From 1fa062c851ffc36394ab0312eadffd41a827fbb1 Mon Sep 17 00:00:00 2001 From: e6a2acf6b1e71323e580d5754b297b60 Date: Wed, 25 Mar 2020 21:57:57 +0000 Subject: [PATCH] no commit message --- module3/exo1/analyse-syndrome-grippal.ipynb | 2218 ++++++++++++++++++- 1 file changed, 2174 insertions(+), 44 deletions(-) diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5..df2e0d2 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -28,13 +28,13 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 25, + "metadata": {}, "outputs": [], "source": [ - "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" + "#modification de l'url vers le CSV upload sur gitlab\n", + "# data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"\n", + "data_url = \"https://app-learninglab.inria.fr/moocrr/gitlab/e6a2acf6b1e71323e580d5754b297b60/mooc-rr/raw/9ad005b7c8da7edc39539f48ba27044d97b611c4/module3/exo1/incidence-PAY-3_1_.csv\"" ] }, { @@ -61,9 +61,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202011310204893969.0110127.0155143.0167.0FRFrance
1202010310497796650.0113304.0159146.0172.0FRFrance
22020093110696102066.0119326.0168155.0181.0FRFrance
32020083143753133984.0153522.0218203.0233.0FRFrance
42020073183610172812.0194408.0279263.0295.0FRFrance
52020063206669195481.0217857.0314297.0331.0FRFrance
62020053187957177445.0198469.0285269.0301.0FRFrance
72020043122331113492.0131170.0186173.0199.0FRFrance
820200337841371330.085496.0119108.0130.0FRFrance
920200235361447654.059574.08172.090.0FRFrance
1020200133685031608.042092.05648.064.0FRFrance
1120195232813523220.033050.04336.050.0FRFrance
1220195132978625042.034530.04538.052.0FRFrance
1320195033422329156.039290.05244.060.0FRFrance
1420194932566221414.029910.03933.045.0FRFrance
1520194832236718055.026679.03427.041.0FRFrance
1620194731866914759.022579.02822.034.0FRFrance
1720194631603012567.019493.02419.029.0FRFrance
182019453101387160.013116.01510.020.0FRFrance
19201944378225010.010634.0128.016.0FRFrance
20201943394876448.012526.0149.019.0FRFrance
21201942377475243.010251.0128.016.0FRFrance
22201941371224720.09524.0117.015.0FRFrance
23201940385055784.011226.0139.017.0FRFrance
24201939370914462.09720.0117.015.0FRFrance
25201938348972891.06903.074.010.0FRFrance
26201937331721367.04977.052.08.0FRFrance
2720193632295728.03862.031.05.0FRFrance
28201935310102.02018.020.04.0FRFrance
2920193431672279.03065.031.05.0FRFrance
.................................
181619852132609619621.032571.04735.059.0FRFrance
181719852032789620885.034907.05138.064.0FRFrance
181819851934315432821.053487.07859.097.0FRFrance
181919851834055529935.051175.07455.093.0FRFrance
182019851733405324366.043740.06244.080.0FRFrance
182119851635036236451.064273.09166.0116.0FRFrance
182219851536388145538.082224.011683.0149.0FRFrance
18231985143134545114400.0154690.0244207.0281.0FRFrance
18241985133197206176080.0218332.0357319.0395.0FRFrance
18251985123245240223304.0267176.0445405.0485.0FRFrance
18261985113276205252399.0300011.0501458.0544.0FRFrance
18271985103353231326279.0380183.0640591.0689.0FRFrance
18281985093369895341109.0398681.0670618.0722.0FRFrance
18291985083389886359529.0420243.0707652.0762.0FRFrance
18301985073471852432599.0511105.0855784.0926.0FRFrance
18311985063565825518011.0613639.01026939.01113.0FRFrance
18321985053637302592795.0681809.011551074.01236.0FRFrance
18331985043424937390794.0459080.0770708.0832.0FRFrance
18341985033213901174689.0253113.0388317.0459.0FRFrance
183519850239758680949.0114223.0177147.0207.0FRFrance
183619850138548965918.0105060.0155120.0190.0FRFrance
183719845238483060602.0109058.0154110.0198.0FRFrance
1838198451310172680242.0123210.0185146.0224.0FRFrance
18391984503123680101401.0145959.0225184.0266.0FRFrance
1840198449310107381684.0120462.0184149.0219.0FRFrance
184119844837862060634.096606.0143110.0176.0FRFrance
184219844737202954274.089784.013199.0163.0FRFrance
184319844638733067686.0106974.0159123.0195.0FRFrance
18441984453135223101414.0169032.0246184.0308.0FRFrance
184519844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1846 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202011 3 102048 93969.0 110127.0 155 143.0 \n", + "1 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "2 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "3 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "4 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "5 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "6 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "7 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "8 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "9 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "10 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "11 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "12 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "13 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "14 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "15 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "16 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "17 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "18 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "19 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "20 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "21 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "22 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "23 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "24 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "25 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "26 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "27 201936 3 2295 728.0 3862.0 3 1.0 \n", + "28 201935 3 1010 2.0 2018.0 2 0.0 \n", + "29 201934 3 1672 279.0 3065.0 3 1.0 \n", + "... ... ... ... ... ... ... ... \n", + "1816 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1817 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1818 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1819 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1820 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1821 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1822 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1823 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1824 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1825 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1826 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1827 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1828 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1829 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1830 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1831 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1832 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1833 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1834 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1835 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1836 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1837 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1838 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1839 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1840 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1841 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1842 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1843 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1844 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1845 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 167.0 FR France \n", + "1 172.0 FR France \n", + "2 181.0 FR France \n", + "3 233.0 FR France \n", + "4 295.0 FR France \n", + "5 331.0 FR France \n", + "6 301.0 FR France \n", + "7 199.0 FR France \n", + "8 130.0 FR France \n", + "9 90.0 FR France \n", + "10 64.0 FR France \n", + "11 50.0 FR France \n", + "12 52.0 FR France \n", + "13 60.0 FR France \n", + "14 45.0 FR France \n", + "15 41.0 FR France \n", + "16 34.0 FR France \n", + "17 29.0 FR France \n", + "18 20.0 FR France \n", + "19 16.0 FR France \n", + "20 19.0 FR France \n", + "21 16.0 FR France \n", + "22 15.0 FR France \n", + "23 17.0 FR France \n", + "24 15.0 FR France \n", + "25 10.0 FR France \n", + "26 8.0 FR France \n", + "27 5.0 FR France \n", + "28 4.0 FR France \n", + "29 5.0 FR France \n", + "... ... ... ... \n", + "1816 59.0 FR France \n", + "1817 64.0 FR France \n", + "1818 97.0 FR France \n", + "1819 93.0 FR France \n", + "1820 80.0 FR France \n", + "1821 116.0 FR France \n", + "1822 149.0 FR France \n", + "1823 281.0 FR France \n", + "1824 395.0 FR France \n", + "1825 485.0 FR France \n", + "1826 544.0 FR France \n", + "1827 689.0 FR France \n", + "1828 722.0 FR France \n", + "1829 762.0 FR France \n", + "1830 926.0 FR France \n", + "1831 1113.0 FR France \n", + "1832 1236.0 FR France \n", + "1833 832.0 FR France \n", + "1834 459.0 FR France \n", + "1835 207.0 FR France \n", + "1836 190.0 FR France \n", + "1837 198.0 FR France \n", + "1838 224.0 FR France \n", + "1839 266.0 FR France \n", + "1840 219.0 FR France \n", + "1841 176.0 FR France \n", + "1842 163.0 FR France \n", + "1843 195.0 FR France \n", + "1844 308.0 FR France \n", + "1845 213.0 FR France \n", + "\n", + "[1846 rows x 10 columns]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" @@ -78,9 +1045,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
160919891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1609 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1609 FR France " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +1125,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202011310204893969.0110127.0155143.0167.0FRFrance
1202010310497796650.0113304.0159146.0172.0FRFrance
22020093110696102066.0119326.0168155.0181.0FRFrance
32020083143753133984.0153522.0218203.0233.0FRFrance
42020073183610172812.0194408.0279263.0295.0FRFrance
52020063206669195481.0217857.0314297.0331.0FRFrance
62020053187957177445.0198469.0285269.0301.0FRFrance
72020043122331113492.0131170.0186173.0199.0FRFrance
820200337841371330.085496.0119108.0130.0FRFrance
920200235361447654.059574.08172.090.0FRFrance
1020200133685031608.042092.05648.064.0FRFrance
1120195232813523220.033050.04336.050.0FRFrance
1220195132978625042.034530.04538.052.0FRFrance
1320195033422329156.039290.05244.060.0FRFrance
1420194932566221414.029910.03933.045.0FRFrance
1520194832236718055.026679.03427.041.0FRFrance
1620194731866914759.022579.02822.034.0FRFrance
1720194631603012567.019493.02419.029.0FRFrance
182019453101387160.013116.01510.020.0FRFrance
19201944378225010.010634.0128.016.0FRFrance
20201943394876448.012526.0149.019.0FRFrance
21201942377475243.010251.0128.016.0FRFrance
22201941371224720.09524.0117.015.0FRFrance
23201940385055784.011226.0139.017.0FRFrance
24201939370914462.09720.0117.015.0FRFrance
25201938348972891.06903.074.010.0FRFrance
26201937331721367.04977.052.08.0FRFrance
2720193632295728.03862.031.05.0FRFrance
28201935310102.02018.020.04.0FRFrance
2920193431672279.03065.031.05.0FRFrance
.................................
181619852132609619621.032571.04735.059.0FRFrance
181719852032789620885.034907.05138.064.0FRFrance
181819851934315432821.053487.07859.097.0FRFrance
181919851834055529935.051175.07455.093.0FRFrance
182019851733405324366.043740.06244.080.0FRFrance
182119851635036236451.064273.09166.0116.0FRFrance
182219851536388145538.082224.011683.0149.0FRFrance
18231985143134545114400.0154690.0244207.0281.0FRFrance
18241985133197206176080.0218332.0357319.0395.0FRFrance
18251985123245240223304.0267176.0445405.0485.0FRFrance
18261985113276205252399.0300011.0501458.0544.0FRFrance
18271985103353231326279.0380183.0640591.0689.0FRFrance
18281985093369895341109.0398681.0670618.0722.0FRFrance
18291985083389886359529.0420243.0707652.0762.0FRFrance
18301985073471852432599.0511105.0855784.0926.0FRFrance
18311985063565825518011.0613639.01026939.01113.0FRFrance
18321985053637302592795.0681809.011551074.01236.0FRFrance
18331985043424937390794.0459080.0770708.0832.0FRFrance
18341985033213901174689.0253113.0388317.0459.0FRFrance
183519850239758680949.0114223.0177147.0207.0FRFrance
183619850138548965918.0105060.0155120.0190.0FRFrance
183719845238483060602.0109058.0154110.0198.0FRFrance
1838198451310172680242.0123210.0185146.0224.0FRFrance
18391984503123680101401.0145959.0225184.0266.0FRFrance
1840198449310107381684.0120462.0184149.0219.0FRFrance
184119844837862060634.096606.0143110.0176.0FRFrance
184219844737202954274.089784.013199.0163.0FRFrance
184319844638733067686.0106974.0159123.0195.0FRFrance
18441984453135223101414.0169032.0246184.0308.0FRFrance
184519844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1845 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202011 3 102048 93969.0 110127.0 155 143.0 \n", + "1 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "2 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "3 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "4 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "5 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "6 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "7 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "8 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "9 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "10 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "11 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "12 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "13 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "14 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "15 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "16 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "17 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "18 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "19 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "20 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "21 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "22 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "23 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "24 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "25 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "26 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "27 201936 3 2295 728.0 3862.0 3 1.0 \n", + "28 201935 3 1010 2.0 2018.0 2 0.0 \n", + "29 201934 3 1672 279.0 3065.0 3 1.0 \n", + "... ... ... ... ... ... ... ... \n", + "1816 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1817 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1818 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1819 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1820 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1821 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1822 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1823 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1824 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1825 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1826 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1827 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1828 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1829 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1830 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1831 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1832 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1833 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1834 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1835 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1836 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1837 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1838 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1839 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1840 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1841 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1842 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1843 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1844 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1845 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 167.0 FR France \n", + "1 172.0 FR France \n", + "2 181.0 FR France \n", + "3 233.0 FR France \n", + "4 295.0 FR France \n", + "5 331.0 FR France \n", + "6 301.0 FR France \n", + "7 199.0 FR France \n", + "8 130.0 FR France \n", + "9 90.0 FR France \n", + "10 64.0 FR France \n", + "11 50.0 FR France \n", + "12 52.0 FR France \n", + "13 60.0 FR France \n", + "14 45.0 FR France \n", + "15 41.0 FR France \n", + "16 34.0 FR France \n", + "17 29.0 FR France \n", + "18 20.0 FR France \n", + "19 16.0 FR France \n", + "20 19.0 FR France \n", + "21 16.0 FR France \n", + "22 15.0 FR France \n", + "23 17.0 FR France \n", + "24 15.0 FR France \n", + "25 10.0 FR France \n", + "26 8.0 FR France \n", + "27 5.0 FR France \n", + "28 4.0 FR France \n", + "29 5.0 FR France \n", + "... ... ... ... \n", + "1816 59.0 FR France \n", + "1817 64.0 FR France \n", + "1818 97.0 FR France \n", + "1819 93.0 FR France \n", + "1820 80.0 FR France \n", + "1821 116.0 FR France \n", + "1822 149.0 FR France \n", + "1823 281.0 FR France \n", + "1824 395.0 FR France \n", + "1825 485.0 FR France \n", + "1826 544.0 FR France \n", + "1827 689.0 FR France \n", + "1828 722.0 FR France \n", + "1829 762.0 FR France \n", + "1830 926.0 FR France \n", + "1831 1113.0 FR France \n", + "1832 1236.0 FR France \n", + "1833 832.0 FR France \n", + "1834 459.0 FR France \n", + "1835 207.0 FR France \n", + "1836 190.0 FR France \n", + "1837 198.0 FR France \n", + "1838 224.0 FR France \n", + "1839 266.0 FR France \n", + "1840 219.0 FR France \n", + "1841 176.0 FR France \n", + "1842 163.0 FR France \n", + "1843 195.0 FR France \n", + "1844 308.0 FR France \n", + "1845 213.0 FR France \n", + "\n", + "[1845 rows x 10 columns]" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +2120,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +2150,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 30, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +2175,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +2203,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm4HUWZ9+89y91v7s1OyEIChCVsAjGACCj7jAvMiCPMKDgyg/rxOY4zLjCjMh+IA64jOqKMsuqIgCgosoRA2AlJWEMWspM9N7nJzV1yl3NOfX90VZ/uc6q7q0/32XLf3/Pc5/StruXt6up6613qLRJCgMFgMBiMqEhUmwAGg8FgHBhghsJgMBiMWMAMhcFgMBixgBkKg8FgMGIBMxQGg8FgxAJmKAwGg8GIBcxQGAwGgxELmKEwGAwGIxYwQ2EwGAxGLEhVm4BKYsKECWLmzJnVJoPBYDDqCkuXLt0lhJgYlG9UMZSZM2diyZIl1SaDwWAw6gpEtNEkH6u8GAwGgxELmKEwGAwGIxYwQ2EwGAxGLGCGwmAwGIxYwAyFwWAwGLEgkKEQ0e1EtJOIljnSxhHRfCJaLX/HOu5dS0RriGgVEV3gSD+ZiN6S924hIpLpjUT0W5m+iIhmOspcIdtYTURXONJnybyrZdmG6F3BYDAYjCgwkVDuBHBhQdo1ABYIIWYDWCD/BxHNAXApgGNkmZ8SUVKWuRXAVQBmyz9V55UA9gghDgfwQwA3y7rGAbgOwCkA5gG4zsG4bgbwQ9n+HlkHg8FgMKqIQIYihHgWQHdB8kUA7pLXdwG42JF+rxBiSAixHsAaAPOIaAqAMUKIl4R15vDdBWVUXQ8AOEdKLxcAmC+E6BZC7AEwH8CF8t7ZMm9h+wc8sjmB+xZvQiabqzYpDAaD4UKpNpTJQohtACB/J8n0qQA2OfJtlmlT5XVhuquMECIDoAfAeJ+6xgPYK/MW1nXA439feRdf/d2buPslo31GDAaDUTHEbZQnTZrwSS+ljF9dxQQRXUVES4hoSVdXl1e2ukFX7xAAoGf/SJUpYTAYDDdKZSg7pBoL8nenTN8MYLoj3zQAW2X6NE26qwwRpQB0wFKxedW1C0CnzFtYVxGEELcJIeYKIeZOnBgYiqbmkc1Zqq50UsdXGQwGo3oolaE8DEB5XV0B4CFH+qXSc2sWLOP7K1It1ktEp0obyOUFZVRdlwB4StpZHgdwPhGNlcb48wE8Lu89LfMWtn/AI5OzhLFkgj2+GQxGbSEwOCQR/QbABwBMIKLNsDyvbgJwHxFdCeBdAB8HACHE20R0H4DlADIArhZCZGVVn4flMdYM4FH5BwC/BHAPEa2BJZlcKuvqJqIbACyW+a4XQijngK8BuJeIvgXgNVnHqEAmazGUVIIlFAaDUVsIZChCiMs8bp3jkf9GADdq0pcAOFaTPgjJkDT3bgdwuyZ9HSxX4lGHrJRQUqzyYjAYNQbWm9QZMtKGwhIKg8GoNTBDqTOo7Scy0ACDwWDUDJihMBgMBiMWMEOpMyhNl+fGGwaDwagSmKHUGWxNl2CWwmAwagvMUOoMJAMFMDthMBi1BmYodQYloeRyzFIYDEZtgRlKnYF9uxgMRq2CGUqdQbkLs3zCYDBqDcxQ6hRsk2cwGLUGZih1BmK3YQaDUaNghlJnsL28WERhMBg1BmYodQaOuMJgMGoVzFDqDLyvkcFg1CqYodQZ7H0odcBRnly+AzOveQTbewarTQqDwagAmKHUGerJbfg3r7wLAHhrS0+VKWEwGJUAM5Q6Qz2pvNjew2CMLjBDqTfYbsN1wFEYDMaoAjOUOkPebbjKhIQAuzgzGKMDzFDqDPWlRqorYhkMRkQwQ6kz8BTNYDBqFcxQGGUHK7wYjNEBZiiMsqG+1HMMBiMqmKEwyga2xTMYowvMUBgMBoMRC5ih1CnqwRWXVV4MxugCMxRG2VEHvI/BYMQAZih1CqqD5X/tU8hgMOIEMxQGg8FgxAJmKAcg7lu8CfNufLKG7Cy1QgeDwSgnIjEUIvoSEb1NRMuI6DdE1ERE44hoPhGtlr9jHfmvJaI1RLSKiC5wpJ9MRG/Je7eQ1OcQUSMR/VamLyKimY4yV8g2VhPRFVGeox7hxyy++rs3sbN3qOq2izrQyjEYjBhRMkMhoqkA/gnAXCHEsQCSAC4FcA2ABUKI2QAWyP9BRHPk/WMAXAjgp0SUlNXdCuAqALPl34Uy/UoAe4QQhwP4IYCbZV3jAFwH4BQA8wBc52RcDAssFzAYjEoiqsorBaCZiFIAWgBsBXARgLvk/bsAXCyvLwJwrxBiSAixHsAaAPOIaAqAMUKIl4S17L67oIyq6wEA50jp5QIA84UQ3UKIPQDmI8+ERgX8jPLqVq2ovGqEDAaDUWaUzFCEEFsAfA/AuwC2AegRQjwBYLIQYpvMsw3AJFlkKoBNjio2y7Sp8row3VVGCJEB0ANgvE9dowZ+zEKxmly1VV7s58VgjCpEUXmNhSVBzAJwMIBWIvqkXxFNmvBJL7VMIZ1XEdESIlrS1dXlQ96BBz6Ei8FgVBJRVF7nAlgvhOgSQowAeBDA+wDskGosyN+dMv9mANMd5afBUpFtlteF6a4yUq3WAaDbp64iCCFuE0LMFULMnThxYomPWp+oFVVTjZDBYDDKjCgM5V0ApxJRi7RrnANgBYCHASivqysAPCSvHwZwqfTcmgXL+P6KVIv1EtGpsp7LC8qoui4B8JS0szwO4HwiGislpfNl2gGPevKcqidaGQxGdKRKLSiEWEREDwB4FUAGwGsAbgPQBuA+IroSFtP5uMz/NhHdB2C5zH+1ECIrq/s8gDsBNAN4VP4BwC8B3ENEa2BJJpfKurqJ6AYAi2W+64UQ3aU+Sz3BROogIkAI5GpFRGEwGKMCJTMUABBCXAfLfdeJIVjSii7/jQBu1KQvAXCsJn0QkiFp7t0O4PaQJI8q1Ao/qRU6GAxGecE75esMYdRI1Z7HWeXFYIwuMEM5gFEr+1AYDMboADOUAxC1sg9Fgd2XGYzRAWYoBzJ4YyODwaggmKHUKfy0WXbolWpzFImomrdv/Wk57luyKTgjg8GoKiJ5eTGqB7852pIMRPVVXjEJKL94fj0A4G/mTg/IyWAwqgmWUA5gsFGewWBUEsxQ6hQmvKJW2Emt0MFgMMoLZih1ChP7SLUFFDbJMxijC8xQDkTU2HkoDAZjdIAZSp2irlRezNgYjFEBZih1CpMputrzuN+pkgwG48ADM5Q6QxgmwdGGGQxGJcEMpV5hcAQwsxMGg1FJMEOpM4iCX9+8VZZQWOHFYIwuMEOpM4ThEdXWeLGExGCMLjBDqVMYxfLiGZ3BYFQQzFDqDCYbGlWU32oHh2SVF4MxusAMpU5RDzvlGQzG6AIzlHqDZBL1tbGx2hQwGIxKgBlKncFkblY2lGrvQ+F9jQzG6AIzlDpFPeyUZzAYowvMUOoMam+JGbOoDY5SbecABoNRGTBDOQChNE3VPrGRNV4MxugCM5Q6g5JM6snLq1boYDAY5QUzlDqDKLrwy1tto3zlZJQte/dXrC0Gg6EHM5QQWLOzF398Y2u1yTDGaJEMHnp9C06/6Sm8uHZXtUlhMEY1mKGEwLk/eBZf+M1rVaUhr/LyhpIMqu02rFBuMl7duAcAsGp7b3kbYjAYvmCGUqcwiSRcbX5SKYWXekx2AmAwqgtmKHUGs1heoxN8QiSDUV0wQ6kziDChV2pD41V214BaeU4GY7QjEkMhok4ieoCIVhLRCiI6jYjGEdF8Ilotf8c68l9LRGuIaBURXeBIP5mI3pL3biG51CSiRiL6rUxfREQzHWWukG2sJqIrojzHAYcaCb1SKVFJSW0soDAY1UVUCeVHAB4TQhwF4AQAKwBcA2CBEGI2gAXyfxDRHACXAjgGwIUAfkpESVnPrQCuAjBb/l0o068EsEcIcTiAHwK4WdY1DsB1AE4BMA/AdU7GVW5U+yREwDD0StmpqA2o18H8hMGoLkpmKEQ0BsCZAH4JAEKIYSHEXgAXAbhLZrsLwMXy+iIA9wohhoQQ6wGsATCPiKYAGCOEeElYM/XdBWVUXQ8AOEdKLxcAmC+E6BZC7AEwH3kmVHZkq70FHaYqr+rTCZSfDrt2FlEYjKoiioRyKIAuAHcQ0WtE9AsiagUwWQixDQDk7ySZfyqATY7ym2XaVHldmO4qI4TIAOgBMN6nroogW8WJ2mRyrp3QK5Wd4JmdMBjVRRSGkgJwEoBbhRAnAuiHVG95QPe9C5/0Usu4GyW6ioiWENGSrq4uH/LMUU0JRdi/9aP0ikJFPbhHMxgMC1EYymYAm4UQi+T/D8BiMDukGgvyd6cj/3RH+WkAtsr0aZp0VxkiSgHoANDtU1cRhBC3CSHmCiHmTpw4sYTHLEb9qLzKT4cRItARJqoya7wYjOqiZIYihNgOYBMRHSmTzgGwHMDDAJTX1RUAHpLXDwO4VHpuzYJlfH9FqsV6iehUaR+5vKCMqusSAE9JO8vjAM4norHSGH++TKsIcrlKtVSMMEyi2vxETfBRYoqFOfel0io2BoPhRipi+S8A+DURNQBYB+DvYTGp+4joSgDvAvg4AAgh3iai+2AxnQyAq4UQWVnP5wHcCaAZwKPyD7AM/vcQ0RpYksmlsq5uIroBwGKZ73ohRHfEZzFGNW0oJrBDr9SAJAVEk5RMXJ9thsL8hMGoKiIxFCHE6wDmam6d45H/RgA3atKXADhWkz4IyZA0924HcHsYeuNCdW0o6oAtg4m23MQYIpoNxaR+qfKK0A6DwYgO3ilfAqrKUMKovKru5WUhCh1h1GUsobixqXsAM695BM+8E48zCoMRBGYoJaAWVF7+0YZVnurTCUS0oYRwPmAbihuvvmtFYb5/yaaAnAxGPGCGUgKqaZuw3YZ9SIhDMogDNmMrMx326xgl/GRgOIOnV+0MzMfBMhmVBjOUEEjI77MW3IZNUG2GohCFDCOj/CizoVz74Fv4+zsWY21XX7VJYTBcYIYSAgm54qvuTnn5a3KmfI2ovKJwNqOitpfX6GAp67r6AQB9gxmj/NUeBUIIPLl8BzLZKvrbMyoCZighkJAiSnUlFIPQK/aJjeWmJYAOKTNE8vIK1V55IYTAN/6wDMu37itzS/7I28gC8pWdEjM8tXIn/uHuJbh14dpqk8IoM5ihhEAtqbzqIThk3sU5Qh015B7d1TeEe17eiMtvf6VCLeqRt5EZPnmVh+vWvfsBANv3DVaXEEbZwQwlBGyVVw24DddPJK9oqKVnaExapy0MjWQDcpYZZCb51YoGcChjqboaUgfGdLNy+z7MvOYRvLxud7VJqTkcGG+4QkjYqqRamuZ8UCsqryg2FAO1u6o/jgm0byiD3X1D+nZkhw5mqstQ1GOaLmyqbUtTDKUxlQzIWR9YvN4KyvGnN7XhA0c1mKGEANWAysvkCOB8+PraYHzRbCiV3dh4zvcX4uRvPam9p177SLa6/aqecyTjz21rZV/OgSahtDRYAUb6h6osqdYgDow3XCEka8Aon59g6yesezQbSnx0mGDHPr10AlTfJqWgyMiYSihVJlvt20olaoPBRUVroyVp9Q+ZedmNJjBDCYFasKGEQbWpNPVG8kOYsuWeOKvdnwqKsQW5r9eKDeVAQzJhTZu1ogGoJTBDCQHby6sW9qH4qbzsHeq1MeAj2VBq5BmA+CaQ/cNZPL96V8nllVt4LfWNHyoVMYFRfTBDCYF8WPgqE4Kgj7M29qHEgVD7UMq+ESWeaq598E188peLsGFXf0nl87Y8s/xRJ/Inl+9AV6+3KjAIB6qgxAyyGMxQQqAmJJQy5o4bcaxMa0mtEBeDXit3uu8bHCmpvKnq1d6vEmEcDGWy+Ie7l+CTv1gUnDkA1fY2iwsHKoOMA8xQQiBpf8jeS8OX1u7G71/bXDYaQoVeqZHvN9JEUiPPAMQ3IUaNuKAWNkHMNg6Grsqu312aNOUipAbwq5c34i9+9Fy1yThgEfXExlEFshmKd57L/udlAMBfnTitrLSY2FBqReUV7TyU2kFcDNqUIXiBbJVmBYOvxPDstbDA+foflsVWVw08Ts2BJZQQqIl9KCGGcfVVDDHE8gpRuPxh8uNpIGmwMPFD2HEYR/9HGUt51VvtYCRCoMoaErhqDsxQQqCWdsobhV6pPpkAKndiY9ndhuOSUBLRxpHpOIxj4osjHlsQHTv3DUYy+peCgeHSNyXWyndVi2CGEgJKVWG6oawsMGi6VnbKx3FyZJiurpfv3FZ5lWpDkV9tJby8wsSOK5WQed9egPfeqI9OEDfUbv29A8Ml12FvLWbOUgRmKCFgryxr/MTGWkOlog2X+wOPTeWljPJltqHEoZlRbUTp2ziOMYgLM8e3AADWleiyDeT7ohaep9bADCUEammnvN+qnyIafWsJoWwo5SPDqj82o3y0cUQRJZwwMA/0441a2tjYlLbCpkRhkDXw+dcsmKGEQE3sQwnRdrU/4NDndkRFxGaC6IxbQinZyyv0yaERIhVItVokG0rpRWOHrQ6OsDnZllCYsRSBGUoI2MZQgyVK2SdRP7fhGtspX+7gkHHZjIL6K67uTNihU0otb/0GjcM46I3TU7D6Xod5RFkU1s5T1B6YoYSAWhmaGOXLNZmbqCBqTeUVyW3VZANnDO0Awf0VV3dGXWzkGahZO9EiFZReVqGWVF6IIQ5arXxXtQhmKCGQlL1lMqDKNejCrNirvZSKJ/SKed6oXR7MUGpjIiFDt+E4yI3jmamGNm6YMmM/1IrkX4tghhICYYyp5V7F+H3ophNOpRBF1RHKZhSRgwY1FVdvRp1gTSUPNUyj0B3n5Fkbo9FClG+Dvby8wQwlBCgMQylTROIw6p1aGfCVCr1Sbgmldhi0ab7o9NaS3SMOxBGWqEaGQU2CGUoIhInBVAuTTy3QAFQy9EqZjfIxd2fU+oKK2xJKpNV4yUXLWldUsA2lPGCGEgKJUEb5ctlQzA2t1R73dvuRCAmj8oqGShnlo3qlmRaLw/4RxzPHETEhLsThERgHoz5QEZmhEFGSiF4joj/J/8cR0XwiWi1/xzryXktEa4hoFRFd4Eg/mYjekvduIalbIqJGIvqtTF9ERDMdZa6QbawmoiuiPocJkiHchmvBy6tWBnyldPiRV/yBNol4+zPqGAl6v3GQG8czKzd23UCo1hiNYx8KoxhxSChfBLDC8f81ABYIIWYDWCD/BxHNAXApgGMAXAjgp0SUlGVuBXAVgNny70KZfiWAPUKIwwH8EMDNsq5xAK4DcAqAeQCuczKuciHMSXm1MOiqTUEcAkolVV6Vfmeltmdayg6bUlIr4dryA3nzk6pJ0dGM8jEScoAhEkMhomkAPgTgF47kiwDcJa/vAnCxI/1eIcSQEGI9gDUA5hHRFABjhBAvCesLu7ugjKrrAQDnSOnlAgDzhRDdQog9AOYjz4TKBpuhGIyosoVnMRC3Kxmaww9xhD4Pc5BYdJWXWTtRUanzamKRUGIg0s+nrdL2CIq4qRRgG4ofokoo/wXgqwCca/bJQohtACB/J8n0qQA2OfJtlmlT5XVhuquMECIDoAfAeJ+6ygo1jqqp8gqD//jjcgxlSg/THRcqJ6GU3g5QeS+v0m0opm7D5va2SkC3CKoWabxTvjwomaEQ0YcB7BRCLDUtokkTPumllnE3SnQVES0hoiVdXV1GhHpBNWBilC+X+sQ+n8InDzm65+mV0Z45GmJQuRgUjisyQKBRPlLt4duLijhqj9Mor0PFJZQY2q0lCWXhqp1YuGpntcmwEUVCOR3AR4loA4B7AZxNRL8CsEOqsSB/1dNuBjDdUX4agK0yfZom3VWGiFIAOgB0+9RVBCHEbUKIuUKIuRMnTiztSe3KrB8zt+FoTXmSYGKVrxHYqqgoEkoFH7TSRvmoCOqbODbgxfnMuqoq3aVxqBtrQfug8Ok7FuPTdyyuNhk2SmYoQohrhRDThBAzYRnbnxJCfBLAwwCU19UVAB6S1w8DuFR6bs2CZXx/RarFeonoVGkfubygjKrrEtmGAPA4gPOJaKw0xp8v08oK9QGb2EeqGZG4hiJdAIi6U948T/lDr0SrP2x7UemIJfRK9Cp866oWk462N6e2VIm1hHLsQ7kJwHlEtBrAefJ/CCHeBnAfgOUAHgNwtRBCKfg/D8uwvwbAWgCPyvRfAhhPRGsA/Aukx5gQohvADQAWy7/rZVpZoQaQ2U75Mqm8DAzdTn5SKnMZHMni969tjmdTXKVsKBGnP+cr0+r747ahRIymYBx6pczqnUw2h+09g573/aqouIQCc9d/LzAj8UYqjkqEEAsBLJTXuwGc45HvRgA3atKXADhWkz4I4OMedd0O4PZSaS4FahyZfGTlHnR+9ccRjO+mR1fizhc3YEJbI86YHVFVGAGVPFPeOcnkBJAs6Mb41gjRYq2Z9kksoVcMqrj+T8tx90sb8cY3z0dHS1pDh3dd1ZJQoqm8mKN4gXfKh4Ba6VV1p7zBJBGHxmtX3xAAoLs/ytnblTbKR2iooC3dqj7ud1pqdaZu0nEwQBPp5om3dwAA+oczHnV4l624PSIGB4580E1mLIVghhICavgMjQTrKsplQwlrLyiVuTTIWP0j2eiqgUhqszDtRFZ5uSUUv/txIGp9QcVjCb1ikEc9hzqJsrgO4fp13auaDSVKWWYkXmCGEgJqHPUP6Vdi7rzlHXS+k2cMIkpDyhoaw5noYZMrtYksTqO8fvKLVr9CVImqkkb5MIFQvTStfosg3il/YIEZSgioceQl2hfq4MtJQ7mRtiWU0hlKDDb5in68bqO87n6NSSgBPRvHxkaTsjkfhhFctrKzczwHbLGXlxeYoYSBHEH7h/W7z51qrvIfsOV9z+3lVZq4EoeEEo87bxgJJaoKySGhaBlKpOp92wtVztQoX2EJpZQTL6u1pyOShKJ+maEUgRlKCKjx42WUd7oTl+2ALUODbFQofXgctqBy70MpJa8OLglFQ3PtRRsOqt/bdhFXG0BeMvdyp/djnJW2R8QR5469vLzBDCUEgvahuBhK2QZdZQazkmvi2OUerQ5zRJ2gcwESStyTX8kSSshi1VZ5+S2CKi2h2PtQYugT9vIqBjOUEFADyFNCqRGVVxwt21FZI+1KjE5HmJVkvF5eGgnFIXXGwVxKNsob1x8HQzdXeXlKKBHrLwciuQ3XUuyVGgMzlBDISyh6fVY265yQykuDf6bo7eQP6YpeV9ndhu12Sm6mqLx+NR3P+40jQCEQ3K/x2FCC8yhG4vU8fra0Ss/Neam5vGNytIIZSgioMVgLEorpsC7VgzhhM5QYjJcl12A2KcYRBBFwr7CDJr843m/JVRiWi2MDnsn7V1k8GYrPPpRKr/Zzwv1bWh3MUrzADCUE1DAysqFE/FAGhjPo2T/iSUO5VV4JikPXXBmVi53DoKG9A8P4zJ2L7UgATrhtKMV1iZgWDHGF2w/c2BhH6BWDPGoh5TVWfMeqUyqsxEQdwPxMEMVN+kAHM5QQsEOveOwedxvlo7X1ge8uxAn/7wlPGvwQx4cZh1Feoex2mBCrzl+9vBFPrdyJO15YX3QvaB9K1sVwDOgKQOk2FLOClVJXmtpQtI4OiLdPg5ALYH5G4H0onmCGUgIq4eW1s7d4Be2Ev6Ezj5LjRMZglI/DtmHGT7xVKoUYlGFzGlPJ4nqcDENTNm6VV/SNjQH152KQEI1UjrK9ADcvfTgb57V3Y0s3duOkG+Zjzc6+YIJ8kHdUiC6hsOqrGMxQQiDQhlIBt+H8JO1dfxxNx7GjOI49M0Yb63Lu9vygjkRuTBUP/aDJza3yCm7LC8p1tdxuw3GMwDDP6bX3yo9NO/vZb8/TE2/vQHf/cOTTCVULcZzYGFTHzY+txKfveKXkduoRzFBCIH/AloeXl4FKRAiBF9fuKqu+2LlSL1VCScTo5lX2FXKIqMZDGSWh6BiK//sLcisOi6huw0Ek5Dc2lo4w4zSoT3SfTVB0Avue/DU5i8iXhhDq0SBaguq4deFaLFxV2hHc67r68Bc/eg57B0qP9l0NMEMJgTASitfAf3TZdvzt/yzC/77ybiQafFVeMfCqRAwh4f0VSGHr8Mkj3L9+ULHJ0kEMReuR5GgzhkgI5Y7lZVcfoZkw799LwvBTiTmT/PpDRW4wOTrCFwH2HhPEoTYLwk+eXoMV2/bhyRW1c168CZihhEDQKslE5aU8t97c1BONFr/VXBwqLyWgBMxGPftH8Mw7/quwaBJKcOH8vBmcV72jpEZ0c3scFZeNS0KJGkHAdCLLu1NHpzVMe1516O661Yzedav3FcQI1uzsxQtrdnnej+MUyzyDLLmKQOS9LOvLTsMMJQSCDtgK2scAAK2N1iGZXhGLA2kImZ9K3Ili75QPaPD3r27Gp+94BX2akP7xuA0b5AnRjgqerDu7Izj0ij5vWIgYJrVCerT35W8cdjATeAWm9jNiu2woPoSaSijn/uBZ/N0vFnneV8wtDnf4ck72cewDqwaYoYRAHBJKYV2BbRbUY7KJz+2tVNqAND2zY/9IDkJYZ9AX0RGRBsBQQgkxQSv7l56hOOoMMCD79ct3H1+Ju1/a4Hk/qh7ftJip8di3rRBFvdqx92QFSH1+7y8l39edGnfvMFBqyzj2oZRTQsk7bpSvjXIgljPlRw3ky83mBIQQRaHhs4arrTDQnW0OBHh5xdCuqSeSmqC99uZYdZROh5lRXtESVJfA82t2AwiWUIJcXP365b+fXgsAuPy0mV6UFLUXBqbec3GoZsLQ6LWZV0kVwTYU77rVcQr7BkuT7PNtRJdQKmFDScilvl8LtRhTjCWUEHC+Ph3DMNnYGFYBVQpjco7zUlVetsgdkE8dEaw9iMtw4vODEUOxDa3+HOXxt3dod8gX1lN4rRBXLK/IEorhRBaLvSBEXq/nUWNYd9tJmonKa0pHUwiKvBGPDcWsDt1z7e4bwl0vbvChI9iGUov2FZZQQsD58rNCFHWe24aif9m2UGM4Fqo1aEzPjVDPPKxhKJUKX69IDDq7ZXvPfkcZDcNwRRPW0BKTUT7qCtcuFaRWjUHlFaasV//ng0f61+/XH6qORMk7dd0sYjWkAAAgAElEQVTtRVMDhpNyckIgWbCw++ffvo7nVu/C6YdPwOGT2orKmKicswV9V+phenGCJZQQCJJQTI4ADjuOC9sxUwG5RJRICGpOqTP8jgouuw1F/gZJc8lkfrjrhJngfSj6vGERdoXrVT5Q5SV//QS3jbv7fb2iwrw6r+fxU3mZSn1xSFtW+eC2ghB2p7wu3zs7egEA/RpnFiCvIfD74IMWQNUASygh4HxpOm8TZ5rXai3sJFJYj8mqP47BlTd0++fLZL1tKHbZMksoeZWXf+6Uw26in9yc7fpPflH6OKoe35RB53wmcoUPfm8hcgLYcNOH9HXEYEPxN8qbtRVLDC5XPXFImIb5NQy9V9qCej1sQgk79JE3XDZbIZCIunqMASyhhIDzQ85qJlBX+PoAT7Cwk4IfLcX3osNe3QZ8NYqJalVehitphQ//+DncW7DhM8yKNMil1GmID1Jp1YWEElDcRHILWvmH8/LSp/tJKM7R4UtnyO/GC6Z951uH/DW1b+qeWy3AMh7iox36yKeNypwQGw7MUELA+c5GNAPByWRM9qqYoCSVVwwaL9PxqegbyfiovAwrW7ZlH6558K3QdNirziCG4tAx6yTISsXyir6x0SyfegY/daSCbh8REG5x4u1Ob7UfxKT9nku9L9Nn995kqWiKsiAIJ+Xo8qnn8aKDDI6PcKnYY4jcEAeYoYSAy8VR8wLDSCimKFJ5Ga2woq9W8hvAgiQUqyNGdCqvEDG2vOkwyCMULQEqr2SQysshoWjKm27CC0I+mKV3HfsGR/DjBau17Qj7158GVb3u3RRiyGNBEGbl6/U8qnm9I4TZKjuvvjOjxev9xKLyChGM1JnfCUVf0Jj1uxt3bLk4wAylROhEVefH4enxElH/aqK/rawNRa6CNf0RRr0QReViqkJKumwoxfeDbCRZlxE0woRkYA/4zmMr8f357+DRZduK7oUNvaJTRxbCax9RmMf09vKSEormnrkNxV1XELwm6nhUXtElFAUvxmfbUPzKFthQagHMUEJACGFPSrqB4DLKBxkoDVFslA+GM0+proSmcaAyPiovH1tsEbwPZwourfL4ba4E3EZ5/YmM8L0f1z4UVdRvohnJWPf27deFtHH/BrVjovLyyhMu2rA+Xb0XbZ/D2afBk6dpcMiySigGC5jCLQZe8GYoqh5vOlzjlVVe9QeB/KSkG9gmKpGw0VILGZDJRB/HDt78qt8/X95tWJfR/OP16heT7jJ143TuYdAxdtc+Ik35uPahmOxjaG6wDgDbrw1po8aAP2wbio99S8GToQSWdLQXOIlr6ndJKMF1m6oagySUeM5DMWu/FAnF5JhoV3RzllDqD0IAabmXQSuhOCbVoHhfYY3eThqCypsOrd19Q3jo9S2+dQTRaYde8VF5mUhlXh+OEXOUWYKYtfO2jv9Vah+KyZ6KtLT3ZHy850zbMbGheDN0/7ImTDZjj3l/Ju7XlqrDdEGm6zcgzzgjSZgG78/JoP260Ot5yMBt+ICyoRDRdCJ6mohWENHbRPRFmT6OiOYT0Wr5O9ZR5loiWkNEq4joAkf6yUT0lrx3C8neJKJGIvqtTF9ERDMdZa6QbawmoitKfY4wEMirvHTqlazBC46+DyUYpk18/lev4ov3vo7tPYOedQRN6GqyGtaqvMwllEheNzBbvQaFVnGvlv0l0Eg6eIN+8VNVmjJ7dX84mwt8j7r3Z9KGi0kHLKJ0t92OLN7t2HVEVHn5MTdTmEiYSmXpR4t1z8Nt2EBCcRatlbheUSSUDIB/FUIcDeBUAFcT0RwA1wBYIISYDWCB/B/y3qUAjgFwIYCfEpE62PtWAFcBmC3/LpTpVwLYI4Q4HMAPAdws6xoH4DoApwCYB+A6J+MqF5wSSpDHSrlUXian8Jl+LFv2WqFIdOoOU8Oj7Tas9fKCrCOYFk8biomAIvzrUAiSMIJWfHFLKCb9ossS1igPeEspSldfqoRiwmT9YnmZenk5vaJMnt/reUwklC/f/wZO+faTnvdNVKxbA8L8KHiZt+zzUPyYkYFNL5sT+MlTq7FvcMSznjhRMkMRQmwTQrwqr3sBrAAwFcBFAO6S2e4CcLG8vgjAvUKIISHEegBrAMwjoikAxgghXhLWSLm7oIyq6wEA50jp5QIA84UQ3UKIPQDmI8+EyoacABqS3jYUZ5rnBxpyg5aX27CpXsvPJK8+TN1i2NTw6xd6xVTKAYKNqH71qDxBDCXoAwzaExHbPpQQkpueDvlr6DYMeNtI1MTlbZT3p89lNyxB5WXKpN02CX+aAO+xkGco3pU8sHQzduzzDiJqsu/p239ekc/vK3n5b2z086cw6funVu7E9554Bzf8cbl3RTEiFhuKVEWdCGARgMlCiG2AxXQATJLZpgLY5Ci2WaZNldeF6a4yQogMgB4A433q0tF2FREtIaIlXV2lne+sIISwj47VDQTXCtdT/Fd1mbVZZEPRtFVEp1nVdj6desUOZxJAqNJV6yYk04nerx2TY5VFwH07X6AE4r8gMNFZm6ge7DWBT1bfhUBgC5IWl4TiwVAS/gwluE/17bnosFVexfdNInQ76wC8d5c74bWgU6rqOLz0/N7f0EieRlNGqWvD71ndGxu9vh+rvDopttyIzFCIqA3A7wD8sxBin19WTZrwSS+1jDtRiNuEEHOFEHMnTpzoQ14wckLYKi+dDcVllPecIL198rVtFowno4nesHI/CcLkowGCvLwsRFlRmrjq2iqvEOoZ3Qfo7AedUdctwXi8X4OVgpFtyecIZrvtgKact732oqjoAV4u11H7FHBKKP7l/ZiXiUu+E7oFnxAiHwYmis3O4P1NH9diXxfmEwbPrMp4bTi18hTnL0Qy4e1EVA5EYihElIbFTH4thHhQJu+QaizI350yfTOA6Y7i0wBslenTNOmuMkSUAtABoNunrrIiJ/Juw9powyYSioG4rMuvoP71K++847cNxc+YbaxGMlB5RTHKO6sN8gQLptVZV/F9Z1qwhOLVhoGEIty/Ovid2CcKfr3gpNfL6J4MkFCC1JXuSU2fJ2+U95dQ/MPX5+kzsUMGqaRNxqRXn+RPffQuO2lMo2dbJo4M6vse8Dkq3ES6S/mo6MuBKF5eBOCXAFYIIX7guPUwgCvk9RUAHnKkXyo9t2bBMr6/ItVivUR0qqzz8oIyqq5LADwl7SyPAzifiMZKY/z5Mq2sEE4JpUQbihqjpW7Qsid6P5WXsdFW34bVjvc9J0xUXpEYioGaSaUGG+X96wpaLbvUOyUasa085nmD6PCFI58XQ1ELDi8JM2hPpIlK0s9V3nSzqIsZmDAUzfM4x2gUhmLisNLrMIIXkpsxYI6q6YHh4n1I+XqD+z6/b64yOx+jhK8/HcCnALxFRK/LtH8DcBOA+4joSgDvAvg4AAgh3iai+wAsh+UhdrUQQvXW5wHcCaAZwKPyD7AY1j1EtAaWZHKprKubiG4AsFjmu14I0R3hWYwgRH5/QNCJjUHh60uNVJpnAj50GtXsb48xpdNP5ZWXpoJpMYksEKQeCGdD0dWTv9Z96CYrQjMJxXuCLczj54EXLD0EM+Mgo3wc+1DMGYp3W0H2La82ndjvmJxNPj8vJqvK+nVNnyMsfSEtJvvV1PPqIiUU5rFoKZ3WOFEyQxFCPA9v2+E5HmVuBHCjJn0JgGM16YOQDElz73YAt5vSGwecNhS/A7YakglvfXI2HEPxNMr7qbwMB4/Kp/tA8/f8uYGvyivETvmgycjK41E2V5xXX5eDNp3dKMCGYqKeMWGeJqpAE0YdBLdqRZ8nGbCCDXYbDs6bse2Gxfe37s3vgfIb0yaTsLtNDUNxRB0wcj0OUAP6hs7xUa8ZeYPKMmu7+jzbMFnAqmeoFEPhnfIhkBNAQypY5ZVOkucHHFpCKWQoJiovQxnFz/ag2n1yxU6jHcF6lZf6LW0CKCwbpGYKo/IKsoGVLKHEZJS39134umP7t+O8HRSE0FvlFUYK8srjff+7j68KLF9IR61IKL4LAp+d8s57Xm7Din6vEx2ddADeCxn1DFHPkTEFM5QQCJRQhAARkEomAgeKqU6zJKO80F8X5SugyQln0tKNe7zp85FQ4DOReNXjlx64yTKUeqb4fpCx1MSeY7JQMIkFpfpTLz0aLkYM6FWnInurvPzbNdHjq7EeZpNkcR2OdoxCyRQ/j1NCMXlPQY4KpgywsC33PX151RemNpRA6ZAllNqD04aiG7CZnEAqQUgmKHCTl8E3YeXzMMr7rdIE8pKUXzO+EoqD/sERb+anVkB+56EYqbw8mjAJ0W33SUCnBqmsnPd1k4lzIjMJrRN0yJMfY1DPoj0Js+DXEwEMEshLKF59l3P1me6+ozkvJmtHG/YjNowNJXgxpnte5YKbSlCk3fZBTLawrJ/Ky2vhqZL7hzM+6lUDhmJLKJUBM5QQyAmBVIANJUGEBPmovBRDMZRQiozy8td3hSWA90zvDKxb1aAbjM5BrJiTDn4Sip+qoxCeOvyACc3dTtAK2HntPeEAwRKKV1MmajFh0C92MMQIKi8TQ3YYo7yuBud78xrz+TOAIkgoBsxcBDyv2mzYnE4aqSa9bChh3ceLGIrJya4Oxw2vvSiuxZZHPfZ7ZQml9pATAmmf8PVZW0LxVknZ5zoYiiiFY9rEICggHOcp+OSTt3S0OMl3nnRYCP/QK5LWEGqgQjir9Y73FSy1FbahyzqUyasXgm0o+rac7rlBUoy/ikeqvHwkvyCY0JuwVV7+49WrDleAwgA1YBDVJsEhATPJQacWG85a77e5IRnoDg2Y2ZWCJINCuoBCJhwsfXjZUdx9r81Ssf0nCsxQQkDAERzSwyifSBBSiUTgmfImaiBnfpsGoU8vhL0xziePn4HffAezNaqHM8V5/CSgQgStbv3qMbErOcsnE6R9Jicz0EZCMJA+PvqT5+3roICXJhLKiJaxyXoCpmiTd5jfKR8sIer63zk5BjEUHQ2zJ7UFlgfc48BzV7+L6RQ/j3q/TemkocpL3ycmGyRdTKfguU12/Tufd8Pufm0eIxuK8vJio3ztYPOeASxYscOyofh4eeWEFd4+kQgeaL42EJ+BYjJJC+G/Q76oLs134yTP78Q/tRL0PQ/FYCybqLy8VrAmdiUnHV469GGXykujwjOYSPY59h8ESSj+NhTpPadRd5RyDK4Xs6VAlVf+Wkeu0Wrdg6F84w/LsHpnH9oaU77lnXXo6tGla1VeGYfKK4JRPmswJjO5XH7Pmo/Ky3sfSv764df1QUDcof/19YwY2q/iQpSNjaMGf/Gj59ArJ4p0wBHAqQQhSfoVMJAfBH4D2s/byCTMiIDjdEJfEUXR7T95+qnnYlN5RZBQbBtKQDuqz1IJ0jK54UwOLQ1JDAxnPdzCna6gJlKXv4TiV0XGh1FnDCcJk30Ktg3MYJLWMhSXFORPR+Fu/Xte3ggAaEwl0DcU5DWVQypByOSEt/QfIJHZDKUhaRTO3Uvl5ZTm/JhoQzKBkWy2qN+M1Hc5gamdzdiydz8mjWnS5jE5Zji/B6gyYAnFAL2OVaeRUd7Hy0ut6P0Ygl+ICFXMl6EIYSSh+OnyTb1q1L2RiCovEwnFq0/tM+UDGIr6AJMJ8jTKt8ijd7UHqOXyoSxMpC6vbjOxg/ltbBwJ4dChbGlBq3qvY4Jdh5JppiVnP3l6eck2/AIdKnq9kMkK2znE81kctOj6bdghoZis2L0WUiYqLz96RwxsKNmcQGtjEg3JhGv+cefJX3s9T15CqQxLYYYSEspArRtIyiifSpCnTtpEQvHzYc+74nrTKOA8QtRfkgGCjfJ+kYTVx6V1b1WSg8FgLkUXnU+XeQ29vNLJhLY9S0KxhHa9UT7n+/6L8gdJVCZGeQ3zCBNlwe9AOCA/0TgPhHLT4Zw8i++b2GmCGIpK93usnBBoDGIoLjtLcVtOCcVI5RWwl8yP5mwuz1BK9fJKEKG5IYn9HgEijfYAsdtwbSPtEw76+TW70D0wjHQyEejX77ea9tOxqjHuJzUIAYeXl2c23wnfHYbE+1lsTzGf82FMFkdmXkb6subRhq37Xu9nOJuXUHR2iqxwntjp25QvPbZk6LNgV/QVSn5CCONVp3NSC3J60B0DDQSvxk3CiNiLjox+k57yrvMNvZITaEypd+PVTv4hdQuc4ZA2FBMJxXsfSs4eK4VZXCozT7WoxVBaGpKuDZlOGO1DUZtKDRchUcEMJSRSHoY2ANjWM4jBEWsgeemkTc5jMPGc8TRQy3qTJjovCd1kY6Lycq