{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"\n", "\n", "data_file = \"syndrome-chickenpox.csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020222131350510130.016880.02015.025.0FRFrance
120222031978715756.023818.03024.036.0FRFrance
220221931788414079.021689.02721.033.0FRFrance
320221833035325089.035617.04638.054.0FRFrance
420221733600630373.041639.05446.062.0FRFrance
520221634994942836.057062.07564.086.0FRFrance
6202215310080690824.0110788.0152137.0167.0FRFrance
72022143155441143891.0166991.0234217.0251.0FRFrance
82022133191914179558.0204270.0289270.0308.0FRFrance
92022123166224155035.0177413.0251234.0268.0FRFrance
102022113122849113306.0132392.0185171.0199.0FRFrance
1120221038790479741.096067.0133121.0145.0FRFrance
1220220935018243958.056406.07667.085.0FRFrance
1320220833096325942.035984.04739.055.0FRFrance
1420220733488229446.040318.05345.061.0FRFrance
1520220634662340398.052848.07061.079.0FRFrance
1620220536297056043.069897.09585.0105.0FRFrance
1720220437220964804.079614.010998.0120.0FRFrance
1820220337461367144.082082.0113102.0124.0FRFrance
1920220235592049511.062329.08474.094.0FRFrance
2020220135762950699.064559.08777.097.0FRFrance
2120215235434947029.061669.08271.093.0FRFrance
2220215134169835359.048037.06353.073.0FRFrance
2320215033811732497.043737.05849.067.0FRFrance
2420214934016834716.045620.06153.069.0FRFrance
2520214834184236364.047320.06355.071.0FRFrance
2620214733659831338.041858.05547.063.0FRFrance
2720214633005925302.034816.04639.053.0FRFrance
2820214532036416564.024164.03125.037.0FRFrance
2920214431899915042.022956.02923.035.0FRFrance
.................................
193119852132609619621.032571.04735.059.0FRFrance
193219852032789620885.034907.05138.064.0FRFrance
193319851934315432821.053487.07859.097.0FRFrance
193419851834055529935.051175.07455.093.0FRFrance
193519851733405324366.043740.06244.080.0FRFrance
193619851635036236451.064273.09166.0116.0FRFrance
193719851536388145538.082224.011683.0149.0FRFrance
19381985143134545114400.0154690.0244207.0281.0FRFrance
19391985133197206176080.0218332.0357319.0395.0FRFrance
19401985123245240223304.0267176.0445405.0485.0FRFrance
19411985113276205252399.0300011.0501458.0544.0FRFrance
19421985103353231326279.0380183.0640591.0689.0FRFrance
19431985093369895341109.0398681.0670618.0722.0FRFrance
19441985083389886359529.0420243.0707652.0762.0FRFrance
19451985073471852432599.0511105.0855784.0926.0FRFrance
19461985063565825518011.0613639.01026939.01113.0FRFrance
19471985053637302592795.0681809.011551074.01236.0FRFrance
19481985043424937390794.0459080.0770708.0832.0FRFrance
19491985033213901174689.0253113.0388317.0459.0FRFrance
195019850239758680949.0114223.0177147.0207.0FRFrance
195119850138548965918.0105060.0155120.0190.0FRFrance
195219845238483060602.0109058.0154110.0198.0FRFrance
1953198451310172680242.0123210.0185146.0224.0FRFrance
19541984503123680101401.0145959.0225184.0266.0FRFrance
1955198449310107381684.0120462.0184149.0219.0FRFrance
195619844837862060634.096606.0143110.0176.0FRFrance
195719844737202954274.089784.013199.0163.0FRFrance
195819844638733067686.0106974.0159123.0195.0FRFrance
19591984453135223101414.0169032.0246184.0308.0FRFrance
196019844436842220056.0116788.012537.0213.0FRFrance
\n", "

1961 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202221 3 13505 10130.0 16880.0 20 15.0 \n", "1 202220 3 19787 15756.0 23818.0 30 24.0 \n", "2 202219 3 17884 14079.0 21689.0 27 21.0 \n", "3 202218 3 30353 25089.0 35617.0 46 38.0 \n", "4 202217 3 36006 30373.0 41639.0 54 46.0 \n", "5 202216 3 49949 42836.0 57062.0 75 64.0 \n", "6 202215 3 100806 90824.0 110788.0 152 137.0 \n", "7 202214 3 155441 143891.0 166991.0 234 217.0 \n", "8 202213 3 191914 179558.0 204270.0 289 270.0 \n", "9 202212 3 166224 155035.0 177413.0 251 234.0 \n", "10 202211 3 122849 113306.0 132392.0 185 171.0 \n", "11 202210 3 87904 79741.0 96067.0 133 121.0 \n", "12 202209 3 50182 43958.0 56406.0 76 67.0 \n", "13 202208 3 30963 25942.0 35984.0 47 39.0 \n", "14 202207 3 34882 29446.0 40318.0 53 45.0 \n", "15 202206 3 46623 40398.0 52848.0 70 61.0 \n", "16 202205 3 62970 56043.0 69897.0 95 85.0 \n", "17 202204 3 72209 64804.0 79614.0 109 98.0 \n", "18 202203 3 74613 67144.0 82082.0 113 102.0 \n", "19 202202 3 55920 49511.0 62329.0 84 74.0 \n", "20 202201 3 57629 50699.0 64559.0 87 77.0 \n", "21 202152 3 54349 47029.0 61669.0 82 71.0 \n", "22 202151 3 41698 35359.0 48037.0 63 53.0 \n", "23 202150 3 38117 32497.0 43737.0 58 49.0 \n", "24 202149 3 40168 34716.0 45620.0 61 53.0 \n", "25 202148 3 41842 36364.0 47320.0 63 55.0 \n", "26 202147 3 36598 31338.0 41858.0 55 47.0 \n", "27 202146 3 30059 25302.0 34816.0 46 39.0 \n", "28 202145 3 20364 16564.0 24164.0 31 25.0 \n", "29 202144 3 18999 15042.0 22956.0 29 23.0 \n", "... ... ... ... ... ... ... ... \n", "1931 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1932 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1933 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1934 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1935 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1936 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1937 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1938 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1939 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1940 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1941 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1942 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1943 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1944 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1945 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1946 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1947 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1948 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1949 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1950 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1951 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1952 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1953 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1954 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1955 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1956 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1957 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1958 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1959 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1960 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 25.0 FR France \n", "1 36.0 FR France \n", "2 33.0 FR France \n", "3 54.0 FR France \n", "4 62.0 FR France \n", "5 86.0 FR France \n", "6 167.0 FR France \n", "7 251.0 FR France \n", "8 308.0 FR France \n", "9 268.0 FR France \n", "10 199.0 FR France \n", "11 145.0 FR France \n", "12 85.0 FR France \n", "13 55.0 FR France \n", "14 61.0 FR France \n", "15 79.0 FR France \n", "16 105.0 FR France \n", "17 120.0 FR France \n", "18 124.0 FR France \n", "19 94.0 FR France \n", "20 97.0 FR France \n", "21 93.0 FR France \n", "22 73.0 FR France \n", "23 67.0 FR France \n", "24 69.0 FR France \n", "25 71.0 FR France \n", "26 63.0 FR France \n", "27 53.0 FR France \n", "28 37.0 FR France \n", "29 35.0 FR France \n", "... ... ... ... \n", "1931 59.0 FR France \n", "1932 64.0 FR France \n", "1933 97.0 FR France \n", "1934 93.0 FR France \n", "1935 80.0 FR France \n", "1936 116.0 FR France \n", "1937 149.0 FR France \n", "1938 281.0 FR France \n", "1939 395.0 FR France \n", "1940 485.0 FR France \n", "1941 544.0 FR France \n", "1942 689.0 FR France \n", "1943 722.0 FR France \n", "1944 762.0 FR France \n", "1945 926.0 FR France \n", "1946 1113.0 FR France \n", "1947 1236.0 FR France \n", "1948 832.0 FR France \n", "1949 459.0 FR France \n", "1950 207.0 FR France \n", "1951 190.0 FR France \n", "1952 198.0 FR France \n", "1953 224.0 FR France \n", "1954 266.0 FR France \n", "1955 219.0 FR France \n", "1956 176.0 FR France \n", "1957 163.0 FR France \n", "1958 195.0 FR France \n", "1959 308.0 FR France \n", "1960 213.0 FR France \n", "\n", "[1961 rows x 10 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_file, skiprows=1)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
172419891930NaNNaN0NaNNaNFRFrance
\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", "1724 198919 3 0 NaN NaN 0 NaN NaN \n", "\n", " geo_insee geo_name \n", "1724 FR France " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020222131350510130.016880.02015.025.0FRFrance
120222031978715756.023818.03024.036.0FRFrance
220221931788414079.021689.02721.033.0FRFrance
320221833035325089.035617.04638.054.0FRFrance
420221733600630373.041639.05446.062.0FRFrance
520221634994942836.057062.07564.086.0FRFrance
6202215310080690824.0110788.0152137.0167.0FRFrance
72022143155441143891.0166991.0234217.0251.0FRFrance
82022133191914179558.0204270.0289270.0308.0FRFrance
92022123166224155035.0177413.0251234.0268.0FRFrance
102022113122849113306.0132392.0185171.0199.0FRFrance
1120221038790479741.096067.0133121.0145.0FRFrance
1220220935018243958.056406.07667.085.0FRFrance
1320220833096325942.035984.04739.055.0FRFrance
1420220733488229446.040318.05345.061.0FRFrance
1520220634662340398.052848.07061.079.0FRFrance
1620220536297056043.069897.09585.0105.0FRFrance
1720220437220964804.079614.010998.0120.0FRFrance
1820220337461367144.082082.0113102.0124.0FRFrance
1920220235592049511.062329.08474.094.0FRFrance
2020220135762950699.064559.08777.097.0FRFrance
2120215235434947029.061669.08271.093.0FRFrance
2220215134169835359.048037.06353.073.0FRFrance
2320215033811732497.043737.05849.067.0FRFrance
2420214934016834716.045620.06153.069.0FRFrance
2520214834184236364.047320.06355.071.0FRFrance
2620214733659831338.041858.05547.063.0FRFrance
2720214633005925302.034816.04639.053.0FRFrance
2820214532036416564.024164.03125.037.0FRFrance
2920214431899915042.022956.02923.035.0FRFrance
.................................
193119852132609619621.032571.04735.059.0FRFrance
193219852032789620885.034907.05138.064.0FRFrance
193319851934315432821.053487.07859.097.0FRFrance
193419851834055529935.051175.07455.093.0FRFrance
193519851733405324366.043740.06244.080.0FRFrance
193619851635036236451.064273.09166.0116.0FRFrance
193719851536388145538.082224.011683.0149.0FRFrance
19381985143134545114400.0154690.0244207.0281.0FRFrance
19391985133197206176080.0218332.0357319.0395.0FRFrance
19401985123245240223304.0267176.0445405.0485.0FRFrance
19411985113276205252399.0300011.0501458.0544.0FRFrance
19421985103353231326279.0380183.0640591.0689.0FRFrance
19431985093369895341109.0398681.0670618.0722.0FRFrance
19441985083389886359529.0420243.0707652.0762.0FRFrance
19451985073471852432599.0511105.0855784.0926.0FRFrance
19461985063565825518011.0613639.01026939.01113.0FRFrance
19471985053637302592795.0681809.011551074.01236.0FRFrance
19481985043424937390794.0459080.0770708.0832.0FRFrance
