{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Module2 : Exo2 , 2eme partie : faire un calcul simple" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Assignation des valeurs dans un tableau" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tableau= [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n" ] } ], "source": [ "tableau=[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", "print (\"tableau=\",tableau)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## chargement de la librairie numpy qui contient les fonctions utiles aux calculs :" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul et affichage de la valeur min dans ce tableau " ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "valeur_min= 2.8\n" ] } ], "source": [ "print (\"valeur_min=\",np.min(tableau))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul et affichage de la valeur max dans ce tableau" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "valeur_max= 23.4\n" ] } ], "source": [ "print (\"valeur_max=\",np.max(tableau))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul et affichage de la valeur moyenne dans ce tableau" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "valeur_moyenne= 14.113000000000001\n" ] } ], "source": [ "print (\"valeur_moyenne=\",np.mean(tableau))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul et affichage de la valeur de l'écart-type dans ce tableau" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "valeur_ecartType= 4.334094455301447\n" ] } ], "source": [ "print (\"valeur_ecartType=\",np.std(tableau,ddof=1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Calcul et affichage de la valeur médiane dans ce tableau" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "valeur_mediane= 14.5\n" ] } ], "source": [ "print (\"valeur_mediane=\",np.median(tableau))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Utilisation de la methode 'describe()' qui s'applique au type DataFrame :" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# importer la librairie pour les fonctionnalites de type DataFrame\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "tableau=[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", "#print (\"tableau=\",tableau)\n", "df = pd.DataFrame(tableau)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
0
count100.000000
mean14.113000
std4.334094
min2.800000
25%11.850000
50%14.500000
75%16.800000
max23.400000
\n", "
" ], "text/plain": [ " 0\n", "count 100.000000\n", "mean 14.113000\n", "std 4.334094\n", "min 2.800000\n", "25% 11.850000\n", "50% 14.500000\n", "75% 16.800000\n", "max 23.400000" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Faire afficher les statistiques principales sur les données de ce tableau converti en DataFrame :\n", "df.describe()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }