diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb
index 4ef800841e5132f69dd89bfd7b95cfbac4ee9870..ee9a165b38a687ce094c254af40ff4c31607348a 100644
--- a/module3/exo3/exercice.ipynb
+++ b/module3/exo3/exercice.ipynb
@@ -597,6 +597,222 @@
"Ce modèle n'est pas particulièrement adapté, il sous-estime très nettement la quantité de $CO_2$."
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Utlisation des lags comme attributs du modèle. \n",
+ "\n",
+ "On complexifie légèrement le modèle afin d'utiliser des attributs correspondants aux \"lags\" des valeurs de $CO2$ dans celui-ci."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data['ppm_lag1'] = data['ppm'].shift(1)\n",
+ "data['ppm_lag2'] = data['ppm'].shift(2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " ppm | \n",
+ " year | \n",
+ " ppm_lag1 | \n",
+ " ppm_lag2 | \n",
+ "
\n",
+ " \n",
+ " index | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1958-04-12 | \n",
+ " 317.69 | \n",
+ " 1958 | \n",
+ " 317.31 | \n",
+ " 316.19 | \n",
+ "
\n",
+ " \n",
+ " 1958-04-19 | \n",
+ " 317.58 | \n",
+ " 1958 | \n",
+ " 317.69 | \n",
+ " 317.31 | \n",
+ "
\n",
+ " \n",
+ " 1958-04-26 | \n",
+ " 316.48 | \n",
+ " 1958 | \n",
+ " 317.58 | \n",
+ " 317.69 | \n",
+ "
\n",
+ " \n",
+ " 1958-05-03 | \n",
+ " 316.95 | \n",
+ " 1958 | \n",
+ " 316.48 | \n",
+ " 317.58 | \n",
+ "
\n",
+ " \n",
+ " 1958-05-17 | \n",
+ " 317.56 | \n",
+ " 1958 | \n",
+ " 316.95 | \n",
+ " 316.48 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " ppm year ppm_lag1 ppm_lag2\n",
+ "index \n",
+ "1958-04-12 317.69 1958 317.31 316.19\n",
+ "1958-04-19 317.58 1958 317.69 317.31\n",
+ "1958-04-26 316.48 1958 317.58 317.69\n",
+ "1958-05-03 316.95 1958 316.48 317.58\n",
+ "1958-05-17 317.56 1958 316.95 316.48"
+ ]
+ },
+ "execution_count": 81,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Suppression des lignes contenant des NaN dues au décalage\n",
+ "data = data.dropna()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 90,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "X = data[['ppm_lag1', 'ppm_lag2']]\n",
+ "y = data['ppm']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 91,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)"
+ ]
+ },
+ "execution_count": 91,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model = LinearRegression()\n",
