From ed04ceaea1d5013dd701bbd7cced6432f114b2bb Mon Sep 17 00:00:00 2001 From: e436212dbb67ba8b493d344beb7f7acb Date: Wed, 31 May 2023 18:27:53 +0000 Subject: [PATCH] =?UTF-8?q?chang=C3=A9=20l'upload=20de=20document=20par=20?= =?UTF-8?q?l'utilisation=20d'un=20csv=20t=C3=A9l=C3=A9charg=C3=A9?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module3/exo1/analyse-syndrome-grippal.ipynb | 2211 ++++++++++++++++++- 1 file changed, 2176 insertions(+), 35 deletions(-) diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5..ee085c5 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,10 +28,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" @@ -56,16 +54,984 @@ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", "\n", + "Pour plus de reproductibilité, nous avons téléchargé et uploadé le fichier csv dans le dépot gitlab et allons utiliser ce fichier plutôt que l'url.\n", "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020232132080712624.028990.03119.043.0FRFrance
120232031627612043.020509.02418.030.0FRFrance
220231931690112577.021225.02518.032.0FRFrance
320231831992915402.024456.03023.037.0FRFrance
420231732700721779.032235.04133.049.0FRFrance
520231632787522767.032983.04234.050.0FRFrance
620231533745530993.043917.05646.066.0FRFrance
720231434806040671.055449.07261.083.0FRFrance
820231336485956800.072918.09886.0110.0FRFrance
920231237275064499.081001.010997.0121.0FRFrance
1020231137463866420.082856.0112100.0124.0FRFrance
1120231037636868243.084493.0115103.0127.0FRFrance
1220230936206254778.069346.09382.0104.0FRFrance
1320230837639168065.084717.0115102.0128.0FRFrance
1420230738985180397.099305.0135121.0149.0FRFrance
1520230639736887636.0107100.0146131.0161.0FRFrance
1620230539546986268.0104670.0144130.0158.0FRFrance
1720230437490166916.082886.0113101.0125.0FRFrance
1820230336957061893.077247.010593.0117.0FRFrance
1920230237826070090.086430.0118106.0130.0FRFrance
202023013121773111024.0132522.0183167.0199.0FRFrance
212022523155371142004.0168738.0234214.0254.0FRFrance
222022513248319232128.0264510.0374350.0398.0FRFrance
232022503234143219402.0248884.0353331.0375.0FRFrance
242022493163384151691.0175077.0246228.0264.0FRFrance
252022483121691111744.0131638.0184169.0199.0FRFrance
2620224739641687230.0105602.0145131.0159.0FRFrance
2720224636773560075.075395.010290.0114.0FRFrance
2820224534530638909.051703.06858.078.0FRFrance
2920224433471328880.040546.05243.061.0FRFrance
.................................
198319852132609619621.032571.04735.059.0FRFrance
198419852032789620885.034907.05138.064.0FRFrance
198519851934315432821.053487.07859.097.0FRFrance
198619851834055529935.051175.07455.093.0FRFrance
198719851733405324366.043740.06244.080.0FRFrance
198819851635036236451.064273.09166.0116.0FRFrance
198919851536388145538.082224.011683.0149.0FRFrance
19901985143134545114400.0154690.0244207.0281.0FRFrance
19911985133197206176080.0218332.0357319.0395.0FRFrance
19921985123245240223304.0267176.0445405.0485.0FRFrance
19931985113276205252399.0300011.0501458.0544.0FRFrance
19941985103353231326279.0380183.0640591.0689.0FRFrance
19951985093369895341109.0398681.0670618.0722.0FRFrance
19961985083389886359529.0420243.0707652.0762.0FRFrance
19971985073471852432599.0511105.0855784.0926.0FRFrance
19981985063565825518011.0613639.01026939.01113.0FRFrance
19991985053637302592795.0681809.011551074.01236.0FRFrance
20001985043424937390794.0459080.0770708.0832.0FRFrance
20011985033213901174689.0253113.0388317.0459.0FRFrance
200219850239758680949.0114223.0177147.0207.0FRFrance
200319850138548965918.0105060.0155120.0190.0FRFrance
200419845238483060602.0109058.0154110.0198.0FRFrance
2005198451310172680242.0123210.0185146.0224.0FRFrance
20061984503123680101401.0145959.0225184.0266.0FRFrance
2007198449310107381684.0120462.0184149.0219.0FRFrance
200819844837862060634.096606.0143110.0176.0FRFrance
200919844737202954274.089784.013199.0163.0FRFrance
201019844638733067686.0106974.0159123.0195.0FRFrance
20111984453135223101414.0169032.0246184.0308.0FRFrance
201219844436842220056.0116788.012537.0213.0FRFrance
\n", + "

2013 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202321 3 20807 12624.0 28990.0 31 19.0 \n", + "1 202320 3 16276 12043.0 20509.0 24 18.0 \n", + "2 202319 3 16901 12577.0 21225.0 25 18.0 \n", + "3 202318 3 19929 15402.0 24456.0 30 23.0 \n", + "4 202317 3 27007 21779.0 32235.0 41 33.0 \n", + "5 202316 3 27875 22767.0 32983.0 42 34.0 \n", + "6 202315 3 37455 30993.0 43917.0 56 46.0 \n", + "7 202314 3 48060 40671.0 55449.0 72 61.0 \n", + "8 202313 3 64859 56800.0 72918.0 98 86.0 \n", + "9 202312 3 72750 64499.0 81001.0 109 97.0 \n", + "10 202311 3 74638 66420.0 82856.0 112 100.0 \n", + "11 202310 3 76368 68243.0 84493.0 115 103.0 \n", + "12 202309 3 62062 54778.0 69346.0 93 82.0 \n", + "13 202308 3 76391 68065.0 84717.0 115 102.0 \n", + "14 202307 3 89851 80397.0 99305.0 135 121.0 \n", + "15 202306 3 97368 87636.0 107100.0 146 131.0 \n", + "16 202305 3 95469 86268.0 104670.0 144 130.0 \n", + "17 202304 3 74901 66916.0 82886.0 113 101.0 \n", + "18 202303 3 69570 61893.0 77247.0 105 93.0 \n", + "19 202302 3 78260 70090.0 86430.0 118 106.0 \n", + "20 202301 3 121773 111024.0 132522.0 183 167.0 \n", + "21 202252 3 155371 142004.0 168738.0 234 214.0 \n", + "22 202251 3 248319 232128.0 264510.0 374 350.0 \n", + "23 202250 3 234143 219402.0 248884.0 353 331.0 \n", + "24 202249 3 163384 151691.0 175077.0 246 228.0 \n", + "25 202248 3 121691 111744.0 131638.0 184 169.0 \n", + "26 202247 3 96416 87230.0 105602.0 145 131.0 \n", + "27 202246 3 67735 60075.0 75395.0 102 90.0 \n", + "28 202245 3 45306 38909.0 51703.0 68 58.0 \n", + "29 202244 3 34713 28880.0 40546.0 52 43.0 \n", + "... ... ... ... ... ... ... ... \n", + "1983 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1984 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1985 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1986 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1987 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1988 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1989 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1990 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1991 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1992 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1993 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1994 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1995 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1996 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1997 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1998 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1999 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "2000 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "2001 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "2002 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "2003 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "2004 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "2005 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "2006 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "2007 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "2008 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "2009 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "2010 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "2011 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "2012 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 43.0 FR France \n", + "1 30.0 FR France \n", + "2 32.0 FR France \n", + "3 37.0 FR France \n", + "4 49.0 FR France \n", + "5 50.0 FR France \n", + "6 66.0 FR France \n", + "7 83.0 FR France \n", + "8 110.0 FR France \n", + "9 121.0 FR France \n", + "10 124.0 FR France \n", + "11 127.0 FR France \n", + "12 104.0 FR France \n", + "13 128.0 FR France \n", + "14 149.0 FR France \n", + "15 161.0 FR France \n", + "16 158.0 FR France \n", + "17 125.0 FR France \n", + "18 117.0 FR France \n", + "19 130.0 FR France \n", + "20 199.0 FR France \n", + "21 254.0 FR France \n", + "22 398.0 FR France \n", + "23 375.0 FR France \n", + "24 264.0 FR France \n", + "25 199.0 FR France \n", + "26 159.0 FR France \n", + "27 114.0 FR France \n", + "28 78.0 FR France \n", + "29 61.0 FR France \n", + "... ... ... ... \n", + "1983 59.0 FR France \n", + "1984 64.0 FR France \n", + "1985 97.0 FR France \n", + "1986 93.0 FR France \n", + "1987 80.0 FR France \n", + "1988 116.0 FR France \n", + "1989 149.0 FR France \n", + "1990 281.0 FR France \n", + "1991 395.0 FR France \n", + "1992 485.0 FR France \n", + "1993 544.0 FR France \n", + "1994 689.0 FR France \n", + "1995 722.0 FR France \n", + "1996 762.0 FR France \n", + "1997 926.0 FR France \n", + "1998 1113.0 FR France \n", + "1999 1236.0 FR France \n", + "2000 832.0 FR France \n", + "2001 459.0 FR France \n", + "2002 207.0 FR France \n", + "2003 190.0 FR France \n", + "2004 198.0 FR France \n", + "2005 224.0 FR France \n", + "2006 266.0 FR France \n", + "2007 219.0 FR France \n", + "2008 176.0 FR France \n", + "2009 163.0 FR France \n", + "2010 195.0 FR France \n", + "2011 308.0 FR France \n", + "2012 213.0 FR France \n", + "\n", + "[2013 rows x 10 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "raw_data = pd.read_csv(data_url, skiprows=1)\n", + "raw_data = pd.read_csv(\"incidence-PAY-3.csv\", skiprows=1)\n", "raw_data" ] }, @@ -78,9 +1044,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
177619891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1776 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1776 FR France " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +1124,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020232132080712624.028990.03119.043.0FRFrance
120232031627612043.020509.02418.030.0FRFrance
220231931690112577.021225.02518.032.0FRFrance
320231831992915402.024456.03023.037.0FRFrance
420231732700721779.032235.04133.049.0FRFrance
520231632787522767.032983.04234.050.0FRFrance
620231533745530993.043917.05646.066.0FRFrance
720231434806040671.055449.07261.083.0FRFrance
820231336485956800.072918.09886.0110.0FRFrance
920231237275064499.081001.010997.0121.0FRFrance
1020231137463866420.082856.0112100.0124.0FRFrance
1120231037636868243.084493.0115103.0127.0FRFrance
1220230936206254778.069346.09382.0104.0FRFrance
1320230837639168065.084717.0115102.0128.0FRFrance
1420230738985180397.099305.0135121.0149.0FRFrance
1520230639736887636.0107100.0146131.0161.0FRFrance
1620230539546986268.0104670.0144130.0158.0FRFrance
1720230437490166916.082886.0113101.0125.0FRFrance
1820230336957061893.077247.010593.0117.0FRFrance
1920230237826070090.086430.0118106.0130.0FRFrance
202023013121773111024.0132522.0183167.0199.0FRFrance
212022523155371142004.0168738.0234214.0254.0FRFrance
222022513248319232128.0264510.0374350.0398.0FRFrance
232022503234143219402.0248884.0353331.0375.0FRFrance
242022493163384151691.0175077.0246228.0264.0FRFrance
252022483121691111744.0131638.0184169.0199.0FRFrance
2620224739641687230.0105602.0145131.0159.0FRFrance
2720224636773560075.075395.010290.0114.0FRFrance
2820224534530638909.051703.06858.078.0FRFrance
2920224433471328880.040546.05243.061.0FRFrance
.................................
198319852132609619621.032571.04735.059.0FRFrance
198419852032789620885.034907.05138.064.0FRFrance
198519851934315432821.053487.07859.097.0FRFrance
198619851834055529935.051175.07455.093.0FRFrance
198719851733405324366.043740.06244.080.0FRFrance
198819851635036236451.064273.09166.0116.0FRFrance
198919851536388145538.082224.011683.0149.0FRFrance
19901985143134545114400.0154690.0244207.0281.0FRFrance
19911985133197206176080.0218332.0357319.0395.0FRFrance
19921985123245240223304.0267176.0445405.0485.0FRFrance
19931985113276205252399.0300011.0501458.0544.0FRFrance
19941985103353231326279.0380183.0640591.0689.0FRFrance
19951985093369895341109.0398681.0670618.0722.0FRFrance
19961985083389886359529.0420243.0707652.0762.0FRFrance
19971985073471852432599.0511105.0855784.0926.0FRFrance
19981985063565825518011.0613639.01026939.01113.0FRFrance
19991985053637302592795.0681809.011551074.01236.0FRFrance
20001985043424937390794.0459080.0770708.0832.0FRFrance
20011985033213901174689.0253113.0388317.0459.0FRFrance
200219850239758680949.0114223.0177147.0207.0FRFrance
200319850138548965918.0105060.0155120.0190.0FRFrance
200419845238483060602.0109058.0154110.0198.0FRFrance
2005198451310172680242.0123210.0185146.0224.0FRFrance
20061984503123680101401.0145959.0225184.0266.0FRFrance
2007198449310107381684.0120462.0184149.0219.0FRFrance
200819844837862060634.096606.0143110.0176.0FRFrance
200919844737202954274.089784.013199.0163.0FRFrance
201019844638733067686.0106974.0159123.0195.0FRFrance
20111984453135223101414.0169032.0246184.0308.0FRFrance
201219844436842220056.0116788.012537.0213.0FRFrance
\n", + "

2012 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202321 3 20807 12624.0 28990.0 31 19.0 \n", + "1 202320 3 16276 12043.0 20509.0 24 18.0 \n", + "2 202319 3 16901 12577.0 21225.0 25 18.0 \n", + "3 202318 3 19929 15402.0 24456.0 30 23.0 \n", + "4 202317 3 27007 21779.0 32235.0 41 33.0 \n", + "5 202316 3 27875 22767.0 32983.0 42 34.0 \n", + "6 202315 3 37455 30993.0 43917.0 56 46.0 \n", + "7 202314 3 48060 40671.0 55449.0 72 61.0 \n", + "8 202313 3 64859 56800.0 72918.0 98 86.0 \n", + "9 202312 3 72750 64499.0 81001.0 109 97.0 \n", + "10 202311 3 74638 66420.0 82856.0 112 100.0 \n", + "11 202310 3 76368 68243.0 84493.0 115 103.0 \n", + "12 202309 3 62062 54778.0 69346.0 93 82.0 \n", + "13 202308 3 76391 68065.0 84717.0 115 102.0 \n", + "14 202307 3 89851 80397.0 99305.0 135 121.0 \n", + "15 202306 3 97368 87636.0 107100.0 146 131.0 \n", + "16 202305 3 95469 86268.0 104670.0 144 130.0 \n", + "17 202304 3 74901 66916.0 82886.0 113 101.0 \n", + "18 202303 3 69570 61893.0 77247.0 105 93.0 \n", + "19 202302 3 78260 70090.0 86430.0 118 106.0 \n", + "20 202301 3 121773 111024.0 132522.0 183 167.0 \n", + "21 202252 3 155371 142004.0 168738.0 234 214.0 \n", + "22 202251 3 248319 232128.0 264510.0 374 350.0 \n", + "23 202250 3 234143 219402.0 248884.0 353 331.0 \n", + "24 202249 3 163384 151691.0 175077.0 246 228.0 \n", + "25 202248 3 121691 111744.0 131638.0 184 169.0 \n", + "26 202247 3 96416 87230.0 105602.0 145 131.0 \n", + "27 202246 3 67735 60075.0 75395.0 102 90.0 \n", + "28 202245 3 45306 38909.0 51703.0 68 58.0 \n", + "29 202244 3 34713 28880.0 40546.0 52 43.0 \n", + "... ... ... ... ... ... ... ... \n", + "1983 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1984 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1985 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1986 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1987 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1988 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1989 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1990 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1991 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1992 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1993 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1994 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1995 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1996 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1997 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1998 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1999 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "2000 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "2001 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "2002 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "2003 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "2004 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "2005 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "2006 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "2007 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "2008 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "2009 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "2010 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "2011 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "2012 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 43.0 FR France \n", + "1 30.0 FR France \n", + "2 32.0 FR France \n", + "3 37.0 FR France \n", + "4 49.0 FR France \n", + "5 50.0 FR France \n", + "6 66.0 FR France \n", + "7 83.0 FR France \n", + "8 110.0 FR France \n", + "9 121.0 FR France \n", + "10 124.0 FR France \n", + "11 127.0 FR France \n", + "12 104.0 FR France \n", + "13 128.0 FR France \n", + "14 149.0 FR France \n", + "15 161.0 FR France \n", + "16 158.0 FR France \n", + "17 125.0 FR France \n", + "18 117.0 FR France \n", + "19 130.0 FR France \n", + "20 199.0 FR France \n", + "21 254.0 FR France \n", + "22 398.0 FR France \n", + "23 375.0 FR France \n", + "24 264.0 FR France \n", + "25 199.0 FR France \n", + "26 159.0 FR France \n", + "27 114.0 FR France \n", + "28 78.0 FR France \n", + "29 61.0 FR France \n", + "... ... ... ... \n", + "1983 59.0 FR France \n", + "1984 64.0 FR France \n", + "1985 97.0 FR France \n", + "1986 93.0 FR France \n", + "1987 80.0 FR France \n", + "1988 116.0 FR France \n", + "1989 149.0 FR France \n", + "1990 281.0 FR France \n", + "1991 395.0 FR France \n", + "1992 485.0 FR France \n", + "1993 544.0 FR France \n", + "1994 689.0 FR France \n", + "1995 722.0 FR France \n", + "1996 762.0 FR France \n", + "1997 926.0 FR France \n", + "1998 1113.0 FR France \n", + "1999 1236.0 FR France \n", + "2000 832.0 FR France \n", + "2001 459.0 FR France \n", + "2002 207.0 FR France \n", + "2003 190.0 FR France \n", + "2004 198.0 FR France \n", + "2005 224.0 FR France \n", + "2006 266.0 FR France \n", + "2007 219.0 FR France \n", + "2008 176.0 FR France \n", + "2009 163.0 FR France \n", + "2010 195.0 FR France \n", + "2011 308.0 FR France \n", + "2012 213.0 FR France \n", + "\n", + "[2012 rows x 10 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +2119,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +2149,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 8, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +2174,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +2202,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEKCAYAAADEovgeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmcHGWd/z/f7p47mdwJuSABIhhuyAYQURAFFFdYld24q2QVZXXZn8fuqiC6uCoKHqDoissqGPAA5FBUEEO4BBNgwpk7IeQkxyQzSWYyVx/P7496nuqnqp+qp7q6e7p78n2/XvPqnqfqOerpquf7fI/nKRJCgGEYhmEqSaLaDWAYhmFGPixsGIZhmIrDwoZhGIapOCxsGIZhmIrDwoZhGIapOCxsGIZhmIrDwoZhGIapOCxsGIZhmIrDwoZhGIapOKlqN2A4mThxopg1a1a1m8EwDFNXLF++fI8QYlIpZRxSwmbWrFno6OiodjMYhmHqCiLaXGoZbEZjGIZhKg4LG4ZhGKbisLBhGIZhKg4LG4ZhGKbisLBhGIZhKo5V2BDRbUS0m4hWaGnjiWgxEa2Xn+O0Y1cT0QYiWktEF2jppxHRq/LYzUREMr2JiO6W6c8S0Swtz0JZx3oiWqilz5bnrpd5G0vvCoZhGKZSRNFsfg7gQl/aVQCWCCHmAFgi/wcRzQWwAMBxMs+PiSgp89wC4AoAc+SfKvNyAN1CiKMB3ATgBlnWeADXAjgdwHwA12pC7QYAN8n6u2UZDMMwTI1iFTZCiKcAdPmSLwawSH5fBOASLf0uIcSgEOJ1ABsAzCeiqQDahRBLhfMe6jt8eVRZ9wI4T2o9FwBYLIToEkJ0A1gM4EJ57B3yXH/9IxIhBH7TsRUD6Wy1m8IwDBOLuD6bKUKIHQAgPyfL9OkAtmrnbZNp0+V3f7onjxAiA2A/gAkhZU0AsE+e6y9rRPLnVbvw+XtfwfcfXV/tpjAMw8Si3AECZEgTIelx8oSVVdggoiuIqIOIOjo7O4NOq2m6Dw55PhmGYeqNuMJmlzSNQX7ulunbAMzUzpsB4A2ZPsOQ7slDRCkAY+CY7YLK2gNgrDzXX1YBQohbhRDzhBDzJk0qaWufqpHJObI0mTTJWYZhmNonrrB5EICKDlsI4Hda+gIZYTYbTiDAc9LU1kNEZ0ify2W+PKqsDwJ4TPp1HgFwPhGNk4EB5wN4RB57XJ7rr39EksnmAACpBAsbhmHqE+tGnET0awDnAJhIRNvgRIhdD+AeIrocwBYAlwKAEGIlEd0DYBWADIArhRDKq/0pOJFtLQAeln8A8DMAdxLRBjgazQJZVhcRfR3A8/K8rwkhVKDCFwHcRUTfAPCiLGPE4mo2LGwYhqlTrMJGCPGhgEPnBZx/HYDrDOkdAI43pA9ACivDsdsA3GZI3wgnHPqQICuFDWs2DMPUK7yDQB2Q12z452IYpj7h0asOcNxUACs2DMPUKyxs6gC5sw/DMEzdwsKmjghcTMQwDFPjsLCpIwRLG4Zh6hQWNnWAsqIJ1m0YhqlTWNjUAQRX2jAMw9QlLGzqgATLGoZh6hwWNnWAa0Zjpw3DMHUKC5s6QJnRWNYwDFOvsLCpA4jNaAzD1DksbOoI1mwYhqlXWNjUAWoHAQ59ZhimXmFhUweozWpYs2EYpl5hYVMH1PrWaPO+sRhX/vKFajeDYZgahoVNHVGroc97eofwx1d3VLsZDMPUMCxs6gDXjFbVVjAMw8SHhU0d4AYIsLRhGKZOYWFTB/BGnAzD1DssbOoAjkZjGKbeYWFTD9R6OBrDMIwFFjYMwzBMxWFhwzAMw1QcFjYMwzBMxWFhU0dwfADDMPUKCxuGYRim4rCwYRiGYSoOCxuGYRim4rCwqSN4tQ3DMPUKC5sRwJ7eQcy55iEs39xd7aYwDMMYKUnYENHniGglEa0gol8TUTMRjSeixUS0Xn6O086/mog2ENFaIrpASz+NiF6Vx24mufMkETUR0d0y/VkimqXlWSjrWE9EC0u5jnrn2Y1dSGcFfvqXjdVuCsMwjJHYwoaIpgP4NIB5QojjASQBLABwFYAlQog5AJbI/0FEc+Xx4wBcCODHRJSUxd0C4AoAc+TfhTL9cgDdQoijAdwE4AZZ1ngA1wI4HcB8ANfqQm2kwqHPDMPUK6Wa0VIAWogoBaAVwBsALgawSB5fBOAS+f1iAHcJIQaFEK8D2ABgPhFNBdAuhFgqnLeD3eHLo8q6F8B5Uuu5AMBiIUSXEKIbwGLkBdQhB2+dxjBMrRNb2AghtgP4LoAtAHYA2C+E+DOAKUKIHfKcHQAmyyzTAWzVitgm06bL7/50Tx4hRAbAfgATQspiGIZhapBSzGjj4GgeswFMA9BGRB8Oy2JIEyHpcfP423kFEXUQUUdnZ2dI8xiGYZhKUYoZ7Z0AXhdCdAoh0gDuB/AWALukaQzyc7c8fxuAmVr+GXDMbtvkd3+6J4801Y0B0BVSVgFCiFuFEPOEEPMmTZoU81LrA37fDcMwtUopwmYLgDOIqFX6Uc4DsBrAgwBUdNhCAL+T3x8EsEBGmM2GEwjwnDS19RDRGbKcy3x5VFkfBPCY9Os8AuB8IhonNazzZdrIxCJF2GXDMEytk4qbUQjxLBHdC+AFABkALwK4FcAoAPcQ0eVwBNKl8vyVRHQPgFXy/CuFEFlZ3KcA/BxAC4CH5R8A/AzAnUS0AY5Gs0CW1UVEXwfwvDzva0KIrrjXMlLg10YzDFOrxBY2ACCEuBZOCLLOIBwtx3T+dQCuM6R3ADjekD4AKawMx24DcFuRTa5LbCKEo9EYhql1eAeBOoB9MQzD1DssbBiGYZiKw8KmDhARVRvWgBiGqVVY2IwI2GnDMExtw8KmDoiqsNSrYvPdR9bizmWbq90MhmEqSEnRaExtUO/RaD96fAMA4CNnHFHlljAMUylYs6kD2BfDMEy9w8KGYRiGqTgsbOqAyD4b1oAYhqlRWNjUESxMGIapV1jY1AG2dTZ1Hh/AMMwhAAubEQWrPgzD1CYsbEYAVO+xzwzDjHhY2NQByorGMoVhmHqFhQ3DMAxTcVjY1AFRX4rG0WoMw9QqLGzqiCBhwtY1hmFqHRY2dUBUjYUVG4ZhahUWNiMADhxgGKbWYWFTB7DGwjBMvcPChmEYhqk4LGzqgMg+Gw5HYximRmFhMwJgnw3DMLUOC5s6IOo6G4ZhmFqFhU0dwKHPDMPUOyxsRgA0wpd17ukdxEA6W+1mMAxTAixsimDZxr3462t7qt2MQ45533gUH739+Wo3g2GYEkhVuwH1xIJblwEANl1/UZVbcuixdOPeajeBYZgSYM2mDrCFNKsAAo58ZhimVmFhMwJgIcMwTK3DwqYO4Gg0hmHqnZKEDRGNJaJ7iWgNEa0mojOJaDwRLSai9fJznHb+1US0gYjWEtEFWvppRPSqPHYzyfccE1ETEd0t058lollanoWyjvVEtLCU66h3WLNhGKbWKVWz+QGAPwkhjgVwEoDVAK4CsEQIMQfAEvk/iGgugAUAjgNwIYAfE1FSlnMLgCsAzJF/F8r0ywF0CyGOBnATgBtkWeMBXAvgdADzAVyrC7WRhk2WsKxhGKbWiS1siKgdwNsA/AwAhBBDQoh9AC4GsEietgjAJfL7xQDuEkIMCiFeB7ABwHwimgqgXQixVDie8Dt8eVRZ9wI4T2o9FwBYLIToEkJ0A1iMvIAawZjFykjeE20kXxvDHEqUotkcCaATwO1E9CIR/ZSI2gBMEULsAAD5OVmePx3AVi3/Npk2XX73p3vyCCEyAPYDmBBS1ojENt6qwyNxYM6NvEtimEOSUoRNCsCpAG4RQpwC4CCkySwA0zJ3EZIeN4+3UqIriKiDiDo6OztDmle/jEAZ4zISBSjDHIqUImy2AdgmhHhW/n8vHOGzS5rGID93a+fP1PLPAPCGTJ9hSPfkIaIUgDEAukLKKkAIcasQYp4QYt6kSZNiXGb1OZQ34mTNhmFGBrGFjRBiJ4CtRHSMTDoPwCoADwJQ0WELAfxOfn8QwAIZYTYbTiDAc9LU1kNEZ0h/zGW+PKqsDwJ4TPp1HgFwPhGNk4EB58u0EUl+ch+0B9rIHZFzrNkwzIig1O1q/h+AXxJRI4CNAD4KR4DdQ0SXA9gC4FIAEEKsJKJ74AikDIArhRBqd8VPAfg5gBYAD8s/wAk+uJOINsDRaBbIsrqI6OsA1IZZXxNCdJV4LXXLSB6PR/K1McyhREnCRgjxEoB5hkPnBZx/HYDrDOkdAI43pA9ACivDsdsA3FZMe+sVYfhmPj7yYM2GYUYGvINAHRE07o7k8ZiFDfCpXyzHGd9cUu1mMExJ8K7P9cAhvBEnBwgAD6/YWe0mMEzJsGZTRxyKms1ID31+ZsMe7O9LV7sZDFNxWNjUAVGH25EYIj2SZc2BgTT+6afP4oo7O6rdFIapOCxs6oggYTKCx+MR7bPJZJ1rW7urp8otCab74BCe5RfXMWWAhU0doMbbYDPayB2Qh8Nn86PH1uPxNbvtJ5YZ9bvlatgx9Y8/fRb/cOuyEX2PMcMDBwgwJVHpQWg4Brnv/nkdgOF/3XdGCplaHsZX7zgAwJnoUNCaYoaJAGs2dYAbbRZ03KL51DM1POkvmXQ253ypg2usV3PmCV99BJfd9ly1m8GAhU0shtukYN/1uXoDQaldYevLcl3b3t5B9A5mylJWucjWgWajqIc2mugZyOCpdSNzA956g4VNDLJVmm5bhU4VmlVqlcN1Tad941G868Yny1NYmUjLAIF60BrqoY1MbcPCJgbZ4dZsbMfreBywNb2cg9yO/QNlK6scZHKOGS1RB86Qer7HmNqAhU0MqvXgBYY+V3EgKNWkaDWjjeBBToU+176oGdm/AzM8sLCJwXCb0dwHPSj0edhaUv66R8IYtmnPQawvYa1MPfTBSFwwzAwvLGxiMNxmNBvVXANReoBAZcsfDs757hN4101PFZ1PXVul/SFPr9+DrV19JZUxkqMCmeGB19nEYLgX4VlDn33nDSel1mkbaEfyjHq4NlD98M+eRSpB2PDN98Qugxd1MqXCmk0Mgsxor2zbh18+u3mYW4Oq2mEqPQaVo/yMWs9SYwyXZgPkF5DGpVqazVd+uwKfu/ul6lTOlBUWNjEIMqO970fP4JoHVpS/QnfR5shzptvXEJVOXzprP6kKWFxxtUWVGnnnss144MXt1amcKSssbGKQq7GJss3MVsvYzGTlmPX3DdamsHGvrQ5+OF5nw5QKC5sYVGudjW27mmpQDwECfUO1tXOAIi9ran8gN7Vwb+8gdtbY2iWmduEAgRhUa5fewF2fh7cZvrpLXGdThjNslOqvqBxqB4EqNyMCJhPuad94FMDwbGAqhADVweJXJhjWbGJgW2dTbmEU2VdTje1qKr03WhmuqVZNQMMZIFAq1RaI+/htpnUPC5sY2Mxo6TI7dWym/apuxFnh/OW4slody905Qo22T6fapr56EMhMOCxsYmDTXKq2UWc11tmUvF1NacejUKsDVY02y0i121ptzYopHRY2MbBqNtkym9HUZ0C91XyfTclVWgooh6Co9kAZRLGCup53iii9/hr9EZnIsLCJgU1zqZRmY9tBoB6xaWMjWrMp8vxqzu6r3Yes2dQ/LGxiYHPJlPvBtBYnqrfOpuKhz2W4qlodqIrtu2oO+NXuwmoLO6Z0WNjEwGZGq9iDUYOhz6VWbt0brQwXF2aCqappqsjOq+aAW61wf7d+FjZ1DwubGNjMZOV+LobD1BSXyq+zKZ2wn6uqY1iRdR/K4+2hfO0jBRY2MbDNhis1Cwt+eZrwfA4n9bCDQFi/1JNpKk5by3VPVFuzqHb9TOmwsImBdVFnuTWbiOVVxWdTcn6L1lZhn01VFZth0GzKdS9We6yvVb8bE52ShQ0RJYnoRSL6g/x/PBEtJqL18nOcdu7VRLSBiNYS0QVa+mlE9Ko8djPJfSmIqImI7pbpzxLRLC3PQlnHeiJaWOp1FIPVZ1OpaDSLz6Yqoc8lqzbhh8vRleE+m2jnVYLh8NmU65qqPdZz6HP9Uw7N5jMAVmv/XwVgiRBiDoAl8n8Q0VwACwAcB+BCAD8moqTMcwuAKwDMkX8XyvTLAXQLIY4GcBOAG2RZ4wFcC+B0APMBXKsLtUpji0arWHxAkLCpqs+msvnLMciECSx9AB/ufixWkMYRvOW6pGqbsVizqX9KEjZENAPARQB+qiVfDGCR/L4IwCVa+l1CiEEhxOsANgCYT0RTAbQLIZYKZ2S5w5dHlXUvgPOk1nMBgMVCiC4hRDeAxcgLqIoz3NFo1v3DfJ/1xHC8zyaqwCr1d6v0Is04grdc92K1FQvWbOqfUjWb7wP4AgB9rj9FCLEDAOTnZJk+HcBW7bxtMm26/O5P9+QRQmQA7AcwIaSsYcFmJqtWgMDLW/dh056DFak7iNKtaMOxqDNa+aVWVezsu/gAgSIzoHxCotqDfbxrZwFVS8QWNkT0XgC7hRDLo2YxpImQ9Lh5vJUSXUFEHUTU0dnZGamhNoY9QKCIcz8zzK/QLTn02Zq99M4Ma6N+rNRJQtH5izaj1U/kXLmJ56+qQEOKYDCTxY2L16F/qDZf3jfclKLZnAXgfUS0CcBdAN5BRL8AsEuaxiA/d8vztwGYqeWfAeANmT7DkO7JQ0QpAGMAdIWUVYAQ4lYhxDwhxLxJkybFu1If1VrUWe2Hx0hl4wPKqtmYXoeiTwwqHcZdcP4wBAiU616svs+metcel18u24Kbl6zHT558rartqBViCxshxNVCiBlCiFlwHP+PCSE+DOBBACo6bCGA38nvDwJYICPMZsMJBHhOmtp6iOgM6Y+5zJdHlfVBWYcA8AiA84lonAwMOF+mDQvDbUazvmKgngMEIvqjSkH9HkZ1WKt/uDUbESIEw86PU0epVHuiE+vay9+MohjIZD2fhzqVeFPn9QDuIaLLAWwBcCkACCFWEtE9AFYByAC4UgihfoVPAfg5gBYAD8s/APgZgDuJaAMcjWaBLKuLiL4O4Hl53teEEF0VuBYj9tDnYWqIRJ8hx3mXYffBISzduBfvOWFq8XVXWBsoRxi5EiimNz3qxZdaVaXXzVRqwN25fwATRzUilQyee1ZbSyhVs+E3fVafsggbIcQTAJ6Q3/cCOC/gvOsAXGdI7wBwvCF9AFJYGY7dBuC2uG0uBbvPpsyajRwyKhX6/G+/fgHPbNiLpVe/A1PHtMRqm9OO4h/o4YhGCxX+HmEzzJqN/IzaY5UwJe3vT+OMby3BR844Al+/pOARdKm2ZlNqcIQQ0TXIckOxpoAjD95BIAbDsXlkMZRa3Y59AwCAg4OlqfvxZt6V78uwIsq5zqbY7MVGS1XCSX6g33nd8mNrdoeeF1bOcER9lXrt1dbMGBY2sRhMh9vJKveKgaDQ59LKb5Dmk3S2ePtfqaHDds2m9L4M89n4TS3lqCcqrmYTccodz2cTTZjbmhAa0TcM43ipa4yqIWpYvnlhYRODPksoYzVnUXFMBamkkymWsCm+uuLyl0OzcX02hcfK6rMpsvuKvU0qodkoIZKw3Dhh5dh8mOWg1N0TWLOpPixsiqAp5XRX31Am9LxKrbMJ9NmUOCLnNZs4g1lpmsHwRKNFq3/Y19kgWOMyl19k8bD3X1hYuPe84JKGYyCPEyhSza2IdDguwYGFTRGkEs5d058O12wqZcOuVOhzYzXNaJbj5RjI8mY0WzRaaXUV77Mp7vxKBAi4Wp+lnFC/1zBEX5YaIMCaTfVhYVME6na1jcnVesUAEC/0OSHvgtL3Bit/nrJuV2M0o5Vv9lts/0XVKhTxNEfLcflpN6NVV7MpVWvmjTyrDwubIlD3btYylSv/wydk/UEBAmWqr9Tw0groNuW4srDZe84zIA13gECwxmU8P5YZLZpmY2uCv+5ymh+jUGrwSVX9qFWrubZgYVME6sHNVGkjziBKrU4NdvF8AqVpBnbNpnxmNFv9lV6gWur5ldiIU2nptgHRX7dnIB8WM1qJPpthXmjNFMLCpgjUvWtzVpZb1qjyAn02JZZfTQemre3l0WyiHRtuM6J7esT+r0Q0WkZKClv4tV/oD3ekF0ej1T8sbGJQLc0mSrFxtuRQ9vo4ZrBSNQNrnjL6bMyhz9Xz2QzLok5LB6rdMBLWaLTgtgxP6HOJmk05GxMRfsWBFxY2RZAPELAJm/h1dPYMFpRfaSe6GoTj+QT07+UfDIsp80ePrcc9HVsL0sOj0arns1FEnR7EKd52L6p7zeY38v8Ow+0PKTU4ot7Wvo1EWNgUgxsgYBE2MaXNnt5B/M11j+Lbj6wJq96QXp4HKZ4TtsQB2hbZV4St/bt/Xocv3PtKQfqwLeqsuM+mtIgsE66wKTJAYLjXsMTxC9WKsGEcWNgUgRrUTcJGFzBxb+x9fc4+VYtX7TLWG9iukjUbGSAQY7T1aDaViJYqvsgChmtRZ/E+m2gDvaIyAQKqDcXtIKD/HzT5GsrkcM53HscdSzdZWmmn9F2fS25C0bB888LCpgjUzWPy2WQ9g1a88tWi0UzASv7A0Od41bmoYaZUB3Q8zch2vPQnNnxvtPLVFfd9NtHPL3+AQN6MZinHb0aL8IbT3sEMNu3tw3/9bqW1nTYqFSAwkM5i3jceLZjgMeWHhU0RuD4bw42bjaDZbNjdg90HBgLLT0phU6zPRj/BFrxgQk1qbebBgMq1ZpR/KldOzcb8PptqBgg4n1HX2ZQamm5C3cv27WqC/w8ycZXTdBVrI07PM2k+Z8f+AezpHcQ3/riq6PZ8+KfP4tEIQopfMeDAwqYI1A2fNWgeUXYPfueNT2H+N5cElq8e+EwJCxfSmeLz5jWb2NUCqJRmE6spvjLCNJvSNVK3nkqfH8uUFH5cTU6K3UEgSmBFOYVNqb9NkIlYXXWxTc3mBJ7esAefuLOjtIYdQrCwKQJ1PxrNaBFmUdbyAwIQhO94ULsAYCjG/mZqxh82mA2ks0ZTQ8mhz8Ow0ibMF1XedTbFajbD4bOxaDbZeAECUfotypxJCIF7Orbi4KBtc9vK+myKDbJRv0XoGq6iShz5sLApAndRp+EO0x+suIOWyucXZsXM/jNxhI38DFsv8c2HVuMTd3Rg+eZub92B/0RjODSbsL3RyilsihUGxdYWb51NOK4ZzVqO/54sj2bz/KZufOHeV3Dtg+F+ndL9ieb8cdcIFdMeDn12YGETg0oFCNhmS0EPjGfLmBj1qochrN1buvoAAPv7h7x1R3igw7DliNqXYTP4sCKizH5f3NKNf779OasgL3pAdH020ahk6LNtRPRrKV4hbSk7pB0H5es6dvcMhtYfb42R/ZlUwTjDEYZ+qMPCJiL6w2LaiDPKg2VD3cCFW4OEl1eqKSufNzhzwg2P9uUpeW80y7VFFGCb9/ZZ64i7Eefn7n4JT6ztdAVucD32dprqruybOsOPR91BwF+MZweBgJFcrzvohYN5n0l4Q0vV6oLyx3mthlNerGyHNCxsImJbVxAlGs1ehxQ2EdrgSde+x6lbDXZh0WjuoBCxTVGxemwiln/Od58IPBb+4i97Xa5Py9KG2K+Fjnh+RcxoEUOf/XVHeQ9QObe0KXUiEyTMwoRNZ88g7ly6yXgsSuQmKz9eUtVuQL2g3zdGYaPPkGMGk7nFFozo8iNI2JSo2USJRstvaeO33Wvfi686guO2dMJCn6P4HqJGLBVtRavw+YBdQCmTcNGLOiNotN5nIqBvI2p18QIEzN911PUnDardv/5yOZ7f1I1zjpmMmeNbPcd437PiYc0mBiafTTl2EIi3zqV0XJ9NaP322X28B9BmIiy9T/LmKtMx83cPbr7ymnqKj4Ayn//ilm6s3nHAXIelilxUM1rIJCPYjJZPD1r/VSlB7s9jM6MlDTfHht29APJ+JZ1Img3Ho3lgzSYiwjJLK4cZLShfXuEJOm43F4SRf59NmM/GXH6pwQnDMUFUddh8NkF9FzYgek018doVZsOKUv7f/fivAIBN119UcCyyZmPdiDO43KA6dAtVsGajyi+vIPfnCbI2pGWAQMIgbXtlOHbPQKGwiTIvjLtH4kiFNZuI6LeNLRotps/RHUyKvkWjzM5DiBKNFrQzdDEmvCfXdeLMby3BQDrvLLa1tyyhzyGmolIXdUbxXQQR5Wy9/Di7Q1gDBMIkcUg5UbQGPT1e20v7baK0MROi2ShBZNo+Kspvrdpcjci1RX/dhG8+tHrY6w2DhU1EbGYDfRZTaux+oclCpQe0zfM9hmajtqsJaTdFMaNZ6v7GH1Zhx/4BT+RYJaKQCssIPhZlQHI3KrVoNkUPiCFRcqby46yhspGVZRYfIGC/7igRa+59ZThciiCPmsc1o4XYEY3r6iKUrZ6nCvxsVq59cCVufWrj8FccAgubiOgDqT1AIK6wCao7nFJMOYD+wIcIG1f7Cbbd2xpq8pnYr81yQgTCN+K0m4PcRa+mSYZHszPn7+wZxE+efM1ggrSjlx9ndwjboKgm7dbtavz/64Ig4MbVTVdx/JFRosmiEuyzcdLDhI1txxBbnRxM4MDCJiI2zUZPMx2PcsMF3cDuYs8IbSvFTBz2AKnByG9SiOOzKWZtTjke07CQ8ijCMmyj0ijX/8X7XsH1D6/BS1v3GesOi8jSyw/aDTwMqxnNfS20rZzgSUaQRhzFjJYfkE3HzN+jEmlRZy6CZmN8nu31q3N4AagDC5sYxNn1OVpcvnlQdB/0SPdsfDNahGC0gnUJxfhsTCYT+4LV0h9UVYKprCgDkmq3aYPUKDP8wYzjo+r17f8V5dr0U+IsQLTVkA99jt4OINrOC95dNcwnhZluo7zGIIxI0WiZymk26pxqmNFqERY2EdHvVdMM06bZRPHjBG1XYzU16d/jmNEibMSpHsWCfdu077YBwTigDYNmo9pl9rkUnucnVLOJMPtuTiUBAANpn6D2lW+iVGFj+03yoc+W7WpCTICBGrmWHqSVqY1ATZOOUjX2KJGGaTmBCAv9NptPo5vRWLNxYGETEdssy7ZaOspCz8Cb0lVszMe9mkIwS1bvwhbDti5hPglF3owWfCFRH6qo7fWfEH8boOD8UXw2/nKC8gf9Pvn3FAW0EAyTAAAgAElEQVRrhUHoZaYrYEaLGiXmLydKqH+kc0LMaHrbSn29gm1vtDDNJq6wESH33aFIbGFDRDOJ6HEiWk1EK4noMzJ9PBEtJqL18nOcludqItpARGuJ6AIt/TQielUeu5nkVJuImojobpn+LBHN0vIslHWsJ6KFca8jKh7NxqhW578b1+EUMRPyD1q2GzuqueHyRR0478YnCtKLCX0e8vtsYgQnBPls4pq5bOT71XRMr9+cX6WbfTb2/EFKg6vZmA8XtC/ePl7RNBsbhYEh9t9d769An00u+LfRJzbxtAPt3gmoP0o0mnHyGKE56vp5uY1DKZpNBsB/CCHeDOAMAFcS0VwAVwFYIoSYA2CJ/B/y2AIAxwG4EMCPiSgpy7oFwBUA5si/C2X65QC6hRBHA7gJwA2yrPEArgVwOoD5AK7VhVol8JiLrAEChfkjRa/IfAVmNGFO9x8PO0dhmh1HeS20a0bz+2y07/E0m/BBS0+K+1K5sP4rRrOJqxkFhffm32cTEiCgZYpnRgs/nnEHRJMZS9favHjXlYVrLVHP8aPfq0HXcf3Da3DUlx4yHoui2fz+5TcAhJsRbRvvBqH6NOgauw8O4ZYnCqMURyqxhY0QYocQ4gX5vQfAagDTAVwMYJE8bRGAS+T3iwHcJYQYFEK8DmADgPlENBVAuxBiqXB6/Q5fHlXWvQDOk1rPBQAWCyG6hBDdABYjL6Aqgi2yxjboeLazsUTm+FEDcpRbMtYOAu6OziHCRpnR/D6bCA+0H70M21oKrwM+Wvl+clEHVEv7TYNGlOvPr5I3542u2RSvpehppntDXZOpb8PCuqO8v8nmx/SkGw7rk4ugOn7y5GuRdp0OMnG+vG0/ACAVakYrTCvGZxP0TF7z21dxw5/WYOnGvdayRgJl8dlI89YpAJ4FMEUIsQNwBBKAyfK06QC2atm2ybTp8rs/3ZNHCJEBsB/AhJCyTG27gog6iKijs7Mz3gXCHnVkjUaz+HT0fP6jYT6HsHZGJdJGnPKzcHZtH1DcMgy7S9sWw3rWN0W4uOljWwrSVBXmSYL+3TKYmzSvCE5oRWFwRYQfyyNswqVt2iAxbGZC5aC3RVj6D0fbrqYIYWNADyqwTgQsE0Bb/jDt0qTZRPLB5sLPVdvgDMV4lXs9UrKwIaJRAO4D8FkhhHk3QHmqIU2EpMfN400U4lYhxDwhxLxJkyaFNC8cNZA0JCnCdjXhM8woMzFTetDENszcYao/iLDBXD244aHPFmGj6gkQzEYzmpYWNjDNntgWeMyNCrJqpIFFBOYvxoRZYIJUmk1YNJonQCB8ULJtq2JqnrqXjVpPgAbqLzeo34oRNibBq1+v7d5S4eU6Xq3TNpEIPl6qZmPbmSLG/LAuKUnYEFEDHEHzSyHE/TJ5lzSNQX7ulunbAMzUss8A8IZMn2FI9+QhohSAMQC6QsqqGOpZSSUS5lmg9qAbj0ewX7s3ZcHh4MHSf3rQQxkWdaSOhD3QKn/hos480c1o+afXphHaNkD15zVdg0rL5ETo4sTIb7U01Ov/rqOESVjYeBDFmNFswiYsitLUtVmPoPKeUGw0WpSFn36CzK0m+g0vZ4uyldC0Mc3W8o0+mwjCxt2uJuDcoM1ti2HF9v248pcvVGQro3JTSjQaAfgZgNVCiBu1Qw8CWCi/LwTwOy19gYwwmw0nEOA5aWrrIaIzZJmX+fKosj4I4DHp13kEwPlENE4GBpwv0yqGeihSSYq1XU20B8/5LHzfe2EZpuN6GWH1F+bPD8ZBqPxhA17UdTZB9n5btFdY+8IGzTBHcZQZuvo9jMIwoB4dd1FoQSRf/owg9IHItl1NHDNaWIBAuBnNfJ4nv+e3Nbc9r1kVHksXEY1mui+9v405f7/cFDZswI+7I4g7dww4Nejtt8Xw2btfwh9f3YHX9xyMX8gwUcorBs4C8BEArxLRSzLtSwCuB3APEV0OYAuASwFACLGSiO4BsApOJNuVQgg1HfkUgJ8DaAHwsPwDHGF2JxFtgKPRLJBldRHR1wE8L8/7mhCiq4RrsaJumMZkAj25DIQQHjuv10xWmN8jbIIWuFk0HlsAgf+7jmkgypcvP8Ps566wCTajRRU2XsdvYTs8bYswg3bOCz7HG9yRQzKRNB6LY2qJsnBQr1snis/G0z+W6X0szUYJG8sEqSBAIII/xBahqddrKkJfBGuPqjMJWvtvc3AwW3Cu3i7AbL72L3UwvaLA9twmAgJHiiGKv7VWiC1shBBPI3hKdl5AnusAXGdI7wBwvCF9AFJYGY7dBuC2qO0tFXWzppL5HYCT2tXbtuaIotkEPRAqNVLUTdCDH6KRqCNRNJuCAbMIJ6y/LP93owksIF/BeSGaTVgZ2QAty1t24bmmwm0PvH/2HaW/bBvAess3ObJtAjC43zy/je/Ygf60tV3e39ksbVyfjaEzBrVXUVgFuUmz8Qhqcz41CfNfQ8bSdv1e2dUzgKljCgNT8tvVmNue3008vqRIuH6fgIlqgCCsBryDQER0nw1QOOjanKGeGWagBuN8+u+9fIBAuDDyf9cJ9dnIch9fszvwnLxm4xswte9WzQaGaDRbYIWWFDbY5vvONOjomk3wDNaGWbMx1+NBaXQB0/uo29XYZ/fh7QubBNm0Nn8/XfmrF0LL1ct2vpvbHOaGGsjo7z0qTmv05wnS6lSyv+tsbdf7o8/gLwLsZjRXKylBLTGZpnXivu6kErCwiYiaOTSmnC7z/7i27Wr0G9a6A25AepSbMmjAC9cKnM+NIXZfNbsLiqiy1RHUlrCIJ6f88AHDLSfEZOHZ6t43umUCBJ9O0OsVAO+MMthnU1gXUHwou3XANWk2Fs0zbPbt2S7Gd0w3cUUxowUtyFX3lakIvQ6b/9vos7EI6rDtcNKeIJZwX5gpOME5J/ieBLQtoMpgAwuKVKzWq+ZNsLCJSF6zMe8AbN2uxqL5OHUEmxSAMPMb0CSF4MIzZxnPCVt9H+W10spMUajZ2AfbwraY89gWdUbRzmyDir8Mb2BHUNnB7fNoNhbre1CAQOjL04owoxk1G4swzZuxCsvLWSYCbhkR7tdg7QeB9Q8Wo9kYAwSE57/CuoOvzxNdavLBau0J0mzCtEZA2wKqhHU2yhQXFCZeS5uAsrCJiHrwUskAzaYYM1rADWDzGQTLC4H2lgYAQFuT2Q0XaoKK8JKrfDSarxH6YBsxQCDIPFOsKcd7XnAZepv91xc1AMHJW5gWJbxWnVIYIGDHY0a0mQiNAQLh9YUNiDZ/Wr6OgPs5F962sLyAdxC2vcvHaEbz+OMK84QJw2J8Nn1DmYLjep1BWlnCICjiErS1D2s2dUxD0qzZqJszlSDrauzgTQnNdYaF3gLOYEbuuWbC19nY2+aus4kw4AeR319Ne5Atg7WeFGXRqekUz6AV4msLKl7NXO2LOoP6zqkzKEAgzGdj2+ZIr9Ic+qxdn+H+Cgt9zkTom6B2+fNH8ev4GfJoF5YFrSZrgi1oJ2TvNVtAj37NA+kgn43wfPpRv3spwia/bCFfhidkvIaW37CwiYi6WRukZuO/AdX/jamEdddn295o/qPqhgmLRnMHrBJ8NkCwMAnSbPSzo6rsgT4bi0YYrp0FD5pDYZqNZUBa9cYBbN/XH3jcK2zMbXMj+Xx9p8qjEENaMdsg2XcQCD5u6tqwvvmHeTO1Y6aWR5tghe1goCYJjcmE1a9hGrBt/kBPCL7vBP2YLfDimQ3mvc3C/IhA3gQ2WIbtajwTOIugrBYsbCKwtasPS1Y7kVqpRGFEFZC