19491985033213901174689.0253113.0388317.0459.0FRFrance
195019850239758680949.0114223.0177147.0207.0FRFrance
195119850138548965918.0105060.0155120.0190.0FRFrance
195219845238483060602.0109058.0154110.0198.0FRFrance
1953198451310172680242.0123210.0185146.0224.0FRFrance
19541984503123680101401.0145959.0225184.0266.0FRFrance
1955198449310107381684.0120462.0184149.0219.0FRFrance
195619844837862060634.096606.0143110.0176.0FRFrance
195719844737202954274.089784.013199.0163.0FRFrance
195819844638733067686.0106974.0159123.0195.0FRFrance
19591984453135223101414.0169032.0246184.0308.0FRFrance
196019844436842220056.0116788.012537.0213.0FRFrance
\n", "

1960 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202221 3 13505 10130.0 16880.0 20 15.0 \n", "1 202220 3 19787 15756.0 23818.0 30 24.0 \n", "2 202219 3 17884 14079.0 21689.0 27 21.0 \n", "3 202218 3 30353 25089.0 35617.0 46 38.0 \n", "4 202217 3 36006 30373.0 41639.0 54 46.0 \n", "5 202216 3 49949 42836.0 57062.0 75 64.0 \n", "6 202215 3 100806 90824.0 110788.0 152 137.0 \n", "7 202214 3 155441 143891.0 166991.0 234 217.0 \n", "8 202213 3 191914 179558.0 204270.0 289 270.0 \n", "9 202212 3 166224 155035.0 177413.0 251 234.0 \n", "10 202211 3 122849 113306.0 132392.0 185 171.0 \n", "11 202210 3 87904 79741.0 96067.0 133 121.0 \n", "12 202209 3 50182 43958.0 56406.0 76 67.0 \n", "13 202208 3 30963 25942.0 35984.0 47 39.0 \n", "14 202207 3 34882 29446.0 40318.0 53 45.0 \n", "15 202206 3 46623 40398.0 52848.0 70 61.0 \n", "16 202205 3 62970 56043.0 69897.0 95 85.0 \n", "17 202204 3 72209 64804.0 79614.0 109 98.0 \n", "18 202203 3 74613 67144.0 82082.0 113 102.0 \n", "19 202202 3 55920 49511.0 62329.0 84 74.0 \n", "20 202201 3 57629 50699.0 64559.0 87 77.0 \n", "21 202152 3 54349 47029.0 61669.0 82 71.0 \n", "22 202151 3 41698 35359.0 48037.0 63 53.0 \n", "23 202150 3 38117 32497.0 43737.0 58 49.0 \n", "24 202149 3 40168 34716.0 45620.0 61 53.0 \n", "25 202148 3 41842 36364.0 47320.0 63 55.0 \n", "26 202147 3 36598 31338.0 41858.0 55 47.0 \n", "27 202146 3 30059 25302.0 34816.0 46 39.0 \n", "28 202145 3 20364 16564.0 24164.0 31 25.0 \n", "29 202144 3 18999 15042.0 22956.0 29 23.0 \n", "... ... ... ... ... ... ... ... \n", "1931 198521 3 26096 19621.0 32571.0 47 35.0 \n", "1932 198520 3 27896 20885.0 34907.0 51 38.0 \n", "1933 198519 3 43154 32821.0 53487.0 78 59.0 \n", "1934 198518 3 40555 29935.0 51175.0 74 55.0 \n", "1935 198517 3 34053 24366.0 43740.0 62 44.0 \n", "1936 198516 3 50362 36451.0 64273.0 91 66.0 \n", "1937 198515 3 63881 45538.0 82224.0 116 83.0 \n", "1938 198514 3 134545 114400.0 154690.0 244 207.0 \n", "1939 198513 3 197206 176080.0 218332.0 357 319.0 \n", "1940 198512 3 245240 223304.0 267176.0 445 405.0 \n", "1941 198511 3 276205 252399.0 300011.0 501 458.0 \n", "1942 198510 3 353231 326279.0 380183.0 640 591.0 \n", "1943 198509 3 369895 341109.0 398681.0 670 618.0 \n", "1944 198508 3 389886 359529.0 420243.0 707 652.0 \n", "1945 198507 3 471852 432599.0 511105.0 855 784.0 \n", "1946 198506 3 565825 518011.0 613639.0 1026 939.0 \n", "1947 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", "1948 198504 3 424937 390794.0 459080.0 770 708.0 \n", "1949 198503 3 213901 174689.0 253113.0 388 317.0 \n", "1950 198502 3 97586 80949.0 114223.0 177 147.0 \n", "1951 198501 3 85489 65918.0 105060.0 155 120.0 \n", "1952 198452 3 84830 60602.0 109058.0 154 110.0 \n", "1953 198451 3 101726 80242.0 123210.0 185 146.0 \n", "1954 198450 3 123680 101401.0 145959.0 225 184.0 \n", "1955 198449 3 101073 81684.0 120462.0 184 149.0 \n", "1956 198448 3 78620 60634.0 96606.0 143 110.0 \n", "1957 198447 3 72029 54274.0 89784.0 131 99.0 \n", "1958 198446 3 87330 67686.0 106974.0 159 123.0 \n", "1959 198445 3 135223 101414.0 169032.0 246 184.0 \n", "1960 198444 3 68422 20056.0 116788.0 125 37.0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 25.0 FR France \n", "1 36.0 FR France \n", "2 33.0 FR France \n", "3 54.0 FR France \n", "4 62.0 FR France \n", "5 86.0 FR France \n", "6 167.0 FR France \n", "7 251.0 FR France \n", "8 308.0 FR France \n", "9 268.0 FR France \n", "10 199.0 FR France \n", "11 145.0 FR France \n", "12 85.0 FR France \n", "13 55.0 FR France \n", "14 61.0 FR France \n", "15 79.0 FR France \n", "16 105.0 FR France \n", "17 120.0 FR France \n", "18 124.0 FR France \n", "19 94.0 FR France \n", "20 97.0 FR France \n", "21 93.0 FR France \n", "22 73.0 FR France \n", "23 67.0 FR France \n", "24 69.0 FR France \n", "25 71.0 FR France \n", "26 63.0 FR France \n", "27 53.0 FR France \n", "28 37.0 FR France \n", "29 35.0 FR France \n", "... ... ... ... \n", "1931 59.0 FR France \n", "1932 64.0 FR France \n", "1933 97.0 FR France \n", "1934 93.0 FR France \n", "1935 80.0 FR France \n", "1936 116.0 FR France \n", "1937 149.0 FR France \n", "1938 281.0 FR France \n", "1939 395.0 FR France \n", "1940 485.0 FR France \n", "1941 544.0 FR France \n", "1942 689.0 FR France \n", "1943 722.0 FR France \n", "1944 762.0 FR France \n", "1945 926.0 FR France \n", "1946 1113.0 FR France \n", "1947 1236.0 FR France \n", "1948 832.0 FR France \n", "1949 459.0 FR France \n", "1950 207.0 FR France \n", "1951 190.0 FR France \n", "1952 198.0 FR France \n", "1953 224.0 FR France \n", "1954 266.0 FR France \n", "1955 219.0 FR France \n", "1956 176.0 FR France \n", "1957 163.0 FR France \n", "1958 195.0 FR France \n", "1959 308.0 FR France \n", "1960 213.0 FR France \n", "\n", "[1960 rows x 10 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" ] } ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXm8HUWZ93/PWe+Se7MnZCMJOwQESQzBXVBAxzGOguJGdFAch3d0Zhx9wXf8MIK4jSPqjKioQcAFEHVAETGGfSdhJyEL2UlIbnJvkpu7nqXeP7qqT50+XV19Tp/15vl+Pvdzzu3uWrpPdT31LFVFQggwDMMwTFRija4AwzAMMzZggcIwDMNUBRYoDMMwTFVggcIwDMNUBRYoDMMwTFVggcIwDMNUBRYoDMMwTFVggcIwDMNUBRYoDMMwTFVINLoC9WTKlCli3rx5ja4GwzBMS7F69eq9QoiptusOK4Eyb948rFq1qtHVYBiGaSmIaGuY69jkxTAMw1QFFigMwzBMVWCBwjAMw1QFFigMwzBMVWCBwjAMw1QFq0AhouVEtIeIXtCOTSKiFUS0QX5O1M5dTkQbiWgdEZ2rHV9IRM/Lc98nIpLH00R0izz+OBHN09Isk2VsIKJl2vH58toNMm0q+qNgGIZhohBGQ/k5gPM8xy4DsFIIcSyAlfJ/ENFJAC4EsECmuZaI4jLNDwFcAuBY+afyvBhAnxDiGADXAPimzGsSgCsAnAFgMYArNMH1TQDXyPL7ZB4MwzBMA7EKFCHEAwB6PYeXArhBfr8BwHu14zcLIUaEEJsBbASwmIhmAOgWQjwqnD2Hb/SkUXndBuBsqb2cC2CFEKJXCNEHYAWA8+S5s+S13vLHLMOZHH6zajt4y2aGYZqVSic2ThdC7AIAIcQuIpomj88C8Jh23Q55LCO/e4+rNNtlXlkiOgBgsn7ck2YygP1CiKxPXmOW/7x7HX720GZMHpfCWSdMb3R1GIZhSqi2U558jomA45WkCcqrtEJElxDRKiJa1dPTY7qs6dl1YAgAMDiaa3BNGIZh/KlUoOyWZizIzz3y+A4Ac7TrZgPYKY/P9jlelIaIEgDGwzGxmfLaC2CCvNabVwlCiOuEEIuEEIumTrUuRdO0ZHOOzEzE/OQpwzBM46lUoNwBQEVdLQNwu3b8Qhm5NR+O8/0JaR7rJ6Il0gdykSeNyut8APdIP8vdAM4hoonSGX8OgLvluXvltd7yxyy5vCNQ4jGO9GYYpjmx+lCI6NcA3gpgChHtgBN59Q0AtxLRxQC2AbgAAIQQLxLRrQDWAMgCuFQIoWw0n4ETMdYO4C75BwA/A3ATEW2Eo5lcKPPqJaKrADwpr7tSCKGCA/4vgJuJ6KsAnpZ5jGmyUqAk4qyhMAzTnFgFihDiQ4ZTZxuuvxrA1T7HVwE42ef4MKRA8jm3HMByn+Ob4IQSHza4GgqxQGEYpjlh+0mLkM3nAbAPhWGY5oUFSosg5QliLFAYhmlSWKC0ClKO8LxGhmGaFRYoLYLSS4R5yg3DMExDYYHSIrAvnmGYZocFSotArs2rsfVgGIYxwQKlRVAaSp4FCsMwTQoLlBaBXAWFJQrDMM0JC5QWQZm8OMqLYZhmhQVKi0DsQmEYpslhgdJi8AZbDMM0KyxQWgSSKgqLE4ZhmhUWKC2COw2FJQrDME0KC5QWoRA2zBKFYZjmhAVKi6A0lGaehzLvsjvx1T+uaXQ1GIZpECxQWgTXh9LkGspPH9rc6CowDNMgWKC0CK2goTAMc3jDAqVFIPbKMwzT5LBAaRkcicIaCsMwzQoLlBaBo7wYhml2WKAwDMMwVYEFSovBCgrDMM0KCxSGYRimKrBAaTFYQWEYpllhgdIiqKjhZp/YyDDM4QsLFIZhGKYqsEBhGIZhqgILFIZhGKYqsEBpMdiFwjBMs8ICpcUQhjivwdEsTr7ibqxcu7vONWIYhnGIJFCI6F+I6EUieoGIfk1EbUQ0iYhWENEG+TlRu/5yItpIROuI6Fzt+EIiel6e+z7JtdqJKE1Et8jjjxPRPC3NMlnGBiJaFuU+xgJb9g7i0EgW/3n3ukZXhWGYw5SKBQoRzQLwWQCLhBAnA4gDuBDAZQBWCiGOBbBS/g8iOkmeXwDgPADXElFcZvdDAJcAOFb+nSePXwygTwhxDIBrAHxT5jUJwBUAzgCwGMAVuuAay7DJi2GYZiWqySsBoJ2IEgA6AOwEsBTADfL8DQDeK78vBXCzEGJECLEZwEYAi4loBoBuIcSjwplkcaMnjcrrNgBnS+3lXAArhBC9Qog+ACtQEEKHJYXl7RmGYRpDxQJFCPEKgG8D2AZgF4ADQoi/AJguhNglr9kFYJpMMgvAdi2LHfLYLPnde7wojRAiC+AAgMkBeY15bBoKazAMwzSKKCaviXA0iPkAZgLoJKKPBiXxOSYCjleaxlvPS4hoFRGt6unpCahea2CSF6yhMAzTaKKYvN4OYLMQokcIkQHwOwCvB7BbmrEgP/fI63cAmKOlnw3HRLZDfvceL0ojzWrjAfQG5FWCEOI6IcQiIcSiqVOnVnirDMMwjI0oAmUbgCVE1CH9GmcDWAvgDgAq6moZgNvl9zsAXCgjt+bDcb4/Ic1i/US0ROZzkSeNyut8APdIP8vdAM4hoolSUzpHHhvz8FpeDMM0K4lKEwohHiei2wA8BSAL4GkA1wEYB+BWIroYjtC5QF7/IhHdCmCNvP5SIUROZvcZAD8H0A7gLvkHAD8DcBMRbYSjmVwo8+oloqsAPCmvu1II0VvpvTDRYUHHMEzFAgUAhBBXwAnf1RmBo634XX81gKt9jq8CcLLP8WFIgeRzbjmA5WVWueUx+lCkW8k08ZFhGKbW8Ez5VsMgL5RTvlGKAisoDMOwQGGqAssThmFYoLQYbNJiGKZZYYHCVAV2yjMMwwKlxbDOlK9PNWrCIxv34h9/uZqFE8O0KJGivJj64TrdTefrVhN/qiECll3/BDI5gdFcHulE3J6AYZimgjWUMUajRvfVLJYaLh4ZhqkEFigthqnj5rW8GIZpNCxQWoRmdytUM/qMI9kYpjVhgdJi2DrbVu6Km11oMgwTDAuUFqHRM+FtVLNezXqPDMMEwwJljMCdMMMwjYYFSothkhtjSZ6wcGSY1oQFylijhReHZDnCMK0NC5RWw9Bzq8Ot3CmrOTQc5cUwrQkLlBbDbPJqbCdc1bBhlicM05KwQBkjNLoTrmqUV/WyYhimjrBAaTFMHXejBUo1GAO3wDCHNSxQxgiNN3lVMa+xIB0Z5jCEBUqLYepsXaf8GOiMW/8OGObwhAVKi2HrbBvVGVdTkI0BmcgwhyUsUJiqUA0ZwIKEYVobFigtxlh2yruMpXthmMMIFihjhIY75asaNswShWFaERYoLYZxYqMo/qw7vNowwxz2sEBpEdS2uMYor3pWpsaY7iWXF3j1wHBd68IwTHhYoJTBU9v6cN+6PQ0p27qxVoOH9fUwU33r7pew5OsrsaefhQrDNCMsUMrgfdc+go9f/2SjqxHIWPA/mITjvS85wrx3YLSe1WEYJiQsUMYIjRYj9VjLS5WhzH8MwzQXLFBaDFvYcKMsX9VdeiW4DGJ5wjBNCQuUFsF1yh8WezYGw/KEYZqTSAKFiCYQ0W1E9BIRrSWiM4loEhGtIKIN8nOidv3lRLSRiNYR0bna8YVE9Lw8930iZwxKRGkiukUef5yI5mlplskyNhDRsij3MRZodKhtVZdeMQjHRgceMAwTTFQN5XsA/iyEOAHAqQDWArgMwEohxLEAVsr/QUQnAbgQwAIA5wG4lojiMp8fArgEwLHy7zx5/GIAfUKIYwBcA+CbMq9JAK4AcAaAxQCu0AXXWMZmDhoTsMmLYVqSigUKEXUDeDOAnwGAEGJUCLEfwFIAN8jLbgDwXvl9KYCbhRAjQojNADYCWExEMwB0CyEeFc4Q9EZPGpXXbQDOltrLuQBWCCF6hRB9AFagIIQOSxo9eK+qD8V6giUKwzQjUTSUowD0ALieiJ4mop8SUSeA6UKIXQAgP6fJ62cB2K6l3yGPzZLfvceL0gghsgAOAJgckNeYx7racKOc8nUolzUUhmluogiUBIDTAfxQCPFaAAOQ5i0Dft2ACDheaZriQokuIaJVRLSqp6cnoHqtgTnKa+wYvWz3yPKEYZqTKAJlB4AdQojH5f+3wREwu6UZC/Jzj3b9HC39bAA75fHZPseL0hBRAsB4AL0BeZUghLhOCLFICLFo6tSpFdxma9BocVLNCZVGp7z8JFZRGKYpqVigCCFeBbCdiI6Xh84GsAbAHQBU1NUyALfL73cAuFBGbs2H43x/QprF+oloifSPXORJo/I6H8A90s9yN4BziGiidMafI4+NecwRUHWuSA2xzbVhccIwzUkiYvp/AvBLIkoB2ATgE3CE1K1EdDGAbQAuAAAhxItEdCscoZMFcKkQIifz+QyAnwNoB3CX/AMch/9NRLQRjmZyocyrl4iuAqDWQblSCNEb8V5amoYvuTKGBBrDMJURSaAIIZ4BsMjn1NmG668GcLXP8VUATvY5PgwpkHzOLQewvJz6jgWMmkiD95SvS5SXJD+W1DGGGUPwTPkxwljqYs1L9Av5eXhz66rtmHfZnegfzjS6KgxTBAuUMUbD9teqwwZbjV6vrFn4yQObAAA79/My/kxzwQKlxTCO3hvuQql9BQr3OHYlysMb9+LAULDmwUFuTLPCAqUCmnHOR8Od8nWkCR9/VTg4nMFHfvo4LrlxVajrD6ffnGkNWKBUQC7fuBe5Wc1B9TF5jW0fSjbn3Nm63f2B1zV6P5iBkSwe2rC3oXVgmhMWKBWQa8IhcvPVqHJsExtr+fh/99QO3PTY1toVEICKXgt7f41qhv98yzP46M8ex6sH2IfDFBN1HsphST7fuLLNuxk2ek/5KuZlyayWpp5/vfVZAMDHlsytWRkmlIZi+y0b7UNZs/MgACCTa+CLwDQlrKFUQCM1lGZdvr6eAq2RAr2WqA660b+ljZGsMx85nWjd7uPbd6/DvMvubPhAbKzRui2igTTSh2JjLDhqrSsqR7zHfYdGMDCSjZRHLciqdtXkP+FotvUl+rX3bQQAjIyBe2kmWKBUQL6RTnnL7lNjwykfHBodtayFX/0rzrnmgWiZ1IBsmRpKo37r0RbRpILoTDnW/kNNOLBoZVigVEBzOuWbr06VUo87eWX/UB1KKY+M9KGE9ZE06jdXGnoTvgahaU85m8U2o6bayrBAqYCGaiiWsOHDgbF6r6qjtsmTRi/fr8KWW3lNtUTMuYdsE5uvWxEWKBXQUKe86XijZ8rXYR6Ke77JtbGHNuzF0GjOfqGHctcqa/hv3tjiI6GEMjvlqwsLlApohFPe1omOrdfCcq91uNlKtdBNPYfw0Z89ji/9/vmy04b1EUXVT7K5PH67ekflmrasQCM19WoxBm6hqWCBUgENDVs1OqwbO4u8qjs2WjWUKHmHS52p8EceGHE0k/WW2e5+qJrV2pT080e24PO/eRa3rNpe03JagVY22zUjLFAqwGTyOjicwTfueqkmYZXNPnu6nkTpBJTju1rXeYnJN6qSkW/YmfLKhVLpY9g3MAoA6JWf5aI0pEZ2xpf+8ilc9cc1kfMZq3OaGgULlAowmby+85f1+NH9L+N/n3mlZmUbfSg1KzEcVfWh1LCssL6NbIWzwGOyt6/EHOSavEL+mpVqhUogVOo/iCrQqsGdz+/Czx7aHDkf1lCqCwuUCjA1QjVJqiYaivq0Rnk15gWp59IrUUobGA0XJlqphhKX0UOVBW6Up6FU7AKJKBDGQpSXYgzcQlPBAqUCTBqK+6LWsS4Fxs6bYQ1AiHCrgyEFSqWj96poKCGTVtqhK4EQtcX4pR/N5rFxT/n+o0bR7BGDrQYLlAowCZRYwZZQ9TJt5pBGj7TqGX4ZpaSwmkelo/+Yqz1UIFDcskOavCKarCqloOGUlv+F257F27/zAA42+fbEUbU8xh8WKBVgeuHd0WkDGqnNJNZKmBfAjD5DO2xnHdWcU4nJqzBoCEfUdha1rfilv/2ZnQCAXIUmw3ozFsx2zQQLlAowza6tbfRLcGfa6Peinj6UKNpQ6Gi5SvOXn5VED6n7srUf12QVbRpJZKd+kECr1+TfqJoxT2ysLixQKsBkHy/Mvq1+mWFHrw2bh1LVKC+LDyVK3mH9ExUO/8MKBd+0bh7B11EEs5qeQWQNJeCXqNfIP2pgApu8qgsLlApoRqd8wRw0dt+QakQXhfdPVJp/ZekqKbNyp7wsr6LUhYFTkBZWr/kdUQXXWJjt30ywQKkAkzpfMEXUwCmvPpvU5FVNMWq9lyb2oUT5HcKaoKLGfkR2yqvym0JDiRbpxvKkurBAqQDT6KuRIYjC81n38utQcLmLJ/qhOhBbp1ppR1XuvvA69dJQKi5QEWIeS73Wu4v+CFiiVBMWKBVg0lCE21lVf3nxwlpdprLHzothd8pHybu2YcPR6hbywojRhFWbhxKQQb2aY2ST19h5bZoCFigVYLO7xqovTwo06QtQz2pF0QRdDcVWRlQNpYI6lpumYnNP5Jny9vLrFeUV3SnfpC9Ui8ICpQJM6rxqnLWQJ1a3gij+bGVqOVPe/Y0sWmRD5hKFLDPyWlwqfcRhgF/qenfU0TWUMfDCNBEsUCqgESYvtwzb+Qa9IFUNG7aZvCLkXWunfGFQUX4bKLfESiOpImsoZI62c7WXevlQKn0GKj3Lk6oSWaAQUZyIniaiP8r/JxHRCiLaID8natdeTkQbiWgdEZ2rHV9IRM/Lc98n2WKJKE1Et8jjjxPRPC3NMlnGBiJaFvU+ysH2stRCntg72egO6yhUdT8U2/looVThLosYNlyRyStkoc1irgkqvl4aXsXReBHTM/5UQ0P5HIC12v+XAVgphDgWwEr5P4joJAAXAlgA4DwA1xJRXKb5IYBLABwr/86Txy8G0CeEOAbANQC+KfOaBOAKAGcAWAzgCl1w1RqjhlLD7rwQNhysHY0FbB1rNJOX82mT+ZWHDVdeubI1lIgaRqU1DVrLK0h7qQXslG8uIgkUIpoN4G8A/FQ7vBTADfL7DQDeqx2/WQgxIoTYDGAjgMVENANAtxDiUeG00Bs9aVRetwE4W2ov5wJYIYToFUL0AViBghCqOSYfSl1CZw1luMcb9ILUU6BFc8orH4qljKgaSiXp6+RDiUrQxEh1rl5hwxF3MR5T0ZHNQFQN5bsAvghAt2ROF0LsAgD5OU0enwVA33N0hzw2S373Hi9KI4TIAjgAYHJAXnXBNCpSjbsW9mPrqF1+9o9k8ez2/VUvv56EDUCohNovDhlFQykvbXQNo9L05iX66735VlSBwBpKdalYoBDRuwHsEUKsDpvE55gIOF5pmuJCiS4holVEtKqnpydURW2YN/NzqlDLRmrKWn+x/u7ah2tXAWP59curGnM9bE7zyp3yFSUDoAd1hC2r0iiv6qzo4K+hRNlgrHwim/0aqKH89MFN2NE32LDya0EUDeUNAN5DRFsA3AzgLCL6BYDd0owF+blHXr8DwBwt/WwAO+Xx2T7Hi9IQUQLAeAC9AXmVIIS4TgixSAixaOrUqZXdqcTd68Ji8mqEo6/RA63q+o/CaWOVkC9IFMt1leVfD/8ORZ3YWKWlV3zbecuFDVepImWyp38YX71zLZYtf6IxFagRFQsUIcTlQojZQoh5cJzt9wghPgrgDgAq6moZgNvl9zsAXCgjt+bDcb4/Ic1i/US0RPpHLvKkUXmdL8sQAO4GcA4RTZTO+HPksZqi9juxhQ3X8l06nE2+hecbxYcStqxoYcMVuVBCzpHxXl8pkZtSUJRX3XwoUQVKY14o5WM6NBJuB9FWIVGDPL8B4FYiuhjANgAXAIAQ4kUiuhXAGgBZAJcKIXIyzWcA/BxAO4C75B8A/AzATUS0EY5mcqHMq5eIrgLwpLzuSiFEbw3upQhHoAjrxMZaNFK3MzW9xdrhSufB3L++B0dP7cTsiR1lpx1781Aqy78OEc2R990J0zpe2T+EmePbfNtS0NLvYfZKqSa1nO3PlE9VBIoQ4j4A98nv+wCcbbjuagBX+xxfBeBkn+PDkALJ59xyAMsrrXMl2OL/1dF62Y+Ly45e5rLlTyCdiGHdV99ZhRpVTi2d8iEtXo0JGy4zafSJjf4FPrWtD++79hF8432n4MLFRxrz8WtzKu/6RXlF1NIaLE8qmQDbzPBM+TJwTV6Wl6UWjdS2/W21yhzJ1mkjiwBM92LrCMPlHS5suBFOeSVK7T4UVVY0p7yprht3HwIArN7aZ8zBlL6WWzj4UfHzbpLJoWMNFihlkIw7rdDU6bpO+ZqEDVvOV73E8qjvPJTKCf3TVGryihI2XGbSysN+g8+rTjZmuDB4YqPzWb8or9Z0yo9VOcYCpQzaks7E/kGDI03UIWzYxFhqoLWdKa+0gNosDhllYqNKYuvwq7FzJRCg7VrqEbQOVv19KNH8SI3SUMJOsG01WKBUwMBozvd4LcOGbRFO+si4EW20Hmt5WQMTQhD2RW4JH0qN+sKw82ECd2xs8pnyirGwmGozwQKlDFQbGMr4CxTlW2lEI210A229iY3BNHILYKujtkr2f5NAsC3x7/pwfCy/vJZXOOoVtFBvWKCUgc1HouzGtWgr5awmPNbUaC/1CBuutJ+qrw+lsrJi7ixxQ77y07oJmc+xuq/lFTGGpGHzUFzT69iCBUpZOI0ga5qHklcCpRFhw9r3RvhwqpqXzYcSxeTlfNo32KowyitCBxd2Fn/h+srLCsRiFgzjw2n25esVjdLsx+qilCxQykC1AdPoK+cKlNqVbWyHY6mB1vBWwu6qWblTXiWs/CasYcOqhKiz+Q3p1b3bo7zMlatXh1l5pFtj1/IyrwfY2rBAKQPV9EwaSq4OGopp9K4fbYTJq5ovpimnamwsFbaeUTduqihtSGe4onZO+WChGyTQXJNXLd8BLe9W96HUcnfXRsACpQxUQ7b6UGoxD8V2vsHRLvV4L61aWgjcn8a6H0oDorxCPsWogtW23pj7iCydna+CEnHhyjDot92qa3mN1QmVLFDKoKCh+Our1TB55fMCew4OGws3z5QX2vfyy22m9h01yksIgS/85lk8sbl0ebewboqKnfJViECrdVk2wVzwM/mfD9xT3rIidzXIF2koleVR7/kyXligMFYfSjUWh/zRAy9j8ddWYtu+8vZJ0Es0meTCpq+EqoYNR1y+PpMT+M3qHfjwTx4rOWcLiS1cZynEki6KULeFDUed2Fjw8hjMpyEnfwZPbKyl2VevQ1SnfKN8KCxQDntU47M55aM00gfX7wWAko13ygkbroRmijoJo4EEoTTIeKy0Q6y9DyWKyas8ogcOBBNl8mdQh3njo1vwpm/dU3GnWhUNpcFreY1RecICpRzCO+UrLyMh1wvLlLlvfdT3InoDr71TPuz5TNa5IuEjUILusxrOXldDqSBt2IUro3aGtmSFtbzKz5ssc1wA4Oo712J77xD2D46WX4An71o65X+zajve/K17azLYYpMX4/YS9rBh//PDmRxWbQnetkWNqnMeP4111B582krUpVPq8X6Iki/+jOSclQz8NJSgpVf0e6jcP1E/DaVWgQOFaDPLTPkKo7zU4qqZXHSBWEun/Bduew7begfL1qSyuTzO/+EjeOTlveZy8+Z22MqwQKkAo4YiD5va37fvXofzf/Qo1u46aMw7LltY1viyBdu9K6WZBkzWDs/S9aqOKhEvbd5B2+zmq6ChlDk30ZM4XNqgDa5CFRNycGIMGw6YhxJGe1KCPlPhZAz99694HgrsmpSiXMG3u38Eq7b24d9ufdZ4TSP2TKoHLFDKQDUBUwRL3uJD2dbr+EW27B0wlqFeNu8LWevmF7Z9b+8dxNPbSvfJqGb9THmFjczJyBGwn8krSFjp+Ub1T1SSPGzAQLWc8rZ6mCRK8H4q8lzAA1RtfDRAoPQNjOL2Z14x1M+nrhUSJhotqJ5+hGmnUZeMaVZqsQXwmEV1RjYfiklF7kw7j3vQsFoxoPlQDKOiWvlQwpq83vStewEAW77xN9EKDK5M8GmbQMmZBUpQp60/g8YsDulgX0Mrmq/Odm+2aLPCZm8+Jq8Q2lMiRhgFMBqwmds//fppPLRxL04/ciLmTCrekrrY12UuJ4hytLxyNSl3rbSg1ZhD+staDdZQykA1j0qXXgnTdlynprdsNfI1CZSIOkL0ZcCjpS+rLMu9qhFlPG52yvv9FsU+FLNp8dM3rTLax6PN4i/vusp9KOHKMznlw6QP8jsoc+7DG80+hp0HhgAAI9nSwVdVNZSA9KqzL1eghBFWbPJi7Gt5uZ2+zQdgxrSsRe1NXlF9MNWroUlgqJGfzUzx3I4DAIBEzM+HYh81Ot/9rxkYzeHuF3fjkzes8j0f5Sm49x0yXDdq4IApuc1h7AoUvz3lPXX0o6vN0dRXrt1jrat/BfS6RBWqAQJFfqqowbCE+X3qtV9MvWGBUgbqBTJObGzkWl4Ri2ym9m26F3d7WUtlL//d8wBM81CK89LJi9LrSupgOS9CDir805Z3XeSJjYb0BS3OX6IUJvCWngtcOFKy5OjJAICTZnbb6+qTT5Hgr9AXEcbXpc75+VCe2b4f977kLxALzyVo8OJ8Wve+aTHYh1IGqh0bl14JeNEAhFqJ1eSQrXXYcNQMqimPTPeqNJSwQTe+PpSAxbzCRHkVOqLqC/awSQsCpcJyLCYrmzkmzAg8KA/bBGFAE9x+6X3qUi5hVrUI0mLe+4OHAfj7EvMW0zfAM+UZaFFephexChqKfQRc3vGwtMJEK2XB8s7RMZEI8qH4zUPRsjWO3vPqvH+ZkfoJ5ai1XRbgFAec+U6/f3pHgAYS3E7V8zULVRjPh4lAswWvAMGRbtWYKW97l4vLKy9v2/YA+jVjDdZQysGmoVRDoCgtxjM2E57P0qpFa6Dlps7lRZFJyevQjrIst6kuroYS0swRr4EPxfWThcijXMKmDOrQAeC//rIOP3lwMyZ0pPC246cZyzFVNWsZYQf5YMIsDpl33yP7Hfvdo34sqg8lzO9V7m8aZsUMjvJiCj4Ug80lzMhPGn+4AAAgAElEQVTLyaf6RA4bLjMDb+RLOZPNdvQN4tSv/AWbeg6VVRfXKR+yrr7zUALqGMbk5f62ps42VM0MaV3tybYoo3OhqUPeP5gBAOw+4LNqNYJ9IEChfdt8LEH7oQTPwRBFn34EbiWsHarc7Gc32xXKKL5Ir5PfPQQ9H788xhIsUMqg4EMJNiWYRtCF2bn2xlRyScTIHhvltu+g0aUtqz88uwsHhjK45cntZaVX/ax5FYFigheHNHcE3u/F16jRuf8FtgiqIMIvXOl8mp6Dmu90aCRrKEh9GISmxccRyocSqKEEC0QgOACjGmHDrpYXRkvyvM/6YMrPVxQqymuMmrxYoJRBwe4aPHq1NZYgk41phFfr5leuySzjnZTmMXkFUTDrlUe5uwEGTWz0HfiGMKUUVpT2LzNM1dbuOojfrCoVpkH+naIy5KdpfkRS+o5MHbbN5GUz2YSJZgwcnQtVjt126XcP1ZiAatPS/K5V6FFffgLPbSNBefJMeSbqTPnCqMvcmsgw1yLsyLhSyk2e8S5eafhezbq4Aj1IO9IS+y8OWXqd95zz3WLyMhBmdPrO7z0IALhg0Zyi4yqJffMv50rTkiAxw/I9bh0tSwRlLQIjKEpMPZ5QUV4Bz0hp8zYNpdJmH8WHog+m/OsX/HyBwvMZYy4U1lDKQTUPmw/FrqEEqPrqGk8eAZaa4vMVUm56r7ml2FEarS42B0VwZ1X4nvRdHNI8egzjlLdun1vGvWe9fijXURtuYyuTyUstMGoVzBVqIEFRYmFG/oWBV9DAyvn0u8dqbDNQznwh772M2kxeKhIwRPljDRYoZSAsHZrN9qwIE93izcPW/iJrBeWavEo6w8J320tuWg3AL6+i4/Iz6Pnqv03QxMZKnfK2CKtyOjijj8OC+q1MJq9CNFxwHU01tWkoQc03jBYZNnjFdE1xW7Nm4YtNqOqUaiiF//0Gl+F8KPZyWxEWKBVgdMrL99to8lLXBbU0w/Lf1RoZb9zTjwfW95QcL7eBexev1P+z1cU2m9oWrhrG4QsET2z0+w30Qzb/QjVMFcMZf6Fsy1u1M7NAkddZBLbdF2goP0hDCaGl50P8jgq/EH39/avlxEb3Wk899Tr5DS5zIfLmKC8PRDSHiO4lorVE9CIRfU4en0REK4hog/ycqKW5nIg2EtE6IjpXO76QiJ6X575PUucnojQR3SKPP05E87Q0y2QZG4hoWaX3ERZ9NG1byyuaUz54dGmsX0gN4+3feQAXLX+iNH2ZL2aphhL+JXej3QznjR2h/Ax6NnrSWNCOjRYNxTYp0EQ5HVxQ6HUQ6qpRg8mr4EMJmZEHV6CYnPohtLygNq4EQnCUl/k90E2FlZqOCppm+GsVep38NajgwZ9+zVgjioaSBfB5IcSJAJYAuJSITgJwGYCVQohjAayU/0OeuxDAAgDnAbiWiOIyrx8CuATAsfLvPHn8YgB9QohjAFwD4Jsyr0kArgBwBoDFAK7QBVct0H//XF6UNAghRGhVPkx0S0mUl/sSl2cmCktUH0rR84lYGZs5KayG4u94DxhdhzCl2J3y5rJtebkaii3KS15YEmknsS2iaZ8pH3w+aPn8MH7EfMj3BPAXOrp2bMri1lXbMe+yOzFgMCva3qdMgNDSy/eP8grO25TOy81PbMPGPf5ztZqVigWKEGKXEOIp+b0fwFoAswAsBXCDvOwGAO+V35cCuFkIMSKE2AxgI4DFRDQDQLcQ4lHh/AI3etKovG4DcLbUXs4FsEII0SuE6AOwAgUhVBPUC6JCMr3tQf/fNk0izExvc5RXbShXBpRGeWkdueX+bB2mzVQTJLCKhIJPPYQwd4ZhtCzX5FXhmms6XnNO2KSqDJPJy91G2iKYTXXNukuv+J93haZPjW3mNCd/u0AJmtioPzdTOT++/2UAwC7D5E7bxManthY2kfM+R5uGUi0fymW/ex7v+v6D9gubiKr4UKQp6rUAHgcwXQixC3CEDgC19sMsAHrw/Q55bJb87j1elEYIkQVwAMDkgLz86nYJEa0iolU9PaW+g7Co318tie7tDGyzZ/U8wkS3lER5qU9DQ4wqaIpnuttz846Oy3HK+6XRMT0et7MKqaEEaSH2CXP2/Cs5r1PihwqZVJWRsYSnVxpYoOSUTcPxS16O/yB4LS/ns1INRUX4mYSuSmaqpz5g8Jahv/t+9SvHj2Q8L/MI2oSsGYksUIhoHIDfAvhnIYR5s3TDnkYBxytNU3xQiOuEEIuEEIumTp0aUL1gSjSUvP95wL68fdAI2zQyK8TumyRKNJFSbmy/90WqSKBYZmqbCDR55YM7m8Is7dIXtZyJjdWgxGwYciaKuspk8lJYt6o2pLMtDhlkLgqzjlV5UV4+TvkQPhSlpZlCq23hzXpHHrT0iq/Jy5K3nqdJ0w0TCRqGJ7f0YvlDm6uSVxgiCRQiSsIRJr8UQvxOHt4tzViQn2rTgB0A9JlcswHslMdn+xwvSkNECQDjAfQG5FUzVJtSI59ADcXUGbmdmX1k5u0MbKPzyBqKLhBDCATvpDo9RdR3weYQD/ahBOejO2NLzYqlZZnqYCzf0lnrlJgNZaKwJkHj6Fu7x6D09omNtnoElB0UNlzGe+AnEIqivAx5qPfUNPnTNrnz0EjG/e69JmsRKJU4+r2YFqAtlwt+9Ciu/OOaquQVhihRXgTgZwDWCiG+o526A8Ay+X0ZgNu14xfKyK35cJzvT0izWD8RLZF5XuRJo/I6H8A90s9yN4BziGiidMafI4/VDPUSqiXRvQ1J74StWwSHGZkZTF6mvKM65Yt8QGGcpQETG61RXn77uRel908Xzodiq4dZcIZabdjynpfzM5QGNshRqy2hTGbqLG2O8ULggH/2ruD2E8jag4lq8gq6JijaURekpt8p5gqkykxe/cMFZ743C6sPJZTmFXxNtTSUehNl6ZU3APgYgOeJ6Bl57EsAvgHgViK6GMA2ABcAgBDiRSK6FcAaOBFilwoh1IbRnwHwcwDtAO6Sf4AjsG4ioo1wNJMLZV69RHQVgCfldVcKIXoj3IsVr4ZSIlBy5o5KEWZRPPdag8nLFnlTOXaBqFM6y7vwPfzERj1N4bttQl7YKC9fk5dW7VxeIBkv/t8vH1P+lZzXCXqGYcqwPSebyctU12zAasO2OSBhwoZVvcMs8un3rujzd2zP27iemUWL0yedesuwayi60PXfysHmpwy7AGqzUbFAEUI8BPNg6mxDmqsBXO1zfBWAk32OD0MKJJ9zywEsD1vfqBR8KAaBondkETSUvKGhBzmTgeqGDYcReKWjY/voXuFn0tHvy7Zseth5KEEdHlB6n0XXm0bvlpsrZ2Dpdaqr/8IuDmkTGLZVsU1VLbRTc1q/9EIIaziunn8Yp7zfNcOZnPvd1u7NZsFwQlW/tnDOMrFRq/OBoQwmdKR8rgmoNMyaVbPDM+VDotqImn1d0hnpoxaLQzfQZGO4xt2LpUYDF/12dh8MDrUEgueh2Dpdv9sPY25SXVjg0isWk0yRJuS5hzAzsK2L+gVEQHmpVEOxmf5cH4VpzTnL6NxdQsjSWXo72j89/2pJHr75lxGc4q+hFARKpevm2cx+xW3BfM4vaEC/fmA0V3LeucasBQLmCL5mhwVKWOTvG05D8c8izMjMZK6otlO+JH8thw//5HFD3QrfvSO/Yme4pWyL5mDrBMKGY/ovr6JrKJ57COhEbHUrp46K0uVrlLAKVlFsZiVVB6/T35vevkR/6flsgMDWByJBjylqlNeQJlBMQkmZmbzPWFGYnGl6BuYVhYt9KKVp9TyHDALFNpvetABtpYTx61QDFigh8YYNmxoZUYBTXhRf61+O/zXCklaIgpngrcfbw6NLHNLai7H30IhvGr0DLjXX2Ef33vOm5WzM4ar2jshm8gqyf1fDh2LrqIrrEk1DMdbR4qOwTepT6fx9UOF+5zBRXoEChcx7uozoIb1W57ZJqKpP//RB2qp+zi9//b5MAsUWvGAaDFRKvZz8LFBCUojyUmHD/p1RKh4LWDxS+Kb1K6d0+Xr/4+55CCTjMUzvTmN6V1vgvej11dOXkybIXGOfR6LKLKC/P7bopDDPT79eR59fUPIbFjlT/fNXdTf5OUw+MB2TfyDsK2+z/7tOb0OnVNgAKlho+s9S155RQB0Do7xydoFCnmt1gn5DLzahGkYT9d6Krr3Y/EyDo/5Lv7jtxCA3qu2Ur1YYsg3eYCsk6uctLL1iFijWNZIqMXmp86a0wnkJbeYSb13c5CHar/7yli5sqOcVTkMpqk8IH4ptDSpvWr96BO22F0ZD0c0tfrjJQjzPEnOMawaxCGTLCF8dHs0Gnzd2Znnzcw4yKerbBYTZYiBMJ+cnMEazeTcs2Layt8kpH2TW8+ZboqFov5vfPRQJFEN7sUbasYYytvFGeZnmYSQTsQCTVwgNJV98rcLmiBXQt9YNoW0Y8g9Mo91z6bIhdoHg5uO+zKXHnPRmoem91pS3qR6BGkqIOnz2108bywbs2gOgOZw9nV3YRTXDLo1i6pSERXD5/T6KIB/KlHFprQ6+WRflERTIFKQljebySCViSMTM1gC/+rp554VVkwyaa2Kfh1L4/sRm/9kMtsFR1TWUOoUhs0AJwfbeQdyz1pnwr6K8ShuZ85mKxyqO/9fPebOwzS0QQoBAIAonHIKc8tO7097LAVg0FC27sHMDvPH6prp58w32oQQLhdGi7Vu9gQXhhaKx/ICyFa7D2FNINqAj1wmaeAjY53nYlkcJcprrv42e/+6Dw7j0V08BADpT8VD+laA17QpmO//fMBWPIRYL0FACJjaGieYLEpwZi0DRfxe1SKWXgq/U93QNNBQ2eTUN5333ATf8T/lQvC+z+sGSCUJuOFhDqSjKy5OHH0ThN37y1kH/963HTYMfOUNn4tRPFwjBZfsJ1nAmr9J6mK4x5aObvLydVdDcAy8xgxMlb+msi8vzaCghR5FB80Scsp3zJnOPqpvN3ONrmjQMKl7WlllPJ4MFSpjVhnMBQmck62goeRHkI1F1DL4Hs6/MLHRyAWZTJ8/CsXeeMiMwf+PyN6yhjF30WHJTlFde01BsS68EvUiml60Q5eWfTm+XYZqOyemv16G0bnqUV+Uait88CZsZAQg3F8ek9SiKTF5By8dYhKLf9sJOHoXvps6iYPIyaCjBRVvncdhWZChE2fnnr35nm8lLf5btqcKSA2nZ2fuWHeJ31s8FaSjxGIXQhv00FPtM+6BdGYsiBX2FrvM5tSuNQeN+LGah7S2jGoQJ0a4GLFDKRC1fXzJq0XwsNqd8qJGZocMPmodCMK9e6qV0teTCd5N6rHeAmay3fnpewY