+ "model.fit(X, y)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On utilise les 2 dernières semaines disponibles dans les données pour prédire la semaine à venir, et ainsi de suite (en utilisation les prédictions au fur et à mesure) jusqu'à 2025."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 95,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ppm = list(data['ppm'].values)\n",
+ "ppm_preds = []\n",
+ "\n",
+ "for i in range(weeks_until_target_year):\n",
+ " new_data = {\n",
+ " 'ppm_lag1': [ppm[-1]],\n",
+ " 'ppm_lag2': [ppm[-2]]\n",
+ " }\n",
+ " pred = model.predict(pd.DataFrame(new_data))\n",
+ " ppm.append(pred)\n",
+ " ppm_preds.append(float(pred))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 97,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD8CAYAAACb4nSYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XlclXX+/vHXW0BwX3FFxT1FERWX1PJrmZmjWU2ZlZlpOZWVNfVt6lszNvWbmWom26Yyy8pyS1utySmtzMwV13DfUBEVRUERQZbP7w+ORuYCBpxzONfz8eDhOTf3fby4lYubz/2572POOUREJDCU83YAEREpPSp9EZEAotIXEQkgKn0RkQCi0hcRCSAqfRGRAKLSFxEJICp9EZEAotIXEQkgwd4OAFC7dm0XGRnp7RgiIn5lxYoVB51z4UXZxidKPzIykri4OG/HEBHxK2a2s6jbaHhHRCSAqPRFRAKISl9EJID4xJj+mWRnZ5OYmEhmZqa3o5R5YWFhREREEBIS4u0oIlLCfLb0ExMTqVKlCpGRkZiZt+OUWc45UlJSSExMpGnTpt6OIyIlzGeHdzIzM6lVq5YKv4SZGbVq1dJvVCIBwmdLH1DhlxLtZ5HA4dOlLyJSpr3xBsydW6p/pc+O6XtbSkoKl19+OQD79u0jKCiI8PD8C9+WLVtG+fLlL+h1c3JyqF27NqmpqcWWVUT8jHPwj3/A44/DjTfCFVeU2l+t0j+LWrVqsXr1agCefPJJKleuzMMPP+zlVCLi9/Ly4KGH4MUXYdgwePvtUv3rNbxzASZPnkzXrl2JiYnhnnvuIS8vj5ycHKpXr86jjz5Khw4duPjii0lOTgZg27ZtdOvWjS5duvDkk0+eep0jR45w2WWX0alTJ6Kjo/niiy8A2Lp1K+3atWPUqFFERUVx1VVXnTrRunnzZi677DI6dOhAp06dSEhIAOCZZ56ha9euREdH89RTT5Xq/hCRQsrOhhEj8gv//vth8mQo5anSfnGk/9fP17E+6UixvmbbBlUZNyiqyNvFx8fzySefsGjRIoKDgxk9ejQzZsxgyJAhpKWl0bt3b5555hn++Mc/8vbbb/Poo49y3333MXbsWG6++WZeeumlU69VoUIFPvvsM6pUqUJycjI9e/Zk4MCBAGzatInp06fTvn17rrvuOj799FOGDh3KTTfdxJNPPsmgQYPIzMwkLy+PL7/8kl27drF06VKccwwYMIBFixbRo0ePYttfIvIbZWTkD+V88QU89RQ88QR4YRKFX5S+L5k3bx7Lly8nNjYWgOPHj9OoUSMgv8SvuuoqADp37swPP/wAwOLFi/n8888BuPXWWxk3bhyQP0f+T3/6EwsXLqRcuXLs3r2bgwcPAtCiRQvat29/6rUSEhI4fPgwBw8eZNCgQUD+RVUAX3/9NXPmzKFjx44ApKens3nzZpW+iK84fBgGDYJFi+D11+Guu7wWxS9K/0KOyEuKc46RI0fy9NNP/2J5Tk7OL07uBgUFkZOTA+RPiTzTtMj33nuPtLQ0Vq5cSXBwMBEREaeGcUJDQ8/6WmfK9MQTTzBq1Kjf/gWKSPFKSoIrr4TNm+GDD+CGG7waR2P6RdS3b19mzpx56og8JSWFXbt2nXOb7t27M3PmTACmTp16anlaWhp16tQhODiYuXPnsmfPnnO+To0aNahdu/ap3xoyMzPJyMjgyiuvZNKkSRw7dgzIv5r5ZD4R8aK8POjfHxIS4MsvvV74oNIvsvbt2zNu3Dj69u1LdHQ0/fr1Y//+/efc5uWXX+aFF16ga9eupKenn1p+6623smjRImJjY5k1axYtW7Y8798/depUnn/+eaKjo+nVqxcHDhxgwIABXH/99XTv3p327dszZMiQX/w9IuIl5crBK6/A/PngmQLubeacK9yKZkFAHLDHOTfQzP4JDAJOANuA251zqZ51HwNGAbnA/c65r8712rGxse70N1HZsGEDbdq0KeKXIxdK+1vE/5jZCudcbFG2KcqR/lhgQ4Hnc4F2zrloYDPwmCdEW2AoEAX0B17z/MAQEREvK1Tpm1kE8DvgrZPLnHNfO+dyPE+XABGex4OBGc65LOfcDmAr0LX4IouIyIUq7JH+i8AjQN5ZPj8SmON53BDYXeBziZ5lIiIBIzXjhLcjnNF5S9/MBgLJzrkVZ/n840AOcHJaypmuNvjViQMzG21mcWYWd+DAgSJEFhHxbSt2HqbXs98xb/25J3l4Q2GO9HsCV5tZAjADuMzMpgCY2W3AQOAW9/MZ4USgUYHtI4Ck01/UOTfRORfrnIs9eSMzERF/t3n/Ue58L45alcvTqUkNb8f5lfOWvnPuMedchHMukvwTtN8654aZWX/gT8DVzrmMApvMBoaaWaiZNQVaAstKILvPOXr0KK+//jqFnRElImXLf+P3cu2rP1LOjHdGdKFmpQu7G29J+i3z9P8NVAHmmtlqM5sA4JxbB8wE1gP/BcY453J/c1Ifd+LECe655x569+591jclqVy5MgBJSUlcf/3153y9F198kYyMn3+WDhgwQLdjFvFReXmO8V9v4q4pK2lRtwpf3NeLZuGVvR3rjAo9T78k+fM8/dzcXIKCCjcjtXLlyoW+aCoyMpK4uDhq1679W+IVmr/sbxFfk5KexSMfruWbjcnc0DmCp69pR1hI6cxSL+l5+gEnISGBiy66iNtuu43o6Giuv/56MjIyiIyM5KmnnqJXr17MmjWLbdu20b9/fzp37swll1zCxo0bAdixYwcXX3wxXbp04c9//vMvXrddu3ZA/g+Nhx9+mPbt2xMdHc0rr7zCyy+/TFJSEn369KFPnz5A/g+Bk7dWGD9+PO3ataNdu3a8+OKLp16zTZs23HnnnURFRdGvXz+OHz8O5F8R3LZtW6Kjoxk6dGip7T+Rsm7xthT6vbCA7zcf4KnBUTx3fXSpFf6F8osbrvHAA+B5Q5NiExOTf0/r89i0aROTJk2iZ8+ejBw5ktdeew3Iv8PlwoULAbj88suZMGECLVu2ZOnSpdxzzz18++23jB07lrvvvpvhw4fz6quvnvH1J06cyI4dO1i1ahXBwcEcOnSImjVrMn78eL777rtfHemvWLGCd95559RtlLt160bv3r2pUaMGW7ZsYfr06bz55psMGTKEjz76iGHDhvHMM8+wY8cOQkNDNUQkUkz+s3YvD36wmsa1KjLtzu60rlfF25EKRUf659GoUSN69uwJwLBhw04V/Y033gjk38Z40aJF3HDDDcTExPCHP/yBvXv3AvDjjz9y0003Afn32TmTefPmcddddxEcnP/zt2bNmufMs3DhQq699loqVapE5cqVue66607dwrlp06bExMQAP9+OGSA6OppbbrmFKVOmnPp7ROTC5OY5nv3vRsZMW0l0RDU+uquH3xQ++MuRfiGOyEvK6SdlTz6vVKkSAHl5eVSvXv3UWyueb/vTOefOu87p65/N6bdjPjm885///IcFCxYwe/Zsnn76adatW6fyF7kAqRknuHfaKhZuPcjN3RozblBbQoN9ezjndDrSP49du3axePFiAKZPn06vXr1+8fmqVavStGlTZs2aBeSX8po1awDo2bMnM2bMAH55S+WC+vXrx4QJE07dL//QoUMAVKlShaNHj/5q/UsvvZRPP/2UjIwMjh07xieffMIll1xy1vx5eXns3r2bPn368Nxzz5Gamqo7cIpcgKTU41z3+iKW7TjEc7+P5u/Xtve7wgeV/nm1adOGyZMnEx0dzaFDh7j77rt/tc7UqVOZNGkSHTp0ICoqis8++wyAl156iVdffZUuXbqQlpZ2xte/4447aNy4MdHR0XTo0IFp06YBMHr0aK666qpTJ3JP6tSpEyNGjKBr165069aNO+6449Q7Zp1Jbm4uw4YNo3379nTs2JEHH3yQ6tWrX+juEAlIuw9lMOSNxRw4msWUO7oxpEuj82/kozRl8xwSEhIYOHAg8fHxXs1RGnxhf4v4oo37jjDi7eVk5uTy/shutI+o5u1Ip2jKpohIMVq6PYUbJuQP784Y3d2nCv9C6WzeOURGRgbEUb6I/Nrq3amMfHc59atX4L2RXWlQvYK3IxULlb6IyGlW7DzEiHeWU6tyKNPu6EadqmHejlRsfHp4xxfONwQC7WeRny3adpCb31xKrUrlmXZn2Sp88OHSDwsLIyUlRYVUwpxzpKSkEBZWtv5ji1yI+D1p3Dk5jia1KvLxPT2JqFHR25GKnc8O70RERJCYmIjeYKXkhYWFERERcf4VRcqwxMMZ3P7ucqpVCOH9Ud188rbIxcFnSz8kJISmTZt6O4aIBIC0jGxGvLOcrOxcpt7dg7plbEinIJ8tfRGR0pCVk8ud78exKyWD90Z1pVVd/7mPzoXw2TF9EZGSlnY8mzFTV7JsxyH+NaQD3ZvV8nakEqcjfREJSHEJhxg7YzX7j2Ty9OAoru7QwNuRSoVKX0QCSk5uHv/+bisvf7OFiBoV+fDuHsQ0Cpz7Uan0RSRgpGflMGbqSr7ffIDrOjbkr4OjqBIW4u1YpUqlLyIBYW/acUa+G8fm/Uf5x3XtualrY29H8gqVvoiUeT8lpnHHe8s5lpXLOyO6cGmrcG9H8hqVvoiUadOW7uLJ2euoXbk8H959MRfVq+rtSF6l0heRMmv6sl383yc/0btVOC/cGFNmr7ItCpW+iJRJi7Ye5IlP4+ndKpxJt8USHKTLkkAXZ4lIGZR4OIN7pq2kae1K/Pvmjir8ArQnRKRMycnN48EPVpOT63hreGzATck8Hw3viEiZ8o85G1mecJiXhsYQWbuSt+P4nEIf6ZtZkJmtMrMvPM9rmtlcM9vi+bNGgXUfM7OtZrbJzK4sieAiIqf7bPUeJi3cwYgekQyOaejtOD6pKMM7Y4ENBZ4/CnzjnGsJfON5jpm1BYYCUUB/4DUzCyqeuCIiZ7YuKY0/fbSWrk1r8vjv2ng7js8qVOmbWQTwO+CtAosHA5M9jycD1xRYPsM5l+Wc2wFsBboWT1wRkV9bteswt729jBoVy/PqzZ0I0YnbsyrsnnkReATIK7CsrnNuL4Dnzzqe5Q2B3QXWS/Qs+wUzG21mcWYWp3fHEpELkZfneOP7bdwwYTFhIUG8P6ob4VVCvR3Lp5239M1sIJDsnFtRyNe0Myz71RvdOucmOudinXOx4eGBe0m0iFyYQ8dOcPu7y/nHnI1c0bYu/7n/ElrUqeztWD6vMLN3egJXm9kAIAyoamZTgP1mVt85t9fM6gPJnvUTgUYFto8AkooztIgEtjW7U7ln6koOpGfx/65pxy3dGmN2puNNOd15j/Sdc4855yKcc5Hkn6D91jk3DJgN3OZZ7TbgM8/j2cBQMws1s6ZAS2BZsScXkYDjnGPq0p3cMGExAB/d1YNh3Zuo8Ivgt8zTfwaYaWajgF3ADQDOuXVmNhNYD+QAY5xzub85qYgEtJzcPJ74NJ4Zy3fTu1U4L94YQw3dS6fIzLlfDbeXutjYWBcXF+ftGCLiow4czeKuKStYsfMwY/o0549XtCaonI7uzWyFcy62KNvoilwR8WnbD6Qz4p3lHDiaxUtDY3TR1W+k0hcRn7Vg8wHunbaS4KByTB/dPaDey7akqPRFxCct2HyA299dTss6lXlzeCyNalb0dqQyQaUvIj5ny/6jjJm6kpZ1KjPrrot1p8xipGuVRcSnHEzPYuTk5YSGBDFpRBcVfjFT6YuIz0jLyGb4pGUkH8nizeGdaVi9grcjlTkqfRHxCclHMrn5rSVsTU5n4vBYOjaucf6NpMg0pi8iXpd4OIPhk5ax70gmE4d3pncr3Y+rpKj0RcSrZq9J4vFPfgIHk0d2pUtkTW9HKtNU+iLiFUczsxn32To+XrWHzk1q8OKNMZqWWQpU+iJSqpxzfLMhmb9/uYGElGM80Lcl9/ZpQbDe+KRUqPRFpNSkZpzg3mmrWLj1IA2qhTHtzu50b1bL27ECikpfRErFoWMnuPnNJWw/cIynr2nHTV0a6ejeC1T6IlLiUtKzuOWtpew4eIxJI2K5pKVm53iLSl9EStTB9CxufnMJuw5l8PaILvRsUdvbkQKaSl9ESkzykUxueWspuw/nF36P5ip8b1Ppi0iJWJ5wiDFTV3I0M4d3RnTl4uY6YesLVPoiUqycc7zzYwJ//3IDETUq8N6orlxUr6q3Y