{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# A report on new breakthrough data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Storing data on an external file" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "data = [\n", " 14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4,\\\n", " 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2,\\\n", " 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2,\\\n", " 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7,\\\n", " 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9,\\\n", " 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6,\\\n", " 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1,\\\n", " 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3,\\\n", " 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7,\\\n", " 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9,\\\n", " 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8,\\\n", " 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4,\\\n", " 15.7, 10.2, 8.9, 21.0\n", "]\n", "\n", "np.savetxt(\"data.txt\", data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Analyzing results" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: tabulate in /opt/conda/lib/python3.6/site-packages (0.8.7)\r\n" ] } ], "source": [ "! pip install tabulate" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
Mean 14.113
Min 2.8
Max 23.4
Median14.5
Std 4.33409
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.display import HTML, display\n", "import tabulate\n", "from typing import List, Any\n", "\n", "def display_table(table: List[List[Any]]):\n", " return display(HTML(tabulate.tabulate(table, tablefmt='html')))\n", " \n", " \n", "display_table([\n", " [\"Mean\", np.mean(data)],\n", " [\"Min\", np.min(data)],\n", " [\"Max\", np.max(data)],\n", " [\"Median\", np.median(data)],\n", " [\"Std\", np.std(data, ddof=1)]\n", "])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Display results" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "fig, subs = plt.subplots(2)\n", "subs[0].plot(data)\n", "subs[0].grid(True, linestyle=\":\")\n", "subs[1].hist(data)\n", "subs[1].grid(True, linestyle=\":\")\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }