2SvpbiA/Z453Ia4PbVxDWUdFo6/h1Jd3Spq+qvYS/tq7hr2I/2fVbZM6q2pdf/WFRX369fRHgbgg34DPBJ4OWi2BbgP6T9LwG3pv0bgXvT/gSyxxWPSD8/T/YI5bK3qUv7zgA+mfZHA/8CTAe+ByxO8cXAbWl/OvArYCRwNvBb4IT03mbgU2TPs1kPXFpj7auVa3gK8O+ALwN3dKmrFq5hT+2ruGvYj/Z9ApiY9s8HXs9z/dwzGSIR8c9kKyIXmwb8c9rfAPxV2p8ObEzl9gP/ClT0/e4RsS8ifpn2DwE7yJ6KOZCPdy6bgWrf0J513/S1jRHxh4j430CnJ5HVyjU8XvsqVT/a92KkZ1UB24FRyh4d0q/r52RSXi8Dl6X9Kzn2ULFfAfMk1Sl7JsxMOj9w7N7Utf6vlTB80JWkqWSfehoZ2Mc7V4Sc7SuohWt4PLVyDXtTsdewH+37K+DFiGinn9fPyaS8vgTcKGkrWbf0jyl+D9kFbAL+O/B/yZ4NA3B1RHwM+Pdpu2ZIz7gXkv4E+J/A1yPiYE+HdhMr+VHN5TIA7YPauYbHraKbWDVew55U7DXsa/sknQfcBlxfCHVzWK/Xz8mkjCLiNxExOyJmAo+QjasTER0R8Y2ImBER84APArvSe6+n10PAaipo6ETSiWS/xA9HxM9S+M3UbS4Mf+R5vHNZDVD7aukaHk+tXMPjqtRr2Nf2SZoMrAOujYjfpnC/rp+TSRkV7gCRNAJYCvyP9PPJyh6RjKTPAh0R8Uoa9vpQip8I/CeyobKyS938u4EdEfHDorcG8vHOZTNQ7auxa9itGrqGx6unIq9hX9sn6YPAk8CSiPg/hYP7ff3KdefBcNvIeh77gHfJMv91wNfI7rj4F+C7HPsS6VRgJ9kE2rNkq3lCdnfJVuDXZBNmPyLdIVTujeyul0jn9lLaPgecRnYzwa70Oq6ozLfJemM7KbpbhOxmg5fTe3cU/l9qoX01eA13k91Y8k76vZ5eY9fwfe2r1GvY1/aRfYD9Q9GxLwET+nv9/A14MzPLzcNcZmaWm5OJmZnl5mRiZma5OZmYmVluTiZmZpabk4mZmeXmZGJmZrk5mZiZWW7/H6DC9bohFXlSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -1326,26 +2408,88 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 69, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2002 502271\n", + "2018 543281\n", + "1996 553859\n", + "2017 557449\n", + "2019 584926\n", + "2000 605096\n", + "2015 613286\n", + "2012 620315\n", + "2011 645042\n", + "1995 648598\n", + "2001 650660\n", + "1993 653058\n", + "2005 654308\n", + "2006 657482\n", + "1998 660316\n", + "2014 673458\n", + "1997 679308\n", + "1994 682920\n", + "2007 701566\n", + "2013 708874\n", + "2004 736266\n", + "2008 745701\n", + "2003 770211\n", + "2016 780645\n", + "1999 784963\n", + "1992 821558\n", + "2009 822819\n", + "2010 848236\n", + "dtype: int64" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] }, { - "cell_type": "markdown", + "cell_type": "raw", "metadata": {}, "source": [ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n", - " française, sont assez rares: il y en eu trois au cours des 35 dernières années." + " française, sont assez rares: il y en eu surtout une au cours des 30 dernières années." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 70, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFTRJREFUeJzt3X+Q3Hddx/Hnu2kLaa8NlbSrBjCoWKUcP8wiv2bwriDTmoojg0ItKI7O4SBYnDgYQa0KlaBGraKOEWurKAeWdsRGwSI9FMXCpSDXElGksTTVlAoErgRq5O0f32/KES+33+9lv3ffDz4fM5nsj+9397Wf3Xvt9/vd7+43MhNJUnlOWe8AkqTVscAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhTq1ixvdvHlzbt26tdU89913H2eeeWYXcTph3m6Zt1vm7dZq8u7bt+/ezDy31UyZOfZ/27Zty7Zuvvnm1vOsJ/N2y7zdMm+3VpMXmM+WXesmFEkqlAUuSYWywCWpUBa4JBXKApekQjUq8Ij4iYi4PSJui4g3RcSDuw4mSVrZyAKPiC3AjwPDzHwMsAF4ftfBJEkra7oJ5VRgY0ScCpwB3N1dJElSE5ENjokZEZcDVwJHgL/OzMuWmWYGmAEYDAbbZmdnWwVZXFxkYmKi1TzrybwnZ+Hg4RWvH2yEQ0fGf7+TWzaN/0bp3/iOYt5urSbv9PT0vswctplnZIFHxDnAW4HnAZ8G/gy4LjPfeKJ5hsNhzs/Pt8nB3NwcU1NTreZZT+Y9OVt37l3x+h2TR9m9MP5fejiwa/vYbxP6N76jmLdbq8kbEa0LvMkmlGcCd2TmJzLzv4Hrgae2SiZJGrsmBX4n8OSIOCMiAngGsL/bWJKkUUYWeGbeAlwH3Aos1PPs6TiXJGmERhsZM/MK4IqOs0iSWvCbmJJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklSokQUeEedHxAeX/PtMRLx8LcJJkk5s5CHVMvMjwOMBImIDcBC4oeNckqQR2m5CeQbwb5n5712EkSQ1F5nZfOKIq4FbM/P1y1w3A8wADAaDbbOzs62CLC4uMjEx0Wqe9WTek7Nw8PCK1w82wqEj47/fyS2bxn+j9G98RzFvt1aTd3p6el9mDtvM07jAI+J04G7ggsw8tNK0w+Ew5+fn2+Rgbm6OqampVvOsJ/OenK079654/Y7Jo+xeGLmFr7UDu7aP/Tahf+M7inm7tZq8EdG6wNtsQrmYaul7xfKWJK2NNgV+KfCmroJIktppVOARcQbwHcD13caRJDXVaCNjZn4OeGjHWSRJLfhNTEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSpU00OqPSQirouIf46I/RHxlK6DSZJW1uiQasBVwNsz87kRcTpwRoeZJEkNjCzwiDgbeDrwIoDMvB+4v9tYkqRRIjNXniDi8cAe4MPA44B9wOWZed9x080AMwCDwWDb7OxsqyCLi4tMTEy0mmc9mffkLBw8vOL1g41w6Mj473dyy6bx3yj9G99RzNut1