/WRuSCWOEjW0PMCA4esWq2UCAQKEz5LDZk34pQRFT5VhnoxroWZluGew95Yc8k2F+Fb3NBT4by4D06vb8q5zNW83bZ+9BWmGUXay9CyMLj3vWEFkCBML8WcWE6/955U7c3ZHfmjCK1hI4wVIBCiHCprkhEctnY3sfTpggt7VdP37nss3GNrlmtICmq4jkcgQIePySAYKn2pSyqPOQ4fybnnJXGqt1NoXrNfLCxnZzBr610CKEwm6coJ2FTfUbanC/Be0QkI9G8x63vSLA00b56bWHhw+G3rDlMIEZPEPXZ45h6ylMM39b4IdXszO3LR9cYTa9hmH1aWlFpo0BAlpbjQNuLrBsva90U+R9L2wLPM+T7vntws8xPROqzpbGpNVnY9zVw7JrdNh2OGFBJYC3L981d4qxTe6C1SDNRn6mS9BsXH+gdm95I+lqR9iwZhOBfs0mq9bZBIU+N0bZzsYyA/avwbIJmyhRTeGRXFo7LeYO/4BWjGbjvl5ZN2tZ6s5FLD//xsfgQQsoHNRsEVc2n1I0zca8cDDslcim+m33VRzNxg0QsOx6ofdha6N3jhr0s0TZfNbVbAzHh7JZJBOExlQi1oJW/be2XZ//vrFqNvL80U2p2KHPKrUknw0Kn0s2o40QVIBAgc9GaTYp80ad+s0eOMuTN51/u/O8Gc3cJgEtQCDgnPAFkbpmEx6vH/bytMjrbHQBYjF1eAVhcJmuycLQhrBotCCTnql95j2y9H/MbQvaVy6KZmPz2ehpOw8MhOY3a27BA2I24L5oaUwGnqcTpMGazjH/bgKNyQSSZA66CarLVKdNcyuIRtN+qzCfTVtTyjMZ9Z4TLMj1cv1vv42DR7PxBAiwsKlblGbjfzhWvOG8XaEplTDOMKMECKibz6+hRNFsiCj0nRxhZogoAiPIFFTMdjX56zCbN2yaQ9TtavxCYyiTQ3ODeecHW7SXLaJKr8s26BZGMMoFjSH9ZntJmd7m3QcGC47rM15TPWEbrAZpNi0NXmETJfQ5cC1OgD9L1dmYSiCZML/WQ8eo2XgEbSHhZrRwE5y6ttamZLBmowJ7gq5d9nl/QOh0MejXkq5Rnw0LmyJJJtUrfr0/onq9bFMqaXxwo5gUVLr/FbXqZg/bU03KwECTTPRoNJtm4y1H/89mRjPtLm0zE0VdoJbzXINP2GRzrumnwBFsNTNZBp2Qet30rLnv1PXu7ikUEqb22cyMvYOFg5ZusgwTNqb3wXiETVY3o3mFTdDP4vmdLetsTNc2mMmhIZlwXusR4/UKtnVC6ngyQYZoNFu/O2ltjSnPtjqmc2wh8YuWbo4tFPI+m3x+/beM+yr1SsDCpkjcaLSAG6ilMWkNw7SZFPyqjTo7SCPKCoEEOQG0wQ++3bkOBAcI5H020aLawo4HaRPm7WAK22Au2zG5AIX9m87k3Nm4f1CyaS76T2nbzbvYSD69Lbt7Ck1g/vJtfofegUJhY7s+dXwwXVi4/tsMZfLfC8xoIfdlY8BSAX9eo88mk0NTRM3Gtt2OKbt6JhqThdFuNjOaqq+1MYkBq8/G3Gb9WQvblzAMVYL+fOu/ZTki3coFC5siCTKjKSK9ydPy4AWa0YLMFQJIUnjoc5x9y7zp5mg0767H4XWo495Zo1aUIXuUHQSEcDZUzC+4LdRs1AAZtoOACZtmEynKUPVdyOy5+2AaJmx77unHTdqJzZSk2j+UzYXO7sPepRNmRkslnfvSZp41PTPprGNGSyXJem+ZJkG29+GoLE75/naF+z1UcaNCfDbqdrBZMoDgnT9sKK1JF1z6b2WL4htOWNgUiRrQgib4qYTZZzMUEn6rCJqFqFQhgp3YttDnKC8eA4IDBALX2UTYV01hmsXaBlM9aV//kLFcdU6D3B/O3/+DmZxr+ilcZxO+0aaObbFu0ICs6vSvNNfbErQKPR9Sbx5w9fvKVL9t0NTDwv2LCz3XpgkyZdK66MSpgeUCzvUliZxdNQLOyW/xb35mGpKEBNk1G9OgqvepWfMJ0Wz0SUTI794aImxsOwh49jMr8eXQ2QDN5r0/fLqkcssJC5siUXuQBWkZDcmEMbokirAJWvNg238rJwSSCQpdiR4aIKAdsu+N5m+b3o7AKmTewhBg6zbwWtLWrn5juf7dHfyDQzqbN6OZdhBoUOHshvZ7zGhGzcY+i1R1dvelfenhggLID+RB67f0Acu0oaNtkNb39fILPN1Pov/uKujgRx86xfF3BFSh3qWSoGBhE6bZDCnNJkFGYaSXaZok6ULAZCYMWxtnDRCQaaOakhhIF2qF+jlB/ZPNCfe+jLsZpyo6HeCzAeyTwOGChU2RjG11hI3u/Jt11R/d4w1JMms2IeG3CnXDFKr0utnJbMpxX6IUcF+F+WyCIlkUQgh31hv2igHrKu9c4cBic+IKIdCUSqClIel5YZeOu1VQgM9mKJM3o5l2EMi/EM8088+6fjqbMArqY/X7dR8cMqYDwQv7MtqAaBJ23kEmfK2J6efpH8q6kXp+R7eqr7kh4Zss5ZzJDRESFL5uLJUI12yC1iABMhotKX02MSZwA0NZjJLmKZPmqPq2uSFRsH7M47MJCfhRgSemvlf3RlD/pHMCbU2lCRslbTIh94EpcKQasLApkqMmjQKQv9l0ITJ7YhtSAfs4RXmfuhqMCle52yOiEkShqzrDfDbZnHBfUWAaMIeyubxm4ytH/8+68C5TOLDYtmMRcK6tvSWFHoMDXC8vH96sDxQ55EQ+gso/Q87khKsRmX4W5aROUFBotL6+IXxA7eobCnyRW9D+WCpvc0PC2D/6fWUqQ197Y7p3BtI5jGttdL/r5Nx+Tfo2MxWuAKaQNTA5ITWbEAe/6jPTYKtCn4N8Nv42+elPZzG6OYVkggKEQf76/JMofWPdMI27LUSYqd86WKvLT4KC7h0b7g4MupbMwqb++dD8me5MSd1A+gP6d6dMR0OCjA/Of/1upfs96MF7dft+93vQ9uxBYZi20Ocwc0rGI2wKz+uT72kf3ZQqaZ2NElRebSZ/PGg9AxHQ3tyAAwNmzUY9qE0pFXGWb+PTG/YAAB56dadzzBAgkPfDmTSbHJoako4vztT3WnfYFsQOZXIe045X2Jjt/ioKrCmVNLZvyGJGu3d5fmsZf+5MNoehbA5jpGk4yKfU0pD0aubZvLBJEoUuJFaaTaD2k80HT/j7byjrhD4H+WwGs/n2ms1ojvm0KZWwaDaFyxXUsaaU+XdXv2mbFBYmv406J9DakBVobXDGk6Gs+fe3oSZwYffSL5dtiVV2uWFhUwTHTBntmqvUjEK/iRtTCTQkEwXaQc+A31ZfePft2N+PNTt78ufoTnt9r6MA+3FShj4H+RnDfDbZXA7NAaHBANAnr7G9pQFC+H0u3naEkXYHFrP5Iyj0mWTdQcJGDVgmzabTt4bFtINAMsRMNpjJoimVQHND0ICl+2yCTWHKNr9zf17T8Dh1AzSbtHZtxk1GZb62xqTVFOPPrwbI8W2Nxjao81saCzUb1WeJsEgzad4NC13WB3n/S8iUVhlkhrO978YxESbR3JA0roVRv5dfmOrHmhqSoetsWuXk0yRswjY5BRyzpRL0ccxo/UNZt92ZEA33R49vKLrsSsDCJgJve9MkAMBlZ87KD0zy99QHoBc2dyOVLLQvH/CZf0wPxsbOg4HnePd4Ms+yyBL6HBTtpMpvbjCbmQCgT6rh6sHw7qKsm/iC61f1qPbqbXfzG563TDaHVDKB0c1RzGiFQQATRjkD6fXvP8HThnydwg1nN2mF93Rsw479AxjVlDKaIzyRfCFO8CMntQEA1u3KTyjS2bxGaRM2TalkqM+mrSkVqB0p/NnVAJk3o/l8NqpfU97BOJPLuabHRIg/JieFkmnRpP/6TPWrAIFkwrw3mj5Am0KfB9JZtDQ6mo0pQEDV3SY1dpOJsylgX7b8ok6p2RjW2qj2BQqbdBbtLUqzKd6MdtYNj2FP75C8lnz+Ut78WUlY2ETgW+8/AU9+/hwkEuQ6k9WNqpvRrrnozWhIJgpUejVYf+HCYwAA//Gblwvq+O/fO2a2f37LLABeVTitmS0OGm5qIeAKwaBbVp/ZmTYdVIOeyXas6pzc3gQA2NLV5x7zCEKLZpOfhZnzGGfu0szV3twQGCCQ9gkbj7NU/j6TRjttN2k2+QCB4La3NqWMb2SM5uTP4fDxrQCA3kFvOO6sCY4QiqTZhPgCRzWljBFtrY1JTB3TDKDwdx8Ycs5XQS+BZjTfQuWsptk0GjR5PX8qQUiGhC7rdZo0m8ako9mYQ5u9pj0//eksWlzNprCNqs9HNSULNPZMNlzYqOsJ89moZzjovuofyqK9OZ5mI4RAlxZwkjFoyb/8+OlFlVlpWNhEYPrYFhwhB4U2GX1yUA48uvp8xIQ2NCSpYMBWD1Fbo3nhVsemLqzb1QsA7gx4MOOdSU4c5QyW+/oK15o40WhqjU/QQx0cuZPN5TUb08ChhOXx08YA8EZV2d4ZoqNUfW/IariwyWRzSCUsmk1WCZvCIAclZJWvrcBcos2+w94G2daU8ggKPb/pu6d9OYHRzdLcogmsjBaNNBigeaazeUFqfOeLEjbNqYIBSwiB/nTWDY7w5+5LO22xBQi0+sxo+uSnMUBrAPIBAslksGbTN5R1dzn3C/MhuV1Nc0PCaAY76OtLP8qM5mg2hflV3ypTmHdPMU2jDNGqlLZvMqOpfgk2o+Xc+6LYnZ/9gllvo7rWtxw1AfOOGOekWbTe4YCFTZGoweGgHICVWeQ7HzwRAGQ0mvfG2Sdn5DPGtRjLXLXjgPvdDaXUHuDBdA7HHDYaALDyjQPwkxOOGc0RdOabVp95+QfcdC6XDxAwCKs9UrjMHO+0f8BjK49mRsvmhHvcG2qdz3/Xc1sx66o/Yr+2HiWTdTQP5bMxCTRlQmlOFYY3qwFU+SX85o7BdA7NqWTg7Fmxee9BPLWus8Avo0xrjalCjVbVl84KjJYzWH2QODiYydvsA3431d7WxqTRzOiaghoLhc1QNgchELgvnPIfjWsLMKMpn01DsmCBpNojsCmVCGz7YNrRTBqSCQwGXV86i/FtTcb61Q4CowImGvr2PKa+d81oAZqNrhUC3t/ADTppMIecD2VySCXIzWsyow2GmNGyOYGhTM5dt1esZrPEt72Naq8QAn94ZQcAJ1Lwb0+aBgA4aJgoDTcsbIpE3VwqcuwL974CIP9Aj2pKIZ0VnptPaQKzJrbhQ/MPdwc+AFi7s8cTqZa34Tv5//2el9CfzuL46e1IJQib9nh9Oxt29+DFLfuQJDIGJwDAU+s6cetTG93/0xnvzZ/N6ppN4YOxW4bPzpSmIP3a/GHGQfT7Biu3LdmcGw32p5VOxNiOA/nFm2kZmjy62enXsLUkTQafjRrA1IDq97sMZrJuYEfhgtX8//ukALxjqfetjM+/3uWU39pgFFbXPrgCgGPbH92Ucl8xDQB7egcxXU5AgrSD6x5aDQAY3dxgNjNqfgd/3ygzmRJo/jr++fbnAQATpV9r0dJNnuP9mvm0dzCjbY2Sc/1cTalkYNt7BjMY3ZxCcypp1Cz6hjLY1t0P6f7xCGIhBA4OZdDckMTo5gbjvm892m9pDGwZyqKlIYHmgGg0NcC7u0sY1sI1BbzmXQUvqLwHDVqZEl6m/lHPd1tTCgkq3c+i2r5i+wFs1MYINV75g5SqAQubIlE22l8s24Ite/O+C/W2PqW9rNmZ10AeetWZaYxvbcSEtkbs6xtyb+ALvv+Up3y/w/j+F7YDAHoGMmhvaSiY4b3zxqcwlM0hkZC7F2QKH4w/vPKG5/9BX5hln1yPAJiFzZqdPWhKJTClvVm2TRM22gPaExLP/4Y2yHrXpuQwSZoIFUkt0sExo5GrGZj8NmogaWs0+Gy0AaW1MelqpPrxplTCqBV+6YFX3e/flpqr8lUofiNDiw9rb/bY0BX3dDjHh7ICY9vyv99QJod9fWlMGtWMtsakceaut8fRnAp/m+/9eR0AYLTBjKYEvPK1BZkhD5O/64tb9nnS1eB/WHsz0lnhCuoB6QtR7Qra9bh3wBE2LY1Jo5npTyucycUu+WoEXdjs7hnEQDqHIya0uv4ovylI/ZbJBBUECPQNZbCrZwDTxraguSFpnKRs6epDc0MCE+RExLtLQs69PmPYdSavdQEoMLHu0tY3mQJLlMbd0pAs0IrX7erBktW7CvLodPV6oyyV33Jbd58nXbUv6LcfTljYFImKwgHyTn3AuSkB4JSZjo1Umde2dffhz6ucG6e9pQFjWxuQE8E/vpqd+x+sC487LDAiCnAWPjqbgBY+VMoJqfD4SXIC+/vTmCwd6KYZ6BNrd+PcYya7A0yQZnOgP/iGPv+mvFDt12Z6QxmB9pYGV7sBvL6DdFYglUygXT40/si+gXQWn7v7JQD5GbzHZyOvpymVRGtjqmAG6q6jMWiFv35uKwAnsONvT5wm224OtDhhxhis1SLN/Agh5FZGTh17DzqDxaTRTZg4ugl7egtfM6DP5kc1pQoEJQBs63aE+IS2RmRywjMLV21Vk4Sg0HFlovVzcCiDplQCc6Y4x9fK0PyegYw7iB0+vhUbdvcG5h/VlEJLg/mdLyrw5D/Pf5PTXu0cFbI+pb3ZnQj5tRs1Wx/b0lDgV9m5fwBCOO0L8tl09w1hQlsTWhoL/SaDrjBIBbz+IIumVNLVHPy/zV/WO+u7WhuT6BvKFpTx0tZuWX7SMTNqwvDSnyzF5Ys6QrWdnz79ure8LftwwlcfwUvbvBOG0SxsRgZKwOhMG9uMZILcfby++mBeICUT5Dpjuw2OfkDTbOTN3phM4GNnzcZbjp6ItqZgJ/lAOouUIRIOALb6Zjv3duQX+t3y5GsQwjGRJRNUMDu/+v5XsKd3CMdNa3eFjW6ScENvG5OBg9nT8sEDgJNmjPEEOaSzjmYxpiVvWhzwROLl3Gg0oNAc8MLmbtdsoKKq9D7oG8q6L+Aa1ZT02K4fX7MbO/f3oymVQKPBjKZIJQjNDQkQ5YMlAK+Nf9aENuzvTxsDOABgTGuDE7kl86hZfXtLChNHmYWN7p9Tuwur/P5opAlSO9TbpAbvKXIi4dcKzzp6Ak45fCzGtjbirKPzzmTFvoNptLc0uNFs+/rSWLPzAJ59vcs1u+9in/oAABkwSURBVM6d1o5t3f1GQdg7kEFbU8qJBjOYkr7yW8fE+NY5ztICXZArYTNpdJM7oPsnWmt29KC1MYkxBhOmyj95dLOsv1DY3P/CduzvT7sTHU/fpZ1tfBoCXvN+oD+D9hZHkCaoUBAq5fwf5x/u9oXOx37eAQBoSBGafJrNfvk7Bd1LPQNpd5Kh2L6vHz0DGdy33LGEfOk9xwKAdbwZTljYxOC/3jsXgNnklEomMHVMs6vOrpezPuWoU/6aP766o2DBIeA1ow1mnEVbaq3I6KYUegd157l3UG1IJtB9MF1gY1aCb5ocNNbtdmao+/vT+M4ja912TWhrxN5eryBQs/sjJ41yB5gHXsqb5fqGMiByZqD7A0KTP/yzZ93vsye2eW58NUPUNTm9DQcG0hjT0uCuRyjQbLR8R8qthFQ7nlrXiftf2OaaSdo07WAwk8VHf/48dh0YdBYO+sxoent27B8AyZXyNz/mLJB7Y18/jv3KnwAA7znhMDdacdNer2BXIdcfOeMIj19oh3TOnzh9LA5rb8ZfX9vrqf/+F7a5/faRM47QZtBOu37y5Eac+vXFAIB/f9eb3Eg8fdD3azb7fL9P72DWNU+2NKQKwuo7ewcxeXQTJo928m/o7MXnf+P4KPfIe/c1eX/ftHidJ68QwtWATAti9Xt32lin/D6DZjNpVJPmd8h48t//4nacMH0MGhLewXook8PSjXud/KObMKaloeDe3CrD93sHM+6eerom0TeUQWtjyom2M2gYBwbSaG9uABHJSEXvfakmAkdMcPycPYPe+pU59pgp7WhM5vee0ycdG3b34ranX8c7vveEp/+WbXT8hJ98+1EA8u/YAhwBNXtiG654m3NMTRRe9mk81YCFTQzecexkAMBiaR471meGmDGuBVvlzCMnBE6eORY3LzgZQN5R/Z1H1mLBrUsBwGNCUoEGu3sG3NmQethGNac8A/FebWb7nhOmouvgIJZu3IsbHlnjpn/o1mVYteMAPnbWbDxz1Tvc9gHeG7sxlSiYYW/XZk9zp7W7gvDlrfkb90ePb4AQzuLJTsNrifUH+PZ//huMbW10392yYXcvlm3sQmuT12expSvv4NzX5wgbNSiufCO/pc+BgbQ7QwSA46a1A3DMXwPpLC677Tns6R1yZ3dtjflBQddwBBxzhj5Q6xFx+pYvALB+Vw8uuvkv7iLJS06ejqMnjypo38tb96GzZxD/es5RGN3c4PELDWVyGN2UwuETWt3f44sy2AQA/v2e/Fqsq99zbH7AlYPWD5bkB/eFb5nlDmqvSy1vY2cvPnDLXwE4E4lxrQ3YvDffr89u3IuXt+5Dq5xAtDUlC0KPO3sGMWl0Ew4b04zD2puxflev29aPnz0bAFwT2+Yur5D90gMrnIlSW6NjRvMJm6Ovedj9PrZFRQo69T+/qQtfuM/pi8ntTUa/g1oV39yQxPi2RmzSru3u57fg+4+ud/KPbsK4tkbs60/nd98+OISv/G6Fe76KCNM1v+6+NEY1pdDamCoIMwaksJH5TGvAXtq6D22NSXeysc+34/fk0U248LjDMHdau/R7OffFe2/OvxLgH3/6LL72h1XY2HkQr2xz7qtsTuATdzj3/LvmTsGar1+IS+fNcPNkcsIVMAAwVt77//vkRtcMWi3qWtgQ0YVEtJaINhDRVcNV7+HS5KT4zSfP9ByfNrYFyzd3Y/u+fuzYN4C3HDUBJPXqWXJQAIDX5K4Bn37HHDdtzuRRmD62BQ+v2OkOjCooYef+Aazf3YtZV/0Ruw8MuO+c/9b7T8C/nnOU62j9hYyY2t+fdmd4Zx3ttCGZIPzvk05kmnpAGlMJnHvMZEwY1egxub0uH+Br/3YuZk9sQyJBGN/WiPmzxgMAlr621x1wj5s2Bi9u7faY0m5/5nW86cvOoPKl9xyLc4+d7Pqdtnb14cM/dWbuT6ztxLfef4K7lkgtGhVC4PU9B9HWmHIHuW//aa3bLx9flBc0f/nCua7P5rnXu9woQSC/i4AzoDoDhy5Y/rxyJya3N+OJtZ344ZL1ODiY8WgBP/6nUwEA//uR0wAA77rpKc/rAk49YhxmTWjF+LZGXPPACtzyxGv4xbLNuPh/ngGQ17h0M+dT6zrdgUhpjPe/uN1oBm1tTBUMuCoP4Piqjpzo1KGEzX0v5AXklPZmTB/X4tkq5x9uXQbA2RzUqSNZMKi+un2/+5scPr4VW7v68LA0/73/VGeA++TbjwSQ1+AAYG/vIH79nLMf1+jmBrT4ylavUAeAT583Bw1J575UAulrv1/lHm9KJd3f9UP/tww/e/p1DGVyrjB525sm4a1zJmLdrl7XxPrkuk43/9jWBkxoa4QQeVPSd/+8Fk+sdc75/j+c7N4fajX+C1u68cdXduCEGWPQZggq+cpvV2DF9gPuvrdTxzS7mqpiY2cvZo5vxYxxzvOuO+47ewaxY/8A5s1yzJYzx7fi9T2Ohhi0t6Ga4D0nox8BZ9LYLH0+OtPHepdYqImI0iCrRd0KGyJKAvgfAO8GMBfAh4ho7nDUnUgQll19nvv/aJ8DXnHW9Y8hkxPuzBrIzzR0Zk10TDDTx7YgkSAcP70dT6ztxNu/8wQAuGag+bPHu3nmf3MJfrPcMXEde9hoEBE6vvxOAI6z+i/rO7Fhd34mc+4xjjb2JjkT/elfNrrC6d5Pnom2phQOa2/Gul297sP6koxOuuTk6W45b546Gi9u7cadSzfhr685vphPnD0b7zh2MtJZgSWrd2Eok0Mmm8PvNHPbQrkzgnqwb3p0nbt+4aITp+JD8w9Hx5ffiRNnjMGK7Y6vYvbVDwFwzDet2oLYB2W5qzSfxpT2ZlegA8CD2oCmrn1UcwO6Djo7L3/6rhfd4+mscNbQ5AS+t3gdzv724+5M9GNnzcbZ0qfg92koxrc2gojcqLob/rQGX/5tfuZ8mszX0pDEso1dWPraXnT1Dbk+prOOnuie+7ZvP44HX37DXej4XvmCMjVbffDlNyCEs0aDCLju744HkPdX3ffCNgghPJFlsya2YdKoJmzo7MUr2/Z5zKzKJNze3IDOnkH0DWWwfV+/609Rg+T0cS14blN+oFMQEU6fPR6Prd6NoUwOi1ft8uzx1z+UxVGTRmF/fxqr5XqyR7VIq8+eNwdEhNbGJHoHMshkc54NaQF4lgp8/Q+rcPX9+SjBj52V1+pekNf86GpnDconzp4NInIF5s79A8jmBH75rCMI3/nmybjklOnucRW08f4fOxrh7AltmNLejP50FsvkpG3L3j7cucyZzKleHNfW6DEN/2nFTrzWeRDnz53itk2ZV4UQbgTq3KmOJv7mqe1Yt7MXg5ks3jy1HUfJhd06i5Zuwk2L1+FD/+dMEj759qPcoJ5zjpnkOXe6bz3fXVecgV99/PTAcWq4iPcu0tpgPoANQoiNAEBEdwG4GMCq0FxlQp/J+bnqwmPdkGUA+BtNSADATy+bh4/f4TX//OUL57pq+aWnzcQjK/MPpBJGX3nvXKx644D70Ks1H5OlTX7iqCb83SnT8cCL27Fs43OYLfM99OmzkZCj1zcuOQ4fuGUpvvHH1W75M+Xs67PvehN+s3wbFt72nKe947SHfWxLI9JZga9oa4OuuWiuG+r5ubtfxufu9m7H8/t/e6u7I/NHzjgC//37Vbj/he1oSBI+cOoMfO/vT3LPPedNk3DzYxtw7nefcNO+/w+OCfLbHzwRX7j3FXzpgVc9YclnHjnBGKwBAP932Tw3LP2w9iZs39fvCjHFly96M3YdGMD//cWJ8Ok6OIS//1/HxPn+U/OCVh/0FPf8y5lu35ra8IvLT3d/h5NmjsWT6zrdAUOZY+fPHu/OjnfsH8Cnf+0Iwq9dfBwuO3MWAODYw5yB6ZYnXsMtT7wGALj63cfin04/AkDe1LpsYxeu/NUL6NjkRDupSK/2lgZs7erH+370jNu2q999LI6f7uwKccrhjkCc+1+PeNr/jUscYXbmURPwwIvOPf35C47xnPO2N03Cdx5Z62qxikmjm/Dek6aiIZHAtQ+uxLt/8BfP8cvOPMLtOwKwaOlmLNLWMb3+rfc45fhC45XWduPfnwQicu9f/317zUWOIFUmzvf+8Gl87CzH/HfuMZPwww85GquaDP7X71Z61rxdduYRODCQwXUPrcaCW5fhkpOn4bcvebUywDGDr9nZg7d/53FcfNI016/31jmTMLq5Ae3NKVz/8BqMlmZw5c85ceZYAM4k5tanNuKYL//JbdsNHzgRHZu78cm3H4V/+9UL+MMrO/CDJY42d/z0dlz17mPddrzj2Cm471NvwaY9B/Efv3kZJ8lyFVPHtGDqGPOC8uGkbjUbANMBbNX+3ybTho01X78QK//7goL0ye3N7owTAE72/fjvnDsFn5E36rfefwKOnDQKM8e3uuaCd86dgveccBgAJ+RZDVbJBOGeT56JezWz3ZGT2jC1Pa8en3J4vi5lUjlSmymddsR4/M8/nur+P7a1wZ0VTx/bgg+fcbinrWqvNsVHz/L+r9o5pb0Zb9Vm6Hr+E2aMcf9PJRP43DudATCdFTj/uCme888/7jBP27/9gRPdxaSXnjbDc32AM+D86hP5PaC+d+lJ+MCpeRu2PutTGorOpusvwsfPPhLXXDQXX7zw2ILjStADzixe7XEGODZzXdu8+j3e/GcdPQFvnZPvk/ef4r09Z2plPf6f5+CE6WM8xy86Yar7Xb33ROc0TdNKJRPuLPqhV3diKJvDlecehSvPPRoA8DbDtSvzHgBPOxVXvftYHD3Z0YT/ft5MfPmiN2PB38x0y1T86zlHuQO64qhJbXj+mndi8uhmjGtrLNAKrzz3KFerApx7XudXnzjd1VRTyYQb3KI4blq7a8pT2rrOw58529MWxW3POBOK/7zgGLdPkwnCv7ztSE/+e/7lTExub8bRk0e5dStB09yQwCOffZv7XCsNZfPePtz82AY0JhP4wYKT3XtD3XfXPLACNy5eh5aGJJ675jx3gvD2Yya5i0MB4ILjDsO8WePdAICvXXw8Jo5qxNQxzbjx70/CA/96VsH1nnbEOLz/1Ol4+ovnupp8rUG18srQYiGiSwFcIIT4uPz/IwDmCyH+n++8KwBcAQCHH374aZs3by4oqxLkcgK/f+UNzJk8GnOl41pHCIGBdM44iERha1cfdvcMegYcVe7tz2xCQ5Jw+zOb8NX3HefuWq2zt3cQv1m+De87aRqm+Wy8mazzJsZ0VgRqDKveOIAjJ7V5fAcAsGnPQXznkbVIJAhfuOAY1zTo57E1u9AzkMHFJxfOD3buH8C9y7eiP53FZ9/5Jo9Numcgjc17+/D4mt04fsaYwAdr8apdOGnGGFfrUwxmshAC6NjU7fqx/Hzr4dV4+NWd+MXlp+NwzcemX/v3/rwW33r/CQXlA06o9/rdPbjk5OkerRBwgjI2dh7E85u68PGzZ7san05nzyD29w+5A70inc2hZyCDezq24pSZY3H6kRMK8m7t6sPZ334cJ80Yg7v/5UzP79PZM4g/vPIGfvjYBlw6bwY+f/4xSGl9u78vjdv/+jpOOXwcmlIJzDtinOd4GEOZHJZv7kaCgIdX7MRV7z7WU3c6m8Pe3iHc9fwWvPfEaQXCaSCdddfrTG7PR8Dp17W1uw+b9/ahMZnAJadM9/hNszmBN/b1Y0yrYw48apK3fMBZaPmX9Xuwt3cQV7ztyILffjCTxX3Lt+P46e04cUZ+UrN8czfue2EbDmtvxntPnIpxrY2e31UIgRsXr8P0sS0Y29qIoyeP8lxf31AG9y3fhlU7DuCICW0455hJrqaqWLF9P7Z19+Pw8a1489TRBW1T47Tpfh0OiGi5EGJeSWXUsbA5E8BXhRAXyP+vBgAhxLeC8sybN090dHQEHWYYhmEMlEPY1LMZ7XkAc4hoNhE1AlgA4MEqt4lhGIYxULcBAkKIDBH9G4BHACQB3CaEWGnJxjAMw1SBuhU2ACCEeAjAQ9YTGYZhmKpSz2Y0hmEYpk5gYcMwDMNUHBY2DMMwTMVhYcMwDMNUHBY2DMMwTMWp20WdcSCiHgA7AewPOGVMyDEAOBzAlpDjtvyVPl7J9tVy28pxnPsu/vFS2lfLbRuO42Htq6W2HSOEML/SNSpCiEPmD0AHgFtDjgcek8c7Lcdt+St9vGLtq+W21Xr7arlt1W5fLbet2u2rpbYB6Ag7N8rfoWhG+33MYwBge92dLX+lj1eyfbXctnIc576Lf7yU9tVy24bjeFj7arltRXOomdE6RAn7+5Sav9LUcvtquW1AbbevltsG1Hb7arltQG23T29bOdp5qGk2t1Y5f6Wp5fbVctuA2m5fLbcNqO321XLbgNpu360B32NxSGk2DMMwTHU41DQbhmEYpgoc8sKGiG4jot1EtEJLO4mIlhLRq0T0eyJql+kNRLRIpq9W79CRx54gorVE9JL8K/l1eUW2rZGIbpfpLxPROVqe02T6BiK6mcr0BqYytq8SfTeTiB6Xv9NKIvqMTB9PRIuJaL38HKfluVr20VoiukBLL2v/lbltVe87Ipogz+8loh/5yqpq31naVgt99y4iWi77aDkRvUMrq9p9F9a24vuu1HC2ev8D8DYApwJYoaU9D+Dt8vvHAHxdfv9HAHfJ760ANgGYJf9/AsC8KrbtSgC3y++TASwHkJD/PwfgTDiven8YwLtrrH2V6LupAE6V30cDWAdgLoBvA7hKpl8F4Ab5fS6AlwE0AZgN4DUAyUr0X5nbVgt91wbgrQA+CeBHvrKq3XdhbauFvjsFwDT5/XgA22uo78LaVnTfHfKajRDiKQBdvuRjADwlvy8G8AF1OoA2IkoBaAEwBOBAjbRtLoAlMt9uOGGL84hoKoB2IcRS4dwldwC4pFbaV452BLRthxDiBfm9B8BqANMBXAxgkTxtEfJ9cTGcicSgEOJ1ABsAzK9E/5WrbaW0oZztE0IcFEI8DWBAL6cW+i6obZUiRvteFEK8IdNXAmgmoqYa6Ttj2+LWf8gLmwBWAHif/H4pgJny+70ADgLYAWdl7XeFEPpge7tUKb9Sqsobo20vA7iYiFJENBvAafLYdADbtPzbZFqlKLZ9ior1HRHNgjNLexbAFCHEDsB5+OBoWYDTJ1u1bKqfKtp/JbZNUe2+C6IW+s5GLfXdBwC8KIQYRO31nd42RVF9x8LGzMcAXElEy+Gom0MyfT6ALIBpcMwZ/0FER8pj/ySEOAHA2fLvI8Pcttvg3JAdAL4P4K8AMnBUcD+VDEEstn1ABfuOiEYBuA/AZ4UQYVpoUD9VrP/K0DagNvousAhD2nD3XRg103dEdByAGwD8i0oynFaVvjO0DYjRdyxsDAgh1gghzhdCnAbg13Bs5IDjs/mTECItTUHPQJqChBDb5WcPgF+hQmaOoLYJITJCiM8JIU4WQlwMYCyA9XAG+BlaETMAvOEvt4rtq1jfEVEDnIfql0KI+2XyLmmiUGae3TJ9G7yaluqnivRfmdpWK30XRC30XSC10ndENAPAAwAuE0KosaYm+i6gbbH6joWNARVZQUQJAF8G8BN5aAuAd5BDG4AzAKyRpqGJMk8DgPfCMScNW9uIqFW2CUT0LgAZIcQqqRb3ENEZUtW9DMDvKtG2OO2rVN/Ja/0ZgNVCiBu1Qw8CWCi/L0S+Lx4EsEDay2cDmAPguUr0X7naVkN9Z6RG+i6onJroOyIaC+CPAK4WQjyjTq6FvgtqW+y+80cMHGp/cGbfOwCk4cwmLgfwGTiRGusAXI/84tdRAH4Dx1m2CsDnZXobnOiqV+SxH0BGCw1j22YBWAvH6fcogCO0cubJm+E1AD9SeWqhfRXsu7fCMTu8AuAl+fceABPgBCqsl5/jtTzXyD5aCy3yp9z9V6621VjfbYITLNIr74W5NdR3BW2rlb6DMyE7qJ37EoDJtdB3QW2L23e8gwDDMAxTcdiMxjAMw1QcFjYMwzBMxWFhwzAMw1QcFjYMwzBMxWFhwzAMw1QcFjYMUyMQ0SeJ6LIizp9F2o7bDFPLpKrdAIZhnIVyQoif2M9kmPqEhQ3DlAm5ueGf4GxueAqcha2XAXgzgBvhLAreA+CfhRA7iOgJOHvEnQXgQSIaDaBXCPFdIjoZzu4LrXAW9X1MCNFNRKfB2WeuD8DTw3d1DFMabEZjmPJyDIBbhRAnwnn9xJUAfgjgg8LZL+42ANdp548VQrxdCPE9Xzl3APiiLOdVANfK9NsBfFoIcWYlL4Jhyg1rNgxTXraK/D5SvwDwJTgvnlosd2FPwtniR3G3vwAiGgNHCD0pkxYB+I0h/U4A7y7/JTBM+WFhwzDlxb//Uw+AlSGayMEiyiZD+QxTF7AZjWHKy+FEpATLhwAsAzBJpRFRg3w/SCBCiP0AuonobJn0EQBPCiH2AdhPRG+V6f9U/uYzTGVgzYZhystqAAuJ6H/h7KL7QwCPALhZmsFScF4et9JSzkIAPyGiVgAbAXxUpn8UwG1E1CfLZZi6gHd9ZpgyIaPR/iCEOL7KTWGYmoPNaAzDMEzFYc2GYRiGqTis2TAMwzAVh4UNwzAMU3FY2DAMwzAVh4UNwzAMU3FY2DAMwzAVh4UNwzAMU3H+P02G13WbPXEBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,9 +2241,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXd4XOWV/z9nqrpkFdtyL9gYm2YwpoWQhJ5ASIFAkgVvwi5JNvltyGZL2M0Gsll2QzaV7KZAIAHSSEiykE0opiQ0F4yxcbflXmX1NtLU9/fH3DsaSSNpJI00d0bn8zzzzPide++893o033vKe44YY1AURVGUdHBlewKKoihK7qCioSiKoqSNioaiKIqSNioaiqIoStqoaCiKoihpo6KhKIqipI2KhqIoipI2KhqKoihK2qhoKIqiKGnjyfYEMk11dbWZN29etqehKIqSU7zxxhuNxpia4bbLO9GYN28eGzZsyPY0FEVRcgoROZjOduqeUhRFUdJGRUNRFEVJGxUNRVEUJW2GFQ0RmS0iL4rIDhHZJiKftcbvFpGjIrLJerw7aZ87RaRORHaJyFVJ4+eKyBbrvftERKxxv4g8Zo2vE5F5SfusEpE91mNVJk9eURRFGRnpBMIjwOeNMRtFpBR4Q0RWW+99yxjz9eSNRWQpcDOwDJgBPCcii40xUeD7wO3AWuCPwNXAU8BtQIsx5hQRuRm4F7hJRCqBu4AVgLE++0ljTMvYTltRFEUZDcNaGsaY48aYjdbrDmAHMHOIXa4HfmmMCRpj9gN1wEoRqQXKjDFrTLzz0yPA+5L2edh6/ThwmWWFXAWsNsY0W0KxmrjQKIqiKFlgRDENy220HFhnDX1GRN4SkYdEZIo1NhM4nLTbEWtspvW6/3iffYwxEaANqBriWIqiKEoWSFs0RKQE+A1whzGmnbiraSFwNnAc+Ia9aYrdzRDjo90neW63i8gGEdnQ0NAw5HkoiqJkkq5ghN+8cWT4DfOEtERDRLzEBeNnxpjfAhhj6o0xUWNMDHgAWGltfgSYnbT7LOCYNT4rxXiffUTEA5QDzUMcqw/GmPuNMSuMMStqaoZd0KgoipIx/nfTUT7/680cbg5keyoTQjrZUwI8COwwxnwzabw2abP3A1ut108CN1sZUfOBRcB6Y8xxoENELrCOeSvwRNI+dmbUDcALVtzjGeBKEZliub+utMYURVEcwYHGLgCCkWiWZzIxpJM9dTFwC7BFRDZZY/8MfFhEzibuLjoAfALAGLNNRH4FbCeeefVpK3MK4FPAT4BC4llTT1njDwKPikgdcQvjZutYzSLyFeB1a7t/M8Y0j+5UFUVRMs8hy8IIRwd4zvOSYUXDGPMKqWMLfxxin3uAe1KMbwBOTzHeA9w4yLEeAh4abp6KoijZ4GBTXDQik0Q0dEW4oijKKDHG9FoasViWZzMxqGgoiqKMkqauEIFQ3PsejqhoKIqiKENgu6YAIjF1TymKoihDkJxmG46qpaEoiqIMQbKlMVmyp1Q0FEVRRsnB5q7E64haGoqiKMpQHG4OUFXsAyCsMQ1FURRlKI62dDO/uhhQS0NRFEUZhkA4SkWRF9BAuKIoijIM4UiMYn+8sIYGwhVFUZQhCUVjFPnioqHuKUVRFGVQYjFDOGoo9rkBXdynKIqiDEHIsixs91RILQ1FURRlMHpFw7I0NKahKIqiDEbIKlBY4LVFQy0NRVEUZRBs0fC5XfjcLkJqaSiKoiiDkRANjwuPW9TSUBRFUQbHjmn4PC48LtHsKUVRFGVwkt1TXrdLV4QriqIogxNMck+paCiKoihDMjCmoe4pRVEUZRDsmIbftjQ0pqEoiqIMRm9Mw43XLYQj6p5SFEVRBiHcJ3vKRSSmoqEoiqIMQqhPIFy0NLqiKIoyOH0D4WppKIqiKEMQjCav0xDCEbU0FEVRlEEYsLhPLQ3FibT3hOkKRrI9DUWZ9PRxT7l0nYbiUP7mpxv5wm+3ZHsaijLp6R/TmCwrwj3ZnoAyMupOdlJT6s/2NBRl0hOKRnG7BLdL8E0i0RjW0hCR2SLyoojsEJFtIvJZa7xSRFaLyB7reUrSPneKSJ2I7BKRq5LGzxWRLdZ794mIWON+EXnMGl8nIvOS9lllfcYeEVmVyZPPNaIxQ0NnkOauULanoiiTnlAkhs8d/wn1uLXKbTIR4PPGmNOAC4BPi8hS4AvA88aYRcDz1r+x3rsZWAZcDXxPRNzWsb4P3A4ssh5XW+O3AS3GmFOAbwH3WseqBO4CzgdWAncli9Nko6krSDRmaOoKZnsqijLpCUVi+DyWaLhcGtOwMcYcN8ZstF53ADuAmcD1wMPWZg8D77NeXw/80hgTNMbsB+qAlSJSC5QZY9YYYwzwSL997GM9DlxmWSFXAauNMc3GmBZgNb1CM+mob4uLRU84RiCkwXBFySahaK9o+DySqEWV74woEG65jZYD64BpxpjjEBcWYKq12UzgcNJuR6yxmdbr/uN99jHGRIA2oGqIY01K6tt7Eq+bOtVFpSjZJJjsnnK5tHNff0SkBPgNcIcxpn2oTVOMmSHGR7tP8txuF5ENIrKhoaFhiKnlNvUdSaKhcQ1FySqhSAy/Jymmoe6pXkTES1wwfmaM+a01XG+5nLCeT1rjR4DZSbvPAo5Z47NSjPfZR0Q8QDnQPMSx+mCMud8Ys8IYs6KmpiadU8pJ6tt7YxnNGtdQlKySHNPQxX1JWLGFB4EdxphvJr31JGBnM60Cnkgav9nKiJpPPOC93nJhdYjIBdYxb+23j32sG4AXrLjHM8CVIjLFCoBfaY1NSurbehDL9lL3lKJkl+SYxmQqWJjOOo2LgVuALSKyyRr7Z+CrwK9E5DbgEHAjgDFmm4j8CthOPPPq08aYqLXfp4CfAIXAU9YD4qL0qIjUEbcwbraO1SwiXwFet7b7N2NM8yjPNeep7+hhflUx+xq71D2lKFkmHO0b04jGDMYYRFJ51fOHYUXDGPMKqWMLAJcNss89wD0pxjcAp6cY78ESnRTvPQQ8NNw8JwP17UHmVxdztLVb12ooSpYJRWJ43b2WBkA4avB58ls0tIxIDnGyvYdp5QVUFfvUPaUoWaZ/TAOYFKvCVTRyhFAkRlNXiGmlBVSV+DUQrihZJpi8uM8SjcmQQaWikSOctNJtp5X5qSz2aUxDUbJM/0A4MCkyqFQ0cgQ73XZambqnFMUJhCIx/EmBcFBLQ3EQjZ1x0agpjVsaGghXnM7GQy186YmtxLPn84++MQ07EK6WhuIQesLxrOUCr5uqEj/d4ajWn1Iczert9Tyy5iBdoejwG+cgfd1TGghXHEbQavji97ioKvYBusBPcTatgbD1nJ/f0/6l0YFJUR5dRSNHSBaNSks01EWlOJm27pD1HM7yTMaH/qXRQS0NxUGEEqLhprzIC8T7hSuKU7HFoi2Qf9/TWMwQiZk+pdGBSVFKREUjR0juR1zsiy/k7wrmp69YyQ8S7qk8tDTs3hn9LY3JUB5dRSNHCEbiAuHzuCj2xxshaiBccTK2aOSje8p2F/ePaailoTiGUCSGx2piX5SwNFQ0FOdii0VrHrqnki1/6BUPjWkojiGY1PDFtjTyNZVRyX3C0Rid1k1Na3f+JWwk3FPufmVEdEW44hSSMzUKvW5EIKCWhuJQ2pNcUu156J4KR/rHNNQ9pTiMYCSK3xO3MESEYp+HTg2EKw4lOfidl+6pfoFwrxYsVJxGsqUBUORzayBccSzJQpGXotEvEK5lRBTHEewnGiV+j8Y0FMdiL+yrLvHnd/aUlhFRnEooKRAOUOR3a/aU4lhsoZhbVZSXotE/e0rLiCiOo7+lUeTzqGgojsV2Sc2tLMrL2lN2TMOvi/sUp9Lf0ij2uQmoe0pxKLZozK4soisUzTu3TW9Mw209x/82QxoIV5xCMBrDZ2VPART7PXRpIFxxKG3dYUoLPFSV+BL/zicGdU/lmTimQkUjRwiGo/0sDXVPKc6lNRCioshLeaHX+neeiUa0t6wPaExDcSDJDV8gHggP6DoNxaG0dYepKPQlRKMtz1aF97c0vFZMwx7PZ1Q0coRguH9MI+6eytdWmkpu09odpqLIS0VRfrun7PUZLqsunJYRURxDKNpPNPweYgZ6wvn/JVVyj7ZAmLLC/HVP2es0Cry9cUaPS3RFuOIc4jGN5EC4XbRQ4xqK82jtDlNR6KUiT0XD7mVTlCQaXrdLa08pzmFATMMqj65xDcVpGGPiMY0iL2WJmEZ+iUYgFMHvcSWq20LcVZVvqcWpUNHIAYwx8cV97uQyIvE7nE7NoFIcRnc4SjRmKPF7cbuEYp+bjp78+p4GQlGK/Z4+Yx63S2MaijOIxAzG0LeMiG1pqHtKcRjd1qLTIl/8xqbQ56Ynkl8WcVcoQmGSawrA6xJ1TynOoH96H2gjJsW52JUK7B9Vv8dNTzi/vqeBYDTxN2jj9bjUPaU4AztTI6Wloe4pxWHYAlFoWRoFXlfeiUZXKJL4G7SJB8JVNBCRh0TkpIhsTRq7W0SOisgm6/HupPfuFJE6EdklIlcljZ8rIlus9+4TEbHG/SLymDW+TkTmJe2zSkT2WI9VmTrpXKPX0ui9symx/Kka01CcRn9Lo9DnzrvU8O7QQEuj2D85GqOlY2n8BLg6xfi3jDFnW48/AojIUuBmYJm1z/dExL6y3wduBxZZD/uYtwEtxphTgG8B91rHqgTuAs4HVgJ3iciUEZ9hHhC0/MH+fk2YAC1aqDiO7nDfmEZBHrqnukJRCr19LY1Sv4eOnvzKEkvFsKJhjHkJaE7zeNcDvzTGBI0x+4E6YKWI1AJlxpg1Jr6E+RHgfUn7PGy9fhy4zLJCrgJWG2OajTEtwGpSi1fekzqmEf/C6joNxWnYgfCChHvKnRCSfCEQigywNEoLPHTmWZZYKsYS0/iMiLxlua9sC2AmcDhpmyPW2Ezrdf/xPvsYYyJAG1A1xLEmHaliGn6PC7dLtGih4jgGWBpeV965p7qC0QExjdICT96lFqditKLxfWAhcDZwHPiGNS4ptjVDjI92nz6IyO0iskFENjQ0NAw175ykf2tJABGhyOdOrExVFKfQP6ZR4HUTzDNLozsUodjX19Io8XsnRYxxVKJhjKk3xkSNMTHgAeIxB4hbA7OTNp0FHLPGZ6UY77OPiHiAcuLusMGOlWo+9xtjVhhjVtTU1IzmlBxNb0yjX+DN59F1Gorj6B6QPZVfMY1YzBAIRxOWlE1pgYfOYIRonpdHH5VoWDEKm/cDdmbVk8DNVkbUfOIB7/XGmONAh4hcYMUrbgWeSNrHzoy6AXjBins8A1wpIlMs99eV1tikI1VMA+w+4fnzx6jkB93WjYztvinwuvIqptETiWIMFPkHuqcg/zMaPcNtICK/AN4BVIvIEeIZTe8QkbOJu4sOAJ8AMMZsE5FfAduBCPBpY4z9bfkU8UysQuAp6wHwIPCoiNQRtzButo7VLCJfAV63tvs3Y0y6Afm8IlVMA+JptxoIV5xGdyj+fU2k3HrzK+XWvlHr755KFg27um8+MqxoGGM+nGL4wSG2vwe4J8X4BuD0FOM9wI2DHOsh4KHh5pjvhAYRjXhMQ0VDcRaBcASflagBlnsqEsUYg7U8K6fpLZPS39KIC0U87bZwoqc1YeiK8BxgMPdUid87KbI1lNyiJxTtU5epwOvGmF6LOdfpSrjf+gfCLUsjz/8mVTRygF73VOrAm6I4iUCob5DYblQUzBMXlZ18MlhMI99v5FQ0coBQpG8Te5vJkheu5Bbd4f6WRvx7my+VboeLaXTk+Y2cikYOMFgg3LY0tE+44iS6Q9FEui3Ey4jY4/lAIK2YRv6iopEDDBbTKC3wEo0ZrT+lOIr+loYtIPliaQQGiWmoe0pxDMFIDJfEG9cnM1nywpXcItDf0rDdU3kS07B72BT1qz1V6HXjdokGwpXsY/cH75+uOFnMYSW36Okf08g395R1k1bczz0lIpRMgkq3Kho5QDAcHZA5BfFSzADteX5no+QWA7Kn8s491be2VjIlfo8GwpXsY1sa/ZksPlQlt+gORylMugu3LY18KVoYCEUo8rlxuQYuVJwMGY0qGjlAMBwbkDkF6p5SnEn3gMV98e9uvtSf6goNLFZoMxl6aqho5ADBYSyNfP+SKrmDMYbufhVgE9lTeRIIDwQH9ge3KS3w0hHM75s4FY0cIBSJ4XOre0pxPqFojGjMpFynkS/l0fvHbJJR95TiCIKRGP4UQbdinwcRdU8pzqGnX4Vb6C0jkjeWRiiaaLfcnxK/uqcUBxCKRPGnsDRcLqHE59HsKcUxBMLx72KypWHH4/InphEZwtLI/yKiKho5QNzSSP1fpUULFSfRWza890fV5RL8HlfeZE91D+OeCkVjiW6b+YiKRg4wWEwD7DsbdU8pzsBew1DQz52aTy1fu0KRAQv7bCZDnFFFIwcIRlJnT8HkCLwpuYMtDP3vxAu97rxxTwWC0QElRGwmQ0ajikYO0L8sQzIqGoqTGGy1dIHXlTeB8M7g4JZGid9eO5W/f5MqGjlA/wJwyah7SnEStjXR//uaL+6p7lCUYCRGeVHqHuC2hWVXws1HVDRygMAQ2RolGghXHET3IJaGP0/cUy2BEACVRb6U79tiGciDcx0MFQ2HE4sZesKxPrV8kikt0JRbxTl0h1M3KCr0uvKi3WtzV1w0KgYRDdttlS8VfVOhouFw7D/C/q0lbcoKvIQi+Z3ip+QOiZhGKvdUHnxHWwNxV/CUYdxTXXls/atoOJxAirz3ZCZDip+SO9hxiwGBcI87L+6+E+6p4qHdU/ngihsMFQ2Hk/ARD5MXbqf4bT/WTjSmPcOV7BAIRfC4ZECKeKEvPywNWzQGc0/1BsJz/1wHQ0XD4XQN0o/YpjQpxa/uZAfvvu9lfrPxyITNT1GS6QqmzvTLl5Tblq64e6piEPdUgceNiIqGkkUG8xHblCTcU2FerWsC4NW6RgDae8IYo1aHMnF09EQoKxj4g+r35EfKbUsgRGmBB+8gFRpcLqHQ6060hM1HVDQcTqKWzyCL+2aUFwKw80QH6/bHRWPtviaOtXZz/j3P839vHZ+YiSoK8ZsX22WaTKEvf0RjyiCuKZsinzuvU25TO8oVx2AvEhqsFPOcqiKW1pbx5OZjHGkJUOh1U98e5OvP7qI7HOVwS2Aip6tMcjp6IilFo8DjJhw1RGMGd4o2qblCSyDMlEGC4DaFvvwI+g+GWhoOZ7AVtslcd9YMNh1upbEzxK0XzgXgtxuPAvmd+qc4j85ghJIUNzh2y9dctzZaukKDptvaFPs8uiJcyR7DpdwCXHtmbeL1zSvnUFPqT/w7nwunKc4j7p4a+KOaL6mo6binCn1uDYQr2cO2FIq8g3sSZ1cWsXxOBdPLCphXVcTbTqmmrMBDdYmfzmD+fnkV5zGUewpy39JoDYTTi2lMZtEQkYdE5KSIbE0aqxSR1SKyx3qekvTenSJSJyK7ROSqpPFzRWSL9d59IiLWuF9EHrPG14nIvKR9VlmfsUdEVmXqpHOJ7mGyp2y++aGzeeDWFYgI/3rtUv730xdTXeKjM8+b3CvOIi4aKbKnEu6p3E27DUVidAYjw7qnCr2eyS0awE+Aq/uNfQF43hizCHje+jcishS4GVhm7fM9EbF/7b4P3A4ssh72MW8DWowxpwDfAu61jlUJ3AWcD6wE7koWp8lCIBxNuViqP/OrizljVjkQX626oKaEYr8WM1Qmjp5wlFA0ljp7ypv7lkarvbBvmEB4sd9N92SOaRhjXgKa+w1fDzxsvX4YeF/S+C+NMUFjzH6gDlgpIrVAmTFmjYkvHHik3z72sR4HLrOskKuA1caYZmNMC7CageKV9wzVWnI4SvwedU8pE4ZdyialeyoPRKPFqjs1WIVbmyKfm65JbmmkYpox5jiA9TzVGp8JHE7a7og1NtN63X+8zz7GmAjQBlQNcaxJRbws+ugyo0v8Hjq114YyQdhW7dCikbvuKbvCbTruKU25TZ9UCdhmiPHR7tP3Q0VuF5ENIrKhoaEhrYnmCl1jtDS61NJQJgi7GZhd2iYZ2z2Vy9lTrcPUnbKJB8IjeVuNYbSiUW+5nLCeT1rjR4DZSdvNAo5Z47NSjPfZR0Q8QDlxd9hgxxqAMeZ+Y8wKY8yKmpqaUZ6SM+keomvfcGhMQ5lIhnZP5f46jYR7apiYRpHfTcxAMNLXqjLG8M3Vu/nqUzvHbY4TwWhF40nAzmZaBTyRNH6zlRE1n3jAe73lwuoQkQuseMWt/faxj3UD8IIV93gGuFJEplgB8CutsUnFUF37hsPu6hfTqrfKBGBbGiV5G9OwLY2h3VN2yZ/kDCpjDF96Yhv3Pb+HB1/Zl9Puq3RSbn8BrAFOFZEjInIb8FXgChHZA1xh/RtjzDbgV8B24Gng08YY++p8CvgR8eD4XuApa/xBoEpE6oC/w8rEMsY0A18BXrce/2aNTSrilsboYhql1srcfK6DozgHu4NkqoKF+SAabd1hCryuxLkMhh2DTF4VvuN4B4+uPciKuVMIRw0bDubuT9mwv0bGmA8P8tZlg2x/D3BPivENwOkpxnuAGwc51kPAQ8PNMZ8JhKLMqBi9ewriq8JTlXZQlEzSmZZ7KncD4W2BMOWFQ1sZkLT6PcmaON7WDcDfXbGYWx9az2t7m7hkUW660nVFuMMJjCGmYbsJNK6hTAR2TCN17an8sDTSEY1iv9XyNUk0GjqCAMytLuas2RWs2ds0PpOcAFQ0HM6YYhrWl1dFQ5kIOnrCFHrdeFL0mvC6XXhcktPd+1q7Q+lZGt6B7ilbNKpLfFy4oIotR9ty9u9SRcPhBELRMazTiH/BtWihMhEMVnfKpsDrpjuUw+6p7khaolGUwj3V2BmkvNCL3+PmwoVVRGOG1/fnZlxDRcPBRGOGYCSWyHEfKcVqaSgTSEcwdQMmmwKvK6ctjfbuMGUjEI3k7KmGziDVJfFUXbvcz+76jnGY5fijouFg7IVQo3VP2YusVDSUiWCwYoU2ud7yNd2YRpE/tXvKbllQVuBlSpGXA0252SBNRcPB2F+60YpGIiCnoqFMAMO5p3K55WskGq9wm5ZopFinEReNgsS/51QVc6i5K/MTnQBUNBxMoj/4aGMamj2lTCCD9Qe3KfC6cjbl1l6DMpKU2wGiUdLbHG1eVREH1dJQMo1dN2q0lobf48bndiVSIRVlPOnoiaSsO2VTkMPuqbbu+Gr3dETD73Hhkt6bvkAoQlco2qej5tzKIo61dhOK5J6Iqmg4mO5w/Md+tOs0IO6iUveUMhGk457K1YKFIxENEaHI56HLci83dsTLj9iBcIi7p2IGjrTknrWhouFgAmN0T0Fv/SlFGU/C0Rjd4WgagfDcu7OGXtEYru6UTZHPnbA0Gjp7APpaGlVFABxsVtFQMkivaIzB0vCpaCjjj23NpipWaFPgdRGcBJYG9O0Tbi/sSyUah3IwrqGi4WDS7Q8+FKUFHl3cp4w7ibLoQ9Q4K/TmsHvKqnCbzjoNgEKfZ0jRqCnxU+Rz52QwXEXDwSSa2gxx9zYc2lNDmQhs//3QlsbkCIRDPH5hxysaOkO4BKqKe0VDRJhTWcTBpt6022iOtDBQ0XAwzV3xL+qUYTqFDUW8e5+KhjK+2NZs8RCWRi6n3Npl0f2e9Kz+5bMr2F3fQVcwQkNHkMpiH25X32akcyqLEjGNH728j/P/43m2Hm3L+NwzjYqGg2kJhCgt8OBNUQAuXUr8HjpUNJRxxrZmhyrBX+h10xOJ5mQb1HRXg9ssnzuFmIHNR1qpb++hOmmNhs3cqiIONQeIxQxvHm6lsTPIhx9Yy4YDzq5JpaLhYJq7QsO2lhyOEr/GNJTxJx3R8HvdmBRtUHOBEYvG7AoAXq1rZM3eJpbPmTJgm7lVxYQiMeo7ejjcHGDZjDJqSvzc8uB6XtnTmLG5ZxoVDQfTEggN28R+OIr8HrrDUW35qowr6WVPxV07wRx0UY1UNCqKfCyoKebHrx6gOxzl/ctnDtjGzqA60BjgUHOA5XMqeOwTFzK3qojbH93Qp3aVk1DRcDAtgRCVaeaFD4bdU0NbvirjSaIB0xBriuxqzblY6TbdsujJLJ89hUAoysyKQlbMTWFpVBYDsPVoG62BMHMqi6gp9fNP1ywhEIry5qHWjMw906hoOJiWrjBTxuieSvQr1riGMo7YJW/sIpmpsFu+JveZyBXSLYuezPI5cRfV+5bPwNUvCA4wo6IAj0t4uS7uippTGbc8VsydgktgnUP7bahoOJjmrhCVY3RP2T5mTbtVxpOuUIQCrytl1z6bgpy2NMJUFI7sb/Gy06aycl4lN583J+X7HreLWVMKWb8/3vp1tiUapQVels0oT4w7DRUNh9ITjtIdjmbA0hhYcVNR0uXep3dy+yMb2N84dBnvjp7IkEFwSHJP5VhMIzyCsujJ1JYX8qtPXpgQg1TMqSpOXI85SdutnF/Jm4daCTpQYFU0HEqLtQJ1LGs0oDdvXtdqKKPh95uP8ez2eq769kvsOjF4p7mu4PCi4c9R91RLV/xvsbJkbH+LqZhrCUVlsa9P3a6V8ysJRmJsOeK8dRsqGg6l2f6iFo8tEJ4QDYdmYijOJRKNcbythxvOnYUxhl9vODzotp3ByJAL+yB33VONnVaV2jFa/amwM6j6WyPnzasEnBnXUNFwKC0ZWA0OUOyzu/fl1h+qkn1OtPcQjRlWzJ3CpYtr+L+3jg+aut2ZhqVRmEi5za3vYlNXvHZUVYoFemNlblU8g2pOP9GoLPYxrcw/rFswG6hoOJSEe2qsMQ11Tymj5EhLNwCzphTx3rNncqK9h/WDrFbuTCOmYVsauVa00Lb6q8bDPWVZGnNTxD1qyws51tqd8c8cKyoaDiVTMQ07b74rx/zISvbpFY1CLj9tKoVeN09uPpZy265QZMiFfdCbcptrgfBe91TmLY15VcW889Qa3rlk6oD3ZlYUcrytJ+OfOVZGXz5VGVfsu5t0m74MRpG9uE8tDWWEHGkJIAK1FQX4PW4uXFjFxoMtKbft7Bk+ptGbPZVbNzBNnUE8LqGsMPM/lz6Pix9/bGXK92rLC3huRz3GGETfS1luAAAgAElEQVQGrvPIFmppOJSWrhBlYyxWCOB1u/B5XHRqIFwZIUdaupleVpCo7DqjooD69tR3vunENHLVPdXUGa8BN9E/3LUVhQQjMVoC4Qn93OFQ0XAoLYGxrwa3Kfa5CWggXBkhR1oCzJpSmPj3tNICWgLhAZZCOBojGIkNn3LryU33VFNXcFyC4MMxo7wAwHFxDRUNh9ISCI05nmGT3OReUdLlcHM3s6b0BminWT9iJ9uDfbazkyyGc0+JCH5P7rV8bewMUT0OQfDhqK2IC7bT4hoqGg4lE2XRbbQRkzIS6tt7aO4KcaK9p4+lMb0sLhon+rmo7BI1Q7V6tSn05V73vqauIFXjsEZjOGxL43hbHlkaInJARLaIyCYR2WCNVYrIahHZYz1PSdr+ThGpE5FdInJV0vi51nHqROQ+sZyHIuIXkces8XUiMm8s880lWrpCYw6C2xT53VpGREkLYww3/mANl3/zz0Rjpq9olA8tGsNZGgDFPg/tOdbfpbkzlBX3VHWJH69bONaaf5bGO40xZxtjVlj//gLwvDFmEfC89W9EZClwM7AMuBr4nojYJTG/D9wOLLIeV1vjtwEtxphTgG8B92Zgvo4nGjM0dAaZWlqQkeMV+9TSUNJjx/EODjUHEtl7fdxTlqVR389dkk4vjd5j+AcNpjuR7lCUrlB0XNZoDIfLJUwvL8gvS2MQrgcetl4/DLwvafyXxpigMWY/UAesFJFaoMwYs8bE+0A+0m8f+1iPA5eJk3LPxonGziDhqGFmRYZEw+/WFeFKWjy/ox6A+285l8uWTOWMWeWJ98oKPBR63QMsjUQvjSHKottMLx88A8uJ2KvBx2ONRjrUlhdyPM8sDQM8KyJviMjt1tg0Y8xxAOvZXrUyE0guXnPEGptpve4/3mcfY0wEaAOqxjhnx2NnS9SWFw6zZXoUayBcSZPnd57krNkVXLlsOg/+5XmUJRXRE4nf+fYXDfuGpMQ/vDt1amkB9f0C6U6mqdOuATfxlgbE4xpH8yx76mJjzDnANcCnReTtQ2ybykIwQ4wPtU/fA4vcLiIbRGRDQ0PDcHN2PHa2RG3GLA11TynD09ARZPORVi5LsTrZZmqpf1D31FANmGymlxfQGYw4rr/LI2sOcPsjG9hd37eSb2/dqeyIRm1FIfVWDTCnMCbRMMYcs55PAr8DVgL1lssJ6/mktfkRYHbS7rOAY9b4rBTjffYREQ9QDgwofmOMud8Ys8IYs6KmpmYsp+QIbEtjRoYsjSK/W8uIKMPyal0jxsC7hhCN6eUF1Hf0c08lsqeGtzSmlcXdPE5yURljuP+lfTy7vZ5rvvMyT205nngvUUIkC4FwiJdwicSMo9ZqjFo0RKRYRErt18CVwFbgSWCVtdkq4Anr9ZPAzVZG1HziAe/1lgurQ0QusOIVt/bbxz7WDcALVtwjrzne1kOh152x7Klin4dQJEY4mluLqpSJZc/JDjwu4dTppYNuM70s7l5K/jMciaWRCKY7SDT2NnRxpKWbv79yMafPLOeffvNW4kfadk9ly9JYYv1fDNXLZKIZi6UxDXhFRDYD64E/GGOeBr4KXCEie4ArrH9jjNkG/ArYDjwNfNoYY9/+fgr4EfHg+F7gKWv8QaBKROqAv8PKxMp3jrV2U1tRkLGyBXYqpK4KV4Zi78ku5lQVDVm6ZlpZAaF+pS06gxH8nqFbvdpMd6Bo/GlX3BnyvuUzue/ms4nGDHf+dgsQn2eRz02RLztl+k6dXgbAzhPtWfn8VIz6Shhj9gFnpRhvAi4bZJ97gHtSjG8ATk8x3gPcONo55irH2noy5pqCpJ4aoQjlGbJelPxjX2MnC2tKhtwmsVajrScRHO7oiVCaRrot9FoaJ9qcEwz/064GFk0tSaQX33rRPO5/aR894Si76ztYNHXoazKelPg9zKksYkeeWBrKOHG8tZva8swEwaG3p0ZAM6iUQYhEYxxoDLCgpnjI7ewf/eS1A/XtPdSkuaao2O+h1O9xjKXR0RNm/f7mPqXJz5xZTjRm2HWigx3H21li3e1niyXTS9lx3DmWhoqGwwhFYjR0BhN1ZzKBnT/fqe4pZRCOtHQTisaGtTQWWqJSd7IzMXa0pbvPyvHhmOqQBX7BSJS/+dlGIrEY7z6jNjG+bEZ8bcqLu07SEghzWu3gMZ6JYEltGQcauxzTW11Fw2HUt/dgDBlb2Ack/LG51FMjFIk5Li0zn9nXGBeB4USjoijehtQOzBpjONISYOYIbnKcssDvP/6wg5f3NPLVD57J2bMrEuOzKwspLfDw241HgfiPdjY5bXopMRNPVHACKhoOI9ML+4BEyepcSbvtDEb4wPdf5V1f/xOHmwPZns6kYO/JeC/qhcO4pyAenN1piUZbd5iuUHRElsY0hyzwe2lPI1csncaHVszuMy4iLK0t45D13Tsty+6p0yzRcoqLSkXDYdgL+2Zk1NKwAuE5cOcejRk+/bON7DjeQXc4yi0PrqPFqoOkjB97GzqpKvZRkUY5/iXTS6lr6CQSjSVawo7E0phWXsDJjh5iWVyw1hOOcqCpi6WDWBG2i2pGeUHWk0fmVBZR5HOz47haGkoK9jV04hKYWTGw0fxoKU5YGs4XjT/vPsmfdzdw13VLuf+WFRxoCvDU1hPZnlbes6+ha9gguM3iaaWEIjEONAUSJS5mjsjS8BOOGppGcTMQjET59M828taR1hHvm0zdyU6MYdA1KUtnxMUk264piBcuXDK9lK1H27I9FUBFI+u8fqCZjp7enPc3D7dy6vQyCn3DL5RKl1xap7F6ez0lfg83nTeblfMr8bldCTeBkhle3HmSm364hp+vO8Tmw618+7ndbDjYnLi7Ho7kBWdHLUsjuRrucCy0UlhHs/Zg/f5m/rDlOM9sG9uNhB2TWTwttWgss0VjiIWOE8mZsyrYdqzdEeVEsrNiRQHijZZu+uEabjpvNv/5gTOJxQybDrVy3dkzMvo5RV43fo+Lkx3ZDz4ORSxmeG7HSS5dXJPoSz2rslDjGhnmW8/tZtuxdtbt763I8/7lM/n8lYvT2v+UqSW4BHadaKcrFKXQ62bKCFw4Z8+uQATeONjCJYtGVvbnhZ3xhXj7GrpGtF9/dtd34HO7mFeVWuwWTytl1YVzef/ymSnfn2hOn1nOT147wL6GThYNInQThYpGFnnzUAsxA7978yj/eNUSGjuDdAQjLE/K5MgELpcwt6qIA03O/vHdfKSVho4gVyydlhibU1nEweax/UAovWw92sZbR9q467qlrJhbSUNnDxVFPs6ZM2X4nS0KvG7mVRez80QHInHX1EiqF5QWeDl1WilvHGwZ8fz/tCtekHSsorGrvoOFU0sGXcXudglfvn7AeuOsccbMuBW45WibisZkZuOhFlwCPeEYv3z9cKKl5PIR/AGny7yqYvY3OvvHd/X2etwu4R2n9t59zqksYuMoflyU1Pxs3SEKvC4+cM4sygu9xGuAjpwzZpbz590NVBb7mD0C15TNuXOn8MSmY0RjBrcrPcHZ39jF/sYuKoq87G/qIhYzuNLctz+7T3Swcn7lqPbNBgtriinwuthytI0PnDNr+B3GEY1pZJGNB1tZNqOcixZW8ZPX9vPs9hOUF3pZUJ1eQHIkzKsu5mBzIKsZK8Oxens9K+dV9sngmVNZRHtPhLakWkfK6OgORXli01GuPXOGJRij5+MXz6c1EGZfQ9eI0m1tVsybQmcwMqAU+VC8aLmmPrJyDqFIbNR9Jtp7whxr62GxQ+IV6eBxu1haW+aIYLiKRpaIRGNsPtLKOXMq+IerTqUrGOW5HSc5e3bFqO+ehmJuVRGhSGxAAx2ncKCxiz0nO/u4pgBmV8bvYjUYPnZerWskEIpyfQZiZmfNruDdZ0wHRpY5ZXPunPhd/khcVC/uOsnCmmIuXRy3RPeN0nJOBMGn5o5oQNy623asnUiWq1WraGSJnSc6CISinDN3CsvnTOHxT13IkumlXHtm7fA7j4L5VXHr5YBDXVSrt8fbjPYXjTkqGhnjuR31lPo9nD8/M80vP3/lqZQWeDhz5shjcLMrC6ku8afteuwKRli3r5l3njqVBdaq9X0NncPslZq1e5sAOGdu5t3A48kFC6oIhKK88xt/4tW6xqzNQ0UjS7x5KP7HYgcgl0wv4+k73s6N/VanZoq5lsvLqcHw1dvrWTK9NGFZ2GTL0nitrpH/+OMO8qV9SyIz7dQafJ7M/NkvrClh85eu5G2Lqke8r4hwxswytqe5yvm1vU2EojHetWQq1SU+Sv2eUcfoXtvbxGm1ZVlr4Tparj59Oj/4i3OIxeBrT+/M2jxUNLJAJBrjp2sPMa+qaFT+4NFQW1aAz+PiQJPzLI3mrhAbDjZzZT8rA+IlUKqKfRya4Ayq7zy/h/tf2pfI1sl1Nh1ppbEzOMCSGytjcaWeVltG3clOgpHh1w+9uOskJX4PK+ZVIiIsqCkeVQZVTzjKG4dauHhhZqytiUREuPr0Wm44dxZvHW2jNZCdSgkqGlng5+sPsau+gy9csyRjjZaGw+US5lYWOcI99cSmo7y2t9e8fn5HPTEDVyydnnL72ZVFY7Y0WgOhPosoh+JkRw/rD8TXMHxz9e6csjaiMUNPeOCP8As7TsYz0xYP3sp1olk6o4xIzLCnfmg3kzGGF3ee5G2nVCespAU1Jew52THixW4bDrQQisS4+JSRW0dO4ZJF1RgTt5iygYrGBNMWCPONZ3dz0cIqrlqW+kdyvJhbVczBLLunYjHDF/93K3f+dksik2v19npqyws4fWbqkg1zq4o40Dj6eXf0hHn3d17mww+sTSt77JmtJzAGPvH2BWw52paIt+QCn/n5Rq797isDhGP9gWZOn1me9TpKyaRbiG/N3iaOt/XwrtN6Be+dS6ZS3x7key/WjegzX93biMclOZVu25+zZldQ6vfw8p7sxDVUNCaYB17eR1t3mC++Z+mEWRk286qKONDUldVe4fsau+joiXCwKcDLdY30hKO8bFUbHex6nDmrgqOt3aNOsfz6M7s41tbD1qPtPJ1G+Yk/bDnOKVNL+IerTmVmRSEPrzkwqs+daN442MxTW09Qd7KTn7x2IDEeisTYfLiVFQ4L/M6riq89GKoQXyxm+OrTO5lRXsB7z+rN+rruzFred/YMvvXcbt442Dzo/v15ra6Rs2dXJErr5CJet4sLFlbx8p6GPlbw9/5Uxzee3TXulrGKxgTS2BnkoVf3c+2ZtYmCaBPJ+QuqCEZivJLFzItNh+OF5vweF4+uOcgrexrpDkeH9LVfuCDuf16Tpjne0RPmiU1HicUMmw+38sjag9xywVxOmVrCfz2zi398fDP/8rstbD48sOjd3oZO1u1v5t1n1OJxu7jpvNm8WtfEQQfGgvrzjWd3U13i4+2La/jvF+po6IiXH996rI1gJOY40XC7hFOnlw1pafxhy3HeOtLG3115KgXe3npsIsK/v/8MphT5+PGrB9L6vLbuMFuOtnFRDsYz+nPJomqOtHQnEgl6wlHuf2kfe+o7x/1mVEVjAvnW6t30hKN87or0avxkmksX11Be6OXJTcey8vkAmw+3UuL38JcXz+OFnfXc/fttw6aBLpleypQib9qi8YM/7+Wzv9zEL18/zD1/3EFVsY9/vPpUPn/FYvY3dvHU1hP8duNRrv+fV/nZuoOJ/YwxfPn32ynxefiLC+YAcOOKWbgEHnv98NhOfBzZdqyND9+/ltf2NvE37ziFu69bSnc4ygMv7wPgjQPxTL1z5zlLNACW1pay/Xh7yrvj3fUd/MvvtnBabVnKGlAlfg9XnT6dF3aeTBnH6c+6fU3EDFyUw/EMm2vPnMGUIi9femIbsZjhyc3HaA2EWXXRvHH/bBWNCeK57fX8bN0hPnbx/GG7o40XPo+Ld58xnWe2ncha68hNh1s5c1Y5n7p0ITeeOxufx8VHL5g7ZBqoyyVcsKCKtfuahjW9Q5EYj71+BIC7n9zG+v3N3HH5YkoLvFxzRi0v/v072PivV7D+Xy7j0sU1fPnJ7Yky28/tOMlLuxv47OWLmGr1vK4tL+Qdp07lVxsO9+mL7RRaAyFWPfQ6e0528K/XLmXVRfNYUFPCe86o5efrDtHWHWbDwWbmVBYlzslJnFZbRlt3mEv/6098/ZldifHGziCrHlpPgdfN/becO2ipkfecUUsgFE0ry+21vU0UeF0sn5PZ2m7ZoLLYxxffs5Q3DrbwtWd28ZNXD7B4WgkXLBj/WI2KxgTQ1h3mHx7fzNLaMv7x6lOzOpf3njWTQCjK6h0TH9ztCUfZcbyds2dXUFHk494bzuSFz7+DL1yzZNh9L1pYxdHW7mGzqJ7dfoLGziB3X7cUEVhQXcxN5/WufZlfXYzX7aK0wMu3bzqbmlI//+8XbxIIRfjqUztYWFM84G7tc5cvpicc44bvr+GQw9a5fOX/dtAaCPHwx1dy29vmJ35cP3HpAjqDEb7+zC5eP9DiONeUzeWnTePy06bh97j48av7Ezczdz2xjabOED/+2HkD1u4kc/78SqYUeXlq6/FhP+vVukbOm1eZqKCc63zgnJlctWwaP/jzXrYfb+fWC+dNSJxURWMCWL29npZAmH9//+lZ/8KeP7+S2ZWF/PDPeye8DtW2Y21EYoazRlHF98KFcZfC157ZNWTv8EfXHGTWlEJuuXAev/7khTz88ZV4B6lkOqXYx9duOJODTQE+8sA69jZ08fdXnjpg+zNmlfOLv76AzmCEzz72pmPqd63d18RvNh7hk5cuHNALY9mMct6+uIZH1x6kuSvEO5c4J9U2mRkVhfxo1Qq+/N5ldIWivLDzJE9vPcEfthznby87ZdgeHx63i6uWTefZbfUpY1Q2J9t72HOyM6dTbfsjIvzgL87lmTveztc+eOaAtrXjhYrGBPD01uPMrCjMeMnz0eByCZ+/4lS2HWvn929NbGxj0+F4sbXRXIdTppZwx+WLeGrLcd7736/QnKLr25q9Tazb38yqC+fhdglnzqoY8i4V4OJTqnnPmbVsOtzK6TPLuPr01GnQZ8wq567rlvLmoVZ+vv7QiOefaYwx3Pv0TqaXFfCZd52ScptvfugsHvn4Stb/82Vcd1Zme7RkmvMXVFFd4ufHr+7nC799i2UzyvjEpQvT2vcz7zqF6lIfH35gLf/75tGUov68VezwbXkkGhAXjlOnl/Kh82ZnbKX/cKhojDMdPWFe2t3I1adPn/AU28F471kzOK22jK8/u4tQZOLSbzcdbmVGeQFTy0bnW7/j8sX89LbzOdLSzV8/soHP/HwjK/79OW74/ms8uuYA9z69k9ryAm65cO6IjvvF95zGefOm8KVrlw35f/T+5TO5aGEV9z69M+tVd5/bcZI3D7Xy2csX9ckqSqa6xM/bF9eM+npPJG6XcO2ZtWw42EI0Zvifj5wzqIXYn1lTivjNJy9i0dQS7nhsEzf+cM2AwPgv1x9i8bSSREc+ZfSoaIwzL+w8SSga45pB7mCzgcslfOGaJRxu7ubnSdlD482mwy2jck0lc9Ep1XzjxrN442ALL+w8ycWnVNETifKvT2xj0+FW7hjiR3QwassL+fUnLxp2wZeI8MX3LKWjJ8LP1mf+uu1t6OTRtQeHdX/ta+jkS09sZX51MTeem93eCpnkpvNmM63Mz3duPpt5I2wPMLWsgN/9zcXcdV08OJwc49h+rJ3NR9q4+bw5jrlxy2Vyd4WLg3ly8zFCkRjXnVXLQ68eYGqpf0Sd0SaCty+q5qKFVdz3Qh0fPHcWpQXju1K4qTPI4eZu/uL8kVkBqbjurBnMmlLI7Moiqkv8GGNYvb2eTYdb+eA4N6hZOqOMSxZV85NXD3Db2+ZnLEZ1qCnAzfevpaEjyPZjbdzzvjNS1nXacbydWx5chzHwo1UrBu08l4ucVlvG2jsvG/UPu8slrLpwHo+uOchP1x7i/cvj34VfrD+Ez+PiA+c4o3VrrqOiMUae3nqch187yGcvX8SKuVP47gt1fOf5PUB8hea+hi7+5yPnjEuPjLEgIvzT1Uu4/n9e5W9+tpHPXbF4XIVts5XWenaG4jrJ3Q1FhCuXTefKCSrL8teXLODWh9bz+BtH+OgYRfCJTUf5/p/2crS1G5cIH145m1+sP4zX7eJzly/m73+9mc5ghEsWVVNZ7OerT+2g2O/h0dvO55Sp2UndHk/Gagm4XMJHzp/Dv/9hBxsPtbDtaBs/XXeQG8+d1ae5lzJ6VDRGiTGG//jjDh54eT8+t4uPPLCWskIvrYEwHzxnFhVFXh58ZT+fvWwR7xmnHhlj5azZFXzxPafx3RfquOH7r/GHv70kUQ8o02w61IpL4gHlXOeSRdWsmDuFu5/chluEiiIfT24+ytp9zXzzQ2fxjlPTy1TaerSNf3j8LeZXFXPl0ul87OJ5LJtRRonfwwMv7+fJzccIhKIsqC7m68/uBuKlYH76V+czaxQtVicLN547m68/u4sPfO81AC4/bSr/5qB+37mO5FIFz3RYsWKF2bBhw7h/zn+/sIevP7ubWy+cy99dsZj7nq+jJRDi6tOnc6VVR+lIS4CZFYWO96M2d4W46KvP896zZvC1G85Ke78Xdtazu76TG86dRXWJf8htb31oPSfbe3j6jrePdbqOoK07zG0/eZ0NVhOh8kIvU4q8HGvt4T8/cAbXnz1jUNfRzhPt/HbjUX6/+RgxY/jj315CVdL1M8bwlf/bwWOvH+KHt6zgbYuqae8Jc7y1hzmVRRT68mOdwXiybl8TW462UeTzcOOKWWkH1SczIvKGMWbFsNupaIycR9Yc4EtPbOMDy2fyjQ+d5XhRSId//t0WHn/jCGvvvGzY5jSRaIy7f7+Nn66Np576PS6+eO1SbrlgoKsmHI3x3ef38N0X61h14Tzufu+ycZl/NugJR1mzt4kpxT6WTC+lJxxl1UPr2XykjellBXz0/DncvHIONaVxQejoCfO/bx7lK3/YASYeH7nruqV9XG3JhKMx/bFTJoy8Eg0RuRr4DuAGfmSM+epg245FNEKR2JC5zq2BEN99oY4HX9nP5adN43sfPWfCcqPHmz31HVzxrZf4xKULuPOa04bc9u4nt/GT1w7w15fM54ZzZ/OfT+3gT7sa+Ku3zefzV55Koc9NOBrj0TUH+dHL+zjW1sMN587iy+9dltPVRdMhGjM8v6OeR9ce5OU9jXjdwqWLazjW2sPOE+3ETNy99e2bzu5jXShKtskb0RARN7AbuAI4ArwOfNgYsz3V9qMVjc5ghHf814u8fXENl58Wr7gajsYoLYgX03t4zQH++4U6AqEoHz1/Dl9+77K8ylwB+Nxjm/jdm0e5acVsrj2rlgU1JUwvK6AlEKI7FCUYifGrDYe5/6V9fPzi+XzpuqVA3PL48u+38+jag9SWF3DxKdVsPdrGzhMdrJxfyacuXejYFcnjyd6GTh5dc5Bnt51gXnUxK+ZVcv78Si5YUDVoLSVFyRb5JBoXAncbY66y/n0ngDHmP1NtP1rRaOgI8q3ndvPkpmMDylS4XUI0Zrhq2TQ+d8VilkzPzwVC0Zjha8/s5Id/3pcYE4H+X5H3njWDb37orAGiuX5/M995fjf7Groo8Lr5wjVLJrzRlKIooyOfROMG4GpjzF9Z/74FON8Y85lU2481phEIRdjf2IXH5cLjFo61dvPCzpOcN6+Sd5/hzCyoTNPQEaTuZCf7Gjs53tpDdYmPIr+HWMxw8SnVw5bmUBQl90hXNHLBwZzKju+jdCJyO3A7wJw5c8b0YUU+T58iaQtrSrhkUc2Yjplr1JT6qSn1c2EeNKtRFCWz5IJT/giQXL5xFtCn0p4x5n5jzApjzIqamsn1A68oijKR5IJovA4sEpH5IuIDbgaezPKcFEVRJiWOd08ZYyIi8hngGeIptw8ZY7ZleVqKoiiTEseLBoAx5o/AH7M9D0VRlMlOLrinFEVRFIegoqEoiqKkjYqGoiiKkjYqGoqiKEraOH5F+EgRkQ5gVxqblgNtGfrYTB4LoBpozODxMj0/px9vMl0/vXbOOl6uXr9qoNgYM/xCN2NMXj2ADWlud38GPzNjxxrJOWRxfk4/3qS5fnrtHHe8nLx+I5n3ZHZP/d6hxxoPMj0/px8v0zj5fPXaOet4mcZx55uP7qkNJo2iW04mH84hm+j1Gz167cZGrl6/kcw7Hy2N+7M9gQyQD+eQTfT6jR69dmMjV69f2vPOO0tDURRFGT/y0dJQFEVRxgkVjQlARGaLyIsiskNEtonIZ63xShFZLSJ7rOcp1vgVIvKGiGyxnt+VdKxzrfE6EblPRPK+b2iGr989InJYRDqzdT4TSaaunYgUicgfRGSndZyvZvO8JooMf/eeFpHN1nF+YLWyzj0ymc6lj0HT3GqBc6zXpcR7ni8FvgZ8wRr/AnCv9Xo5MMN6fTpwNOlY64ELiTenegq4Jtvnl2PX7wLreJ3ZPq9cunZAEfBO67UPeFm/eyP+7pVZzwL8Brg52+c3qmuS7QlMxgfwBHAF8UWItdZYLbArxbYCNAF+a5udSe99GPhhts8nV65fv/FJIRrjce2s974D/HW2zycXrx/gJZ76elO2z2c0D3VPTTAiMo/43cg6YJox5jiA9Tw1xS4fBN40xgSBmcQ7GdocscYmDWO8fpOaTF07EakArgOeH8/5Oo1MXD8ReQY4CXQAj4/zlMcFFY0JRERKiJuldxhj2tPYfhlwL/AJeyjFZpMm/S0D12/SkqlrJyIe4BfAfcaYfeMxVyeSqetnjLmKuGXiB96VYlfHo6IxQYiIl/iX7mfGmN9aw/UiUmu9X0v8DsTefhbwO+BWY8xea/gI8R7pNgP6pecrGbp+k5IMX7v7gT3GmG+P/8ydQaa/e8aYHuItq68f77mPByoaE4CV4fQgsMMY882kt54EVlmvVxH3l9rm/x+AO40xr9obW5xew7QAAAJ+SURBVGZwh4hcYB3zVnuffCZT128ykslrJyL/Trzg3R3jPW+nkKnrJyIlSSLjAd4N7Bz/MxgHsh1UmQwP4G3E3UhvAZusx7uBKuJ+4T3Wc6W1/ReBrqRtNwFTrfdWAFuBvcB/Yy3QzOdHhq/f14hbbDHr+e5sn18uXDviVq0BdiSN/1W2zy+Hrt804HXrONuA7wKebJ/faB66IlxRFEVJG3VPKYqiKGmjoqEoiqKkjYqGoiiKkjYqGoqiKEraqGgoiqIoaaOioSgTjIh8UkRuHcH280Rk63jOSVHSxZPtCSjKZEJEPMaYH2R7HooyWlQ0FGWEWIXrniZeuG458XLZtwKnAd8ESoBG4C+NMcdF5E/Aa8DFwJMiUkq8yu7XReRs4AfES4/vBT5ujGkRkXOBh4AA8MrEnZ2iDI26pxRldJwK3G+MORNoBz5NfJXvDcYY+wf/nqTtK4wxlxpjvtHvOI8A/2QdZwtwlzX+Y+BvjTEXjudJKMpIUUtDUUbHYdNbW+inwD8Tb7qz2mqm6AaOJ23/WP8DiEg5cTH5szX0MPDrFOOPAtdk/hQUZeSoaCjK6Ohff6cD2DaEZdA1gmNLiuMriiNQ95SijI45ImILxIeBtUCNPSYiXqunwqAYY9qAFhG5xBq6BfizMaYVaBORt1njH8389BVldKiloSijYwewSkR+SLzS6XeBZ4D7LPeSB/g28YqmQ7EK+IGIFAH7gI9Z4x8DHhKRgHVcRXEEWuVWUUaIlT31f8aY07M8FUWZcNQ9pSiKoqSNWhqKoihK2qiloSiKoqSNioaiKIqSNioaiqIoStqoaCiKoihpo6KhKIqipI2KhqIoipI2/x8gGKKtE5QPjAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +2301,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 12, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +2321,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +2345,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG2JJREFUeJzt3X2Q1dWd5/H3BxubjEEFBMOD2myFZaLJro5daMp9ELMCmUmJ2TFZRjdSNVbhGFPlrFOrUGHLbGR2ZGsrzrBWHK1oxsQHdDOxZMcgQYSKM8sCzaqjaJjGDYOMxG4WFEwVPWn57h/3tN6+dje3u899/ryqbt17zz3n3MPh3vvt8/D7/RQRmJmZjdeEWjfAzMyagwOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmlkVbrRtQTeecc050dHTUuhlmZg1l9+7dhyNi+qnytVRA6ejooKurq9bNMDNrKJL+vpx8nvIyM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUOpEz7ETfPWB7fQcP1HrppiZjYkDSp1Yt6WbXfuPsO757lo3xcxsTFrqOJR6NH/1Rvr6T374/NEdB3h0xwHa2yawd80Xa9gyM7PR8Qilxl68YyHXXDyLSRML/xWTJk5g6cWzePHOhTVumZnZ6Dig1NiMMycxub2Nvv6TtLdNoK//JJPb25gxeVKtm2ZmNiqe8qoDh9/v44bLLuD6Befz+M4D9Hph3swakCKi1m2oms7OzvC5vMzMRkfS7ojoPFU+T3mZmVkWDihmZpaFA4qZmWXhgNJAfDS9mdUzB5QG4qPpzayeedtwA/DR9GbWCDxCaQA+mt7MGoEDSgPw0fRm1ggcUMpQD4vhA0fTP/31K7jhsgvofb+vZm0xMxuKj5Qvw+qnX+WxnQe4YcH5rPny5yrQMjOz+lXukfJelB+BF8PNzMrnKa8ReDHczKx8ZQUUSfslvSrpZUldKW2qpM2SutP9lKL8qyTtk7RX0uKi9EtTPfskrZOklN4u6cmUvkNSR1GZ5ek9uiUtL0qfm/J2p7Knj787BvNiuJlZ+UYzQlkYERcXzaOtBLZExDxgS3qOpAuBZcBFwBLgu5JOS2XuB1YA89JtSUq/CTgaEZ8G7gXWprqmAncBlwELgLuKAtda4N70/kdTHdl5MdzMrDxlLcpL2g90RsThorS9wJURcUjSTGBbRMyXtAogIv4k5dsEfAvYD2yNiN9M6b+Xyt88kCcitktqA34JTKcQmK6MiJtTmQeAbcB6oBf4VET0S/p8Kv/haGgoPn29mdno5T59fQA/lbRb0oqUdm5EHAJI9zNS+mzgraKyB1Pa7PS4NH1QmYjoB94Dpo1Q1zTg3ZS3tC4zM6uBcnd5XRERb0uaAWyW9PMR8mqItBghfSxlRqprcGMKAXAFwPnnnz9UFjMzy6CsEUpEvJ3ue4CnKaxnvJOmukj3PSn7QeC8ouJzgLdT+pwh0geVSVNeZwFHRqjrMHB2yltaV2nbH4yIzojonD59ejn/XDMzG4NTBhRJZ0iaPPAYWAS8BmwABnZdLQeeSY83AMvSzq25FBbfd6ZpseOSLk+7u24sKTNQ13XAC1FY3NkELJI0JS3GLwI2pde2pryl729mZjVQzpTXucDTaYdvG/B4RDwnaRfwlKSbgAPAVwAiYo+kp4DXgX7g1oj4INV1C/AXwCeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07Io6kx3cC6yWtAV5KdZiZWY341CtmZjai3Lu8zMzMRuSAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmFlD6Tl2gq8+sJ2e4ydq3RQr4YBiZg1l3ZZudu0/wrrnu2vdFCvRVusGmJmVY/7qjfT1n/zw+aM7DvDojgO0t01g75ov1rBlNsAjFDPLppLTUS/esZBrLp7FpImFn61JEyew9OJZvHjnwuzvZWPjgGJm2VRyOmrGmZOY3N5GX/9J2tsm0Nd/ksntbcyYPCn7e9nYeMrLzMatWtNRh9/v44bLLuD6Befz+M4D9Hphvq4oImrdhqrp7OyMrq6uWjfDrOn0HDvBmp+8wU/3/JITvz7JpIkTWHzRp/jm73zGI4gmIGl3RHSeKl/ZU16STpP0kqS/Ss+nStosqTvdTynKu0rSPkl7JS0uSr9U0qvptXWSlNLbJT2Z0ndI6igqszy9R7ek5UXpc1Pe7lT29HL/LWaWl6ejDEa3hnIb8EbR85XAloiYB2xJz5F0IbAMuAhYAnxX0mmpzP3ACmBeui1J6TcBRyPi08C9wNpU11TgLuAyYAFwV1HgWgvcm97/aKrDzGpkYDrq6a9fwQ2XXUDv+321bpJVWVlTXpLmAI8AfwzcHhFfkrQXuDIiDkmaCWyLiPmSVgFExJ+kspuAbwH7ga0R8Zsp/fdS+ZsH8kTEdkltwC+B6RQC05URcXMq8wCwDVgP9AKfioh+SZ9P5T8cDQ3FU15mZqOXe8rrT4E7gJNFaedGxCGAdD8jpc8G3irKdzClzU6PS9MHlYmIfuA9YNoIdU0D3k15S+syM7MaOGVAkfQloCcidpdZp4ZIixHSx1JmpLoGN0ZaIalLUldvb+9QWaxJ+RQdZtVVzgjlCuAaSfspTDVdJelR4J001UW670n5DwLnFZWfA7yd0ucMkT6oTJryOgs4MkJdh4GzU97SugaJiAcjojMiOqdPn17GP9eahU/RYVZdpwwoEbEqIuZERAeFNY0XIuLfAxuAgV1Xy4Fn0uMNwLK0c2suhcX3nWla7Liky9PurhtLygzUdV16jwA2AYskTUmL8YuATem1rSlv6ftbi5u/eiMdK5/l0R0HiCgcE9Gx8lnmr95Y66aZNbXxHCl/D3C1pG7g6vSciNgDPAW8DjwH3BoRH6QytwDfA/YBbwID3/CHgGmS9gG3k3aMRcQR4G5gV7p9O6UB3AncnspMS3WY+RQdZjUyqiPlI2IbhV1WRMT/A74wTL4/prAjrDS9C/jsEOkngK8MU9fDwMNDpP9fCluJzQYp95iInmMn+MYTL3Hf9ZfU/fESjdRWa10+l5c1pXKOiWikNZZGaqu1Lp96xVpO6XmnBtTjadAbqa3WvLKfesWsWTTSGksjtdXMAcVaTiOdd6qR2mrm09dbS2qk06A3UluttXkNxczMRuQ1FDOzYfi0PJXhgGJmLcfbsCvDayhWl3wgn1VCtS5V3Ko8QrG65L8grRK8DbuyPEKxutKKf0F6NFY93oZdWR6hWE0Mtyjain9BejRWXb5UceV4hGKjluMv6uIf0TVf/tyH6a30F2QrjsbqwQNf+2j365prP3auWhsHBxQbteGCQTnK+RFtlQP5XrxjIWt+8gY/3fNLTvz6JJMmTmDxRZ/im7/zmVo3zWxMHFCsbDn+oi7nR7RV/oJspdGYtQavoVjZcqxv+Ed0sEaaz/fBgHYqHqFY2XIFg1aZ0ipHI43GxjPVaa3B5/KyUbn5h11MnzxpUDAo/lG05uNrsli55/JyQDGzEfUcOzHsulerTlW2Gp8c0syy8LqXlctrKGZ2Sl73snJ4ysvMzEbkKS8zM6sqBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxWwcfMJEs484oJiNg6+2aPYRHylvNga+2qLZx3mEYjYGOa4NY9ZsHFCsIdV67cInTDT7uFMGFEmTJO2U9IqkPZL+c0qfKmmzpO50P6WozCpJ+yTtlbS4KP1SSa+m19ZJUkpvl/RkSt8hqaOozPL0Ht2Slhelz015u1PZ0/N0iTWCeli7aKSrLZpVwylPDpl+9M+IiPclTQT+GrgN+LfAkYi4R9JKYEpE3CnpQuAJYAEwC3ge+KcR8YGknans/wZ+AqyLiI2Svg78s4j4A0nLgC9HxL+TNBXoAjqBAHYDl0bEUUlPAT+OiPWS/hx4JSLuH+nf4pNDNj5f7Mms+rKdHDIK3k9PJ6ZbAEuBR1L6I8C16fFSYH1E9EXEL4B9wAJJM4EzI2J7FKLYD0rKDNT1I+ALKZAtBjZHxJGIOApsBpak165KeUvf35qY1y4qp9bTiNb4ylpDkXSapJeBHgo/8DuAcyPiEEC6n5GyzwbeKip+MKXNTo9L0weViYh+4D1g2gh1TQPeTXlL6ypt+wpJXZK6ent7y/nnWh3z2kXl1MM0ojW2srYNR8QHwMWSzgaelvTZEbJrqCpGSB9LmZHqGpwY8SDwIBSmvIbKY43FF3vKy1ugLZdRHYcSEe9K2gYsAd6RNDMiDqXprJ6U7SBwXlGxOcDbKX3OEOnFZQ5KagPOAo6k9CtLymwDDgNnS2pLo5TiuqzJPfC1j6Zy11w70t82Vo4X71g47DXjzUajnF1e09PIBEmfAP4N8HNgAzCw62o58Ex6vAFYlnZuzQXmATvTtNhxSZenNZAbS8oM1HUd8EJaZ9kELJI0Je0iWwRsSq9tTXlL39/MRqGa04iNtE7TSG2tF+WsocwEtkr6W2AXhTWUvwLuAa6W1A1cnZ4TEXuAp4DXgeeAW9OUGcAtwPcoLNS/CWxM6Q8B0yTtA24HVqa6jgB3p/fdBXw7pQHcCdyeykxLddSEP3jW6Kq1BbqR1mkaqa31wteUz2D106/y2M4D3LDgfNZ8+XPZ6zdrdI203buR2lot5W4bdkAZB3/wzMrTc+zEsOs09bZDr5HaWi3ZjkOx4Y3mmAhPi1mt1fIz2EjbvRuprfXGAWUcRvPB83ys1VqtP4ONdKqaRmprPfGU1zjd/MMupk+eNOiYiOJtrZ4Ws1rzZ9DGy2soQ6jFubwabT6259gJvvHES9x3/SV12T4bvUb7DDaTZvk+eQ2lTjTafGytp0Usv0b7DDaTVvs++YqNVdAIpwrx6TeaWyN8BptJq36fPOVlgKdFzHJqtu+Tp7xsVDwtYpZPq36fHFBazEjHInirpFk+rfh98pRXi/FpYsxstMqd8vKifIto1UXC8WqWbZ9m1eAprxbhS+eOTatt+zQbD49QWkSrLhKOlUd0ZqPnEUoLacVFwrHyiM5s9DxCaSG+dG75PKIzGz0HFLNh+Ohys9HxtmEzMxuRj5Q3M7OqckAxM7MsHFDMmoAvMV197vOPc0AxawI+ALP63Ocf50V5swbmy/tWXyv2uRflzVqAD8Csvpx93mzTZg4oZhVWyR8NH4BZfTn7vNmmzXxgo1mFFf9oVOKSAT4As/rG2+fNeq44r6GYVUgrzrXn0AqXDGi0SwR7DcWsxry+MTbNNg00lGadqvSUl1mFNOuPRqU06zTQcJpxqtIBxayCmvFHo1JevGPhsNNAzagZz/7tgGJWQc34o1EpHtE1Pq+hmFnd8EXg8qvmsS7e5WVm1sRWP/0qj+08wA0Lzh/ztvVsu7wknSdpq6Q3JO2RdFtKnypps6TudD+lqMwqSfsk7ZW0uCj9UkmvptfWSVJKb5f0ZErfIamjqMzy9B7dkpYXpc9NebtT2dPL7Rwzs0YwntHF/NUb6Vj5LI/uOEBEYZNDx8pnmb96YwVaWlDOlFc/8EcR8RngcuBWSRcCK4EtETEP2JKek15bBlwELAG+K+m0VNf9wApgXrotSek3AUcj4tPAvcDaVNdU4C7gMmABcFdR4FoL3Jve/2iqw8ysaYxnC3Uttq2fclE+Ig4Bh9Lj45LeAGYDS4ErU7ZHgG3AnSl9fUT0Ab+QtA9YIGk/cGZEbAeQ9APgWmBjKvOtVNePgPvS6GUxsDkijqQym4ElktYDVwHXF73/tygELDOzhpZjC3UtNjmMalE+TUVdAuwAzk3BZiDozEjZZgNvFRU7mNJmp8el6YPKREQ/8B4wbYS6pgHvpryldZW2eYWkLkldvb29o/nnmpnVRK7RRbU3OZS9bVjSJ4G/BP4wIo6l5Y8hsw6RFiOkj6XMSHUNTox4EHgQCovyQ+UxM6snuUYX1d62XtYIRdJECsHksYj4cUp+R9LM9PpMoCelHwTOKyo+B3g7pc8ZIn1QGUltwFnAkRHqOgycnfKW1mVm1vAacQv1KUcoaS3jIeCNiPhO0UsbgOXAPen+maL0xyV9B5hFYfF9Z0R8IOm4pMspTJndCPz3krq2A9cBL0RESNoE/JeihfhFwKr02taUd33J+5uZNbxGPCi2nBHKFcDXgKskvZxuv00hkFwtqRu4Oj0nIvYATwGvA88Bt0bEB6muW4DvAfuANyksyEMhYE1LC/i3k3aMpcX4u4Fd6fbtgQV6ChsAbk9lpqU6rA4020WDzKw8PrDRsstxIJWZ1Y9yD2z0ubwsm1Y7W6yZDeZzeVk2vv6HWWtzQLFsfLZYs9bmKS/Lytf/MGtdXpQ3M7MR+ZryZmZWVQ4oTcTHf5hZLTmgNJHxnOrazGy8vCjfBHz8h9lgPcdO8I0nXuK+6y/xLsMq8gilCfj4D7PBPFqvDY9QmoCP/zAr8Gi9tjxCaRKNeKprs9w8Wq8tj1CaRCOe6tosN4/Wa8sBxcyais/WUDs+Ut7MzEbkI+XNzKyqHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxczMsnBAMTOzLBxQzMwsCwcUMzPLwgHFzMyycEAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLItTBhRJD0vqkfRaUdpUSZsldaf7KUWvrZK0T9JeSYuL0i+V9Gp6bZ0kpfR2SU+m9B2SOorKLE/v0S1peVH63JS3O5U9ffxdYWZm41HOCOUvgCUlaSuBLRExD9iSniPpQmAZcFEq811Jp6Uy9wMrgHnpNlDnTcDRiPg0cC+wNtU1FbgLuAxYANxVFLjWAvem9z+a6jAzsxo6ZUCJiJ8BR0qSlwKPpMePANcWpa+PiL6I+AWwD1ggaSZwZkRsj4gAflBSZqCuHwFfSKOXxcDmiDgSEUeBzcCS9NpVKW/p+5uZWY2MdQ3l3Ig4BJDuZ6T02cBbRfkOprTZ6XFp+qAyEdEPvAdMG6GuacC7KW9pXR8jaYWkLkldvb29o/xnmplZuXIvymuItBghfSxlRqrr4y9EPBgRnRHROX369OGymZnZOI01oLyTprFI9z0p/SBwXlG+OcDbKX3OEOmDykhqA86iMMU2XF2HgbNT3tK6zMysRsYaUDYAA7uulgPPFKUvSzu35lJYfN+ZpsWOS7o8rYHcWFJmoK7rgBfSOssmYJGkKWkxfhGwKb22NeUtfX8zM6uRtlNlkPQEcCVwjqSDFHZe3QM8Jekm4ADwFYCI2CPpKeB1oB+4NSI+SFXdQmHH2CeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07IgY2B9wJrJe0Bngp1WFmZjWkwh/8raGzszO6urpq3Qwzs4YiaXdEdJ4qn4+UNzOzLBxQzMwsCwcUM7MG1nPsBF99YDs9x0/UuikOKGZmjWzdlm527T/Cuue7a92UU+/yMjOz+jN/9Ub6+k9++PzRHQd4dMcB2tsmsHfNF2vSJo9QzMwa0It3LOSai2cxaWLhZ3zSxAksvXgWL965sGZtckAxM2tAM86cxOT2Nvr6T9LeNoG+/pNMbm9jxuRJNWuTp7zMzBrU4ff7uOGyC7h+wfk8vvMAvTVemPeBjWZmNiIf2GhmZlXlgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWbTUtmFJvcDfD/PyORQuL1zv3M68GqWd0DhtdTvzqod2XhAR00+VqaUCykgkdZWzz7rW3M68GqWd0DhtdTvzapR2gqe8zMwsEwcUMzPLwgHlIw/WugFlcjvzapR2QuO01e3Mq1Ha6TUUMzPLwyMUMzPLomkDiqSHJfVIeq0o7Z9L2i7pVUn/U9KZKX2ipEdS+huSVhWV2SZpr6SX021GDdt5uqTvp/RXJF1ZVObSlL5P0jpJytnOzG2tWJ9KOk/S1vT/uEfSbSl9qqTNkrrT/ZSiMqtSv+2VtLgovaJ9mrmtddOnkqal/O9Luq+kror1aeZ21lN/Xi1pd+q33ZKuKqqr4t/7UYmIprwB/wr4LeC1orRdwL9Oj38fuDs9vh5Ynx7/BrAf6EjPtwGdddLOW4Hvp8czgN3AhPR8J/B5QMBG4It13NaK9SkwE/it9Hgy8HfAhcB/BVam9JXA2vT4QuAVoB2YC7wJnFaNPs3c1nrq0zOAfwH8AXBfSV0V69PM7ayn/rwEmJUefxb4h2r051huTTtCiYifAUdKkucDP0uPNwO/O5AdOENSG/AJ4B+BY3XYzguBLalcD/Au0ClpJnBmRGyPwqfsB8C19djW3G0aoo2HIuL/pMfHgTeA2cBS4JGU7RE+6p+lFP6Y6IuIXwD7gAXV6NNcbc3ZphztjIhfRcRfA4Ou9lTpPs3VzkobQztfioi3U/oeYJKk9mp970ejaQPKMF4DrkmPvwKclx7/CPgVcAg4APy3iCj+4fx+Gvb+pyoNKYdr5yvAUkltkuYCl6bXZgMHi8ofTGnVMNq2Dqh4n0rqoPDX3Q7g3Ig4BIUvNIVRExT66a2iYgN9V9U+HWdbB9RLnw6nan06znYOqMf+/F3gpYjoo7bf+yG1WkD5feBWSbspDDX/MaUvAD4AZlGYSvgjSf8kvXZDRHwO+Jfp9rUatvNhCh+aLuBPgf8F9FMY7paq1va90bYVqtCnkj4J/CXwhxEx0mhzuL6rWp9maCvUV58OW8UQadn7NEM7oQ77U9JFwFrg5oGkIbLVdNtuSwWUiPh5RCyKiEuBJyjMQUNhDeW5iPh1mp75G9L0TET8Q7o/DjxOdaYYhmxnRPRHxH+IiIsjYilwNtBN4Yd7TlEVc4C3S+utk7ZWvE8lTaTwRX0sIn6ckt9JUwQDUy89Kf0gg0dOA31XlT7N1NZ669PhVLxPM7Wz7vpT0hzgaeDGiBj43arZ9344LRVQBnZqSJoArAb+PL10ALhKBWcAlwM/T9M156QyE4EvUZjiqUk7Jf1Gah+Srgb6I+L1NDw+LunyNDS/EXim0u0cS1sr3afp3/8Q8EZEfKfopQ3A8vR4OR/1zwZgWZqTngvMA3ZWo09ztbUO+3RIle7TXO2st/6UdDbwLLAqIv5mIHMtv/fDyr3KXy83Cn8tHwJ+TSGS3wTcRmFHxd8B9/DRgZ2fBP4HhQWv14H/GB/tAtkN/G167c9Iu2pq1M4OYC+FRbznKZwBdKCeTgof+jeB+wbK1FtbK92nFHbtRKr/5XT7bWAahU0C3el+alGZb6Z+20vRLplK92muttZpn+6nsIHj/fRZubDSfZqrnfXWnxT+UPtVUd6XgRnV+t6P5uYj5c3MLIuWmvIyM7PKcUAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy+L/A9t1yP3IuE0bAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +2384,57 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2021 743449\n", + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2010315\n", + "2022 2060304\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +2449,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE6lJREFUeJzt3XuQZGV5x/Hvk10uC8MtWRl0QcZbjMjKbVCRiLNoeWFRo1KCgrqUuJgoEFwrWSmVqCHiBVNqvGS9lyJTCiQqGC+BDCoaZBfUFVfRglVYBAQEXSDCypM/3jOhazOz07tMT/fb/f1UTVV3n9N93uftnl+f855z+kRmIkmqx590uwGSpK1jcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqM78TL7pw4cIcGRnpxEvP6O6772bnnXfuyrJ7xaD3waDXD/ZBjfWvWbPmtsx8WDvzdiS4R0ZGWL16dSdeekYTExOMjY11Zdm9YtD7YNDrB/ugxvoj4pftzutQiSRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyHTkBR5rJyMqLO/baKxZvYtk0r7/+7KUdW640V1zjlqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkirTVnBHxOkRcU1E/DgizouIHTvdMEnS1GYM7ohYBJwKjGbm/sA84LhON0ySNLV2h0rmAwsiYj6wE3BT55okSdqSyMyZZ4o4DTgLuBf4RmYeP8U8y4HlAMPDw4eMj4/PclPbs3HjRoaGhrqy7F5RQx+s3XBXx157eAHccu/U0xYv2q1jy+0lNXwGOqnG+pcsWbImM0fbmXfG4I6IPYALgGOBO4EvAudn5ueme87o6GiuXr26/RbPoomJCcbGxrqy7F5RQx+MrLy4Y6+9YvEmzlk7f8pp689e2rHl9pIaPgOdVGP9EdF2cLczVPIs4PrM/E1m3g9cCDztoTRQkrTt2gnuXwFPjYidIiKAZwLrOtssSdJ0ZgzuzLwCOB+4CljbPGdVh9slSZrG1AOBm8nMM4EzO9wWSVIbPHNSkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKtPWFXDUnzp5pXVJneMatyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZtoI7InaPiPMj4qcRsS4iDut0wyRJU2v3YsHvB76WmcdExPbATh1skyRpC2YM7ojYFTgCWAaQmfcB93W2WZKk6URmbnmGiAOBVcBPgAOANcBpmXn3ZvMtB5YDDA8PHzI+Pt6RBs9k48aNDA0NdWXZvaLdPli74a45aM3cG14At9w79bTFi3ab28Z0yaD/H9RY/5IlS9Zk5mg787YT3KPAfwOHZ+YVEfF+4HeZ+ZbpnjM6OpqrV6/emjbPmomJCcbGxrqy7F7Rbh+MrLy4843pghWLN3HO2qk3JtefvXSOW9Mdg/5/UGP9EdF2cLezc/JG4MbMvKK5fz5w8LY2TpL00MwY3Jl5M3BDRDy+eeiZlGETSVIXtHtUySnAuc0RJdcBJ3auSZKkLWkruDPzB0BbYy+SpM7yzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTLuXLpP6Qr9e2X5zKxZvYllT66Bc2X6QuMYtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVabt4I6IeRFxdURc1MkGSZK2bGvWuE8D1nWqIZKk9rQV3BGxN7AU+HhnmyNJmklk5swzRZwPvBPYBXhjZh49xTzLgeUAw8PDh4yPj89yU9uzceNGhoaGurLsXtFuH6zdcNcctGbuDS+AW+7tdiu6q7UPFi/arbuN6YIac2DJkiVrMnO0nXnnzzRDRBwN3JqZayJibLr5MnMVsApgdHQ0x8amnbWjJiYm6Naye0W7fbBs5cWdb0wXrFi8iXPWzvjR7mutfbD++LHuNqYL+j0H2hkqORx4QUSsB8aBIyPicx1tlSRpWjMGd2a+KTP3zswR4Djg0sw8oeMtkyRNyeO4JakyWzUQmJkTwERHWiJJaotr3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZwb4Udo8YmeWrra9YvKlvr+AutWPthru68j+w/uylc7Ic17glqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyswY3BGxT0T8V0Ssi4hrIuK0uWiYJGlq7VwseBOwIjOviohdgDUR8c3M/EmH2yZJmsKMa9yZ+evMvKq5/XtgHbCo0w2TJE0tMrP9mSNGgG8B+2fm7zabthxYDjA8PHzI+Pj47LVyK2zcuJGhoaGtft7aDXd1oDXdMbwAbrm3263onkGvH3qjDxYv2q1ry771jru6Uv9DqXnJkiVrMnO0nXnbDu6IGAIuA87KzAu3NO/o6GiuXr26rdedbRMTE4yNjW3180ZWXjz7jemSFYs3cc7adkbB+tOg1w+90Qfrz17atWV/8NwvdaX+h1JzRLQd3G0dVRIR2wEXAOfOFNqSpM5q56iSAD4BrMvM93W+SZKkLWlnjftw4BXAkRHxg+bvqA63S5I0jRkHgTLzO0DMQVskSW3wzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTM9dCvuhXm19xeJNLOujK7ZL0uZc45akyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5Iq01ZwR8RzI+JnEfGLiFjZ6UZJkqY3Y3BHxDzgQ8DzgP2Al0XEfp1umCRpau2scT8Z+EVmXpeZ9wHjwAs72yxJ0nQiM7c8Q8QxwHMz86Tm/iuAp2Tm6zebbzmwvLn7eOBns9/ctiwEbuvSsnvFoPfBoNcP9kGN9e+bmQ9rZ8b5bcwTUzz2/9I+M1cBq9pZaCdFxOrMHO12O7pp0Ptg0OsH+6Df629nqORGYJ+W+3sDN3WmOZKkmbQT3FcCj4uIR0XE9sBxwJc72yxJ0nRmHCrJzE0R8Xrg68A84JOZeU3HW7btuj5c0wMGvQ8GvX6wD/q6/hl3TkqSeotnTkpSZQxuSaqMwS1JlTG4NxMRiyJiUbfb0S0R8eiIOD0ijux2W7rB+ge7fqijDwzuRkSMRMRlwNeA90TE07vdprkWEX8JfJPymzSvjYi/7nKT5pT1D3b9UE8fDHRwR8SOLXcPBq7MzMWUQx9PjYjFzXxTnT1avYg4MiIe1dwO4EjgzMx8DXAOcFREjLVM7yvWP9j1Q719MHDBHRG7RsRHI+Ja4L0RsW8z6UXAr5rb48AvgJMmnzbHzeyoiNgvIn4E/APwqYg4MstxofsBewFk5hXAd4ETJ5/WjbZ2gvUPdv1Qfx8MXHADzwV2pLxB9wFvjYgFlM2j5wNk5h+A84GnN/cf6E5TZ0dE7B0Ru7Y8dCxwQWYeQfmSenlEPA74PE0fNP4N2D8idqi5D6x/sOuH/uuDvgzuKOZHxKsj4tsRcVpEPKaZ/FjgvszcBPwz8FvgBOAbwMMj4k+b+a4FboiIw+a8gFkSEU+IiK8C3wHeHhGTP8f7P8BOze0vADcDSylrF3/WshVyB+VXHg+Yu1bPHusf7Pqhf/ugL4O72eR5BvBK4N3ADsDHmsk3A7c236A3UN6Ux1DeyJ/w4E/Tbgfc3jxejYjYueXugcCNmTkCXAq8t3n8DuAPEbFLZt4B/Bx4BKXW7wJvaObbHvgjsL7zLZ8d1j/Y9cNg9EFfBHdEHBYR74qIZc39AJ4AfC0zv5KZ7wb2jYinARso37RPaJ6+DhhqHvsXys6I51NCfxj44ZwWsw0iYo+I+HREXAmcHREPa/pgMXB5RERmfhm4MyKWUrYmdmmm09zfE3iAshWyZ0R8DDgP2JSZt851TVvD+ge7fhi8Pqg+uCPiicBHgN8DL42IN1DqWgT8vmVP8KeBl1OCeBPwtObxqyh7ku/JzG8BK4FlwOHAOzLzgV7amzyNIyg1HUXZgXIGsCvlR8H2ygd/kOYzlD74PqW/ngeQmd9rXmN+Zq4DTgauAf4pM0+k91n/YNcPg9YHmVnNH2XN+CTK5s/85rH3Aac1t0eBDwDHAM8Cvt7y3H0om0xQgvpqypV6DgK+BDy8Zd7odq3T1D+P8oG6jDKks7B5/AvAqc3tRwFnN9MPpYztzWvpv980r7OIsrXxeuBTwIeBnbtdo/Vbv30w8181a9wRcQBlB+ILgTOBNzeTNlCuiwnlG/Jy4CXAJcBeEfGkiNguy3j2hoh4emZeSvnZx3cBFwLnZeavJ5eVzTvcg44GXgC8DTiMMn4P5YiYyS2IG4BvA8/LzCspax9LADJzI3AFcGhmbgBeQRkOuhl4c2bePUd1bCvrH+z6wT4A2rt0WVdExEHA3Zl5bfPQk4FrM3NZRBwMnBURo8AE8JyI2Ckz74mIHwIvpRyL+XngNcAHIuJeYC1wffN6HwU+n5l3zV1VM2vG4jIiDqVs0n0buDjLIYp/DlyXmZdGxPWUMzyfDawBXhQRCzPztoj4OXB3RDwS+CBwQkTsSbl60e2UzUQyczWwes6L3ALrH+z6wT5oR8+tcUfEYyPiO5Qx6bdGxCubSQ8A65u156somziHAffw4KE8APdTNoX2oqxV/7h5rcuA2zLzRihr1T0c2kcAn6Ts4X4W8M5mlgeAayNiQWZeT+mDJ1HG6m6iHJsKZS/4PMr7ewGlH44HDgFWZQ8dj9oqIuY19T+Dsuk6aPUvaOofYwDffygnyA16H7Sl22M1wM7AYS33jwbe39x+CuXbcF/gVZTNo0XNtGMo49mT0y5rHt+RMkyysOU1DwK273at09S/E/BaHtw62A74W+B1zfQ9gB81NRxLGbsbaemrVZQrWh9N2aLYjTKG/9XWmoE/6XatW3j/T6L8c62g7FAamPqbtu0CXEy5uhTA6QNW/07N//AllJNiBq4Ptvavq2vcEXEGcB3w1YgYbh5+DuXYarKccvp94BTKMZj7UI65hjKWfSDlaJDPAL+NiM9Sdjr+DPi/sarMvDoz7+t8RVsnIvYCLgLGgM9Sdqa8mLIlsQkgM39L2Xl6KmUcb08ePJTxW5Tj1e/LzIuAT1DO+PwQZe/5/ZPLyh5cw2iOt72E8k/2MeDZlP0Th1LWrPq6/hYLKOcaPCYiFlI+4/Og/+uPiO0o+6aOAd6TmS9pJh00OU+/98E26fI37RhlM+fjwIrmsTdQxrMm59kPuKG5fRbw9pZpVwIHNbd3oBwKdGi3vw23ov4FwFNa7i+j7Gx5FfD9lscfAdzU3H4d5RTdPZrnfwV4ZMu8C+ei7bPYB7u33P47yj/n8YNSf9PmVwHvAd4CvJpyyvWVA1T/hcDxmz12LHDFoPTBVvdZl9+wyUN0juXBoY7dgTuBHVvmu5LyDbw78EXKptF/UL5Rd+h2Jz6E+mPyr7l/cEs/3E45/nRy3m9Ohjzwj5QjbG4H/r7bdcxCP+xK2Q9xC/D25v7twHA/19/yvp9IGS57MXBu89ht/V5/S21HU06AOYdysMFbKUOgdwB7DkIfbO1fV4dKMvOPzc3/BHaJiAMy807KuPbJLbNeBezSTDuFMhzy78DyLHuaq5SNlodOo6x9QBmfOx0gyu+n/BKYPGTxbZQtk0WZ+a45am7HZObvKENiT6XsVH4pZbjr5Cj6sv6W9/4oylDRJcDeEfFmyg735TAQ7/9FlKO9bqccnvdE4K8on4HX9vNnYFv1zFXeI+LDlPHqNzZHVfwNJcD3oJxYc1RL0PediNibMj53SmZeG+VHsZZTPsSLgB9kL57BNcsi4kDKl/b3KOOY+1MO4erL+iNiiDJMsgOl3r+gnDByBmVN/HH0cf2TJg/nbW4fQPnsX045Jb2vPwPbopeC+0DKUSLPpHyA76Gcfn4v8NHMvKaLzeu4KL+P8gzgTZQxzxspm4bHAj/Ncghk34uIfShfYC/LzNsj4gTgmsy8ustN64goF/P4V8pOtPMoh7GdkZnPbqb3df1TifLLfB8Hjs3MOwaxD2bSS8F9HOWQuHuAd1D2MPfPXuAZRMTlwKMpv0J2E/C2zPxRVxs1RyJiN8oX9sspO6NXAR/KzPu3+MQ+1Jww8mJgPDNv7nZ75kpE7ED5rfzJoZKPAB/O8vPL2kxPBHdEPIly+vn5lJ0zVf2U6kPVHBJ1JmWc73M1j9tvi4iYTxke+QOl/oF6/6GcfAQ8kL3wD9klEXEy5TDQzw7iZ2Br9ERwS5La13OnvEuStszglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZX5XwHKcVej17E2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -364,7 +2505,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4, -- 2.18.1