3Xb4MlvUjbTPmwy9eb7O/tcr0Vk9kSsPuhTAKleBsA/7TqJ/IK5bBmCVs7UsdfNewFYltLSz0H37W8tGO6tqfeC0AKFOOgxD5w0csO9qGQ8Zm5zziChlLYBsCcPmjplXHphDGIw2atMGmXlVLt/EywQCkT0+KQrx4YAuCo+5lc6Y6OepqgF8mdA1CmyUuIgjAJ5WAvuUh70Q0qQFD8fTn+B/WSFy2oGSK9eqZBz09lEzPMBxrN5tEhR9MlJq+ikau5fCBAoGjpbE5273MOcoYXXWfxN6lDe/qH/ScnqrW6TPnL5+D3nPU6F/mjtHLSCbPJSx23aRfBGkoOqYSjodhG3tbVigNMTioAp/zVhp1jHak4hjI2s2P4ekeBNZQmJRHzDxv+h184Dsm2hP88FT1NsH3ZaYClEaXBGkpeCDeUMlSUV8DSKbb5C0Bw2HBYM4TpxQ4SmkCwhuKGbyf8I4BGs3m0GTQU2yx7fbQbN/lQLBoSULgPrw9F5W+aWOqWYTG5qPOZnCiaBOiWY9mRUT03v82d9PsbKTIfFr6nk2azr8o7aL4WoGlhhnkoroZi6HjdQYtl4mHQEjspKVC87S0T4IfT8+9MJzBsWnrFoiXq+a5cu9v3mnIwrRhQbViglElcmbwMGmRn2olz8GvotugbQIuAMjjNg+zm8RhZFxZ06yL88w+qX5EPpUTiaV8tAkW9kHpnEWYGti26Sb/G5MsazekaindPG+fTFCk3ki10DiYNJUjoAs6zUb+xN8pLT7tz/5Bv/oBz/3FDtKE6r9CXYS8px/ScXYFS2hnq5ZkCHNoScauzO5WIQYiAAVKQhpJTUV5mDUUJQ781sYLW6dLr6fpLRek5bz2L6i4PBZm8bG1Zb5uf+eVT/pUsA9ZQmpRCI/P/gdqS5o19bLbroGtsy47k8qIQeRSi7ZQ6/bWO0GKbB3xmypex2rCacGdybpq1sNJ6mK5JJWK+Hbpu8ir1ochIvZi/H0wfsZuivIIi4fT6Oee9Gkrh/32HRn3zVyv6qnbo15T0Ooz4CAU1GDA9RvX7+7XhotDxohDswvFkgswDH02gAOb3SNXBT8PQNRRTelV3v7Bhvd5Bm4ypOnqv0QdTQVsAd6YTGDQuDln8WVK+VsYZ8yf5X1QG9QobZoFSJq5T3tASUu7ER5+GHGLJiazhGvVfUGcbs2goQVqAnq1pfkDxPBSvQNLTB0uUrGty0QSKZdSov9T7B0eNHYGwaSjZvBuRVDqx0flMxMkacmwLvAD8NRT9xfaOXvW0wz6CQL8maQhf95brZ7ZSbdPPNJrPCzeNzeSlPw+9zBiZ/SO6yUu/H1MdjVFeiTjiMTKazVwNxUeo68/WlD6n+VBKZ8oHhw0XnPLxopWRi65x/WWW55SIobs96XuNjTCRm9WGBUqZjJc/rulFSBrW+gIKNucwUV6lGoo8HzDyi1kUlKBdJfXOxWRvDeos9exsPpSMT2dhW8tLHUrFY+gbzBRtgORXj2Qi5jub3zF5+Zsl1fNJGBzGI9LB6pz3v7eiZ2RxavcNZorP6eYkw37xOU1gestzy9XK8POhBM1j0Ttbf2HkpG1Pxj2TRJ3j/3vpGxyBEuDrAxw/i6n+ejl+50dk2HAiFjPO3VF18xuZK60hESP3Ny0pPy+0Z1x6ThFkcuxIOSYv/62ogweXSmh1puLGOtqw1bMWsEApk/HtTmekdzhnfn2l+12ZU/xeRmWTDvIBuP4FTwNwnfWGtpUTAnEiECjU+kSm5STakjHj5j56wy51yhfys0UpqQ7PtFGRX2ekjkztcmbxH/TxDQCajT4eK9G0VLntrsnLO7HQ+d+x7/uMjOX58e3JQGeuW55fh6zdW6/HrJU1jPiL8vdoKH7PyqahKKe83x2ozjYZp0ANpT0V913GJhknGcHlW/0SDcWoYQRpKLk80jLKy5reT0OR9zihIxWgCeaRlsEb3vchm88HCnTVBDrTCeTywj90WR6ymR07UgnjVs82MhZNqhawQCmTE2d0AygWKLu0eP/TjpwAwPwiAMFO+b5Bp5PxXlKwe5tHfjaTV1FHU/KSKIESN76kauVUvwgqvVphNRRTtI1f8er8hA5HQzw4lCm9CAXB63cf6p7VPJTS1Yadz0Qs5jt6VwK1LRm3RjHpdSkqQzuvfmu/tCYNRbUD5avzG5zoWomfhrK913H4+wlNtdz6+PZUoA+lPRkvdsrnlHYXM4ZsAwUBmE4Em46DIs0ych6KEzbs/5yCTF7K1DipMxmsoSRiICoV7tmcKGhYAdMDOuXAxc8xb5uA62oo6bhvcEQY9LlibPJqQt53+ix3O0+/QcObjp3ijhy9jfDJLb3uXtimDnc4k3PNIPqLJoSwTmbLa055o8kroMNSHUI6ETMKPDV6ndCetIQNGyrgKcsULRM0oU6ZHM0CRde0ivO56/ldAICHNuwtKV+vQzxGvv6F0Zxz/x0ps0DR78OvM9NHu/sGvBpKsKnKybMg1Lzl6deoDtv7O6/e2ud+92uGqvOb0JFEJidKow2151usoUhzYJzC+VACwuv19u63n4g+U97mQ/ET6oV7TJl9HEIgGSMk4zGM+qxokE74B3box1TEp18ZthUDVFvoSCWMg4sghBD4yYObtDLYKd90nDSjG1Je+HZ6g6M512nv7XAv+NGj7nfTS3DNivXu95yhYwpyysdjwYvX6/l4G6lqcO3JuDEiZEBqKOPbkyWdpb6+kW3TIz9zRs4jQL2oQ0pDOWASKO4IvrTT39PvzO9QwsK09EnKsHSIGs1O6EhicDRr3dHQ3ynvnJ/UmUJP/4jRDBlWoJic8l1tTmemhKDiFS0c2a/TH3Q1lKRM720nBZNX8TwUpaEEC5ScR6DYfEB+o3s9yst3if28CLQGqHuc2JE0CpRMViARJ6TipdGCWU1gB63lpczffkKx6J32eVSqXt3tSWNbCGLjnkP4n3s3anVmDaVpeMtxzg6If/+G+a4W4Ndprt7ah1TCf+vR06Up7OipnUY1++WeAQBSS8iXjv4As/8lJwpLRZgsTvrLU/KS6CYvk4YyUuhsvC9JmNnH3rKLOtMiH0ppGpX/RKkh+s2vAAoaQJuPYJw3uRMA8JX3LCgpX693Iubvh3p6+363DnkBV+MsysOioagyj57q1GXdq/3aPeYxqdO5P79wX6BgxmgLcGpnsgLj5OjY29a62wrrwfr9SkOaFgqYTaMdyYSvjT4eo8AZ7LqPC7BHqfltUKUEStwwsdEUfaZQ78GE9hSGDZ21s7xLHMk4leSRyQtXoPhObJTzhJRp1U8o6r+v3/sylMkhGSd0enxVYfEKIfahNBFfe98puP8Lb0VMqsCAf4z+lUsXuBqK15HXmU7gtDkTsKd/BK/sH8L63f1F54czOfxVzoh9/dGTixqE6kS65EQp31DFvHTKExlNXiMBETwqz3QiZtx+VGko07rT2LpvoOhcmMli7rXKKW+I8vLrZNTznCw73IPDNpNXHHlR3MGrjmSy3LfDtB9KIu6vofzn3esAwO30/SLNbBqKOjZnUgeAwjNVaY+Ux02DjtESk1fpNZlc3jW3eNupEoJHTe00dGRSC5WaoLceKk2b0SkfQzJuNkWVaCgBGgRgMHmptbwM5eh19ntXVJ4TO1PSae4XQJNHKu68797zuZyjvcRj/tFsWfkutgX4UIq2MTYIlLZEHKlErCKnvHfAxT6UJmLWhHbMlaNb9aKqVUT1BvuBRXM0H0rxDzg4mkNHKu7+0F6BcslNq93v6URxqKDq4Kd0pSGEv/9AzZRPBDgqh0YDnPLKh5KMG0MxB0ayaEvGcMzUcRgYzXn2xgh+QXTcsOFc6T2a0qvnOVEJlCGDhqKc8j4jSPViq9G7SUtLBXSIQEGgDPgKlFIzkI5qL91tToetd57ZnEBn2umEbCavdMDEwNFc3qihKIHRmUr4qiiqjUyT20j3D/uHNnd4nfLyvuMxKmm/OgWBYjbZKcHfmYqX7HiYl1FTqXgMbYm4r8DpHynU2S90W/cTAf7PWgmtZDxWsvNlNp9HIhZDnPzbyWjWMYkpDcVv+ZVigVJyGsOZHNpScaTisYo0lB8/ULwPC2soTYp64dXotFc6Vt/9mhloS8bdGczezmr/4CgmdCRx6hzH9OX9gR9Y3wMA+NSb5iOdjBWFM6rGd+KMLgDACzsPlNQrl3cWh0z4vAAKfaRk0lDaknHjTPm9h0YxZVwaHcrZaJggFnrpFX00r9VnaDSHeZfdiWvv02zAWvRWZypu1FAymg9FTwcUOipXIHjMKSPZHNKyEzGFTgNAlxQGd0onv86h4azrf/DT9FR7UaYnfXnzgdGsG/RhMnkpAaQGNqYZ/a5A8dyHEhjthk2wNu919jWZOcERKF5flRpEqMCEwuCgYC5MJ2PG+qs2o+rn11mqe5w8Ll0y01wJsVQihq62hK+WqB/z+x2HRp3fWfk4/PwomVweyXjMd8WFTE644dGm/VrSyUL+frPlRzLBJq/hjLMqdipRmUDxrjXHAqVJUdEdq2S0zC1PbgMArN11EAAwTnYU3g6vd2AUkzpTuP7jrwMA9GkRPl/5w4vu96GM09j1Ed4bvnEPAGDJUZMBAJv3FpubNu8dwKqtvYjH1Oja39TygR8XAgO8GkpGG9mbOtPdB4cxvbutMPLS6li0tL3FAahGlUVhsrLMrrYEtvcNAgC+99cNJfknYoTu9qQ5yssTVquXoQTz+PYkYlSqYYxk8q5ACVruW3WWygSmyOTyeHbHAdcs5zcP5YPXPQYAmDfF0Xh1J3lP/wiO6G5DMk5GDeXy3z3n3gNgjvJS7XDE01mqQcV4g7P3239xAkOmdzsC5fdPv+Kbfqrc1VNp3LqGkorHjPVXGs80OZ/Izxz04IYe95rRbL6oM1Sdc1syjq62ZIkGBThCXWFyyren4mhLmAWKiiTz86Hk8kLzFZXeo6OhxF2h7x24eI/5aXNDozm0JR2BVmT+zuXxvb9uwA75jpjw3rWfL6oWsECpkPvW9eDQSNZ9Aa9aejIAYOaEdhAVBAzgCJO+wQwmdaYxvj0JIqBXmyV9/cNb3O8EaTKQnZau0s+Z6NjXvZ3p2759H/YPZhAjf5svULrYoHfUoxzuXW1Joxq/fvchTO9O+zob9TSmWeyA80LslPN2/GbeT+tKY7MMTtA3bVICJxl3RqYmDcU1l8iXWTffDWdyIHLMRZ3pBAZGijsSZ2QZ951lf9+6Pe73T7xhvm/ZP7zPMTMogegNC9Y5YrzTYasJmgMjWQyO5jC1K43OdMK3owSA9bsdDcLVgjz1XLPzIPoGM+5vVOpDce55enfaKJQB4AgpUG58dGvRcSWEZ8jzSuNyNZ9kXGooeV9NVZkqlcDyM1l99c61AOBqa3pnuEX67uZO6sA4qaF4y+mXdexKJ3y1xM17BzBrQrs7l8QbXDE0mnMHT37vUyaXRyJungejdpRUWpjXn5HPC3cukHO+9HcYyuScZ5ko9lU9uaUX1/x1Pb5+10slaRQb9/Tjnpf2FB3zrspQK1igROD2ZwqjtxPkhMfutiSOm9blRu8IIXD6VSsAAD39w4jHCOPbk9gvJ7V5X88nnqoAABuISURBVIZ4jNCWLIxK9Ma2YFY3UomY+8J4yUhnoZ+GsK23eERzyNPI9w+NIh4jTBmX8u0MXth5AHsPjeCsE6YXnI1F9v9CozeF9ALAsuVPuN/1jkIFHkzranN3yFSdopO/cpgTutuSvlFeW/cN4Mo/rgFQiFLKeExe6UQMRIRx6VJziWvyipWOSvWQ7vHtSXxo8Rx3lK1Qo8a2RBzj0omiCC4vHalEUUhqjwxpnjoujanj0tjbbxZGQGFw4R39Lrveeb5qJF/iQxnNIUbA1HHOczZpoyoizovK95TZjun2pVedgdOhkQw6UnEk4jEcOakDubxwoxZ1vBqKn3ZwzLRxAJx5XarOij0Hned0xPg2dLUlfJfoV21jfEfSV0PZuX8I8yZ3utYGbx0ODmeQF8CMCW2+81CGpY/EtDilamdKoHg14Q3adslA6QBsNJvH/et7kBdwnfLqfdx90BmMbdtn1lCe2rq/5Jh3Em2tYIESAd2koYdjzpnU4Y5Ann+l4O9YNNdZNXRiR8od2d394qtFeToj6EKMvxrB/uf5r8G0rjZ0pRPGkNmBkaxRQ/EKlP/SOsh9h0bwg3tfRioew6TOFEaz+aJG3jcwivdd+wgA4DWzx2smr+Iw5O62BBIxMgqUZ7bvxyMv7wPgRBkdGMoUlkqXdZ6qddIqEkjlDzgaSnd70ldD+Y87CqZDpd3ownVgNOeu4zUunSh60Z/Y3IuX9xwym7w8NumOVKKko1AhzUdNG4e5kztKTJN6nuPSMiRV/s63P7MTgOPfmTIujR6fPVH05z1viiNQ9IHBcCbntitnki2VaChDGecZqCWEvEvYTBmXxocWz8H4jiSOmz4O5y04ouh83+AoxqUTmDOxHQCwfzCDA4MZ/OTBza7GumDmeADOM/WiypvW7W/yWrFmNzbKDlfNpdF9EOq5TOtKoyvtb15es9MRcrMmtPu+C3v6RzC1K+2aRb3+HpW+QzrFvabLodEsOlJx4/L5B4cy6G5LoiMVB1GpwNg34NzDP511DIBSDWbFGifa8/lXDhQmqMr72C0Fqqr71XeuwXWaA14IgV894ZjhF2urFB9gDaV5+eFHTgcAbNU66US88CiPnNSBbb2DEEJgizaSeN/pswA4E6q29Q7i3pf24MkthZnLgONMSydirsNTNcbJ45zOqqstUdSJ6JrEUCaHVDyGA0OZkpGnEihvPGZKyf189uan3fRTZEjtXm2dqZ89tNn9PmtCu7tr5TPbCyOhgdEcxqUTGN+eNAqU9/7gYff7BxfNQV4UOgPVWeoCZdaEdve7ynN8exLdbQnfKC8lLJzrnOelNME/v/Aq7np+l+uQ70wnXE0IAD7w40fx7I4DSCf8TV5eX4QQzj2/IAcMP7zvZfz4gU0AgJ9etAjzpnSWhFYrE9OJM7px1JRxshznd3pVjjxPmT0eM8a3YfXWviIB8tS2Ppzw5T+X3J96fq/sH8IJX/6z28Gdv3A22pLxkj3NhzI5tCXjbljwfs/IdWAk646sO1KJkiirPQdHMK0rjQkdKaTiMWzY3Y/fPrXDfSZAIejhS79/Hl4ODmeQiscwQdbfa/J6QRuA+Tm1ew4Og8gpQwVHeN+Hm5/chvlTOjGpM1Vivn12+34cGsliWnfaNRt62+snfv4kAMi2UCqUB+XAJBWP+fo/Dgxl0N2edDThVOkAUAn9o6c6mpjX5KXaxOvmTXTn6yirwTekqat/OItjvvQn/OTBzfjanwrmr9Vb+9z38icXLcJX3rMAJ8/qZg2lmXnL8c5ER933oTNnUjuGMjnsGxjFdtmRP3zZWe4WvZM6U3huxwF84udPuo164dyJAJwl6NXoevfBYfdlGZd2rhvXlnBHOIAzQlS8//TZaEvFsalnAB/6yWPu8Z8+uAk/vn8Tjp/ehV988gy88+QjXBs5UGwWmdKlBEqhDH0zqc50wp2Nf7MMSMjlBW5bvQN7+kcweVwKew6W7mWuC75/fOvR7gi1d2AUAyNZ/PJxJy8lrIBih7V6ISZ2pNCeSmBb72DR6PDJLb1u1NWcSe2YIgXwLx7bBiEE/uEXq9E3mHEd5l4NRTEwmkVHMl4yqvSaRV4rJ6r+9qkd+O3qHfjmnwsv9dSuNI6dNg5beweLRoY/edARzP/89mPdOU3KnJLPC0zrSmPKuLS7XtzHry+YB//llmfc7z//xOvc0buq5z3arn5/c8oMEBHmTe7EJk1LuvIPa/Crx7ehPRXDbGky26oNeH79xDYMZXJuW+tMlwqkPf3DmNqVRioRw4JZ3Vi/+5ArQNS+HUpT87Jm50H8+P5NjkM85XQ9usDae2gE31vpBGJc9s4T0C4HCCrU+dZV2/H9ezaiLeGY1tQz0Dvs3z71CvYPZrB/0AmC2bV/yP3ttvcOYqkc1EzrasPkztLB0180i0GMHPOqLnDyeYEDgxl0tSWc5+MXtqxF+vkFkDyzzenwVWDGfo/2sGbXQRABN118BrqlJnlgMOMKIgB46dX+ImHZP5zBX9fsLlpuZXx7EstePw+begZw77oea/RlNWhpgUJE5xHROiLaSESX1avcjlSiSJ3802ffVHRe2Z9/fP/L2NE3iMmdqaLRtmrIgPOCAsCp0iYdI8LbTpgGwBlVq9GLGjW+uPMgHt64Dyd8+S7sOzSC3TL9VUsX4IvnHu86oXXNRzk5lSP4iPFtePXgsGuSUc3sexeehqlSQ3mlr9CZKyfzo5efBQB407GOQD3rhOkA4DbibF7g5Fnj8cjL+4o64N+u3oH5l/8JAPCRM47EF887wX0Gf127Gzc9ttWty2fecjSSccKsCe3Y0TfkalovvOKYISZ2JDFD3sentbk7+tI2D37xLFfT+vUT2/DD+wsmAaXpdabjrkDRBdPWfYOYPr4NPf0jWP7QZmyQ84W8dvq/PXUm5kmz1ud/8yy8LJo7CUIAp175Fzy/4wAuvO5R/EjW45RZjklI99Xct36PK2SVj+qxTb1uHfWgiqOmjCtx+CofDACcv2g2AGc2/ibNj7H8YUegTe9qc30wOw84+R4YyuDy3zkahTKHdaSKtTjAaVdq0DFXauI/kEt8fP19pwBwzI0L5050BY3iUzeucstyAzs0H9DrZTQjAHxsydwSDeWLtzkRbnqkGgAs/cHDuOGRLcjnBf5N/hZnnTAdbz5uKgZGc26AjG6CnDmhzW0LqqPO5vJF88HectxUTBmXLhpc/fvtL6B/JIvXzJ4gtVzND5jL47O/fhqv7B9yHf4zxre5z1jxcs8hdKbiOGlGNxIxKjFHP7t9P06dPQFtyTiOmeZMFXh6+37X3OXHoy/vwydvXIW7X3QGFp+V5jT9+ZnmblWTlhUoRBQH8AMA7wRwEoAPEdFJ9Sr/159a4n6fO7mj6Nxpcq7JTx7cjF8/sb0k2mfOpIJw+cVj29CVLgioE2d04agpnYiRIwjU9p+q8b/haMdkNZzJY+FX/+qGdZ4woxuxGOE7HzwVgGMLX7Wltyg8+cqlC4ryeNf3HsSe/mHs6R/Ge06diaWnzXKFzr//7wvuiObpbfvx5uOmYsZ4p95qWYlbn9yO+9btcRcc/P6HXou3nzgdg6M5PLhhL0azeWRzedcmDACfP+d4+QycZ/a1P71UNAqe0JHChqvfhc+dfSxyeYG1u/rx5JZetzMe35HEJ94wDwDclQX89mBXzwsAvvXnQnjv2090hOC4dBK9A85GXVdLgatQ+V35xzV4xzUPYDSbRyaXx5xJ7Xj2inPc6143bxIelT4hxVFySZXp3YVBw+dueRqPbSr4E5RAbEvFccczO/H0tj70DWTckb1apgcAlnx9JX764CacLIXQzPFtOGJ8GzpScbQlY1j+0Gbk88KN4nnXKUfgTBle3tWWxCv7h7B/cLTIz/ChxUe6z+eJzb14Zf8QNvUUHMV/e+pMAE6AydZ9A8jlBXb0DeKrMuBBOYTnTenEK/uHXCfzFM1c+c6Tj0DvwCjW7+7Hqi292HNw2O1kAWdi5fTutOtTAwqRh68/ejI60wln8iUck5af836iJrD+4w8vFmmJV//dye7AbvXWPggh3MiozlQcpx85ER2pONqTceySwvpH2sDjd//4erSn4pgyLo39gxlkcnnsHxzFr6Qm/bbjp6KrLYkHN+x1hf6qLX2441nHF5aUWv3kcSn0DRSe/XM79uPedT04Z8ERSCWcAAZd0N353C48vrnXfT9OmzMB49IJ/P6pHfjCbY6w/MgZRwIAvvrek/GXf3kzgOKJ0W87fir+Vb5nAHCtNNHvOmjeVrpaJOyXNC2LAWwUQmwCACK6GcBSAGvqUXg8RnjtkRPw9Lb9RdFIgNPQZ01od002unYCABe/8Sg8u+OA29Eed0QXzjv5CNz52TfipBndICL87akzXUctUFhyZPnHX4fzvvuAa8r48f2OdjBdzmzuSCXwlfcswBV3vIjzf/Sou5THV96zwJ3t//aTnE51KJPD4qudvVyWnur4dyZ1pvCxJXNx02NbXa0CAJaeNrPoHmLk2P0/fr1jbz5+ehfec+pMt2NSo1GdWy5Z4o5a50/pxAlHdOGlV/txx7M7Ma0rjce/dLZ77VtPcLSgv/2fh9xjZ8yfhHQi7kbnAMC8y+4sKkMJTTWC1/njP73R7ZhnT2zHnv6RonsEgA8tnoOPLZnrdhwAcNy/3wUA+Pjr57mjYqB0gcSzT5iGb53/GgCFmeYAirSE5/7jHNf0eeIR3djUM4C/kwEPStgtmDkeZ8yfhMc396J/OOtqmBedORdXyvB0wBlUDGdGcNSXCvdw7UcWut/VtgqnXbkC/+dthRHrWSdMc1d0uP2ZnUXt7OZLlrhL05w+dwJ++9QOHP2l4mf0jfc7msibjp2C78q5QmfMn+TO/geAt50wDV+9cy3OueYBePnSu05ALEb4wKI5+O97Npb8ht98v/MM1cBL31N94dyJ+O1nXg+g+L0SAq4P69//5kS0JeNu+q/eudZ9hgDwzBXnuPc/lMnhhke3YkJHyg37fuSyszBT5j1DTvA89v/d5aafO7kDk8elce6C6XhgfQ+W/uBhzJvcgb+uLYTqfurNRwFwVgRYt7sfb/7WvfjwGUe6PpAzj3aE/vwpnbjrhVfxu6d2oKstiUt/5dzrOfIdjccIp84Zj3vX9bh5f+U9C/Dld5/kTt49aUY31kgtLB6jojYCAO84aTo2Xv3OIj9vrWhZDQXALADbtf93yGN14zefPhPPXnEOYrHSNX7VyAEAfvyxhUXn2lNxXKcd+68LHK1iwczxbmdzzQdOc5eGuHLpArcxpBIx3PNvb8WvPnWGm37+lE7Mmlh4uV6rjXCVOr1o3sSiOqz8/Fvc0TTgCDXF595+LBKee/rw4iOL/v9HrYMCgAukmWX+lM6iEbbib0+diTPkyFnx5Xc7CuWWfYM4d8ER7r0DTod8pnZ9ZyqOWz59pvv/Cu35Klb9+9tx0ZnzADirBnzxvOPxZrmwJwBXmADAG3yCEzZ97V34+vtegxNndBdpoIqTpG9D8cHXzSn6/+q/O8XtjMd3JHH+wtlF57/2d6cUdbofXTK36LwS/gDwq08tKdlL/L2vLW7e7z+9OH9vGPOn33KU+12tPPvo5We5I/tTtOeh0MOFzznpiJLz//e8E9woroVzJ+EHHz4dbzluasnzOnrqOFwlhbvOg198Gy5589EAnKWKvPz2M2e6o/OuttKtb1VADOBMbpzYUXzNrAnt+OSbnPvWgzQUVy5d4AoTwNHWAOB7KzdgNJfHO08+whUmAPDW46fiuOnjivJQ7/aFr3PSbtxzyBUm07rSeOSys1wf1ckznTazrXcQ37jrJcRjhKuWLsD75G/5rlNmAAD+9dZn3UHYjz56uqslAsCHFxfayTUfPBWJeMwVJgBw52ffiA8smo3vfvA0vPy1d7nPT5GMx+oiTACA6uGoqQVEdAGAc4UQn5T/fwzAYiHEP3muuwTAJQBw5JFHLty6dWtJXrXi+R0HsHnfAN5z6kzf82oJCD+BFIZt+waxd2AEpx85seTc75/egUxOYPlDm/HhM450O1ovtz65HdPHt+HNx04p6tBzeWdLYSGc9ZaSPg0ynxd4YecBnDxzfMk9bN47gO/I0OR/fcdxmDupw/c+173ajwc39OCjS+YWvSSAE8752KZe/Om5Xfjg4jkl97l13wBe2T+EB9bvxSfeMM+dLKcjhMAfn9uFtxw/tagzV/knYjE8tHEv3nTMFN/6PfryPiy7/glc++HTcdYJ00quGc7k8L2VG3BEdxuWvX5eSfrB0SzufakHh0YyOH/hnKIABwB49cAwtuwbwDPb9+OTb5zv++IPjGTxcs8hvGZ2saDO5505GPet24O9h0bwwdcdWRRqrfjOivX4/soN+PYFpxYJOSEEdh4Yxnf+sh73r+/Bl999IpaeViy0evpHcNOjW3DGUZORiBEWzp1YVuf09LY+TO1K46cPbsb7Tp9Vcg8HhzNY/2o/ntrWh48umVsiBPYeGsHug8PI5QWOmTau5PzWfQPuM4zHYlh62syitiqEQM+hESRiMew9NIKjpnSW1H9oNIcNe/rxx+d24YKFs3Hs9C542bZvEA9t3Iu3nzgN07R29sfnduLJzb2YPbED5518BCZ0JIsEoRAC31u5AVO70pjW1YaZE9pcgazO3/7MTqzddRDpRAynzJ6Ad0jtREetsNwoiGi1EGKR9boWFihnAvgPIcS58v/LAUAI8XVTmkWLFolVq0pNMQzDMIyZsAKllU1eTwI4lojmE1EKwIUA7mhwnRiGYQ5bWtYpL4TIEtH/AXA3gDiA5UKIFy3JGIZhmBrRsgIFAIQQfwLwJ+uFDMMwTM1pZZMXwzAM00SwQGEYhmGqAgsUhmEYpiqwQGEYhmGqAgsUhmEYpiq07MTGSiCiIQBBocXjARwIOH8kgG0B58PkUevztjo2e/3qUYex/gxt6atRh7H+DOtRh1Z6hscLIUqXEPAihDhs/gD0WM5fFyV9yDxqfT7qPTa0fq1Qx1avXyvUsdH1a4U61rN+AFbZnpcQ4rAzeZVutlzMHyKmD5NHrc9HvcdG168edRjrz9CWvhp1GOvPsB51aPVnWMLhZvJaJUKsR1Or9PWg2evY7PUDmr+OzV4/oPnr2Oz1A5qrjmHrcrhpKNc1OH09aPY6Nnv9gOavY7PXD2j+OjZ7/YDmqmOouhxWGgrDMAxTOw43DYVhGIapEYe9QCGi5US0h4he0I6dSkSPEtHzRPQHIuqWx5NEdIM8vlbtwSLP3UdE64joGfk3rQH1SxHR9fL4s0T0Vi3NQnl8IxF9n/TdtJqnjrV6hnOI6F75m71IRJ+TxycR0Qoi2iA/J2ppLpfPah0Rnasdr/pzrHL9muIZEtFkef0hIvofT14Nf4aW+jXLM3wHEa2Wz2o1EZ2l5VWz9zkSYULBxvIfgDcDOB3AC9qxJwG8RX7/ewBXye8fBnCz/N4BYAuAefL/+wAsanD9LgVwvfw+DcBqADH5/xMAzgRAAO4C8M4mrGOtnuEMAKfL710A1gM4CcC3AFwmj18G4Jvy+0kAngWQBjAfwMsA4rV6jlWuX7M8w04AbwTwDwD+x5NXMzzDoPo1yzN8LYCZ8vvJAF6p5TOsxt9hr6EIIR4A0Os5fDyAB+T3FQDery4H0ElECQDtAEYBHGyi+p0EYKVMtwdO2OEiIpoBoFsI8ahwWuONAN7bTHWsVl0M9dslhHhKfu8HsBbALABLAdwgL7sBhWeyFM7AYUQIsRnARgCLa/Ucq1W/qPWoZh2FEANCiIcADOv5NMszNNWvllRQx6eFEDvl8RcBtBFRutbvcxQOe4Fi4AUA75HfLwAwR36/DcAAgF1wZrB+Wwihd6TXSxX5yzVWQU31exbAUiJKENF8AAvluVkAdmjpd8hjtaTcOipq+gyJaB6ckd/jAKYLIXYBzssOR2MCnGezXUumnlfNn2PE+ima4RmaaJZnaKPZnuH7ATwthBhBY97nULBA8efvAVxKRKvhqKaj8vhiADkAM+GYGj5PREfJcx8RQpwC4E3y72MNqN9yOI1rFYDvAngEQBaOWuyl1uF95dYRqPEzJKJxAH4L4J+FEEGapel51fQ5VqF+QPM8Q2MWPsca8QyDaKpnSEQLAHwTwKfVIZ/LmiJclwWKD0KIl4QQ5wghFgL4NRwbNeD4UP4shMhIc83DkOYaIcQr8rMfwK9QQxOEqX5CiKwQ4l+EEKcJIZYCmABgA5wOfLaWxWwAO735NriONX2GRJSE8xL/UgjxO3l4tzQfKFPMHnl8B4q1JvW8avYcq1S/ZnqGJprlGRpppmdIRLMB/B7ARUII1Q/V/X0OCwsUH1RUBxHFAPw7gB/JU9sAnEUOnQCWAHhJmm+myDRJAO+GY/Kpa/2IqEPWC0T0DgBZIcQaqUb3E9ESqb5fBOD2WtWvkjrW8hnKe/4ZgLVCiO9op+4AsEx+X4bCM7kDwIXSXj0fwLEAnqjVc6xW/ZrsGfrSRM/QlE/TPEMimgDgTgCXCyEeVhc34n0OTbW9/K32B2f0vAtABo7kvxjA5+BEYKwH8A0UJoCOA/AbOA6yNQC+II93wolWek6e+x5k1E2d6zcPwDo4zr6/Apir5bMIzovxMoD/UWmapY41foZvhGMSeA7AM/LvXQAmwwkQ2CA/J2lp/p98VuugRdDU4jlWq35N+Ay3wAnWOCTbxUlN9gxL6tdMzxDOQGxAu/YZANNq/T5H+eOZ8gzDMExVYJMXwzAMUxVYoDAMwzBVgQUKwzAMUxVYoDAMwzBVgQUKwzAMUxVYoDBMk0BE/0BEF5Vx/TzSVnhmmEaTaHQFGIZxJtQJIX5kv5JhmhcWKAxTJeSCf3+Gs+Dfa+FM6rwIwIkAvgNnYuxeAB8XQuwiovvgrGX2BgB3EFEXgENCiG8T0WlwVhfogDN57e+FEH1EtBDOemiDAB6q390xjB02eTFMdTkewHVCiNfA2drgUgD/DeB84axrthzA1dr1E4QQbxFC/JcnnxsB/F+Zz/MArpDHrwfwWSHEmbW8CYapBNZQGKa6bBeFdZd+AeBLcDZHWiFXQY/DWaZGcYs3AyIaD0fQ3C8P3QDgNz7HbwLwzurfAsNUBgsUhqku3rWM+gG8GKBRDJSRN/nkzzBNA5u8GKa6HElESnh8CMBjAKaqY0SUlPtbGBFCHADQR0Rvkoc+BuB+IcR+AAeI6I3y+EeqX32GqRzWUBimuqwFsIyIfgxn9dj/BnA3gO9Lk1UC/7+9O7SBGIahAPpNb5budOpWhzpFVym9MY7mQMNLLLXgPRhgmX05iuJzsdhxUeed5FNVryTfJOs8X5NsVfWbdeEx/DYMTeYrr32MsdzcCtzClRcALUwoALQwoQDQQqAA0EKgANBCoADQQqAA0EKgANDiD7hr5jWbca+xAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmYlNWZ8P/v3V29L9A0zQ6CgCiiQiDgnsWIZtW8owmZSSSJGTKOySTO5J3RWV4dM+YXs2hi8lPHUV5xSdQYE0lccV+iYKMoAiLNvi+9r7Xe7x/PqaK6u7q7umlq6b4/11VXVZ96ntNPFU3ddc59FlFVjDHGmGTkpPsCjDHGZA8LGsYYY5JmQcMYY0zSLGgYY4xJmgUNY4wxSbOgYYwxJmkWNIwxxiTNgoYxxpikWdAwxhiTNF+6L2CwjR49WqdOnZruyzDGmKyydu3aI6pa1ddxQy5oTJ06lerq6nRfhjHGZBUR2ZnMcdY9ZYwxJmkWNIwxxiQt6aAhIrki8o6I/Nn9PEpEVonIFndfEXfsdSJSIyKbReSiuPL5IrLePXebiIgrLxCRh135ahGZGnfOUvc7tojI0sF40cYYYwamPy2N7wGb4n6+FnheVWcCz7ufEZHZwBLgVOBi4HYRyXXn3AEsA2a628Wu/EqgXlVnALcCN7u6RgHXA4uAhcD18cHJGGNMaiUVNERkEvBZ4O644kuAFe7xCuDSuPKHVNWvqtuBGmChiIwHylX1DfU28bivyznRuh4FLnCtkIuAVapap6r1wCqOBhpjjDEplmxL4xfAPwORuLKxqrofwN2PceUTgd1xx+1xZRPd467lnc5R1RDQCFT2UlcnIrJMRKpFpPrw4cNJviRjjDH91WfQEJHPAYdUdW2SdUqCMu2lfKDnHC1QvUtVF6jqgqqqPocZG2OMGaBkWhrnAF8QkR3AQ8AnReQB4KDrcsLdH3LH7wEmx50/CdjnyiclKO90joj4gBFAXS91DVtrd9bz/t7GdF+GMWaY6jNoqOp1qjpJVafiJbhfUNWvAiuB6GimpcDj7vFKYIkbETUNL+G9xnVhNYvImS5fcUWXc6J1XeZ+hwLPAItFpMIlwBe7smHr/zz+Pj97dnO6L8MYM0wdy4zwHwOPiMiVwC7gcgBV3SAijwAbgRBwtaqG3TlXAfcCRcBT7gZwD3C/iNTgtTCWuLrqROSHwFvuuBtVte4Yrjnr1bYEKMkfchP5jTFZol+fPqr6EvCSe1wLXNDDcTcBNyUorwbmJCjvwAWdBM8tB5b35zqHKlWlrjXAmPKCdF+KMWaYshnhWaQ1ECYQjtARDPd9sDHGHAcWNLJIfWsAgI5gpI8jjTHm+LCgkUXqYkHDWhrGmPSwoJFF6tosaBhj0suCRhapa3FBI2TdU8aY9LCgkUXqXUsjEIoQiXSbGG+MMcedBY0sEs1pAPittWGMSQMLGlkk2tIAy2sYY9LDgkYWqW2JCxohCxrGmNSzoJFFOrc0rHvKGJN6FjSySF1rgNwcb7V4654yxqSDBY0sUt8WZFx5IWBBwxiTHhY0skQ4otS3BZgwMho0rHvKGJN6FjSyRGN7EFUYP6IIsES4MSY9LGhkiegcjfGupeG37iljTBpY0MgS0ZFTE6ItDeueMsakQZ9BQ0QKRWSNiLwrIhtE5D9d+Q0isldE1rnbZ+LOuU5EakRks4hcFFc+X0TWu+duc9u+4raGfdiVrxaRqXHnLBWRLe62lGEquiz6uBGWCDfGpE8yO/f5gU+qaouI5AGviUh0m9ZbVfVn8QeLyGy87VpPBSYAz4nISW7L1zuAZcCbwJPAxXhbvl4J1KvqDBFZAtwMfFlERgHXAwsABdaKyEpVrT+2l519oosUVhTnA7aMiDEmPfpsaainxf2Y5269rZZ3CfCQqvpVdTtQAywUkfFAuaq+oaoK3AdcGnfOCvf4UeAC1wq5CFilqnUuUKzCCzTDTsAFifIiL85bS8MYkw5J5TREJFdE1gGH8D7EV7unviMi74nIchGpcGUTgd1xp+9xZRPd467lnc5R1RDQCFT2UlfX61smItUiUn348OFkXlLWiQaNssI8wHIaxpj0SCpoqGpYVecCk/BaDXPwupqmA3OB/cDP3eGSqIpeygd6Tvz13aWqC1R1QVVVVa+vJVsF3BDbQl8OebliQ26NMWnRr9FTqtoAvARcrKoHXTCJAP8DLHSH7QEmx502CdjnyiclKO90joj4gBFAXS91DTvBsBcr8305FPpyrXvKGJMWyYyeqhKRke5xEfAp4AOXo4j6IvC+e7wSWOJGRE0DZgJrVHU/0CwiZ7p8xRXA43HnREdGXQa84PIezwCLRaTCdX8tdmXDTiDsdUfl+3IoyMu17iljTFokM3pqPLBCRHLxgswjqvpnEblfRObidRftAL4NoKobROQRYCMQAq52I6cArgLuBYrwRk1FR2HdA9wvIjV4LYwlrq46Efkh8JY77kZVrTuG15u1oqOl8nNzKMzLscl9xpi06DNoqOp7wLwE5V/r5ZybgJsSlFcDcxKUdwCX91DXcmB5X9c51AVCEfJzcxARCvNyLadhjEkLmxGeJQKhCHm53riAwrwc654yxqSFBY0sEQxHyPd5/1yWCDfGpIsFjSwRCMUFjTwLGsaY9LCgkSUC8S0N654yxqSJBY0s4eU0vH+uAkuEG2PSxIJGlvC70VPg5TT81tIwxqSBBY0sEQxHKOjUPWUtDWNM6lnQyBLxifACGz1ljEkTCxpZolsi3PbTMMakgQWNLBGfCC/MyyUcUYJhCxzGmNSyoJElguG4RHied29dVMaYVLOgkSW6Tu4D24jJGJN6FjSyhD/UeRkRr8xaGsaY1LKgkSUCcUNuC2LdU9bSMMaklgWNLNE1EQ6W0zDGpJ4FjSzRORFu3VPGmPRIZrvXQhFZIyLvisgGEflPVz5KRFaJyBZ3XxF3znUiUiMim0Xkorjy+SKy3j13m9v2Fbc17MOufLWITI07Z6n7HVtEZCnDVOfJfd693+ZqGGNSLJmWhh/4pKqeAcwFLhaRM4FrgedVdSbwvPsZEZmNt13rqcDFwO1uq1iAO4BlePuGz3TPA1wJ1KvqDOBW4GZX1yjgemARsBC4Pj44DReRiBKKaCxoRDdjCoY1nZdljBmG+gwa6mlxP+a5mwKXACtc+QrgUvf4EuAhVfWr6nagBlgoIuOBclV9Q1UVuK/LOdG6HgUucK2Qi4BVqlqnqvXAKo4GmmEj4CbxRXMa0fugtTSMMSmWVE5DRHJFZB1wCO9DfDUwVlX3A7j7Me7wicDuuNP3uLKJ7nHX8k7nqGoIaAQqe6lrWIkGjQJf56ARiljQMMakVlJBQ1XDqjoXmITXapjTy+GSqIpeygd6ztFfKLJMRKpFpPrw4cO9XFp2CrgWRX6XoBGw7iljTIr1a/SUqjYAL+F1ER10XU64+0PusD3A5LjTJgH7XPmkBOWdzhERHzACqOulrq7XdZeqLlDVBVVVVf15SVkhFjRcsMi37iljTJokM3qqSkRGusdFwKeAD4CVQHQ001Lgcfd4JbDEjYiahpfwXuO6sJpF5EyXr7iiyznRui4DXnB5j2eAxSJS4RLgi13ZsNK1peGLJcItaBhjUsuXxDHjgRVuBFQO8Iiq/llE3gAeEZErgV3A5QCqukFEHgE2AiHgalWNTii4CrgXKAKecjeAe4D7RaQGr4WxxNVVJyI/BN5yx92oqnXH8oKzUY+JcAsaxpgU6zNoqOp7wLwE5bXABT2ccxNwU4LyaqBbPkRVO3BBJ8Fzy4HlfV3nUNa1pRHrnrKchjEmxWxGeBaItjRiiXCfdU8ZY9LDgkYWiLY0ClwLw5dj3VPGmPSwoJEFug+59VoaNuTWGJNqFjSyQDRoRBPgIkJerlhLwxiTchY0skCwS04DvAASsqBhjEkxCxpZoGsiHLygYaOnjDGpZkEjC/i7zAgHL68RsJaGMSbFLGhkga6JcHAtDVtGxBiTYhY0skAsp5HbJacRse4pY0xqWdDIAolbGtY9ZYxJPQsaWcC6p4wxmcKCRhYIhCOIgC/n6PYi3ugpCxrGmNSyoJEFAqEIebk5eCvKe7zJfZbTMMaklgWNLBAIR2LrTkVZS8MYkw4WNLJAIBTplM8AL79hQcMYk2oWNLJAoqBhM8KNMemQzHavk0XkRRHZJCIbROR7rvwGEdkrIuvc7TNx51wnIjUisllELoorny8i691zt7ltX3Fbwz7syleLyNS4c5aKyBZ3W8owFAh3Dxq+HFuw0BiTesls9xoC/klV3xaRMmCtiKxyz92qqj+LP1hEZuNt13oqMAF4TkROclu+3gEsA94EngQuxtvy9UqgXlVniMgS4GbgyyIyCrgeWACo+90rVbX+2F52dgmGI7EVbqPyfDk2T8MYk3J9tjRUdb+qvu0eNwObgIm9nHIJ8JCq+lV1O1ADLBSR8UC5qr6hqgrcB1wad84K9/hR4ALXCrkIWKWqdS5QrMILNMNKIBTpNBscvNnhIeueMsakWL9yGq7baB6w2hV9R0TeE5HlIlLhyiYCu+NO2+PKJrrHXcs7naOqIaARqOylrmHFnzCnYd1TxpjUSzpoiEgp8Hvg+6rahNfVNB2YC+wHfh49NMHp2kv5QM+Jv7ZlIlItItWHDx/u9XVko0SJcJ8NuTXGpEFSQUNE8vACxoOq+hiAqh5U1bCqRoD/ARa6w/cAk+NOnwTsc+WTEpR3OkdEfMAIoK6XujpR1btUdYGqLqiqqkrmJWWVQDhx91TAlhExxqRYMqOnBLgH2KSqt8SVj4877IvA++7xSmCJGxE1DZgJrFHV/UCziJzp6rwCeDzunOjIqMuAF1ze4xlgsYhUuO6vxa5sWAkmGD1lM8KNMemQzOipc4CvAetFZJ0r+1fgKyIyF6+7aAfwbQBV3SAijwAb8UZeXe1GTgFcBdwLFOGNmnrKld8D3C8iNXgtjCWurjoR+SHwljvuRlWtG9hLzV6JEuHe0ujW0jDGpFafQUNVXyNxbuHJXs65CbgpQXk1MCdBeQdweQ91LQeW93WdQ1lvk/tUtdOaVMYYczzZjPAs4A9FKMzr3j0FWBeVMSalLGhkgY5gmAJfbqey6GQ/G0FljEklCxpZwB+KUJCgewqwCX7GmJSyoJEFvO6pLi0NF0RsKRFjTCpZ0MhwwXCEcES7tTTyYzkNCxrGmNSxoJHh/G4CX0Fe11VuLadhjEk9CxoZzh/0prj01D1lQcMYk0oWNDJcR7Sl0WP3lCXCjTGpY0Ejw0VbGjbk1hiTCSxoZDh/Dy0NCxrGmHSwoJHhokGja07D57qnAiHrnjLGpI4FjQzXEeue6r40OlhLwxiTWhY0MlxPQ25jM8JtpVtjTApZ0MhwfSXCrXvKGJNKFjQyXEcsp9HTKrfW0jDGpI4FjQxnQ24H1+66tnRfgjFZLZntXieLyIsisklENojI91z5KBFZJSJb3H1F3DnXiUiNiGwWkYviyueLyHr33G1u21fc1rAPu/LVIjI17pyl7ndsEZGlDDM95jRsRni/rd1Zz3k/eZH39jSk+1KMyVrJtDRCwD+p6inAmcDVIjIbuBZ4XlVnAs+7n3HPLQFOBS4GbheR6NfkO4BlePuGz3TPA1wJ1KvqDOBW4GZX1yjgemARsBC4Pj44DQcdPbY0bEZ4f0WDxQcHmtN8JcZkrz6DhqruV9W33eNmYBMwEbgEWOEOWwFc6h5fAjykqn5V3Q7UAAtFZDxQrqpvqKoC93U5J1rXo8AFrhVyEbBKVetUtR5YxdFAMyz0NLnPhtz2X82hFsC6qIw5Fv3Kabhuo3nAamCsqu4HL7AAY9xhE4HdcaftcWUT3eOu5Z3OUdUQ0AhU9lLXsNFT0PBZ0Oi3LS5o7LKgYcyAJR00RKQU+D3wfVVt6u3QBGXaS/lAz4m/tmUiUi0i1YcPH+7l0rKPPxSmwJeDS//EWPdU/221oGHMMUsqaIhIHl7AeFBVH3PFB12XE+7+kCvfA0yOO30SsM+VT0pQ3ukcEfEBI4C6XurqRFXvUtUFqrqgqqoqmZeUNfzB7lu9AuTZfhr9Utvip7Y1QG6OWPeUMccgmdFTAtwDbFLVW+KeWglERzMtBR6PK1/iRkRNw0t4r3FdWM0icqar84ou50Trugx4weU9ngEWi0iFS4AvdmXDhj8UpqDLulMAOTmCL0csaCQpms+Yf0IFR1oCtPpDab4iY7JTMi2Nc4CvAZ8UkXXu9hngx8CFIrIFuND9jKpuAB4BNgJPA1eratjVdRVwN15yfCvwlCu/B6gUkRrgH3EjsVS1Dvgh8Ja73ejKhg1/MNJtYl9UXm6OdU8lqeawFzQuONlLve2pb0/n5RjTp3//43pe3Hyo7wNTzNfXAar6GolzCwAX9HDOTcBNCcqrgTkJyjuAy3uoazmwvK/rHKo6QuFuw22jfLlCIGQtjWRsOdhCcX4uC6eNAry8xqxxZWm+KmMS6wiGeeDNXUQUPjFrTN8npJDNCM9wPeU0wBt2a91Tydl6uIXpVaWcUFkCWDLcZLZ9DV5LuLbFn+Yr6c6CRobzh3oOGnm5OYSseyopR1oCjC0vpKI4j9ICnyXDTUbb19ABQF1rIM1X0p0FjQzXEQx324ApKs9nifBktQVClBTkIiJMHlVsLQ2T0fY2eH+ftS0WNEw/9dXSCFjQSEqrP0xxvpfCmzCikP2NHWm+ImN6tte1NGqtpWH6y99LIjwvx3IayWoLhCjJ997HkcX5NLRl3n9GY6KiOY3G9mDG/R+3oJHh/KFehtz6xIbcJiESUdqDYYoLvJbGqJI86i1omAy2N25IeH2GtTYsaGS4jmAvLQ0bPZWUjlAYVTq1NDqCEdoD4T7ONCY99jW2x7qlM62LyoJGhvOHIt320oiyoJGcVr8XHI62NPIBrLVhMlIkouxv6GD2hHIg80ZQWdDIcN6M8MQtjfzcHJvcl4S2gLdkSLSlUVHsBY1M+89oDMCRFj+BcITTJ46I/ZxJLGhkMFV1M8IT/zMV+HJiS6ebnsVaGrGgkQdAQ1swbddkTE/2uiT4HBc0Mu3LjQWNDBYMK6rd99KIKszLje3sZ3oWbWlEh9xGu6fqrHvKZKDoxL7ZE8rJkcybq2FBI4P5Q4m3eo0qyMuhI2gtjb60uoR3ScHRRDhgw25NRooOt51UUcyoknxLhJvkRQNCT0Nui6ylkZQ2f+eWxkjXPZVpzX5jAI60+sn35VBe6KOypIC6VstpmCT11dKw7qnkxFoaLmjk5Xr/IS2nYTJRY1uQkUV5iIjX0rDuKZOs2P7gPbQ0CvNy6AhF8ParMj1pj+Y0Co4G34qSfGtpmIzU0BaMtYZHlWbe36kFjQzmd91TPbU0ivJyCUfUZoX3oWtLA7xhtzZPw2SihvYAI4u8vNvobMxpiMhyETkkIu/Hld0gInu77OQXfe46EakRkc0iclFc+XwRWe+eu81t+YrbFvZhV75aRKbGnbNURLa4W3Q72GGjI9o91WNLI7fTcSaxNn8Ikc65oYpiW0rEZKaGtiAjoi2NkoKMW38qmZbGvcDFCcpvVdW57vYkgIjMBpYAp7pzbheR6NfkO4BleHuGz4yr80qgXlVnALcCN7u6RgHXA4uAhcD1bp/wYeNoS6OHeRrRoGF5jV61BsIU53nLokdVlORT32o5DZN5Gtu9nAZ466RBZs0p6jNoqOorQLL7cl8CPKSqflXdjrcX+EIRGQ+Uq+ob6nXA3wdcGnfOCvf4UeAC1wq5CFilqnWqWg+sInHwGrKiifCeZoQXumDit2G3vWoLhGJLiERZ95TJVPE5jbJC7765I4uCRi++IyLvue6raAtgIrA77pg9rmyie9y1vNM5qhoCGoHKXuoaNjr6aGkUuRnO7dbS6FWrPxxbQiRqVEk+bYGwtdJMRukIhmkPhmNzicoKvS87zR2hdF5WJwMNGncA04G5wH7g565cEhyrvZQP9JxORGSZiFSLSPXhw4d7u+6s0ueQW591TyWjLRCKzdGIqohN8Mucb3DGNLV7f48jXPdUacEQCRqqelBVw6oaAf4HL+cAXmtgctyhk4B9rnxSgvJO54iIDxiB1x3WU12JrucuVV2gqguqqqoG8pIyUl85jVgi3LqnetXqD8dmg0dF15+yLiqTSRpc0OjaPdXiz5wvNwMKGi5HEfVFIDqyaiWwxI2ImoaX8F6jqvuBZhE50+UrrgAejzsnOjLqMuAFl/d4BlgsIhWu+2uxKxs2jq6Z1NPkPu+fz1oavUvY0oguj55hwxnN8NYYDRpFnbunmjKopeHr6wAR+S3wcWC0iOzBG9H0cRGZi9ddtAP4NoCqbhCRR4CNQAi4WlWjn2hX4Y3EKgKecjeAe4D7RaQGr4WxxNVVJyI/BN5yx92oqskm5IeEdteC6PqBF1Voo6eS0hoIM7Gic+CtdEHjiAUNk0Gi3aXRlkZ5LBGeRUFDVb+SoPieXo6/CbgpQXk1MCdBeQdweQ91LQeW93WNQ1V7oPv8gnjRoGGJ8N61B8IU5XX+Ux9dWgDAkebMWtfHDG/RRTSjOY1ot+pQGT1ljrO2QJiiLvML4kWDiQ257V1rINQtpzGiKI+8XMm4DW7M8BbtnopO7vPl5lCcn0tLBrU0LGhksLZguMd8BtiM8GS1+cPduvhycoTKkgIOW0vDZJCGtiC5OUJZ3LyiskJfRnVPWdDIYO2BcGwuRiJFltPoUyAUIRCOdJunAVBVVmAtDZNRGtoDjHAr3EaVFebRnO2jp0xqtAVCscCQSCynEbDuqZ60u8UKu84IBxhdms9hCxomgzS0HV1CJMpaGiZpbYEwRT2MnALIzRHycsW6p3rR6oYt99TSsO4pk0ka248uVhhVWuDLqCG3FjQyWLtbaK83hT7biKk3sbkuCVsaBdS2BIhEbGl5kxkStTTKC/NosdFTJhltgd4T4QCF+bk2I7wXrf7oXhqJWxqhiMZm4RqTbg3tgdi6U1HWPWWS1hHsPREObvc+a2n0KNo9leh9jM3VsLyGyRANbcHYHI0oCxomaUm1NKx7qlexRHiC3FBVmRc0LK9hMkEoHKG5I9QtaJQW5NEeDGfMRkwWNDJYojWTuirMs6DRmybXF1xemDinAdbSMJmhzs0GH13avXsKoNWfGa0NCxoZrD2J7qmiPMtp9OboWj753Z6zlobJJEeao0GjoFN5pu2pYUEjQwXDEYJh7XP0VEFejq091Yto0EjU0igv9JHvy7GgYTJCbav3d1jZLWh43VVNGTKCyoJGhmpzffF9J8Kte6o3je1Bygp9+HK7/6mLCFWlBbEJfsFwJDZE15hUq23xWhqVPXRPWUvD9Kq9H0HDH7LuqZ40tncfjRJvdNwEvxtWbuDCW16JvffGpFI0t9ZT91SmLFpoQSND9bUBU1SRDbntVUNbILY3QSJVpQXsrG2jsT3IY2/vZW9DO8tf357CKzTGc6QlQF6udOtKjXZPZcr6UxY0MlSseyqv79FTltPoWUN7MLYLWiKfO308u+ra+PsH19IeDHPS2FLufGkrd7+6jT+9m3B3YWOOi9oWP5UlBd22Qsi67ikRWS4ih0Tk/biyUSKySkS2uPuKuOeuE5EaEdksIhfFlc8XkfXuudvctq+4rWEfduWrRWRq3DlL3e/YIiLRLWGHhWjroc95GpbT6FWitXzifeGMCcyZWM7rNbWcPK6MX//1R2gPhvmvJzbxT4+8i7fzsDHHX21rgNFl3b/gZF3QwNui9eIuZdcCz6vqTOB59zMiMhtvu9ZT3Tm3i0j0U+8OYBnevuEz4+q8EqhX1RnArcDNrq5ReFvLLgIWAtfHB6ehri2QZNDw5dARjNiHWw8aE8ywjZeTI/zrp08B4K8XTeGksWW8/M+f4B8+OYNAOJJRC8WZoe2Ia2l0VeDLJT83J3uChqq+grd3d7xLgBXu8Qrg0rjyh1TVr6rbgRpgoYiMB8pV9Q31Pt3u63JOtK5HgQtcK+QiYJWq1qlqPbCK7sFryEp69JR73pLh3amq657qOWgAnD1jNM9ecz5fXXQCABNHFjGtqgSAOttD3KRIbUug28ipKG8pkezOaYxV1f0A7n6MK58I7I47bo8rm+gedy3vdI6qhoBGoLKXuoaF9mA0Ed5HTsNnGzH1pMUfIhzRXhPhUSeNLSMn52hf8ij3ja/WZoubFFBVjrT4qSrt3tKAzFp/arAT4Yk2s9Zeygd6TudfKrJMRKpFpPrw4cNJXWimS7p7KrZ7n7U0uorut9xbIrwnlSXeOUdarKVhjr/WQBh/KNJLSyMv61saB12XE+7+kCvfA0yOO24SsM+VT0pQ3ukcEfEBI/C6w3qqqxtVvUtVF6jqgqqqqgG+pMyS/DwN75/QWhrdxWaD99E9lUh0rLx1T5lUOOLmCiXKaYC3EVO2tzRWAtHRTEuBx+PKl7gRUdPwEt5rXBdWs4ic6fIVV3Q5J1rXZcALLu/xDLBYRCpcAnyxKxsWjg657XvtKcB270sg1tJIonuqq4oS7xzrnjKpEF1CZHRZz91TLRmyYGHvHeaAiPwW+DgwWkT24I1o+jHwiIhcCewCLgdQ1Q0i8giwEQgBV6tq9NPsKryRWEXAU+4GcA9wv4jU4LUwlri66kTkh8Bb7rgbVbVrQn7IaguEycsV8hIsfxHv6D7hFjS6OrpYYf+DRoEvl7JCH7XW0jApEO0GjXaLduV1T2VJ0FDVr/Tw1AU9HH8TcFOC8mpgToLyDlzQSfDccmB5X9c4FLUHQn22MsBbsBAsp5HIseQ0wPsPbEHDpEJ03amuS4hElRX6bMFC07v2YLjPkVMQlwi37qluGtq9/4i9zdPoTWVpgXVPmZSIrjs1qoeWRrnrnsqE/ewtaGSoZHbtg6NLfmdK0zWTNLYFyfflxAYL9FdlSb4lwk1K1Lb4Y0v1J1Ja6EMV2jJgwIsFjQzVHuh7AyY4Op+gzr4Rd9PQ5k3s67qWT7IqS/NtyK1Jibq2YLd9NOLFFi3MgC4qCxoZKtmWxoiiPES8PzrTWWN7cEBJ8KjKkgLq2wIZ0SVghra6Vn+PXVOQWetPWdDIUG3BMEVJ5DRyc4SRRXnUWzdKNw3tgQHnM8DrXw5HNJb53fdwAAAfU0lEQVRQN+Z4qW0JUJFgS+Ioa2mYPrUHQn1u9RpVUZIf25TeHNXQFmTEAEdOwdEd1KJj6I05XurbAj0OtwVvch9YS8P0ItnuKYBRxfnW0kjgULOfqh4mSyUjOjvX8hrmeFJV6loDjOphCRHIrAEvFjQyVHNHiJKCvrunwLU0LGh00hYIUdcaYFJF0YDriLY07L01A3GwqYMv3fkGz2440Otxzf4QwbAyKqnuKQsaJoFWf4jG9iDjRxYmdbwNDe1ub307wKAEDZurYQbi9ZojrNlRx7L713L3q9t6PC7aS5BcItxyGiaBvQ3eB97Ekcl94FWU5FPfFrCNmOLs6ed7mMio4nxE4LB1T5kB2HKohbxc4byZo/nl81vw9zABN7rqQG/dU8X5ueSItTRMD/r7LXlUcT7BsGbMgmaZYE/sPSwecB2+3BwqS/I53NwxWJdlhpEtB1uYNrqEb54zjeaOEH+pqU14XKyl0Uv3lIhQWpAZixZa0MhAR1sayX3gVbhmbX1r+puumWJvfTt5ucKYY0iEA1SVFXKoybqnTP9tPdzCjDGlnD2jkrJCH0+u35/wuNokuqfAy2tkwvpTFjQy0N6G/n3gjYou421DQ2P2NrQzYWRRp934BmJseQEHraVh+qkjGGZnbSszxpRR4MvlwlPG8uzGgwTD3RcWjeYje9qAKSpTdu+zoJGB9ta3M25EYdIfeNFJQfU2VyNmT33bMeUzosaUFVhLw/Tb9iOtRBRmjikF4NOnjaexPcjqbd13d6hvDVDgy+lzVevyDNm9z4JGBtrb0N6vD7xos7bOuqdi9ta3H9PIqaix5YUcafETtqVETD9sOdQCwAwXNBZOGwXAe3sbuh1b2+pN7OtrjbTSDNmIyYJGBtpb3550PgOOBg2b4OfpCIY51Ozv13vYkzFlBUTUht2a5ARCEV7bcoQP9jeRIzBtdAngrRE3cWQRm/Y3dzunrjUQy0v2JlO6p5KbPWZSJhCKcLC5g4n9+JZcWuAjL1dsKRFnf6OXg+jPe9iTMeXeXJlDzf7YY2MSCUeUax5exxMu4T1tdElsvxuA2RPK2bivsdt5da2BPpPgkDlB45haGiKyQ0TWi8g6Eal2ZaNEZJWIbHH3FXHHXyciNSKyWUQuiiuf7+qpEZHb3D7iuL3GH3blq0Vk6rFcbzY42NSBKkzqR/eUiFBRnE+dzScAvHwGHNvEvqjoYISDTZYMN7276YlNPLF+P1ecdQKnjC/nE7PGdHp+9vhyth1ppS3Q+YO/rrX3daeiylxOI93zsQajpfEJVT0S9/O1wPOq+mMRudb9/C8iMhtv/+9TgQnAcyJykttD/A5gGfAm8CRwMd4e4lcC9ao6Q0SWADcDXx6Ea85Y0fkFE/qZxB1lixbG7KwdvKAxNq6lYUxPguEID721iy/Om8iNl3Tb1RqAU8aXowqbDzQzb0rsu3S/uqeCYcUfinRqwaTa8chpXAKscI9XAJfGlT+kqn5V3Q7UAAtFZDxQrqpvqBdC7+tyTrSuR4ELpK9sUZaLzdHo5wdehS1aGLP5QDNlBb5BGT0V3bPZWhqmNxv2NdEWCHPBKWN6PObUCeUAnfIa/lCYFn8ouZZGhqx0e6xBQ4FnRWStiCxzZWNVdT+Au4++ixOB3XHn7nFlE93jruWdzlHVENAIVHa9CBFZJiLVIlJ9+PDhY3xJ6bVhXyOFeTn9/sCrKivggH2wAbBpfxMnjy8b8I598fJ93qxwa2mY3qzZ7s32Xjh1VI/HTKoooqzAx8b9R/Ma+xu8/7PJ5MuiKzbvc18s0+VYg8Y5qvoR4NPA1SJyfi/HJvofrL2U93ZO5wLVu1R1gaouqKqq6uuaM9qa7XV8ZEpFj3sF92R6VSl7G9q79ZcON6rKBweaOXlc+aDVWWVzNUwf1myvZ2plca8f/iLCKePL2bCvKVa29XDnobm9OX3SSADW7e4+bDeVjiloqOo+d38I+AOwEDjoupxw94fc4XuAyXGnTwL2ufJJCco7nSMiPmAE0H12zBDR2B5k4/6m2Jju/jhpbCmqsPVQ63G4suyxp76dFn+IU8YPXtAYW17IoSyZFb6nvo0fP/UBS5ev4fF1e9OeNB0OIhHlrR11Sf2/nTtlJO/vbaQ94C1eWOPmc0yv6jtojB9RyNjyAt7ZVX9sF3yMBhw0RKRERMqij4HFwPvASmCpO2wp8Lh7vBJY4kZETQNmAmtcF1aziJzp8hVXdDknWtdlwAs6hP8XVO+oQxUWTevWA9enmWPLAPjwYPdx4MPJpv3et7iTx5cNWp3ZNCv8mofXcfer29hysJnvPbSO/3j8/XRf0pDzxtZatrkWAsCHh5ppbA+yMIn/t2dPryQYVqp3et99tx5uoaqsIKltiUWEuZNH8k4WtzTGAq+JyLvAGuAJVX0a+DFwoYhsAS50P6OqG4BHgI3A08DVbuQUwFXA3XjJ8a14I6cA7gEqRaQG+Ee8kVhDTiSidATDrN5eR35uDvOmjOx3HSdUFpOXK3x4aLgHjWZE4ORxgxc0xpYXcrjFTyjBukGZZHddG2/tqOeaC0/ilX/+BJfMncAjb+1JuN6RGZiN+5r4m7vf5MJbX+Hf/7iexrYgt676kByBM0/su6Xx0amj8OUIr7sVb2sOtTC9qiTp3z9vSgU7a9vSun/OgIfcquo24IwE5bXABT2ccxNwU4LyaqDbODVV7QAuH+g1Zot7/7KDHz25iaL8XOZOHjmg4XR5uTmcOLqUmoMtfR88hH1woImplSUU5w/evNUTq0oIR5QdbgG6TLXyXa9X9wtnTMCXm8PHZ1Xx+Lp9sYXzzLFRVW740wZGFOXx2dPH85vVu3js7b20BcL8x+dmJ7UMf0mBj3lTRvLG1iOoKjWHWvj8GROSvoZ5k6N5jXo+efLYAb+WY2HLiGSApzccoKzQhyosPnXgfwgzx5YO65aGqrJhX9OgtjKAWFI90RIQmWTlun0sOKGCyaO8D6+TXJfl5gPD+4vEYHn6/QOs2V7HDy6axX9dehq/v+psTqwq4W/Pm8Y3z5madD1nTR/N+r2NbDvSSlNHKKkkeNRpk0aQmyO8syt9XVQWNNKsLRDinV31fOmjk3n/Py/iW+edOOC6Thpbxu664TOCquZQC3e/ui2W7P3gQDO76to4e3r/c0K9mT6mBF+O8MGBpr4PTpMN+xrZfLCZL8w9+q11elUpOQKbh3meazCoKre9UMP0qhKWfHQK4HUV/fm75/Fvn53dr+Hd50yvJKJwx0tbgeSS4FHF+T7mTh7JH97Z2+NOgMebBY00W7O9jmBYOWf66GOu66Sx3h9fdETGUHfrcx/yX09s4rdrvOk/K9/dR26O8JnTxg/q7ynw5TK9qpQPMril8cCbuyjMy+GSMybGygrzcpk6uoQPD2TudWeLV7YcYdP+Jr79senkHuMeLfNPqOCMySN5dK03Pa0/LQ2A710wkz317fxm9a5juo6BsqCRZq/XHCE/N4eP9jIpKFmzXDfKe3u6L4o21DR3BHlu40F8OcJ/PbGRmkPNrFy3j3NnjKay9Nh260vk5PFlfJChH75NHUH++M5evnDGBEYUdx6FM2tsWcpH1AXDEX7wu3d5afOhvg/OEne8VMO48kIunTux74P74MvN4fa/+QgVxXkU5+cyrp8LYZ43czTnzKjkVy/UpGWpdAsaafZaTS3zT6igKP/Y15KZWlnM1MpintlwYBCuLLM9s+Eg/lCEXy6ZR15uDhf/4lX2NrRzydzkk4r9cfK4cvY2tNPYnnl7lvzh7b20B8N89cwTuj130tgydtS20hFMXVfGb1bv4tG1e/jub9+JLYuTDVr8IX705CaeWr+/00i5XbVtvLmtjqVnT+33pNueTBxZxH3fXMRPLju937tLighXf2IGda0BXq850vcJg8yCRhrtrmtj0/4mzp157F1T4P0xXTxnPG9sraWxLfM+3AbT4+v2MmVUMZ85bRxPfu88vjB3AiePK2PxqeOOy++LzvvYnObWhqqys7a108/3v7mTMyaNiM0YjjdrXBkRPbYuy3BEeXNbbVJDjps7gvzy+S2cNnEEEbdUeCSDN7Bq9Yf42TObefGDQ3z7/mruemUbVz34Nl++681YruzZjd6XsM8OcrfnaZNG8LnTB/YlZ/4JFRT4clizPfVznS1opNHv396DCIP67fjTc8YRiiirNh0ctDozzZ/e3cdrNUe4dN5ERISJI4u45Utzefr751NacHy2iDklNoIqvcnwP67by8d++hIvf+itsfbmtjpqDrUkbGXA0TzX+3sH3mX502c2s+SuN/n3P76Pqva6i+F/v7yNutYAP/riaVz/+VNZs72Ox9/dO+Dffbz9xx/f59cv1vCNe9/i9ZpafnrZ6fzvi2axdmc9b7uZ189uOMjJ48qYUnnsm3oNlgJfLvOmjGS1W/MqlSxopEkkojy6dg9nT69Manx3sk6fNIKJI4t4ym0EM9S8uuUw//jIOj56wij+/uPTU/Z7x5YXMHFkESvf3Ze2pTlUlbtf3Q7AT57+gEhEeWD1TkYU5fU41v/E0aXMGFPKXa9sSzjJLxLRTgvgHW728/KHh2Nlz286yJ0vb+XEqhIeems3H//ZS8z8tydZfOvL/OyZzZ12NDzQ2MHdr23jkrkTOG3SCC6bP4nTJ43g5qc2Z+SIvt+v3cNj7+zlu5+cwa++Mo87vzqfyxdMZunZUynKy+V31Xs40uKnemcdFx2nFuyxWDStko37mmhK8b7hFjTSYG9DO799axd76tu5fP7kvk/oBxHh82dM4MXNh6gZYnM2th5u4e8ffJvpVaXc/fUFKd1TQES46uPTWbuzntfS0I8MUL2zng37mjh3xmg27Gvi2sfe45n3D3D5/Ek9vhc5OcJ1nz6ZbUda+e2a7qNtbvzzRs69+QXe3d3AY2/vYeGPnmPp8jV89e7V7K5r4we/e5dTJ5Tz5D+cx3c/OYNJFUVcee40xpQV8v+/VMN5P3kxlkO7ZdVmIhH4weJZsd/9fz43mwNNHfzdA2936lZLt45gmB8//QHzT6jg+586ic+fMYGL53iBobTAx2dOG8+f39vPXa9sI3KM86eOl0XTRhFReHNrLW/tqEvZlxkLGin24geHOP8nL/Jvf3ifkcV5x+UbzLLzT6Q438dPnt486HWny76Gdr61opr83BzuXrqA8sK+1+oZbJcvmMSEEYX8/NkP0/LN+d7XdzCiKI87vzaf2ePLeaR6DzPGlPKNc6f1et4nTx7DWSdW8ovntnT6Vrp2Zz0r3thBROFf/7CeG1ZuYN7kkdz0xTlsO9LKZ297ldZAmF8umUthXi7/tHgWD37rTP7ts7N54FuLWHXNx5g5tozv/vYdrv7N2zxSvYcrzjohNrkQYMHUUdzw+dms3VHH4ltf4bmNx6fbNBCK8Hf3r+Xe17cndfwf3tnL4WY/13zqpIRDaC9fMIkWf4i7XtnGeTNHM3sQF8AcLPOmVJCXK3znN+9w+Z1vxIbwHm8WNFJo0/4mvvObtzl5XBm//dszefb75w/KqKmuRpXk8+3zT+TZjQdZvS31fZ6D7YMDTXzx9tc53Oznv782f1C78/qjwJfLPy6exbrdDXziZy/x2pbUtThqW/w8s+EAl82fRGmBj0evOot3r1/M098/v8+9V0SEf/vsKdS1BrjTTShrD4S59vfvMb68kP/8wqls2NdERyjCTy8/g79ZdAJLzzqBpo4Q/3vxrB6XIJkxppQV3/goJ4wq5qn1+1l2/on84KJZ3Y77+jnTeOEHH2fWuDK+/cBanjwOXaf/8+o2nt5wgBv+tDFhiypeOKLc9co2Tps4gnNmJJ4IumiaF+we/NYi7vvmwkHZm2WwFeXncu6M0YwuzWdqZTG3v7S113zTYJGhtmjsggULtLq6Ot2X0Y0/FOazt71Gc0eQx68+l3Ej+jc2u7/aAiEW3/oKobDyp++eG9vAJduoKp/71WscavZz/5ULB3WfjIGq3lHHv/z+PRragqz6x48xKold147V8te2c+OfN/LM989n1gCXSbnm4XU8uX4/j/392dz96nb+uG4vK76xkHNnjOZffv8eC6ZW8GU329kfCrNmex3nTB/d55DQpo4gdS0Bpo7ufeG9Fn+IK+5ZzZaDLTx9Td/BLhk7a1tZu7Oe6x5bzydmjcEfCvPyh4dZ+Z1zmTNxRMLjr3tsPX/ZWsvtf/ORQZ8ImmrBcIQcEZ7dcICrHnyb274yjy/0Yy2reCKyVlUX9HmcBY3jT1X5+bMf8usXa7j3Gx/l47N63hJyMG3Y18hf3fEXPjKlgge/tSgjvy315an1+7nqwbf5+eVn8FfzJ/V9Qops2t/E53/1Gp8/YwK3fnnucf99n/nlq/hyhZXfOXfAdextaGfxLS/T6vZyuOZTJ/G9T80crEtMyu66Ni7+xSucNK6MC04ew7kzq5g7uf+rOgNsOdjMZ297jUA4wujSAp74h3MpzMvlEz97iRNHl/Dp08Zz58tbGVNWwCVzJ/CpU8Zy+Z1vEAhFuO4zp/CVhZOz8v9EIpGIsvgXr5ArwtPfP29Ar8uCRob44Z83cu9fdhCOKP/rIxO55UvH/wMm3oq/7OD6lRv4zd8u4uxBWKokFZo7gpQW+PCHInz+V68RUeXZaz52zMs3DLZbnt3MbS/U8NeLpnD952dT4Bv8rsa3d9WzauNB7nhpKzdecipXnDX1mOrb19DOc5sO0twR4qqPTe/3xLLB8Pu1e7j2sfcIhpW8XOFfLj6ZcESZOba0z5VbG9uD/J/H3+f8mVX8bu1uNu1v5oErFzFjTGmsq/ehNbu49rH1gNfNFI4o1TvryfflUJKfy6NXnd2v9Z6yxZrtdZQW+Jg9YWCtcQsax1lzR5B8Xw6hsLK/scPbjSsYZmx5AWdPH01hXi7PbjjAsvvX8uk54zjzxEoumz+JkuM0j6AnHcEw5978AqdPGsnyr380pb+7L4eaOnhg9S7ycoQvfXQyBxo7uOOlrTy94QCLpo2ixR9iw74m7vra/OM2ae9YhMIRfvrsZv775W2cdWIl//cbH01qRNe63Q3c/8ZODjZ1UFVWwMdOquLSed2Xp1izvY6//p83CUWU0yaO4IErF3VbJiRb+UNh2vxhvvvbdzqNRvv62VP5yAkVTKooYt7kkYgIqspfttZSWZrPTU9s4tW4XNKPvngaf71oSqe6wxHlHx56hymjivnB4lnkCDzw5k5WvLGTn152OvOmVKTsdWYTCxrHiT8U5oaVvSfbRhbnMX9KBWt31TNhRBF/vPqcQVt+YCB++dwWbn3uw2PqDx9MkYhy16vbuGXVhwTDEeL/BIvzc7l03kSeef8AoYhyy5fO4IJTMm+4Y7zfr93DDx59l4+fVMUdX53fa+A41NTBxb98lXBEmTq6hP0N7Rxq9nPLl87g7Omjea3mCB3BMIFQhNtf2kpZoY/HrjqbihTkTdIhGI7w7u4GJo8q5tcv1HD/mztjz02vKuEHi2exensd9/5lR6z85r86jRZ/mO1HWrjxC3PS0loaioZU0BCRi4FfArnA3ar6456OPZ5BY+3OOm5YuZH1exv56plTGFdeSF5uDqNLCzh1YjnlhXnUHGrhkerdbD3cyogiHz+8ZE5sK9Z0qWsN8LGfvEieL4d//+wpfGLWmNiHkKqmtF93474mbvjTBtZsr+PiU8dx7adPJhSJ8MyGg5xQWcyZJ1YyurSA9oD3wZkt36x/s3oX//qH9cydPJJl55/I/sYOzp0x2lvGI6Ks3l7HBweaeGr9Ad7b28Cfv3suM8aUEQpH+Oo9q3nb7Y8QCB2dgFdRnMfD3z4rti/GcLC7rg1/KMLbu+pZ/tr22CKRXz97KrPGlVHgy+F/fSRzcltDyZAJGiKSC3yIt3XsHuAt4CuqujHR8QMNGoFQhPve2MHI4nwK83LwByNMrCjihMpi6loD3P7iVp5Yv58xZQXceMmpXDwnu0ZdbDnYzDWPrOP9vd4yGBfOHsuFp4zlthe2UNcaYGx5IVVlBYwtL2RMWQFjywuYM3EEZ06rpKE9yM7aVg42+XlvTwN5uTlcMncCO2vb2FHbSmFeLoebve1QP3JCBRXF+YRViUSUKaOK8eXm8Lvq3azaeJC1u+oZUZTHv376FC5fMGnIJCIBnn5/P9c8/C7tcYsDji4tQMSbaQ2QmyP86ItzYqOUAI60+PnWimpmjinlm+dOY1RJPvm5OZQU+NLaQk23UDjCg6t30REMs+z8E4fU30omGkpB4yzgBlW9yP18HYCq/n+Jjh9o0DjU1MHCHz3f4/NFebksO/9Evv2xEwd1K9FUCoUjvLWjntdrjrD89e20BcLMHl/OmSdWcqi5g0PNfg41dXCwyR/74Csr9NHccXQimy9HiKiSaDh4jtBr+WkTR/CpU8by9bOnZk0Lor/2NbRzsKmDMeWFPLfxIB8caKI9EOZjs6o4f2YVhXm5Kc9rGZOMoRQ0LgMuVtVvuZ+/BixS1e/EHbMMWAYwZcqU+Tt37kxYV29Ulab2EI3tQdqDYfJ9OeyobWVfQzvF+bmcPX00Y/u57n0mO9jU4a2wO2M0vtzO32ZVlaaOEC9tPsTrNUc4saqUmWNKqSor4KSxZRxp8fPMhoPMHFPKqRPK8YcijCrJJxxR3t3dQEcoTI4IIkLNoRZqW/x8cd7EtHfTGWN6NpSCxuXARV2CxkJV/W6i4zNtyK0xxmSDZINGNnSY7gHiV/WbBOxL07UYY8ywlg1B4y1gpohME5F8YAmwMs3XZIwxw1LGZ+RUNSQi3wGewRtyu1xVN6T5sowxZljK+KABoKpPAk+m+zqMMWa4y4buKWOMMRnCgoYxxpikWdAwxhiTNAsaxhhjkpbxk/v6S0Sagd42xx4BNA7yrx3sOkcDg7mX6GBfX6bXN5zeP3vvMqu+bH3/RgMlqlrVZw2qOqRuQHUfz991HH7noNbZ12vIgOvL9PqGzftn713G1ZeV719/rns4dk/9KUvqHEyDfX2ZXt9gy+TXa+9dZtU32DLu9Q7F7qlqTWL9lEw2FF5DOtn7N3D23h2bbH3/+nPdQ7GlcVe6L2AQDIXXkE72/g2cvXfHJlvfv6Sve8i1NIwxxhw/Q7GlYYwx5jixoJECIjJZRF4UkU0iskFEvufKR4nIKhHZ4u4rXHmlO75FRH7dpa4vi8h7rp6fpOP1pNoA3r8LRWStiKx395+Mq2u+K68RkdtkiO8hOsjv3U0isltEWtL1elJtsN4/ESkWkSdE5ANXz4/T+bqOyWAO57Jbj8PcxgMfcY/L8PY8nw38BLjWlV8L3OwelwDnAn8H/DqunkpgF1Dlfl4BXJDu15eB7988YIJ7PAfYG1fXGuAsQICngE+n+/Vl0Xt3pquvJd2vK9veP6AY+IR7nA+8mq1/e2m/gOF4Ax4HLsSbhDjelY0HNnc57utdgsZHgefifv4acHu6X0+mvn+uXIBaoMAd80Hcc18B/jvdrycb3rsu5cMmaByP988990vgb9P9egZys+6pFBORqXjfRlYDY1V1P4C7H9PH6TXAySIyVUR8wKV03tVwyBvA+/dXwDuq6gcm4u0EGbXHlQ0Lx/jeDXuD9f6JyEjg88Dzx/N6j5es2E9jqBCRUuD3wPdVtam/3emqWi8iVwEPAxHgL8CJg36hGaq/75+InArcDCyOFiU4bFgMHxyE925YG6z3z33Z+y1wm6puO06Xe1xZSyNFRCQP74/uQVV9zBUfFJHx7vnxwKG+6lHVP6nqIlU9C6+JvOV4XXMm6e/7JyKTgD8AV6jqVle8B2+P+ahhsd/8IL13w9Ygv393AVtU9RfH/8qPDwsaKeBG6NwDbFLVW+KeWgksdY+X4vWX9lXXGHdfAfw9cPfgXm3m6e/755r/TwDXqerr0YNdN0KziJzp6ryCJN7zbDZY791wNZjvn4j8F96Cgd8/3td9XKU7qTIcbngjoRR4D1jnbp/BGw31PF5r4XlgVNw5O4A6oAXvG/JsV/5bYKO7LUn3a8vE9w/4d6A17th1wBj33ALgfWAr8GvcBNehehvk9+4n7m8x4u5vSPfry5b3D69Vq8CmuPJvpfv1DeRmM8KNMcYkzbqnjDHGJM2ChjHGmKRZ0DDGGJM0CxrGGGOSZkHDGGNM0ixoGJNiIvJ3InJFP46fKiLvH89rMiZZtoyIMSkkIj5VvTPd12HMQFnQMKaf3MJ1T+MtXDcPb7nsK4BTgFuAUuAI8HVV3S8iL+GtE3YOsFJEyvBWiv2ZiMwF7sRbOnsr8E311hibDywH2oDXUvfqjOmddU8ZMzCzgLtU9XSgCbga+BVwmapGP/Bvijt+pKp+TFV/3qWe+4B/cfWsB6535f8X+Af11hgzJmNYS8OYgdmtR9cWegD4V7xNd1a5FVBzgf1xxz/ctQIRGYEXTF52RSuA3yUovx/49OC/BGP6z4KGMQPTdf2dZmBDLy2D1n7ULQnqNyYjWPeUMQMzRUSiAeIrwJtAVbRMRPLcngo9UtVGoF5EznNFXwNeVtUGoFFEznXlfzP4l2/MwFhLw5iB2QQsFZH/xlvp9FfAM8BtrnvJB/wC2NBHPUuBO0WkGNgGfMOVfwNYLiJtrl5jMoKtcmtMP7nRU39W1TlpvhRjUs66p4wxxiTNWhrGGGOSZi0NY4wxSbOgYYwxJmkWNIwxxiTNgoYxxpikWdAwxhiTNAsaxhhjkvb/AImE2hTM8ivIAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG3xJREFUeJzt3X+QldWd5/H3BxvBMaiAYPghwlYcN5rM6tCFTjm7K7oC2aTEzGiG1VWqxiqMmipnnVqBlS13lanVqa1xlrJitEYT1CgyTijZUUIQteLMEqAZNYiGabI6yEhs3EbBVNGx5bt/3NN6uTbdt7ufe+/z3Pt5Vd26T597znkOh+77vefH81xFBGZmZiM1qtENMDOz5uCAYmZmmXBAMTOzTDigmJlZJhxQzMwsEw4oZmaWCQcUMzPLhAOKmZllwgHFzMwy0dboBtTT6aefHjNnzmx0M8zMCmXHjh3vR8SkwfK1VECZOXMmHR0djW6GmVmhSPqnavJ5ysvMzDLhgGJmZplwQDEzs0w4oJiZWSYcUMzMLBMOKDnSdegI33pwC12HjzS6KWZmQ+aAkiOrNney/e1uVj3f2eimmJkNWUtdh5JX56zYQE/v0U9/fnzrXh7fupcxbaPYvfJrDWyZmVn1PELJgZdvn8sV509l7OjSf8fY0aNYeP5UXl46t8EtMzOrngNKDkw+ZSzjxrTR03uUMW2j6Ok9yrgxbUweN7bRTTMzq5qnvHLi/Y96uPbCs7hmzgye2LaXA16YN7OCUUQ0ug11097eHr6Xl5nZ0EjaERHtg+XzlJeZmWXCAcXMzDLhgGJmZplwQCkYX01vZnnlgFIwvprezPLK24YLwlfTm1neeYRSEL6a3szyzgGlIHw1vZnlnae8CsRX05tZnvlK+Sp0HTrCd558hfuvucAjAjNrOb5SPkPeWWVmNjhPeQ3AO6vMzKrnEcoAvLPKzKx6VQUUSW9L2inpVUkdKW2CpE2SOtPz+LL8yyXtkbRb0vyy9Nmpnj2SVklSSh8j6amUvlXSzLIyi9M5OiUtLkuflfJ2prInjrw7juWdVWZm1RvKCGVuRJxftjCzDNgcEWcDm9PPSDoXWAScBywAvivphFTmAWAJcHZ6LEjpNwAHI+JLwH3AvamuCcCdwIXAHODOssB1L3BfOv/BVEfm+nZWrbv5Yq698CwOfNRTi9OYmRVeVbu8JL0NtEfE+2Vpu4FLImK/pCnASxFxjqTlABHxP1K+jcB/A94GXoyIf5nS/0Mqf2NfnojYIqkN+BUwiVJguiQibkxlHgReAtYAB4AvRkSvpN9L5T8dDfXH34diZjZ0We/yCuAnknZIWpLSzoiI/QDpeXJKnwa8U1Z2X0qblo4r048pExG9wIfAxAHqmgh8kPJW1mVmZg1Q7S6viyPiXUmTgU2SfjFAXvWTFgOkD6fMQHUd25hSAFwCMGPGjP6ymJlZBqoaoUTEu+m5C1hHaT3jvTTVRXruStn3AWeWFZ8OvJvSp/eTfkyZNOV1KtA9QF3vA6elvJV1Vbb9oYhoj4j2SZMmVfPPNTOzYRg0oEg6WdK4vmNgHvA6sB7o23W1GHgmHa8HFqWdW7MoLb5vS9NihyVdlHZ3XV9Rpq+uq4AXorS4sxGYJ2l8WoyfB2xMr72Y8lae38zMGqCaKa8zgHVph28b8ERE/FjSdmCtpBuAvcDVABGxS9Ja4A2gF7glIj5Jdd0E/AA4CdiQHgAPA49J2kNpZLIo1dUt6W5ge8p3V0R0p+OlwBpJK4FXUh1mZtYgvpeXmZkNyPfyMjOzunJAMTOzTDigmJlZJhxQzMwsEw4oZmaWCQcUMzPLhAOKmZllwgHFzMwy4YBiZmaZcEAxM7NMOKCYmVkmHFDMzCwTDihmZpYJBxQzM8uEA4qZmWXCAcXMzDLhgGJmZplwQDEzs0w4oJiZWSYcUMzMLBMOKGZmlgkHFDMzy4QDipmZZcIBxczMMuGAYmZmmXBAMTOzTDigmJlZJhxQzKxpdB06wrce3ELX4SONbkpLckAxs6axanMn29/uZtXznY1uSktqa3QDzMxG6pwVG+jpPfrpz49v3cvjW/cypm0Uu1d+rYEtay0eoZhZzdV6Kurl2+dyxflTGTu69JY2dvQoFp4/lZeXzq3J+ax/DihmVnO1noqafMpYxo1po6f3KGPaRtHTe5RxY9qYPG5sTc5n/fOUl5nVTD2not7/qIdrLzyLa+bM4Ilteznghfm6U0Q0ug11097eHh0dHY1uhlnL6Dp0hJXPvclPdv2KIx8fZezoUcw/74vc8fUve/RQIJJ2RET7YPk85WVmNeOpqNZSdUCRdIKkVyT9bfp5gqRNkjrT8/iyvMsl7ZG0W9L8svTZknam11ZJUkofI+mplL5V0syyMovTOTolLS5Ln5XydqayJ46sK8ysFvqmotbdfDHXXngWBz7qaXSTrEaqnvKSdBvQDpwSEd+Q9OdAd0TcI2kZMD4ilko6F3gSmANMBZ4HfjsiPpG0DbgV+BnwHLAqIjZIuhn4nYj4tqRFwDcj4o8kTQA60nkD2AHMjoiDktYCP4qINZK+B7wWEQ8M9G/wlJeZ2dBlOuUlaTrwdeCvypIXAqvT8WrgyrL0NRHRExFvAXuAOZKmUApGW6IUxR6tKNNX19PAZWn0Mh/YFBHdEXEQ2AQsSK9dmvJWnt/MzBqg2imvvwRuB46WpZ0REfsB0vPklD4NeKcs376UNi0dV6YfUyYieoEPgYkD1DUR+CDlrazrGJKWSOqQ1HHgwIEq/7lmZjZUgwYUSd8AuiJiR5V1qp+0GCB9OGUGquvYxIiHIqI9ItonTZrUXxZrAb7Hk1ntVTNCuRi4QtLbwBrgUkmPA++laSzSc1fKvw84s6z8dODdlD69n/RjykhqA04Fugeo633gtJS3si6zz/E9nsxqb9CAEhHLI2J6RMwEFgEvRMR/BNYDfbuuFgPPpOP1wKK0c2sWcDawLU2LHZZ0UVoDub6iTF9dV6VzBLARmCdpfNpFNg/YmF57MeWtPL/Zp85ZsYGZy57l8a17iShdWDdz2bOcs2JDo5tm1nRGch3KPcDlkjqBy9PPRMQuYC3wBvBj4JaI+CSVuYnSwv4e4JdA31/1w8BESXuA24Blqa5u4G5ge3rcldIAlgK3pTITUx1mx2jWezx5Cs/yaEi3XomIl4CX0vH/Ay47Tr4/A/6sn/QO4Cv9pB8Brj5OXY8Aj/ST/n8pbU02O66hXFjXdegI33nyFe6/5oLcX3hXPoW38ptfbXRzzADfy8taQLX3eCrCm7Rv02555nt5WcurfJPuk8c3ad8byxrB9/Iyq1KR1ll8byzLM095Wcsr2pu0b9NueeWAYkax3qQfvO6zmYeVV35uj4tZw3gNxczMBuQ1FDOzYfA1PsPngGJmVsa36Rk+r6FY7hXpgkMrLl/jM3IeoVju+ROj1UORto/nlUcollut/InRo7L6K9r28TzyCMUaaqAF0Fb+xOhRWWP0bR9fd/PFXHvhWRz4qKfRTSoUj1Bs2LL4FD3Q/bNa8RNjK4/K8sDX+IyMA4oN20hupljtG2eRLjjMwsu3zz3uvbrM8s4BxYYsi0/R1b5xttonxlYclVnz8BqKDVkWaxt+4zw+z+NbUXmEYkOWVTBotemsahVtVOYdadbHAcWGJYtgULQ3TutfEb6YzOrDN4c0s2Ep0heT2cj45pBmVlOtfJ2Q9c8BxcyGxRsrrJLXUMxs2Lyxwsp5DcXMzAbkNRQzM6srBxQzM8uEA4qZmWXCAcXMzDLhgGJmZplwQDEzs0w4oJhlaKBvoDRrdg4oZhnyV/daK/OV8mYZ8Ff3mnmEYpYJ3yjRzAHFmkAe1i18o0SzKgKKpLGStkl6TdIuSf89pU+QtElSZ3oeX1ZmuaQ9knZLml+WPlvSzvTaKklK6WMkPZXSt0qaWVZmcTpHp6TFZemzUt7OVPbEbLrEiiYv6xb+6l5rdYPeHDK96Z8cER9JGg38HXAr8AdAd0TcI2kZMD4ilko6F3gSmANMBZ4HfjsiPpG0LZX9GfAcsCoiNki6GfidiPi2pEXANyPijyRNADqAdiCAHcDsiDgoaS3wo4hYI+l7wGsR8cBA/xbfHLK5+AuezOojs5tDRslH6cfR6RHAQmB1Sl8NXJmOFwJrIqInIt4C9gBzJE0BTomILVGKYo9WlOmr62ngshTI5gObIqI7Ig4Cm4AF6bVLU97K81uL8LpF7eVhOtGKo6o1FEknSHoV6KL0Br8VOCMi9gOk58kp+zTgnbLi+1LatHRcmX5MmYjoBT4EJg5Q10Tgg5S3si5rEV63qL28TCdaMVS1bTgiPgHOl3QasE7SVwbIrv6qGCB9OGUGquvYxkhLgCUAM2bM6C+LFZi/4Kk2vA3ahmNI16FExAeSXgIWAO9JmhIR+9N0VlfKtg84s6zYdODdlD69n/TyMvsktQGnAt0p/ZKKMi8B7wOnSWpLo5Tyuirb/BDwEJTWUIby77X8e/C6z6Z1V1450OccG4qXb5/Lyufe5Ce7fsWRj48ydvQo5p/3Re74+pcb3TTLsWp2eU1KIxMknQT8O+AXwHqgb9fVYuCZdLweWJR2bs0Czga2pWmxw5IuSmsg11eU6avrKuCFtM6yEZgnaXzaRTYP2JheezHlrTy/mY2QpxNtOKpZQ5kCvCjp58B2SmsofwvcA1wuqRO4PP1MROwC1gJvAD8GbklTZgA3AX9FaaH+l8CGlP4wMFHSHuA2YFmqqxu4O513O3BXSgNYCtyWykxMdTSMFy+t2dRzG3TR/n6K1t568XfKZ2TFup38cNterp0zg5Xf/GpNzmHWrIr291O09o5UtduGHVBGyNdCmA1f0f5+itberGR2HYoNzNdCmA1f0f5+itbeenNAGaFqFy8952p51Ojfy6It/hetvfXmgJKBahYvfYGY5VEefi+Ldg+0orW3nryGUmOtOudq+ebfSxsKr6HkRFHnXBs9FWK1VdTfy2bSjH9jDig1VtQ51zxMhVjtFPX3spk049+YvwK4Dop0vynfw6l1FOn3spk089+Y11DsGF2Hjhz3Hk7+9Go2ckX8G/Maig2Lp0LMaquZ/8YcUFrQYIuB3hZpVlvN+jfmKa8W1Gr3ITKzkal2ysuL8i2kmRcD66Hr0BG+8+Qr3H/NBU0xPWGWNU95tRBfezAyzbjN0yxLHqG0kGZeDKwlj+zMquMRSotp1sXAWvLIzqw6HqG0GH8H+9B5ZGdWHQcUsyr4qnKzwXnbsJmZDchXypuZWV05oJiZWSYcUMzMLBMOKGZNqhm/wKlIWrH/HVDMmpSv7G+sVux/7/IyazL+vvjGyrL/83L/OO/yMsupWk+F+Mr+xsqy/4s2yvGFjWZ1Vv4mUYuvD/CV/Y2VRf8X9f5xDihmdVLPNwlf2d9YI+3/l2+fe9yvCc4zr6GY1UkRv0s8T/KynlAvd6zbyRPb9nLiCaP4zSdHG/qFeF5DMcsZT0WNTNHWE0aqiHcG9wjFrI5ufKyDSePGHjMVUn4HaPs871prvGpHKA4oZpZrnipsPE95mVlT8FRhcTigmFnuFXE9oV7ydIsXT3mZmRXYinU7+eG2vTXdBZbZlJekMyW9KOlNSbsk3ZrSJ0jaJKkzPY8vK7Nc0h5JuyXNL0ufLWlnem2VJKX0MZKeSulbJc0sK7M4naNT0uKy9Fkpb2cqe2K1nWNmVnTnrNjAzGXP8vjWvUSUrmuauexZzlmxoWFtqmbKqxf404j4MnARcIukc4FlwOaIOBvYnH4mvbYIOA9YAHxX0gmprgeAJcDZ6bEgpd8AHIyILwH3AfemuiYAdwIXAnOAO8sC173Afen8B1MdZmYtIY+32Bk0oETE/oj4h3R8GHgTmAYsBFanbKuBK9PxQmBNRPRExFvAHmCOpCnAKRGxJUrzbI9WlOmr62ngsjR6mQ9siojuiDgIbAIWpNcuTXkrz29m1vTyuFlhSLdeSVNRFwBbgTMiYj+Ugo6kySnbNOBnZcX2pbSP03Flel+Zd1JdvZI+BCaWp1eUmQh8EBG9/dRlZtYS8naLnaoDiqQvAH8D/ElEHErLH/1m7SctBkgfTpmB6jq2MdISStNszJgxo78sZmaFVH5R7Morv9LAlpRUtW1Y0mhKweSHEfGjlPxemsYiPXel9H3AmWXFpwPvpvTp/aQfU0ZSG3Aq0D1AXe8Dp6W8lXUdIyIeioj2iGifNGlSNf9cMzMbhmp2eQl4GHgzIv6i7KX1QN+uq8XAM2Xpi9LOrVmUFt+3pemxw5IuSnVeX1Gmr66rgBfSOstGYJ6k8Wkxfh6wMb32YspbeX4zM2uAaqa8LgauA3ZKejWl/RfgHmCtpBuAvcDVABGxS9Ja4A1KO8RuiYhPUrmbgB8AJwEb0gNKAesxSXsojUwWpbq6Jd0NbE/57oqI7nS8FFgjaSXwSqrDzMwaxBc2Ws202u3GzZqV7+VlDddqtxs3a3X+xkbLXFG/vtTMRsYjFMtcHq/gNbPac0CxzOXxCl4zqz1PeVlN5O0KXjOrPe/yMjOzAXmXVwvL0xfumFnrcEBpQt6ua2aN4DWUJuLtumbWSB6hNBFv1zUbnKeEa8cBpYl4u67Z4DwlXDue8moy3q5r1j9PCdeetw2bWUvoOnSElc+9yU92/YojHx9l7OhRzD/vi9zx9S97FD8Ibxs2MyvjKeHa85SXmbUMTwnXlqe8zMxsQJ7yMjOzunJAMTOzTDigmJlZJhxQzMwsEw4oZmaWCQcUMzPLhAOKmZllwgHFzMwy4YBiZmaZcEAxM7NMOKCYmVkmHFDMzCwTDihmZpYJBxQzM8uEA4qZmWXCAcXMzDLhgGJmZplwQDEzs0w4oJiZWSYGDSiSHpHUJen1srQJkjZJ6kzP48teWy5pj6TdkuaXpc+WtDO9tkqSUvoYSU+l9K2SZpaVWZzO0SlpcVn6rJS3M5U9ceRdYWZmI1HNCOUHwIKKtGXA5og4G9icfkbSucAi4LxU5ruSTkhlHgCWAGenR1+dNwAHI+JLwH3AvamuCcCdwIXAHODOssB1L3BfOv/BVIeZmTXQoAElIn4KdFckLwRWp+PVwJVl6Wsioici3gL2AHMkTQFOiYgtERHAoxVl+up6GrgsjV7mA5siojsiDgKbgAXptUtT3srzm5lZgwx3DeWMiNgPkJ4np/RpwDtl+faltGnpuDL9mDIR0Qt8CEwcoK6JwAcpb2VdnyNpiaQOSR0HDhwY4j/TzKzYug4d4VsPbqHr8JGanyvrRXn1kxYDpA+nzEB1ff6FiIcioj0i2idNmnS8bGZmTWnV5k62v93Nquc7a36utmGWe0/SlIjYn6azulL6PuDMsnzTgXdT+vR+0svL7JPUBpxKaYptH3BJRZmXgPeB0yS1pVFKeV1mZgacs2IDPb1HP/358a17eXzrXsa0jWL3yq/V5JzDHaGsB/p2XS0GnilLX5R2bs2itPi+LU2LHZZ0UVoDub6iTF9dVwEvpHWWjcA8SePTYvw8YGN67cWUt/L8ZmYGvHz7XK44fypjR5fe5seOHsXC86fy8tK5NTvnoCMUSU9SGimcLmkfpZ1X9wBrJd0A7AWuBoiIXZLWAm8AvcAtEfFJquomSjvGTgI2pAfAw8BjkvZQGpksSnV1S7ob2J7y3RURfZsDlgJrJK0EXkl1mJlZMvmUsYwb00ZP71HGtI2ip/co48a0MXnc2JqdU6UP/K2hvb09Ojo6Gt0MM7O6uPGxDiaNG8s1c2bwxLa9HDh8hAevax9yPZJ2RMSgBR1QzMxsQNUGFN96xczMMuGAYmZmmXBAMTOzTDigmJlZJhxQzMwsEw4oZmaWiZbaNizpAPBP/bx0OqVbuhRFkdpbpLZCsdpbpLZCsdpbpLZC7dt7VkQMejPElgooxyOpo5o91nlRpPYWqa1QrPYWqa1QrPYWqa2Qn/Z6ysvMzDLhgGJmZplwQCl5qNENGKIitbdIbYVitbdIbYVitbdIbYWctNdrKGZmlgmPUMzMLBNNG1AkPSKpS9LrZWn/StIWSTsl/W9Jp6T00ZJWp/Q3JS0vK/OSpN2SXk2PyQ1u64mSvp/SX5N0SVmZ2Sl9j6RV6cvMMpdhe+vRt2dKejH9v+6SdGtKnyBpk6TO9Dy+rMzy1Ie7Jc0vS69p/2bc1tz1raSJKf9Hku6vqCtXfTtIW/PYt5dL2pH6cIekS8vqqsv7AgAR0ZQP4N8Avwu8Xpa2Hfi36fiPgbvT8TXAmnT8W8DbwMz080tAe47aegvw/XQ8GdgBjEo/bwN+DxClLzD7Ws7bW4++nQL8bjoeB/wjcC7w58CylL4MuDcdnwu8BowBZgG/BE6oR/9m3NY89u3JwO8D3wbur6grb307UFvz2LcXAFPT8VeAf65X35Y/mnaEEhE/pfQNkOXOAX6ajjcBf9iXHThZpe+0Pwn4DXCoHu2EIbf1XGBzKtcFfAC0S5oCnBIRW6L0W/QocGVe21uLdvUnIvZHxD+k48PAm8A0YCGwOmVbzWd9tZDSh4ueiHgL2APMqUf/ZtXWLNuUZXsj4tcR8XfAkfJ68ti3x2trvQyjva9ExLspfRcwVqWvYq/b+wI08ZTXcbwOXJGOrwbOTMdPA78G9lP6SuP/GZ993TDA99PQ9r/WdLhYXVtfAxZKapM0C5idXpsG7Csrvy+l1ctQ29unbn0raSalT3JbgTMiYj+U/ngpjZ6g1GfvlBXr68e69u8I29onb317PHns28HkuW//EHglInqoc9+2WkD5Y+AWSTsoDSN/k9LnAJ8AUylNHfyppH+RXrs2Ir4K/Ov0uK7BbX2E0i9FB/CXwP8BeikNZyvVcwvfUNsLdexbSV8A/gb4k4gYaPR5vH6sW/9m0FbIZ98et4p+0hrdtwPJbd9KOg+4F7ixL6mfbDV7X2ipgBIRv4iIeRExG3iS0pwzlNZQfhwRH6dpmb8nTctExD+n58PAE9RpSuF4bY2I3oj4TxFxfkQsBE4DOim9aU8vq2I68G5lvTlqb936VtJoSn+UP4yIH6Xk99J0QN+US1dK38exI6i+fqxL/2bU1rz27fHksW+PK699K2k6sA64PiL63tvq+r7QUgGlbzeGpFHACuB76aW9wKUqORm4CPhFmqY5PZUZDXyD0tROw9oq6bdSG5F0OdAbEW+k4e9hSRelIfj1wDP1aOtw2luvvk198TDwZkT8RdlL64HF6Xgxn/XVemBRmn+eBZwNbKtH/2bV1hz3bb9y2rfHqyeXfSvpNOBZYHlE/H1f5rq/L2S9yp+XB6VPyfuBjylF6RuAWyntlvhH4B4+u7DzC8BfU1rMegP4z/HZTo8dwM/Ta/+LtIumgW2dCeymtEj3PKW7gPbV007pl/uXwP19ZfLY3jr27e9TGuL/HHg1Pf49MJHSZoHO9DyhrMwdqQ93U7Yjptb9m1Vbc963b1Pa0PFR+t05N8d9+7m25rVvKX2I+3VZ3leByfXo2/KHr5Q3M7NMtNSUl5mZ1Y4DipmZZcIBxczMMuGAYmZmmXBAMTOzTDigmJlZJhxQzMwsEw4oZmaWif8P5AS727RchlQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2021 938731\n", "2014 1600941\n", "1991 1659249\n", "1995 1840410\n", "2020 2053781\n", "2012 2175217\n", "2003 2234584\n", "2019 2254386\n", "2006 2307352\n", "2017 2321583\n", "2001 2529279\n", "1992 2574578\n", "1993 2703886\n", "2018 2705325\n", "1988 2765617\n", "2007 2780164\n", "1987 2855570\n", "2016 2856393\n", "2011 2857040\n", "2008 2973918\n", "1998 3034904\n", "2002 3125418\n", "2009 3444020\n", "1994 3514763\n", "1996 3539413\n", "2004 3567744\n", "1997 3620066\n", "2015 3654892\n", "2000 3826372\n", "2005 3835025\n", "1999 3908112\n", "2010 4111392\n", "2013 4182691\n", "1986 5115251\n", "1990 5235827\n", "1989 5466192\n", "dtype: int64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFu1JREFUeJzt3X2UZHV95/H31+FpoGEgQRodiGPUuCIjII0GXbUbXYNAko3hiIpGPJrW3YhEJ2cz8RhZTdxgzGSP2WjMaIweH+hjEHYTxpC4ug1iDNKDDwOixIUxMIQhgIz2MCsOfPeP3+10t/bD7emqrv51v1/n9Jl6uHXrW9+p+tS9v3tv3chMJEn1eEyvC5AkLYzBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSarMQd2Y6bHHHpsbNmzoyLz27t3LEUcc0ZF51c5eTLIX09mPSbX2Yvv27fdl5mPbTNuV4N6wYQNjY2Mdmdfo6CiDg4MdmVft7MUkezGd/ZhUay8i4rttp3WoRJIqY3BLUmUMbkmqjMEtSZUxuCWpMq2COyLeEhG3RMTNEXF5RBzW7cIkSTObN7gjYj3wZmAgM08G1gAv73ZhkqSZtR0qOQhYGxEHAYcDd3evJEnSXKLNOScj4hLg3cA+4O8z88IZphkGhgH6+/tPHxkZ6UiB4+Pj9PX1dWRetVtJvdixa8+iHt+/FnbvW/jjNq5ft6jnXa5W0ntjsWrtxdDQ0PbMHGgz7bzBHRHHAJ8BLgAeBP4KuCIzPzHbYwYGBtIjJztvJfViw+Zti3r8po372bJj4Qf+7rzs3EU973K1kt4bi1VrLyKidXC3GSp5EXBHZv5rZv4IuBJ4zmIKlCQduDbB/c/Az0fE4RERwAuBW7tbliRpNvMGd2beAFwB3ATsaB6ztct1SZJm0WqQMDMvBS7tci2SpBY8clKSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqM29wR8RTI+JrU/6+HxG/uRTFSZJ+0rynLsvMbwOnAkTEGmAXcFWX65IkzWKhQyUvBP5vZn63G8VIkuYXmdl+4oiPADdl5p/OcN8wMAzQ399/+sjISEcKHB8fp6+vryPzqt1K6sWOXXsW9fj+tbB738Ift3H9ukU973K1kt4bi1VrL4aGhrZn5kCbaVsHd0QcAtwNPD0zd8817cDAQI6NjbWa73xGR0cZHBzsyLxqt5J6sWHztkU9ftPG/WzZMe9I30/Yedm5i3re5WolvTcWq9ZeRETr4F7IUMlLKEvbc4a2JKm7FhLcrwAu71YhkqR2WgV3RBwO/Afgyu6WI0maT6tBwsx8CPjpLtciSWrBIyclqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMm1PXXZ0RFwREd+KiFsj4sxuFyZJmlmrU5cB7wOuyczzI+IQ4PAu1iRJmsO8wR0RRwHPBy4CyMyHgYe7W5YkaTaRmXNPEHEqsBX4JnAKsB24JDP3/th0w8AwQH9//+kjIyMdKXB8fJy+vr6OzKt2ne7Fjl17Ojavpda/Fnbv63UV7W1cv66r8/dzMqnWXgwNDW3PzIE207YJ7gHgH4HnZuYNEfE+4PuZ+buzPWZgYCDHxsYWUvOsRkdHGRwc7Mi8atfpXmzYvK1j81pqmzbuZ8uOtiN9vbfzsnO7On8/J5Nq7UVEtA7uNhsn7wLuyswbmutXAM880OIkSYszb3Bn5j3AnRHx1OamF1KGTSRJPdB2XfNi4JPNHiW3A6/tXkmSpLm0Cu7M/BrQauxFktRdHjkpSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlWl1BpyI2An8AHgE2N/2TMSSpM5re85JgKHMvK9rlUiSWnGoRJIqE5k5/0QRdwDfAxL488zcOsM0w8AwQH9//+kjIyMdKXB8fJy+vr6OzKt2ne7Fjl17Ojavpda/Fnbv63UV7W1cv66r8/dzMqnWXgwNDW1vOwzdNrgfn5l3R8RxwOeAizPzutmmHxgYyLGxsdYFz2V0dJTBwcGOzKt2ne7Fhs3bOjavpbZp43627FjISF9v7bzs3K7O38/JpFp7ERGtg7vVUElm3t38ey9wFfCsAy9PkrQY8wZ3RBwREUdOXAZeDNzc7cIkSTNrs67ZD1wVERPTfyozr+lqVZKkWc0b3Jl5O3DKEtQiSWrB3QElqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMq2DOyLWRMRXI+LqbhYkSZrbQpa4LwFu7VYhkqR2WgV3RJwAnAt8uLvlSJLmE5k5/0QRVwB/ABwJ/FZmnjfDNMPAMEB/f//pIyMjHSlwfHycvr6+jsxrudqxa0+r6frXwu59XS6mErX1YuP6dV2d/2r4nLRVay+Ghoa2Z+ZAm2nnPct7RJwH3JuZ2yNicLbpMnMrsBVgYGAgBwdnnXRBRkdH6dS8lquLNm9rNd2mjfvZsmPe/7JVobZe7LxwsKvzXw2fk7ZWQy/aDJU8F/iliNgJjABnRcQnulqVJGlW8wZ3Zv5OZp6QmRuAlwNfyMxXdb0ySdKM3I9bkiqzoEHCzBwFRrtSiSSpFZe4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVmTe4I+KwiPhKRHw9Im6JiHcuRWGSpJm1OQPOD4GzMnM8Ig4Gro+Iv83Mf+xybZKkGcwb3JmZwHhz9eDmL7tZlCRpdlFyeZ6JItYA24EnA+/PzN+eYZphYBigv7//9JGRkY4UOD4+Tl9fX0fmNZcdu/Z0/TkWq38t7N7X6yqWB3sx3Vz92Lh+3dIW02Pj4+PcseeRnjz3Yno9NDS0PTMH2kzbKrj/beKIo4GrgIsz8+bZphsYGMixsbHW853L6Ogog4ODHZnXXDZs3tb151isTRv3s2XHgs7vvGLZi+nm6sfOy85d4mp6a3R0lIuu2duT515MryOidXAvaK+SzHyQcpb3sw+gLklSB7TZq+SxzZI2EbEWeBHwrW4XJkmaWZt1zccBH2vGuR8DfDozr+5uWZKk2bTZq+QbwGlLUIskqQWPnJSkyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKtDnn5IkR8X8i4taIuCUiLlmKwiRJM2tzzsn9wKbMvCkijgS2R8TnMvObXa5NkjSDeZe4M/NfMvOm5vIPgFuB9d0uTJI0s8jM9hNHbACuA07OzO//2H3DwDBAf3//6SMjIx0pcHx8nL6+vo7May47du3p+nMsVv9a2L2v11UsD/ZiuuXYj43r1/XkecfHx7ljzyM9ee7FvOahoaHtmTnQZtrWwR0RfcC1wLsz88q5ph0YGMixsbFW853P6Ogog4ODHZnXXDZs3tb151isTRv3s2VHm9Gtlc9eTLcc+7HzsnN78ryjo6NcdM3enjz3Yl5zRLQO7lZ7lUTEwcBngE/OF9qSpO5qs1dJAH8B3JqZf9z9kiRJc2mzxP1c4NXAWRHxtebvnC7XJUmaxbyDYpl5PRBLUIskqQWPnJSkyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKtDnn5Eci4t6IuHkpCpIkza3NEvdHgbO7XIckqaV5gzszrwMeWIJaJEktRGbOP1HEBuDqzDx5jmmGgWGA/v7+00dGRg6ooB279ky73r8Wdu87oFmtOPZikr2Ybjn2Y+P6dT153vHxce7Y80hPnnsxr3loaGh7Zg60mXbes7y3lZlbga0AAwMDOTg4eEDzuWjztmnXN23cz5YdHSuzavZikr2Ybjn2Y+eFgz153tHRUbZcv7cnz71Ur9m9SiSpMga3JFWmze6AlwNfBp4aEXdFxOu6X5YkaTbzDopl5iuWohBJUjsOlUhSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlWgV3RJwdEd+OiO9ExOZuFyVJml2bc06uAd4PvAQ4CXhFRJzU7cIkSTNrs8T9LOA7mXl7Zj4MjAC/3N2yJEmzicyce4KI84GzM/P1zfVXA8/OzDf92HTDwHBz9anAtztU47HAfR2aV+3sxSR7MZ39mFRrL56QmY9tM+G8Z3kHYobbfiLtM3MrsLXNky5ERIxl5kCn51sjezHJXkxnPyathl60GSq5CzhxyvUTgLu7U44kaT5tgvtG4CkR8cSIOAR4OfDX3S1LkjSbeYdKMnN/RLwJ+DtgDfCRzLyl65VN6vjwS8XsxSR7MZ39mLTiezHvxklJ0vLikZOSVBmDW5IqY3BLUmVWdHBHxPqIWN/rOpaDiPjZiHhLRJzV61p6zV5MshfT1dKPFRncEbEhIq4FrgHeGxHP63VNvRQR/x74HOW3Zt4YEf+pxyX1jL2YZC+mq6kfKya4I+KwKVefCdyYmRspuzG+OSI2NtPNdCToihIRZ0XEE5vLAZwFXJqZvw5sAc6JiMEp969Y9mKSvZiu5n5UHdwRcVREfDAibgP+KCKe0Nz1K8A/N5dHgO8Ar5942BKXuWQi4qSI+AbwX4G/jIizsuzveRJwPEBm3gD8A/DaiYf1otZusxeT7MV0K6EfVQc3cDZwGKXhDwPviIi1lNWdXwTIzB8CVwDPa64/2ptSOy8iToiIo6bcdAHwmcx8PuUL65UR8RTgUzT9aFwFnBwRh66UftiLSfZiupXYj2Uf3FEcFBGvi4gvRsQlEfGk5u4nAw9n5n7gvwPfA14F/D3wuIj4qWa624A7I+LMJX8BXRART4uIzwLXA++KiImf2f1/wOHN5U8D9wDnUpYcfnrKGskDlF9vPGXpqu4OezHJXky3kvux7IO7WYV5AfBrwB8ChwIfau6+B7i3+Ua8k9LkJ1H+Y77J5M/MHgzc39xepYg4YsrVU4G7MnMD8AXgj5rbHwB+GBFHZuYDwD8Bj6e87n8A3tpMdwjwCLCz+5V3nr2YZC+mWy39WHbBHRFnRsR7IuKi5noATwOuycy/ycw/BJ4QEc8BdlG+OZ/WPPxWoK+57U8pGxd+kRL6/cDXl/TFLFJEHBMRH42IG4HLIuKxTT82Al+KiMjMvwYejIhzKWsWRzb301w/DniUskZyXER8CLgc2J+Z9y71azpQ9mKSvZhuNfZjWQV3RDwd+DPgB8DLIuKtlBrXAz+YsmX3o8ArKUG8H3hOc/tNlC3DD2XmdcBm4CLgucDvZeajy23r8DyeT3l951A2jrwNOIryY1/H5+QPzXyM0o+vUHr3EoDM/HIzj4My81bgDcAtwH/LzNdSF3sxyV5Mt/r6kZk9+aMsGb+esjpzUHPbHwOXNJcHgD8BzgdeBPzdlMeeSFkFghLUX6Wcdec04H8Bj5sybfTqNS6gF2sob5ZrKcM7xza3fxp4c3P5icBlzf1nUMbt1kzp5b8281lPWfN4E/CXwAeAI3r9Gu2FvbAfnfvryRJ3RJxC2YD4y8ClwNubu3ZRznEJ5RvvS8CvAp8Hjo+IZ0TEwVnGs3dFxPMy8wuUn3F8D3AlcHlm/svEc2XzP7bMnQf8EvBO4EzKWD6UvWMm1ibuBL4IvCQzb6QsWQwBZOY4cANwRmbuAl5NGRq6B3h7Zu5dotfRCfZikr2Yzn402py6bNEi4jRgb2be1tz0LOC2zLwoIp4JvDsiBoBR4Bci4vDMfCgivg68jLJv5aeAXwf+JCL2ATuAO5r5fRD4VGbuWYrXcyCacbaMiDMoq2tfBLZl2V3x54DbM/MLEXEH5WjPFwPbgV+JiGMz876I+Cdgb0T8DPA/gFdFxHGUsxLdT1kFJDPHgLElf5Et2YtJ9mI6+9FOV5e4I+LJEXE9ZUz6HRHxa81djwI7m6XnmyirLGcCDzG5aw7AjyirNsdTlqpvbuZ1LXBfZt4FZam6ktB+PvARytbrFwF/0EzyKHBbRKzNzDso/XgGZRzubsp+p1C2cK+h/L99htKTC4HTga25zPY1nUlErGl68QLKKupq7sXapheDrPL3BZQD6uxHS50cdwGOAM6ccv084H3N5WdTvt2eALyGsrqzvrnvfMp49sR91za3H0YZJjl2yjxPAw7p1djSAnpxOPBGJtcUDgZ+E/iN5v5jgG80r+cCyrjchil920o5W/V5lLWLdZTx/M9Off3AY3r9Wlu+L15P+RBtomw4WpW9aOo8EthGOZsUwFtWcS8Obz7zn6ccFLOq+9H2r2NL3BHxNuB24LMR0d/c/AuUfavJcgjpV4CLKftUnkjZ5xrKWPaplL1BPgZ8LyI+Ttno+G3g38aeMvOrmflwp+ruhog4HrgaGAQ+TtlQ8lLKWsV+gMz8HmVD6pspY3THMblb43WUfdcfzsyrgb+gHP35fsqW8R9NPFcu86WHZr/az1M+TB8CXkzZbnEGZQlq1fRiirWU4xGeFBHHUj4Ha2B19SIiDqZsyzofeG9m/mpz12kT06ymfixIB785BymrLR8GNjW3vZUyPjUxzUnAnc3ldwPvmnLfjcBpzeVDKbv2nNHrb7YD7MVa4NlTrl9E2ZDyGuArU25/PHB3c/k3KIffHtM8/m+An5ky7bFLUXuX+nH0lMv/hfIhvHA19qKp/zXAe4HfBV5HOcz6xlXaiyuBC3/stguAG1ZjP1r3rYP/ARO73FzA5FDH0cCDwGFTpruR8o16NPBXlFWdv6V8Qx7a64Z0qBcx8ddcf+aUntxP2bd0YtrPTYQ88PuUvW3uB36716+jwz05irJ9Yjfwrub6/UD/aunFlPfDaynDaC8FPtncdt9q6sWU13ke5QCYLZSdE95BGTJ9ADhutfWj7V/Hhkoy85Hm4v8GjoyIUzLzQcq49humTHoTcGRz38WU4ZD/CQxn2XJcvWxMuekSypIFlLG3twBE+S2V7wITuy++k7KWsj4z37NE5S6JzPw+Zajs5ykbm19GGQZ7QxQrvhdT3hPnUIaNPg+cEBFvp2yUH4ZV9764mrJ32P2U3fOeDvxHynvjjavlvbFQXTnLe0R8gDJe/VvNnhT/mRLgx1AOrDlnStCvaBFxAmXs7eLMvC3KD2QNU96g64Gv5XI9OqtLIuJUypf5lynjlSdTdtVa8b2IiD7KMMmhlNf+7ygHibyNsiT+FFZJLyZM7P7bXD6F8vn4EuWQ9FXz3liIbgX3qZS9RF5IeXM+RDn8fB/wwcy8peNPukxF+a2UFwC/QxnbvIuy2ncB8K0su0OuKhFxIuXL7BWZeX9EvAq4JTO/2uPSui7KCT/+nLLh7HLKrmtvy8wXN/evml7MJMov830YuCAzH1jt/ZhNt4L75ZTd4B4Cfo+yxXhlbdVtKSK+BPws5RfG7gbemZnf6GlRPRAR6yhf5K+kbKTeCrw/M3805wNXuOYgkZcCI5l5T6/r6YWIOJTy2/oTQyV/Bnwgy881awYdD+6IeAbl8PMrKBteqv0p1cVqdne6lDKG94mVMoZ/ICLiIMrwyA8pvVi17wsoByIBj2Y3lpwqFBFvoOwe+vHV/t5ooytL3JKk7llWP+sqSZqfwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5Iq8/8BnVLOiAvrP5IAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 4 }