4mHSl9Eik16Vg7/O2sNc+L3cUXbujw/pANVdZdMn6LSF5FisXp3Kn/8YDUJKcf4vwEXcUevZpTT+9j6HJW+iPwm2bl5vPLNFl6dv426VUKZckc3nbD1YSp9Eblge1KP89DM1SzZfojrOjXkyaujNJzj41T6IlJkzjkmLtjO+LmbMYPxQzpwXacIb8eSQlDpi0iRnMjJY9zseKYv282VUXUZNyiKBnqHK7+h0heRQlubmMqfP1vHmt2pjOnTnIeuaK2TtX5GpS8i55Wb53hh7mZem7+VmpXK8+rNnfhddH1vx5ILcN7SN7MwYAEQ6ln/Q+fcODOLASYAYUAOcI9zbplnm8eAUUAucL9z7qsSyi8iJSw14wR3vhfH8oTD3NA5gj8PaquTtX6sMEf6WcBlzrl0MwsBFprZHOAp4K/OuTlmNgB4DvgfM2sLDAWigAbAPDNr5ZzLLaGvQURKSPyeNB6auYYdKcd44cYOXNtRJ2v93XlL3znngHTP0xDPh/N8nLy2uhqQ5Hk8GJjhnMsCdpjZVqArsLgYc4tICTqRk8fYGauYE7+PSuWDeHdEF3ro7phlQqHG9M0sCFgBtABedc4tNbMHgK/M7F9AOaCHZ/WGwJICmyd6lomInxg3ex1z4vfxYN9W3HpxE2pWKu/tSFJMCvW2Nc65XOdcDBABdDWzdsDdwIPOuUbAg8Akz+pnOpXvTl9gZqPNLM7M4g4cOHBh6UWk2M1dv5/py3bxh97NGNu3pQq/jCnSe5U551KB+UB/4DbgY8+nZpE/hAP5R/aNCmwWwc9DPwVfa6JzLtY5FxsernfREfEFB45m8djHa2lTvyoPXdHa23GkBJy39M0s3Myqex5XAPoCG8kv8t6e1S4DtngezwaGmlmomTUFWgLLiju4iBSf3DzHB8t3cc2rP5KelcOLN8ZQPljvX1sWFWZMvz4w2TOuXw6Y6Zz7wsxSgZfMLBjIBEYDOOfWmdlMYD35UznHaOaOiO86kZPHw7PWMHtNEtER1Xh+SAda16vi7VhSQix/co53xcbGuri4OG/HEAkoacezmb8pmVe+3crW5HQe6d+au3s3x0xX2PoLM1vhnIstyja6IlckAI3/ehOvf7+N7FxHo5oVeGdEF/pcVMfbsaQUqPRFAsyE77fx8rdbGRhdn9t7NqVjo+q6f04AUemLBJD3FifwzJyNDIyuz0tDOxKksg84Oj0vEiBmxu3mL5+to2+burxwY4wKP0Cp9EUCwOdrknj0o7Vc0rI2/765IyFB+tYPVPqXFynj/hu/jwc/WE1sk5pMvDWWsJAgb0cSL1Lpi5RhM5fv5p6pK2jXsBqTRsRSobwKP9DpRK5IGTXh+208M2cjl7SszYRhnakUqm93UemLlDl5eY5n/ruRiQu2MzC6PuOH6JYK8jOVvkgZkpKexROfxjMnfh/DL27Ck4OiNAdffkGlL1IGOOeYvSaJv36+nqOZ2fzfgIu485JmuqWC/IpKX8TPxSUc4un/bGDN7lQ6RFTjnzd0p1Vd3TBNzkylL+Kn0jKyeX7uJt5bvJP61cJ47vpoft8pQhddyTmp9EX8TE5uHtOX7WL83M2kHs9mRI9I/vfK1pqdI4Wi/yUifiI3z7FgywH+9dUm1iUdoXuzmvxlYBRtG1T1djTxIyp9ER+Wl+f4cdtBPli+mwWbD3AkM4cG1cJ49eZODGhfTydqpchU+iI+6suf9vLsfzeyMyWD6hVDuKpdfS5pVZt+betp3r1cMJW+iI9xzvHvb7fy/NzNtKlflZeGxnBlVD3dM0eKhUpfxIc453juq028Pn8b13VsyHPXRxOsO2JKMVLpi/iQt39M4PX527ilW2OeHtxOV9NKsdMhhIiPWLwthb9/uYF+beuq8KXEqPRFfMCe1OPcO20lkbUq8vyQDip8KTEqfREv25t2nFsnLSUrJ483bo2lSliItyNJGaYxfREvWrHzMGOmriQ9K4d3bu9CizqVvR1JyjiVvkgpy8nNY96GZD5emcjcDftpVKMiH4zoTlSDat6OJgFApS9SSlLSs3h3UQIfr9zDntTj1K5cnrt7N+cPvZtTrYKGdKR0qPRFSphzjk9X7+Gpz9eTdjybXi3D+fPAtvRtU0dz8KXUnbf0zSwMWACEetb/0Dk3zvO5+4B7gRzgP865RzzLHwNGAbnA/c65r0omvohvO5iexaMfrWXehmRiGlXn2d9H07qe7nUv3lOYI/0s4DLnXLqZhQALzWwOUAEYDEQ757LMrA6AmbUFhgJRQANgnpm1cs7llsyXIOKbftx6kAc+WE3a8Wye+F0bbu/ZVPe6F687b+k75xyQ7nka4vlwwN3AM865LM96yZ51BgMzPMt3mNlWoCuwuJizi/iknNw8Xpi3mdfmb6N5eGXeG9mVNvV1+2PxDYUaUDSzIDNbDSQDc51zS4FWwCVmttTMvjezLp7VGwK7C2ye6FkmUualZpxg2KSlvPrdNoZ0bsTse3uq8MWnFOpErmdoJsbMqgOfmFk7z7Y1gO5AF2CmmTUDzvT7qzt9gZmNBkYDNG7c+MLSi/iQ+D1p3Dd9FXsOH+f5Gzrw+84R3o4k8itFmjrgnEsF5gP9yT+C/9jlWwbkAbU9yxsV2CwCSDrDa010zsU652LDw8MvML6I9znneH/JTq57bREZJ3KYemc3Fb74rPOWvpmFe47wMbMKQF9gI/ApcJlneSugPHAQmA0MNbNQM2sKtASWlUx8Ee/KzM7lkQ/X8udP4+nZohZzxl5Kl8ia3o4lclaFGd6pD0w2syDyf0jMdM59YWblgbfNLB44AdzmOem7zsxmAuvJn8o5RjN3pCxasfMQj338E5v3p3P/ZS14oG8r3ShNfJ7l97R3xcbGuri4OG/HECmU1IwT/OvrTUxZsosG1cL423Xt6dO6jrdjSQAysxXOudiibKMrckXOISc3j4SUY2zZn87GfUdZtuMQK3YdJic3j5E9m/JQv1ZUCtW3kfgP/W8VOc2RzGyWbEvhv+v28c2GZNKOZwNgBm3qVWV49yZcHxvBRfU0FVP8j0pfBMjLcyzYcoApS3by3aYD5OY5qoYF07dNXXq1rE3LOlVoXqcSFcvrW0b8m/4HS8DbmXKM+6avYm1iGuFVQrnjkqb0bhVOl8iahOiGaFLGqPQlYOXmOWav2cNfP18PwD+vj2ZwTEPKB6vopexS6UvAyczO5bPVe3jj++1sP3iMdg2r8u+bOhFZu5K3o4mUOJW+BIy0jGze/GE7U5buJDUjmzb1qzJhWCf6ta2n+fUSMFT6UuYlHs5g4oLtzIpL5Hh2Lv2j6nFbj0i6N6uJmcpeAotKX8qszOxcXvl2C2/+sAMcXB3TgJE9m9K2gaZaSuBS6UuZtPtQBndPXUH8niNc27Eh/3tlaxpUr+DtWCJep9KXMue7jck88MFqnHNMui2Wy9vU9XYkEZ+h0pcyZdLCHTz9xXra1K/KG8M607hWRW9HEvEpKn0pE5xzPDNnI28s2E7/qHq8cGMMFcoHeTuWiM9R6Yvfy8nN47GPf2LWikSGX9yEcYOi9AbkImeh0he/lnDwGI98uJZlCYd4oG9Lxl7eUtMwRc5BpS9+KTfP8e6iBP751UZCgsrpPWlFCkmlL35n24F0HvlwLSt2Hubyi+rwt2vbU69amLdjifgFlb74jaOZ2bz8zRbeXZRAxfLBvHBjB66JaajhHJEiUOmLz9uVksGUpTuZvmwXRzNzGBIbwcNXtqZOFR3dixSVSl981rYD6bz8zRZmr0minBlXtavH6EubER1R3dvRRPyWSl98zu5DGbwwbzOfrtpDaHAQf7i0OcMvbqLbKIgUA5W++JS4hEPc8V4cmdm53HFJM0Zf2ozalUO9HUukzFDpi8/4z9q9PPDBKhpWr8DkMT1pUktvaiJS3FT64lX70jJ54tOf2LD3KHtSj9MlsgZvDe9CtYoh3o4mUiap9MVrVu06zOj3V3AsK4fLLqrDVe3q8VC/1rpnjkgJUumLV3y2eg//++Fa6lYNZeodPWlVt4q3I4kEBJW+lKqsnFzGf72ZNxZsp2vTmkwY1pmalcp7O5ZIwDhv6ZtZGLAACPWs/6FzblyBzz8M/BMId84d9Cx7DBgF5AL3O+e+KoHs4kd2H8pg3ob9zFi2m037j3Jzt8Y8OSiK8sHlvB1NJKAU5kg/C7jMOZduZiHAQjOb45xbYmaNgCuAXSdXNrO2wFAgCmgAzDOzVs653BLILz4ufk8ar83fypz4fTgHzcMr6d2sRLzovKXvnHNAuudpiOfDeZ6/ADwCfFZgk8HADOdcFrDDzLYCXYHFxRVafN/S7Sm8On8bCzYfoEpoMHf3bs6NXRppGqaIlxVqTN/MgoAVQAvgVefcUjO7GtjjnFtz2g2vGgJLCjxP9Cw7/TVHA6MBGjdufGHpxaekZWTz4cpEvlibxKpdqdSuXJ5H+rdmWPcmVA3TFEwRX1Co0vcMzcSYWXXgEzOLBh4H+p1h9TPd8tD9aoFzE4GJALGxsb/6vPiPzOxc3lywnQnfb+PYiVza1K/KXwa25eZujQkL0fRLEV9SpNk7zrlUM5tP/hBOU+DkUX4EsNLMupJ/ZN+owGYRQFKxpBWfs2jbQR7/JJ4dB4/RP6oe91/ekrYNqno7loicRWFm74QD2Z7CrwD0BZ51ztUpsE4CEOucO2hms4FpZjae/BO5LYFlJZJevCY7N4+Xv9nCv7/bSuOaFXl/VFcuaRnu7Vgich6FOdKvD0z2jOuXA2Y6574428rOuXVmNhNYD+QAYzRzp2zZmpzOQ7PWsGZ3Ktd3juDpwe10Fa2InyjM7J21QMfzrBN52vO/AX/7TcnE5ySlHuflb7Ywa0UilUODee2WTgxoX9/bsUSkCHRFrpxXSnoWr83fxvtLdoKDW7s3YUyfFoRX0S2PRfx2RG/kAAALaUlEQVSNSl/O6mhmNm/+sINJP2zneHYuv+8Uwdi+LYmoUdHb0UTkAqn05Vdy8xwfLN/N819vIuXYCc/dL1vRoo5uiibi71T68gs/Jabx6MdrWZd0hK6RNXl7RBs6NNJ70oqUFSp9AcA5x5Slu3j68/XUqBTCyzd1ZFB0fU672lpE/JxKX0jPyuHxT37is9VJ/E/rcF4YEkMN3e5YpExS6Qe4+D1p3Dd9FTtTjvHQFa0Y06cF5crp6F6krFLpB6ik1OO8MHczH61MJLxKKNPu7E73ZrW8HUtESphKP4CkpGfx6eokvt24n2U7DmEYI3s25d7LWlC9ooZzRAKBSj8A/JSYxts/7uCLtUlk5zpa163C7T2bMvziJppzLxJgVPplkHOOdUlH+HrdPr5ev5+N+45SqXwQt3Rrws3dGutNyEUCmEq/DEg+ksnsNUms33uEw8dOsGnfUZLSMilnENukJn+9OoprOzXUG5mIiErfn+1KyeDJz9fx3aZknIMG1cKoWbk8MY2rM7ZVOH3b1KVWZd0fR0R+ptL3UwkHjzHkjcUcz87lvj4tGNyxIc3DK3s7loj4OJW+H9p9KINb3lpKdm4eH97Vg9b1NEYvIoWj0vczK3Ye5t5pKzmWlcO0O7ur8EWkSFT6fuJIZjbjv97M5MUJNKxegemjuxPVoJq3Y4mIn1Hp+zDnHKt2p/L+4p18tW4fx7NzGdatCX+66iIqh+qfTkSKTs3hQ5xzpGflsHT7Ib7ffIBvNuwnKS2TyqHBXNOxITd3bUy7hjq6F5ELp9L3spMXUs2J38uXP+1jx8FjAFQsH0SP5rV5qF9rroiqqzn2IlIsVPpekppxgilLdjJrRSI7UzIIKmf0aF6La2Ia0iWyBrGRNSkfXM7bMUWkjFHpl7Kc3DymLt3FC/M2k5qRzcXNanF37+b0i6pHTd3DXkRKmEq/FP2w5QBPfb6eLcnp9Gheiz8PbEub+lW9HUtEAohKvxTsSsng719u4L/r9tGkVkXeuLUz/drW1VsRikipU+mXkMzsXD5fk8T7S3by0540woKDeLhfK+68tBmhwUHejiciAUqlXwwys3PZmpxOm/pV2bz/KJMW7uCr+H0czcrhonpVeODyVtzYpRH1qoV5O6qIBLjzlr6ZhQELgFDP+h8658aZ2T+BQcAJYBtwu3Mu1bPNY8AoIBe43zn3VQnl97rtB9K5e8pKNu0/Sq1K5Uk5doLKocFc1a4eV8c0oFeL2hrGERGfUZgj/SzgMudcupmFAAvNbA4wF3jMOZdjZs8CjwF/MrO2wFAgCmgAzDOzVs653BL6GrziSGY28zcd4P8+/omQIGPs5S1Zm5hKu4bVuKNXM6pV1Lx6EfE95y1955wD0j1PQzwfzjn3dYHVlgDXex4PBmY457KAHWa2FegKLC621F6UlpHNi99s5r3FO8nNc3SIqMZrwzrTsHoFb0cTETmvQo3pm1kQsAJoAbzqnFt62iojgQ88jxuS/0PgpETPMr+VlpHN+r1HmL8pmQ/idpN2PJuhXRrRu1U4fS6qoxOzIuI3ClX6nqGZGDOrDnxiZu2cc/EAZvY4kANM9ax+pgFsd/oCMxsNjAZo3LjxBUQvGdm5efy0J432DasRElSOL3/ay/3TV5GT5wgqZ1x+UR3G9m2pO1yKiF8q0uwd51yqmc0H+gPxZnYbMBC43DMMBPlH9o0KbBYBJJ3htSYCEwFiY2N/9UOhNDjnWJ5wmFe+3cL6pCMMvziSH7ceZFnCIQZ1aMDfrm3HXz5bR6u6VfjjFa3o1qwmVXQPHBHxY4WZvRMOZHsKvwLQF3jWzPoDfwJ6O+cyCmwyG5hmZuPJP5HbElhW/NEvXFpGNp+vTWLKkp1s3HeUahVCqFc1jBfmbaZqWDAdGlXn8zVJrN59mJRjWbw9IpboiOreji0i8psV5ki/PjDZM65fDpjpnPvCc4I2FJjrmZK4xDl3l3NunZnNBNaTP+wzxhdm7mTl5PLVuv18uCKRhVsOkOcgqkFVnv19e67u0JDyweWISzhEq7pVqBQazO9e/oEtyenc0q2xCl9Eygz7eVTGe2JjY11cXFyxvmZWTi7rk46walcqaxJTWbQthQNHs2hYvQLXdGxAv7b1iI6odtY59PuPZLJo20EGtK+vE7Ui4pPMbIVzLrYo2/j9Fbn70jJPXemanpXDlCU7+W5jMqt2pXIiNw+AulVD6RJZgyGxjbi0ZTjlyp3/Yqm6VcO4tmNEiWYXESltfl36yxMOcctbSxk3qC0h5crx3FebOJieRVSDqtzWowkdG9cgtkkN6lTV7Q9ERMDPS79dg2r0alGbxz+JByC2SQ3eHN6Zjo1reDmZiIhv8uvSr1A+iDdu7cxL87YQUaMCN3ZppPvciIicg1+XPkBIUDkevrK1t2OIiPgFvQmriEgAUemLiAQQlb6ISABR6YuIBBCVvohIAFHpi4gEEJW+iEgAUemLiAQQn7jLppkdAHYWcbPawMESiFOSlLl0KHPpUObSca7MTZxz4UV5MZ8o/QthZnFFvaWotylz6VDm0qHMpaO4M2t4R0QkgKj0RUQCiD+X/kRvB7gAylw6lLl0KHPpKNbMfjumLyIiRefPR/oiIlJEfln6ZtbfzDaZ2VYze9TbeU4yswQz+8nMVptZnGdZTTOba2ZbPH/WKLD+Y56vYZOZXVmKOd82s2Qziy+wrMg5zayz5+vdamYvWwm+g81ZMj9pZns8+3u1mQ3wlcxm1sjMvjOzDWa2zszGepb77H4+R2Zf3s9hZrbMzNZ4Mv/Vs9yX9/PZMpfOfnbO+dUHEARsA5oB5YE1QFtv5/JkSwBqn7bsOeBRz+NHgWc9j9t6socCTT1fU1Ap5bwU6ATE/5acwDLgYsCAOcBVpZz5SeDhM6zr9cxAfaCT53EVYLMnl8/u53Nk9uX9bEBlz+MQYCnQ3cf389kyl8p+9scj/a7AVufcdufcCWAGMNjLmc5lMDDZ83gycE2B5TOcc1nOuR3AVvK/thLnnFsAHPotOc2sPlDVObfY5f/ve6/ANqWV+Wy8ntk5t9c5t9Lz+CiwAWiID+/nc2Q+G1/I7Jxz6Z6nIZ4Ph2/v57NlPptizeyPpd8Q2F3geSLn/o9ZmhzwtZmtMLPRnmV1nXN7If+bCqjjWe5rX0dRczb0PD59eWm718zWeoZ/Tv4K71OZzSwS6Ej+EZ1f7OfTMoMP72czCzKz1UAyMNc55/P7+SyZoRT2sz+W/pnGrHxlClJP51wn4CpgjJldeo51ffnrKOhsOX0h/+tAcyAG2As871nuM5nNrDLwEfCAc+7IuVY9wzJfyezT+9k5l+uciwEiyD8CbneO1X05c6nsZ38s/USgUYHnEUCSl7L8gnMuyfNnMvAJ+cM1+z2/huH5M9mzuq99HUXNmeh5fPryUuOc2+/55skD3uTn4TGfyGxmIeSX51Tn3MeexT69n8+U2df380nOuVRgPtAfH9/PJxXMXFr72R9LfznQ0syamll5YCgw28uZMLNKZlbl5GOgHxBPfrbbPKvdBnzmeTwbGGpmoWbWFGhJ/kkZbylSTs+vzEfNrLtnxsDwAtuUipPf1B7Xkr+/fSKz5/UnARucc+MLfMpn9/PZMvv4fg43s+qexxWAvsBGfHs/nzFzqe3nkjg7XdIfwADyZxZsAx73dh5Ppmbkn2FfA6w7mQuoBXwDbPH8WbPANo97voZNlODMlzNknU7+r4/Z5B8tjLqQnECs5z/mNuDfeC72K8XM7wM/AWs93xj1fSUz0Iv8X7XXAqs9HwN8eT+fI7Mv7+doYJUnWzzwF89yX97PZ8tcKvtZV+SKiAQQfxzeERGRC6TSFxEJICp9EZEAotIXEQkgKn0RkQCi0hcRCSAqfRGRAKLSFxEJIP8fLjcfJ6BI7CwAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(1, 1)\n",
+ "ax.plot(res.trend, label='Tendance')\n",
+ "ax.plot(weeks_untils_2025, ppm_preds, color='r', label='prédictions')\n",
+ "plt.legend();"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Ce modèle semble plus cohérent que le précédent."
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,