eSdnp7el5nDNvM0KfAh8I/A0zLzloi4CvhMZv7sieYZDoc5Pz/fJgdzc3NMTU21mmc9mffkbN25d8Xrd0weZfdC0y18zR3YtX3stwn9G99RzNut1eSNiNYF3uRDzLuAuzLzlvr8dcC3tkomSRq7kQWemf8JfDwizq8vegbV5hRJ0jpquo76MuBP6j1QPgb8UHeRJElNNCrwzPwg0GrbjCSpW34TU5IKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgrV6Ig8EXEA+CzwP8DRtkdOliSNX9NjYgJMZ+a9nSWRJLXiJhRJKlRk5uiJIu4APgUk8HuZuWeZaWaAGYDBYLBtdna2VZDFxUUmJiZazbOezHtyFg4eXvH6wUY4dGT89zu5ZdP4b5T+je8o5u3WavJOT0/va7t5ummBf21m3h0R5wE3AS/LzL890fTD4TDn5+fb5GBubo6pqalW86wn856crTv3rnj9jsmj7F5os4WvmQO7to/9NqF/4zuKebu1mrwR0brAG21Cycy76//vAW4Avq1VMknS2I0s8Ig4MyLOOnYaeBZwW9fBJEkra7KOOgBuiIhj0/9pZr6901SSpJFGFnhmfgx43BpkkSS14G6EklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVKjGBR4RGyLiAxFxY5eBJEnNtFkCvxzY31UQSVI7jQo8Ih4GbAfe0G0cSVJTkZmjJ4q4DngtcBbwk5l5yTLTzAAzAIPBYNvs7GyrIIuLi0xMTLSaZz2Z9+QsHDy84vWDjXDoyBqFGYNReSe3bFq7MA307fUwyv+HvNPT0/syc9hmnpFHpY+IS4B7MnNfREydaLrM3APsARgOhzk1dcJJlzU3N0fbedaTeU/Oi3buXfH6HZNH2b0w8uXZG6PyHrhsau3CNNC318Mo5l1ek00oTwOeHREHgFngwoh4Y6epJEkjjSzwzPzpzHxYZm4Fng+8KzNf0HkySdKK3A9ckgrVaiNjZs4Bc50kkSS14hK4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQIws8Ih4cEe+LiH+KiNsj4hfWIpgkaWVNjsjzBeDCzFyMiNOA90TEX2XmP3acTZK0gpEFnpkJLNZnT6v/ZZehJEmjNdoGHhEbIuKDwD3ATZl5S7exJEmjRLWA3XDiiIcANwAvy8zbjrtuBpgBGAwG22ZnZ1sFWVxcZGJiotU847Rw8HCr6Qcb4dCR8dz35JZN47mhFaz3+B5v1HiPc3zXwqi8a/Ect9G318MobfO2/Xsel2PP82rGd3p6el9mDtvM06rAASLiCuC+zPzVE00zHA5zfn6+1e3Ozc0xNTXVap5x2rpzb6vpd0weZfdCk48QRjuwa/tYbmcl6z2+xxs13uMc37UwKu9aPMdt9O31MErbvG3/nsfl2PO8mvGNiNYF3mQvlHPrJW8iYiPwTOCfWyWTJI1dk0WcrwGujYgNVIX/lsy8sdtYkqRRmuyF8iHgCWuQRZLUgt/ElKRCWeCSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEI1OSbmwyPi5ojYHxG3R8TlaxFMkrSyJsfEPArsyMxbI+IsYF9E3JSZH+44myRpBSOXwDPzPzLz1vr0Z4H9wJaug0mSVtZqG3hEbKU6wPEtXYSRJDUXmdlswogJ4N3AlZl5/TLXzwAzAIPBYNvs7GyrIIuLi0xMTLSaZ5wWDh5uNf1gIxw60lGYDpi3W6PyTm7ZtHZhjrPca/srbXz74tjzvJo+m56e3peZwzbzNCrwiDgNuBF4R2b+2qjph8