7gtCovmWTi8+8dKjx4FeZUA/q7SVuqwHSKPIy2WTRLhqJjcFnXJFG61KWa9lclSoZSkMfZB5v36KUKZ94GHxWtlW79eqlVnO8lyCivm8RzPvdbC/o6KBRNPuxRsOSgi66s0hrTiUD1nEWXh5eXSyXtQ69H3zvnBr9nSSYIzemk5255k31Rqm+D1I1xgRlKSNg69MJB4hhk6SR56qRNPJLcHi3ue0GxvFS6CvrnK6HYtgf9psT8WRmlfXzqrol6yNOjxsAo71Tr+atNLGeFtIdb93Amh6ZUEgnST8CWCslc5eWtxpN2Jz9Vogq9UpDHSfeClTvhB7dE5S8teTGUIBtJ0CSu6CWyJjVnHW1Nbp8gf6O8gcorgLkNZbJIJaz37/X9OJ/Bk6EYSQZ+Ki8DG4qwTtO0VF4eEoqjqLfKy2prx77BithRmKGERMrjPJRBh1iaTiZ8VjfB6hkXQwlplM8VMhTPVvx1+TmRX2F52YOcdOr0zXkvLx8iVHmNhAO4GWrQit/K77PKlUbqpIeNaziTQ0MqgVRSz3AsG5nah+TZTCAtvvHPJLy858JsVMvmckinvL0SnelDHuoot7Ssue9gOLpVsKq/RRrCnfS3N6Vdec0lFK/J0zEeNeNJvd9EwjuShWtzqwfDNzlXJZP1tl+phUQ6qZeUAevbSRJiUHlZ6XsGRrDNQ60ZJ5ihhISXhOKMd+Wn8lIrJ1+G4qNjda3GNXWo71+dFe4Lmzlpbol8yBVP9V3ABxzGKD/sUq3onzHIhgL4n52dk3rpVDKhlQ6GMjk0phJIJUhvQ/FZdWrbC3Cj9WUokr7CycSLuevbgb0oCNrZ76USGQmQUJwLKZ2NRC2ImqWzg1MCmNhmnWr46ffNtGgMWGQFeXm5bSjFtKj3m0x4qyyd/eCljhoYzqIpHUSLc6zo6WxKedtysjlllE95qrxMNjaqMfb5DxxmLzLLCWYoIZFKkKUSKXiBzpWNn8pLfVDGEkqhUd65GtepIGRaylZ5ebeTPwJYb1C3V4SeEoqVThT9PJQRDzWASbwiIYDJ8sjVjR67ilW+BJEnw1Ar2GSCPGwowtGvuvqtREVLUIBQf+85i77uvmFtWRPkcv7RsS0a/BlKkL2gX3ogtTQktSov5cqrnB0K88w9ZCyu/uDhFi1+0qWByssZrcHLbbghlbBi7RmpvPR5BkeyGNfSIK+9bCA5TxuK+r8xnfBnKAlCczrhqfIy8TbLZAUmj2nE1y48CpM99rPECWYoIZGWE45z/nxhzS68/+an83l8VF5qwPoZZP1Eaj+XYmf+JAWrvBR0k9RIVqA57b0nA8gH22trSOkNssL960uDhyulOzikt5pvfKs1ifuF+7ZWfZZjhddO6oZUAumk/kPPCn83XDUpj5WTTRwqr96hjJEaRl9HzldNlMsJezNuNie0CwfnJK9zQVeTXWdzWsuU1DhXDKVQAkgnEzaNQx6qHUAxlBBeXjqjfDaHxlRSBm/1klCcfa3pj2wOI1mBsa2KoXipCoXt4FH4rStG1ZhK+sQlE0gSoaUhhYERvX3LOQQ9Fwy5nK2mrQSYoYTEB4+chAS5N8Y9/vZ2+/of3j/LcksNGLA54T1BOlelhfU4JR99sD4rzUTlpfaqaFeWuZwt1nv546vVaUdLWh/E0LahhFN5hZVQcgJ2+I4BD599wJogUskE0gk9w9+ydz8aktaCQbtTPus0yhfXryZLNXl6GuWFucoLALr78+OhsIxf345kBZrkokCXT/V5uzSO6xiCU+LTPY5i4J0tDfpxZKu8iiWUkaxAKkm25KFblNj1OCQUr2/L2TdeRnlrwUDei6QACUU97zjJULzsG9lcfkFW2C+KUTX5SCjKKcYyypfusOIcs5UAM5QQ+PDxU3BwZ3NRcMGEw0X3jCMmIp1MaD+ud3b0YsPuAft/r8G0dle/Z56RXM7eY+IXEddPNaOQ9GEomVywhKKioHa2pGP18vLah+M1d+aEtasYAPqGvFe5I9JLSxccclO39V7uXbzJc2NqLlBCsdpulcxNu2E0l9+7E6TyGttiGa13OxYYhXT7TcIj2Zz9DnUqnjxDSUv6i12Ul23Zl6ddU4eaUMe26iUU2yivGIrDtqE2XjbaEoqfxJZz2FCC7T1ebsMNyQSa00kMZrLaBZ2LoegO6SpgKH4SimLmw9nCb9j6vyntLaFkc5aLe3Pae2Oj+9vwZrJqzFYCzFBC4KiD2gGgKFZXyiENNMoVkG6CveZ3b7r+9xpM3/jDMvu62D3Zf9WpJg4zCcX61TKUbLANpV9O3mNbGpDJiSJ6VB+ZqLxcDMVjH44nYxLAQR3NAIBte733ZmSylvifShbbSPqGnOF19CqRTE7Y+5C0k5GcEDuarQl6v0ZV4fKMC5BQlM57i+OZCtUnXhMaYL3XZj8JRb53Jd0VenoVrr71EkoGyQShtSHlIelKCSWdkvS63XKTCQIRoSGV8N0rkcv5H7+t6tNdKwxlcmhMJ9DUkPQ8Z8TJ1HQLAiUBK7Wmjglam09z9iKn0J6qvqfGVML3WOtkwtrYODCiZ35u5x1tNdg/kt9bVQkwQzHAWUdMBAB87qzDAFiTtXNySxWsALxsKFM6rUnvjNkTAOgllMKBU2hPyDpWPvry1m9+Y6PPKtjnVEDlIptOkqexNC+hWB9X4YpO1W8moeilEqNVWC6H9qYU2ptS2N0/rM2j6EklSaokC/Xa1v/fveR4z+MHnEZuXZes2dkHAJggvZd0ezvUMyQ8HBlsWnMCc6aMAQCs2JaXElQ/jZcrZL9JeDib8/VGUu2r/SCFk2Oh+lDX//1DWbSkk2hMJz3HEeCUUJwLh7w6pjGZ8HRdtvLmbBuKd2TdYIaiJBQAWmO3iz5NHUrlNd5H5ZWRUqiSVAv7RX0XQRJKUoZe8WR+zujYHt/G/uGsPV9UAsxQDPDtvz4Oz3zlAzbjKGQYTgnlpBljvUOvCOCwia045uAOAMDdL20syvLYMsse85ULjpTRVYtF8E65Au7XqHfUBxy0sTGbE/ZA16u8rLhVqUTCU0JRq/qDpFfT+l1uDyvVR0Y2FJeqwclQ3DTroPTEbY0pz8OIVL1pZSMpeD9qclEqTa8jnv1UXn9/52IAeRVon4YWNYE0pZMYyXrv7M9kcxjb2oDmdNL1TKoPTjl0HIBgCcVefGiaUX3e3qi3oag+Oe3Q8QD0Y2n/cBYtjUk0phJaWjKFDKXgVExlMG5M69XEgDV+cgKBNhQ12TckE1rJYTiTQ2M6adMyoKHXyWR0C6m8is9b5VUo+RVKKOo7bkonPdV3ysurxYf5OaU9r3E0OJK1n7cSYIZigKmdzThkfKv9f3tTyqWrV6uDk2Z02kY/3WqtbyiD1sYUlssV50Ovb3Hdz+UEPv/rVwEAsya0SsblVJFY1xPbrQl8d/9QURu2S2LAx+f8EPTeOTLQpUY9pKAmuvdMHwug2MW1VJWXO2qs86MpLieE8lRKoLUxZTsK6GCpvEi7oWzQcfiSZQPT26eCXFcBYEyzNZHomJuaXFp8QrwA1mSWShJaG5Pod05ysj9aG7wN6UBe7eKnHlV15Y3y7klLTdBqpa1VeY1k0dKQwpimtF4iczDQQnpH5PsALI+noKNug/p+YChv3xjUSDvKhtLkM0n3OsLa61z/TYzyw453rHOpz0so3s47ajHQ7MP8nO/LS9gdGM7aElklwAylBLQ1plwD78FXNwMA7r7yFADeKq+9A8MY29KADx13EABg9uR21/3ugfyEfPy0DosxOQa1YgJKwnlrS09RG2rl3JhWE5a/hxagV3llsgLJREKrHlLo6htCKkGY0mnp+gs/LltCCWuUz7knHTXhvbZpL2Ze8whee3eP475Vd0PKYii+RvmspZfWSV1qcmlKJ9DakNR6iw2OZPOrTh+Dusrz779fVnRPSS1qQtL17cBwBsMZa7JtbkhiwMGYCst7GbKHMjnkRJ5Z6FQiagJv8/DyyjMUb6+1xeu7kUoQOlvS6BvKeO7sV33iXMgoFSRgMQsvhqLKtHlIUgpqTI9va9Ayi6FMFo2phB1RWs9Q8n2tm+yVgTxvlNe7JwOwXdCHihhKzoopl/S2oahNmM02rbrx6O/xCUgbCjOU2kZbYwoLV3XZYuaOfUN2OmB9xDnhXu0AwK6+YYxva8An3jsDM8a1wGk27+4fxtxvPWn/r1bKzg9U3T9+Wgfam1JYK3X2CkII+3Q3tZrzYijzblxgX3upvNJJFYpfP1i39QxiUnuj/dxFu7rlx2LplP2ZinMV7vyQhzM52zh9/5JNAID5y3fY99XzpRKEtsakr8pL7XtIadyC1WqvOZ1EW1NKq64ayuTsydfP/pHffyCKVCJKOlX7ZnQRBr4unTLSyQQO7mjGu915z8CdcqxNH9cCANqVOAD84rl1AIAx0oNLb0Ox0mwvr4LJUdGu6ihkftt69mP7vkGs3tln22oWr+925VFMSW323OeIZJDJ5ZCUKq+GVMJzH4o6BXNieyOIvNV8//PsOjvffs1E3zeUsVb9SkLR1KMYSkez3nOxUELxU3k1JBPWIVsF73gkJ5BOeLunq3obUwlbHamT/vqHMvZ37tUng2yUr328tG43AGtiu/359QDcdpRDxlsfu9Plsmf/CLbs3W8b8ya0Nbj2F/zTb5kSQ9EAABySSURBVF5ztdEoVzdqUDtDirQ3pTC2paEozMgbm3vw/fnvAICnyyJQrNvXMZT+IWsgFqrdFIQQWLalBwd1NNkfaOGmwkzWcn3M5oSnv77CSofhOVOg8pokVXwqFpFTJ6zyppMJtDak0OcR5BCwPq6mtOXl5WVDaUon0dZYXI8QFnNobUhpDeqLN+Qn0lNmjbcn2K5et1rys/csBQBbquvqK46v9OCrW2SbloHfeazwjl4r/6ETLRXsPo9QM997whoHeU+94nf4Szl2lRRTGK7ENkC3Nbj+V3D20cptvQCAL933ekEdVp6DpUOK02liYDhrRxxuTCVstWMhegasZ+xoTqPFJ/ruVjk+xjSliybY7v5h7Ng3hCMmt9mLAl3f9Q6OoDmdtNRRmj5bs7MP6SRh+tgWT+a2TtoSD+poQkMqUdSv1n4osjeU6jAkVV6KVt0C57dLNtnSmldwz/2s8qof9A5mcP2flgMArjxjlp0+d6ZlMFWr0VxO4IT/9wSAvAvouNYG18e1cnuvq+6mdNIKsy4HtXPwH3NwB8Y0p4oG0R6HykxNEjo9cGF4km6NZ9SegWGMb22Q7pzFH83G3QN4Z0cfzptzkL0CKvy4RnI52+Np74B3jK3Hlm3D2q48TU5326FMDq2NKXviAeDyWlEGTmWU1314AHDfkk14eV032pvSMvijfjXenE6ivSmF3oJ6Mg7DcDqZKFIT3vHCevv68Elt+PFlJ/k+t/L0e3vrPu19QO17cas9d+4bQntjyrbp7ewttqM50ZiyvJr6horp+OMbljQ7qd1ibl5eXuodFjqB5Dc1pvHXJ00DALzvsAmuPEpinNLRjEntjVgunzeTzWFgOGtLRzPGt2LV9n1aSVYd19vRnPaMbaXeX37vhjuPchiZPbkNB3cWu2Mr9A5m0N6UkvH4ir+dLXv3Y0pHM5obkmhKJbUMZY/8nqZ2NsswTAX2uhGLWXhJKGrx0phK2N+xF8MAlAq++P6GXf3oH2YJpeahgtk5Ixqo2D6A5VLY3pjCu3LiXrIxr/M/VXrMjGttQLfDqL6rzz0xWBu+8pFG1Ud1y2Un4qCOJrQ3povOxd7hiCaqPMF0YvuGXQOu/59fs8v1/60L12JgOIuxrQ0Y39pQRNvegWF84HsLAQAnzujMe8041VbZnL3CBtzMzonVO3rx5fvd+3O6+x2G0ay1oU151QD5kOxAXrpKJ/2N8l99wGpj4+5+pBNUJJUplVtzQ7GEMjCcwe+l1NCUTmrVGIXIb7TU03PUQWNAVOwZ58SYpjQaUm61550vbkDvUMYOrKhUYE44J+Vjp1rq0X37M677zonw2KmWe7KXl9cEW0JxP4t6tp9/8mScfvh4EAHTxja78qh32dmSxsGdzfY4+LlUT6kJ84RpHdixbwi7+orHiVpMjWlOo6VBP4lffvsrAIAvnD3b2l1ekEfV0dnSYH+rOmb/5pYeTOlo8vTU3N4zaKvvdO0AwJ/f2gbAcmbQ2VOVoTyZIK0NZWA4i0xOoKM5bauTCyVmNX4/d9ZhGNOUKpoLAODTd1h9ovMGLReYoZSAL513BBIErNqet2E4I3kSEWaMb7F3xa/flc/3qVMPAQCMa21Ed/8w5i/f4RkupLM5bau11IQwQU6s7U3Fq5Lt+/IMRU3AOuljg2R0ap8DkGdY23sGcfNjKy0aWxowaUxj0Sr414veta+nj2tBk9wfcO8r+XQ1iNUE0+OxUr/ov1+wJ6bf/OOpkuZ8e4MjlnHSuXDd7WBwalLobElbDMXHhgIAa7v60dnSgF6HAXnBih34w2tb0N6YkiqvNPaPZG11xI+eXI2vyk2pjekE0qniSaLQOKsmgp8uXCPpHMYHJRNua0zh6CljMLWzGeu6ihlKUnqiXXbKDNeE5GQUDakEJrY34jFH2B8AWLl9H+Z883H7f8VQeh0SyvefeAdHfeMxAMDfzJ2GzmZrrBRKZWqBoOw1zvEF5G2E7U1pEFmbGwsZ6PZ9gyCy7BoHjWnCyu29EELgu4+vAgBM6WiS/WPV9fU/vFXUH0rlN6YpLQ+cKn7Hr0jbTU7u0yqc6Pfut76DjmZLQm1pSBZNwtt7BrFi2z6cOGMsUonizclru/qwqXvAtul1NqexRzOun5A2vtbGlCXhFzGUjDwvXs8c9+7Pj2klwRXSqr7r6eOa0d6ULrLXAnnb2GmHjS+6Vy4wQykBHc1pzD1kHH72zFo77YgCj62Z41tt1dJGyViWfP1cO37WhLYGjGQF/vHuJfi6xhsIsKSYd7sHkMsJe8CMkZJHe1O6SHJQx7imEmTbcX7+7DpXrLGfP7MW3318FQ7uaMKfv3gGvnXxsQDyE77zbPFxrQ2Y1N5UZAdw6n0P7miyd+U7w8q8tM6Seg6dYKlmvM5iUJPWoRNa8Z7pnQDyevZF63Zjy979aGtMudQTztA0asU7tqVBGlKFHUYFsCbhGx9Zbv//X594Dya2N0II4P4llnfelXctweqdfbatoFC6SDliITWlLKNu4QdcODEcMs567udW78L6Xf347D1LbWnks2ceCgA49uAOLNnQ7WIUD72+BdmcwNcuPAptcoWrJAe1qPj6h44GYNlnVmzb53q/1/9xuT2ZfuPDcwBATjj5SfgnT6+xr79ywVGY1N6Iloaky8njF8+ts9W5lgs7YVN3/h2MZHP43K9elfWn7H4bKFgN7+gZxIS2RqSTCbx31jh09Q65JmGlHp49uQ1AscS2ec8Avnz/GwAsd+zmhmIbyncfX2lf/83c6WhOW5GPlSff06t24ku/teo4SDKDMZpJ+NT/tBxVTj5kLMa3NWDNzj773ewfzuKc7z+DrT2Ddh3j2xpci5vBkSx+9ORq+/+WdBIdzWnsLZDON+4ekNKH5RJeKKU4bUZtjZbNrlCaenur5eE5oa0RHS16xjY4ksX7DhuP8+ZMLrpXLtQ1QyGiC4loFRGtIaJrKtn23506w76e2tmMM+VueoWZEywJZenGbmzsHsDM8S22+gfIG1UBy/23IZWwJxqF8485CJv37Mdrm/baE4L6eBNkeY3NvOYRvL21B0IIbN83iKOnjMEr/36urRcHgBcdKq3/fNT6+JSRVO1puU96UCmJaEJbA047bDwmtjeidzDj0klv2NWPVIKw6N/OsRnkrAmtOFIyVSGEPdkcMbkdHc1pLFiZ98wCgAeWbsbMax4BAJx91CQ89eUP2LreH0rHgk/c9jIAy+D7s0+ehNaGJGaMa8F6x6pe6eTHtTbgzCMs/f0Z33naVgk8/MZW/M9zln3jKxcciYtPnGo/87/9/i0sXJU/9VC9n/YCQ6jTqNnVN4SDOprw7Opd+Nkza21mW+gg0dGSxhfOPhzJBOGD31uIRQ7vpyNlCJ/3zhqHrT2DOOM7T2PzngFcdfcSfPFey6itmKtT5fXqJkt1WhiGXBn6AXfcL/U+LJWXXkKc2N6IRIJw+KQ2rO3KM5RvPbICgGWbak4ncXBnMzbvyTPqb/0pz6SVNNzamEJfgfTw/Jpdtvp11gRrkbNIOrWcML3TfhcfPeFgAMChE9pc5W+UdACWZNdSwFB27hvEfz+dX9jNGN9iLwyU+uxffpt3FFB7asY0p3Dfks2Y+635AIDXN+218xw7tQNnHzUJq3f22RP1lr35Z58gaZ7Q1uhS0d37yrv44ZPW2D1xRicSCcLEtkbXguz+JZuwfNs+nHroeNvg7txj8uq7e/CXtzwHAOhobkAyQZjS0Vxk73ljc49N64xxLdhQwIj3DY5g9c4+e1NqpVC3DIWIkgD+G8BfAJgD4DIimlOp9i96z1T7Wmf0Omyi9WF87NaX8Mib24omnGOndtjXq3f2YTiTw2GT2lzGZ2W4/ditL+Jf5SptvJz0Tpwx1s73oVuex23PrsPCVV2Y2tlsuzQ++sUzAFgGvedWd7nUETd97HgAwKmzrAH346fWYPGGbuyUao3f/5/T0d6UxlTJeL7uiC+2aH03zjxiomtiO+qgdmzfN4ifPLXaNfg/dPwUnHP0JLyyfg+29wxiUMYlmr88v6r+j48c4+qbkazADod65fxjJuPCY6fg7esvxNlHTcKarj70Do5g6cZu3Phna8IZ19pg788BgCXS6+rFNbvttJnSkK0mMQD49B2L7esLjrH2BylVwe6+IWzc3W97TAGW6mrpxj3o7h/GTY+uxHtvfBJCCOzpH8b0cc145d/PsfOeeuh4rRePUiEp77XNe/bjv55cbatKAGDOwZY6sjmdxOBIDvct2YQ3N+UnEQD47Fn5Bcglt76I37+2GRParXfflE7gGFnHtLEteGNzD7bu3W8vDCaPacQNF+X7vSmVxHOrd2FwJOtS9Vxy8jQQWV5Na7v6bWbwK6n2PGP2BFu919GctlV4W/bux68XbcSWvfuxWko+sySzUJt3V+/IO6IQET5ywsFYsHIHBkeyeGntbuzuG3IxyFQygcMmtmHZlh5btfnm5vxerKf+9Sz5vM2yXwcwlMlqV+/qHe/qG8bAcAYX//cLVhsJwqwJrTati6UE+dOFeaZ1sfz2J7U3Yuve/RDCcotXi7XJYxpx32dPs/KMyTOUXE7gK9KWN2/WODv+3G8Xb7Lr/toDeXviYXLROaG90eXAs2XvftyyYDVmT2rD1M5mHDaxDTt7h2yJK5sTOOs7TwMAjpuW/yYqgVRwlprFPABrhBDrAICI7gVwEYDlvqVixJP/chbO/cEz+Ju504ruXXjsQfiX+96w/1cThMKk9iZcf9Ex+OZDb9tpJ0zrxPNfO9tWWUwe04SJ7e4Vjvp4L5s3HSu27cM9L1vhW9RgVuoaADh6yhicNKMTD762BQ++tsWOSfadjx2PwydZH0xHSxoXHDMZj7+9Ax//2UsArFWpkmAuPPYgHPPcGPzu1c34ndzACQCfeX/eqw2wxP+e/SP43hPv2BPwI//0fjSlk5gzZQwefHWLrVJw4p4r52GGVM8BwPc+fgK+fP8buOx/LOnkpr8+DpfOy0uD58+ZjDtf3IBTv73Alo6Om9phM9rPnnUofv7MOvztLxZhUrvb/nPunEkA8icFOvGHq0+3pQK1GPjoT14oynfRe6ZiKJNzhc2Z+60nsbt/GJefdohLMlR97MRtnzoZR0vblbIfAJbEpvDKv59jb76bO9NaOHzVMdHMkmrEr11wFH7+jGXcXrJxj+38cdm86fjPvz7ezq/Uju+76Sk77bqPHIO/PG6K/f+rcrPoUd94zFaDAsAV0gFlSkcTnl+zC5+47WU0yPNijp4yBvfIzbwAcOL0sbj9hfW25Knwi8vnAgBmjGtxpT/95Q+4/j9/zmT88Y2ttn3HCeUI85ETDsY9L2/EMdc97rrfnE7iUPnepo212rlEjmfAmvwX/Vue2R91UDuWyv5y2pz+9E/vB5CXppzSHwC88c3z0SGjQE/uaMLAcBazrv0z/umc2RjK5HDKrHH45affazuOTOloxp6BkaI+ee/McbZX3Q1/Wo6BoQweX77dZr4HdzRhklywJQh49p0unP39hfjM6bPwzYesxd37pG1EMZ5rH3wL582ZjC1799tM9KRDxqKSqFsJBcBUAJsc/2+WaRXD4ZPa8No3zsM/nnFo0b2WhhTmf+lM+/8f/M17ivJcftpMfFKqzr5zyfE48qB2jG1tsCdzwP3R3XLZifY1EeGGi4/Fs1/5oGvi+lvH5AsApzhE3mfe6QIAnDzTPchuuexEfGLudMdztdtOBk3pJL754WLB75KT3Ez0U6fOLMpz9EHWxPkRqc4oxKXvnY4zZrtVhR86bgoO7miyV7rvn+12Qz3pkLGY2tmM/uEs+oYyGNfagD9+4f32/a+cf6QdFVoxkw8dPwXr//Mv7eCCUzub8fenz7QlQCCvYgLyH6gT131kDjbc9CEcO7UD1190LK53rO7V6nHerHGuMpPa3Yzr3KMn4XwpBQGWrv64qe4V5PUXHeNiSu8/3P38nS35c9gTCcLSr5+LExy0A8DHHe8SAE4vqANwPy/gHltKGl3wr2fhKPkOnXQrl+mpnW6Prr89xT32AOCqMw/FuVKHn0wQ3rjufLzvsPH49T+cUqS6+8gJB+Py0w4pquOJL52J//io1d/vnTnWtg8qfOi4KXj1G+fZ/xfeB4D7PnuavQCx6hlXlOf+z51mP+/M8cVj4F/OO8JmJgDwkePz4/qWBZbt5KvS9qXw4eOn2AsAhde/eR6a0kl0tKTxlzJqxvfnv2PvW7vqzEPxmGPuUDSt6+rH1/+wDALAl88/Al+58CgA+W/kT29uwxfvfR3feWwVpnY2Y+nXz7U3pVYKFLSDuVZBRB8HcIEQ4h/k/58CME8I8YWCfFcBuAoAZsyYcfLGjcUBGcuJl9buxsBwBuccrTeM5WSQxigRQTPZHJ5csRNnHzXJ3simkM0J3PHCekxoa8TPnlmLfzzjUHzs5GKJCrA8hF5auxsXv2eqy01XtZGSK1PnuSCF2NQ9gKZ0EhPaGlwfMGDZch5dth05IfCFs2djktTf657nzhc3YN6scTh+WmfR/b6hDF5auxtPr9qJS987vShPz/4RbO8ZxItrd2FMU9rzebM5gUfe2oazj5rkmgQA2KFPVu3oRXtTyl71FuKxZdvxHw+/jR984gScduj4omcWQuDNzT348VNr8O2/OtZedRbS++KaXegdyuCvT5xaFL16YDiDjbsH8NaWHhw/rcOeYHT9sq6rT9tngyNZbNm7HwtW7MCZR0z0rONHT67GD598B9/+q+OKGERX7xAWb+jGT55agykdTfjWXx2LKR1uprJ5zwAefmMr3nfYBAyOZHHijE6bkZti2ZYejGttwC+eW4+PnDDFpd4FrKgGPQMjuH/pZpw5e6JWrbOtZz/27bc8+WZNaLVtJwrZnMBjy7ZjfFsDNu7ux9FTxhT1WzYnsKtvCE2pJHb0DmLm+Nai7wuwxvzL63ajq28InzvzMO2Y3rFvEC+s2YV5s8a5xtKGXf245+WNaG1I4swjJmJCWyMOGd/iGke5nMB3n1iFwya2obM5jXFtDTipoE9W7+jFc6t3YW1XHw6b2Ibz5ky2VatxgIiWCiHmBuarY4ZyGoD/EEJcIP+/FgCEEP/pVWbu3LliyZIlFaKQwWAwDgyYMpR6VnktBjCbiGYRUQOASwE8XGWaGAwGY9Sibo3yQogMEf1fAI8DSAK4XQjxdkAxBoPBYJQJdctQAEAI8WcAf642HQwGg8Gob5UXg8FgMGoIzFAYDAaDEQuYoTAYDAYjFjBDYTAYDEYsYIbCYDAYjFhQtxsbSwER9QJY5ZOlA0CPz30AmAHgXZ/7JnUE5YmjDqB+aA2iM652Rlu/AkxrKXmY1mIcKYRoD8gDO1LmaPgDsCTg/m0GdXTFUIdvnjjqqCdag+isJVrrqV+Z1rI+z2ij1XfuVH+s8nLjjwZ59gbcN6kjKE8cdQD1Q2sQnXG1M9r6FWBaS8nDtJaI0abyWiIM4tGUu45KoV5orRc6FeqJXqa1PBhttJrWMdoklNtqpI5KoV5orRc6FeqJXqa1PBhttBrVMaokFAaDwWCUD6NNQmEwGAxGmTDqGQoR3U5EO4lomSPtBCJ6iYjeIqI/EtEYmZ4mortk+gp1Bou8t5CIVhHR6/JvUpVpbSCiO2T6G0T0AUeZk2X6GiK6hQpPhaotWivRr9OJ6Gn5Tt8moi/K9HFENJ+IVsvfsY4y18r+W0VEFzjSy9q3MdNa1r4NSysRjZf5+4joJwV11VS/BtBaa/16HhEtlf23lIjOdtQVb7+auIIdyH8AzgRwEoBljrTFAM6S158BcIO8/lsA98rrFgAbAMyU/y8EMLeGaL0awB3yehKApQAS8v9XAJwGgAA8CuAvapjWSvTrFAAnyet2AO8AmAPgOwCukenXALhZXs8B8AaARgCzAKwFkKxE38ZMa1n7tgRaWwG8H8DnAPykoK5a61c/WmutX08EcLC8PhbAlnL166iXUIQQzwLoLkg+EsCz8no+gI+p7ABaiSgFoBnAMIB9laATCE3rHAALZLmdsFwH5xLRFABjhBAvCWtE3Q3g4lqkNW6avCCE2CaEeFVe9wJYAWAqgIsA3CWz3YV8P10Ea2ExJIRYD2ANgHmV6Nu4aI2TprhoFUL0CyGeBzDorKcW+9WL1kqgBFpfE0JslelvA2giosZy9OuoZygeWAbgo/L64wCmy+sHAPQD2AZr5+n3hBDOSfMOKeJ+oxxqpJC0vgHgIiJKEdEsACfLe1MBbHaU3yzTapFWhYr1KxHNhLWiWwRgshBiG2B9xLCkJ8Dqr02OYqoPK9q3EWlVqEjfGtLqhVrs1yDUar9+DMBrQoghlKFfmaHo8RkAVxPRUlgi5bBMnwcgC+BgWOqDfyWiQ+W9vxNCHAfgDPn3qSrTejusAbIEwH8BeBFABpZoW4hKufqFpRWoYL8SURuA3wH4ZyGEn+Tp1YcV69sYaAUq1LchaPWsQpNW7X71Q032KxEdA+BmAJ9VSZpskfqVGYoGQoiVQojzhRAnA/gNLL0zYNlQHhNCjEjVzAuQqhkhxBb52wvgf1E5tYKWViFERgjxJSHEe4QQFwHoBLAa1sQ9zVHFNABbC+utEVor1q9ElIb1cf5aCPGgTN4h1QJK7bJTpm+GW4JSfViRvo2J1or0bUhavVCL/eqJWuxXIpoG4PcALhdCqPks9n5lhqKB8sogogSArwP4mbz1LoCzyUIrgFMBrJSqmgmyTBrAh2Gpd6pGKxG1SBpBROcByAghlktRuJeITpWi+OUAHqpFWivVr7IffglghRDiB45bDwO4Ql5fgXw/PQzgUqmHngVgNoBXKtG3cdFaib4tgVYtarRfveqpuX4lok4AjwC4Vgjxgspcln6NYtE/EP5grZS3ARiBxbGvBPBFWJ4T7wC4CfkNoG0A7odl2FoO4Csi7/GxFMCb8t6PID1pqkjrTFiRlVcAeBLAIY565sIa5GsB/ESVqTVaK9iv74cl6r8J4HX595cAxsNyFlgtf8c5yvy77L9VcHjGlLtv46K1En1bIq0bYDlz9MlxM6eG+7WI1lrsV1iLt35H3tcBTCpHv/JOeQaDwWDEAlZ5MRgMBiMWMENhMBgMRixghsJgMBiMWMAMhcFgMBixgBkKg8FgMGIBMxQGo0ZARJ8jostD5J9JjmjODEa1kao2AQwGw9oQJ4T4WXBOBqN2wQyFwYgJMlDfY7AC9Z0IawPn5QCOBvADWBtjdwH4tBBiGxEthBW37HQADxNRO4A+IcT3iOg9sCIJtMDadPYZIcQeIjoZVuyzAQDPV+7pGIxgsMqLwYgXRwK4TQhxPKyjDa4G8GMAlwgrhtntAG505O8UQpwlhPh+QT13A/iarOctANfJ9Dvw/9u7Y5SGoiCMwmdQGxsrW1fgBgRdgEsQkZANuACXoY02gmgjtjZilc4NBDsbF6BBtB2Ld4MQomIYSYrzlVMM91U/c3nMhcPM3PrPj5Bm4YQi1XrOr31JV8AR3aNG922L+RLdSpqx68kGEbFGFzSDVroAbqbUL4Hd+k+QZmOgSLUmdxm9AcMfJor3P/SOKf2lheGVl1RrIyLG4bEHPADr41pErLR3Kb6VmSPgJSJ2WukAGGTmKzCKiO1W368/vjQ7JxSp1iPQi4gzuq2vJ8AdcNyurJbpHhEb/tKnB5xGxCrwBPRbvQ+cR8RH6ystDLcNS0XaX163mbk556NIc+GVlySphBOKJKmEE4okqYSBIkkqYaBIkkoYKJKkEgaKJKmEgSJJKvEJC+DG+8A51bsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,9 +2242,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl83NV57/9+ZkajXbJWb7Kx8RIwEExwDIRsDQGT9DbQBlrzSoPb0usspDdpc3sDvf39SEi5Dblp0pI0JCTQAE0DZIWkEOpAgLDEYIhZbAOW8SbbSLK1a6RZn/vH93zlkTSSRtJoGel5v17zmtGZ7zlz5quZ+Xyf5TxHVBXDMAzDyIbATE/AMAzDyB9MNAzDMIysMdEwDMMwssZEwzAMw8gaEw3DMAwja0w0DMMwjKwx0TAMwzCyxkTDMAzDyBoTDcMwDCNrQjM9gVxTW1urK1asmOlpGIZh5BXPP//8cVWtG+u4OScaK1asYMeOHTM9DcMwjLxCRA5mc5y5pwzDMIysMdEwDMMwsiZr0RCRoIj8TkR+4f6uFpFtIrLX3VelHXu9iDSKyGsisimt/VwRedk9d4uIiGsvFJF7Xft2EVmR1meLe429IrIlF2/aMAzDmBjjsTQ+DexJ+/s64BFVXQM84v5GRNYBm4EzgEuBb4pI0PW5FdgKrHG3S137NUC7qq4Gvgbc7MaqBm4AzgM2Ajeki5NhGIYxvWQlGiLSAPw+8N205suAO93jO4HL09rvUdWoqu4HGoGNIrIYqFDVZ9TbxOOuIX38sX4EXOSskE3ANlVtU9V2YBsnhcYwDMOYZrK1NP4Z+F9AKq1toaoeA3D39a59KXA47bgm17bUPR7aPqiPqiaATqBmlLEGISJbRWSHiOxobW3N8i0ZhmEY42VM0RCR/wa0qOrzWY4pGdp0lPaJ9jnZoHqbqm5Q1Q11dWOmGRuGYRgTJBtL40LgQyJyALgHeJ+I/DvQ7FxOuPsWd3wTsCytfwNw1LU3ZGgf1EdEQkAl0DbKWIZh5CG/2dvK/uO9Mz0NYxKMKRqqer2qNqjqCrwA96Oq+qfAA4CfzbQFuN89fgDY7DKiVuIFvJ91LqxuETnfxSuuHtLHH+sK9xoKPAxcIiJVLgB+iWszDCMP+cw9O7ntiX0zPQ1jEkxmRfiXgPtE5BrgEHAlgKruEpH7gN1AArhWVZOuzyeA7wHFwEPuBnA7cLeINOJZGJvdWG0i8kXgOXfcjaraNok5G4YxQyRTSlskRiSWHPtgY9YyLtFQ1ceAx9zjE8BFIxx3E3BThvYdwJkZ2vtxopPhuTuAO8YzT8MwZh8dkRiq0B830chnbEW4YRjTQnskBkB/PDXGkcZsxkTDMIxpoa03Dpilke+YaBiGMS209TpLI2GWRj5jomEYxrTgi0bULI28xkTDMIxp4WRMw0QjnzHRMAxjWhhwT1kgPK8x0TAMY1poH4hpmKWRz5hoGIYxLZzoNffUXMBEwzCMaSF9nYZXJcjIR0w0DMOYFvyYBkDU0m7zFhMNwzCmhfbeGKGAt9tB1ILheYuJhmEYU05/PElvLMnCiiLvbwuG5y0mGoZhTDl+PGPJAicaFgzPW0w0DMOYcvx4xuLKYsDWauQzJhqGYUw57a5Y4ZIFvmiYpZGvmGgYhjHlnOiNAuaemguMKRoiUiQiz4rIiyKyS0S+4No/LyJHRGSnu30wrc/1ItIoIq+JyKa09nNF5GX33C1u21fc1rD3uvbtIrIirc8WEdnrblswDCPv6Ih4lsaigUC4uafylWx27osC71PVHhEpAJ4UEX+b1q+p6lfSDxaRdXjbtZ4BLAF+JSJr3ZavtwJbgd8CDwKX4m35eg3QrqqrRWQzcDPwJyJSDdwAbAAUeF5EHlDV9sm9bcMwppOoy5aqKg0DZmnkM2NaGurR4/4scLfRlnNeBtyjqlFV3Q80AhtFZDFQoarPqLcc9C7g8rQ+d7rHPwIuclbIJmCbqrY5odiGJzSGYeQRMWdZVBQVACYa+UxWMQ0RCYrITqAF70d8u3vqUyLykojcISJVrm0pcDite5NrW+oeD20f1EdVE0AnUDPKWEPnt1VEdojIjtbW1mzekmEY00gskUIESguDgC3uy2eyEg1VTarqeqABz2o4E8/VtApYDxwD/skdLpmGGKV9on3S53ebqm5Q1Q11dXWjvhfDMKafaDJFOBigqMATDVvcl7+MK3tKVTuAx4BLVbXZiUkK+A6w0R3WBCxL69YAHHXtDRnaB/URkRBQCbSNMpZhGHlELDFENMw9lbdkkz1VJyIL3ONi4P3Aqy5G4fOHwCvu8QPAZpcRtRJYAzyrqseAbhE538UrrgbuT+vjZ0ZdATzq4h4PA5eISJVzf13i2gzDyCNiiRThUICikPeTY4v78pdssqcWA3eKSBBPZO5T1V+IyN0ish7PXXQA+BiAqu4SkfuA3UACuNZlTgF8AvgeUIyXNeVnYd0O3C0ijXgWxmY3VpuIfBF4zh13o6q2TeL9GoYxA8STnmiEggFCATFLI48ZUzRU9SXgnAztHx2lz03ATRnadwBnZmjvB64cYaw7gDvGmqdhGLMX39IAKCoImqWRx9iKcMMwppyYC4QDFBUELBCex5hoGIYx5cQSKQqcaBSGguaeymNMNAzDmHKig9xTAVunkceYaBiGMeX4gXDwYxpmaeQrJhqGYUw5sUSKwnTRsJhG3mKiYRjGlBNLnoxpFBUELHsqjzHRMAxjyvFXhIMFwvMdEw3DMKac2JBAuIlG/mKiYRjGlBNP6knRCNnivnzGRMMwjCknPeW2sCA4sCmTkX+YaBiGMeXEEsnBK8LN0shbTDQMw5hyYrZOY85gomEYxpSTnj1VFAqSSCmJpFkb+YiJhmEYU0oypaSUQdlTAP0JE418xETDMIwpJebEId09BbZ7X75iomEYxpTii0b6inAw0chXstnutUhEnhWRF0Vkl4h8wbVXi8g2Ednr7qvS+lwvIo0i8pqIbEprP1dEXnbP3eK2fcVtDXuva98uIivS+mxxr7FXRLZgGEZeEU164jCQchvyLI14UmdsTsbEycbSiALvU9WzgfXApSJyPnAd8IiqrgEecX8jIuvwtms9A7gU+KbbKhbgVmAr3r7ha9zzANcA7aq6GvgacLMbqxq4ATgP2AjckC5OhmHMfnxLo9BZGr7FEbdAeF4ypmioR4/7s8DdFLgMuNO13wlc7h5fBtyjqlFV3Q80AhtFZDFQoarPqKoCdw3p44/1I+AiZ4VsArapapuqtgPbOCk0hmHkAb5F4VsaoaAAJ8XEyC+yimmISFBEdgIteD/i24GFqnoMwN3Xu8OXAofTuje5tqXu8dD2QX1UNQF0AjWjjGUYOec3e1u57Yl9Mz2NOcfQQHjYLI28JivRUNWkqq4HGvCshjNHOVwyDTFK+0T7nHxBka0iskNEdrS2to4yNcMYmZ++cIRvP/7GTE9jzjE0EO7fJ1IW08hHxpU9paodwGN4LqJm53LC3be4w5qAZWndGoCjrr0hQ/ugPiISAiqBtlHGGjqv21R1g6puqKurG89bMowBIrEkvbHETE9jzhEbEggvcO6puLmn8pJssqfqRGSBe1wMvB94FXgA8LOZtgD3u8cPAJtdRtRKvID3s86F1S0i57t4xdVD+vhjXQE86uIeDwOXiEiVC4Bf4toMI+dE4kn64ylbqZxjor57KujHNLz7mJ3nvCSUxTGLgTtdBlQAuE9VfyEizwD3icg1wCHgSgBV3SUi9wG7gQRwrar6CdmfAL4HFAMPuRvA7cDdItKIZ2FsdmO1icgXgefccTeqattk3rBhjESfszIi8SQVQVvClCtGjmmYeyofGVM0VPUl4JwM7SeAi0bocxNwU4b2HcCweIiq9uNEJ8NzdwB3jDVPw5gsvVHv2iYSTVJRVDDDs5k7+OLg7xFeEHLuKbM08hK7nDIMR59boWxxjdwyUiDcRCM/MdEwDEfEiUVv1EQjlwwNhJt7Kr8x0TAMRyTmLI2o1UTKJUNjGv7iPrM08hMTDcMAVJU+JxoRc0/llNiQ7ClzT+U3JhqGgZf+6S826zH3VE6JDSkjUmDuqbzGRMMwYMDKgJNuKiM3DLU0rIxIfmOiYRgMFgoLhOeWoTENWxGe35hoGAaDRcMsjdwSSyYJBoRgwBML/94sjfzERMMwGOyeMksjt8QSqQGXFICIEA4GBmIdRn5homEYDF7QZ4v7cks8qQMuKZ+CoFiNrzzFRGOO89hrLdz0n7tnehqznkGBcFunkVOiiRThUHBQW0EoYO6pPMVEYw6TTClf+PluvvOb/TS1R2Z6OrMaP44RDIhZGjkmlkgN1J3yCQXMPZWvmGjMYX61p5n9x3sBeOL14zM8m9mNv6CvujRsK8JzTCyZGsic8gkHxSyNPMVEYw5z2xNv0FBVzJLKIh5/vWXsDvMYv1hhXVmhWRo5JpZIDgqEg+eesphGfmKiMUd5ZE8zzx9s57+/61Te85Z6nmo8YVd2o+BbF3XlhRbTyDHxpA6UQ/cpCAZsRXieYqIxB+mPJ/n8z3exur6MqzYu5z1r6+iJJnjhYPtMT23W0hdLIAI1pWErI5JjhqbcgicatnNffpLNdq/LROTXIrJHRHaJyKdd++dF5IiI7HS3D6b1uV5EGkXkNRHZlNZ+roi87J67xW37itsa9l7Xvl1EVqT12SIie91tC8aY/NtTBzjc1seNl51BOBTgHatrAHj+kInGSERiSYoLgpQWhqxgYY6JJYbHNAosppG3ZLPdawL4rKq+ICLlwPMiss099zVV/Ur6wSKyDm+71jOAJcCvRGSt2/L1VmAr8FvgQeBSvC1frwHaVXW1iGwGbgb+RESqgRuADYC6135AVe3XbxRePNzBqrpS3rGqFoCKogLCwQDd/fZjOBKReJKScJCSwiC9tiI8p0STKSrDg3dC9NxTJhr5yJiWhqoeU9UX3ONuYA+wdJQulwH3qGpUVfcDjcBGEVkMVKjqM6qqwF3A5Wl97nSPfwRc5KyQTcA2VW1zQrENT2iMUWjp7mdhRdGgtpLCoK10HoW+WJLicJCycIhYImU/aDkks3tKLKaRp4wrpuHcRucA213Tp0TkJRG5Q0SqXNtS4HBatybXttQ9Hto+qI+qJoBOoGaUsYxRaOmODhON0nDIUklHoTeaoDQcoqTQM74tGJ474skU4YyBcBPmfCRr0RCRMuDHwGdUtQvP1bQKWA8cA/7JPzRDdx2lfaJ90ue2VUR2iMiO1tbWUd/HXEdVaemKUl9eOKi91CyNUemLe5ZGadhbuWxpt7ljpEC4iUZ+kpVoiEgBnmB8X1V/AqCqzaqaVNUU8B1gozu8CViW1r0BOOraGzK0D+ojIiGgEmgbZaxBqOptqrpBVTfU1dVl85bmLJ19cWLJFHXDRCNkP4SjEIl5MY1S39Kwc5UzRgyEJ8w9lY9kkz0lwO3AHlX9alr74rTD/hB4xT1+ANjsMqJWAmuAZ1X1GNAtIue7Ma8G7k/r42dGXQE86uIeDwOXiEiVc39d4tqMEWjpjgJQn9E9ZT+EI+FlT4UoLfQsjR5zT+WMTCvCC4IB4imzNPKRbLKnLgQ+CrwsIjtd298BV4nIejx30QHgYwCquktE7gN242VeXesypwA+AXwPKMbLmnrItd8O3C0ijXgWxmY3VpuIfBF4zh13o6q2Teytzg9aupxoDLE0SsJBjvdEZ2JKeUEklvCyp8J+TMMENld47qnBBQvD5p7KW8YUDVV9ksyxhQdH6XMTcFOG9h3AmRna+4ErRxjrDuCOseZpeLR09wPDRaPM3FOj4runypx7ytJuc0cskcq8ItzcU3mJrQifY4zknvJSbu2HcCT6YklKwiFKXCDcYhq5IZVSYskURUNKo4dscV/eYqIxx2jpig66YvYpLbSYxkio6oB7yg+EWymR3OCXCikqGLKfhpURyVtMNOYYzd39w1xT4AXCo4mUVRbNQDSRIqVQHA5SUeStXO7si8/wrOYG/a568ND9NMKhAAlb3JeXmGjMMVq7osNcU8DAFbT56ofjb8BUEg5SHA5SXBCkrSc2w7OaG0QT3kVKYYHVnpormGjMMVpGtDTcojVzuwzDj1/48Yzq0jBtvSYauSAad+6poTGNQIBESkmlzNrIN0w05hgt3VHqy4dbGiW2aG1E+uOD/e41ZWFOmGjkhP6Ec08VDHdPAbZWIw8x0ZhD9EQTRGJJ6iuGWxpltmhtRKL+D1vILI1c41sahaGhgXAvBdeKFuYfJhpziFaXbltXNlw0bNHayMSG+N1NNHKHL8hFw2Ia3t+WmJF/mGjMIU64Fd81ZeFhz9mitZEZCNY6l0l1SZgTvbZ6PhecPLfDU24BS7vNQ0w05hC+H742o6VhgfCRGCYaZWH64yn6TGAnzUgpt+aeyl9MNOYQJ1yaaHXpcEvjZMqticZQovHBMY0ad/7M2pg8I6fcukB4wiyNfMNEYw7R5n7kRhUNszSGMczSKPUsNYtrTJ6BmMYI7qmEZU/lHSYac4gTvTFKw8FhJRsASgp895S5XIYSG+J3rx6wNEw0JoufzjySpRGzooV5h4nGHKKtN0ZNhngGQCAglIRt975MDHWh+O4pWxU+eYa6/nz87V9tVXj+YaIxh2jrjWV0TfmUhEOWPZWBk+s0vK9DlS8aZmlMGl+Qh6bchgIupmGikXeYaMwhjvfEBq6SM1Fm+4RnxP9h81cpVxSFKAiKuadywMC5zbBHOFjK7XhIJFO81NQx09PIarvXZSLyaxHZIyK7ROTTrr1aRLaJyF53X5XW53oRaRSR10RkU1r7uSLysnvuFrftK25r2Htd+3YRWZHWZ4t7jb0isgVjRNp6o2NaGlZGZDj+qmX/h01EqCoJ026iMWn640lCASE0RDR895RVus2e+3ce5UPfeIrDbZEZnUc2lkYC+Kyqng6cD1wrIuuA64BHVHUN8Ij7G/fcZuAM4FLgmyLiOzRvBbbi7Ru+xj0PcA3Qrqqrga8BN7uxqoEbgPOAjcAN6eJknERVR41pAJTaRkwZiSWH/7BVl1r9qVwQTaQyJmYMpNyapZE1u491AbCvtWdG5zGmaKjqMVV9wT3uBvYAS4HLgDvdYXcCl7vHlwH3qGpUVfcDjcBGEVkMVKjqM6qqwF1D+vhj/Qi4yFkhm4Btqtqmqu3ANk4KjZFGdzRBPKmjuqdKbcvXjETjqWGLz2rKwgMpzMbEiSaSw84tWExjIuxt8cQiHyyNAZzb6BxgO7BQVY+BJyxAvTtsKXA4rVuTa1vqHg9tH9RHVRNAJ1AzyljGENpGWdjnUxq23fsyEU2kKBxyNVxdWmiB8BzQn0GQ4aR7KmbuqazZ50TjUL6IhoiUAT8GPqOqXaMdmqFNR2mfaJ/0uW0VkR0isqO1tXWUqc1d/NXL1RnqTvmYeyoz0URyWKC2pjTMiZ4YnlFsTJSx3FNWsDA7eqIJjnT0AXkiGiJSgCcY31fVn7jmZudywt23uPYmYFla9wbgqGtvyNA+qI+IhIBKoG2UsQahqrep6gZV3VBXV5fNW5pz+CVEaktHjml4KbdmaQzFszQGfxUaqorpjibM2pgk0XhyICstHYtpjA/fyggHAxxq65vRuWSTPSXA7cAeVf1q2lMPAH420xbg/rT2zS4jaiVewPtZ58LqFpHz3ZhXD+njj3UF8KiLezwMXCIiVS4AfolrM4bg/7iNbWkk7Op5CLHEcBfKqvoyAN443jsTU5ozZHL9QXrKrX0Ws6HRicZ5p1ZzuC0yo9/hbCyNC4GPAu8TkZ3u9kHgS8DFIrIXuNj9jaruAu4DdgO/BK5VVd8n8gngu3jB8X3AQ679dqBGRBqBv8FlYqlqG/BF4Dl3u9G1GUPwM31GC4SXhEOk1CqLDiWaSA1bsbyq1onGDGeq5Dv98cyB8IEqt1awMCv2tvRQEBTetaaWnmiCjkh8xuYSGusAVX2SzLEFgItG6HMTcFOG9h3AmRna+4ErRxjrDuCOseY532nrjVEyQt0pH99vH01kdhnMVzJl+CytKiYcCrCv1SyNyRBNpKgoLhjWbu6p8dHY0s3K2lJWuouZQ22RgcoF0439cswRTvSMvrAPTtZWitrV3SCi8eExjWBAWFlTapbGJIlmcP1BepVbs3qzobGlh9X1ZSyvLgFmNhhuojFH6OpPsKBk+BVdOv6X10RjMNFEalj2FMCq+lKzNCZJdAz3VMw+i1nRHolTX15EQ1UxYKJh5IDeaGJgH/CR8P329kUdTCxDTAPg1NoyDrVF7HxNgpFSbkWEUEDMPZUlkViCknCQ0sIQtWXhGV3gZ6IxR+iNJQb2AR+Jk5aGrdVIJ5pIDnNPgWdpJFPKoTazNibKSCvCwXNRmWiMTSyRIp7UgS2bF1UW0dI9c9UKTDTmCL3R5MDufCPhB7/9An2Gx0h+91V1XtDRXFQTxyvRkjk5oyAolsmXBX6RUd+TUFUSntH1QyYac4SeaIKywpEzp+Cke8piGoPJlHILcGpdGQGBH+5oMhfVBOlPJIftpeETDpmlkQ3+Hjil7vtdVRKmI2KiYUySSDYxjQJzT2VipFXLZYUh/u6Dp/OrPc1c+x8v2KLIcZJMKfGkjmJpmGhkQyQ61NIomFFLY8x1GsbsJ5VSemNju6d8F4xdNQ8mlszsngL4y3edSnskxr/+eh+tPVHqy4umeXb5SyyReX9wn5C5p7IiMtTSKA3T1Z8gkUwN26dkOjBLYw4Qcfswm3tq/Ix1NQxw4epaAF5/09ZsjIf++OBtdIdSEAzYBUwW9GaIaQB09M3MqnATjTmAX+4860C4uacGGOtqGOAtC8sBePXN0Yo7G0M5uT94ZkEuCgXts5gFEVeZutQXDbeId6Z2ljTRmAMMiMaY6zQse2oo/o/WSFfDADVlhdSWhXm9uXu6pjUnGOvcFhUE6LfP4pgMWBrOk1DtLI32Gao/ZaIxB/D3yMg6pmHBxwH8q+HR3FMAaxeW81qzuafGw1jntjgcpC9ulsZYDMQ03EWhX/lhpoLhJhpzgJ4B99QYMQ3nJjBL4yS+e2qsAo5vWVTO3uZuUlYrKWv8mMZIKbdFoeDAMcbI+J6EYre4z68xN1NptyYacwD/Q2UrwsdPNu4p8OIakViSpvaZ3QAnnxjL0igqMNHIBt/S8FeE+4HwNhMNY6IMza4YiVBAELHsqXR8n/pYorF2kRcMf83iGlnjW7QjJRkUWkwjKyIxbx2RXxm4OBykqCBggXBj4vgxjbEsDRGhMBQw0Uhj4Gp4lH1IANa4nfxeswyqrBlwT40U0zBLIysisQSl4cHnsKokPHsD4SJyh4i0iMgraW2fF5EjQ3by85+7XkQaReQ1EdmU1n6uiLzsnrvFbfmK2xb2Xte+XURWpPXZIiJ73c3fDtYYQm+WMQ3wXAWWG3+SgZTbMSyN8qICllQWsbfFguHZEh0jndncU9nRG00O8yJUlYRntaXxPeDSDO1fU9X17vYggIisAzYDZ7g+3xQR/5fsVmAr3p7ha9LGvAZoV9XVwNeAm91Y1cANwHnARuAGt0+4MYRs3VOAszTsi+rjn4tsdjJcVV82sFezMTZZpdwmUlaeZQwiscSwC8Kq0gLaZ2tMQ1WfALLdl/sy4B5Vjarqfry9wDeKyGKgQlWfUe8TchdweVqfO93jHwEXOStkE7BNVdtUtR3YRmbxmvf0RhMUFwQJBkbalfckhQUBy55KI5qlpQGwur6Mfa09lkGVJdks7vNX5Bsj0xsbwdKYre6pUfiUiLzk3Fe+BbAUOJx2TJNrW+oeD20f1EdVE0AnUDPKWMYQerIoi+4TDlpMI51s12mAJxr98RRHOiyDKhvGKiPip5D2m+U7KpHocEujujQ8ey2NEbgVWAWsB44B/+TaM13q6ijtE+0zCBHZKiI7RGRHa2vraPOek/RmURbdp9BKNwwiOsYPWzqr3f4ajbZveFaMJch+8oHFNUanN5akuGDwReGCkjCdfXESM7BQd0KioarNqppU1RTwHbyYA3jWwLK0QxuAo669IUP7oD4iEgIq8dxhI42VaT63qeoGVd1QV1c3kbeU13g+z+wsjcICszTS8VfHj1Z7yme1y6DaZ3GNrPDFYKR4UZGVtcmKTDGN6pICVKFzBooWTkg0XIzC5w8BP7PqAWCzy4haiRfwflZVjwHdInK+i1dcDdyf1sfPjLoCeNTFPR4GLhGRKuf+usS1GUPoiSbGrDvlYym3gxlYS5CFe6qmrJCqkgILhmdJX8zb6nWkWJsf67BSIqMTyRTT8IsWzoCLasxfGhH5AfBeoFZEmvAymt4rIuvx3EUHgI8BqOouEbkP2A0kgGtV1f9EfAIvE6sYeMjdAG4H7haRRjwLY7Mbq01Evgg85467UVWzDcjPK3qjSWrLwlkdWxgKzlhJ5dnIeALh4FkbjS09PNV4nJW1pSxZUDyV08trvB+7kcW42NxTWRGJDl+nUVNaCMCJnhir66d3PmOKhqpelaH59lGOvwm4KUP7DuDMDO39wJUjjHUHcMdYc5zv9EYTnFJTktWx4VBgwI9vpKXcZrmZzer6Mu557jAf+e52Ljqtntv/7O1TOb28JtMVcjpFA6Jhlu9IpFJKJJ6kZIj7ubbcu0hs7YlO+5xsRfgcoDeWGHM1uE9hKGBVbtOIJlKEgwECWaQrA6xftgBVWFVXym/2Hqer36y2keiLJwYypDLhFzI099TI9CeSqDLM0qgr8yyN490mGsYEyLRidCQKQ0ELPKYRS4y81Wsmrjx3Gb+9/iK+fMXZxJIpHt3TMoWzy2/Gck8VmXtqTPwSQUMtjaqSMMGAmKVhjB9VdZZGlim3lj01iGgimVXmlE8gICyqLOKcZQtYVFHEgy8fm8LZ5Td9seRA3CITJhpjE4n5G6wNPo+BgFBTGuZ49/QHwk008pxIzJmv43BP2TqNk0TjqazjGekEAsKlZy7isddbB2p/GYPpi49laVjK7VgMWBoZPAl15YVmaRjjx687lfWKcEu5HUQ0kRqzwu1IXLCqhlgixT5b7JeRbAPhFtMYmchAXbnhn9HaskJaLaZhjJeTW71mvyI8ZkXiBuiPJ8cV00hnebWXsXa4zcoMA/2aAAAgAElEQVSKZKIvlhyx7hRYym02DGz1muH7XVdeyHGzNIzxMlAWfRyL+8D2CfeJxLKv2zWUZU40DrVFcjmlOUMklsgyEG6fxZGIjFLB2heN6b4ANNHIc/yUz/KigqyOP7nlq31RwXPvjfbDNhplhSGqS8McbjfRyMRY2VPBgFAQFCtYOAoDnoQMolFbVkg8qdNeSsREI8/p6vOuRCqKs6095X2JLfjoEYkms7bSMrGsqpjDZmkMI5lSoonUqOs0wCuP3hcz0RgJP2aZ6TzWlXtrNaY7rmGiked0O0ujIltLI+hbGvZFBWdpZBkPysSy6hITjQz4we2xrLiisFVdHo0uZ0Vkuij0SweZaBjjoqvfWRrZioZLc7QtXz0isUlaGtUlHOnoI2kbMw0iMnCFPPq5LSoIWExjFDr74pSEgxkLatb7lsY0B8NNNPIc39IoKxpfINxiGh5jBWvHYnl1CfGk8mZXfw5nlf/4LqeSMdKZzT01Oh2ROJXFmS8I68qKALM0jHHS1efVncpmq1c4WQLcRMPzu/fHU1mXYMnEsiqXQXXCXFTpZO2eKghaIHwUOvpGFo2K4hDhYIDjPdO7KtxEI8/p7o9TkaWVAWmWhuXGnyzRMKmYhlca3TKoBuOvLxgrEF5cELR1GqPQGYmzoCSzaIgItWVhszSM8dHVH8863RZO7qJmlsbJH7bJWBpLFhQTECwYPgTf5TRa7SnwYmwW0xiZzr44C4pH3itnYWURr77ZNa1rNUw08pyuvkTW6bZw0j1lgfC0hZGTsDQKggGWLCjmoLmnBpGtIBeZpTEqHX2xEd1TAH+8YRm7jnbxq2mstjymaIjIHSLSIiKvpLVVi8g2Ednr7qvSnrteRBpF5DUR2ZTWfq6IvOyeu8Vt+4rbGvZe175dRFak9dniXmOviPhbwhppdEfHZ2n42VNmaeTG0gA4bVEFu4525mJKc4bIKOsL0jHRGJ2OUdxTAFee28CptaX834dfnbYMvmwsje8Blw5puw54RFXXAI+4vxGRdXjbtZ7h+nxTRPxPza3AVrx9w9ekjXkN0K6qq4GvATe7sarxtpY9D9gI3JAuToZHV19iYjENCz4OWBqTyZ4CeGtDJW8c7x3IZDPSsqfGjGmYe2ok+uNJookUlaOIRigY4H9ueguvN/dw3Y9fmhbhGFM0VPUJvL2707kMuNM9vhO4PK39HlWNqup+oBHYKCKLgQpVfUY959tdQ/r4Y/0IuMhZIZuAbarapqrtwDaGi9e8p3ucMQ3LnjpJJMsMn7E4q6ESVdh1tCsX05oTRLIUDcueGhm/PMhoMQ2AD5y5iE9ftIYfPt/EX9+7c8qFY6J2+UJVPQagqsdExN/afCnw27Tjmlxb3D0e2u73OezGSohIJ1CT3p6hj4G3AVNX/3hjGra4zycyUCF4cu6ps5ZWAvDKkU7OP7Vm0vOaC/gpt9m4p2ydRmY6Ip5ojBbTAC+L6q8vXktxOEhnX5wss+8nzOS+LcPJNF0dpX2ifQa/qMhWPNcXy5cvH3uWc4S+eJJkSieYPWVf1N5R9ioYD7VlhSypLOKlJotr+ERiCYIBGXODq6KCIFFXqt+FOQ1HR8RbfzFaTCOdj79n1VROZ4CJZk81O5cT7t4P3TcBy9KOawCOuvaGDO2D+ohICKjEc4eNNNYwVPU2Vd2gqhvq6uom+Jbyj4FiheNyT9luaT6RcZaVH42zGip5+YiJhk8klqSkIDimEBRZYsaIdPRlZ2lMNxMVjQcAP5tpC3B/WvtmlxG1Ei/g/axzZXWLyPkuXnH1kD7+WFcAj7q4x8PAJSJS5QLgl7g2w+GXRR+PeyoUDBAMiH1JgV7f7z6JlFuftzYsYP/x3mkvUz1b6Y8nKcrCgityMTZzUQ2n07mnsrU0posxf21E5AfAe4FaEWnCy2j6EnCfiFwDHAKuBFDVXSJyH7AbSADXqqr/afgEXiZWMfCQuwHcDtwtIo14FsZmN1abiHwReM4dd6OqDg3Iz2u6x7mXhk9JOEiP7WudtQslG05fXA5AY0sP555iSX5j7aXhM7ARk7lLhzEQCC8ZPRA+3YwpGqp61QhPXTTC8TcBN2Vo3wGcmaG9Hyc6GZ67A7hjrDnOV066p8bnXqkrm5kN6WcbvVHvhy0XvvRFFV45kWYrXAh4ojHWanCA4rAn2JZ2O5yOvhjBgFA6yZhbrrEV4XnMeHft86ktK+T4DGxIP9vom2RZ9HQWV3oVR491mmiAd26zsjTMPTUiHZE4C4oLZl2CgIlGHjOwl8Y4YhoAteXhGdmQfrYx2Q2Y0llQUkBhKGCWhsMrOT/259IP8nbZwshhdPTFR13YN1OYaOQx4921z6emtJATvdNbTnk2MtkNmNIRERZVFpml4YjEkmOu0QCoKvX89W32eRxGV59nacw2TDTymK6+BOFgYCCNNltqywrpiMSJJ+e3H7k3OrkNmIayqKKIZhMNwFtDlM25rTbRGJHRNmCaSUw08hivLHpo3D7P2nLvi3pimjdvmW1km+GTLYsqizjW1Zez8fKZbM+tn07abqIxjI6+2KzLnAITjbymuz9BxQSuRGrLvL2F53tcw4tp5K4owqLKIpo7o9O6t8FspS+WpLhg7HNbGApSVhiiLWKiMRSzNIyc09XnWRrjxReN+Z52G4kmc5rOuKiiiFgyNe9dLapKJJYYSKcdi+rSsFkaQ+iJJujuT7CwomimpzIME408pj0So2oC5mudb2nM87TbbDN8ssVPu31znmdQ9UQTpDT7BI2q0jBtEcueSudIu+fmbKgqnuGZDMdEI4850ROjpmz8ouHHNKZ7Q/rZhHc1nJzUrn1D8a8K35znwfAjHd4P3pIF2f3gVZcU0NY7vy9ghnKkw9sJcqmJhpErVJUTvdEBV9N4KAmHKAkH53VMI5ZMkUhpji0N7ws+3y0N/yo52x+8qtIw7b1maaTTZJaGkWsisST98dRAyuJ4qS0rnNei4e+lkcvsqdqyMAExS8O3NBqytDRqSsPzPg40lCPtfYRDAWpLx39RONWYaOQpfrpszYRFY36vCvf30sjV4j7wKgjXlxeZaLT3EQ4GsraCq0rD9MWTVkokjab2PpYuKCYw1TsqTQATjTzlhPMBT8Q95fc73j1/r+4iOSyLns6SBUUcPBHJ6Zj5RlNHH0sWFGX9g1ftkjnaLe12gKaOvlnpmgITjbzFtzQm6p6qmefuKT/FM9d58GcvW8BLRzrm9Wr7I+194wrgWimR4Rxpj7A0S/fedGOikaf4lsZEsqcA6srCtEViU74J/WzlaOf4Mnyy5e0rqumPp9h1tCun4+YTRzr6xvWDZ6VEBtMfT3K8J2aWhpFb/IKDNRMMlNWVF6IKJ+aptXG0w4s7LKnM7Rdzg9uAaceB+blfWH88SWt3lKULSrLu44uGuac8msaZfTbdTEo0ROSAiLwsIjtFZIdrqxaRbSKy191XpR1/vYg0ishrIrIprf1cN06jiNzitoTFbRt7r2vfLiIrJjPfucSJnhil4WBWlUQzUe/WFLTM0wV+Rzr6qC4NT/j8jUR9RRHLq0vYcaA9p+PmC36V3/H84PkxDbM0PAayz6qyF97pJBeWxu+p6npV3eD+vg54RFXXAI+4vxGRdXhbuZ4BXAp8U0T8b+ytwFa8PcXXuOcBrgHaVXU18DXg5hzMd05woidK9QRdU3ByIdp83f/hmAvWTgUbTqlix8G2eVmD6qj7wRuPe6qiuICAWNFCn6Z2t7BvHsU0LgPudI/vBC5Pa79HVaOquh9oBDaKyGKgQlWfUe9bdteQPv5YPwIuktm2jdUMcaI3NmHXFMDCCq9vc9f8tDSOdvQPLMbLNRtWVHO8J8aBeZhFNZHyF8GAsKAkbEULHQeO9xIOBWZl3SmYvGgo8F8i8ryIbHVtC1X1GIC7r3ftS4HDaX2bXNtS93ho+6A+qpoAOoGaSc55TnCiJ0btJCyN2rJCROavpXF0nMHa8fDWhkoA9hybf8HwpvYIIl7F3/FQbQv8Bnj1zW7WLiwjOAvXaABMdmXThap6VETqgW0i8uoox2Y6AzpK+2h9Bg/sCdZWgOXLl48+4znCid4oZy6tmHD/gmCAmtJCWrrnn2h09cfpjiamzD21qq4MgH0tPVMy/mzmxaZOVteVURAc3/VofXkhRzrm32cxE3uOdfF7b6kf+8AZYlKWhqoedfctwE+BjUCzcznh7lvc4U3AsrTuDcBR196QoX1QHxEJAZXAsLQUVb1NVTeo6oa6urrJvKW8QFVp641RM8GFfT4LKwrnpXvq6DgL6o2X4nCQpQuKaWydX6KRSKbYcaCN806tHnffNfVl7GvpmZdxoHRau6Mc74lx2uKJXxBONRMWDREpFZFy/zFwCfAK8ACwxR22BbjfPX4A2OwyolbiBbyfdS6sbhE538Urrh7Sxx/rCuBRne+fKqCrP0E8qRMuIeKzsKJoXrqnjvnptlMYaFxVX8a+eSYau4520RtLct7K8XuQ1ywspyea4Og8L8Hy6pueS/P0xeUzPJORmYx7aiHwUxeXDgH/oaq/FJHngPtE5BrgEHAlgKruEpH7gN1AArhWVf1iM58AvgcUAw+5G8DtwN0i0ohnYWyexHznDP7aioku7PNZWFHIS02duZhSXjFQunuKAuEAq+pKeW5/G6mUzsr6QVPB9v0nACZkaaxd6P1Ivt7cPWuzhqYDPw52+qLZa2lMWDRU9Q3g7AztJ4CLRuhzE3BThvYdwJkZ2vtxomOc5PhACZHJuafqy4s40RslnkyN2wedzxzt6CMUEOrKp66C6Kq6MvriSd7s6p9Si2Y20NkXp7mrn+1vtHFqbSn15eOPFa1d6MWB9jZ3z2p//lTz6rFuFlUUDZRWmY3krsSnMW0cON4LwCnVk1v8s7CiCFVvr/CpSj+djRzt6GNRZdGUZqesrnfB8NaeOS8aN/58Nz9+oQkR2Pz2ZWN3yMCCkjB15YW83jy/XHpD2X2si9NmsWsKrIxIXvJ6czeFoQDLJi0a83OtRmNrD8snee7Gws+gapzjGVSqyuOvt3DaonLe2rCAPzynYexOI7B2YRl7m7tzOLv8ojeaYF9rD6fP4iA4mGjkJXtbelhVN/k87vm4Kry7P87uo11sWDF+v/t4qC0LU1EUmvPB8NeauzneE+Oad67k/msvZOPKiZ/XNfXl7G3pITVPimg++PIxPv/AroGMsV/taSae1FnvnjPRyEP2NncP+IAnQ72zNFrmkWg8f7CdlMJ5k/hxywYRYVV9Ga+/ObdF48m9xwG4cHXtpMdau7CcSCw5UIF4LqOqfHXb63zv6QP8+28PAnD/zqMsqSwaKHo5WzHRyDO6++Mc7exnzcLJ+z1rSgsJBmReuaee3d9GKCCcs3zBlL/WeStreOFQO139c3f/66caj3NqXWlO4jbrlnhumecPzv1ij7uOdtHY0sOCkgJuenAPj+xp5onXW/mD9UtmfbadiUaesdf5yNfmQDSCAWFRRRGH2+dPjaRn97dxVkMlJTnc5nUkLl5XTyKlPP5a65S/1kwQS6TYvr+Nd+bAygB469JK6soL+eUrb+ZkvNnM/TuPUBAU7t16AZXFBVxz5w4SKeVDZy+Z6amNiYlGnuEHCnPhngI4bVH5vKmR1B9P8mJTx6T87uNh/bIqakrD/GpP87S83nTzm72tRGJJ3rM2N1UYAgHh0jMW8dhrrUTcHu5zkUQyxQMvHuU9a+t5y6JyHvnse/n0RWu4+oJTWDfLg+BgopF37G3uoaggkLNa+6cvrmBfay/98eTYB+c5vzvUQTypbJziILhPMCC877R6fv1qy5zc/vWHO5qoLQvz7hyJBsAHzlxEXzw5Z60zVeV///QVmruiA+nJZYUh/vritdx42ZnkQxFvE408Ym9zN0/sbc1J5pTPuiUVJFM651NDAZ7ed5xgQKbN0gB4/7qFdPUneHrfiWl7zemgrTfGI682c/n6pTldGLpxZTVVJQX858vHcjbmbOIr//Ua9+44zF+9bzXvX7dwpqczIUw08oT/2vUml/zzExxu6+MvLlyZs3H9nPDd82BP6ycbj/PWhkrKiwqm7TXfs7aO2rJCbnti37S95lSSTCkPvnyML/5iN/GkcuWGiS3mG4lQMMAfntPAQ6+8OecuZH72uyP866/3cdXGZfzNxWtnejoTxkQjD+jqj/P3P3uF0xZV8NR17+PD5058AdVQTqkuoSQcZPccj2t09cd5qakzZ0HbbCkqCPLf37WSpxpP8LtD+Z8V9KWH9vDJ77/AT393hHeuruUti3K/evmTv7eKolCArzz8Ws7Hnil+tbuZ//XjlzhvZXXeuKFGwkRjFqOqPLPvBJ+970WO90T50h+dRXWOa9IEAsJpi8rzUjRUlWgiu1jM9jfaSKaUd6yaXtEA+Mj5p1BZXMCtj+W3tfEf2w/xnd/s56Pnn8KuL2zi7ms2Tsnr1JYVsvXdq/jlrjd5et/xKXmN6eS+HYfZevcOTl9Uzq1/em7e13nL79nPEbr74/zkhSa+/MtXufe5QwN7Jf/bUwe46ju/5devtvDpi9Zy9rKpWVuwbkkFe4515dVeBqrK3//sFc65cRs/er5pxLm3dPXz//3sFb77mzcoKgjwtlOmfn3GUMoKQ3z4bQ089npr3iYcHDjey42/2MW71tRywx+so7QwNKVXy3/5rpWcWlfK//jB7ziWx4v92ntj3Pjz3Zy3soYfbD0/5xd9M4GJxgzzZmc/V9z6DH9z34t86/F9fO7HL/POmx/l6cbjfP3RvVy4uoadN1zCp9+/ZsrmcHbDArr7E/zxt5/Ji4VVqsrXH23k+9sPUVUS5n/+8EXe9sVt/PG3n2G/K+bo838e3MPdvz3o1hPUURgKzsic37W2llgixY4Ds//8ptMfT7LraCef+/FLFAQC/N8rziY0DVfKpYUhbvvoufTFknzmnp1T/npTxbee2EdvLMEXLjtjWtYGTQdz413kKV39ca789tO09cS4fcsG3r22jj3Huvjk91/gI7dvRxWuu/R0ygqn9t/0R29roLMvzu1P7ucvvvccv/ird066GOJUcfBEL3/7w5d49kAbl69fwleuPJt7dxxm99EuHnrlTS7/16f41p+eywWranipqYOf7TzKJ9+7ij+7cAXlhdMXAB/KxhXVFASFJxuP88410+8imwj98SSXfeMpXnNrg27+8Fnj3vt7MqyuL+dvN72Fz/98N88fbOPcU6Yv622iRGIJXjzcybmnVHHwRC93Pn2Ay85ekpPFuLMFySeXRDZs2LBBd+zYMdPTyIrP/eglfvj8Ye772AWDCujtbe7mw7c+zXvfUs8tV50zbfM5eKKX//b1J6kqCZNMKUUFAa7auJw/v3DlrNnk/uo7nuV3B9u57oOnsfntywfN69CJCH9x53McON7LNe9aybZdzXT2xXnsb987rRlTI/HH33qGvniSn//VO2d0HpFYgp2HOygqCNIfT3K0o59XjnSSTClLFhTzB2cvpqGqhH/4xW6+++R+brzsDN62vIozl1bOyFwv+MdHOf/Uar790Q3T/vojkUop2/Y08++/PUhNaZjLzlnKG6293PbEPpq7oiyrLuZ4d4zSwiA/+cSFLK+ZnRdh6YjI86o65knOC0tDRC4F/gUIAt9V1S9N1WvtP97Lk43HSSRTrK4v48wllaRUKS8qIBzyzPJdRzt5cu9x/uzCFRNyd6gq9+88yr07DvPx96waVnF1zcJyfvO591Eanl5Xyik1pXz1j9fzuR+/xIZTqmjrjfEP/7mH0sIQV21cntPXSiRT7DraRVlRiIaq4qzO4+vN3TzxeiufvXgtHznvlGHPL68p4SeffAfXfv8Fvv34G6yqK+Wrf7J+VggGeEX9/vmR12nvjc3YJjtvtPaw9e7nh6WzloSDhEMBOiJxvvzwqywsL6K5u5+Pnn8KV1+wYkbm6s0rxEfPP4V/fayRV450zohwDaWlq5+/ue9Fnmw8ztIFxbxwsJ2f7TwKwNkNlXzm/Wv5/vaDLKsq4Wt/sn6gmvRcYdZbGiISBF4HLgaagOeAq1R1d6bjJ2ppdEbifHXba3x/+yESGUozBwQWVxZTV17Ii00dqMLF6xbyzY+8jYJggBM9UX53qIPjPVE2nbFo0I9CLJFi5+EO1tSX0R6J8YWf7+bx11t5a0Ml933sAooKZsbPPhaqyoe+8RTd/XEe+ex7M1obiWSKZw+0saiiiJW1paMGR1MpZcfBdp7ed5z7njs8sB90VUkBf/S2BtYvW8DK2lJW1pZSmsEld92PX+KnvzvCM9dfNGpAMZFMsa+1l7ULy2ZVauPzB9v48K3P8NHzT+Ez71/DK0e7OGf5AirSRC2VUo509FFfUUhhKMihExFuf/INnt53grOXLeBty6s4fXE565ctGNd764sl+e5v3uDWx/dRVBDk8x86g/LCEIUFAerLvf9dMCAc6ejjhzsOc6yjn5qyMJ963+oZ98W3dkf5wL88QVd/go+9+1TetaaOc0+pIhgQmtojJJJKfUXhlM+zP57kP7Yf4l8e2Us0keTvf38dm9++jN5Ykp2HO1hdX8aSyqJZ9ZkbD9laGvkgGhcAn1fVTe7v6wFU9R8zHT9R0TjRE+Wirz7O75+1mI+/ZxXF4SCvHOlkX2svoYBwoifK4fY+jrT3cc7yBdSUhfk/D77KWUsrefuKan7w7CH6XGZMWWGID61fwqm1pext7uFXe5o50RsjFBBEoCgU5NPvX8OWd6yY9el3D718jE98/wVuueocPnT2Eo529PH0vhM8f7CN3miSFw6109TuZbecWlvK3256CyvrSjnW0c+xzn6SqiwoLmDtwnJu/uWrPPpqCyJeafKrNi4nmVK27W7mv3Y3k0wT6/ryQqpKwkTiCSLRJJFYkr54kqs2LuMf/+itM3U6JoWqcsMDu7jrmYMDbafWlvKn55/CXc8coCeaIJpI0d2fYGVtKZesW8i/PXUARXn7imp2He2is8+rmHvuKVW8Z20dbb0xUhm+wwERr/psZTFHO/u49bF9HOvsZ9MZC/n//+CMvNuHu6W7n//901fYttur47VucQVnLKngRy804b/98sIQ9RWFLKwoYmFFEW87pYp3r6mlsaWHw20RjnX189LhTqpLw3zgrEXsOdbFm51RCgsCNHf2EwgI555SRWlhiFRKUVVOrSsjnkzxg2cP8Zu9x4kmUi6D7IyB3RnnCnNJNK4ALlXVv3R/fxQ4T1U/len4ycQ0uvvj43Jl/OSFJr7x60beaO3lA2cu4pp3rqQwFORbj+/j8ddb6YkmqCwu4B2ravjgWYt55Ugn8aTy8feeOqF9lGeCZEq5+GuP80ZrL9WlYdpcOnBlcQELSgpYuqCYqzYup7Mvzl3PHBh1u86CoHDdB07nirc1UFky+Dz3x5McONHL/tZe3jjeyxutvXT3xyktDFESDlISDlJWWMBV5y3Lm3M3Er/a3cxLRzpZWVvCP/xiDyd6Y5zdUMm6JZUEA7CytozvPb2fw219fPCsRdzwB2ewsKJowAp5/PVWvv7oXpq7opQXhggFh1/ZxpNKT/Rk0b+3NlTyvz94OuedWjOdbzXntPXGeOy1Fr7y8Gs0d0e5+oJTOGNJJS3d/bR0RWnp7qe5K8qxjr4BS9YnFBBOX1xBU3uE9kicYEBYWF5INJGirryQvniSgycyV3yuKy/k989azKYzFnH+qdV5a02MxlwSjSuBTUNEY6Oq/lXaMVuBrQDLly8/9+DBgxnHmgpUlfZIfJi7RFVp641RXRrO+w/YkY4+Hth5lH2tPZy2qJx3rKrltEXlw+r+J5Iptu1uJqnK4spiFlcWEQoKLV1RXmrqZP2yBQN7Jhgeb3b281pzN+9eUzvocxKJJWhs6eGtDZnXlSRTSjyZGtG1qaq82dVPa3eUssIQK2pKZ/0+DeOhP56kL5YcMTakquw62sULh9o5bVEFp9aVUlUSJhgQ+uOeO+n0xRVUFg++eGnvjRFPpggEBFV47c1u+uNJ3r22biCmOVeZS6IxLe4pwzCM+Uy2opEP0vkcsEZEVopIGNgMPDDDczIMw5iXzPqUW1VNiMingIfxUm7vUNVdMzwtwzCMecmsFw0AVX0QeHCm52EYhjHfyQf3lGEYhjFLMNEwDMMwssZEwzAMw8gaEw3DMAwja0w0DMMwjKyZ9Yv7xouIdANDNxeuBDpz+DKzfbxaIFf7ZM7295rr8XxydQ7z4f3O5s8fzP5zOBfOXy1Qqqp1Y46mqnPqBuzI0HZbjl9jto837BzMornN6vFyfQ7z4f3O5s9fPpzDuXD+xvOa88U99fN5Nl4ume3vdTafO8iP92vncHaNl2tyOr+56J7aoVnUT5nL2DmYPHYOJ46du8kxE+dvPK85Fy2N22Z6ArMAOweTx87hxLFzNzlm4vxl/ZpzztIwDMMwpo65aGkYhmEYU4SJRh4gIstE5NciskdEdonIp117tYhsE5G97r7Ktde443tE5Btp45SLyM6023ER+eeZel/TSa7OoXvuKhF5WUReEpFfikjtTLyn6SLH5+5P3HnbJSJfnon3M91M4PxdLCLPu8/Y8yLyvrSxznXtjSJyi8zEDm+5TO2y29TcgMXA29zjcuB1YB3wZeA6134dcLN7XAq8E/g48I1Rxn0eePdMv798Ood4laFbgFr395fxNgmb8feYB+euBjgE1Lm/7wQumun3NwvP3znAEvf4TOBI2ljPAhcAAjwEfGC6349ZGnmAqh5T1Rfc425gD7AUuAzvi4e7v9wd06uqTwL9GYYDQETWAPXAb6Zw6rOGHJ5DcbdSd5VXARyd+ncwc+Tw3J0KvK6qre7vXwEfnuLpzzgTOH+/U1X/M7ULKBKRQhFZDFSo6jPqKchdfp/pxEQjzxCRFXhXItuBhap6DLwPJp4IZMtVwL3uwzevmMw5VNU48AngZWtKYNIAAAOHSURBVDyxWAfcPoXTnVVM8vPXCJwmIitEJIT3g7ds6mY7+5jA+fsw8DtVjeIJTVPac02ubVox0cgjRKQM+DHwGVXtmuRwm4EfTH5W+cVkz6GIFOCJxjnAEuAl4PqcTnKWMtlzp6rteOfuXjwL9wCQyOUcZzPjPX8icgZwM/AxvynDYdN+0WeikSe4H6sfA99X1Z+45mZnsuLuW7Ic62wgpKrPT8lkZyk5OofrAVR1n7PS7gPeMUVTnjXk6vOnqj9X1fNU9QK8GnF7p2rOs4nxnj8RaQB+ClytqvtccxPQkDZsAzPgGjXRyAOc7/x2YI+qfjXtqQeALe7xFuD+LIe8inlmZeTwHB4B1omIX9jtYjwf9Zwll58/Eal391XAJ4Hv5na2s4/xnj8RWQD8J3C9qj7lH+xcWN0icr4b82qy/87njpnOLLDb2De8TBTFc4XsdLcP4mWjPIJ3tfYIUJ3W5wDQBvTgXaGsS3vuDeC0mX5f+XoO8bKC9rixfg7UzPT7y6Nz9wNgt7ttnun3NhvPH/D3QG/asTuBevfcBuAVYB/wDdwC7em82YpwwzAMI2vMPWUYhmFkjYmGYRiGkTUmGoZhGEbWmGgYhmEYWWOiYRiGYWSNiYZhTDMi8nERuXocx68QkVemck6GkS2hmZ6AYcwnRCSkqt+a6XkYxkQx0TCMceKKzv0Sr+jcOXilrq8GTge+CpQBx4E/U9VjIvIY8DRwIfCAiJQDPar6FRFZD3wLKMFbsPUXqtouIucCdwAR4Mnpe3eGMTrmnjKMifEW4DZVfSvQBVwLfB24QlX9H/yb0o5foKrvUdV/GjLOXcDn3DgvAze49n8D/od6NZoMY9ZgloZhTIzDerIu0L8Df4e3Yc42t5laEDiWdvy9QwcQkUo8MXncNd0J/DBD+93AB3L/Fgxj/JhoGMbEGFp/pxvYNYpl0DuOsSXD+IYxKzD3lGFMjOUi4gvEVcBvgTq/TUQK3H4II6KqnUC7iLzLNX0UeFxVO4BOEXmna/9I7qdvGBPDLA3DmBh7gC0i8m28KqVfBx4GbnHupRDwz3jbdY7GFuBbIlKCV334z137nwN3iEjEjWsYswKrcmsY48RlT/1CVc+c4akYxrRj7inDMAwja8zSMAzDMLLGLA3DMAwja0w0DMMwjKwx0TAMwzCyxkTDMAzDyBoTDcMwDCNrTDQMwzCMrPl/fjJAOYZpNQAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +2302,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 34, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +2322,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +2346,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+w1fV95/HnC0GwiSgQMPxQYSPJBE0Xyx10x+5uxC2QHxOwNQ2rVWbqDIniju1mVqTJjqnSmZhpYsu6ISE1FbWK1MSRTaF4jTq1XQJcgr+Q0Hu7UkSIXOaiYmegXnjvH9/Pqd97cjmcc/lyftz7esycOd/7OZ/P53zul8N9n8+P7/ejiMDMzKxIwxrdADMzG3wcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4YY3ugH19JGPfCSmTp3a6GaYmbWU7du3H4qI8bWUGVLBZerUqXR0dDS6GWZmLUXSP9daxsNiZmZWOAcXMzMrnIOLmZkVrqrgImmPpFckvSipI6V9Q9KbKe1FSZ/N5V8uqUvSbknzcumzUj1dklZKUkofKenxlL5F0tRcmcWSOtNjcS59Wsrbmcqeffqnw8zMilBLz+XqiJgZEW25tPtS2syI2AAgaQawCLgUmA98V9JZKf8qYAkwPT3mp/SbgcMRcQlwH3BvqmsscBdwBTAbuEvSmFTm3vT+04HDqQ4zM2sCZ2JYbAGwNiKORcTrQBcwW9JEYHREbI5sh7KHgIW5MmvS8RPANalXMw9oj4ieiDgMtAPz02tzUl5S2VJdLe/gu0f53e9v5uCRo41uipnZgFQbXAJ4WtJ2SUty6bdJelnSD3M9isnAG7k8+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr6vlrfxpJ9v29LDymc5GN8XMbECqvc7lqojYL2kC0C7pF2RDXPeQBZ57gG8Dvw+on/JRIZ0BlKlUVx8pGC4BuOiii/rL0jQ+8fWNHOs98W8/P7JlL49s2cvI4cPYveIzDWyZmVltquq5RMT+9HwQeBKYHRFvRcTxiDgB/IBsTgSyXsSFueJTgP0pfUo/6X3KSBoOnAf0VKjrEHB+ylteV3nbV0dEW0S0jR9f0wWmdffCHVfzhZmTGDUi+2cZNWIYC2ZO4oVlVze4ZWZmtTllcJH0IUnnlo6BucCraQ6l5Frg1XS8HliUVoBNI5u43xoRB4Ajkq5McyY3AU/lypRWgl0HPJvmZTYBcyWNScNuc4FN6bXnUl5S2VJdLWvC6FGcO3I4x3pPMHL4MI71nuDckcOZcO6oRjfNzKwm1QyLXQA8mVYNDwcejYi/lfSwpJlkw1F7gC8DRMROSeuA14BeYGlEHE913QI8CJwDbEwPgAeAhyV1kfVYFqW6eiTdA2xL+e6OiJ50vAxYK2kFsCPV0fIOvXeMG664mOtnX8SjW/fS7Ul9M2tByjoBQ0NbW1v43mJmZrWRtL3sMpRT8hX6ZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3BpUb7/mJk1MweXFuX7j5lZM6v23mLWJHz/MTNrBe65tBjff8zMWoGDS4vx/cfMrBV4WKwF+f5jZtbsfG+xKhx89yi3PbaD+6+/3D0EMxtyfG+xM8Qrs8zMauNhsQq8MsvMbGDcc6nAK7PMzAbGwaUCr8wyMxuYqoKLpD2SXpH0oqSOlDZWUrukzvQ8Jpd/uaQuSbslzculz0r1dElambY7Jm2J/HhK3yJpaq7M4vQenZIW59KnpbydqezZp386flVpZdaTt17FDVdcTPd7x87E25iZDSpVrRaTtAdoi4hDubRvAT0R8U1JdwJjImKZpBnAY8BsYBLwDPDxiDguaStwO/AzYAOwMiI2SroV+PWI+IqkRcC1EfElSWOBDqCNbDvl7cCsiDictlL+cUSslfQ94KWIWFXp9/BOlGZmtav3arEFwJp0vAZYmEtfGxHHIuJ1oAuYLWkiMDoiNkcW0R4qK1Oq6wngmtSrmQe0R0RPRBwG2oH56bU5KW/5+5uZWYNVG1wCeFrSdklLUtoFEXEAID1PSOmTgTdyZfeltMnpuDy9T5mI6AXeAcZVqGsc8HbKW16XmZk1WLVLka+KiP2SJgDtkn5RIa/6SYsK6QMpU6muvo3JguESgIsuuqi/LGZmVrCqei4RsT89HwSeJJtPeSsNdZGeD6bs+4ALc8WnAPtT+pR+0vuUkTQcOA/oqVDXIeD8lLe8rvK2r46ItohoGz9+fDW/rpmZnaZTBhdJH5J0bukYmAu8CqwHSqu3FgNPpeP1wKK0AmwaMB3YmobOjki6Ms2Z3FRWplTXdcCzaV5mEzBX0pi0Gm0usCm99lzKW/7+ZmbWYNUMi10APJlWDQ8HHo2Iv5W0DVgn6WZgL/BFgIjYmVZyvQb0Aksj4niq6xbgQeAcYGN6ADwAPCypi6zHsijV1SPpHmBbynd3RPSk42XAWkkrgB2pDjMzawK+caWZmVXkG1eamVlTcHAxM7PCObiYmVnhHFzMzKxwDi5mZlY4BxczMyucg4uZmRXOwcXMzArn4GJmZoVzcDEzs8I5uJiZWeEcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhas6uEg6S9IOST9JP39D0puSXkyPz+byLpfUJWm3pHm59FmSXkmvrVTaO1nSSEmPp/QtkqbmyiyW1Jkei3Pp01LezlT27NM7FWZmVpRaei63A7vK0u6LiJnpsQFA0gxgEXApMB/4rqSzUv5VwBJgenrMT+k3A4cj4hLgPuDeVNdY4C7gCmA2cJekManMven9pwOHUx1mZtYEqgoukqYAnwP+oorsC4C1EXEsIl4HuoDZkiYCoyNic0QE8BCwMFdmTTp+Argm9WrmAe0R0RMRh4F2YH56bU7KSypbqsvMzBqs2p7LnwF3ACfK0m+T9LKkH+Z6FJOBN3J59qW0yem4PL1PmYjoBd4BxlWoaxzwdspbXpeZmTXYKYOLpM8DByNie9lLq4CPATOBA8C3S0X6qSYqpA+kTKW6+pC0RFKHpI7u7u7+spiZWcGq6blcBXxB0h5gLTBH0iMR8VZEHI+IE8APyOZEIOtFXJgrPwXYn9Kn9JPep4yk4cB5QE+Fug4B56e85XX1ERGrI6ItItrGjx9fxa9rZman65TBJSKWR8SUiJhKNlH/bET8XppDKbkWeDUdrwcWpRVg08gm7rdGxAHgiKQr05zJTcBTuTKllWDXpfcIYBMwV9KYNOw2F9iUXnsu5SWVLdVlZmYNNvzUWU7qW5Jmkg1H7QG+DBAROyWtA14DeoGlEXE8lbkFeBA4B9iYHgAPAA9L6iLrsSxKdfVIugfYlvLdHRE96XgZsFbSCmBHqsPMzJqAsk7A0NDW1hYdHR2NboaZWUuRtD0i2mop4yv0zcyscA4uZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3AxM7PCObiYmVnhHFzMbMg7+O5Rfvf7mzl45GijmzJoOLiY2ZC38qedbNvTw8pnOhvdlEHjdO4tZmbW0j7x9Y0c6/1gm6pHtuzlkS17GTl8GLtXfKaBLWt97rmY2ZD1wh1X84WZkxg1IvtTOGrEMBbMnMQLy65ucMtan4OLmTWdes2BTBg9inNHDudY7wlGDh/Gsd4TnDtyOBPOHXVG33cocHAxs6ZTzzmQQ+8d44YrLubJW6/ihisupvu9Y2f8PYcC33LfzJpG+RxIiedAGsu33DezluY5kMHDwcXMmobnQAaPqoOLpLMk7ZD0k/TzWEntkjrT85hc3uWSuiTtljQvlz5L0ivptZWSlNJHSno8pW+RNDVXZnF6j05Ji3Pp01LezlT27NM7FWbWDDwHMjhUPeci6b8DbcDoiPi8pG8BPRHxTUl3AmMiYpmkGcBjwGxgEvAM8PGIOC5pK3A78DNgA7AyIjZKuhX49Yj4iqRFwLUR8SVJY4GO9L4BbAdmRcRhSeuAH0fEWknfA16KiFWVfgfPuZiZ1e6MzblImgJ8DviLXPICYE06XgMszKWvjYhjEfE60AXMljSRLDBtjiyiPVRWplTXE8A1qVczD2iPiJ6IOAy0A/PTa3NS3vL3NzOzBqt2WOzPgDuA/DKOCyLiAEB6npDSJwNv5PLtS2mT03F5ep8yEdELvAOMq1DXOODtlLe8rj4kLZHUIamju7u7yl/XzMxOxymDi6TPAwcjYnuVdaqftKiQPpAylerqmxixOiLaIqJt/Pjx/WUxM7OCVdNzuQr4gqQ9wFpgjqRHgLfSUBfp+WDKvw+4MFd+CrA/pU/pJ71PGUnDgfOAngp1HQLOT3nL6zKrie+Ia1a8UwaXiFgeEVMiYiqwCHg2In4PWA+UVm8tBp5Kx+uBRWkF2DRgOrA1DZ0dkXRlmjO5qaxMqa7r0nsEsAmYK2lMWo02F9iUXnsu5S1/f7Oa+I64ZsU7nbsifxNYJ+lmYC/wRYCI2JlWcr0G9AJLI+J4KnML8CBwDrAxPQAeAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIdZ1XxHXLMzx7d/sSHr4LtHWbFhF0/v/CVH3z/BqBHDmHfpR/na5z7pi/bMcnz7F7Ma1HI1eKvOy7Rqu631ObjYkFbt1eCtOi/Tqu221udhMbMKWvUuva3abmtOHhYzK1ir3qW3Vdttg4eDi1kFrXqX3lZttw0ep7MU2WxIKM3LXD/7Ih7dupfuFpkcb9V22+DgORczM6vIcy5mZtYUHFzMzKxwDi5mZgXyhasZBxczswL5wtWMV4tZSzr47lFue2wH919/uZfXWlPwjVD7cs/FWpK/HVqz8YWrfbnnYi3F3w4/4N5bc/GFq32552Itxd8OP+DeW/Op9kaoQ4F7LtZ0Kn0j97dD996a2fdv/OA6wxULL2tgSxrvlD0XSaMkbZX0kqSdkv44pX9D0puSXkyPz+bKLJfUJWm3pHm59FmSXkmvrUzbHZO2RH48pW+RNDVXZrGkzvRYnEuflvJ2prJnF3NKbKCKWoJ5qm/kQ/3boXtv1gqq6bkcA+ZExHuSRgB/L6m0PfF9EfGn+cySZpBtU3wpMAl4RtLH01bHq4AlwM+ADcB8sq2ObwYOR8QlkhYB9wJfkjQWuAtoAwLYLml9RBxOee6LiLWSvpfqWDXwU2GnKx8UVlz7qZrLV/uNfKh/O3TvzVrBKXsukXkv/TgiPSrdkGwBsDYijkXE60AXMFvSRGB0RGyO7IZmDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVmef+PpGpt75NzyyZS8RWVCYeuff8Imvbzx14Rx/I6/eUO+9WfOras5F0lnAduAS4H9HxBZJnwFuk3QT0AF8NQWAyWQ9k5J9Ke39dFyeTnp+AyAieiW9A4zLp5eVGQe8HRG9/dRldfbCHVefdC/6WvgbefWGeu/Nml9Vq8Ui4nhEzASmkPVCLiMbgvoYMBM4AHw7ZVd/VVRIH0iZSnX1IWmJpA5JHd3d3f1lsdNUZFDwN/LBz7dHGRpqWi0WEW9Leh6Yn59rkfQD4Cfpx33AhbliU4D9KX1KP+n5MvskDQfOA3pS+qfLyjwPHALOlzQ89V7ydZW3eTWwGrJb7tfy+1r1ito7xN/IB7/TnZuz1nDK/VwkjQfeT4HlHOBpssn07RFxIOX5Q+CKiFgk6VLgUWA22YT+T4HpEXFc0jbgvwFbyCb0/1dEbJC0FPhURHwlTej/dkT8bprQ3w78RmrOz4FZEdEj6a+BH+Um9F+OiO9W+l28n4tZ45Qv2CjxEurmN5D9XKrpuUwE1qR5l2HAuoj4iaSHJc0kG47aA3wZICJ2SloHvAb0AkvTSjGAW4AHgXPIVomVZnwfAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIeZNami5uasNZwyuETEy8Dl/aTfWKHMnwB/0k96B/ArYx0RcRT44knq+iHww37S/x9Z78jMWoAXbAwtvkLfzOqmqLk5a36nnHMZTDznYmZWu4HMufjGlWZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4RxczMyscA4uZmZWOAcXszrzfiY2FDi4mNVZfj8Ts8HKN640q5Py/Uwe2bKXR7bs9X4mNii552JWJy/ccTVfmDmJUSOy/3ajRgxjwcxJvLDs6ga3zKx4Di5mdeL9TGwocXCxQa3ZJs9L+5k8eetV3HDFxXS/d6zRTTI7I04ZXCSNkrRV0kuSdkr645Q+VlK7pM70PCZXZrmkLkm7Jc3Lpc+S9Ep6baUkpfSRkh5P6VskTc2VWZzeo1PS4lz6tJS3M5U9u5hTYoNJs02ef//GNlYsvIwZk0azYuFlfP/GmrbIMGsZp9wsLAWAD0XEe5JGAH8P3A78NtATEd+UdCcwJiKWSZoBPEa2BfEk4Bng4xFxXNLWVPZnwAZgZURslHQr8OsR8RVJi4BrI+JLksYCHUAbEMB2YFZEHJa0DvhxRKyV9D3gpYhYVel38WZhQ0f55HmJJ8/NandGNguLzHvpxxHpEcACYE1KXwMsTMcLgLURcSwiXge6gNmSJgKjI2JzZBHtobIypbqeAK5JQW0e0B4RPRFxGGgH5qfX5qS85e9v5snzBmm2YUhrnKrmXCSdJelF4CDZH/stwAURcQAgPU9I2ScDb+SK70tpk9NxeXqfMhHRC7wDjKtQ1zjg7ZS3vK7yti+R1CGpo7u7u5pf1wYBT543RrMNQ1rjVHWdS0QcB2ZKOh94UtJlFbKrvyoqpA+kTKW6+iZGrAZWQzYs1l8eG5xKk+fXz76IR7fupdvfps8YX8Nj5Wq6iDIi3pb0PDAfeEvSxIg4kIa8DqZs+4ALc8WmAPtT+pR+0vNl9kkaDpwH9KT0T5eVeR44BJwvaXjqveTrMgPoM1m+YmGl70N2ul6442pWbNjF0zt/ydH3TzBqxDDmXfpRvva5Tza6adYg1awWG596LEg6B/gvwC+A9UBp9dZi4Kl0vB5YlFaATQOmA1vT0NkRSVemOZObysqU6roOeDbNy2wC5koak1ajzQU2pdeeS3nL39/M6szDkFaump7LRGCNpLPIgtG6iPiJpM3AOkk3A3uBLwJExM60kus1oBdYmobVAG4BHgTOATamB8ADwMOSush6LItSXT2S7gG2pXx3R0RPOl4GrJW0AtiR6jCzBvEwpOWdcinyYHImlyIffPcotz22g/uvv9zf1szqpFX/37Vau8/IUmSrjlfJmNVfq/6/a9V218I9l9Pki/XM6q9V/9+1arvdc2kAX6xnVn+t+v+uVds9EA4up6mWVTK+etlaWTN9flt1dVqrtnsgHFwKUO2dbofCOKsNXs32+W3VO0y3artr5TmXOmjVcVYz8OfXPOfStIbSOKsNPv78Nq9mGqos5+BSB4NhnLWZP8R2Zg2Gz+9g1WxDlXk13VvMBq7Vr17Of4hXXPupRjfH6qzVP7+DTSvcKNRzLlaRx9vNms/Bd4+e9EahZ6JH6TkXK5zH282aTysMVXpYzCpqhQ+x2VDU7EOVDi52Ss3+ITYbipp9vyLPuQxxrXZ3VjOrP8+5WM2aeSmjmbUuD4sNUa2wlLHVuBdo9oFqtjm+UNJzknZJ2inp9pT+DUlvSnoxPT6bK7NcUpek3ZLm5dJnSXolvbYybXdM2hL58ZS+RdLUXJnFkjrTY3EufVrK25nKnl3MKRkavAqseO4Fmn2gmp5LL/DViPi5pHOB7ZLa02v3RcSf5jNLmkG2TfGlwCTgGUkfT1sdrwKWAD8DNgDzybY6vhk4HBGXSFoE3At8SdJY4C6gDYj03usj4nDKc19ErJX0vVTHqoGfiqHFq8CK416g2a86Zc8lIg5ExM/T8RFgFzC5QpEFwNqIOBYRrwNdwGxJE4HREbE5slUEDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVqWhcnfWM829QLNfVdOcSxquuhzYAlwF3CbpJqCDrHdzmCzw/CxXbF9Kez8dl6eTnt8AiIheSe8A4/LpZWXGAW9HRG8/dVmVmn0pY6twL9DsV1W9WkzSh4EfAX8QEe+SDUF9DJgJHAC+XcraT/GokD6QMpXqKm/3Ekkdkjq6u7v7y2J22twLNOurqp6LpBFkgeWvIuLHABHxVu71HwA/ST/uAy7MFZ8C7E/pU/pJz5fZJ2k4cB7Qk9I/XVbmeeAQcL6k4an3kq+rj4hYDayG7DqXan5fs1q5F2jWVzWrxQQ8AOyKiO/k0ifmsl0LvJqO1wOL0gqwacB0YGtEHACOSLoy1XkT8FSuTGkl2HXAs2leZhMwV9IYSWOAucCm9NpzKS+pbKkuMzNrsGp6LlcBNwKvSHoxpf0R8F8lzSQbjtoDfBkgInZKWge8RrbSbGlaKQZwC/AgcA7ZKrGNKf0B4GFJXWQ9lkWprh5J9wDbUr67I6InHS8D1kpaAexIdZiZWRPw7V/MzKwi3/7FzMyagoOLmVkTavWtxR1czKzl/5ANRq1+OyHfuNLM+vwhW3HtpxrdnCFtsNxOyBP6ZkNY+R+yklb7QzaYHHz3KCs27OLpnb/k6PsnGDViGPMu/Shf+9wnB3TXhyLu1u0JfTOrie+L1nyKvp1Qo4bXPCxm1oTqtTeM74vWnIrYWrzRw2sOLmZNqJ5zIEX8IbNiFXE7oRfuuPqkw2v14OBi1kQa8W3T90UbnBrdK/Wci1kT8RxI8YbyMutG3q3bPRezJtLob5uD0VBeZt3IXqmDi1mT8RxIMRo9oT3U+ToXMxuUir5eZCjzdS5mZomHGBvLw2JmNmh5iLFxPCxmZmYVeVjMzMyawimDi6QLJT0naZeknZJuT+ljJbVL6kzPY3JllkvqkrRb0rxc+ixJr6TXVkpSSh8p6fGUvkXS1FyZxek9OiUtzqVPS3k7U9mzizklZmZ2uqrpufQCX42ITwJXAkslzQDuBH4aEdOBn6afSa8tAi4F5gPflXRWqmsVsASYnh7zU/rNwOGIuAS4D7g31TUWuAu4ApgN3JULYvcC96X3P5zqMDOzJnDK4BIRByLi5+n4CLALmAwsANakbGuAhel4AbA2Io5FxOtAFzBb0kRgdERsjmyi56GyMqW6ngCuSb2aeUB7RPRExGGgHZifXpuT8pa/v5mZNVhNcy5puOpyYAtwQUQcgCwAARNStsnAG7li+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr8vMzBqs6uAi6cPAj4A/iIh3K2XtJy0qpA+kTKW6+jZGWiKpQ1JHd3d3f1nMzKxgVQUXSSPIAstfRcSPU/JbaaiL9Hwwpe8DLswVnwLsT+lT+knvU0bScOA8oKdCXYeA81Pe8rr6iIjVEdEWEW3jx4+v5tc1M7PTVM1qMQEPALsi4ju5l9YDpdVbi4GncumL0gqwaWQT91vT0NkRSVemOm8qK1Oq6zrg2TQvswmYK2lMmsifC2xKrz2X8pa/v5mZNVg1V+hfBdwIvCLpxZT2R8A3gXWSbgb2Al8EiIidktYBr5GtNFsaEcdTuVuAB4FzgI3pAVnwelhSF1mPZVGqq0fSPcC2lO/uiOhJx8uAtZJWADtSHWZm1gR8hb6ZmVXkK/St6Q3ljZvMhhIHF6ur/MZNZjZ4+a7IVhfeuMlsaHHPxerCe8ObDS0OLlYX3rjJbGjxsJjVjTduMhs6vBTZzMwq8lJkMzNrCg4uZmZWOAeXQcwXLJpZozi4DGK+YNHMGsWrxQYhX7BoZo3mnssg5AsWzYrnYebaOLgMQr5g0ax4HmaujYfFBilfsGhWDA8zD4wvojQzq+Dgu0dZsWEXT+/8JUffP8GoEcOYd+lH+drnPjlkRgPOyEWUkn4o6aCkV3Np35D0pqQX0+OzudeWS+qStFvSvFz6LEmvpNdWpq2OSdshP57St0iamiuzWFJneizOpU9LeTtT2bNr+aXNzKrlYeaBqWbO5UFgfj/p90XEzPTYACBpBtkWxZemMt+VdFbKvwpYAkxPj1KdNwOHI+IS4D7g3lTXWOAu4ApgNnCXpDGpzL3p/acDh1MdZmZnRGmY+clbr+KGKy6m+71jjW5S0zvlnEtE/F2+N3EKC4C1EXEMeF1SFzBb0h5gdERsBpD0ELAQ2JjKfCOVfwK4P/Vq5gHtEdGTyrQD8yWtBeYA16cya1L5VVW20cysJt+/8YMRoRULL2tgS1rH6awWu03Sy2nYrNSjmAy8kcuzL6VNTsfl6X3KREQv8A4wrkJd44C3U97yuszMrAkMNLisAj4GzAQOAN9O6eonb1RIH0iZSnX9CklLJHVI6uju7j5ZNjMzK9CAgktEvBURxyPiBPADsjkRyHoRF+ayTgH2p/Qp/aT3KSNpOHAe0FOhrkPA+SlveV39tXV1RLRFRNv48eNr/VXNzGwABhRcJE3M/XgtUFpJth5YlFaATSObuN8aEQeAI5KuTPMpNwFP5cqUVoJdBzwb2froTcBcSWPSsNtcYFN67bmUl1S2VJeZmTWBU07oS3oM+DTwEUn7yFZwfVrSTLLhqD3AlwEiYqekdcBrQC+wNCKOp6puIVt5dg7ZRP7GlP4A8HCa/O8hW21GRPRIugfYlvLdXZrcB5YBayWtAHakOszMrEn4IkozM6toIBdRDqngIqkb+Od+XvoI2VxOq3G768vtrq9WbTe0bttP1u6LI6KmSeshFVxORlJHrVG5Gbjd9eV211erthtat+1Fttt3RTYzs8I5uJiZWeEcXDKrG92AAXK768vtrq9WbTe0btsLa7fnXMzMrHDuuZiZWeEGZXA5yR40/17S5rSnzP+RNDqlj5C0JqXvkrQ8V+b5tC9Nad+aCU3U7rMl/WVKf0nSp3Nl+t07pwXaXe/zfaGk59K/+05Jt6f0sZLa035B7bkbs9a8X1ELtLtu57zWdksal/K/J+n+srrq/Rkvsu3NfM5/S9L2dG63S5qTq6u2cx4Rg+4B/CfgN4BXc2nbgP+cjn8fuCcdX0+2TQDAr5HdcWBq+vl5oK1J270U+Mt0PAHYDgxLP28F/gPZTT43Ap9pkXbX+3xPBH4jHZ8L/CMwA/jPDIkDAAADj0lEQVQWcGdKvxO4Nx3PAF4CRgLTgH8Czqr3OS+43XU75wNo94eA3wS+AtxfVle9P+NFtr2Zz/nlwKR0fBnw5kDP+aDsuUTE35HdSibvE8DfpeN24HdK2YEPKbsR5jnAvwLv1qOd5Wps9wzgp6ncQeBtoE3Zfd9GR8TmyD4Rpb1zmrrdZ7J9JxMRByLi5+n4CLCLbPuGBWT7BJGeS+fv3/YriojXgdJ+RXU950W1+0y172RqbXdE/EtE/D1wNF9Pgz7jhbS93gbQ7h0RUboR8E5glLJ7RdZ8zgdlcDmJV4EvpOMv8sEdl58A/oVs64C9wJ/GB/cwA/jL1HX9n2e6630SJ2v3S8ACScOV3SR0Vnqt0t459VRru0sacr6VbYh3ObAFuCCym62SnkvDFgPZr+iMOs12l9T9nFfZ7pNp6Gf8NNte0grn/HeAHZFt/ljzOR9KweX3gaWStpN1D/81pc8GjgOTyIYMvirp36XXboiITwH/MT1urG+TgZO3+4dk/8AdwJ8B/5fsZqE17XdzBtXabmjQ+Zb0YeBHwB9ERKVeayF7DBWlgHZDA855De0+aRX9pNXlM15A26EFzrmkS8m2k/9yKamfbBXP+ZAJLhHxi4iYGxGzgMfIxp0hm3P524h4Pw3T/ANpmCYi3kzPR4BHacxQQr/tjojeiPjDiJgZEQuA84FOKu+d08ztbsj5ljSC7D/dX0XEj1PyW2kYoDQEczClD2S/omZud93PeY3tPpmGfMYLanvTn3NJU4AngZsiovR3suZzPmSCS2lFhqRhwNeB76WX9gJzlPkQcCXwizRs85FUZgTweT7Yt6bh7Zb0a6m9SPotoDciXovKe+c0bbsbcb7T+XkA2BUR38m9lN9jKL9f0ED2K2radtf7nA+g3f1qxGe8qLY3+zmXdD7wN8DyiPiHUuYBnfNKs/2t+iD7pnwAeJ8s4t4M3E62UuIfgW/ywQWkHwb+mmzy6jXgf8QHqz22Ay+n1/6ctMKmSdo9FdhNNkH3DNldS0v1tJF9YP8JuL9Uppnb3aDz/ZtkXfuXgRfT47PAOLJFB53peWyuzNfSed1NbrVMPc95Ue2u9zkfYLv3kC0WeS99tmY06DNeSNub/ZyTfRH8l1zeF4EJAznnvkLfzMwKN2SGxczMrH4cXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwv1/q4MdzlEclD8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +2385,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,21 +2447,35 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGalJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDsr4QAhIqzgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq+69XcXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvaqO4CZmfWWC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJ+TnzVqlWxZs2aWYc9+OCDrFixop+zr6zJ2aDZ+Zytuibnc7bqyubbunXrPRFxUFczjYi+/a1duzbmctVVV805rG5NzhbR7HzOVl2T8zlbdWXzARPRZe11V4yZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmVGGX9B5JN0u6SdJFkvbtVzAzM6um48IuaTXwbqAVEUcDS4DX9SuYmZlVU7YrZimwXNJSYD/gzt5HMjOzbihK/OappLOAc4DdwFcj4tRZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuuyZng97nm9yxq2fTGlwOO3d3Pv7Q6pU9m/dCftVe115yturK5hsZGdkaEa1u5tlxYZf0JOAS4BTgfuAfgIsj4vNzPafVasXExMSsw8bHxxkeHi6bd1E0ORv0Pt+aDVt6Nq31Q3vYNNn5N1Vs37iuZ/NeyK/a69pLzlZd2XySui7sZbpiXg7cHhE/iYhHgUuBF3czczMz670yhf1HwH+QtJ8kAS8DtvUnlpmZVdVxYY+I64CLgRuAyeK5m/uUy8zMKir1tb0R8UHgg33KYmZmPeArT83MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy03Fhl3SEpO+0/f1M0h/1M5yZmZXX8U/jRcQtwPMBJC0BdgCX9SmXmZlVVLUr5mXA/4mI/9vLMGZm1j1FRPknSZ8BboiIv5hl2CgwCjA4OLh2bGxs1mlMTU0xMDBQet6LocnZoPf5Jnfs6tm0BpfDzt2djz+0emXP5r2Q9nbr5TKXMd/yNnm9c7bqyuYbGRnZGhGtbuZZurBL2hu4E3hOROycb9xWqxUTExOzDhsfH2d4eLjUvBdLk7NB7/Ot2bClZ9NaP7SHTZMd9/CxfeO6ns17Ie3t1stlLmO+5W3yeuds1ZXNJ6nrwl6lK+aVpK31eYu6mZnVo0phfz1wUa+DmJlZb5Qq7JL2A34LuLQ/cczMrFudd4YCEfEQ8OQ+ZTEzsx7wladmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmSn703gHSrpY0g8kbZN0XL+CmZlZNaV+Gg84F7giIk6WtDewXx8ymZlZFzou7JIOAF4KnA4QEY8Aj/QnlpmZVaWI6GxE6fnAZuD7wPOArcBZEfHgjPFGgVGAwcHBtWNjY7NOb2pqioGBgerJ+6jJ2aD3+SZ37OrZtAaXw87dnY8/tHplz+a9kPZ26+UylzHf8jZ5vXO26srmGxkZ2RoRrW7mWaawt4B/AY6PiOsknQv8LCLeP9dzWq1WTExMzDpsfHyc4eHh8okXQZOzQe/zrdmwpWfTWj+0h02Tnffwbd+4rmfzXkh7u/VymcuYb3mbvN45W3Vl80nqurCXOXh6B3BHRFxX3L8YeEE3Mzczs97ruLBHxF3AjyUdUTz0MlK3jJmZNUjZs2LeBXyhOCPmNuAtvY9kZmbdKFXYI+I7QFd9P2Zm1l++8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM6V+QUnSduAB4OfAnm5/SdvMzHqv7G+eAoxExD09T2JmZj3hrhgzs8woIjofWbod+CkQwF9HxOZZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuq8kduxhcDjt3L/68h1av7Gi8Xrfd5I5dPZtW2bbrdJl7ob3dernMZcy3vE19T4CzdaNsvpGRka3ddnOXLexPjYg7JR0MfA14V0RcM9f4rVYrJiYmZh02Pj7O8PBwybj9t2bDFtYP7WHTZJVequ5s37iuo/F63XZrNmzp2bTKtl2ny9wL7e3Wy2UuY77lbep7ApytG2XzSeq6sJfqiomIO4v/dwOXAS/sZuZmZtZ7HRd2SSsk7T99G3gFcFO/gpmZWTVl+hsGgcskTT/vwoi4oi+pzMysso4Le0TcBjyvj1nMzKwHfLqjmVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZKF3ZJSyTdKOnyfgQyM7PuVNliPwvY1usgZmbWG6UKu6RDgXXA3/YnjpmZdUsR0fnI0sXAR4D9gT+OiJNmGWcUGAUYHBxcOzY2Nuu0pqamGBgYqJK5ryZ37GJwOezcXXeSuTU5X9lsQ6tX9i/MDO3r3OSOXYs233bzLW9T3xPgbN0om29kZGRrRLS6mefSTkeUdBJwd0RslTQ813gRsRnYDNBqtWJ4ePZRx8fHmWtYnU7fsIX1Q3vYNNlx0yy6Jucrm237qcP9CzND+zp3+oYtizbfdvMtb1PfE+Bs3agjX5mumOOB10jaDowBJ0j6fF9SmZlZZR0X9oj4LxFxaESsAV4HXBkRp/UtmZmZVeLz2M3MMlOpozYixoHxniYxM7Oe8Ba7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8tMx4Vd0r6Svi3pu5JulvShfgYzM7NqyvyC0sPACRExJWkZ8A1J/xQR/9KnbGZmVkHHhT0iApgq7i4r/qIfoczMrDqlet3hyNISYCvwbOC8iPiTWcYZBUYBBgcH146Njc06rampKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT85XNNrR6Zf/CzNC+ztW1fs23vAu9J+r0RM3WhNe5bNuNjIxsjYhWN/MvVdh/8STpQOAy4F0RcdNc47VarZiYmJh12Pj4OMPDw3POY82GLaVz9cr6oT1smqz0O9+Losn5ymbbvnFdH9P8e+3rXF3r13zLu9B7ok5P1GxNeJ3Ltp2krgt7pbNiIuJ+YBw4sZuZm5lZ75U5K+agYksdScuBlwM/6FcwMzOrpsz+/FOAC4p+9r2AL0bE5f2JZWZmVZU5K+Z7wDF9zGJmZj3gK0/NzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMlPmN0+fJukqSdsk3SzprH4GMzOzasr85ukeYH1E3CBpf2CrpK9FxPf7lM3MzCroeIs9Iv4tIm4obj8AbANW9yuYmZlVo4go/yRpDXANcHRE/GzGsFFgFGBwcHDt2NjYrNOYmppiYGBgznlM7thVOlevDC6Hnbtrm/2CmpzP2arrd76h1SsrP3eh92ud5stWVx1pb+uybTcyMrI1IlrdzL90YZc0AFwNnBMRl843bqvViomJiVmHjY+PMzw8POdz12zYUipXL60f2sOmyTK9VIuryfmcrbp+59u+cV3l5y70fq3TfNnqqiPtbV227SR1XdhLnRUjaRlwCfCFhYq6mZnVo8xZMQI+DWyLiD/tXyQzM+tGmS3244E3AidI+k7x96o+5TIzs4o67tCLiG8A6mMWMzPrAV95amaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpaZMr95+hlJd0u6qZ+BzMysO2W22M8HTuxTDjMz65GOC3tEXAPc18csZmbWA4qIzkeW1gCXR8TR84wzCowCDA4Orh0bG5t1vKmpKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT8zlbdf3ON7R6ZeXnLvR+rdN82eqqI+1tXbbtRkZGtkZEq5v597ywt2u1WjExMTHrsPHxcYaHh+d87poNWzrO1Wvrh/awaXJpbfNfSJPzOVt1/c63feO6ys9d6P1ap/my1VVH2tu6bNtJ6rqw+6wYM7PMuLCbmWWmzOmOFwHfAo6QdIekt/YvlpmZVdVxh15EvL6fQczMrDfcFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWmVKFXdKJkm6R9ENJG/oVyszMqivzm6dLgPOAVwJHAa+XdFS/gpmZWTVltthfCPwwIm6LiEeAMeC3+xPLzMyqUkR0NqJ0MnBiRJxR3H8j8KKIeOeM8UaB0eLuEcAtc0xyFXBPldCLoMnZoNn5nK26JudzturK5jssIg7qZoZLS4yrWR77pU+FiNgMbF5wYtJERLRKzH/RNDkbNDufs1XX5HzOVl0d+cp0xdwBPK3t/qHAnb2NY2Zm3SpT2K8HDpf0DEl7A68D/rE/sczMrKqOu2IiYo+kdwJfAZYAn4mIm7uY94LdNTVqcjZodj5nq67J+ZytukXP1/HBUzMze2LwladmZplxYTczy4wLu5lZZp6QhV3Sakmr684xG0nPlPQeSSfUnWWmJmeDZudztuqanK/J2aB6vidUYZe0RtLVwBXAxyW9pO5M7ST9R+BrpO/SeZukt9cc6ReanA2anc/ZqmtyviZngy7zRUSj/4B9226/FvhEcfvNwD8AQ8V91ZDtBOAZ0/MHPgCcVtx/EfAlYLiOfE3O1vR8zpZnviZn63W+Rm6xSzpA0l9JuhX4hKTDikG/A/youD0G/BA4Y/ppi5jvKEnfA/4b8FlJJ0Rq7aOAQwAi4jrgm8BbFjNfk7M1PZ+z5Zmvydn6la+RhR04EdiXtGCPAB+QtJy0W/JqgIh4GLgYeElx/7F+hZF0qKQD2h46BbgkIl5K+oB5g6TDgQun8xUuA46WtE+/8jU5W9PzOVue+ZqcbbHy1VbYlSyV9FZJX5d0lqRnFYOfDTwSEXuAPwN+CpwGfBV4iqRfK8a7FfixpOP6lPFISV8GvgF8WNL01xT/P2C/4vYXgbuAdaRP1Ce37WHcR/p2y+f9KmVrej5nyzNfk7Mtdr7aCnuxq/GbwJuAjwH7AH9TDL4LuLv4ZPoxaWGeRWqA7/P41wIvA+4tHu8JSSva7j4fuCMi1gBXAp8oHr8PeFjS/hFxH/CvwFOLHN8E3luMtzfwc2B77tmans/Z8szX5Gx15lu0wi7pOEkflXR6cV/AkcAVEfGliPgYcJikFwM7SJ9gRxZP3wYMFI/9BfAqSa8mfSgMAt/tMtuTJJ0v6Xpgo6SDinxDwLWSFBH/CNwvaR1pT2H/YjjF/YOBx0h7GAdL+hvgImBPRNydY7am53O26pqcr8nZmpJvUQq7pOcAfwk8APyepPcW814NPFAsNMD5wBtIhXoP8OLi8RtIR4wfiohrgA3A6cDxwH+PiMfaplHFS4v5vYp0UOJs4ADSl50dUuxdAFxQ5Pt2sSyvBIiIbxXTWBoR24AzgZuB/xkRb6E7Tc7W9HzOlme+JmdrRr65Tpep+kfasj6DtNuxtHjsT4Gzitst4JPAycDLga+0PfdppF0VSIX8RtKvMB0D/G/gKW3jlj4dqWjYM4GrSd05q4rHvwi8u7j9DGBjMfxYUn/YkrZl+0kxndWkPYl3Ap8FPgWs6KLdGput6fmcza+r2+7f//V0i13S80kHOH8b+CDwvmLQDtJvpkL65LkW+F3gn4FDJD1X0rJI/ek7JL0kIq4kfd3lR4FLgYsi4t+m5xVFy5R0EvAa4EPAcaS+fUhn20zvHfwY+Drwyoi4nvSJO1LMcwq4Djg2InYAbyR1Bd0FvC8iHiwbqG1P49VNyzaD266axrUbuO26yfZEaLsyP433SyS9EDgc+GpE/IS0NX5rRJwu6QXAOZJawDjwnyTtFxEPSfou8HukczQvBP4A+KSk3cAkcHsxi78CLoyIXSUyKSJC0rGk3ZyvA1sinR7568BtEXGlpNtJV6++AtgK/I6kVRFxj6R/BR6U9HTgz4HTJB1M+tWoe0m7TkTEBDBRod1apL2aB4CPA3cDz6w7m9uuWrYnQru57fJru/mU2mJXskzSmyTdSOrYPxCYLrw/B7YXW983kHYtjgMe4vFTeAAeJe2CHELaKr+J1L9+NXBPRNwBaau8YlF/KfAZ0lHllwMfKUZ5DLhV0vKIuL3I91zSi3Un6XzS6eVYQmqfS4qMpwJrgc1R8RxXSSslfbaY5u3AuRFxt6S9SJ/kdWZbUrTdb5J2BRvTdsV6NyDpfBrWdsU8Q9IwzVzn9pG0oqFtd0DD225A0r6SLqBhbbegTvprgBXAi4vbBxbBPjnLeGeRLoNdXdw/mdSffhjpKwCuLh7fl9QNs6rtuccAe3eSZ8Y89wPexuNb/suAPwLeUQx/EvC9YvqnkPq71hTDTiqWZVVxexJYSerf/3J7HmCvLrJdRLpibIDUtXRm2zjTxyHeCfyPxcrW9rqeQVrZ1pMO8DSl7aazXVqsVwc1rO32B7aQfkkM4D1NaLcZ+b4M/HVx/2PA2+puO9J74s2k9/8lTWu7tnxXAn9fPNaY9a7TvwW32CWdDdwGbJE0GBH3k/qF7iz6xl+jxy8Q+hbpAOj0hUbXkg6iPhQRFwA/lfQ50kHRW4Bf9CFFxI0R8chCeWZkOwS4HBgGPkc6QPFa0l7CnmK6PyUdeH03qe/rYB4/jfIa0rn0j0TE5cCnSVeznkc6Yv1oW75Sn6ozsv0d8PYi263AEZI2FltRv690wdUVpD2Yvmcr8q0gvblOIF0/8ArScY9jSVtKdbZde7bNpLMFXku6huE36m67wnLStRfPkrSKtM4vKaZZS7vNkm9v0rr2VFIXx9GSPlJX20laRjrGdjLw8Yj43WLQMW3TrK3tZuT7WERMb3FPAkfV2XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI7txacSaeV9Udv900lbJm8Gvt32+FOBO4vb7yBdtvuk4vlfAp7eNu6qPmV7E+lI968Df1/8vR74X6Rz+RctW9v0Dmy7/Z9Jb6ZT6267WbL9MemUsWc2qO3eTOprfT/wVtKBtOvrbrdZ8r2PtMezqgltR9oDO3XGY6cA1zWh7ebI9/QiQ+3rXcfL0cGCTp+acwowXtxeRtqaWlncP4y0tX4saRfwYtKW1j+RPqn26Uv41Mcl+MVvt76Ax7t77iWdMzo97tcoCi1p9+mrxTh/skjZjgG+Mb3ito23jHRw+YTi/jn9zjYj5wGk4xs7gQ8X9+8FButqu1my3VXMdwVFN19dbdf2er6F1M32WuALxWP31N1uc+QbKx5rP124lvWO1EVxK7CpmP8HivpxH3BwA9a59nxXkb6Y69C617vSy1FigZ9MulDoOcX9pTOGnw+cPL0CkboezqRPRX2OlfkCHj9f/nPAR4vbv0ba43h62wtzNG1fCbxI2d7R/lhx+5Ci7Z672NnaMvwh6XzbzaR+7W8WbzjV2XYzsp1HOq3s2U1oO9JXRi8h9aFeTdoyvgl4f93r3Cz5/pl0htkLGtJ2XyHtgT2NtBV8FmnDsCnrXHu+L5Au/T+8CW3X6d900emIpE8BP4uIDcX9vUjnXb4DeA5wSpTsJ+8VSYeS+rTeFRG3Kn2h2GiRazXwnejNVWXdZHt7RNxWPHYMqVtqXZHtD+vI1k7pOoQzSW+yI0kr66HU2HZt2Y4mvdn+nHSW1UnU1HaSBkjdHPuQ2uk3SBeenE3aUj6cGtttlnyHk45P/BbpmNfLSO1Xy3qn4rTn4vbzSO/Ta0mX1Ne+zs3IdzTpSvdzSd80W9t6V0bZ89g3A+cWBxmOJK3Ex5NelLPrKuqFYyjOgZd0Bqn//2xSF9IPIp1+WXe2HxXZbietHHtIW/E31pit3b2kg4Dvi4i/k3QacHND8t1P6ie+ifS6LqO+tttDOnviUdKW+s9J6/8k8N4GtNtc+R6W9BpSwa9tvZsumoX7Sced3h8RFzag7Wbme4C08boN+K/Uu951rOwW++tIB0ofJn3j2JURcUufspUi6VrSwbXtpHNIPxQR36s1VGFGtruADQ1qt5WkLbg3kL7/fjNwXkQ8Ou8TF8Es2T4dEZvqTfXLigtPpvuy76o7z0xFvpOBz0Y666TuPPuQfnPhjaQ96r8EPhXpa7prN0u+zRHxZ/WmKqfjwi7puaTzOS8mHSzq2VfldqvYg/ggaUv485GuWmuEJmcDkLSU1P3yMClfk17XxmaDdFEX8FiU2TpaRE3OJ+lM0mm1n2va6wrNz7eQUlvsZmbWfE39aTwzM6vIhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpn/D0QBdzhJVkBDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] } ], "metadata": { @@ -364,7 +2494,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4, -- 2.18.1