diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 9c769773a18a551fa1cd885ce6390c53e42c812d..7597eefddb95014c24f76a7cb6368312821ac89b 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,8 +1,10 @@ --- -title: "Votre titre" +title: "À propos du calcul de pi" author: "Anne-Sophie Bonnet" -date: "La date du jour" -output: html_document +date: "25 juin 2018" +output: + html_document: default + pdf_document: default --- @@ -10,24 +12,38 @@ output: html_document knitr::opts_chunk$set(echo = TRUE) ``` -## Quelques explications +# En demandant à la lib maths -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +Mon ordinateur m’indique que $π$ vaut *approximativement* -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: - -```{r cars} -summary(cars) +```{r} +pi ``` +# En utilisant la méthode des aiguilles de Buffon -Et on peut aussi aisément inclure des figures. Par exemple: +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r pressure, echo=FALSE} -plot(pressure) +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) +``` +# Avec un argument “fréquentiel” de surface +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[{X}^{2}+{Y}^{2}≤1]=π/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: + +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. - -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois, en moyenne, ${X}^{2}+{Y}^{2}$ est inférieur à 1: -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. +```{r} +4*mean(df$Accept) +``` \ No newline at end of file diff --git a/module2/exo1/toy_document_fr.html b/module2/exo1/toy_document_fr.html new file mode 100644 index 0000000000000000000000000000000000000000..347ccc946db752a6acc20214afcd4a594ce5118e --- /dev/null +++ b/module2/exo1/toy_document_fr.html @@ -0,0 +1,442 @@ + + + + + + + + + + + + + + +À propos du calcul de pi + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + +
+

En demandant à la lib maths

+

Mon ordinateur m’indique que \(π\) +vaut approximativement

+
pi
+
## [1] 3.141593
+
+
+

En utilisant la méthode des aiguilles de Buffon

+

Mais calculé avec la méthode des aiguilles de +Buffon, on obtiendrait comme approximation :

+
set.seed(42)
+N = 100000
+x = runif(N)
+theta = pi/2*runif(N)
+2/(mean(x+sin(theta)>1))
+
## [1] 3.14327
+
+
+

Avec un argument “fréquentiel” de surface

+

Sinon, une méthode plus simple à comprendre et ne faisant pas +intervenir d’appel à la fonction sinus se base sur le fait que si \(X∼U(0,1)\) et \(Y∼U(0,1)\) alors \(P[{X}^{2}+{Y}^{2}≤1]=π/4\) (voir méthode +de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait:

+
set.seed(42)
+N = 1000
+df = data.frame(X = runif(N), Y = runif(N))
+df$Accept = (df$X**2 + df$Y**2 <=1)
+library(ggplot2)
+
## Warning: package 'ggplot2' was built under R version 4.3.1
+
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
+

+

Il est alors aisé d’obtenir une approximation (pas terrible) de π en +comptant combien de fois, en moyenne, \({X}^{2}+{Y}^{2}\) est inférieur à 1:

+
4*mean(df$Accept)
+
## [1] 3.156
+
+ + + + +
+ + + + + + + + + + + + + + +