Nhzs/Pt8nB3NwcU1NTreYZp60797aafsfkUXYvNPkIoR/M261ReQ/s2r6Gab7ccq/tr7Tx7Ytjz/Nq+iwiWhd4k71QAvgDYH+T8pYkrY0m28CfBrwQuDAiPlj/+86Oc0mSRhi5TpKZ7wFiDbJIklrwm5iSVCgLXJIKZYFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQlngklQoC1ySCmWBS1KhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUqCbHxLw6Iu6JiNvWIpAkqZkmS+DXABd1nEOS1NLIAs/MvwU+uQZZJEktRGaOnihiK3BjZj5mhWlmgBmAwWCwbXZ2tlWQxcVFJiYmWDh4uNV862WwEQ4dWe8UzZm3W+btVil5J7dsAr7UZ21MT0/vy8xhm3lGHpW+qczcA+wBGA6HOTU11Wr+ubk5pqameNHOveOK1Kkdk0fZvTC24eucebtl3m6VkvfAZVPAl/qsa+6FIkmFssAlqVBNdiN8E/Be4PyIuCsifrj7WJKkUUZuVMrMS9ciiCSpHTehSFKhLHBJKpQFLkmFssAlqVAWuCQVygKXpEJZ4JJUKAtckgplgUtSoSxwSSqUBS5JhbLAJalQFrgkFcoCl6RCWeCSVCgLXJIKZYFLUqEaFXhEXBQRH4mIj0bEzq5DSZJGa3JMzA3AbwMXA48GLo2IR3cdTJK0siZL4N8GfDQzP5aZ9wOzwHd3G0uSNEpk5soTRDwXuCgzf6Q+/0LgSZn50uOmmwFm6rPnAx9pmWUzcG/LedaTebtl3m6Zt1uryft1mXlumxlGHpUeiGUu+z+tn5l7gD1t7vzL7iRiPjOHq51/rZm3W+btlnm7tVZ5m2xCuQt4+JLzDwPu7iaOJKmpJgX+fuBREfHIiDgdeD7wtm5jSZJGGbkJJTOPRsRLgXcAG4CrM/P2DrKsevPLOjFvt8zbLfN2a03yjvwQU5LUT34TU5IKZYFLUqEscEkqVNEFHhEXRsQj1ztHU+btlnm7VVLekrLC6vMW+SFm/Vsss8CngS8CV2Tmu9c31YmZt1vm7VZJeUvKCieft4gl8Ih4WEScveSi5wFvzcynUz34SyPiKeuT7v8yb7fM262S8paUFcaft9cFHhHfEhF/CbwH+MWIOPYjWp8HzqhPv4XqNweeHBHLfe1/zZi3W+btVkl5S8oK3eXtXYFHxJlLzj4euCsztwLvAn61vvyTwBci4qzM/CTwL8AA2LqGUQHzds283Sopb0lZYW3y9qLAI+KciLgmIt4P7IqIc+t3oMcCfx8RkZlvAz4dEdupHuRZwGR9E/9K9etf95vXvOb9yslbUtb1yNuLAgeeDhwFvpPq1w9fCZxNle+r80uftF4LfD/wPuCzVAeZIDPfC1wIfMa85jXvV1TekrKufd7MXLN/VL+l8mLg3VS/Hb65vvwtwI/Xpx8J7KqvfyLVNqMN9XUTwCfq29kC7AdeCvwh8DvAGeY1r3nLy1tS1j7lXesl8EuAZwO/ADwF+OX68puAp9anPw78HXBxZr6f6l1sGiAzF4FbgCdm5kHghVTbi/4T+JnM/Nw4Qi75AOG7Ssi7hOPr+JY6vo7tKvI2OaBDK/U2noyIJ1KtIvwdsDczvwB8E/CxzHxXRNwB/EpEPAvYB3xPRGzOzHsj4l+B+yLiEcBvAS+IiPOofov8v6hWO8jMeWB+TLmHwI9Qrc78CnAP8PU9zuv4Or5L8/Z+fO2G8ecd6xJ4RJxdP0FTwNVUu8g8E3htPckXgX+JiI2ZeQfVasNjqQbmbqp9IgH+h2rV4hTgrVQ/zXgZsA3Yk5lfHFPeiYh4cERcW9/PHcBVmXlPRJxC9Y7Zp7wPrf9/KnAN/R/fc6La73UPcD39H9/zIuKh9R/stfR/fDdHxLdGxOuBG+jx+EbE6XU3fDvVZoK+j+1pEbExIq6hz90whm1BZwA/CPwN1Q7pAD8B/Fh9+hzgQ8AT6ge1C9haX3dJ/YA216cXgE1UG/H/Ejh9yf2ccrJZj8v7LuDN9WWvA168ZJpT6/9fCrxmvfLypW/Kfi/V9rM5quONvryP43tc3r8H3kn1ou7l+Na3cybwIqpV38PA9r6O73F530m1BPecvo4vcBrwEuAvgN8FvhG4vMdjeyzvjVRLyxfUmXo3tg/c1hge8B31E3TRksv/6NiTVJ9/NdW77ldRLZlfXF9+NtXBj8+uz7+8/kPaXz+hMa4HOiLvC4CrqJYGrqH60OGr6hfcG9Yrb30fm4A/A5675LI/7uP4rpC3l+Nb3/+t9Xg+Cfgw1e5cV1F/ENWn8V0m7+1US3Lbgdf3cHxfDlwHPIPqg7lXAH8O/GjfxvYEeX+GqtB/jarIezO2D2Qew4O+HrjsuMueB9yy5PzXAnfXp3+M6iuj5wAbqcr0EUum3dzFAx2R9xF1pjcDlwK/Aby9J3lfAry6Pn1sCfc5PR7fB/LW5zcCX1Nnekufxpdq1fZBS85fDTwX+O4+ju8yed9AtTR+Xh9fv/V9/UB9+oeBl9Xd8L6+je0yeX8I+Om6G97ct7F94D7G8KAvodoZfTfVKv7PAV9H9Q2j85ZMdxPwpPr0a4C/ploF/KmuH+QKeW8Gfp7qA4UtS6Y5rX4sF9bnr1zHvN9XZ7mMaunr2rpgDi99gfRofJfm3Qe8keoT+6Uv7N6M75JMD6VaEnwm1fbKT1Ltt9ur8V0m77Pq8717/VK9mf8N1RrZx6necC4APgWc27exPS7vnVRv6N8CPLxvY/tAnjE98HdQ7bD+cKp3qsuB91KVeVCtcrzh2B9xPQiPAR681g94mbx/QvW11kctuf6rqVaXHrveeYFH1WP5m1Tv9N9PtUr3CapV0lP6NL7L5P1eqiXvi/s4vsdl/wDwnPr0G4HX1ad7M77L5H12ffqUJZf3Znyp9t64mmrb8M8DV1Btanhl3167y+R9FfD7wJP7OLaZ49sP/Hsy85cy8+PAL1HtEvRbVKsVb6N6V9uQmXcCZOZ/Z+Ztmfn5Md3/yeR9LdWT8pCIeFxEvIpqM8vnMvNDPch7J9XXak/NzE9RfcByZ/3/GfRvfI/Pu5dq2/ITIuKbezi+1HsVQPVB8TfWp6+sroq/oF/je6K8p9R7pLySfo3vo4G5zLyXao1hA/Am+tsNS/NeCxwBviEiLujja3cs+4Hnl+90/mmqAv/ZzPzTiHgBcHtmfmAc9zUOx+X9LNUO9Pup3nFPo/qAsBd5M/MLEbGLatUSqqWWpwC7MvMDfRvfZfKeTrUa+mqqvX9Op0fjC5CZX4yIY78I99H6sv3AKyLiMuDDPc57oL7saEQ8n+r10YvxjYgNwF1UXy//I+A+qm8kviQz7+jba3eZvJ+nWqP8ZarNKw+iJ2N7zFgO6BARDwIuovo20QVUuwz9TmYePekb78Ayefdk5q+vb6qVRcSVVF8eeALVNrcr6iXcXjou7zuBV+T4vxk5VhHxEeDnMvPNx750st6ZVrI073pnOZGI+Aaq3evup3o93AC8JqtvIvbOMnnfBrwqM9fkx7DaGtsReSLixVQ74//xOq7+NFZaXoCIOB/4d/OO15JvCD6eate8o30u7wLzPoJqSfYfMvPIeucZpaS8RR5STZLUn5+TlSS1ZIFLUqEscEkqlAUuSYWywCWpUBa4JBXKApekQv0v0E12vPKxB+IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ]