diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..967c0f7057f1316668f31db2c9e0ee1c838568b3 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -1,5 +1,587 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sujet 1 : Concentration de CO2 dans l'atmosphère depuis 1958\n", + "\n", + "La concentration en CO2 atmosphérique est une donnée majeure dans un contexte de changement climatique. Celle-ci est mesurée à l'observatoire de Mauna Loa, depuis 1958, à l'initiative de [Charles David Keeling](https://en.wikipedia.org/wiki/Charles_David_Keeling).\n", + "\n", + "L'analyse de la chronique de la concentration en CO2 atmosphérique a pour objectif de mettre en évidence:\n", + "1. l'évolution à long terme du signal\n", + "2. la saisonnalité du signal " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#import des packages\n", + "%matplotlib inline\n", + "import os\n", + "import urllib.request\n", + "import pandas as pd\n", + "import numpy as np\n", + "from datetime import datetime\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les mesures de concentration en CO2 atmosphérique sont disponibles d' l'url suivante: https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record.html\n", + "\n", + "Les données on été mesurées à Mauna Loa.\n", + "![localisation du point de mesure](https://scrippsco2.ucsd.edu/assets/images/mlo_station_map.png \"Mauna Loa Observatory, Hawaii\")\n", + "\n", + "## Importation des données\n", + "Les données sont téléchargées au format CSV. Ce fichier comporte une notice de 43 lignes qui seront ignorées lors de l'import. Il est structuré en deux colonnes, la date au format \"yyyy-mm-dd\" et la concentrations en CO2 en micro-mol CO2 per mol (ppm).\n", + "Le dataset a été téléchargé le 26/03/2020 et couvre la période de 29-03/1958 au 01-02-2020." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
datesCO2
01958-04-05317.31
11958-04-12317.69
21958-04-19317.58
31958-04-26316.48
41958-05-03316.95
31502019-12-28412.59
31512020-01-04413.19
31522020-01-11413.39
31532020-01-25413.36
31542020-02-01413.99
\n", + "
" + ], + "text/plain": [ + " dates CO2\n", + "0 1958-04-05 317.31\n", + "1 1958-04-12 317.69\n", + "2 1958-04-19 317.58\n", + "3 1958-04-26 316.48\n", + "4 1958-05-03 316.95\n", + "3150 2019-12-28 412.59\n", + "3151 2020-01-04 413.19\n", + "3152 2020-01-11 413.39\n", + "3153 2020-01-25 413.36\n", + "3154 2020-02-01 413.99" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_url = \"https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/weekly/weekly_in_situ_co2_mlo.csv\"\n", + "data_file = \"scripps-week-CO2.csv\"\n", + "\n", + "if not os.path.exists(data_file):\n", + " urllib.request.urlretrieve(data_url, data_file)\n", + " \n", + "raw_data = pd.read_csv(data_file, skiprows=44, header=0, names=['dates' , 'CO2'])\n", + "raw_data.iloc[np.r_[0:5, -5:0]]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Conversion des dates au format datetime\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "date_list = [datetime.strptime(date, '%Y-%m-%d') for date in raw_data['dates']]\n", + "\n", + "data = pd.DataFrame()\n", + "data['dates'] = date_list\n", + "data['CO2'] = raw_data['CO2']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Appercu des données" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CO2
count3155.000000
mean355.395702
std28.218412
min313.040000
25%329.885000
50%352.880000
75%378.090000
max415.080000
\n", + "
" + ], + "text/plain": [ + " CO2\n", + "count 3155.000000\n", + "mean 355.395702\n", + "std 28.218412\n", + "min 313.040000\n", + "25% 329.885000\n", + "50% 352.880000\n", + "75% 378.090000\n", + "max 415.080000" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8nWXd+PHPN3vv2SRtutt0D1qglF2oTAHRMp5HQUUURXEgBUXxeaqgKOiDgvxQUFmCgCBllTJK96J7j6RN06bZe+f6/XGPc58mLSn0ZH7fr1deuc913+fkupv0fM+1vpcYY1BKKaWOFdTTFVBKKdU7aYBQSinVKQ0QSimlOqUBQimlVKc0QCillOqUBgillFKdCniAEJFgEflYRF63H/9GRHaIyCYReUVEEjzXzheRPSKyU0QuDnTdlFJKHV93tCC+C2z3PF4EjDfGTAR2AfMBRCQPmAeMA+YCfxKR4G6on1JKqU4ENECISDZwKfCEU2aMeccY02o/XAlk28dXAs8bY5qMMfuBPcCMQNZPKaXU8YUE+PUfBu4EYo9z/mbgn/ZxFlbAcBTaZceVkpJicnNzP2MVlVJqYFm3bl2pMSb1k64LWIAQkcuAo8aYdSJybifn7wFagWecok5epkMeEBG5BbgFYPDgwaxdu/aU1VkppQYCESnoynWB7GKaBVwhIvnA88D5IvI0gIh8GbgMuMH4kkEVAjme52cDRce+qDHmcWPMdGPM9NTUTwyASimlPqWABQhjzHxjTLYxJhdr8Pk9Y8yNIjIX+DFwhTGm3vOU14B5IhIuIkOBkcDqQNVPKaXUiQV6DKIzjwDhwCIRAVhpjLnVGLNVRF4AtmF1Pd1mjGnrgfoppZSimwKEMeYD4AP7eMQJrlsALOiOOimllDoxXUmtlFKqUxoglFJKdUoDhFJKqU5pgFBKqV6uobmNF9YepLu3iO6JWUxKKaVOwgNv7eCp5fmkxoRz3pi0bvu52oJQSqlebl1BBQD/s3AbAP/ZWMTyvaUB/7kaIJRSqpdLiw0HYHhqDADff2EDz68+GPCfqwFCKaV6uR1HagBobGmjuLqRljZDSHBn6etOLQ0QSinVi63cV8ahygYAqhpa2F9aB8CcsekB/9kaIJRSqpepqm9xZyzNe9y3C0JVQwtFdrAYnXG8XRROHQ0QSinVi7y+qYhJv3iHvyzd3+FcdUMLh6saAciMjwx4XTRAKKVUL/LtZz8G4O8rOm7ZUN3YSmFFA4lRoUSGBX5HZg0QSinVCx0or++wMK6t3fDxgQoGJ0d3Sx00QCilVA/ZWlRF7l0L+WDn0U7P7y2pdY+/dtZQwJrRlJsc1S310wChlFI95NI/LAXgiY+s8QZnABogJEh4ZtUB9/Edc0a5x856iEDTAKGUUj2srrkVgHe3F7tlBnhyWT4A8z83huhwX2akxKjQbqmXBgillOoGz646wG3Pru/0XFiw9Va8r6TOLWtr940/3HL2ML/r65q7Z7NNDRBKKdUN7n5lMws3HWZbUTUAe47WuOcKK6yupaeW5wPwy6sm+D3X3p6ZlBgr5cZFeYFfJAcaIJRSqltd8oePAHhxXaFbdrSmkQZPq2Bwkm8Q+tpp2e7x01+bwc2zhpKrs5iUUqr/OGNYMgBR9vqFiBDfOoaWNsMbmw8DcPOsoX4BIj0uwj0ekxHHvZfnERQU+DxMoAFCKaW6hcEaU8iIt97wl+7xT9f9gxc3AnBhXho5Sb5V0oMSAr9i+ng0QCilVDdYua8cgEMVDRhj3D0eHvrSJL/rhiRHu2MOAJkJEfQUDRBKKdWNmlrbaWixxhuiw4KZk5fhnhOBLLvF4MSInMSea0HolqNKKRVg//74kN/jA+X1ANw5dwwx4SFEhwVT19zGxKx495o3bp/NW1uOdNuiuM5oC0IppU4xYwyPvLebgjJrXcP3/rnB7/z/Ld4DwGA7ZUaKvWNcXKRvAdzYzDjumDPKr7upu2mAUEqpU+wfKwt48J1d3HFMYHAstGcsjU639nSIi7ACw4i0nmstdEYDhFJKnWL3vroVgM2HqvzKr5uR4/fYmaHktDTGD4qnN9EAoZRSp9gYe7e3nCT/rKt3XjzGPQ7xrGVwBq0TuinHUldpgFBKqc/o/y3Zx3LPugYnQBytbuKIvQMcQGJ0GEPscYcrJ2e55S/eeia5yVFMH5LUTTXuGg0QSin1GTS3trPgje1c/8Qqt+zfG4oAqG1qdfd6SI4O8/vuXS09OSeBD350HvEDrQUhIsEi8rGIvG4/ThKRRSKy2/6e6Ll2vojsEZGdInJxoOumlFKf1R8W7/Z7fOwucB/uKgHg/66fAsDuYmsToLS48G6o3WfTHS2I7wLbPY/vAhYbY0YCi+3HiEgeMA8YB8wF/iQigd90VSmlPoNH3t/jHtc0tlDd2Op3/s0tRwCIt6ewptpTWrspndJnEtAAISLZwKXAE57iK4G/2cd/Az7vKX/eGNNkjNkP7AFmBLJ+Sil1sl5Yc5BXNxzq9FxpbTNv2wHhnFGpfuecDKz/+c5Z3H7BSL8xiN4q0C2Ih4E7gXZPWbox5jCA/T3NLs8CDnquK7TL/IjILSKyVkTWlpSUBKbWSil1HHe+tInvPt/5+obS2ibufGkTAD+4aJTfOWdHuOjwEL4/ZxQRob2/gyRgAUJELgOOGmPWdfUpnZSZDgXGPG6MmW6MmZ6amtrJU5RSKjCKqxtPeL60psk99qbImJjdu9Y3dFUgWxCzgCtEJB94HjhfRJ4GikUkE8D+ftS+vhDwriLJBooCWD+llDop3imrjfbahfjIUC6ZYCXccxbGXTg2jZBg32feivrmbqzlqROwAGGMmW+MyTbG5GINPr9njLkReA34sn3Zl4FX7ePXgHkiEi4iQ4GRwOpA1U8ppU7Wt5/z7Sm9an85/9lYRFVDC4cqGhCBLfZ2otfPHEy4Z0Ogg+UN3V7XU6En1kHcD8wRkd3AHPsxxpitwAvANuAt4DZjTPfszK2UUl3gfaNvaG7lO899DMDGwiqSosLYftgKEM7e0TOHWgvf7r0sr5tremp0S4AwxnxgjLnMPi4zxlxgjBlpfy/3XLfAGDPcGDPaGPNmd9RNKaWO56wH3uPnr1l5lSqP6SbacqjaPd7884tIjQ2nxB6DcALEqv3W25uzi1xfoyuplVKqE0drGimsaOCp5fkAHKr07yZ65P09hAUHces5w4mNCHVTaABk2gHhlW+dyYzcJC4el0FfpAFCKaU68fbWYr/Hf19eAFgZWUWsVBnNbe1k2VuCjs2MA2BYqm/L0CmDE3nh1jMI7gur4jqhO8oppVQnIkJ8n5+LKhv451prmdZVU7IprGjgo91Wcr4RaVZivhh7nUNTSzv9hbYglFIK+MeKfH75hi8r0GsbfbPsNxVWkWe3EKYPSXTTZgAk2cn3dhypAeD0YcndUNvuoQFCKaWAn766lceX7HMfOy0EgCNVDWyzZygFBYk7CA2QEmMFCCfF902zcruhtt1Du5iUUgPeMs9eDu3thiDPmEFosHDYXiDnBAEnE2tosJBsB4ubZw3lvDFpfiuo+zptQSilBpx/rCxwp68C3PTkGt/xU2tYuOmw+zg9LoIldmvihtOHABBr7yHt5FcCq2XRn4IDaAtCKTUA/fTfW6zvl+URHCQ0t/kGlj/cVeLu4QCQkxjFin1lAGTEWTOWnO1CQ4P792dsDRBKqQGlqdWXoKG0ton0OP9FbNfNGMxzqw8AVsqMllZf8JiQFe9eEx4SxKUTM7uhxj2nf4c/pZQ6Ro1nQ59DlQ3UNvkeD0+NprqhxX389dnDqG/2BZTYCN9n6qunZvvlW+qPtAWhlBpQ/rWu0D0uqmzgT+/vdR8nRIVR2WCl1BifFcfQlGjW5LvZgIgK698B4VjaglBK9WtVDS2sK6hwH9//5g73+HBlI+9ut1ZMXzUli/jIUIoqrRlLl00cBMD/fn48AIlRoe4K6YFCA4RSql+bdN87XPPocsrrmmlr99+D7FBlA1+cng3A7744iZSYMPaX1gG+AenZI1O5fuZgnrpp4O2ArAFCKTUgPL2ygOZW/zQYRZUNvLDW6nISEYbY+0YD5CRFAhAZFswvr5rApJyE7qtsL6EBQinVb3l3gKuob/abznru6NQOGVozPWm5BydFM9BpgFBK9RuLthVzzyubMcbqSiooq3PPBYnQYM9IGpkWw6CESDd9xlfOzAVgTEace31qrC+dxkCls5iUUv3GgoXbyC+r52uzhzE0JZoH39npnvvL0v2U1Vob+nxxeg7Nbe3YcYRpQxIByBtkBYgLxqR1b8V7KW1BKKX6hYbmNvLL6gE478EPABiZHut3zaJt1oylKyYP8utOGpTgO86//1L+8pXTAlzbvkFbEEqpPqndnpHkJNYrtVsHXs+uslZEX5SXzoHyekalx7Imv5z0uAgGJUS6140bFN8NNe57tAWhlOqTht39BsPufoMDdqvBO4X19GFJVNX7VkQnRIVSUd/MaxuL3Mysg+J9ASIidGAtgOsqDRBKqT5twRvbAHj540NuWUubYUtRlfs4MSqM4mqrhRFpB4PsRCtAXD0lq7uq2udoF5NSqk9rN1br4Q+Ld7tl6woqOFhutSxe/85Z3PPKZvfcXZ8bA1hdU/n3X9q9le1jtAWhlOr1dhfXcMnvP6K8zsqT1NjiS6CXFhvul3DPUVhhrXEYlR5LpScB35DkqADXtv/QAKGU6vXmPLSEbYerWWrv/OYECoBnVh3wy8B63xXjANhYWElGXARhIUH85cvT3fNDU3QBXFdpgFBK9Rk7j1gL215eX+hXXlFvBYwvTc8hIcra7e2j3aWMz7LWNYxI8013zU7UFkRXaYBQSvV6g5OsN/W6Jqtr6cF3dgEwY2gSYcFBrMm3srV+98KRJESFuc+bkNUxf1Jw0MDKyPpZaIBQSvV6dfYYQ5GdO8nZ8nNGbhLNbe0s2VVCYlQogxIiyfIsepuQHdfxxVSXaYBQSvUqTa1tXP2nZVTa3UZV9S2U2WMO1Y0tNLe209puOH1Ykjvg/OGuEnfrUG9G1vFZvgVwa39yISvnX9Bdt9EvaIBQSvUqo3/yFusPVDL5F4sAePRD345vVQ2tvLX1CAAr95WTFO3rThqTYY0zhAYH8cfrp3Lj6YNJi/W1JlJiwsmI999/Wp2YroNQSvVKzmDzY54Asf1wNb96Y7vnGl+AOG1oknt86cRMLp2Y2Q217N8C1oIQkQgRWS0iG0Vkq4jcZ5dPFpGVIrJBRNaKyAzPc+aLyB4R2SkiFweqbkqp3qGhuY0nPtrXYac3gITIUFra2juUO6kyPv7pHEamx7jlzkC2OnUC2YJoAs43xtSKSCiwVETeBH4B3GeMeVNELgF+DZwrInnAPGAcMAh4V0RGGWPajvcDlFJ92+d+v4T8snp2HqnhN9dOchPwAVQ2tLgJ+BZcNZ7k6HBufXodYO3VkOjpXgLI0emrp1zAWhDGUms/DLW/jP3lTC2IB4rs4yuB540xTcaY/cAeYOBtAqvUAOKk535xnbWuYeHmw4A1nlBZ38KKvWWAtdPbxGzfgPO0wYnu8c8vz+PsUam6QjoAAjpILSLBIrIBOAosMsasAr4H/EZEDgIPAvPty7OAg56nF9plx77mLXbX1NqSkpJAVl8p1c2cHeC+dd4IAF6xE/CdPiyZlBjfDm/e3d6+Mmsof795BiK6vuFUC2iAMMa0GWMmA9nADBEZD3wTuMMYkwPcAfzFvryz326HjkljzOPGmOnGmOmpqamBqrpSKgCKqxvd7UArPOkyHNWNrYSFBDEyzRpbWL2/nKyESKLCQggL8b1dnTNK/+93h26Z5mqMqQQ+AOYCXwZetk+9iK8bqRDI8TwtG1/3k1Kqj9tbUsvMXy52xxEaW33Di87ubvtKahmcFOWm4m5qbSctruPe0OOydAFcdwjkLKZUEUmwjyOBC4EdWG/659iXnQ84OXpfA+aJSLiIDAVGAqsDVT+lVPf6+t/XAvD2Vmvbz+ZW3wylkpommlvbWb63jNNyk4gJD3H3bciI861d+Nz4DAAyPZv9qMAJ5CymTOBvIhKMFYheMMa8LiKVwO9FJARoBG4BMMZsFZEXgG1AK3CbzmBSqv9w9mdwvGQPTJ83OpX3d5awbG8p9c1tnJabiIiQFhdOQVm932ylR2+c1q11HugCFiCMMZuAKZ2ULwU6/S0bYxYACwJVJ6VUzxmVHsvWIisba31zK394bw8ADfbeDjc9uQaA6UOS7Guscu/eD6p7damLSUQSRWSciAwTEU3PoZQ6KW3txg0OAEt2+WYg/vSyPL9rnTGHmkZrj4cvTMvuhhqqzhz3zV5E4kXkbhHZDKwE/gy8ABSIyIsicl53VVIp1ffc9ux61hWUA/DPNQf9zi3ZXeoej0iL8TsXYY89OKurx2TogHRPOVFr4F9Y6xJmG2NGG2POsqeX5gD3A1eKyFe7pZZKqT7lrS1HWLjpMNc8ugLwtQacqao7j9QA8Mj1UwgPCXYHpOMifL3e//jqTG6YOZhEOyeT6n7HHYMwxsw5wbl1wLqA1Egp1edtOFjp9/hXb+4A4I3bZ3Ph7z5kXYG1wc/odCsDa0JUKA1VbVw2aZD7nNOHJXP6sORuqrHqTJcGqUVkIpDrvd4Y8/Jxn6CUGlCcxW/Oambvombv7KXsxEhSYsIorbUWybW0Wc9zEvClx2o67t7kEwOEiPwVmAhsBZyJywbfYjel1ADW2tbOiHveBCD//ksB/6Cwq9jqTjpjWDIRocGkx0W4AcLZw8GRFK3dSb1JV1oQpxtj8j75MqXUQFR2TMqMxpY2Xt902H28wx5vmDfDSpSQERfB1qJqLhiTRpC9dejw1Gj2ltRxzqi0bqq16oquBIgVIpJnjNkW8Noopfqcx5fsc49rm1oZ/7O3/c6v3m/NZBqeas1WWrzjKAAjPHs5LP7BuQGupfo0urKm4W9YQWKniGwSkc0isinQFVNK9U4FZXV++zb8Zel+9zi/tM49fut7swHYWlQF4OZXmv+5MQB8ddbQgNdVfTZdaUH8FfgvYDO+MQilVD9njKGgrJ7clGi3bMmuEv77r1aKtP2/usQdZHaU1jaRGBVKRX0LYzLiiAwNdscb4iOt8YVvnDOcb5wzvJvuQn0WXWlBHDDGvGaM2W+MKXC+Al4zpVSP+ueag5z74Af8/t3dbtnmQ1XucXF1E79dtNPvOcXVjdQ3t/HVs6zWQYMnTYbu19D3dCVA7BCRZ0XkOhG52vkKeM2UUj1q6R5rtfND7+5yy/6w2BcsCivqCQ+23kL+9/PjAdhwsIqm1nZ3fYPq27oSICKx9pe+CLjc/roskJVSSvW8kpom9/hojbVOocmToruwosGdrfSFadlEhQW7qTW83VKq7/rEMQhjzE3dURGlVM/aVVzDpsIqNzledmIUq+wZSJf8fik/vGgUADNyk1idX86B8nr22YPSEaHBpMaGs6vY2obe2QAoNiKEmsZW0mI7bvqjer9PbEHYGVz/IyIlInJURF61N/RRSvUjFz20hB++uJHm1naq6lt4aX2he66ppY27Xt4MwOr8clJiwli8vdjv+d6NfZw9o5f++HxSYsL4w3UdMv+rPqArXUzPYmVxzQQGYW0T+nwgK6WU6l6V9b7FbgfK61mxr8zv/NVTszjb3gf67e+dTVZiFBsLrQHrP/+Xtb2LNyurk5E1PjKUtT+ZozmV+qiuBAgxxvzDGNNqfz2NlWpDKdVP/HVZvnu8v7SOljbfWENWQiS1TW0s2VXCyLQYRmfEumsaAKYOTgQ6pu1WfV9XAsT7InKXiOSKyBARuRNYKCJJIpIU6AoqpbrXi2sPsvuoNZZw9ZQsDlU2uN1NsXY6bidAhIcEkRITZpdF9UBtVSB1ZaHcl+zv3zim/GaslsSwU1ojpVTAHSyvp7K+hQnZ8YD/9NV3thVT29TK6PRYfvelybz88SH33Ffs1c9OMIgMC3bXN0y0X+vrs3WIsr/oyiwm/W0r1Y8YY5j96/cBX/ZVx6wRydQ2trLzSA1z8tIBuGLSIF7bWARAjt1yyE6wvlfWt7jPTY+L6PB6qm/ryiymCBH5voi8LCIvicj3RESTtivVR1V43tQbPSudAbITothXUkdZXTM5SVYrwbumwWk5ZCboW8BA0JUxiL8D44D/Ax4B8oB/BLJSSqlT55lVBXzh0eXuY2fRG0BBWb3f3g0JUaHUNLUCuAHCu4bBGW8YkxHHr66ewMZ7Lwpo3VXP6soYxGhjzCTP4/dFZGOgKqSUOrXueWULAB/tLmH2yFSOVvtWSG85VEWtHRDOG51KXKRvwx6nO6m+udUt8+ZTum7G4IDWW/W8rrQgPhaR050HIjITWBa4KimlTpWj1b7WwgtrrZlI79n7MQAUlNezraiahKhQ/vqV0yir9a2HyE22upb2lfhSeKuBpSsBYiawXETyRSQfWAGco/tCKNX7vLSukNy7FrrrGL797MfuucQoq3Xw1PJ89/HB8noWbS8mIy4CEaGwwtfdlBhtdScl2d9vPF1bDANNV7qY5ga8Fkqpz+xodSM/eNHq/X1qWT5fP3sYq/OtXEoZcREcrmqk2ZNsb0xGHAfK6ymva3aDwE8vy+Odbf4pNG6/YCRDkqP44vScbroT1VscN0CISIwxpvZEez+IiC6dVKqXqGzwzU5qavWfnTQ6I5bi6kaW7bVSeE/IimdwUhTvbDsCwGUTMwEryd6MoUl85cxc97kRocF86TRtPQxEJ+pielVEfisiZ4uIO8/NTt73VRF5G21dKNVjmlvbaWj2BQJveozqxla/a9NiwymubuSmJ9cA8KcbpjI4Ocqd8uq0IEKCg3jhG2dwyYTMQFdf9QHHDRDGmAuAxVgrqLeKSJWIlAFPAxnAl40x/+qeaiqljnXNo8sZe+9btNn7Q//6Ld/ubvtL6zhU2QDATy4dy7bD1RR7Zi/lJEW5QQE6rodQCj5hkNoY84Yx5gZjTK4xJt4Yk2yMOdMYs8AYc+REz7UX2K0WkY0islVE7vOc+46I7LTLf+0pny8ie+xzF3/221Oq/3K2/3xzi7Vpz4e7Stxze0tqWWuPP5wxPJmtRdXuuSsmDQLwm+46Y6hmW1UddWWQ+tNqAs43xtSKSCiwVETexNqh7kpgojGmSUTSAEQkD5iHtShvEPCuiIwyxuhHGzXgGWOobmwl3rNOwbH3qP801LiIEEpqmiiqtKa45iZH86cbpvKtZ9YDvs18JmTHuc/Jy4xDqWN1ZZrrp2IstfbDUPvLAN8E7jfGNNnXOZOyrwSeN8Y0GWP2A3uAGYGqn1K92Z6jNbR6xhQWbStm0n3vsNneg8G7+tm7MhrgS6flUNPYyv7SWhKiQokOD2FYqi9dhpM6Y6wnKISFBOytQPVhAf2rEJFgEdkAHAUWGWNWAaOA2SKySkQ+FJHT7MuzgIOepxfaZUr1W1X1LVzy+4/Yc7TGLdtbUsuFv1viroAG3E//y+1ZSOV1vgVthyob2FVsPT82PITMeGsF9Mp95W7LwFn0Br4WRGKUbwxCqc4ENEAYY9qMMZOBbGCGiIzH6tZKBE4HfgS8INb6fensJY4tEJFbRGStiKwtKSnp5ClK9R1vbT3MtsPVPLTIl277gt9+CMA/1/o+L7XaA9HOQPOPX7LWqCZEhXKkqpGNBysBax2D0w11oLye0RmxgG+HN4Bxg+LdstiIEK6eqp/DVOeOGyBEZIKIrBSRgyLyuIgkes6tPpkfYoypBD7AmhZbCLxsd0GtBtqBFLvcuxInGyjq5LUeN8ZMN8ZMT01NPZlqKNXrPPyuFRhKaps+4UqLs9J5xxGrxTA4KYoj1Y089uFeAC4al86+0lr3+sFJHTfxSfUk39v0s4v43Rcnf7rKq37vRC2IR4GfAxOAXViDzMPtcx1Hyo4hIqkikmAfRwIXAjuAfwPn2+WjgDCgFHgNmCci4SIyFBgJnFQgUqqvCbKT351ou878Ut8gdGltkzutFeC03CQq61vcKasJUWGMzvCNLeR4dnl77uun88I3zvB7bW/yPaWOdaJZTDHGmLfs4wdFZB3wloj8F13bkzoT+JuIBGMFoheMMa+LSBjwVxHZAjRjracwWGstXgC2Aa3AbTqDSfV3zlqFIvu7dz3ChCyrK+jtrb4Z5esPVLoD1BGhQe5A8/oDlcwdlwHAmcN9U1ZzPC2IM4brVFZ1ck4UIERE4o0xVQDGmPdF5BrgJeAT96I2xmwCpnRS3gzceJznLAAWdKXiSvU1jS1t/OqN7fzg4tHERYT6rYLeXWx1C63aX+6WVdRbA9HO+EFSdBjldc3ugPRTN82gpMbqmmprNwxJsYJBSJCvVeDsHa3Up3GiLqYHgLHeAvtN/wLg5UBWSqn+6IW1B/nbigJmLlgM+AIAWC2JlrZ2vvxXq1c1OTqMirpmmlvb+dlrWwH4/pxRAGyxF70NTopi6hB3aNCdqRQXEcqk7Hi+MC2b6PBALnVS/d1x/3qMMc86x3ZSPmOMqTPGHAC+3h2VU6ova2s3BHs+zd/7qvVG32B3Iy3dY01ZdVoG3oCRNyiOj3aXUlDmG39wZidtOVRFWHAQ6XER7mY/AEOSrRZEUJDw6rfPCtBdqYHkhNNcReSbInIAKAAOikiBiHyre6qmVN/1/s6jDL/7Dea/vPm419z5L2uqqjNO4F3bMHe8NZ6w0+5OevDaSSTbA9EbDlaSnRhJcJAQF+H7jDfUs3e0UqfCiaa5/gS4HDjXzsGUBJwHfM4+p5Q6jocX7QLgudUHAOtTv1dNY4ubUvsbZw8DfOMQnxufQXSY9cb/zErr+ZNz4kmxp6eW1zW7QcU7Cyk9NiIQt6IGsBN1UP4XMMkY467jN8bsE5EvAhuB/w105ZTqK6oaWogIDSI8xBpQnpSTwEY7LUZLWzt/X5Hvd31BWb27s9vwVGuK68p9ZYC113N1o5WGe4Vdlp0YRb1nUNu7vuGZr82kor6ZoCCdsqpOrROOYHmDg6esQUTaO7teqYGopa2dSfe9A0D+/ZcC/t1Fy/aUEhNujR8MS4lmX2kdNz+1xj0/KMH65P/BTiszwMj0GDLiIvg21nahmfERRIQGE+7+qyUYAAAgAElEQVTJl+Q9njUiJRC3pdQJxyAKReSCYwtF5HzgcOCqpFTfsnBTx/8Oe476VjOHBQfR3NZGVFgwV02x0loctaenzh2XQUx4CKHB4q6JcPaHdhyusj6nectmDP3EmeZKfWYnakHcjrWr3FJgHdbiuNOAWViZV5VS4Leyuaq+hYLyOjcVBsDWomo2HqxiyuAEvnXeCH5rj08APHDNRESEljbfaxy7utmZneR14dj0U3kLSnXqRDvKbQXGA0uAXGCYfTzePqeUAn7w4kb3+GBFPVc8sgyA80ZbucKqG1vYVVzD2Iw4goOE9DhrsDktNpz4KP+sNV89a2iH13/iv6e7xz+7PI+fXZ6n4w2qWxy3BSEiI4B0Y8xfjymfLSJFxpi9Aa+dUr3QjiPVZMZHEh8ZSnu7f9aZ4mrfsN0DX5jIxQ8tYV1BBU2t7Yyx02KkxIRTXN3kt8r53NGpfLCzxB2wBiupXklNk1+epptmdQwgSgXKibqYHgbu7qS8wT53eUBqpFQv1tZumPvwR4A1IO3MPHIcsQPEabmJpMVGkBITzvK91jUj7Td6Z8GbN6tqsN2tlJngm6r679tmUVBapwn1VI85UYDItVNr+DHGrBWR3IDVSKlezLuTmzGGR+0027ERIdQ1tfLxAWtfhjX5FYDVWthtD1gPtXd1cwJGUrQvQPzksjzCQ4OYOtiXOiMrIZKsBM2lpHrOiWYxnWjVjf7VqgHp12/vcI/zy+rdjKsr519Au4F/rSsE4PfzrD0WnMVtKTFhxEX4jzc4YxRgrYL+0w3TOt1zWqmecqIAsUZEOuRcEpGvYs1qUqpfa21rJ/euhYy4+w237I3NvtTblfXNHKluZFB8RIekeNNzrWmoTnqMyTm+lsHC28/i67OHcpGdnlup3upEXUzfA14RkRvwBYTpWBv8XBXoiinV3drbDQbcBHvOuoTWdkNrWzshwUGkxYa7axhe3VDE4cpGMu1uoMk5CWywt/7MiLMa4E5K73e3F7s/Z9ygeHfbT6V6sxNNcy02xpwJ3Afk21/3GWPOMMYcOd7zlOqrJvz8bYZ7WgsLFm53j52keU5wAHhqeT4HK+oZZAeIs0f5uoycIOPMVLr/6gmBq7hSAfKJyeKNMe8D73dDXZTqMcYY6uxP+40tbUSEBvPONt+n/iNVjX67szkKKxr4nJ15denukg7nv3nucMZlxXHe6LQA1VypwDlhum+l+quWtnZa2nwpxZzBZfCtZbh2WrZbdqS6kS8+tgKwsq/mZfr2fXZyIc07bTAAUwcnuOdCgoM4f0y6TlVVfZJuN6UGpMv/bylHa5pY/9M5AHxsjx0AFFU2MiQ5GoO12rm0toniqkY3fcb5Y9Joam1n22FrZ7e8QVawuGZaNpUNzdx4+pDuvRmlAkQDhBqQnDd7pzupzZMLqaiygda2drdVMTgpin2l1s5uw1KimTksmU2Fvv0dUuz1DMFBwi1nD++uW1Aq4LSLSQ04jS2+fRVW2IvWDlbUM25QHCFBwq6jNby7/ah7TVpsuJudtcBeKJdlDz5HhgZrXiTVb2mAUP1eeV0za/LL3cd7S3ypuPPL6jDGsHxvGUnRYQxKiORwZSO3Pm3N7J6Tl05idBi77FlMCz4/HoCcRGvAOkSDg+rHNECofu+ih5Zw7WMr3FaAd6+GA+X1bC2yxhI+2l1Kely4X8K9P984jdjwEJycfEOSrXQZTgK9OeM07bbqv3QMQvVrxhhKa621C+sPVDAiLYb99nhCVkIkR6oaqWtqBeAHc0ax62gt6wsq3OcHBQn7y+rcx6MzYgGIDAtm6Y/P80u4p1R/oy0I1a9sOFjJW1t86zhr7Td/gM32wPLD7+4GrPxHRVWN/G1FPgDXzRzMoPgIdwX1redYA873XTHOfY1Ez/4N2YlR7h7USvVH2oJQ/crn/2ht1rPq7gtIj4vwS3FxuKqBozW+7qOM+Ah27y5h48FKosOCSYkJ54AnW+u5djI9p9UAHXd7U6o/0xaE6pfe32HNQlq51zc4XVHfwowFiwH4yaVjGRQfQXG11f3UZqxBhpmevZ6dzXvCQ4IZkxHL5ycP6pa6K9VbaIBQfdbvFu0i966FtNoroo9U+VoHRXY30aZDvvUK6zxjC9dOzyEj3pe1/ocXjQbgas/q6ZSYMPf4re+dzcPzppziO1Cqd9MAofqsPyy2xhKcBW1/X5HvnnN2dttur3Z2jEqPYfbIFOIjQ/32XnBWQ8d60nZrd5Ia6DRAqD5j2Z5SN3+SMzMJfIvX/vSBtbvbxOx4lu0pwxjf6ujh9m5uu4pribMDQ0yELxikxVrpuZ2gMLiTxHxKDTQBCxAiEiEiq0Vko4hsFZH7jjn/QxExIpLiKZsvIntEZKeIXByouqm+51vPrOOGJ1ZxzyubAf/upKPVTX7XDk+NoayuidX7rfGHc0alclqub2wh207PHesJEBnxvg0UP/zRufznO2ed+ptQqo8JZAuiCTjfGDMJmAzMFZHTAUQkB5gDHHAuFpE8YB4wDpgL/ElEdA6hwhjj7uT2wlqrO+nbz653zxdVNrhrGQDGZMTS2NLOsj2lAJw5PJmbzxrqnncWuXlXQcd4upaGJEfr1p9KEcAAYSzOktVQ+8tp8z8E3Ol5DHAl8LwxpskYsx/YA8wIVP1U31FZ39KhLL/M6lYanR7Lin1l7vTUey/LcxevrdhXRmJUKF+bPYywYN+f+tAUq7vJ2fVtpB0wlFL+AjoGISLBIrIBOAosMsasEpErgEPGmI3HXJ4FHPQ8LrTL1ABzsLye3LsW8sIa68/Bu4vbsZyd3tbaM5TOHpVKSowVINbkVzAoIZLgICEi1NcYHWvv5ZAWF8HGey/inTvODsh9KNXXBTRAGGPajDGTgWxghohMBO4B7u3k8s6mjJgOF4ncIiJrRWRtSUnHHbxU3zf719YGhne+tAnAXdw2fUgiIUHiDlSPTo9lYra1t/Pq/eWEhQSRmxxFUrRveqrTjZQeZwWNxKhQoj3dSfFRoTpbSanj6JZZTMaYSuADrG6kocBGEcnHChzrRSQDq8WQ43laNlDUyWs9boyZboyZnpqaeuxp1Qe1tLXTbmfD8848cjjrF0ZnxNLabtxcSeeOTuWbdjqMNfvLGZEaQ0hwEBGhvj/rC8dayfREhPz7L+Xjey8K6L0o1Z8EchZTqogk2MeRwIXAx8aYNGNMrjEmFysoTDXGHAFeA+aJSLiIDAVGAqsDVT/VOzQ0tzHynjf5sd1aaGnrGCCc3EnO4PIHu6yW49VTs0mIsloLR6obGWZPZW1t972GN3WGUurkBLIFkQm8LyKbgDVYYxCvH+9iY8xW4AVgG/AWcJsxpu1416v+Yey9bwHwor3YrbKh2T0ngrtKGqwuJYDHPtxLRGgQw1OjSYz2zTZyUmOMSvPlTrpplm/2klLq5AQsWZ8xZhNwwtwEdivC+3gBsCBQdVK932LPTm7GwDJ7x7f0uHAm5iS45WMy4ggJDiI91rd+wWlBeHd4G5ysC96U+rR0JbXqNkWVDeTetZAnl+3v9HxDcxvzX7YWws0eaa2f/M3bOwB46IuTiQkPcaewjs+yZiIlegaknRaEl3d9g1Lq5GiAUN3mudXWusj7/rMNgMIK//GBsjrfdNYFn59gX2Ml3Zs82Go9lNhTXscNiu/w+k4LAuCDH57Lu98/51RVXakBSQOECpjK+maaW31jCGV11vhCsv2p/6wHrOmso9KtT/4lNU3ERoRw7bRsshMjCRJrkVxqbDhRYf4tgfGeAJFrdyN5r8lNiXYHtZVSn44GCBUwk3+xiG8+vc59vL/E2rqzrK7Zb6e3Oy8eA8CWompqGlsZkhxFUJC46xVyEiM5ltPFBPDqt89ixfzzA3IPSg1k2kGrAuKhRbsAWLzDN+hcWFlPkEC78e3XAHCavUnPP9dYXVBnDE8GIC4ilJrGVnI8mVX/8+2zKKpq8FvcdmzqbqXUqaEtCHVK3Pefrby64ZD7+Pf2Xg2O1rZ2iiob3ayqGw5UuufiI0NJjwtny6FqwkKCmJhtjTc4e0M7OZMAJmTHc/G4jIDdh1LKRwOE+szWFVTw5LJ8vvv8hk7PN7a0kV9WT1u7cQPEKjsV988vzwMgN9kaYB6WEk1osP+fpXfhm1Kq+2iAUCelobmN3LsWcvNTa9yyn722xT1uaWvvMDvpYHm9m577/LFpiMDKfdb6hnNGpwGQaK+I9g4sZ9p7NHz3wpEBuBOl1CfRAKFOaP7Lm5n8i3fcHElL7T0W3vOMLXh3Xysoq2P5njK/1ygoq2fHESvr6tTBiQxJiuJQZQNBAln25j3v77ReLyHKN5bw6m2zeO7rpxMXoeMLSvUEDRDquFrb2nlu9QEq61sot6eofv3va93zFXbZmvwKt6y0tpmGFitDyvUzBwOwt6QWL2eAeWhKNGEh1p9gkz0dNizYl5Y7LS7CHbBWSnU/DRDquLz7MKzJL+9wPr+sjvrmVnfxGsDyvWX8z+vWQrj/vXI8UWHB7l4ND1xjLX7bX2pNd/Wm5f73bbMIDRa+e4F2JynVW2iAUMflnaK6fG9Zh/Nvby3mf17f7lf2h8W7aW03hAYLQUFCQmQo24qqAfymqx77eHJOArsXXEJ8lHYnKdVbaIBQrvZ24+7LALDzSLV7HCTClkNVgG8Tnsc+3OvmRnr+ltMB35jCDy8aDUBRVaM7XdUZq/jKmbmAb0W1Uqp30gChAGhubWfY3W8w7O433LL80nrGDYpjTEYshRUNHKmydnZ78NpJ7jWPfrAHgJlDk5g1Ipniauua3JRovCJCg9zgcdOsXOIiQrhuxuCA3pNS6rPRADFAVdQ1c7jKt5r5QHmde9zU2kZ7u2FjYSWTchLISoiksKLeHZOYMTSJs0elMjYzzt3gR0Soa2pz1yw46xocjS3t7uD0kORoNv38YoZ1kn1VKdV7aIAYoOY8tIQzfvWe+9g7IH2kqpH9ZXXUNLYyOTuB4Wkx7DhSw92vWKm402LDSY0JZ/thqwvqx3OtXEobDvpWRzvdSc45pVTfowFiALjykaV85Un/3VtLa62A8PiSvfZj305ur2867O4DPSkngTR7nMEREhxEVoIv/UWWnUwvL9OXQC8yzJqu6uwIN+yYLielVO+nAaKfOVTZ4K5SBmvPhY2FVXyws8SdjtrmGYj+84f7APjRixvdst+8vZOV+8qIjwxlRFoMyTG+wWQnR16KJ2jMtXMj3XB6xzGFa6fnMG5QHE9/beYpuDulVHfSANHPzLr/PeY9vpJGe7HaWs8iNmd9wjtbj7hls0emUN3Y4i5Uc+wqrmFSTgLBQUJji+/cmnsuBCAlxhcgnMVu107LISshkne/f7Z7LiM+goW3z2ZQQseU3Uqp3k0DRD/1zCordfYv3/CtU8hKjMQYwzefWe+WrT9QyaEK32D1rBHJpMaGs7u4ltH2Rj5zPdlTncDgdCF5hYUEseyu8xmRFntqb0Yp1SM0QPQjTn8/wCPvWem20+KsN/SY8BCKqxrZfdQ/7cWB8npe31QEwKM3TGXcoHhKappoam1npP1G7+y1EOvZ33nm0CRiI0J48iunBe6GlFI9SgNEH1Zc3ch5D35AVUMLALuKfW/+g+1pplsOWTON8jLjOFTZ4M48unPuaPfa93aUADB3fAaD4n2Dz5n2QHRQkPDKt87kox+f556LCgth888v5rwxaYG4NaVUL6ABoo84Wt3Is3a3kWPmLxezv7SOXy60upG22W/+abHhFJbXuzOVzhiWzKCECPLL6igos1Jxf2Fathskth+uJiUmHBFhmSelxqzhKe7xlMGJJETpymelBhINEH3EjF8u5u5XNvPejuIO53bYKTEOltcjAtdMy6asrpn/t8SaobS2oJxRGbEUVzfx6oZDjEyLIS02wt1vAWDG0EQAvymtQUGCUmrg0gDRC7W3G257Zr3fvs0OZ1ZSU2ubW7axsIrWtnZ+v3g3xvgGkoPtN/j/u24K0wZbAWBvSR3js+IB/5lI10zNBuDuS8YG4I6UUn2RBoheaMLP32bh5sPMesC30nlMhjVg7KxgyC/17doWFxFCQbnvsTOovPlQFXERIVw8LoOYCN8A85TB1p7P3gAxOccqiw4PYfqQRH5yqQYKpQY6DRC9UF2z1Tpw0lU0trS5O7I9+oG18vk2ewvPc0alUtfcxtv22oZvnzfCDRAf7S5lTEYcIkJ0mC9A5CRar+vtTkr2BIt/ffNMvjZ7WEDuTSnVd2iA6AWc7Twd0fYag+ToMIwxjPnpWx2es8eernr6sGTa2g2vfmxNVb1pVq67oxvAaLvlEeVZtzDcTpKXpOm2lVInEPLJl6hPo7m1nasfXcYNM4f4pbU+WF5PZFiw273zzafX8eaWI/zx+qlcOjGT0tomtwWxt6TOPQbITY7icFUjr20scsuGptitjNY2hqVEkxwT7pf3yAkQaXER/OrqCbS2GwYnW88RERbdcTb1np+hlFIObUEEyBNL97HlUDXzX97sljW1tjH71+9zzaPL3bI3t1hdQ7c9u56G5jb+ta4QgAvHplHV0EJ+qS8N9zfOGU5Tazu3P/cxAK9/5yyy7e6igrJ6N2meMwgNMCrdt6r5uhmD+a/Th/jVc2R6LJPs8QellPIKWIAQkQgRWS0iG0Vkq4jcZ5f/RkR2iMgmEXlFRBI8z5kvIntEZKeIXByoup1qLW3t/PH9Paw/4Mt71GbvkxAa7Jsq+toG65N/QVl9h24lsBLrrd5v7f181RRrVtGyPaUA/OmGqYxK998/YXxWPCPSfGVOsADfoPZpuYmf/saUUgNaILuYmoDzjTG1IhIKLBWRN4FFwHxjTKuIPADMB34sInnAPGAcMAh4V0RGGWN6Xf/HN/6xlqumZDF3fCYAP3ttq7uILf/+SwHc5HfG+MYY/rJ0v/saNU2t7C+p874s9c1tlNU1c1puIhOzrVbAP9ceBOjwKf/CsdYK5ohQ39iCd13Di7eeQW1Tq7tJj1JKnayAtSCMxcn9EGp/GWPMO8aYVrt8JZBtH18JPG+MaTLG7Af2ADMCVb+uWry9mF95Et7VNLbw9tZibn3al/Du1Y8Pucd1TdatvbrRKmttN1Q3trJsTxk7jtS4b+IHyup5xfM8sALEvpJaxmbGkRBlzUTaV1JHRlwEWQmRJNizk8Dale1EYiNCyYzXDKpKqU8voGMQIhIsIhuAo8AiY8yqYy65GXjTPs4CDnrOFdplx77mLSKyVkTWlpSUBKLafr76t7X8eck+KuqsDXUOeRavOS0D70DyR7utLqFCT4bUI1WNPLf6ACkxYcwYmgRYm/I4W34+a++VsL/U2sUtIz7CTaENvpxI3plI7Z10UWVpSm2l1CkU0ABhjGkzxkzGaiXMEJHxzjkRuQdoBZ5xijp7iU5e83FjzHRjzPTU1NRAVNv10W5fAKq0E+Ld+IRvZ7aSmiYajpkBVFLTyMHyeozxdQMVVTWwt6SWyTkJ/OhiK//RkOQo3tlWzIzcJDLsVoWzpefw1BjCgn2/mvRY67y3uyg9zted9OzXZ/K1s4Zy9dQO8VQppT61bpnFZIypBD4A5gKIyJeBy4AbjG+0thDI8TwtGyiiG1380BJm3e9bvbzGHjAG2HDQGoB2EuCBlRzPaVHccra1sOxwVaO7iO36mdb01oPl9RSU1ZOTFEVqbDjBQcL6ggqMgeykyA5dQeeNTvMLBkFB3nNWULx2WrZbdubwFH5yWZ6ONyilTqlAzmJKdWYoiUgkcCGwQ0TmAj8GrjDG1Hue8howT0TCRWQoMBJYfezrniolNU2szS/3K9tZXMOhygbK7e6k0jrfPs13/HMjx1qxr4znV1uD03Py0smMj+BIVSO7iq1Vz2ePTCU4SFi5r4yGljbyMuMIDwlmRGoML9rTWW85exjhnu6ki/LS/bqXALYVVbvHv7x6An+8fqrfymellAqEQLYgMoH3RWQTsAZrDOJ14BEgFlgkIhtE5DEAY8xW4AVgG/AWcFugZjA1trRx2oJ3+cJjK9xNdjYXVrnnnR3WvOm1zxudSlVDCyJwo7338p8/3McT9syk7MRIiqsbWbW/nNY2w23nDSckOIiMuAhW2Cm0h6VaA8u5Kb7pqENTov2ypr6zzZet9eJx6QD89ouT3LLM+EgunZh5Cv4VlFLqxAI2zdUYswmY0kn5iBM8ZwGwIFB1cjif8MEaTM5NiWbe4yvcskOV9YwbFOc+npAVjwF2HK7GGCu9xdMr/fdmyIyPpN34BrGdBWoZ8RGsK7C6p5wUFyGePqPwEGvg+Zqp2by0vpBzR/vGVR67cRoFZfXkppx4xpJSSgXCgFxJ7e3z31tSizHGbyZSYUUDTy7Pdx+nxIRRWtvEv+2FbpOy/dckXJRnfdJ3PvGDNS4AuMFhcFKUu+HOws2HAf9kec7wwWUTB3nKRIODUqrHDMgAkRob7k4Z3VdSR2OLby/n6LBgDlU28OoGa43Cm9+dTWpsOKU1zazaV8YFY9LISYriv8/wpay40U5f8aXTfGPsKTH+ifAOeNJxO2sc7pgzyi370cWj+fzkQVw6QbuPlFK9w4AMEADbfjEXgAVvbOcpu7Vw4dg0shIjOVTRwCZ7TGJsZhwpMeEcqW5kX2kdE+wVzqGeaahOi6KyvsUtc2YULbjKndnryrCnqHrTYKTHRfDwvClEetY6KKVUT9JsrsDWIisYfH5KFk98tN8dKI4ItYKAd2OdvExrbOJIdaNbFm+3CM4bba178M5KumHmEJpa2pmT5+t+euzGafxtRT7DUvxzKymlVG8yYFsQAL+91pod9Poma0zgsomDaGv3rc370cVjAEiL8wUIJ312tp05NSbcF2MTokL53oUjWXj7WX4/5+azhpKT5Ju5lJsSzc8uH6d7PiulerUB3YJIje24lmBUeiybD1ktii/Y+zSP9qTMdjKmfuvcERRWNHDfFePccyLC9y4chVJK9QcDugXhDRD3XGLtwXzHnJFumdN1lOjZeS3Y/tQfHxnKH6+f6tf9pJRS/cmADhDDU2PcVcvOdNLOEt7FRYR2KFNKqf5uQHcxhYUE8eGPzuUvH+1n1ohkwOomeuCaCaR5kuGFhQSx83/n+i1wU0qp/k4629msr5g+fbpZu3ZtT1dDKaX6FBFZZ4yZ/knX6UdipZRSndIAoZRSqlMaIJRSSnVKA4RSSqlOaYBQSinVKQ0QSimlOqUBQimlVKc0QCillOpUn14oJyIlQMEnXJYClHZDdQKtP9yH3kPvoPfQe/TUfQwxxqR+0kV9OkB0hYis7cqKwd6uP9yH3kPvoPfQe/T2+9AuJqWUUp3SAKGUUqpTAyFAPN7TFThF+sN96D30DnoPvUevvo9+PwahlFLq0xkILQillFKfQp8MECLyVxE5KiJbPGWTRGSFiGwWkf+ISJxdnisiDSKywf56zC6P9ZRtEJFSEXm4N96DfW6ifW6rfT6iL92DiNxwTF3bRWRyH7uHUBH5m12+XUTm2+U9eg+f4j7CRORJu3yjiJzb0/chIjki8r7977pVRL5rlyeJyCIR2W1/T/Q8Z76I7BGRnSJycU/fw6e5DxFJtq+vFZFHPK/T439TABhj+twXcDYwFdjiKVsDnGMf3wz8j32c673uBK+5Dji7l95DCLAJmGQ/TgaC+9I9HPO8CcC+Pvh7uB543j6OAvKB3J6+h09xH7cBT9rHaXZ9g3ryPoBMYKp9HAvsAvKAXwN32eV3AQ/Yx3nARiAcGArs7SX/J072PqKBs4BbgUdO8Lrd/jdljOmbAcL+B/N74weq8Y2p5ADbOrvuOK81EjjoPL8X3sMlwNN9+R6Oec4vgQV97R6A64D/YAXsZPs/f1JvuIeTvI8/Ajd6rlsMzOgt92H//FeBOcBOINMuywR22sfzgfme698GzuhN99CV+/Bc95XjBYievI8+2cV0HFuAK+zja7H+QziGisjHIvKhiMzu5LnXAf809m+jBx3vHkYBRkTeFpH1InJnJ8/t7ffg9SXguU7Ke/s9/AuoAw4DB4AHjTHlxzy3t9wDHP8+NgJXikiIiAwFptHx99Rj9yEiucAUYBWQbow5DGB/T7Mvy8J603QU2mVePfq76OJ9dEWP3Ud/ChA3A7eJyDqspl2zXX4YGGyMmQJ8H3jW27dvm0fnb1jd7Xj3EILVDL3B/n6ViFxwzHN7+z0AICIzgXpjzJZOntvb72EG0AYMwurW+IGIDDvmub3lHuD49/FXrDfUtcDDwHKg9Zjn9sh9iEgM8BLwPWNM9Yku7aTs2DfQHvtdnMR9dEWP3UdIT/zQQDDG7AAuAhCRUcCldnkT0GQfrxORvVifyNfa104CQowx63qi3l7Huwes/8wfGmNK7XNvYPU3L7Yf94V7cHT6x95H7uF64C1jTAtwVESWAdOBffa1veYe4IT/J1qBO5zrRGQ5sNvzuEfuQ0RCsd5UnzHGvGwXF4tIpjHmsIhkAkft8kL8Wz3ZQJHntXrsd3GS9/FJr9Wjf1P9pgUhImn29yDgJ4AzWylVRILt42FY/Xn7PE+9jl7yie9494DVvzpRRKJEJAQ4B9jmeWpfuAen7Frg+U6e2hfu4QBwvliigdOBHZ6n9pp7gBP+n4iy64+IzAFajTE9+vckIgL8BdhujPmd59RrwJft4y9j9ek75fNEJNzuJhsJrPY8r0d+F5/iPj5Jz/5N9dTgzWf5sv/BDgMtWJ8kvgp8F2vQcBdwP77BuWuArVj9ruuBy495rX3AmN58D/b1N9r3sQX4dR+9h3OBlcd5rV5/D0AM8KL9e9gG/Kg33MOnuI9crEHT7cC7WJk9e/Q+sLpODdZsvQ321yVYkwEWY7VwFuOZFADcgzV7aSfwuZ6+h89wH/lAOVBr/+7yevo+nC9dSa2UUqpT/aaLSSml1KmlAUIppVSnNEAopZTqlAYIpZRSndIAoZRSqlMaIJMmURcAAAGJSURBVJRSSnVKA4RSPcxZyKlUb6MBQqmTICL/4+T4tx8vEJHbReRHIrJGRDaJyH2e8/8WkXX23gC3eMprReQXIrIKOKObb0OpLtEAodTJ+Qt2ygQ7hcU8oBgr1cMMYDIwTUTOtq+/2RgzDStn0+0ikmyXR2Ol5p5pjFnanTegVFf1m2R9SnUHY0y+iJSJyBQgHfgYOA0rKd7H9mUxWAFjCVZQuMouz7HLy7Cywr7UnXVX6mRpgFDq5D2BtcFLBlbq7AuAXxlj/uy9SKytPC/E2simXkQ+ACLs043GmLbuqrBSn4Z2MSl18l4B5mK1HN62v2629wBARLLsTKrxQIUdHMZgZX9Vqs/QFoRSJ8kY0ywi7wOVdivgHREZC6ywsj1Ti5V99y3gVhHZhJVxdGVP1VmpT0OzuSp1kuzB6fXAtcaY3Z90vVJ9lXYxKXUSRCQP2AMs1uCg+jttQSillOqUtiCUUkp1SgOEUkqpTmmAUEop1SkNEEoppTqlAUIppVSnNEAopZTq1P8HU3OIn2kIIsEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(data['dates'], data['CO2']);\n", + "plt.xlabel('year');\n", + "plt.ylabel('CO2 (ppm)');\n", + "\n", + "data.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Tendance long terme\n", + "La concentration en CO2 entre 1957 et 2017 présente une cyclicité annuelle superposée à une tendance à long terme. La tendance à long terme peut être estimée à l'aide d'une moyenne glissante. La [moyenne glissante](https://fr.wikipedia.org/wiki/Moyenne_mobile) est calculée pour chaque temps t en faisant la moyenne des n points autour tu temps t:\n", + "$$ \n", + "MoyenneGlissante(t) = \\frac{1}{n} \\sum_{i=t-\\frac{n}{2}}^{t+\\frac{n}{2}} data(i)\n", + "$$\n", + "Cette opération a pour objectif de lisser les cyclicités annuelles et donc d'isoler la tendance à long term." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAEKCAYAAADZxnkxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4lFX2wPHvTTLpvYf0hBIgFOmCqIirqFhxFQuLPwvWtaICa13F1bW7yq5tV3cFRcEVRMVFigiCQOihh/Te+2Qymfv7Y4YSZiaAZiDA+TwPDzNz7/vmvtFHT27OPUdprRFCCCGEEEL8dm4newFCCCGEEEKcLiS4FkIIIYQQopNIcC2EEEIIIUQnkeBaCCGEEEKITiLBtRBCCCGEEJ1EgmshhBBCCCE6icuDa6WUu1Jqk1Jqke39y0qpXUqprUqp/yqlgg+bO10ptU8ptVspdbGr1yaEEEIIIURnOhE71w8AOw97vwRI11r3B/YA0wGUUn2AiUBfYBwwSynlfgLWJ4QQQgghRKdwaXCtlIoDLgM+OPCZ1vp/Wmuz7e1aIM72+krgM611i9Y6G9gHDHPl+oQQQgghhOhMHi6+/xvAY0CAk/Fbgbm217FYg+0DCmyfORUeHq6TkpJ+4xKFEEIIIYToWEZGRoXWOuJo81wWXCulxgNlWusMpdT5Dsb/BJiB2Qc+cnAbu97sSqkpwBSAhIQENmzY0GlrFkIIIYQQwhGlVO6xzHNlWsgo4AqlVA7wGXCBUuoTAKXUZGA8cJPW+kAAXQDEH3Z9HFB05E211u9prYdorYdERBz1hwchhBBCCCFOGJcF11rr6VrrOK11EtaDisu01jcrpcYBjwNXaK2bDrtkITBRKeWllEoGegDrXLU+IYQQQgghOpurc64deRvwApYopQDWaq3v0lpnKqU+B3ZgTRe5V2vddhLWJ4QQQgghxK9yQoJrrfUKYIXtdfcO5s0EZv6Wr9Xa2kpBQQFGo/G33EZ0wNvbm7i4OAwGw8leihBCCCFEl3Iydq5dqqCggICAAJKSkrDtjItOpLWmsrKSgoICkpOTT/ZyhBBCCCG6lNOu/bnRaCQsLEwCaxdRShEWFia/GRBCCCGEcOC0C64BCaxdTL6/QgghhBCOnZbBtRBCCCGEODWV17ec7CX8JhJcnyC33347O3bs6PT7+vv7232Wk5NDenr6b7rv5s2b+fbbb3/TPYQQQgghjkdlQwvT5m+lzth6spfyq0lwfYJ88MEH9OnT52Qvo522NueVDiW4FkIIIcSJtj6nGoDp87c5HC+rM3Ko/2DXJMF1J2tsbOSyyy5jwIABpKenM3fuXADOP//8g63aP/zwQ3r27Mn555/PHXfcwX333QfALbfcwv3338/IkSNJSUlh3rx5ADQ0NDB27FgGDRpEv379WLBgwVHXYTabmTx5Mv379+faa6+lqcnarycpKYk///nPnHPOOXzxxRft1lVRUUFSUhImk4mnnnqKuXPnMnDgwIPPIIQQQgjhSlsKaugfF4yPp7vdmLG1jacWZJ6EVR0fCa472eLFi+nWrRtbtmxh+/btjBs3rt14UVERzz33HGvXrmXJkiXs2rWr3XhxcTGrVq1i0aJFTJs2DbDWlf7vf//Lxo0bWb58OY888shRf2rbvXs3U6ZMYevWrQQGBjJr1qyDY97e3qxatYqJEyc6vNbT05M///nPXH/99WzevJnrr7/+13wrhBBCCCGOS3FNM5POTsRi0Xa513PX52PwcOvyhRVOuzrXR7rto/Wdfs8PbxnqdKxfv35MnTqVxx9/nPHjxzN69Oh24+vWreO8884jNDQUgN///vfs2bPn4PhVV12Fm5sbffr0obS0FLDWlp4xYwYrV67Ezc2NwsJCSktLiY6OdrqO+Ph4Ro0aBcDNN9/MW2+9xdSpUwEkWBZCCCFEl3PXfzJobbMQ4msgMcyPvKpGIgK8Do7vK2vggbFOexF2Gad9cN1RIOwKPXv2JCMjg2+//Zbp06dz0UUX8dRTTx0cP9qOs5fXoX+JDsydPXs25eXlZGRkYDAYSEpKOmqd6SN/qjv8vZ+f38HXHh4eWCwWAKldLYQQQogTLq+yiWe/PpTuoZQiPtSH/KpmBidaP2tsMVPZ2EJSmJ+Tu3QdkhbSyYqKivD19eXmm29m6tSpbNy4sd34sGHD+PHHH6mursZsNjN//vyj3rO2tpbIyEgMBgPLly8nNzf3qNfk5eWxZs0aAD799FPOOecch/OSkpLIyMgAOJjjDRAQEEB9ff1Rv44QQgghxLG47aP1LN9VZvd5XlWT3We9sjNJf/B2qK0FrLvWyeF+eLh3/dC166/wFLNt2zaGDRvGwIEDmTlzJk888US78djYWGbMmMHw4cO58MIL6dOnD0FBQR3e86abbmLDhg0MGTKE2bNnk5aWdtR19O7dm48//pj+/ftTVVXF3Xff7XDe1KlT+fvf/87IkSOpqKg4+PmYMWPYsWOHHGgUQgghxG/2zELrzvQna+03CA3uh3673nP3Rhgzhp4PTmFfv2Hg4wPA3rIGekQGnJjF/kaqq5cz6ciQIUP0gUoXB+zcuZPevXufpBUdm4aGBvz9/TGbzVx99dXceuutXH311Sd7WcflVPg+CyGEEKJrOPwM3F8m9CMywPvg+4zcKj75ah03z3+b7jszCHr1JfIvvpJnvtvDu5MG4+Huxl++28kVA7rRt1vHG5KupJTK0FoPOdo82bk+CZ555hkGDhxIeno6ycnJXHXVVSd7SUIIIYQQx83cZuGrTYVsL6w95msKqpsPvWlrY8eTL/HskzcycFhvfPbuhj/8gZBga271upwqimqaKaxuJjXCvnFeV3TaH2jsil555ZWTvQQhhBBCiN9s9i95rNxTjrub4r0/ON7UPZASAnBxejRFNc0MSgiBjAwsd93F8NpWXnlsFn9+YiIHqlv7e3kwcVgC+8oaqG5sZVT3cLwN9rWvuyLZuRZCCCGEEL9KVnnDwdeNLWaHc/JtBxb/fvNgYoN9qMougBtugMsuY/7wK3hp+ntc93+X2F3XPdKfvaUN1Da3Eubn6ZoHcAEJroUQQgghRDtb8mvYXXL0qmGF1c30iwsiIdSX4tpmu/GKBmsjmJhgbzyNTfT54A0mTLoY4uJg/34WDxlHVLAP6bH2udQJob5UNZlYurOUAG/Db3+oE0SCayGEEEII0c5bS/fy18W7yK5odDrnw1XZAPSIDCAm2Ifi2vb9Mopqmnl83lbO9mrmzxvnQY8eBOZm8dIzH9Hylxcxe1kPNT4wtofD+7u7Kc6KDwZgREpoZzzWCSHBtRBCCCGEaCc+1BeA5xftcDrn533WEr4WrUkM9WXb4Yca29oomjOf+96cyh/uugK3ygpYsgT3Tz/FkpJCSa2RxpY2Arw9iAr0dvIV4OYRiTw2Lq3Ltzw/nATXLlBTU8OsWbNcdn9//1PjtKwQQgghTk3RQd4MtO0a5zto8nK42BAfBiWGsL+wGv3llzBxIjo8nJjXX8Tzmqtwy8+Hd96B9HQA+sQEsSarkqomE8G+HedSexvc6RV9atS3PkCCaxdwFly3tbWdhNUIIYQQQhyfVrOFkd3DrYcKy+xzr3cW1wHgZXBjUEMxIc/8iafuvQTTK6/B2LHM/fh7nvrTv4h5+F48AtsHx8NTQtlVUk9BdRMxQc53rU9VUorPBaZNm0ZWVhYDBw7EYDDg7+9PTEwMmzdvZseOHXzyySe89dZbmEwmhg8fzqxZs3B3d8ff358HHniARYsW4ePjw4IFC4iKiiI7O5sbb7wRs9nMuHHjTvbjCSGEEOI0tzm/hsFJIZyVEEJZXUu7sSaTmVcW72LIhqVM2fAVFBSgJk3if7PmEja4H2N6RVK0ZA9QS4iv/UHE+BBfSmqNrMuuYmRq+Al6ohNHdq5d4MUXXyQ1NZXNmzfz8ssvs27dOmbOnMmOHTvYuXMnc+fOZfXq1WzevBl3d3dmz54NQGNjIyNGjGDLli2ce+65vP/++wA88MAD3H333axfv57o6OiT+WhCCCGEOM2ZzBYAIvy9iAz0ovTw4NpkovQ/n/PYq/dxx49zcH/iCcjNhRdfJHRQOrm2A5BeHm7cdX6qw1xpTw83/L092FFUR/+4k9dx0VVO/51rVyTAH2fL+GHDhpGcnAzA0qVLycjIYOjQoQA0NzcTGRkJgKenJ+PHjwdg8ODBLFmyBIDVq1czf/58ACZNmsTjjz/eKY8hhBBCCHG4klojCzYXEuRroEdUAAXVTZTVG60B9Msvw9y5BCV2Z8/V1+Hx9IPgcSiUTAzzY+Ue6yHHmiaTw13rA2ZenU6zqQ0/r9MvFD39nuhIxxkIu4Kfn9/B11prJk+ezF/+8he7eQaD4eBPeO7u7pjNh4qxn0qnZIUQQgjRddUZW2lptRAR4GU39nNWBeuyqwj3t46FuFkYMefvcMfncOedlP/wE9M21XPb6OR2gTUcSvdoNrVRWtfS4WFFLw93vDxOjY6Lx0vSQlwgICCA+nrHhdfHjh3LvHnzKCsrA6Cqqorc3NwO7zdq1Cg+++wzgIMpJEIIIYQQx6us3shDn21m2vytDsfdbJt50UHe8O23+A4eSOz+HdT9tAZmzmSJ0Vqib1iSfd1pTw83ooO8mf1LLvGhPqdUV8XOdPrvXJ8EYWFhjBo1ivT0dHx8fIiKijo41qdPH55//nkuuugiLBYLBoOBd955h8TERKf3e/PNN7nxxht58803mTBhwol4BCGEEEKchlbbalMD1Btb7TofFtU2E1ZRzP3zn4NdO1Fvv807JWGMrfPiRqChpZUbhiXg4e54fzbIx8CarEqmnJtyxv7WXYJrF5kzZ47Tseuvv57rr7/e7vOGhoaDr6+99lquvfZaAJKTk1mzZs3BsWnTpnXiSoUQQghxpjiQLZsS4UdRjZFe0YZ2g55zZvPkp2/g/vgjMO8L8PLizuwq1udUAfDL/irO6xnp9P7DkkPZXlhLSsSZ25NDgmshhBBCiNOAxaIprjMSG+zjdE5+VTN3npdKXlUT63OqDjVoqaqi6MZbuGR7JrlzF5B+6bkHrwnyMVBnbKXJZMbTw42eUc4D5+HJoeRXNRHuf2amhIDkXAshhBBCnBbmrMvjqa+2s6+sweG4sbWNrQU1RAZ4cU73cDbmVaO1hu++gwEDyLT48dxTH9H3ktHtrgvz96S01khWWSMJYb4dpnt4uLsxcVjCGZsSAicguFZKuSulNimlFtnehyqlliil9tr+Djls7nSl1D6l1G6l1MW/9mvqLlAh5HQm318hhBCiaympNbJ8l7VYwp5Sx0UVVu215lv7eroTHeSNqaKayomT4O674aOP+P6OaTx/4zC7wDjc3wsfT3fe+GEPaadYK/KT4UTsXD8A7Dzs/TRgqda6B7DU9h6lVB9gItAXGAfMUkodd40Wb29vKisrJQB0Ea01lZWVeHuffu1KhRBCiFPVFxvy8fRw4/bRKWwpqHE4p87YCoCnu4Kvv+bZJ28gp64Vtm1jT/owqhtN+DupO31pvxgAekZJcH00Ls25VkrFAZcBM4GHbR9fCZxve/0xsAJ43Pb5Z1rrFiBbKbUPGAas4TjExcVRUFBAeXn5b16/cMzb25u4uLiTvQwhhBDijLEpr5p+sUFOq3Rszq9hbO8o0qID+HxDvt24sbWNH3eWcn1lJkFXTIOiIna/8AYlQ89hSEAAL81fD4C3wfG+5ugeEYT7e9FLguujcvWBxjeAx4DD/0lEaa2LAbTWxUqpA0dOY4G1h80rsH3WjlJqCjAFICEhwe4LGgyGg90QhRBCCCFOdWX1Rt5eto8Zl/Um1UEVDnObtV25t8GNYF8DxtY2mk1t+HhaA2VzRSVf/fF5ZiybT0RMGOr+P8KkSdTtrsTUZAJgSFIovWM6Dpx7xwR28pOdnlyWFqKUGg+Uaa0zjvUSB5/Z5XZord/TWg/RWg+JiIj4TWsUQgghhOjqDrQUL6trcThuNFuD61Hdw1FKERngRWmdEbZsgSlTcOvenaScnfjM+Q9umzbCrbeCwYBSsHJvOVpr6oytDjs2iuPnypzrUcAVSqkc4DPgAqXUJ0CpUioGwPZ3mW1+ARB/2PVxQJEL1yeEEEII0eUVVjeTEObL0p2lDs+UNZvaCPXzJCrQGxobOXf1IsLGjYXLLoOEBD799/d8NfWvBI49Dw47rFhW30JLq4W1+6vYU1JPXLDviXys05bLgmut9XStdZzWOgnrQcVlWuubgYXAZNu0ycAC2+uFwESllJdSKhnoAaxz1fqEEEIIIbq6n/aWs7Wghgt7R5Fd0UhVo6ndeEVDCx/9nI3fzu1wzz0QH0/vtUvZedMdkJMDTzxBviGQm4bbd4K++qxYBiWG8MFP+wEI9JH2J53hZHwXXwQ+V0rdBuQBvwfQWmcqpT4HdgBm4F6tddtJWJ8QQgghRJewt9Ras7pvt0ASwnypbmolzN+avqHr61l0/4tM+PErguqq4IF7YOtW9jd7s2BzIcM8PDC3Wdhf3kAPB41f/L08GBgfzMbcaiaPTDqja1N3phPSREZrvUJrPd72ulJrPVZr3cP2d9Vh82ZqrVO11r201t+diLUJIYQQQpwMzaY2Xlq8y+n4wi1FrN5nzbcO9DaQEOrLprxqqKiABx5AJyQycNvP+LzwHKEl+fDkkxAXx9mpYTS0mKkztrIpv4Y2i3ZaBcRiSzOREnudR/b/hRBCCCFOgjX7K9hTUt+ussfhFm4uBGD6pWm4aQuD1i1Ff/wxOnsravJkMv+3ipV1Bu4f26Pdde5uij4xgewsqiO7opGR3cOdrmFQQgjuboroIOlf0Vmk/bkQQgghxAnWZtHMXpsHQEZutd14cW0zWsP47kGkzv8E+vSh/9wP2DhqHE2798Fbb7HN4k9CqONDiGkxgSzdVUZ+dRPDkkKdrsPPy4ORqc6Db3H8JLgWQgghhDjBmlvb8PPy4OGLevJFRj7NpvbHzDas2s51n73BVVeNRH3/Pbz7LmrNGvZdeAW13tb86e1FtQxODHF4/77dAskqa2BXcT1J4VIF5ESS4FoIIYQQopNl5FZRVmd0Or63tJ7GFjN9uwWRGOrLjuI660BRETz2GBfdeBHh/l6oDRvgq6/g/PNBKWKDfcitbCIjt5rSWiMxTtI5fG1pJmN7RxHgbejsxxMdkOBaCCGEEKKTzVqexafr7NuQH7B8d/nB1z2jA8jbmQ033ADp6Zira5nxzGy83nwdkpLaXZca4U92RSOZRbUATtuh+3paj9X9fkjcb3wScbwkuBZCCCGE6CQNLWYWbrH2wNtX3uBwjrG1jczCWiadnQhaM3zlIn438XcQHw8FBex8+q+0REXTx0G78cQwX3IrGzGZLdw0IsHpOjw93PjwlqEYnATfwnXkOy6EEEIIcYxyKhrJrmh0Or6zuI4Fm6xVPppazHy5saDdeFm9kXtnbwTAZ+3PMHo0YR/+gzceeRPzX14EX19W7i1nbO9I3Nzs604nhvmyr6yBNVmVDEpwnG8tTi4JroUQQgghjsHSnaU8t2gHzy/a4XSO5xE7xd9sLW73/qfd5aTu3coDrz3I4CcfgDvuwG3DetSgQewpbaDNotmYW81QJxU+DqR7KAXBvp6/8YmEK0idayGEEEKIY1DZcKj1uMWiHe4s/7jHmkv96LheeLgpPt9g27nWGhYuZMyfnuac8kpyJt2Bx8zHwcvabTExzI+C6iaiAr0I9vUkLsR5hY8PJg/pxKcSnU2CayGEEEKIY1DfYuaWUUks2FxEVZOJcFsb8gM25VWzJb+GQYkhpEUHUlJrxFJQAK9+C598gqW1lTkXTMZ86XhuHJl8MLAGiA324bP1eSSH+xHm3/GOtLQp79okLUQIIYQQ4igqG1r4eV8FQT4GugV5k1vZ1G48p6KRt5ftA6Cnnxt8/DHh14znoYevpXr9ZnjtNfYvWc2uEWN54OI0IgPbl9CLDvLG3KbJrmgkMqB90C5OLRJcCyGEEOKMp7XG2NrmcKyhxcy0L7cBEOhtoE+3IHaX1Lebs6O4jrj8vbyw9B9cOG4IzJuH+51TeOS1Rex8/nUYM4Zd5Y2c0z3c4c5z75hA3N0Uc9fnMyYtsvMfUJwwkhYihBBCiDOa1ppX/rebXcX1vDtpsF3t6PkZBVgsGsC6cx3sbW36UlVlbfCSkcE5y39idEU5AffeBVu2QHw8Chi5JofyhhbAWknkoj7RTtfx0O964unhRmqEv6seVZwAElwLIYQQ4oxW3dTKrmLrTnR2RSM9ogLajTeazAdfB3h70C1rB+dPm4Fl7ybczh2N+YIL+TR6CD2uuogL+sW2u7ZfbBArdpdjMlvIrmik5xH3PlxvB3WtxalHgmshhBBCnNGe/+ZQab06Y6vdeITt4OINlOBx5RWEbd7MD2NuoPlfHzOqfyK/7Ktg3apsLo4Jtrs2NsSH/OomdpfUExfii4+tLbk4fUlwLYQQQojTVn5VEw0t5g53hWubDgXU5fWm9oNaE7FuNdM/eJuUijyYNg01bx7B+2rY39DCKKC41sj4ATEkhfvZ3TvC34vIAG/e+GEPlw/o1lmPJbowOdAohBBCiNPW95klvPL9bqeHFbfk1wAQ6GPgphEJfLEh/9DcTZtoPf8Cej03DY9rJ+C2dy/ccw94e9MrOoC9pdZUktI6o9O61Eop7j4vlbSYADmoeIaQ4FoIIYQQp6WVe8pZk1UJcLDl+JGKappJjw3i9esHMiIlDICKtRlw7bVw6aWsGXwBTz3/KUkzHmpXlzomyJuyuhZqm1vJLKolvoOmL0G+Bh69OI0gH0MnPp3oqiS4FkIIIcRp6avNhR2ON5vamL+xwJoyYrHgu2Y1f/roKSKvHg8jRkBWFhmXXM8fL+5td623wZ1AHw/+l1lCZIA30UHeDr6COBNJcC2EEEKIU87UL7Yw85sdTtM9AMxt1vJ5V54Vi1JgMlvajb//03665Wcx9qNXITER/vhHWs8exby5y2HqVEye3mwvrMXfy/ERtWBfTxZvLzm44y0ESHAthBBCiFOMxaKpbjSxv7yRJTtK7ca11pTXt9DYYi2hN65vNMG+nocqgdTUwKuvcs3kS3jwtQcweLjDd9/B1q24P/QAWc3WJi+ZRbUopYgPdZzyMWlEIiNSwji/V4RrHlSckiS4FkIIIcQpZXFmycHXO4rr7MbXZVcxbf7Wg+89Pdyobmjh23e/hDvvhORkjOvWM++26QSWFsKLL0J6OgD+XgZyKhrJrmhkV0k9V58Vi8HdcbgUH+rLHeem4G2Q8nriECnFJ4QQQogu5fP1+VwzKNauU+IBi7dbg+vbzknmp30VduPVB0rrac0r8c3w6KO8/tkXmCwK7r4NMjPZ1OyFV34NHob2oZCvlzVQ3lVcx67iOv4wMqnzHkycESS4FkIIIUSX8eXGAr7PLOH8XhFEBjo+JNgrOoCB8cEkhfvx4aps8qua2qVu1FbWMWbZPMYsn0+IjxvccANV73/Mf1rDefLyvgDsXp1NYph9ukeAlwdpMQH8kl1FVVMriU5SQoRwRtJChBBCCNElNLSY+WZrMQBrs6sczsmrbGJncR0xQd50C/YhLSaAbYW1YDLBL7/AQw9x2ZVnc1nxVoI/+Dvs3g3PPkvs70ZTWGPE2NpGdaOJjLwaRnUPt7u/Uorx/buRX9VEaoSf091zIZyRf2OEEEII0SU0tZiJCPDinjGp/Li73OGcZ7/OpNnURniAteb0eXW59LtnEoSEwJQpVOPB3577mMDvv8Xv4t+Bsh5ONLi7ERXoRXGtkR/3lDMgLshp3ekD3RxD/Txd8JTidCfBtRBCCCG6hCZTG94GdwYlhGC2WKhqNNnN8ff2oF+ULwFfzYeRIxn40O3sSx8GpaWwZQtLbrqf3uechbubsrs2MtCb5xft4OesCtJjg466npRw/055LnFmkZxrIYQQQpwQRTXNhPp5Oq2usWJ3GXXGVpRSdI/wZ395A6F+odbB8nLK/zWbW+fMo3/hblTfvjB1KhXn/o4lP+Uwxt8fk9nC99tLeHJ8H4f3vyQ9mo251VQ2mBgYH9zhWj+8ZehvelZx5pLgWgghhBAupbXmmYWZFFQ3A/DB5CEo1X5nuazeyE97K5gwOA6AMH8vqmub4Nu18Pbb8PPP7E8bzsZRlzFg+mcQZ5tnbqOyoQWtNfnVTXQL9iEp3M/hOlIi/Jl+aW/aLFrK5wmXkeBaCCGEEC7V0GI+GFgD1DS1EnJYPnObRTN9/jYALu0XAyUl9HntzyQv/i/06QlTppA961+8tyLPeoEtsAbw8nDH3U2xcm8Ftc2t9IwO6HAt3SMl1UO4lstyrpVS3kqpdUqpLUqpTKXUs7bPByql1iqlNiulNiilhh12zXSl1D6l1G6l1MWuWpsQQgghOk9hTXOH440th1qUp8cGkVPZ2G585d5yAmsreSesDB5+GPr2BbOZF2e8T8OKn+D//o/nV+SRHhvErJsH2d1/ZGo4CzYXsimvmuHJoZ3zUEL8Sq480NgCXKC1HgAMBMYppUYAfwWe1VoPBJ6yvUcp1QeYCPQFxgGzlFLyOxshhBCiC8urbOKpr7bzv8O6Jh6pzthKfKgvH0weQu+YQDbl1VgH6uvhxRcZeu5A/vrURLxffxW8vWHrVvrM/Se+fdPYX94AgJfBjf8blYSXh31oMC49mtqmVvIqm0hxkhIixInisuBaWzXY3hpsf7TtT6Dt8yCgyPb6SuAzrXWL1job2AcMQwghhBBd1htL9wAwd32+w/GaJhOzlu9jVPdwlFKMSAklI7cKy6y/Q2oq5s1beO+xN9m3MxeWLYMXXoDYWDw93OgdE0hOZRNaa8xtGj8vx9ms4f5ePDquF1Mv7iV1qcVJ59Kca9vOcwbQHXhHa/2LUupB4Hul1CtYg/uRtumxwNrDLi+wfXbkPacAUwASEhJcuHohhBBCdMTcZsFktnDDsAQ+XZdHk8mMr2f70CK/qpn4UF9+1ycKgODWZu58exptTRW4LV9Ohk80ddtL6BUdaHf/5HBfftxTwZaCWkL9PDF0EDinObheiJPBpT/eaa3bbOkfccAwpVQ6cDfwkNY6HngI+NA23b6ezhLoAAAgAElEQVQgpXWX+8h7vqe1HqK1HhIREeGqpQshhBDiKN7/KZtmUxsju4cB1kD6SBUNLYeasWzcCIMHQ0QkWz7/Bvr2pbS+hf5xQbg5qEvdKzqQHUW1vLcyi98PibMbF6IrOiHVQrTWNUqpFVhzqScDD9iGvgA+sL0uAOIPuyyOQykjQgghhDiBtNbMWpGF1pr7LujhcE52hTX708fgzrj0aPaW1dPr8Godra0U/rCS0S3lMG8PfPIJvP02+3ueg26yMATYmFvNuPRoh/f383RHa2hptTAoIaSzH1EIl3BZcK2UigBabYG1D3Ah8BLWgPk8YAVwAbDXdslCYI5S6jWgG9ADWOeq9QkhhBDCudzKJjbmVgPWA4mB3vatwmODfWlt0yiliA32YVthrXVg5Up4/XXafljK+UGRRI8aCsmJsG0bREcTn1vFqr2VmMwWimqaGZzoOHBWSnHz2YnEh/jY1cUWoqty5c51DPCxLe/aDfhca71IKVUDvKmU8gCM2PKntdaZSqnPgR2AGbhXa93m5N5CCCGEcKGSOuPB1w99ttmuY2FeZRM7i+t46Hc9AYhTLeTNn4t+bhlq/36YNo0P/zCDnn0SiesV2e7ahFA/thZksbO4jm7BPh3mUo854lohujqXBdda663AWQ4+XwUMdnLNTGCmq9YkhBBCiGOzv7yRbsE+FDmqYV1SwqdvLmB4aQE9Ms2wehXxW7bQK/UsNl5zDYO/u4eSpjZ2Lt7F5NQwu8sjArwI8jXw1tK99OkmBxHF6eWYDjQqpUKUUn2VUilKKalxI4QQQpzGqhpNLN1ZysRh8dw43FqZq6KhBVatggkTsPTuwzXzZnF5zR7cvDzh6adRRUXMmfEWOZdOAIOB1fsq6Bbs7bAuNUCY7ZDj5JFJJ+qxhDghnO5cK6WCgHuBGwBPoBzwBqKUUmuBWVrr5SdklUIIIYToNMbWNgqqm522An/0iy0A9IkJJC7Elx8WrMIw4RnYuxMefJB7L3oQk5e3XarI+AHdyCqzHnL8dltxh3nSLWYLcCjIFuJ00VFayDzg38BorXXN4QNKqcHAJKVUitb6Q4dXCyGEEKJLunf2RgBuPjvRLqfZYrFWwY0J9kbl5hL02GM88/0S8m6/j6AF88HbG9NH63nhmn52900I9eXbrcWAtaPiM5f3dbqG+8f2oKyuRQ4qitOO0+Baa/27DsYysDaHEUIIIcQpxNh6qFbAJ2ty7YLrd1fux2Ay8vz+n+D2F+Dhh1k99QWKLAZ6eHvzn7W5AEQGeNndOyHUl6omEzVNJlpaLYT52885INzfi/AOxoU4VR3TgUalVH8g6fD5WusvXbQmIYQQQrhIRm41XgY3LkmP4atNhWitD+4eZ+8rIPLt13hp2edw7ihrjnVaGhEFtcz+YQ8Th8azo8habs/RjrO7m8Ji0by0eBf944Jxd9AYRojT3VEPJyql/gn8E5gAXG77M97F6xJCCCHEccrIreK2j9ZTZ2x1OueX7CpuGZnMJbbGLUW1RqivhxdfpNuwASRX5BG4bAl89RWkpQEQGWjdYS6rt3ZbvKRfTIfrKKtroUeU43xuIU53x7JzPUJr3cflKxFCCCHEb7J2fxUA2eWNDIgPthtfn1NFZmEtE4fG4+HuxvlhitY/PQGf/xvGjmXe63NIGjUY1T283XVRgd5EBXlTVt9CflUzt5+T4nQNF/eNZmNeNef3iujchxPiFHEsZfXWKKUkuBZCCCG6sGZTGxtzq/HxdGfuhny78Tm/5PGPFVkE+hiIqa+Ahx5i4qTfYcwvhDVr0J9+yjIdSl8ndadjAr3529K9pMcGEtJBhY/rhsbz4oT++Hq6sk+dEF3XsQTXH2MNsHcrpbYqpbYppba6emFCCCGEODZNJjOzVuzDzU3xzBV9Ka010mQyt5uzdGcpUSW5vLz4LdSAAeDuTv6KtXx519PQvTtbC6y51MG+jgPnS/rFkBLhx43DE13+PEKcyo7lx8p/ApOAbYDFtcsRQgghxOHaLJop/94AwJVnxXLFgG52c/6XWcqOojou7htNuL8XSeF+FNU00z0yABobsSxYyIN/+we9c3fg8cf7YO9eCAvDv95Izb7dAGSVN3CxLQ/bke6R/vzpMvlFthBHcyw713la64Va62ytde6BPy5fmRBCCHEa01pz20fr+TmrosN5h7cfX7Cp0G7cYtF8vaUIgAmD4wCI8zfQ9NXXcPPNEBtL/bsfkHPeONyz98PTT0OYtSV5sI8nlQ0mfs6q4JutxQR6Gzrr8YQ4Yx3LzvUupdQc4Gug5cCHUopPCCGE+PUKbUHzhz9lk1lYxx3nOj4k+IUtf/pPl/XmjR/2UtNkape6UdVkAmD60Ajc58yGb7/lpm8XUxeXBHfdCq++yqe7GkjvFoQKCGh3b08Pt4NrADinR/uDjEKI43cswbUP1qD6osM+04AE10IIIcSvlFXeePD12v2VTDo7EW+Du928XSX13D46hZQIfzSwKa+GMWm2xi+FhRS8+U+mLVpA98K9MGYMXHYZ+x96gq+r3Hj04jSMrW1sKyxkwqC4o67Jz9P+6wshjs9Rg2ut9f+diIUIIYQQp5OqRhNtFk2Eg06GAKW1Rs5ODWNwYghvL9vHI19s4Z0bBx0cL6sz8uLiXbRZNOmx1goeKeF+ZK7ezJjP18JXX2HJzqGxz9lsvvwP9Hh2Cnh7AxDT1Eregu1YLJqSWiPhfp5O13FJvxi+21ZMkI9BWpEL0QmOGlwrpVKAN4ERWHes1wAPaq2zXbw2IYQQ4pSkteaZhZl4uCleu36g3fi2gloKqpsYnhLGWQkhABhNbe3m7CtroLapFXdzKwE/rYBvvuHehYtoraqGm2+AN9/k7j0emN09+GDyEDgsMA7yNRDiayC7spGqRhORgd5O13rt4Di6BXsT1cEcIcSxO5a0kDnAO8DVtvcTgc+A4a5alBBCCHEq+3BVNo0t1lJ4FovG7Yg24G/8sAeAi/paq3M8Mb4PH/+cYx1saoI9ezD+ayF3rl3FkKyN0L07jB9P29zPeGyP4tXrBmJwd8OctYE7z0t1uOOc3i2I7YW1rM+pYkCcfUOZw41MlVxrITrLsQTXSmv9n8Pef6KUus9VCxJCCCFOZeY2C2uyKg++31NWT1r0ocYsWmsA3NrMBOdlwbJMum3ewrXLf4EHC6G4GJ2SgldIMmETrsDthg8hPh6wHoKKq9hJVnnDwcoeyeF+DteRHhvE3PV5FNcYeXyc8xJ7QojOdSzB9XKl1DSsu9UauB74RikVCqC1rnLh+oQQQohTSmWjtXrHDcMSaDSZ+WJDAU+Ot9WHzs0l54NPeOi/X5O2bwtu0dEwfBiGfv1YMepyet59OZ49e/BjVhVzfsnj3UmD26V7AMSF+FJUY6TGs5X02CCnudRp0QEUVFsrkgRIiT0hTphjCa6vt/195xGf34o12HZcO0gIIYQ4DZnMFgzuyunhvxlfbiM6yJsL+0Sxv7yBhZsKMS1diuff/garVlE/+DyM/3cbHndcD4HWHW03YNNH6/nFEM5oDw+yKxq5YViCw6/RLciblXvKSY30p19skNN1urkpzk+LlAogQpxgx1ItJPlELEQIIYTo6krrjMz4chsXp0dz3ZB4p/PK661tIVJqS/jT2w+ja8vg4Qdp+ujf/OObvbx23UA4ouzemLRImk1tmMwW1u6vZEyvSIf3HhAfzJxf8iipM/Loxb06XO+kEdKqXIgT7agdGpVS3kqph5VSXyql5iulHlRKyZFiIYQQZ5z1OdZMyMoGk8PxOmMrADMuTIWZM2HECOpGncuyz3+Ae+5hZ62Z7pEBDutZd4/0Z2dxPXlVjfgY3EkM83X4NcL9rWkg5jZNaoR/ZzyWEKITHUtayL+BeuBvtvc3AP8Bfu+qRQkhhBAn2p7SeqoaTYxICXM6J7eyiSvPimXFrjKMrW12QfL0L7fRfc9mkl6+BZKTISODqmZvdhfUcgmwJb+W/k5SOVLC/fhqUyE7iusZnBTaYc3pv914Fj4Gd6lLLUQXdCzBdS+t9YDD3i9XSm1x1YKEEEKIk+Gl73YBEBXo7bQCR25lIxMGxZFV1sDyXWVc0i/m4FjWrlyuf/fPDMxcC+++A9dcA0qRUFbPws1FaK3ZXljL+P4xDu/tZXCnvL6FBZsKeeDCHh2u1dfzWP73LYQ4GY6aFgJsUkqNOPBGKTUcWO26JQkhhBAn1svf7zr4evW+CodzimqaqTeaiQr04qK+Uazdbyu3V1MDL7xAt5GDSY4NJTBrN0yYcLDKR7dgH+qNZtbsr8Tb091pQxdvw6H/JSeEOk4JEUJ0fccSXA8HflZK5SilcrB2aDxPKbVNKbXVpasTQgghfqOC6iYWby9xOp5f1cSu4noA/ji2B7mVjXZzappMPPnVdkxmC0opekUFYCwsovXRxyA1Fb1rF/946j0aXn0DgtqnffjYUkc+/Cmb83pGOF2Hp7v1f8m3nZNMsK/ncT+nEKJrOJbfK41z+SqEEEIIF/j3mhx+3F0OWA8Mdo+0PwD4zMJMAD68ZSjmNgvvrcyiyWRul3rx455y0JoXBgfB3Ll4fP01zyxYRN2E6wjLyKAgMJLtCzO520E6iVKKfnFBbCuoZWya4wogB+b9ZUI/IgOkZoAQpzKnwbVSyl9r3aC1zu1ojmuWJYQQQvx2m/NrDr7eW1pvF1yb2ywA3DMmFQAPdzcSQv3Irmikb6gXbNqEXr2auE+/4fX92wn0dIOzz4axY1n6f49S4hnA7UlJFO2vZFBiiMMqIABXnxXL0KRQPNw7/oWxBNZCnPo62rleoJTaDCwAMrTWjQBKqRRgDHAd8D4wz+WrFEIIIX6F1Ah/NuZWc+d5qazcU97uACJAXlUTAP26BUFeHqxezTX//Z6o7RshZx/06sWG2N5sGnIB/eZ+CKnJB3Ope5TUs21jAQAldUZigpwHxolhfiSGOT4kKYQ4vTj9EVprPRZYirUzY6ZSqlYpVQl8AkQDk7XWElgLIYQ4Kf62dC/zMgqcjm8vrGVjbjUPXtiT/nFBZFc00thibjcnc+laHlr2LzxTkmDYMPjiC1pi43hnwgNQXQ2bNvGPax8i/bG78eye0q4VeYivgeoma73rhZuLCJE8aSEER8m51lp/C3z7a25sazSzEvCyfZ15WuunbWN/BO4DzMA3WuvHbJ9PB24D2oD7tdbf/5qvLYQQ4vS3Ob+Gzfk1jEwNo1uwj934gaofvl7ueBvcSYsOYEtBDSMDNcyeTeu/PmZ0fiE+t0yCxYuhTx9QivxtxWRlFKA9PWlpbcPg7saIZPva18G+nlQ2mCisaQZgeEqoax9YCHFKcGWhzBbgAq11g1LKAKxSSn0H+ABXAv211i1KqUgApVQfYCLQF+gG/KCU6qm1bnPhGoUQQpyC6m2dEAEycqsdBtfrsq3dFIN9DNDaysjdvxAxcw5s/Bkuv5ycx5/mu7A07r84rd11l/aL4bvtJVQ3tZJT2UhSuB9ubvbNWjw9rL/8Xbi5iJQIP6k9LYQAjq0U36+irRpsbw22Pxq4G3hRa91im1dmm3Ml8JnWukVrnQ3sA4a5an1CCCFODq11h+Mms4X7P91EbXOr0znPfr0DgDvOTeGnveV248ZW677MBPcKQh+6D2Ji6P3Pv7EjfQTk5sJ//sOmHoOJDXd8Lj85zJctBTXsKamnn5OOigAX941mQ04VZyWEdPhMQogzh8uCawCllLvtUGQZsERr/QvQExitlPpFKfWjUmqobXoskH/Y5QW2z4QQQnRxP2dVUFJr7HCO1pr/rMnhxcW7Opy3bFcpjS1mFm8vdjrH38uD6Zf2ZnhyKCazhapG06HB1lY+e/hlZjx3K5dOvwNla0PesOxHlp17JQQF0dpm4eesCkb3CHd4/x5RAZTUGsksqnNYvu+AAzvmHQXgQogzi0uDa611m9Z6IBAHDFNKpWNNRQkBRgCPAp8rpRRg/zs36053O0qpKUqpDUqpDeXl9rsVQgghTiytNR/+lM38jc4PFwLc/vEGVuwuZ19pQ4fzvthgvc//Mksdjm/Kqya/qonIQC+UUnSP9GdvaT1kZ8PTT6NTUjh7yRd4/mm6dZd6xgxITCTA20Blgwlzm4WNudXEhfg67ZYYH+rLDztKadOalAjnVT4GJ4bQLdiHuBD7tBQhxJnJaXCtlOqnlFqrlMpXSr2nlAo5bGzd8XwRrXUNsAJrQ5oC4Etb2sg6wAKE2z6PP+yyOKDIwb3e01oP0VoPiYhw3ulKCCHEibF6n7UNeIvZcszXmJzMzbeVxntifB+8De40m+yP3RwI4gO8PMBoZPSGJSRcd4W12kd1Nd/MfJe/TvsH8bfeCO6H6k4faC/+4aps1mVXMaq7411rgJ5R1t3qG4YmYOigNrWPpzvPXZWOUo72h4QQZ6KOdq7/DjwD9AP2YD2QmGobMxztxkqpCKVUsO21D3AhsAv4CrjA9nlPwBOoABYCE5VSXkqpZKAHcFxBvBBCiBNvW2EtcCjP2RFja1u7BitbCmoczpu1IguApDBfAn0MdnnX2wtrKa4xEl2cg3rkEYiPp9fiL/lh9JVQUABvvcW+bt25Z0x3u3sfCIDXZVdR0dBCrINDkAf4enrwzBV9SY8NdDpHCCEc6Si49tdaL9Za12itX8FaOm+xUmoEDtI1HIgBliultgLrseZcLwL+CaQopbYDn2Gtl6211pnA58AOYDFwr1QKEUKIrk1rzYacKpLD/aiob6HIVpbuSBtzq+kVHcDbNw5iaHLowR3qw5nbLJTVGRnZPRylFGV1Rmb/cliT4PJyit/8B9Nfuovn37offHxg3To8f1jC6kFjaXH3wGLRZJU3kuKgDTlAqi1/uqC6mVD/jutSx4f6yo60EOK4dVQ3SCmlgrTWtQBa6+VKqQnAfOCoxTy11luBsxx8bgJudnLNTGDmsSxcCCGE65XWGYnw93JYig7gk1/yALh5RCLrsqvYkFvNFUfsCDeb2li6q4xzeoTj42mtN51T0Wh3r6IaI5GBXtw6KgmwVuLIzcyC91fC3LmwYQNRaUMJm/4I6obfg8H6S1Q3oLXNwvJdZfSKDiTIx4MQP8eB8+HpKP5eUjpPCNH5Ovovy0tAb2DtgQ+01luVUmOBJ129MCGEECeX1poZX24D4MNbhjqcsymvGoCkcD+KapvZVlBrN+frrUXkVDRy/VDrsZogHwO1ze07JWaVN/DWZ2u42FKGenMZbN3KleszsGTnwGXj4K67qDjvQv65NJvXrx/YrlMiwMju4ZjaNDuL60iLdp7Kcff5qZTVtdArOuCYvw9CCHE8nAbXWus5B14rpfytH+lGrXUecMeJWJwQQoiTZ83+yoOv642tBHi3P25jMluobWrl6kHWqqkxQT4OK3w0m9rwaWogbu0KyM8lMaeQUZn74e0WyMuDujoS8gv4i7sH5r7pMGwwjBhBy8238FShN6/cOAQPdzd276ugZ3SAw1SN2GAf/rupgIRQX64c6LyKa1SgN1FOKoQIIURn6PB3Ykqpu4HpgJ/1raoHXtJazzoRixNCCNH5WsxtTJ+/jQt6R3JZvxiHwWpVo4kPf8oGIMTPk8yiOkaktG8BnldlTe0YZGugEmxQeO/bDZ9uhf37IScH4+69XLpzDzc31+E+bBikpREYGsbeyGQGXj4Ej6QkCAjgte0NXDOqBz0O23UOBOo/Ws+WghoGJ4ayKa+aQYmOm7UMSw7liw355Fc1kya70kKIk8hpcK2UegIYCZyvtd5v+ywFeFMpFaq1fv4ErVEIIUQnyq9qora5lf9uLGRYUqjDWs+PfrHF+ve4Xrz5w17eX7nfLriuK6lkyLolxGT8G1avJnjnTm4NCKPtnOG4p/WCwYNZ1e88KiNjue6aUeBpzYP2AH74aD2pg1MZlhxKQ4uZ7HVbiA+zP4TYIyqAwhojZ8Vrdpc2cPOIRIfPFGrLse4R5Y9HB6XzhBDC1Tr6L9Ak4JoDgTWA7fV1wB9cvTAhhBCukV3RRGKYHwlhvrz/03678TrjofJ3vaICeO6qdMBWak9rWLWKmutuIm1EP67evgyVkABvv42qrOTFtxfxy8vvwgsvYJlyJwsj+jJ2/EiUp/0Bw0/WWiuB7Cyuo1d0QLtSfQcMSgimtslEXlUTQT4eBPs6r/Dxl2v6cdd5qU7HhRDiROjwx3uttV0vW611M9bGL0IIIbqY7YW13PbR+nYB8pG25Ncwtnckl/aLYX95I/VHzC21tTF/9boBKKXwb6pnyPofKLpuEqSmwh138L1bBDNenEfkiiXw6KMwciT4+nJpegz7yqwdGHeX1hPiayDc38tuDY+NS8PPVq1j+a4yBjtJ9+gdE8i2wlrmbsgnPsS3w2ePDPQ+eE8hhDhZOgquC2yVQdpRSl0AFLtuSUIIIX4NrTWvL9kDOG8dDlBY00yfmECGJoXSLdiHygZTu/H9mfuZWL2D4Jf/AiNH4tU9hVGrvqEmqQcsWEDz5m38b9xNjBjR265EX3SQN+X1LQB8ui6PsxIcB809o/wpqzOyv7yB3SX1DIgLdjgvLsS6vj0l9VzUN/qYvxdCCHGydPQj/v3AAqXUKiADa+OYocAo4MoTsDYhhBDHISPXWhZvXHo0uZX2daQBnlu0g7rmVgJ9rJU/wvw9yd68m6S9v8CKFbStWs3omjrcBw+C4UPh2WdRo0dTk1fPzuI6BvVLZX9RLYE+hoOl9Q4X7u/FjqI6SuuMFFY3M3lkksN1HDhEOfObnUQFeRPk67jx74F556dFkuykMYwQQnQlHZXiy1RKpQM3An0BBawE7nSULiKEEOLkKa0z8ndb6/BL+sXwwKebqGo0HTzoB3DbR+txazNzjUcV7u/+A1av5o5lP6Kam+DScXDZZWyZ8gjr3UO58/z27cP7dlPMyyhAa01GbjUXpEU6rDISZut6+M3WYtJiAkiN8He65qRwP3IqGnl8XFqHz3bbOclOq4QIIURX01G1kO5AlNb6n0d8PlopVaS1znL56oQQQhyktXbajnutrSb174fE4e/lgbubYtmuMq4dHAc1NZgWLuKuWR/Rd/tafJITYfhwuOACKu97hI/LPXny8r4A/LIiy+EOcaifJ61tFoytFnIqmhg5PNzhOgzublzcN5rvM0sYPyCmw+cJ8PbAx9OdIB/Hu9YHjOzu+GsJIURX1FFayBvADAefN9vGLnfJioQQQthZva+Cf67K5vmr04kJ8rEbX7i5CIDYYOuhv1uTvXB//y2Yuh4yMmgdeQ57Bo5k6KI5EBl58LoQYyulX25Da01tcysbcqqYdLZ9uTulFMG+BqqaTBTWNBEXYr+GAw6MpXcL6vCZ7jovFYvWR394IYQ4hXR0oDFJa731yA+11huAJJetSAghhJ0D+dQ/7i63GztQ7aN/XDB9qvJg8mSGXnEubnl5MHUqFBfz0t1/ZdnIy9sF1gD+tuoaDS1mFm4pavfZkeqazTz11XY83N0cls07YGhyKDeNSDhqjrS3wR1fT6nuIYQ4vXQUXHfUH9b5loUQQohOlV/VxJb8Gh4bl8ZPeyswt1mOGG9maNEO7n/jYdwv+h306kXLrj28d8NU9KWXgp8fIb6eTnekm01tLNxSRL3RzB3npjhdh7G1DYBbRyV1uF6DuxsXpEVJMxchxBmpo//yrVdK3XHkh0qp27BWDxFCCPEb7Sur5/lFO8ivanI658Cudc8of7w83Kg3mg8NZmbidc1V3PS3P6EuuxSys2HGDHyjIjC3ab7PLKG2qZUdxXVOy90BLNtZRmZRLb1jAp3OeeX3A3jp2v4MTgw9/gcVQoj/b+++46uu7sePv87NTW72nmSQQUIg7I1sxa1QV8HRn6its1q11mq1dbRqtWrVah3fap3UOqpVhohMZcgmJCGBhITsnZu97r3n98e9gWDuDUUSRng/H488vPl8zufD5+Yt4Z2T93mfM0RvyfXdwA1KqbVKqeccH+uAnwO/OjGPJ4QQA9tH24rJr27my/RSl2NqmjuYkRyKUor61k7W7auC4mK46SaYM4cdSWPI/3Y73HYbeB3+xeK0IaFYbfBtbhWTE4IJ8nG+u+HDlwwHoL3T1uviwiAfD6cbwgghhDjMZXKtta7QWp8FPAYUOD4e01pP1VqXn5jHE0KI05PWmoc/38PesgaXY4pqW8irbOKayXHsLjLT0mHpMSaztJ6NudWHOmb411fj/vBDMHo0hIdTuS2dTfP+HyOTwntcmzbIn/QSM5/tKGFKYojL5wjzsyfM956XcqxvUwghxA8ctSBOa71Ga/03x8fqE/FQQghxussqa6DM3MazK3Jcjvl4ezEAZ6eGExPkTam5tceY5nYrbhYLCd+thHnzePr3C/FpaaB24xZ46ileT69lWJS/0xZ9CaE+5FbYtyJPG+S63MPXZOSVa8eRdpTuHkIIIY5OlmkLIUQfa+u08vzX+w59brHanC7uiw/xZki4L0opogO9KDG3MSTc79D5r/79Deqfb/PS1hW4pw2DG27AY/Fi3vtkL8MPWrgnWVNQ3cwtLhYhhvvb16WPiQ102R+7S2/dP4QQQvzvZCm3EEIcA601f1qSRW5lo8sxOeX2c7+7eBhBPh4UuNiKvK3ThqfR/m04JsiL3IpG2LMHnnwSJk9m2h3XYjG6U7f8G1i/Hm64AXx9GRMbSFSAFxWNbYT6mg4l0c48eflIbpmVdBzvWAghxLGQ5FoIIY5BfnUz+dXN/HNDAdrFBih7yxq4bFw0SWG+jIsLIreyZ3JdUN3Mqr0V+Ng6YMkSZr/4CD+5bBp63jwoL6fzkUd54pVljHznFaImjT7i2tGxgWzMq2Z3UT1DI/163Lu7CH9PPIzyrV4IIU4U+Y4rhBDHILO0gTGxgZhbO8mtbHI6Jru8kVRH0psc4cvOwrrDJ9vaaPlmDQfv/R33PnsnU6aNgOeew0ZPW0wAACAASURBVCMlmXf+8BplOzLhpZd4PyCVqlYbgwJ7zkrbtKa1w8o3eyuYnixbgwshxKlEaq6FEMLBatN0Wm291h9nljZwyagoIgI82VloJjniyJnj8vo2impbiAu27044prOW/R+9i/XzGtwyMmD3bioi4mlLGUvrzbdguHYehNg7ebiv2k9ZQxuDgrxp67Rx0/QEp7XaM5PD+GR7MXXNHSSH+/bhV0AIIcTxkplrIYRweGnVfn65eAf1rZ1Oz7d1WimsbSY5wpeJ8cGkl5h7jHnko+0Mz/wej9/8GoYOxX3GdFILs2hISoUnn6SpsIQ//eFt3F94jgl33YAKOdwiLyLAk2/2VmK12RcqxgZ7O30Og0Fxdmo4adEBR12oKIQQ4sSSmWshhAAO1jSTWVpPdKAX6cVmZiSH9RiTWVpPQqgPJqMbg4O9aWm3UtnQRrjBAosXY1u6lBdWrqYtZShc+RP4179gzBi+X59PR1wgUxJD+C7Dvk3ACCdt76YmhrAio5y/r8kl0NudmCCvHmO6XD4upu/evBBCiD4jM9dCiAGv3WLFYrX1OmZrQR2XjBrEFeNjWJ7Rc58sc0sHf1+Tx1lJ9hpng0ExxBtaX34Vhg2Dr75i0/hzePn/vsJn2xZ4+GEYNw4MBmKDvcgoqUdrTYm5lasmxDjt8BEb7E2Qjwe7isyMjJFZaSGEOB1Jci2EGNC01tz+/g5ueW87Vpvz7h4Wq43le8oI8zMxMjqA2qYO2jqtR4xZtseecE9KCIaGBnjkEW68bg7t//0CPvkE6yefsnjIdBZeOLZHd44ZyWFsyqth/f5q8qqaet2sZe6wCACiAlzPWgshhDh1SVmIEGJAa2o/vKX4jsI6JsYH9xjT0GYfkxrph1KKcH8T+yuaGFlXCK+9Ru3aDcyqb2R+SADuL2rIy4PLLqNg6WpeK4YXJo/lne/yaeuwOq2TDvByB6C4roWG1k6iA10nznOHhdPcbmFEtOsdFYUQQpy6JLkWQpy2dhbWYW7pZPbQMJclFNsP1jEqJpDEMB825dU4Ta6zyxsI8vEgxNcENhtpO7/F+PA7UFMIt93Gv392HxYvL26dGA3ubpCUBMHBRLV2ooszAOi02lgwMdbls84bM4gvdpUyOTEYg8F1uYfRzcAV46WeWgghTleSXAshTku1zR28vDoXsLfQmzs8oseYgzXNvLfpIA9elEqgtwdrcip7jGntsPLmt/l4tTTC3/4Gf/87U9tg5Tk/ZdgrvwOTibyPd/PbC1Jx9zMdca2/p5HWDisdFhtl9W2clxbp8nmDvD0AmJoofamFEGIgk5prIcQpqcNic1kjDbAm254ozx8bzd6yhh7ntda8u+kg4wYHMSTcjxAfDzosNvZVNHYfRNWqdVz/1p948cHLYcMGePVV2LqNjdMvodai6LTaaGjtJNjHo8efoZQiyNuDvWUNFNW2EBXgehvywSH2cpGj7agohBDi9NZvM9dKKU9gPWBy/DmfaK0f6Xb+PuAvQJjWutpx7EHgJsAK3KW1XtFfzyeEOHXlVjby1LJsEsN8eOji4U7HHKhu4t7zUojw9+TrzHK01keUhtS3dlJQ3UxSmH2TFaUUFw6PIH3THlIC2mHNGli8GI/mTmznX47bx29AhH32O9hRp11U24JBKeJDfXBzUcphdFO8tGo/QK+bzwwO8eEf10+QDiBCCDHA9WdZSDtwtta6SSnlDnynlFqutd6slIoFzgUKuwYrpYYDC4E0YBDwjVIqRWttdXZzIcTAtL+ikT8vzwbgQFWz0zF7yxrILmvkZ1PiCfU14enuRom5lZigw4sJ86qaCDBXM37TLnh7B2zYwIW5uTR7+UJaKkyYgPmtd3koz8itc4ZAxOFabF+TkYkJwbR1WsmramZ4lOvFheX1bQDcc27KUd+bJNZCCDHw9VtZiLZrcnzq7vjo+h3vX4H7u30OMB/4UGvdrrXOB3KBSf31fEKIU1NXj+kbpiUAUFDdM8F+dkUOABH+9hrolAhf0ovroaQEFi9G/+IXJE6fwNOPXsPQNUsgJQXeeou24lJ++9JybGvXwfPPs8wUw/kjopwucvQ0Gmhqt7DtYC1TEkN6nO8yIzkUb5ORtEHS3UMIIUQ/L2hUSrkB24EhwCta6++VUvOAEq317h/M4kQDm7t9Xuw4JoQYQN7bVEBssDezh4Y7Pe9mUMxODWd6cijf5laxr6KR+FCfHuPGhnuhsrNh61ZS//EpQ3N2gqUZZs3CPHEqb945lzvuvAx3r8O10t6An8mdysZ2gnzc2ZhXzd1zk50/h5uBxd8XkhTuS2QvtdSLpiWwaNoxfQmEEEIMYP2aXDtKOsYopQKBz5RSo4CHgPOcDHf2+9Ieq5mUUjcDNwPExcX14dMKIfrbsj1lrM2pAnCaXNtsmryqJn57QSoAY2ODqG3usJ+sqYE1a2hY+hWPrlpHTFUxxMTAuHHEzJ7CK+cu5PGHFoDBwNdbCwlss+Dl1XMRYmSAJxUNbZSYW/H3cich1Nfps140IpKG1k4uHhnVR+9eCCHEmeCEtOLTWpuVUmuxl34kAF2z1jHADqXUJOwz1d2bxMYApU7u9QbwBsCECRNctxIQQpxSMkrq+XR78aHP91U0khJxZOeM8oY2mtosRPh7gtb478ui9f2PoGw3ZGXB9Onsih1F+x//SuyCueBpn1FO0JrK93fQZtWYlObrzAoem5/m9Dma2i18nVVOkLcHY2ICXS5UDPE1ccecIX307oUQQpwp+q3mWikV5pixRinlBcwFdmqtw7XW8VrreOwJ9TitdTnwBbBQKWVSSiUAycCW/no+IUTf2lvWwGNfZro8X9FgX/i3YGIsqVF+ZJc3HnG+oa2T33+eQWBlCfz+95Cayri7FuHTXI9+7DGoqqLh08/5aOZVzLr2okOJNdgXCkb4m6hsaKemuQN/L/cjFjd2V1DdTHZZI5vyajC6yQJDIYQQfas/Z66jgHccddcG4COt9RJXg7XWmUqpj4AswALcIZ1ChDg9PPpFJkW1LYC9fZ2zLcAzSuy9qGemhOFrMrKnpP7wybo6qv7+Nr9e/C8SS3Jh0f+D997DNGECX3y4i5Ch8Yz38CAjt5phUf54GHvOC/iYjOworCPYx4PUXnpJP3Jp2qEfAuaNHnQ8b1sIIYTooT+7haRrrcdqrUdprUdorR93Mia+q8e14/MntNZJWuuhWuvl/fVsQoi+09xuOZRYAy5nr9OLzZjcDXi6uxEb7E1RVSOsXg3XXgsJCdR9voT1Z1+JZ1kJvPACTJqEMhiYlRLGsj32Ptab82sZHRPo9P4+JiNf7i5ld5GZUS7GAMSFHE78jW6yj5YQQoi+Jf+yCCFc0lrz4jf7+crRHs+Zojp7Yv23a8aycFJcjzpqsM9sAzw1JxaWLCH6oV/zm5vOoeWXv4JJk2jL3se79z7LFU/+Cry8jrh21tAwGlo7yatqoqqxjUkJPdvmAdwwLR6jm2JXkZmRMQFHfW83Tk846hghhBDiWJ2QBY1CiNNTQ5uF9GIz6cVmpiQGE+jds/vGyswKUiL98PYwMikhmE+3Fx/eLbG9HevadUz9+zvcUZBOwF0HYdIkDHPnsuLVj1ApKVw1IZacIjPRQV6E+Zl63D/Ex0R9aycrsyqZlRLmtCQEwNvDiMVqX+Psa+r9W9vL14zD013mFoQQQvQ9Sa6FEC6t2lvBhPhgQnw8WJFZzoKJR7a/fGrZXnIrm7h4lL1dXYDBRlreLpr/8CW+WzbB5s1YUlJxSxpP2JuvwZgx4GPvWZ1YUMvmAzWAfTHkMBe7ILoZFFabZltBLVdPinU6psuQCF+XCxm78/JwvU25EEIIcTxk6kaIM1R2eQO3f7Dd5XmtNSuzKpg9NIyRMQFsP1iH1kd2v8ytbCKsspj5q/8N554LoaEs/PeL1JVWwu23w4EDvP3sYg7c/muYNu1QYg32BLe1075mOaO0npHRvZdyRAR4Op057+7BC4fxsymDj/bWhRBCiH4jM9dCnIEyS+t5/ut9ALR0WPD26PmtoLC2hQ6LjQTH7og1TR2U1bcxKMATdu6k5aNPePSDjwluNuN25WVw553w8cdkVHRwoKqZm6YnUNfcwZb8Azx1+cge9/f2MNLcbqWhrRNzSyeDnXQY6fLMlaPwdJfZZiGEEKc+mbkWYoCx2jQ55Y1YrDaXY7oSa4D3Nh10OqagpoWzhoTi6e6Gp7sbMzyaUX/4PcTHw4IF7Mgp573/9wDelWXwxhswbx4EBjIs0p+t+bW0W6zsKjIzNSmEcP+e24eH+Zkoqm3hiSV7SQ73w+BiMxewb+jic5Q6aiGEEOJUIP9aCTGAWG2a33yym/qWTm6YlsD05NAeY7pKO26bnYTJ6ManO4p7jAH7ZiuDA0zw5Zfw+utc/e0Gyi+9wv75yJF882UWc4dFoIxHfhuJDPAkMsCTkrpWR5228zrprkWH1U3tjIlz3TpPCCGEOJ3IzLUQp4nNB2r43Wd7etQ9d7evopH6lk4A/rkh3+mYPy/PBiAh1Ie0Qf7UNndQ29xxxJjly7cS8JenmHPhJHjySbjyStav2s6a2x6CUaNobLdQ1dTOlETnbfHC/EzsKjJj05oxsa4T58mO668YF+P6jQshhBCnEUmuhTgFrMyqYGdhncvzWmv+b/0BKurb2JJf63LcgapmQn1NvHT1WNzdDHQ6KQ3JrWwCINjHA4NBkRDqQ351M9TUwOuvY5s1m5lXzWV2gBW3pUth0yZYtIjUxEi+3V9NibmV7PJGUsL9XG7C4u/lztL0MibGB9tb8rmw6KwE/nbNWJft9YQQQojTjZSFCHGS5VY28uGWQgDeXDTR6ZjPdpYAMCY2kDfWH2ByYojTceklZq6ZHIePyUionwfl9W1HbEV+sKYZgAXJfqjvvoP0dC5bvQm/fVlQmAcXXEDO1TfxwnWJvPbzs6BbYhwb7M3wQf4s31NGVlkD56RGuHxPXeXTzmqtu/MwGvCQn/GFEEIMIJJcC3GSrc2p4rJx0Xy2o4Ty+jYiA3ompEvTywA4Ly2SXUVmCmtajtjGG+Af3x4gt6KJoXPtOySajG5syq0mNqgddu1C79pFy9cbeKE4F79GM4wYAaNH4zVhLF9OOp9Fd1wGvr5s/C6fhaE+Tmecc8obsdrsZSkT44NcvqcrxsUwKMCLqS5+CBBCCCEGKpkyEuIkstk0m/JqSArzJSLAkyXppT3GdNVY3zwzkaGRfkxKCOa/u0qOGGNu6WBTXg2xHjY8v98Ezz7LRY/cwfnnjoWzz4YPPqC2zcqayReivlkJDQ2weTO8/jqev7qLXYNHgK8vAPvKGxka2XMLc4C0QfZe1K46gHTxdHdjTmq4lHsIIYQ448jMtRAn0Re77cl0crgvV42PYf2+6h5j7vs4HYBJCfbFfzXNHZQWlINvLRw8CAUFWDdu5Y9btxNVVw5paTBlCkHXX8MTHffwp7svwcNo4LtdJUTaNL5pRy4e9PU00thmobqpnXaLjTaLlSgns+dg7zBy2/vbSY10vpuiEEIIcaaT5FqIfpJb2chTy7JZNC2eGclhTsfsLWtg0bR4jG4GAr09SC+qo+XAQbzzcyEnB52dzYLvs0nztKBerIOaGh6orqbTqrGlDceQmABxcWSkTqT5ihsYtGAueNh3MUwEfL/MorC2hSHhvnyfX8v1U+N7PIObQRHmZ+K1tXkMCfdlztBwl4sQPYwGzhkWwajY3ndTFEIIIc5UklwL8SNorXvtggHw5W57nfSyPWVOk+vcyiZKzK1MdWuCp/5B/KrVvLz5e4yenjBiOAwdSnN8EjmTo5h48TgIC4OQEAwhITy3rpB5Y6IZER3AtoJa3l2bxx2zhhxKrLv4exlJLzYT6O1OfWsnKRG+Tp81NtibHQfryK9u5pdnD+n1fV0zOa7X80IIIcSZTJJrIX6EX324i3mjBzF3uOuOGSXmVu6em8JbG/KxWG092tZt+XY3D374Asa71sCCBai7f8WWgHjylA83Tk8go6SeDbnVGN0MqOkJR1wbF+JDqbmVEdEBbD5Qww3TEhgX13OBYUZJA3uK61maXoaPyejyB4Kfz0jg9oP2VoBhfqZj/XIIIYQQwkFWGwnhYLVpPtleTGNbZ6/jzC0dNLdb+NeWQtKLzU7HtHZYaemwMCLan4bWTr7ZW3n4ZEUFTffdz/xFFxM6fAjk5cErr8AllxCaFEuJuRWAv67cx5b8WiYM7pk0Rwd6UWJupay+lZ2FZmKCvJw+x22zEwF7R71H56W5fE8moxtgb/UXHej8XkIIIYQ4OkmuxRmhrdNKW6e11zEPf57B8j1l3P3hLixONl/psq3g8GYvL63a3+N8U7uFNTmVRPp7oZTinGERfLytCEtuHtx+OwwbRsH+ErZ9uhLTn5+CgMP1y0PCfSmobqalw3Joljk1qmfnjthgb/ZXNpFf1cyQcF/iQ32cPuv4wfZFkFrbN43pzYKJsdw4PeGo5S5CCCGEcE2Sa3FGeOzLTO74YIfLrcO11lQ2tB36/J1NB52O67DY+M/OYmanhvPovDRMRjdstiPv+d3+aj7dXoy7m4KSEi789j/c+5dfYpg0CQIDsWVm8cbC+xg9fXSP+3fNIN+5eCcBXu68uWjioWPdJYX5UFHfxpvf5fdamgLw8CXDeWy+61nrLuelReJjkkoxIYQQ4nhIci0GvLyqJiob2gEorG1xOqaq0X7+pxNjOXd4BBtze7bEs9o0Ty3fS3unDXeDIjbYG42msd3iGGCFgwdpWfYV8z7/P37+6wUwahRB6Ts4eNXP2PXdLnjySTY0ueHt4Uagt/OZ5ItGRgEwItp1u7vus8vOaq27Swj1ISbIu9cxQgghhOgbMk0lBrwDVc2HXj/+ZZbTLcZXZFUAMGdoOBabjZVZFT06gjzzVTaFNS08etFQohqqYNUqJn2zmqwv32CqrQ6++YZ2kxdpARHEXTAbz7tegBkzwN0dQ0Y5myubGDtMszS9jMmJwS6ft2tB4aKz4nt9X/ecm4LRTeFmkDIOIYQQ4lQhybU47WWW1pMc7udyN8BNeTWMjw/iohFRPP1VNmX1rUQFHF60p7VmbXYlF4+KwsNowF0rPFubyV+2lsT6MujowLY3m/nL15FYV4rnLeUQGQkJCQyx+tESOxgumQfPP89Dm2q4aXoCXlFHzjqnDfJn2Z4yciubqGpsZ87QcJfvZ0ZyKJMSgo9a+zwiWnpNCyGEEKcaSa7FKanTaqOl3UqAt3uv415Zk8uOg3VMTw7lhmkJPc6X17dxsKaZm2cmEhngyZyh4WzJr2X+mGj7AK35/D/fcdb+dC4rrIFHt6F27+bFyiqa45Ng1HAwmSgKiiL9J9eRcu25kBB/qJ90ZGUj7206yDnzR7C7yExdcxmpTrYO9zEZaW638Ofl2YT4ergsCQF7yYene886ayGEEEKc+iS5FqekdzYWsCmvhnvPSyFtkPMZ2pYOCzscvZn3lNQ73dglu7yBs4aEEunYzntwkCcF67fChs9h/Xr0+vXMbrNSHpOIunAmXH89jBlDhlsgb28u5C9XjcbdzcC7S7K4ZFQUxh/UNyeG+lJibsNq0+worGNIuK/TGWcf0+Fk2dtD/toJIYQQA5UsaBQnXFVjO+aWjl7HlNXbO3dszK1xOWZnob3H9MvXjKO+pZO8qqYjzpeYW1mRWcGo5gp47jmYP58JE1OY9btbYedOuPhiSpet5r7nl2BYuRKeeQauuAKSkhjtaGFXZm5jX0UjNU3tjHRShmEwKLw93DC3dLCj0My8MYOcPqvJ6MbCSfadDR+8KLXX9y6EEEKI05dMoYkTak12Je9vtre5c7awEOx9osvr27jznGRW761wOkZrzcqsCm6akYCXhxvnDIsgq6yRIeGOkox9+8j84yvcun4FMe1muOwyuPZaDK++ykNfl/DqdePxMBpYsi6P+eNiGPqDUg6lFFGBXjR3WMiramJyYkiPHRa7+Hoa2VNST0u7hWGRrjt8jI0LpNTc6rS1nhBCCCEGBkmuxQmjtT6UWAPUNXcQ5GRjk+0H62jrtOJrMpJZ2uB06/Av08soqm1hgmOGOS3Ch6zPV8LHGfDf/2KrqcE4bBqNT/wZt6svBTd7QqsAb1MFDW2d+Hu6s7vYzHVTBjt93n3ljTxbngPA3XNTXL6v1Eg/3tt0kBnJoRh66dwR6mvi+qN0ABFCCCHE6U3KQsQJU1rfRoivB6//bDyxwd6syCw/4vzBmmae/zqHdzcWEOZnIi7Y3pt5f+WR5R7tnRa2LlnPpes+weOqK2DkSEaOjGfOX38PFgu89hrrvtnBBz+7n+HXzD+UWHdpabfw20/SySlvJCrAy+XGKbHBh3tDO9slsUtXX+pBsm24EEIIccaTmeszWE1TO9/n13JBWmSvM66A09nj7nYVmfnbqv08dPEwEsN8nY7ZU1xP2qAAjG4GpiSGsH5/FQuPOG8ms7QBgLvOScbDaOCngxT5b/+bYZ5NsG8fluwcOnbu5i4PT4IvvRB++lMYPpyOQTE8tqKAFxeOxcNooGBDPtdMjuv1fX2ZXsr4wa43YPndRcOw2Gz2TWN6ee+hvib+unAMPrJQUQghhDjjSTZwhqpv7eT+T9IBiAv27rVn8vp9VbyzsYA//mSEy9nZv63aD8ATS/cyNSmEn89IPOK8uaWDj7cVcc+59vKK2UPDWLrlAJ1Ll+H+9j9h9WoubGwiLTaZ4HNnE5DpBRs2cF5ODlkxqVhmjMOYlsa20TP55BI/Hr/zAty6JbOewJDwanYU1jE5IZiMkgYuHBHl9FmfunwkD/5nD3mVTfx8es/2fV08jAY8MNBL17xD/D17bxkohBBCiDNDv5WFKKU8lVJblFK7lVKZSqnHHMf/opTKVkqlK6U+U0oFdrvmQaVUrlIqRyl1fn8920Cntabc0W3DlZqmdgK83LlgRCQHqptdjttb1sB/dhQzPTmUrzLKnY5p67QCcPGoKMYNDmJTXg1Wmz5izNeZFfh6GkmL8oN16/C88nKev+0cLI88CnPmQFYWL/57I81/epKAuEEQGgp/+AOqrIylT79J1gN/hF/+kv/zHMKkmaOdtrObmhTCZztKqGpsRymI8Dc5fd5wf08mJwYzJNyXcH/PXr9OQgghhBDHoj9nrtuBs7XWTUopd+A7pdRyYCXwoNbaopR6GngQ+K1SajiwEEgDBgHfKKVStNbWfnzG00pzu4WDNS0MH+S6I0Vtcwe/+Xg3QK89outbOxkc4sOgQC/2ljU4HVNe38br6/K4ZVYSJqOB97otRuzujg92AHD5uBgA7v5wJ01tFvsGMMXFWD/7nMTFX3CpvxvqiWLo6IB77uG/9/wZr+BALh4VRXZ5A6UWIylXXQLGeUfcPy7Ym1JzK8Mdux66ancXFeBFdVM7yzPKSQpz3m+6y80zk1yeE0IIIYT4sfpt5lrbda1Ec3d8aK3111pri+P4ZiDG8Xo+8KHWul1rnQ/kApP66/lONY1tndQ0tfc6ZmVWBc99nUNZfavLMenF5kOvX193AK2103ErsyqI8DcR4e9Jibnn/ZraLby4ah9XjI9hWJQ//l7uFNa00Npx5M86Bxy9pQ/VJDc2MjJ3F+rBB2D0aBg9moY16yk962y87rgNXnsN9u6FW28lMDwYc6u93/WOg2ZmDw1zuoV5uL+J/RVNlNW3ERHg6XL3wgAve2nG+n1VpPXyA4gQQgghRH/p124hSik3pdQuoBJYqbX+/gdDbgSWO15HA0XdzhU7jv3wnjcrpbYppbZVVVX1x2OfcAeqmrj7w12HaqBd2Vlo343QVXkGwHubDpIWHcBzPx1NW6eV9OL6HmOa2i3klDdywYhI4oK9qWho65E0v7OxgLGxQcxIDgMO1xRvd+yISGcnvPcejXffx/2f/ZXX/nEvREdDRAQXvfs87coAr74KlZV8cd8zNC+4BubNg2nTwGD/387Lw43VeytpbOtkT0k9I1zMsscFe7OryMyjX2SS5GKxJEBwt7Z+wU5a/AkhhBBC9Ld+XdDoKOkY46ir/kwpNUJrnQGglHoIsAAfOIY7+x1+j2lXrfUbwBsAEyZMcD4te5p5YuneQ6+dbeEN9hnp4rpWLhsXzdeZFVwxvrPHIrqNedUA3D47CU93N2YPDaeiwVF73dgI334L4eEsbvBn3OAgAh0r9YZ6WKj/3e/xaq6Dm2+mbcQossoaeOaKUYfu7WE0cH5aJA1tndDQAPPnY7NpDkYMZ8b0STAmDVJSIDaWpRsK8PM0smBiHK+vy2NLfq3TPtENrZ2AvZSlrrnjiNZ33Q0J98PbZKSl3cJZSSG9fy0vG4mvpxFfF+31hBBCCCH60wnJQLTWZqXUWuACIEMpdT1wCXCOPly3UAzEdrssBig9Ec/XX7TWvLw6l+umDHa6WQpAh8UGwO1zkvj7mjyyyxsZFtWzpOHFb+zdOGamhFFqbmVXoZmZKWFHjMkoqefsYeF4Gg2Qn8/IDV+j1q6FumJIT4fx4zEXFHNtZQXGs+fAyuGwYQN3bN1G4XnzYOoYOO888p97jaSokT36Pw8O8Wbn9v1wwy9hwgSen3cn7Vpx8YXDoFvLu9hgbz7aWsRlY2PYkl9LSqQfI2N6zkqfNSSUT7YX8/2BWvw8jbj10jbv7NQwluwuc/q16S4yQBYoCiGEEOLk6bfkWikVBnQ6EmsvYC7wtFLqAuC3wCytdUu3S74AFiulnse+oDEZ2NJfz3e8LFYbFpt2Wf8LkF5cz64iM7uKzPzj+glOZ6QLa5vxNhkZPzgYyOPZFTk9tgW3OTpv3H9BKv6e7kQHelNY6/jSNTdDRga1G7eSvHQ9U5qKYW8m+PmROnoMnwcPZcS9t8CoUZS7efP4kkzuG+FHYsZWyM6GBx4gb+gYPtlbx0MXD4epU4m7/CquWvgzsJwDNhtoDTYb4yoqSf7dbHQl4QAADf5JREFU72lddD2djz9OwWcZPHPlqB5JcWObvaT+b6v3Y3RT3H/+UKdfn64a6RWZ5b0m1gCXjhrEnKHhvY4RQgghhDjZ+nPmOgp4Rynlhr22+yOt9RKlVC5gAlY6ks3NWutbtdaZSqmPgCzs5SJ3nKqdQnLKG/kqoxxvDzd+MTPR5biXHL2fAQ5UNzutF35qWfah17+Ymchb3+X3GPPF7lJSIv1I8TPAmjXEf7Ga0E1bsNYV4FZUBKmp5PjGUB4zBNMDt8CY0RAailFrvnpnG5fPnICbQZGeWc7UxBASR8fD6MNlGgkWGyWbSmnrtGKbchZPPPoOj29+H156CZSy10grhbuHB98+8DRRl1/Cf7/KwcvdzWlLvPGDg1i+p4wsx4YwvXXtuHV2Eq+tzeP5BWNcjgEwuhkOlbEIIYQQQpyq+i251lqnA2OdHB/SyzVPAE/01zP1lWe+sifEvp5GpzXSWmvaOu3lHheOjKKlw8LBmp7J9daCWsCeYGKzMSlAsbSymPYllZgKC6CyEktJKSm79nF+Sw2q4ACMHo0pfjibR0wheOEjJM+aSGWrlX/8Zw9PXzkKg+/h3s5dz/XpjmKuGBfD2n1VXDMprsf78TAaCPfzpKy+jVJzK1HDkjD+8n2n7719axGbD9RQXt/m8geLhFAfHrwolaeWZTM+3vUOiAAT44OZuCi41zFCCCGEEKcLWfX1IyyaFs/bGwrwNLpRVNtKXMiRC/G2F9Ty6roDAFwwIpINudXsLqrn7NQI+4DaWlo+/4KGD5bxQGEOQ35TCnV1GHx8uMvkR8uQREwjh0FEBNuD4ii6YCTxF06EMaPA25tBHRZKVuwjPyqYZHd3Xl6WQ2ywN6G+PTdNuWlGAp/vLGFohB8+Hm4uW9QV1bbwpyVZjIgO6HXRYIivBysyy/ExGZmS6Hpc12LLq8bHuhwjhBBCCDHQSHL9I4yMDnB023BnT0n9kcl1SwvD50zi0rFzGfPkA/iajExNCGLn56uwff8RhrVrYcsWWqfMoCo8hQn3/Rw1bjQEB4O7O+9+ncOgQC+unhRHQ1sn73+WwZ9+MgJvr8OdQbw9jIyNC6SxzUKn1UZJXSuP/2SE02c9KymUf20pYmdhHUMj/V2WaIyIDiCjpJ6Mknpum+16g5WuRY63zHJdDgMQ5mfixukJhPpKKYcQQgghzhz92ud6oAr09uCOOUMYHRPIf3YUk1fVdOicxeTJk794kuTOeuLPGgcXXYR/4mBufO0PNJVWwh130FpYwv3XPIrn/fcRcOF5EBEB7vbkeXRMIDZHA5Wt+bWMig44tPCvOx+TGweqm/itozd2dKCXy+dtabfw7f5qUiP9XI7pniz3tkiza5MXVzs/dlFKMW1IaK/11kIIIYQQA43MXB+HEdEBuLsZ+GR7Mb+9IBWAVdmVlEUn0vH3V8GzE9auhZdf5uODNvw9jfxsajxvr81DKcWFIyN73NPLw42WdisWq42vMsq5bspgp3+2j4eR7LJGAB6+ZHivz5kS6ce+8kZGRLtOiL09jLx49Vha2i0uxwCMig7grnOSex0jhBBCCHGmkpnr4/T4T9LYX9GEzabptNr4aGsR95ybwti4IAgPh5/+FBITGRrhx9qcKixWG9sKarlhWjwmY88Z4rhgb/aU1JNT0Ui7xcZIFwnxxHj7IkAvDzcSQn16fcZbZiby6Ly0o74XX5ORcP/e+0Qb3QyMjg086r2EEEIIIc5EMnN9nML9PAn2caeysZ26lg4AUiJ6ll/MSQ3nX1sK+TK9lCAfD6YNCXV6v9hgb0ZGB/DKmlymJoVicNH/2WBQ3D4n6aibqoC9jEXa2AkhhBBC9D9JrvtAXLA3u4rMgD2J7qpL7s7NoJiaFMKS3WWMG9x7ezqA9k4bs5LDeh1j33hGCCGEEEKcKqQspA9cNDKK73Kr+Gxnscsyjq5xABOOklynOBYeRge5XqQohBBCCCFOPUo7OlOcjiZMmKC3bdt2sh8DAKtNk1XaQNogf5elHFpr9pY1MizKT7poCCGEEEKcRpRS27XWE442TspC+oibQTEy5ujt6Ya72MRFCCGEEEKc/qQsRAghhBBCiD4iybUQQgghhBB9RJJrIYQQQggh+ogk10IIIYQQQvQRSa6FEEIIIYToI5JcCyGEEEII0UckuRZCCCGEEKKPSHIthBBCCCFEHzmtd2hUSlUBB/vgVqFAdR/cRxw/icWpQeJw6pBYnBokDqcOicWp4UyMw2CtddjRBp3WyXVfUUpt+1+2sxT9T2JxapA4nDokFqcGicOpQ2JxapA4uCZlIUIIIYQQQvQRSa6FEEIIIYToI5Jc271xsh9AHCKxODVIHE4dEotTg8Th1CGxODVIHFyQmmshhBBCCCH6iMxcCyGEEEII0UcGbHKtlHpLKVWplMrodmy0UmqTUmqPUupLpZS/43i8UqpVKbXL8fGa47hft2O7lFLVSqkXTtZ7Oh0dSxwc50Y5zmU6zntKHPrGMf6duPYHX3ObUmqMxOL4HWMc3JVS7ziO71VKPeg4LnHoA8cYCw+l1D8dx3crpWY7jkssjpNSKlYptcbx/3imUupXjuPBSqmVSqn9jv8GdbvmQaVUrlIqRyl1vuOYxOI4HGsclFIhjvFNSqmXu91H4qC1HpAfwExgHJDR7dhWYJbj9Y3AHx2v47uP6+We24GZJ/u9nU4fxxgHI5AOjHZ8HgK4SRxOfCx+cN1I4ICLe0os+jEOwDXAh47X3kABEC9xOCmxuAP4p+N1uONrbpBY9EkcooBxjtd+wD5gOPAM8IDj+APA047Xw4HdgAlIAPLk34qTEgcfYDpwK/ByL/c94+IwYGeutdbrgdofHB4KrHe8Xglc8b/eTymVjP0b6rd98oBniGOMw3lAutZ6t+PaGq21tfuFEocf7zj+TlwN/OuHByUWP84xxkEDPkopI+AFdAAN3S+UOPx4xxiL4cAqx3WVgBk4osevxOLH0VqXaa13OF43AnuBaGA+8I5j2DvATxyv52P/obNda50P5AKTut9TYnHsjjUOWutmrfV3QJure56pcRiwybULGcA8x+urgNhu5xKUUjuVUuuUUjOcXHs18G/t+DFMHBdXcUgBtFJqhVJqh1LqfifXShz6Vm9/J7oswElyjcSiL7mKwydAM1AGFALPaq1/mAxKHPqWq1jsBuYrpYxKqQRgPD3/vkgsjpNSKh4YC3wPRGity8Ce+GFP0sCe8BV1u6zYcaw7icVx+B/j8L84I+NwpiXXNwJ3KKW2Y/+VR4fjeBkQp7UeC9wLLFbd6oAdFuI8wRDHzlUcjNh/xXSt47+XKaXO+cG1Eoe+5SoWACilJgMtWusMJ9dKLPqOqzhMAqzAIOy//v61UirxB9dKHPqWq1i8hT2J2wa8AGwELD+4VmJxHJRSvsCnwN1a64behjo59sPkTWLxIx1DHP4XZ2QcjCf7AU4krXU29tIDlFIpwMWO4+1Au+P1dqVUHvZZ1G2OsaMBo9Z6+8l47oHGVRyw/8O1Tmtd7Ti3DHs95CrH5xKHPtZLLLo4/cYosehbvcThGuArrXUnUKmU2oC9FOGAY6zEoY/18u+EBbina5xSaiOwv9vnEovjoJRyx57QfaC1/o/jcIVSKkprXaaUigIqHceLOfK3BjFAabd7SSx+pGOMw9HudcbG4YyauVZKhTv+awAeBrq6goQppdwcrxOBZBz/eDk4rTkVP46rOAArgFFKKW9HjeksIKvbpRKHPtZLLLqOXQV86ORSiUUf6iUOhcDZys4HmAJkd7tU4tDHevl3wtsRA5RS5wIWrbV8f+oDSikFvAns1Vo/3+3UF8D1jtfXA//tdnyhUsrkKNFJBrZ0u05i8SP8iDgczZkbh5O9orK/PrAHtAzoxP5T7k3Ar7Cvft0H/JnDm+hcAWRir6nbAVz6g3sdAFJP9ns6HT+OJQ6O8dc5YpEBPCNxOKmxmA1sdnEvicUJiAPgC3zs+DuRBfxG4nDSYhEP5GBf5PUNMFhi0WdxmI69rCMd2OX4uAh7x6hV2H9DsAoI7nbNQ9i7hOQAF0osTlocCrAvCm5y/B0aLnHQskOjEEIIIYQQfeWMKgsRQgghhBCiP0lyLYQQQgghRB+R5FoIIYQQQog+Ism1EEIIIYQQfUSSayGEEEIIIfqIJNdCCCGEEEL0EUmuhRBCONW1uZYQQoj/nSTXQggxACil/qiU+lW3z59QSt2llPqNUmqrUipdKfVYt/OfK6W2K6UylVI3dzvepJR6XCn1PTD1BL8NIYQ47UlyLYQQA8ObOLYodmzdvRCowL419CRgDDBeKTXTMf5GrfV4YAJwl1IqxHHcB8jQWk/WWn93It+AEEIMBMaT/QBCCCGOn9a6QClVo5QaC0QAO4GJwHmO12DfTj0ZWI89ob7McTzWcbwGsAKfnshnF0KIgUSSayGEGDj+ASwCIoG3gHOAp7TWr3cfpJSaDcwFpmqtW5RSawFPx+k2rbX1RD2wEEIMNFIWIoQQA8dnwAXYZ6xXOD5uVEr5AiilopVS4UAAUOdIrFOBKSfrgYUQYqCRmWshhBggtNYdSqk1gNkx+/y1UmoYsEkpBdAEXAd8BdyqlEoHcoDNJ+uZhRBioFFa65P9DEIIIfqAYyHjDuAqrfX+k/08QghxJpKyECGEGACUUsOBXGCVJNZCCHHyyMy1EEIIIYQQfURmroUQQgghhOgjklwLIYQQQgjRRyS5FkIIIYQQoo9Ici2EEEIIIUQfkeRaCCGEEEKIPiLJtRBCCCGEEH3k/wM+XC0BjCDKkAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "n = 52 #taille de la fenêtre de moyenne glissante fixée à 1 an (52 semaines)\n", + "\n", + "data['trend'] = data['CO2'].rolling(n, center=True, min_periods=52).mean()\n", + "\n", + "plt.figure(figsize=(12,4))\n", + "plt.plot(data['dates'], data['CO2'], label='signal brut', alpha=0.7, linewidth=1);\n", + "plt.plot(data['dates'], data['trend'], label='trend', linewidth=1, color='r');\n", + "plt.xlabel('year');\n", + "plt.ylabel('CO2 (ppm)');\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Saisonnalité\n", + "La tendance long terme étant identifiée, on peut la soustraire au signal brut pour isoler la composante saisonnière. On obtient la variation annuelle autours de la tendans long terme.\n", + "$$ Saisonnalité(t) = data(t) - MoyenneGlissante(t) $$" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAEKCAYAAADQLdlLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXeUZkW1/a7uyYnJCIzjgCBZhoyC+MRIUFFUeGZQMaDwRMUIgvB8iiBP4aeIIgqICIoioIIBReWpRMkoaQgDDJPzdLq/P2rOuuere6rOuf3dnu7pqb1Wr69DdVXde+tW7dq165QrigIZGRkZGRkZGRkZGfXRMdgVyMjIyMjIyMjIyNhYkcl0RkZGRkZGRkZGRj+RyXRGRkZGRkZGRkZGP5HJdEZGRkZGRkZGRkY/kcl0RkZGRkZGRkZGRj+RyXRGRkZGRkZGRkZGP5HJdEZGRkZGRkZGRkY/kcl0RkZGRkZGRkZGRj+RyXRGRkZGRkZGRkZGPzFisCtQB9OnTy/mzJkz2NXIyMjIyMjIyMgY5rjtttsWFkUxQ0u3UZHpOXPm4NZbbx3samRkZGRkZGRkZAxzOOfmWdJlm0dGRkZGRkZGRkZGP5HJdEZGRkZGRkZGRkY/kcl0RkZGRkZGRkZGRj+RyXRGRkZGRkZGRkZGP5HJdEZGRkZGRkZGRkY/kcl0RkZGRkZGRkZGRj+RyXRGRkZGRkZGRkZGP5HJdEZGRkZGRkZGRivmzwd6ega7FhsFMpnOyMjIyMjIyMhoxVZbAWeeOdi12CiQyXRGRkZGRkZGRkYVzzwz2DXYKJDJdEZGRkZGRkZGRhXZ5mFCJtMZGRkZGRkZGRlVZDJtQibTGRkZGRkZGRkZVWQybUIm0xkZGRkZGRkZGVV0dw92DTYKZDKdkZGRkZGRkZFRRVamTchkOiMjIyMjIyMjo4pMpk3IZDojIyMjIyMjI6OKTKZNyGQ6IyMjI6MeHn54sGuQkZGxIZDJtAmZTGdkZGRk2LFsGbDttoNdi4yMjA2B3t7BrsFGgUymMzIyMjLsyINrRsamgxzNw4RMpjMyMjIy7HBusGuQkZGxoZBtHiZkMp2RkZGRYUdRtH5mZGQMX2QybUIm0xkZGRkZdhCJznaPjIzhj0ymTchkOiMjIyPDjr4+/5nJdEbG8Ecm0yZkMp2RkZGRYQeR6TzIZmQMf+T33IRBJ9POuU7n3B3OuWsHuy4ZGRkZGQpIkc7KdEbG8EeO5mHCoJNpACcAuH+wK5GRkZGRYUC2eWRkbDq4997BrsFGgUEl0865WQAOBfC9wazHJolVq4CPf7wcGDMyMlrx6U8DF1ww2LUYeshkOiMjI6MFg61M/y+AkwBkRrehce+9wP/+L7B06WDXJCNjaOLMM/1XRisymc7IyMhowaCRaefcYQAWFEVxm5LuWOfcrc65W5977rkNVLtNAAsX+s9lywa3HhkZQxkjRgx2DYYesmc6Y1PGy14GLFq04ct96ilg5coNW+bzn+8/8yZEFYOpTO8P4A3OuccAXA7gIOfcpWGioiguKIpir6Io9poxY8aGruPwBU1Mli8f3HpkZAxlZDJdRR1l+pxzgJtuGtj6ZAweTjsN+PGPm8vv9tttJ2zecsvgHBrkHPCXvwD3D8I2r1mzgA9/eMOWOXKk/5w8ecOWCwAPPQQ88siGL7efGDQyXRTFZ4uimFUUxRwARwH4Q1EU7xys+mxyyMp0RoaOTKarqEOmTzwR+Pzn9XRr1rRXp4zBwamnekLdFB591JZun30Gd2NcxyBRJ4v4tXq1La8bb9TfOyLTq1bp+e2/P/Ce99jKtmC77YADD2wuvwHGYHumMwYLpExnMp2REUdX12DXYOjhgQf8p9XmsW5d+u9FAYwbl+/1xoomFeI61qHBDNnW2Tk45Y4bp6cZPx749a/1dAcdBPzgB+k0o0aZqgUAuPlm4Prr7ektGDu22fwGEEOCTBdF8ceiKA4b7HpsUsjKdEaGjo1IGdlgOPxw/2n1UWpkmpRubU/MypXAE0/YyszYcGiSTG8s3tzBUqYtZBrw/moLNLJcd9LQtPVm9Ohm8xtADAkynTEIWLgQeN7zsmc6I0MCEbzBGjQ3BlhVxLVr03+3kukPfQiYPdtWZsaGg0ag+vrsqw51yLSFuHV1AU8/bc/TCouv24q//tWe1qrUklgWAz0PjZxbyfGdd/rPTTjUbh4pNlU89xzwwhdmZTojQwItIefTv+JoyuZB+WheT40gZAwONMJ12mleYTz6aD2vpiPEnHkmsOWWtrQ//7m9fAtpdA647750mgULgAMOsJUJ2JXpz342/XdSfJsi02efbUs3jJHJ9KaKhQszmc7IiIEIoEVR+8xngK9/fWDrMxTRFPGgfDQFu0k1MKN9ENHSnhspr5o/F6jnm7/uOp3s1SHnb34zcPfdtrRWBf2xx9J/X7LElg+haQ+xZuOwkmlKNxgRVoYIMpkebvjJT/xhLBqyMp2REUcdMv3VrzYb0WBjQVNkmv6ukbKMoQVaSdBWHvjBYBrZ+tCH7OWfcgrw+OPpNFOn2vMDyugVGqxkWmv7NP5aJ5xjxtjKtUJbectk2oxMpocbjjrKHxOeQk+P90pvtVUOSZWRIYEIgtXmsSm+R0NZmb7uumaFgu7u5ojCQQcB3/9+M3kNJujgEo1M83cjFWLtiits5fLnoLXBOtEoAHsozKbINN0PLT/aT9C0J7mpDZ/0TCz1W7t2YHzsg4xMpocbXvYyPc3ixcCUKd43lT2hGRlV1FGmgU3zPdKIzF/+4j8tG9QAfUJSh0wfdlizYbpGjQIuvLCZvG68EbjqqmbyGkzQZGXFinQ6/txSvngrUeTtTiODdcn0hlamqZ/R8iPyqb1zdSf1TSnTddJ/4hN2H/tGhEymhxNWrdI9WoCf5c6Y4TuaDR3b9cknm13OXb06W1ViGDvW234y6qOOMj1YMWcHG9rAThP7wfJMT5hQL72Ghx9uLq+hHiXm9NP1sJBcZU6RKP7cUsq0lcjydqe1QWue5JXW2hh5lpsi09TmtfyIJGvprOo+wUKmL7oI2H13PR1gmxB961u2um1kGOJvdEYtnHSSLQ7rwoXA9Om+o9nQitrznw98+cvN5XfoocA22zSX33DC2rXA3/422LUYeigKXUGhSaZlstl0BIJDDwUOOaTZPC245BLgjDP0dNtsA2yxhf26rZvENKJgIdOLFgE772yrV11YiFlR2CM9DGX87nfAn/+cTtMfMr1yZTydVQWto0yTbUN7Ji9+sa0OEyf6sdMazs6qTGvjMPVDTfc12v0rCr+CbUkHNG9D2Yg82JlMDydYVebnnvMdwqhRg7M83aSSd8893raSIWMj6ozawj//aVf7/uu/gJ12Sqep65m2lP21r+n+UsCfXmY5wcyKE04o/a0pfOlLwMkn6+mKwvcdTalz9PcmyPTDD+vhyOriRz/ynxbLwHveA+y7r55uqJNpyz3kZDr1jK3K9EDYPAjWsVHrL4sCmDvX9h4Dzdk8qP5NH2pjUaZHjmzuXbf0Q2H5GwkymR5OmDix/D7VCBcu9DaPkSMH5whf69KbBdZObVOFpTMa6h3WiBHlEdYx3HOPv46vfEXP76qr9PzWrfPlWt+Pvj59IDnpJOCXv9Tzsk42n33WRsq++U2vNGoYP95Wbl+ff4eHojLN+xZLuz79dN2+cccd/pP3r6m0t96qp2va5vHJTzY3ASsKW0xvToxTbcFKpovCr8posY95O7F6fq3jhKY49/UBu+5qH8OasnlYlem6kzTNIkkTZ+t91q7j85+31Yvys7xzQwSZTA8ULINr05g1q/w+5T8cTJtH08hkOg2NUPzsZ80P7Jdd5mMvN4HeXv/17LPpdHQNpCKmYInVum6d99zWmWzyEGAxvO1tehqrCvToo7Z0gO2k08Ei07SyZL3uP/wh/jcejcFSv1NO0SNr0H2xtBvrhremlemzzwY+8pFm8rL2qVZlOvY/Ifr6/ETS6rEH9PeT2p51X8173qPnN2JEc5FsrNE86Jk0bfN45hk9jUWZpvvcFJ+gTa11N5AOIjKZHigceKBNYZo6tTnSPXWq7wwmT07v6uUbEAeDTP/rX83lNRjK+sYErW0RAbznnubKfMc7fOxlDUWR9lACZSeeGoSBkpxYiIBlY9q6dcALXuCVRivJa3qg01BnIqndZ8B+ulpdMq21wblz/ad2n2nClIrpzRXD//kfvW4W1PHPWxXLq64C/v3v/tdJgmXzuQXWDeJWMs0nU5oyPWJEs2Sa8tLiUVvRdNufP99/NmXz0CYDISzKdF3RLfVMrJNImvxvRBbOTKbroLsb2HtvW1rLBoWi8CcgNRWjtq/PDzhjx9qV6abI6OLFwKtfbUv7wx82UyZhqEdTsA6aAxGVRFMFScmzHPTTNC68UF/GmzfPf2r3hoiWhWBalg67uvxGuylT7M/FOsA29ZybUv8JpMBq97Cvr546Z7URWW0em28eT8OVaevmW61+RCSaJNNA2bY3JB54QLdwNE2meTvRlGlLuxpIZVoDkcumyPRZZ/nPwdqA2LRnWsvTSqapDd53n74qOUSQyXQdLF9u88NZGx696Bdd1P86cRCZHjNGV6anT/cdV1MbGh54wObLHAhYAu3fcYetI+rp8ZvZmkJRAC96kc0CMHmyHrMV8OrDF79oLz8Fmohs6ENHurqAD3xAT3f44f5TsykQmbZcB8VsTXX669b5XeybbZYeiPn9tb5LVrKiDXREFi0rWxb7C5FpLYpD04SCYL1/KbtFf/z/lsguY8Y0T6YHY1Vwxx39qmQKdcj06af771PPmP8tFWd6IJTpup5pDaRMN7Ehr07fMVAbEC33r45nesyYdB3rkmmg+WseIGQyXQfWjpoTotT/UKdw5pn9r1OYHynTKVJBGxA7OprbfNbkpsKBwB57AJdfrqf7/vfLZecmQJ3VU0+l091yi/+0DLAXXwxccIGtfO351iGhV14JbLttOk3TJwbSu2Ql03RSWAxFUa4UpJYQOZlOTYT49VrI1qRJ+sD+lrf4T8vEylrubbfpaYikau9y055pgjXMWap+A0Gmu7u9NUh7buvW+QNZrBiq+1WsZJrekcmT022BE8rUe0+eaS10JW8nG5pMN+mZ5n+zkOlRo4auMs2PO2+C/K5ZU/bpQz3yzXpkMl0H1Pi1zpcPgpaXqSnPNFemLTaPjo7myv7kJ/U0gx01wjJIWJcDFy2yXQ8pMUuWpNPts4//1Do3Ci1kfW7WsGQpxYjwhz/okQ++/W1bvaz2InpmV16ZTmfdRMm9w6nl7nXr/OA1eXK6TfDr0J5dZ6e3jWgDO226sWwapLpaoG1YnDLFf2r+9KZ9owRtEB492n+myHR/+jOLMm3ZjFo3JF+TZHowIiTReKNtGuTtJEWmi8Ln55xNhALSz6S7u/SRD2UyvdtuNjI9bly6XLpnd9zhx3cLLJMRi2ea8tGId3+U6Q29F6WfyGS6DqiRaA+Xk+lUWvrb1lu3Vy8CzexT9o2iKDcgNkWm//AH4Kab/Pepl86qUNTFunXNhYCzkrzp023ebyKplmPeLeWfd57/bEoVpHZieR4Wb3rTBJDSkXIfg5VML10KbLWVP9ErNbmy2jz4dWjPrrfXD4jatdMzaeJe8ud/9dXpfIisphTxnh4/CZkyxb45yNrHaGENLWR6oGweFjJdlxxb0lvz3GKLemWnUMem2NGhjyNWMt3X58mWlh/fLJ16JmedBZx6qv++aZtHqv+95BIfy57Sx0BE1aLmdnX5laNUOlqZ3nxz+z4iq83DakPRJhpWMr1mDbD99v77bPMYhqCOTSMyXOVLNQR60bRjW60gpSBFplev9g163LjmyDTfSJPqLPnAoG2C6eurdzSq5vOkPDXUGRCPPtofj55C3UmD1rlttpn/1K6FCIKVTFuUaUsHbe0srYMbEV5twlmHTE+erO8X4EvYKZsHv45U2+GeQu3aKR+rzYM84Km8AJ1wUb+Wug46nn7OHNtpq0Bzq1+k2DdNprU2SzaPDU2mf/zjgQu1Z1V+U7CSX6uIwsl5qg5velP5feqZ8DGmSWVaU1/POQf4xjf899p9cc73RRblV1Ome3t9H10n+oZ1H0B3d7rNcDLdhDLd3e37mG23zWR6WMKqTPOHr80kgeajeXR2xutImw+B5sg0f3FT10L3orNT79weegg48sh0Gr5kb3nhLANt3SUlbUOqlRARtE6QfK2pa3nmmZJcWsm05f4NBpmm+6Ft4LSSKCuZ7uryZHrcuHSbtpJpUo1Gj9av/ec/95+a3YLw+9/H/1aH4FFfkBpgqU6bbWZv203Zu8gzndpw3J/+TJuIdXX5zZka8bDE7OXQ2sGdd9rzskye+d9Sk2feB6bCmFrJL/9bajWIk3NrP0yTOw2pe12nz7co07w9abaMjg6bJ5nItMYnOjv9BExrq5tvDnz3uzbPNNUxZROjfOqQ6VRb6O31eXV2ZjI9LEEN5gtfSKfjL5BlY4Z1w4cGrkzHyqXNh0BzZJo39hTx6OryRGb77fWBhNSn1ODAD1tIET2KlmKJqGGJDMKhedO0DXEhtE5wzBj/mepguD/bujOeltRiWLOmWTLNw5ZZyNayZfal5BSWLvUWBasybUlHSD07GuhGj9af8ahRwP7724lwitTyPLRBiTZCW6xaEybYRQBrH5MKeQeU/STZPST0h7hrZLq7WyfTRVFuHLVCWw2yxAYn0D22ktqUhYinS9WByK/mmbZutCPiNm2a/djp1AE+vC2kxps6IQotnmnenqzKtOXQlrFjbcq0hUx3dPixy2LzcM5vyk+NZdts4z818msl0z09/r7U8acPMjKZrgNqJOeck07HH34TynRfn2/0WudL6leqQdPmQ6A5Ms1fyNS1rFzpB+HRo/UJhMXLy1/M1IB44YX+0xKXt27Mam3w1mwghJe8xH9+5zvpdPS8tEGOYFGmZ8/W2+C4cWVM1BQsZLoogPe9r/zZMphNmJD2Ltch06RMp/6HNiBqA92OO5bfa8o0kenUwN7T47+mTLErMql0vE7We6SRRsCTSyuZ1trghAl+Mjd1ajrdqlU+zGQ7ZXEQobTYPMaPTz+3OsSXcMIJ6b9bPfNA+WxTz5g/19QEjOeheX4tnmluVdFsj875pf17742n43j7223pUs+u7uqNpkzz9mRRpi1kuo7NY/Ron3fqmvv6bF5oItOp1W4A2HJLv+ehDvlNpeNkOivTwxDWl85q87Aq03vu6V8QzfNIGxA1m0fTyjRf3kwNsMuX+9BgFt/oP/7hP7/73Xga3mmlSHCdne51lWmtTdxxhy0fGnAuuyydju41KdQS+LO3kOlJk2yeaQssZDq8Zxbf3pQp6Ygo/SHTTSjTHBZletSodNtfvtwfKlPndNJUOl6nJsg09Rfjx9vbjNYG997bE0vtPq9e7Ym3NQzbdtul8/vEJ/znf/93Ok+LMj0Qp2TS6XhHHGHP10qmU/WtM345508XTIXqPOAA/7nrrroy7ZyPbvHAA/F0YR1S+RHOOCM+ztYh0xbPNBd2tPtHZNrimbZsQOzs9PdQi0JkmRQ89ph/thYybVXZrRONTKaHOayHq9RVpjUyTd45TamwbEAcCGX6oYfK71NkesUKTxQsyvQ73+k/U0ccW5VpTpC1wYzSWj292ou+fDkwa5Y+sFO9PvWpdLrPfc5/pk6bHEwybUE4cFgGM80eQdc8eXI6n4Ek000o093dnkjX2US0IZVpTqZT73od0tjTY4tosGqV7z+sBEqbpHE1OdX+e3p0Mh1eb+y9q0PcKFrKVVfpaemeaPsACJZxCdA31VK/e/HF6XSXXOLtkRabx9ix9cLzpfLjiK0eNK1M1yHTVptHb6/vO1Llfv7zpeCw2WZp8cFyHXTyINVRU9nrkmltQpc908MYWpxWQl3P9HDagJjaNMXJdN1oDhL6Q6a1jpPuW8qzV+fkqhUrgMMO81YKrdyXvMSuomun9xG0Scvy5X6loqk2aImqEZIS6+ZHjQC8+tX6/SPld0Mr05dc4svW2j6Rbq3cP/6x/D7VFuhvM2Y0cx1Wm0cdgkJkWiPg99zjbR5WZdoa5hJIvycWZTrsR2P3uk6d6qBJZdoqBhEZBNIrUtaoFZROO8GXcOml9ch0rG+qe2JxHc+0ZfJg2YBoOXmRWwQt4oN2CAw/NEXrf3/7W/9ZxzNtVaazZ3oY4hWvsKXr7S3D3TVh87BiIDYgjh2rbwbhHWTKO0g2D23DCkdqqcoaDo2TaW0wo3qlvM6cDFmUaYv/1dK5cVg3xWnhBR9+GNhpp2aU6bvuAk46SU9XR5meONG3Aa1TJeVGu8/d3X5QskbzaEqZ/r//859WMq0p03TS3le/qivTO+zgN8dtSJtHHdLY3W1Tphcv9pNSK4HSCD0/EVVbLairTMfKrnNf6vi/qd1odhVCE2SaK9OpvtjqDebKtGVMJG9wKj+gtNDFCL914tc0ma4TGq/uQUlaW+jp0ccbbp3U8rvrLm9pzDaPDBOsDfn1r/d+oxe9yNZp1Q2fFgNXppuyeaxdq28QowHiVa9KW1FIma6jiKc6Veuu6Tpkmp7Jvvva6mTxuk2YYFPE65Bpq09Wwx13+MgR1jBsQPxea2ECCWHdU+/I6tV+cNU687Vr/X22TFosyq91AyJH6r6TYq6Radr3YD1JTJtA0ORBu38cls1VWjSPdevs+w96enQ/6Pz5Pk/rKXAjR25YZdpKppuKdyyVr/UfvP5vfGM6L4JVmU6RaRqXtDbNlWkLmdbGEU5+gfi9qUOmLSqt1cpAkwfLHiLaMGita4rwF4XvVydNspFpi2ea0tU5tEXjRkSmmzwpdAChkmnn3Ezn3Jucc8c5545xzu3jnNs0SXidGdLjj+sNq6/PD4ZPPZXOyzooUTSPVLn92YBoUfv+8Ae/Iz81MaAldueaOWKYv5hWMm21eaSwdm05eFjI25gxtnJHjrTfF+tJkxpWr/ae7joTuhipSG2K5LAq093d/hlbyOCaNX5w0K6jDpm2KNNbbAEcc0z6OoDynRs7Vo/xa9mURO1v9Gjd5kFKvJVMp9oPlavZPLq6WttDSkG0eKaPP95/jhhhC8PWJJm2eKbDOlmVaav6nLo3a9b4ybCmXPKyUzGxeVmx6ygKH4PaokxbvcGcXFrItDaOhGQ6lrZOiEfNRgnUV6a1633gAeAHP7CNI4QU4V+71reVujYPrf+wrD7UUaY7O+2WnyGA6BvgnHuFc+56ANcBOBjAFgB2AvAFAHc7505zzk3aMNUcIqi73KA1rN5eYOZM/TRAK3g0jyaUaQqFpr3AtGlq3Li0wtnd7Qf/jg77IJIq2/pi1lGm//QnvU5r1wLPf74Py9QkmW5Kma5Dpru7fVzXlSvtzySmotCBMlo9rJ5pUqUBvTNfvbo8HTJ12EXTZHr6dODQQ/33qWdy9tneJrbFFmWUBgnnn+9XtawRAzQSSu9mnY08lgF23Djd5sHbgzZwatdB/68d6MEJVB0yrdk8tGPg+2vzsBKPBQvi6SjiUR1lOgWLMn3rrcBf/mLzTFttHkQuLRvUAfs4opFpq5Dw61/b7DR1PdPaahWFCbQo2IRUHVet8itL2nXwZ2sh05Z+ta7NY8KEequmg4iUwnwIgA8URbF3URTHFkXxhaIoPlkUxRsA7AbgDgCJkALDEHXJtDaA9fWVG2+sx7um0jW9AfGMM/ynhUyPHKkTAFLd6tg8rGQ6lR8PKagNKORFTWHtWruflry8TSjT/Jnecku8LdQh00R6Ro60KQDTp8c79FCZjt0buhczZ7b+HGLNmjKai4VMT5oEvPWt6bBa9I6MHq3bFOgZp55dT49fkfnoR/WBbulSfzBJ6vCDr33Nf1qXN7VYsVabB29Lqfbz+OPAhz9sOxmS2kOqX7j/fv+8rGTaeh1z5rT+n4bB8kxbx5TTTtPL1tpCk2SaJlJEHHfeOZ6f1RvMN+Sl0r3jHcC559rHEY1MW2OEkzWmjmf67LPj6agv0pRpsluMHWt/hqk6rlrl31+r9auvz7aypVlMgVaCbiHT48dv/GS6KIpPFUXxeORvPUVR/KIoip8NXNWGIHp7gVNOsdsutAZ4333Av/+tdx40QNSJ9Sil6+31AzodjqB1RpPWLzykjpQF7GSaOo86Ng/LUvekSen8+MlqTeym7+kpl84tJFkjCvPm+bagKUthHrFOpq8PeM1rgJNPTtcN8Pdj1Chvv7EcEpFqq3XJ9KmnAgcf3IwyvWaNT6uRPFKWpk4tQ49JqEOmaclUawsjRth27gP6IELtXauflUz/9KfVvCWceaYPgzZ2bPo+r1lTtofUvXn4Yf9Jym9sgjhhQplXaiWvr8/vVfnTn9InwYXlaBv3JkwYGJuHpd8HSpuQBCIoGtlqkkxzUvS5zwF77RXPzxq1gsYvbTzs6/Obuq02DyKjsWdcd89SHc90ClabB/GNMWPszzBVRx52zhIZp7vbtrJFyrRF7S4Kr/THMJzINME5N9k5d7xz7uvOuW/S14ao3JADD+FknRGnGiCdgGU5/hPQw93QwB5r+EuW+KVwejmtJ1d98IPpenFfptYJdnY2Z/MgMq15BXlZ1o7zpS9N18lKjCw2D/IvamSa8qDBIdYBF4VvK6ee6n9OPWMi0ym/Mb9/qYEuPDjHQihSbWbt2pKQWZTpceNsqyOdnV5hT5Eyui/a0ip1+hYybVkGJUye7Ce+MXAybVGmtXRPPFF+rylQq1aVKmgszyVLSgKYeiZcdevoiPdvc+cC//mf/jM1uS8KX+7kyel+9fvfL79/+cv1924wlelJk3zEHQ1afGar35ZfS+x/+MZDy96gOtE8NDJN77A2jlg903UFljo2jxS4zcNCpuvE307VsY7tBij9y7H8qJ+ynuZI+PSn43+jflWzkw0hWJ76rwDMAXA3gNvY16YHrkJZXkCtYW21lf+0HtCglavFZuQWD8B3iMuWxf14dUKC1VGmm7J5UCezaJGP45sql0DHdmu4+eb437gy3QSZpkgPms2Dyho92h/fGuuA+X3W1Dl6dhMnxsn0lVe21jW1KQkAXvlKn5+mTGsDJ7VnQB8wbLzWAAAgAElEQVSwScW2DsQTJ6aXd0mZTt0XuhYi01qfUIdMb7aZfoIZoL9z/N3UFHbAL0tb3k3n0qsAixcDz3ueJ9WpCRORaW3gXLvWHzM9aZKu2BPRSz0TsgJpe0wA/7dx4+xketas+PVaSTfH7Nm2PRKawmkljbysv/5VThP6aa0h4JpQpjmZtijT1L/G0vbHvtkEmabrnTmzPCBFAtW/jjKdutdUrnYd9DfNJz5liv+suwExBS5SDFRs9oZheepjiqI4sSiKi4qi+CF9DXjNhiJohqYdCQx4D5nWyfztb/7T2mCsZDpWLo8xDZQv/bXXxvOzwKpMN+2Z7u0Fdt/df586gavpZaI6MTAtnmkijFabxzHHpGOxEpkG0qsZ1J47OtI2D4o287e/+WX53/wmXi7gvYUrVgDXXCOno3uhDbDUiQP6u8SVactArCkeVjJNIfQs73CduKkpMr1sWXnsvPbOdXX5e6LZX6hOlk2wXE2O5UmRe7TTJimvkSPTS7p0n7XnRuHL6Fpiz4TSWCwwdQ9tmT49/kz6+oCXvaw8nc7SFsaNSz9jap8WMp0KicfTEWhzYwyW6BZcCW3CM01h05oKjUe/32WXUuBKoY5nOgW63lmz0ucacGV61Srbqq5FmbbaPGbMsEfzaMoCQ2NsnQPeBhmWp36Jc+4DzrktnHNT6avdgp1zz3fO3eicu985d69z7oR28xxw0Eus2S1mzfIE1WLad25gyLRFmeahb2L5WUADtkWZ7uzUvW533VV+r3WqL36xXr8vf1lPUwekRjblmabOUrOrdHd7//e556ZDBnEynZr4kZUBSKseRHj22MN/UpiyENTJU9k/+lH8OgAfyzs1cIZk2uKZ3tBkeu3aslztHa4Ttzpl8/je90qvsdXmoYXkI5uHJTyjhUzTfaE6xp4JtZXOzjSZpuemHRbDDxJJ9Ze8LVnJtDWaR6oN0rs5ebJXnFPPju6fc+k2TatymiWJ+ulvfxt4//vj6bq74+84gSvTFptHk8o0iQBWz/Qhh5T5S6C6v+tdfuzWoBHGusq0FrGC3jdK95Wv6HmnnolVme7rA/bZx0d7GohoHpMny2muvdaP2cOQTHcB+BqA/0Np8TCezpBED4BPFEWxI4D9ABznnDMYwwYRfOkh9YCLwr6kO3OmPRh7uzaPmDIdQ50wbVbPNCnTqdk1KeVXXmnzYG9okM2jKc803Qvn0n5QInhAPTIdazMUNg1IPzsi+9q9psHKOeBLX4offNPV5Tce7rabvhxpJdMDoUyPGqX7FInEWybE55zTjDJN5XzkI3abh3a955/vP7U4zkCrNSMVy5bI4JNPAr//vZyOnmlRpAmA9blZbR60CZv66iY906lnwt9NS3957rnA3nunyz7gAOCii4Df/Q748Y/j6WjyrD1jIt0pcM+0Ri5pRVJrqwPlmR450kfc0Wwe1o3x1pByYT2k+tGJj5ZISpTvPffY6hi71/zwGYvXHbALg9Z49vvt5/svCXT41zAk0ycC2LYoijlFUWy9/mubdgsuiuLpoihuX//9CgD3AzCssQwiiKxaDl6wePEAT4osthGgGZtHHWW6zibBUaOaD42nkVDKb6AQu/66Ng/LdQA+DcUylcA35KXCYFltHnzQTA1gWjvh5VK6VFsggqeVy5+v1vGTrcBiNaqjTKcU556e8phfbUI8Y4Z/96xkOqWIU19hWR3hE6af/EQvV4vjTOXSZ4pMU1t97WvLEIdS/WbM8OQ21S/QcyPlPOXbt5BpEhVe85r0dRRF6Znu7tbDUR55ZPqZ8DZt6S/33VdvW9QfjRxZWgcl0ASxs9O2KTmFOjGIn3jCx+UfLM/02Wen2zX/fSy/t7+9/L6uZzqWJ/XTGpmm/w/DPqbQlM2D97+WfsuyyRSIb6h1rhTThqFn+l4AA7qd0jk3B8DuAP4u/O1Y59ytzrlbn0vFZ90QWL3aN6rJk9Obg+hlt8zSOjv98o0WZeITn2h+A6JGRHkIwNSGvLrRPDQFgOpu7VQtmDjRlg4A3v1u/xmrY39sHql0P1sfYZJU51hnxJVpTdGta/NIDeyWgxmAVptHqvMNybTVM516lxYv9suR1k2wVjKdeudIlbZYtaw76AkpwkPlWCZ0dK9f8IJ4O/jHP/wn+YfrKNOxZ8JD402ZEieh3d3lCoaFTGsbHzlZ1dr+cccBv/xlum1RfkTkUyR5332Byy9Pq2l8tcU68bOQ6c5O4LzzgP33j6f75z+B7bbTSSifgMUQRvNIhWF75BHghS9sLpoHjXNWJZnuuaZMp+4LV/y16wjHVW0joEWco/TveAew447xtLyOms2D+g/JZ3/++T4alFXM4OVaIoSk0t13X5lmmCnTvQDudM59ZyBC4znnJgD4GYD/KoqisgOqKIoLiqLYqyiKvWakYm1uCFx2mW+Edci0JTbjlCnlhpQYPvYxXcHWQuPVtXnstlv5faqTbjqaB23G0DpVIjzXXOOVjxSsGx9mzixP0ksNEJZoHkXhr4U807Fr/tKX/CfF0m2aTLdr87CCrk8Ll2Utl5PpVFtYvRp4+umSTMfSPf20byukTGvHYROZjuVHZBrQybTVN0pIvSNUDhG8VH7r1vk0u+zSOpHm+Pe/yzItq0Z1lelUnnxiZSHTQNpb/drXltcTeybr1vn+lMpNEQVev1QIM16/lHeZv5upZ3frrf4kT2sklhEjdH//woVe1dSe8U036W2UT7BTGx/nzfNRXcaOtYktdZVp6+qp1rboWpqweYTjauzglssvBx56SO+LuDJtXdXVbB5Ux5id7OSTvW2oLpnW4lufeaYtHaUZZmT6FwD+G8DNaDg0nnNuJDyR/lFRFFc1keeAgftatU7LYvPgxGPy5DSZHj269FYPxAZEywCWQtOe6UWL/KeWH5HLnXZqVdEldHT4UwNpE10MPT3laV6pl52WVVODDqn5FmsQUA5ITZLpJmwe48en603gynSqfmG5FmU6RaB+9zv/bkyenL4O2rSn2TyoPvSMNWUasCnTTZNpy+rIY4/5jW6WyBZEUKzRPOqQ6ViePPyhlUxrqwrUf8QGYupraUJnJdPTpsVjk3PFOUUurZ5pCt2ntWmg3BivrXAuW+ZDC2rP+MYby5M4NWg2hX/9yx+iA9htgE3bPKieqTZIaSxEVasfvU/HHus/P/95Od03vuE/rTYPajvWMy40ZRrQQ3BaVwYBfd/DpZe28h6NTKdW2YcgVDK9Pgzej+GPD78dwI+bCI3nnHMALgRwf1EUX283vwEHnx1a4jNqNg9qMEWh7+alDr2OzcPimXYOeN/70nUk8hYD/a9FJbN6pkeP9i+eRXUbPVoPCQXYFA+q49ve5gedlE3BssTOO6LVq4GvK8187twyfwl1yDT3jcZm9n/+c6niaYexHHWU//7444GPfzxeLqCTaU5QrMp0agL7xjeWYf1S10H3TiPT/D6n3jlOGLVoHnXJdEol40ulWn6LF/uJ+MiR/h5Jm5c4ma5r87BsQEzlydtC6prrkGk+kZTaPifv2nXw+s2cGY/Jf+65ZdxyK5leu9afqCuBVseITFv6fe048eXLfb9mecavelX671yZtpJpra3SalDTofGA9DUTqdWOuCZoUVPo+ZIKq4Hun+bHr6tMa55pwHOPVLz9JpXpo49uzTdVP6BeKNEhAJVMO+cOAfAwgG8COA/AQ865gxsoe38A7wJwkHPuzvVfhzSQ78CA7zrXOiOLzYM3pJTq1tdXqh7tKtOrVpVWAkLqWsjvS5A6TCsxomuxeKaJrGqd6he/6FUmC5kG7NE3tGfHbR6p+tG9o4HnF79Il33kkX7AbleZfvLJ8n6k2swHPlB+r10vEZDnP1/fsKod5NAfz7TW6fPr0Mj0iBGekKViGlPaVBsMlWktYguR6dQ7fNhhvl1b7RbWCSypsLFwhUA50R0IZTp2LQ8+2LqiESMUvC1o/aBGpqkMvpxsUc4nTIiT+J/+FLjjDv99KtIO93Tfcw9w/fVyOuqnJ0xIt8HXv74Mw6ptEqN2rbWtuXOB00+P/x1ofU4pMv3gg/XJtGWcqxMaD4hfM09jtXlo4w0noPznGGi8SVmD6LMJm8e6dWV7j91r7okH6u31aJd0E4YbmQbwdQCvKIriP4qieDmAVwA4p92Ci6L4S1EUriiKFxdFMXf916/azXfAwBuwNuDwzTJPPy2n4cp0KnYqEQ/LJieumEr1k3Zpa8tfhx5a/kzLp2GeFmIE2G0e3EahKclXX60fxwqURMaiTGsvMdUvNQmivIDyntMBMymk7qGVTJ98MnDFFf57LSY6Lzd2b6xL8VbPNG+Ht9/u6xvLz0Km3/9+4KMf1a+D2umkSfb7bNmAqKWja6ElcW0gnjvX5gelDTqp/Ogecu95iLrKNLWF1IDINyCm2swZZ5Sbu6w2D61f0Mg0tUsLmQ4nfpZ3SVOmLdY554ADDyz7/dj13nCD/7Ts0bEqunTNO+wQT0NtsyjSFranny4PQtH63298w7/jTYfG+9CH4tfMn+eECTaiSu9crGxqf5qNkv9/yjfdtM3jJS8B7r7bf695kuso05rNI8x3EyTTC4qieIj9/AiAyFrXMAZvwFabxw9/CHz2s/E0hJRKtmhR2bFoA/b8+T7EVGyQo5k/h6ZMH3ecf0l22UUm03WUaavNg5RfC5kG9M4NsNs8SPXQNtCNGOHv9eLF8by6u33Q+0mTPNnjGzpjSHUeVjLNkbJ58LagkWmLd44r09al88MO85EmJHAVL5XfmDGtvkztGY8dm55E9leZttg8LBsfR42yDZqdnbrnke5hqDRxhJ7pJqJ5WD3THBuKTFMZdcm0NUyX1eaRiuVsvd6ZM/2nhXjQe5y6z3//e3kE/GWXAbvuGr8OwLfr1ISdCDxdR29vun098UTznul3vzveBun/d9/dx+u2qr6psS4k0xak1P2mlWkO6ypPk4qzNV2dQ66GAEyh8Zxzv3LOvdc59x4A1wC4xTn3Zufcmwe4fkMHvCFpDdqycY+IqaZMf/KT5fdXXx333S5Y4Gebz3tevOHXVaZ5RzhunDxA8MgM1hMQLcoIKdMPPJBW3l71KtsSJ5FpbTCsY/PQorA8/nhJtq0Tg1QnzQlKHTIdu+aPfQw44gg9P94OUpMv+j09EwuZ3m47/xUr10LcQuKR2sUO+OeWGhxCMt3VJU/U+kOmtY2o9D6l3hHuKZw0yU/EU8+E90WSRYcT7Y4Ob1eQrpd+16RnmufXFJmm69GUacojpc4NJJmOxdqldPx6tcNnLJu1OAmNpdtvPy/KUFSoVP0A+2E7QKmypyY41lNMLaHx+GQp1gap3lttZVuVIaRWhPjkFABe+Uo53QtfWH6fItPcYtqEZ5qjaWXaWq5z+vhF5wYMIzI9BsCzAF4O4D8APAdgKoDXAzhswGo21GDdgEibv7RZKS1LF0VameYvbG9vPN4zDdCzZ8cbIAXt59Dib2oDXR1leunSUiXTOkHeQceOVR43zm/8AXQfG6mlTz8NPPWUnKYoykFs5Mh4flQ/rcwjj/Shj4B6ZLpJZTqlGnV0AHvtpdcvtHmk2v6b3wxssYVOpnkkBYtnWiP7FqLV1+ffjy23TLd7fp8pxrBUNifT1g2I2ua5Oso0LdmPGxffnMnVfSC9oZhIx+OPyxsV6bnT5McasUW7lrqh8dr1TFMZ1E6mTImvMNHEmcq1vMOpfoE/D02Z5um0SDsWZZpHmdLaFlkLtYkzkenUZmhOymPPhNpvb68tFKDF5sHJdKxt0e/e8Q6fzhoeNPWMuTL9la8Ae+4pp9tvPz2ix3e/C7zpTWVdm7B5cGg2QC6iWPKzlrv11nq6CRM2KjI9QktQFMXRWppNAuGO2pTP2OKJI/KsKdM8r29/uzwdSCqXZrqxTr8/ynQdMp3qBLu6vI/3la+0dYIjR/ojYIF4uV1d5clqo0f7zih2OMv3vlfukE+RLef815w5/rABsg+EZVs2f3FYyXQTnmmOlM3D+uw4mU4NxHyXeIokd3W1qpax9veWt7QuY1s2SKYmdEXhlVygVI+4Ukjg9xko36eQ/HBfsPXQFoq4EFu9IhJqJdNUtmWisfvufhALwZVp6h+kZ0JlkB/fsnpD+aauhZOPJpRpfl+kZxJ6pqdNKye9IehdT+UXYuxYH4ZUQqg4x2C9Xh6v3eqZBuLjCIHaYOoobPrUJrrhZE7qj8iqRO2/HZtHX5/3e7/4xf7nlBrf1+fHhaOO8qu7WvhSQqqOvD23G+7xj39srWsqP06M69g8Uso0b19Wm4f2jhx3nH/ntPpRqMeNhExbonls45y7xjn3nHNugXPuauec0CMPc4SeacsLkgK9cLNnpzeyEekAgG22SRMj7k2TGnRdz7Rl41moTKfUSAB49lm7zcM5Hz1CypNiZtN9nDSpDI/Gce+9/vMVr/D3cuut08+Ornf6dF2tsmxoJFhVrREj4st9FjIdDn5anGneWaaIEZ9UWeKXap5z3mZSnTSFImtKmeYDe4zIS2RauofcyqBdB5+oWVT7OmTaqgxuv71cR06mKYqEtLLW0+P7Kn7NlgmO5pm2kOkHH7STaUpn9UxPnBjvfwfS5kH3R4K1TfPJsNUz/c9/putP+Vk2G2uWOKsyTauPX/hCKShokV1iyvmzz/qQn3TPNJsHPQ9tQzlH7Jncdx9w4YX+e1qhtogPMWWav4eakPeGN5Sbeeso0ykyzQ82aiqaR1eXTQwaM2ajUqYtNo/LAFwBYAsAWwK4EsDlA1mpIQneQFINxkqmKc0116SXfvfbr1wmSm020pYjaeNHWLemlWmKWyzlBfiwbVabBxB/mRYtao2ZPWOGfKACDWoWMshJY4qEUv3qvOjWSAA771zutA5hIdOXB6+mdgKiRZkOPdOpDYiWDYO83CY2rNQh09wzHGvToR0qlie3eWjXQTYPShtr/xabB/dM02fq2Vl9j7TaAsj58feS8rOQac1WoJHp++7zthPtGfMQe4BOpsnLmmozAxHNw0KmeV+depeonVr8pfSeSKJDCKvN49BD6yvT0r1ZtsyfskuhN7X3PbVP5pln/Cfv+1MqNt3nsWNbw8alEGszFB6RoE1I6pBpTZkOVwYt1xEbH4hnWA424uVbSLzlaHmgjAo1jMi0K4rikqIoetZ/XQrAeIbnMEJo87Ao0ylSPWuW/5wwIb35oKfHh7IB4uorpUstR5LiFW5A0q6ljjLd2+uXZaSJAb1gW27pDwvhGyula9HUbr4ZD/DLRpKS3Nnp05EdxPrstE1JTdo8Jkzwh6EAflCMlWsh0/Pmtf68IW0e110H3HVXun5AdSOl1YvXLpnmgw3QvjLNybTW6XMynZrQ1bF5WMgWJwux66VJ6NixpQdXIjwhma6jTLdDpkkt1DbkhdeW2oC4/fbAMceU+VnI9PjxtljnMcJYFP6+WJVpCzGiutUh05/4hH4Nms2jr89PRrSIC6GAEzvwZNWq1pNWY8/kwAN9H9fZGR8P6f9oTNVsHrz9WU6qBeITWLpf551X5pki09QnWMj0vvvqG8D5hN26p0Z6HvR+cdGjqWgen/qULd0wJNM3Ouc+45yb45x7gXPuJADXOeemOuemDnQFhwyoAR91lF2ZTm1C3GUX4MQT/ffWJXFNmU7ZPKTNh0D7GxD5RiMK/Sa9nD09vv6nnALceqtcHoFbVmIvU+j/jqlBPT2tu+atFp0UmbbaPN70JuBnPyuvI5Z2zhzgfe/z36eU5KY3IFotOtYl+0svBe6/33+f6ixXrCi97dZOP/WO8HaamuBINg+pLTz1lI+KQ0jZpqyewlA1irXBpm0eFlL24Q/7z1/8AthxRz/Rt5Lp1DPRyDQRj5/+1H/GlFBuKQDilimqixbNIyR41onk9Onx48Q5Ys9jzz19TPS6nunUeHP11f7TSqZHjPDXETt4iV9DSpm27o+weqbDPQmxZ/LnP5dlTpni39XwmdC94sp0yuYR2lDaicvPw4PSp+UexvLj927vvXVl2mKz49CsS/0h01o6Islaujonxg4BWMj0kQA+COBGAH8E8GEAxwC4DYDCioYR+vp8+JyJE+3WiJQyzf3L1iXx1JHKoTIdvpjS5kMgfi1XXuljftaxeXR2ertFbKAbPVrvxAEbabSSaa6up64D8F5CUjo0Mm2xeaxd23qEdUrlsSirTYfG4/ewTpzpdneTczLdlDJtsTxINg+p7Cef9BMcQoy88agk2vPgZWvKtEamafWBh+9rR5km0OEau+wSnxD3V5mWyiWiRXaLmBJK/6sRjzrKNCcpVmV6+nQ51n6I2PMgCwAnoTFYyTTgJ0Bjx9o905RvKk9Sph9+2NtsQoR2lXY901YyTejsLP39f/1r69/oukJlOjZRs7YFDiuZ1tR9rU3Tvdt55zK/Jm0emmd6IGwewKZp8yiKYuvE1zYbopJDAqHCE2vQ3/522eHSMqIE60Bs3ayl7TqXNh+mroWWAjV16dFHS8sKkF6CTS1rcvSHTMc6hTC6SorIHMJOs2/C5rFune3gCmsYLMt9oU78i1/0n03YPELPtFVJblqZltL9/vfAVVc1a/PgGwuB+D3kqzJ1bB6aZ1qzefzqV2W9qOwmPNNa/2Yl07ff7vdOaNYg60Q3VKbbJdN1lGn+jlhOWgXi94XaVGjziE0grGT6uONsKl6diCgUiQKQQ4laNxtblemwbVkitjgHvOY1VZFIUqYtNg/Ab3j+9Kfj5fL6Sfea2irVyWrz0Nr0kUfWy6+OzcOiTFtJchPjA2G4KNPOuQNS/+icm+Sc26X5Kg1R8A44RYwobBRQ+qY0e0SqAfLOXNs8l9ooU1eZJhKoKdPPPusjkhBiKh4ntSeemFZlQtIYC/PHJwexga6OMs29ck3YPLiSbLWXtEumaWA++ODyOtq1eTz4YDngaKc+ElL58UlGu530ZZeVfwea2YDIvdBAfNXDev8Am2f6tNN8lJqUMs3/zzIZr0PKqG3FlqatZJo2TGsTcWmiayXT7XqmrWrkfffVjzMduy+8H+ef2sa42HMLN1ym2kFXlz9gykqmgdbwkVLZg61MA3JY2VCZHjXKbvMAgIsvjper1Y+eCY9Tb9mAmNrkzDEQNo8mo3lYI95sYsr0Ec65m51zpzjnDnXO7eOcO9A5d4xz7hIA1wIYm/j/4QXe8DWfMYFO3ZMag1WZPv301sHEEsaujs1DW7bXyDQnRkB8oDvvPG8bAbwC/PKXx8u02Bkkm4dFma5jU9CWsEeM8KsQsVBT4eEflk61Kc8095dayPTo0fGwUFdd5b8AfyDL/Pnxcnn5Vh9v6josAzblAzSnTPM2HdscZH2Hw6XfWBu85BL/mSLT/NosZYf9lmWAjS1N77OPX/YnaM9EI9MhkdEmEHWV6Vjbr6NMf/rTZaxfqwUgNskOyfQpp8j1vvlm4D3vKdtD7LlRGXTPUs+D9xvWa9HIvuXdrKNMczKtkTJOpsN+K1SmUys9oTJtRez+/eIX/tOiTFs809Tv8IlTuz52Ds3mwVeXLH2HdiowwVK/4aJMF0XxcQCHAngawFsBnA7gRADbAfhOURQHFkVxywap5VCAdbk0/H2KDFpVLRrANGU6ZfOIbUCM5UkvsTYgcl9wrGygPKmQ8tTsERppDK8npUJZlOmwjJTXjWwelG/q9EqrzcNCBu+6q9WDbSXTsc6ST0h22SUekg8o1eixY9tb6gbsBG/y5JLIxNpVGCaubpzpWJu2kGnrOyz5KKVrpr9T1B0rmS6K+DOuo0zzekhlh4Ok1gY1z3SodFuV6ZSHnSPWJ3z4w62boDViSeXX8dNK94XfD8AfKjJmTPXe7L9/68+x50ZlWMg0z4vquKHItKZMd3UB731vPZsH5SmFlZWU6Q1Fpn/5y7JMoH1lmg6esZBpq/WGQ5u0cAHA4pmeNs22r8BSv41MmU6aWIuiWALgu+u/Nm2EIXRSpJYjplLU2bxEoPL5cg5h9eqSANSxecQIBXVQmjK9dm15qhyg77QH0te7ZIkv22LzsEbzsHimw42dsev94AeBG2/0Kh0/ylcCV+1TirilU33qKR8po64ybbV5jBuXHryoLCshS3WWXBmMXceaNf55zpjhf44dqECDDM+v3Q2I/GRDIK1MW8k0LzfWFsKJgTSZ49dGdb/tNh8N5sEHq+mtGxD5SZ+piSSHNiBy8hjrE5pUpq1k+rbbWn/WiBs/Mr4dmwfVhd+z1ISEn+BnUaYtah8fI9qxefT2thI3awQd6ZnQWMP7YItnGpDvTUimSZmObYJNWQ5jsFqmUuT3ssv8YWJUR+l6wxN9OzrS/UzTGxDr5PfGN/r6WsJHDkPPtLojzDk3GsARAObw9EVRfGngqjUEEQ5KKf8rRxPKNLdEUKcQErhly/wSCxC3eUgbEGOdDBFTizKt2Tzmz2+9vtT13nNPa7mpOJihMi29xHxTYeo6rGT6ggvK+nV0eBUp1hlx1T7VqfKJVaxTpWuzeqbr2jxi5dKAyQlNE9E3NMvUZz7j7x+ls5Lp1KbQ/m5AjMWe5c8tRWRCMp0a2IHWtOH/8mfE7weFpZTy1AbEnXZq3euhHapEsNo8rH5V52RVSyLT0rtuJdMhNP9rHQIKxO8LRQri9yL1Pp10UjrN97/fmp+2KZl/364ybY1GZVGm6dp4jHyrWJAi0/T8Ro6Mt8H+KtNaP0j9gvYu0TPQ9gHUVaab2oBYh0y/7nV+/G7nHQnL3ojItKUVXQ3gjQB6AKxiX5sWQvUwttQdNriUZ9pCpkePBt75zvLnWKewdKmP4wzEo3nUUaZ5WCHA7pmWiDyF3CKkFK0RI/ypj9QpxEiURKYt9oPY9T73XOvPWifIyX6sM1q1qvWwGC0cGuUrtQUiD3xp1aIKWqN5aJ3WW97iP1Od6n77Ad/6lp4fn5jG7jPZSijdhAkygbJGeqC0fOCU2vTChfnYnywAACAASURBVMC117a26dGj46sj4f2TFF2JxGsWjlj9eJqZM/3nZz8LzJ1bze+JJ7wKqynToa+1jjLdjmc6tHlcdRVw7LFyOqCVCErvHB09zzeBtUOmqd+x+owvvbRML1mmtt/ef1rJtBbjlywF/B3o7Y0/u1uYK7NdZVraD6JtpATkZ0L14GQ6RRrp70CaTBMomoelflZoe280m8d115X5APX2AcTGuYHYgGgdbwjtTjg5hpsyDWBWURSvG/CaDHXwAWf27DI8VYjXvha4/vryZ8sGOm2zG9+YkbIp0JJQHTI9YkTai5oi0319wHe/60+lIsQGurDM1PXyzk3arQ3YNyCGiHVuYfgnjVDwHf6x8FvLl3vfL5DufPm1xAbO8KQvrZMhMpgi+2Gc6VR+dGJlavCfONEfFUvpLMp07D6HEQ/GjbMr01abh3QtdCgSJ9Oxawkj7Ywf799DbnuSyo29wzEyzd8HSvOpT/lDHIB4W/jP//SftGKVItMWu0WIWLn0/3XJdAzhfYk94wMOKPMF4mT6Yx9rJW6x/N76Vv9p8UyPGQO8+c3lz6tX+y+aTAM+VvD991dtHv0l0/R3ql9Hh9xmeB0JqRUris5kJdN0/Hc4KQOqv5PsePS8eD+g9b8pL690r1KrQWGdt9kmXm4qv6VLy+/5REO6jm9/239y9dyiTE+dWh6MFSIMv2m1eViV6aZC3lnz6+iwlzsEYFGmb3bO7TrgNRnqeOSRsmOcNq31xeEYP741TmXKM62pgkVRHehipIwvu0mdfmwDokZCUxEIqAw+IFrCR2lEi+eXUqYtofFCxDrV5cuBww5rHZjaUaaXL/d155ORWOfG24K22Yj7alP3me6N1eah5Wc5CYtPhKzKdOw+806c8rMo8ZMm+XKl8H2hQizVke4Bf+di18JtHkB8843VMx2W0dNTPd2NLwvz/GL1A0pyZCXTVptHrFyuZtHPlqgpMdB18A2aKRWP/hYj0yNGVAUAKT86ZMVCpvmqB1nGwrRUv4Ei00D6vbOEnps8GbjzTv899TVS2ZxMU7lSOosy3dPjrVR0v4F6bdBCpq02j3POAV7/+nh5NMGSyt1hh/L7lDJdFOVYRffYstcISEfLCK2o1lB21vFfuq/hRKGOMq2R/Y1MmbaQ6QMA3Oace9A5d5dz7m7n3F0DXbEhhZUrvZrxpjf5n1OEMRyYYopfqEbGBsMRI2yqFifLdZTpdhRduge87gOhTEtkOpwctKtMr1kDbL55a8QFC5mOdUZLl5aqNJDedBbGHE9twuJLuqn6EUlpyuZhCZHEJ0LaITBcebaQ6Vg6ySO+5ZY+/jnH/PnAq1/tD3khTJlSJd20ChISFOma+XOj/KRJttUzLd2v3/5WTsM93bFnxw+toM8Y4emPzUNLp/niQ4vY5z7Xeow7wapME6j/iU0kw0lQLD+q86tepZfL7yHtcRloMk2n4tEmXSD9HluiZfD+V6ovQSLTUrmh8huzeWy5pf8iWNtgHWVaaoMLF7a2EY2E0t4CqVze56TI9Flnlf0QV6ZTZJruTczuRmnr2jLa3YC43XatP6dC/PF7YfVMUzuwTKwGGRabx8EDXouhjhNO8DaA17zG/5wijCGZTqlaGoEKLR6ptJws1zkBsY6iGyPTr2MuoNREg8LjpV6kO+5o7URTkxG+hBq7jkMOAT7ykfLnlEecExSNTGsHOSxZUi6vp/KjDlBTsOl3FDYrli48NMAazUOzeVjI9EAo0xohCz3TgGwJkUjuzJmlz5ZA/2dR+8KDJmIDU38909tuC7zgBXIaTkJjA2f4PjStTKd8qJZ0oTL9utcBf/pTNd273tX6szZh15TpUFiI5Ufv0oUXluksZLqjw8djD/Oke9Afz/SDD1ZtMXPmeGvJe99b/q5dZZq3BapnLDKJhUyHE6bRo6vKqjTONaVMU9znWH9JYzqhjk2hv9E8+PHsGplesAA4+WTgAx/Qy+2vMp16l6g/jJXL484D8eu4805g111tEWAIzpXqtGTHGWJQa1cUxTwAkwG8fv3X5PW/23RAy3ZEtuoo09LyeV+fP+iDZnWxwYaUaY5YpxD6X6VoHk0r0z09wPTp/ouQGuho+WzzzYGnn5av+aSTfOg5gjU0XioyA+/MU8o0J9PWDYixTuuEE1oPc7E8N0pHG5k4vvlNT/5oApFSugGbzSP07Tdp80ipfQ89VHaMsfvcX2UakH32Ukc8fnw15B0NHi95Sfk7q80jdUhIf5TpWbOq6SgNV/E0ZZpQxzNtUQVjz85KpkNCZvXJWpXpFJkODwiR8nvZy1p/jvVtN95YVfelOvZXmabrfuaZan5bbqlbl/jfUvWjPCkdiQHtKNNh/xuzeUjjnNQWpk1r/Vkj03wPh3UfgEXRbXcDIkEj04895vsii+JsUabDe6qR2sMP18sN85Ou46UvbR0PrWQ6lecQg0qmnXMnAPgRgJnrvy51zn1soCs2pECdGo83mlL7NJvH44/7Rk9kOnVAQzhjj72coW0EaG38MTLdrjId1i9F3qheEyf6F4Q2e6Vg2cBJeVvUL+k6nnjCbwgJlenUwE6df6yT2Wyzcnk4Vb999mkldOFGQ8INN7SqqCm1j/4O1Ld5xK5ZU6adA/7xj9YwYtJzu+GG1vpZNyDWIdOSMh3GZY/luXq1H0A0T3J3tw8DZTm1zeqZlqIQSO/c7Nnl5kJAfkeKwvczYX4WX2sdZdpqB2lnohsiRjzIXkEEqo4yLeW3114+RKOW7oQT/Cd/xikybfU4Ux2pLYdtWCKhqfw0sn/ppf7e8Ag6xxzTLJmW+strry1DohJibXDcOE8w+TWF6Xj+u+wST0dt9xvf0K8jRGoPDJAm0/w5pvz43d2+v+TPOKU4h8p07F0H/HkJqXQEihJkVbq1FU6CdQMiYCfygwyLbv4+APsWRXFKURSnANgPwAcGtlpDDDRgch+q1Kneey9w8cW6zWP58qoFQBqU6to8UicR1t2AOGGCrqzGyHRsFsk7hVi4sRAWz3msfoBs3wjTXXih391fZ2DXvMYjRwIf+pCe3733tv5sXcqK5TdmjPcGE1LPI4xGkRogLDYPQD9sh/x+muLMN76k0oUHnQByXOhU1AmOVavKw3gIUmd+/vl+uTq0eVjItDYQp+rX3e2tHzw/qQ2ef341v5Qy3V/PtHUp3jLR1Ui8tgFxp52Ar3zFT+qA9sl0qNjHypXKkAQXujarMk17LiiGeFh2uL8ESJNB3g9K10wrguGG9/7aPGijnZbuc5+r5p8aE0Ny2d9oHvR8+H2xkkatH0zFmebXlVKmKbxi+DwsynTsOnp6/POg/sEa9cOarukNiJR2I9iEaBm5HQB+1b3rf7fpwKpMP/20/9RsHjyMHdC8zYPqyMutq0z39LRuLrAq0ynVPlxm1DYq0v80qUz/+9/V0ELkS63jmaZr+cc/WkkzYc2aVk+3lUBJCqqE1EZUfhyxNZoHkO60rCGXeEQZKS/aDa8pzgR6T1IrMlQvwqhR1bKleyDdwxiZDvMjtdBi8zj88NZNQ9YBxzqBlepH+wRINQU2nGfamm7xYpuowOsFxO9fd7fPLxUilNJZNyCGq4xSOqn/lIi3pExbyLRzXm2X8qujTNM5BEDcCkjlpeo3b55XczlJlsgb2WmsNhSOWBsMBSYrmZaeB60I8jZXx+aRSsdFilSb1mweVCdL/fh7HEsXTkaaut5tty3z6+5uvWbpuqwbEK1phwAsZPoiAH93zp3qnDsVwN8AXDigtRpqIJWLd9JSA5GWnCVSUYdMW5XpJ55o9S6HA0lsA2JMmQ5fuhiZDjvzlBIaEp52yLTkt7QsJT/0kI/RyzFhQrV+Vs80hZEKER5JbfXsURvSlMFYfv/6l43gAXbfOQd1cLFroWumdLH8NMWZ3jktVrFEpqUJrNQmYzYPPgmi/MI2yL3hhNi95nsAgHjM7He+EzjooNYyLBPY1GBDB4VQfhabR4wAHHlkeeoepWuHTC9c2NpnpZbigVKhjU3ErZPD0DPd0eHfd4mUadYIQD5qvgnPNJ9oSPnVtXlo9ZPuqZTfVVf5T01xDjcfxtLtuWe13KaVaanNSM+tzgbEWNufObO1H0zZPCxk2rJSANhsHtL9s9pawufB7+ddd5XpwrE49PoD6ftM53QMN2W6KIqvAzgawGIASwAcXRTF/w50xYYUXvQi/6mdwCWRaakhWJc3YxszpJdk3rxqnMuQTFuV6aKoLiEOhDJtXQ4K79899/gvqzLNFedPf7o8ppdA/8etAZqiEF63Vq6VeFCZWtpYfj/5SXkyGpDeFBeSqCaW/PgAm3rG2gbEsK2mVmSoTrzcWPxojhhZDctOkWnrxIUjdhDRhAnAEUeUP/f2VvcVSBNYi++W6hy7h7w9Oyef4AfU26RLiD275ctbD7iR8rvkEv/58pfblOmQJEthtaS+MEZ+Lcq09CybsHlo6nldm0dYP8uEU6ofjxTEyw3TSXHEpfo973mtfRZgHxPbUaZp3AuV+HY9088+q4sAhKaVaU3Ntdw/CdLz+NnPyu9DCxEvO4yVT+VKe3Se97xyk+lwUaadc5PWf04F8BiASwFcAmDe+t9tOpg82ceZJmgHk4SNX1ueixG3Osp0qKiFL2cdz3S4SYy+t25AHGhletddvZ/b4pletar1RZ82Lb5hhS/FS9cbbhxKIVSmY/V74QuBH/6wWoZFIY6l4Z1X7D6vXu3vi2VjXIhUB8yvObUZhSvTUtvfaSfg6KPLnyldTB3R3jmrMi0RFGmApTS8bWkHIBCk2OmrV1fJ2/XXA+94R7V+dZRpbeDs6vL/y/uOP/6xdVMWIYxYEXt2oVUp1q7Ca5Hyo5MKyR4EpGMk8+vlYbU4NgSZlvpBekZWMh3WL3yP69o8wvysynTMa6wp01YyvWiRP9mPo2llurvbCw0cMZtHE55pgpVMS32HJM61q0yHk/E61xE+D24b4gjbVmy/SsxPzoUWYKMh0ylGcBmAwwDcBoDfRbf+520GsF5DC1KnalWmLctzdWweMRIVkmlJmZYav6RMh0drx+oYxlIG7Mq05aRE+h+L6hbb1b1qVav6FZvcUB4E56rL8ytWlMfhamQ6VKYXLqzmB/gDF7g3XVKmraoq4Q1vKL+PPY8FC6rtoQllOty5rynTsbbf19d66A3FHA0389H32iEmVjIdIyjh9VL9LfGeQ0hkevx4b/2iI8JjqGvz0Py5S5b4+8zvKe39kPLSJtiAv4b/+i89naUfpGs97rjyd7G+I3Vv+O+tZDpcuaHnG7ZBifSllN/+kOkYObdYkgDg0EOr+YX9ghRdKRbJBqi2fYlMh9ZCKb+VK1ttj0DzyvQVV/hTjDliNo8mN+RZbR5jx9rJdFju6tXeIhZuQJTqd++9uifeeh3h3hJC2O+nJvoht+JkWttMOcQQZQRFURy2/nPrDVedIQrrrm5qbHzAkRprqH5R4w476ZgnLqYopPybKc90SKbXrKluqpNepgULvD+MY9QoWamhuhNSpJuHSaqzhB3Wb+lST6RD32OYX28vsMcercfA33ef96FzrFnj87OQ6VCZ3msv/7lyZenRBqpL7JIyLV2/c9WlUcATo5NPLn+OKdMUPozDuknSuiSZUqapnRNBDtt+6Fel+oWEbsIE4PLLW4m31eZhVaZTNg/LSYQhYqd6rlhRLTtEXTLNfy/1RcuWtd47IP7+Wsl0b2+5ISmW7uyzga99DfjoR8vfSQRqq61aJ8OA3Hd0d3triuXexOxp0iQ7nGBT/yut8lnqCNg3IGr1s66iPP/5wLe+pecXRhaK1Y/+ryllOhxfgeaV6dh+mhAbWpmmv40ZUyX3MduotCH05z9vTRu7Dh6uNZafhFhfKSFsW7H8qY78XYop05Y6DjJUz7Rz7veW3w1rWJVpa2cpqV+ArdOXbBmrV1dniSHhT3mmw/wk4i29TPPm+Y6aI0WS+cAkkTzKf6edyt+l1E3N5hFu9Izl19vrNzdxlSemimiDKCFUpl/4Qn9iWXjiXviMJWU6NTiEA064QkEdUbv2DQ7rQT+pZ0f14Ypz+HdpgA2vY82a6kEOKZvHwexAV6nNWDd1UVu2xNoNMW5cnLBq7Stm/eovmZbekRhCcpki06HiHJb7P//jPxctak0XtoOPfKT6PCQi+P3v+83FFjJNK0xanl//OnDTTXo6CSllWosz3dFhO1nOavOQSHeY35Il1ZMJKT/JC015pMqNbUCUxsOwftLEyipWxTbehZBsHrF3adw44NFHy5+te2C0fQVcmQ7JvXQdnZ2+bfA68/qmlOlbbpHz43G7Y4iR6RkzqqdIhmJGSpmWwilupDaPlGd6zHpv9HTn3BTn3NT1X3MAbBn7v2GJmHcu7PiJYPBGbO3cgGq8TckfKb10UgSCkNRqZDoMZSPZS8KX6Ykn/AESHJJqP21a9VS/6dNlYjlqlB5Dl5dFkJRpKzGKdeYhuN9Mi7YRKtOAHIc4vNeSMi11qhLp7unxacPNZNLESkLYAacidlgO+kkRDy2mt6RMd3fL4a34pIXKlSamb34zcN115e+kNiO1hdg7THVPpZMQU6aB6rWEqKtMh31RuBloxYrWlZIUwglOnaX4mH1Ds3msXOlD6IX/G7Nqafdm2TJg/nxgxx31PIGqNSBMl5roWzzT0gSis9Mr8uHvrBM/y0bA8DrOPVe+Dolc0kRQa/tWZTpc8aC8w/siXW87ynQdm0dRtK7CSu3l5S9vPUwJ0Ek3jTOSMk33KfR0A62rt3TcPdDqmQ7v87vfXS2f0t98c7yOVE9pfN177zL6Bq9jHWWaQxpXN3YyDeCD8H7pHdZ/0tfVAP7fwFdtCCEcYDs75VBKRFJ452/tBAHgD39o/VnauS8RGYlMWw9t6eioprWSaUl5kJTpESOAV76y9XezZwNPPtn6u0cfrf5vaiDWQuP95jetyhf9r7UzD8HvC730oTJPsAxgYZ5UF/7Jv//Xv8rf0bXya6bY1uFEIHy+pLBcc01rurCtpnzR0kDE7SVA2ubBV1JiKpQ04fzyl1t/lsh0TJkeObJ6eIplAiYNTNOmVT3n1sFhIMh07Fnx+my/vY+zzhHajlKw2jzqeKHDiV+YbvvtgY9/vPq/4fPlZwBwhM/k8cd9XHlNqY0h7N8uu8yWDpA90+G9KYr46oNmFwTkNhgTW/j1ktXn9NP1ciUyLb0j7dg8YuStv2T6+OOrv6tj8+jra+07JGFkyy2Bww5r/Z00KSDb0sEHl/Hgx46Nk+mwHkDrfeWbhbnNI7wPM2ZU86P0Wtu3Tm4A2wZEKpv/rbfXj9fh+LWxk+miKL6x3i/9yaIotimKYuv1X7sVRXFeE4U7517nnHvQOfeQc+4z+n8MEqSXPbUber/9yt/FlrWkRsijSQBypyq9dDEybbF5ANVNiFLaOtE8pF3nITmVruO9763WTSLJc+aUZREk0v2xj1U31cRsHpL3MAR1HscfXyryv/mND+cTpuvrs/s3+XVQBIuQ1E6d2rpRUSLTUjsAqs9kzRpf/3BTUngPYx2YNKEbP74avzu81zE1v6cHuOOO1t9JExyguiRZR5nWJoi9vX5p36L29fUBhxxSTScRhRApm0fTyvQ++5Tfb7ZZ9RnUsXlYonlccQXwwAN6WE26x1o0j512Ag44oPV3Uh9D7V67N0uWVCNH0P/1x75B0UYs+dHP4TWHbZBi9YbXYRlHwuvt6/P3SpvY00bykAxK5dJEMFSmLYp4O55pSVyKkemQkL31rdV9ItKENmbzCN87KfpGTJSJbdzbe+/y+1R74feBJr6x9z1l86AJE98cTPddGje067CS6ZQyzf8Wijs8neXdHGSonumiKM51zu3inHubc+7d9NVuwc65TniF+2AAOwH4T+fcTun/GiRIL3vYoff0AOedBxx7LLDLLuXvpZczZvMIG114MAkgExnp1DbJ5iFtQKQ8ecdgVaatofEklVHyaks+XIkk0wtsCY0XIrYBMbbxS7K/8NO/xo2rTjxoEAk7dIsyPXWqX04MB9iwfpIdxEqme3u9zUYKYSZtfAzbjWQ1im3qCgd2oPTLcvzgB60/SxMwCZKdJqVMczjXmm75cv9pUfusdhBpEEiR3ybJ9JlnAi99afmzNMA2rUxfe21ZJ54u9m72Z6VAeo+ojUoklN+b2PVayXTYvy1e7Pv8cGNXmN+CBT5K0m9/C/z4x+Xvw2uWni9Qz+bBr5ciamh9UazdSeMXiSAWm0fYd2woZdqy54dW6LTQeL29Pk24Ov2rX1XTWci0ZPeJPd8Q06b50LC8P+cHM9G1SNdBY8MXv9haLiA/f26FaodMWz3T0gmcsbKHICwbEL8I4Nz1X68AcCaANyT/yYZ9ADxUFMUjRVF0AbgcwBsbyLd5WJTp++4Dbr+9Sqzq2DzCdBJRmDixHPQJFptHHWW6HTItLW9KM3aJTMciLoT3hcq0HNoSwtqZx0LUWVTLmA9VKjuM5gFUr1mqX0yZljrF8JnEJnNhuVRXvtICyOEUJX//6tWtKwN9ff4efEZYhAo70NgEJ1SrYjYPizL9wx8Cn/1s6zVIaIdMW0+VIzRFpidN8iQvTNfOBsQbbqgebBS+cytWlGURpHeT3l3+eyuBioWxA6rtMrw3kvBA1yKtnHBlXyq7txfYeWdPkjnC/vf22/3n7ru3rmSF91B6j4D+2zyk90O6jtjEOUXyttgiXi7QvDIt3ZvYfovQfieNI6EFkOoXppP28vz+99WDjaybpqXN47E9P0B1JSVsWwceWP0f6blRO+BjE9VBEi64KGh9N4GqBcbqmY6JJ7F3c4jBIP3gLQBeCeCZoiiOBrAbgIjEWQtbAeCxx55c/7uhB4syHVN969g8eLquLuCoo6od4eab+xOWONq1eViUaelll0JEScq0NGOPRREJkfJM90eZtto8KK9wV7KFyCxbJsf0tiqm4TVLnXQ7No9Y+5OU6Y6O1k17QHUg7uuTJ0yPPtq60zu1AhD+b4z0hGjH5hFuxiPFLXxGkjrXrjKd8qOnYCXT0vOQrqOOMg20qmASUaCfNc802Qr4IGn1ZUo2D7rPoXWsDpkOn0lHB/D/gu1BEpmW2nSYjp6rRrbuvrtq96P/C5/dxRdXrQrh9cb6BIlMH354dWNmbPz6+c9Lu51ULuAnVpbTRKW2umZN9f185hnZjifV7wMfaI2XniKrYf0k+2Z4HdIqaszmQUdth+WGbV+atBx+uL7Jn7f5FJmma+DvE0VC4nWRRKk6nulw9bynB/iP/2iNhkL14M9A2vRPZQ8HZRrAmqIo+gD0rD8VcQGaObBFunOV6Ydz7ljn3K3OuVufe+65BortByzKNDWE8wI7eR2bB28wsYMTpk2rzqgt0TxiGxCBoaNMv/Sl1c5c6mToXocbYCwvnNXmQXnxtDHPnpVM1/Hyhsp0eP/qkulw4JTan0SmZ8yQLURhRINwcx+vE6+zlUxfcYWN5IUhCAH7pCUE+dXDZ9RfZbqvr9z0c+KJ6fwImjJ96qnAX/9qq59EpsN36bnnqqEFJXR1+f/n76ekVtE94W1GeocpH/7/1qVk2m8hhQejeO6E8N7Mn1+NjS+VTfUNRZI6ZDrsO4Dq+xmW+9//Xc0LiIetfOaZ1p/bUaalPkvq36TJvdQGjzsOuOgiPZ10D2+4wRNijrlzq+NiKvRsagUAkD3JUv0WLChXXAixzYESmV65snWzvfS/dVaww8kk72PJFy5dx4wZckSPnXYq7wG3s6Q2yqbqF5Lp3l4vAvLJF1BtWzEyrYUXHCKwkOlbnXOTAXwXPprH7QD+0UDZTwLgazGzAMwPExVFcUFRFHsVRbHXDGk36oaA1TMtIfWyS+UQaFYexv6UGvWNN1YVrTo2j4H2TEvXK5Hpm26qKkEpRYEPTNbZq0S0fv3raiddR5kOn29dZVqyBlk90xYVqo4yzct99NGqOgTIA7FGVAFfh9jGu3AQmj+/uikRqB5qJG30tE5aQlBM4fAZxdQ5jVAsXVp+f/bZ8XQcGpkGqlF/YmqfVL/wOm68sVVtjmHFCm8dCT3OoVpF+fP2L73rVN+ddy5/V8cnGwoAPT2eKIRjRHhv5s2TDywK2/6yZdUDnwC57Vt8o6tW+ZNJtY3dsT46Rqa1yAcxMm2J4BQrV5qoxdp0aFGwkmkrYvWz2C3o+fBDgaTx68MfrpYbeuQBmUzT85HscxwxMi09E2lD+Ve/Cpx1VtkWpfz6+uR3PXaaZ2jB6C+Zjok3YX9E927mzDLKCf1+I7B5CHeiFUVR0FWd75z7DYBJRVHclfofI24BsJ1zbmsATwE4CsDbG8i3eViUafr+d79rTRfb5ayRafKaSmb8sGF95zvVU8LCTkEibQRrNA+L2icp09JLFw6w99zjydtLXlItV+pk/vnPVq8nKQAapM78T3+q+oIlMv3Od3qSp+VnVaaLQr43Fs+0tAHxjW+UbQXSxM+iTO+/fzWNlJ+k2BM237z8/owz5DSA7JcLPb8hiChIhKI/yrTkZaT8+qNMSxORWH4EC5m25Ge1ecyfX1VzJbzoRdX/lQbYrbYCPvGJ1t/FNqxefLF/p3h+0lKy1FbHjfMEle5XbGAP702MoITXsmRJaUXhsCrTYRtM2Ut4udOnV9NQfvzdpPvUXzJtnRRYJ5J33QVcdRXwtreVv9t9d+CCC9L1i+VnhUQaH3yw6nWXxpHubt8n8djQ0vglhdD76EersbljGxCB6umuQNUzLdUvNlELyfReewEHHZTOL7WpW9ojxPe2xCa60nOTlGnLu0n3aOTIVlFtY1emnXM7rP/cg74ATAUwYv33baEoih4AHwVwPYD7AVxRFIVwnukQgNQIJbK6xx7VeMrhALZypX+B995bLodA/xN2lrGGxQclQI7mESMTA6lME2HUonnsumv5ew6rst/T43fLh8txISTV+JTwTQAAIABJREFUcrfdqsftUvigcIk4hERQ/vzn+MYzaQDTompIg81rX1v+jRCLRtBfz3QMMZtHiDPOAN71rvLnxx+P58nfL/Jqz52brseSJe3ZaULssb5b+9CHWn8/YkRVWZVUc8mfKyEWfgtoJT6/+U3rJi/CN7+ZLhew2zzCKAUxLF5cfbekPqGrq6p+SXHJu7urEW9im7Wktjp+fOsqR4x4hPc6RtxCsjVvnnzv++uZXrnSRqb32gt43evk65DGh/B59tcznVKmLeT3wQflDX7S6aSWVRQrYtYlvuJB6SQy+KIXtb4n0uZW6f7V2UjJP6lcy3XEJjhhWukZ15m08BNo+T3iwlZdzzR/36WoLlIdqS/YSKN5pJTpEwEcC+Bs4W8FgIOE39dCURS/AvArNeFgQ3rZQ7KaGqy5QrVokd9pHMbzpHJ4foBNmZ4woRpuzLqMB/TfMy0NEOF9oUHd4pkGbC+SRM5p6VYLbyWplosXV5cj58zxKlv4sktL7GEneO65tvBbsWcSDuySyjhnjv/i6XbYofUodoJVma4TXtByHePG+YHNAt4pk4oneeho0gV4ci4dmiMNJF/6UnXCGWLPPYH3v7+qDs6fX33uF10EvOlN6XJjA4BUvxEjfLvhz2X27OqK0/bbV5eY6/haLSrjN78pH3JhCTcmhfOUlGlJIa4TMSAcsGNkOrzXKTLNy37ooer+DaAemebXbFWmu7uBbYQtSSGBor5TsiSF4o1UrlWZttooJEhkOkbOLWEwJUj1k8hlTAyybG7dbTffHjhim43DFV2JILZLpsNrkVYfYjYPjUzH7BR1JrqhoCa1A6Aemd6YbR5FURzrnOsA8IWiKP4aS7dJIOaZthCKr3/df37lK/4zFYpKUhm1uJVFIXfUdch0f5XphQurxEMibrHwORKZDmHtZEaP9oRYe+mkTnD1annACdNOnVolq1J+e+5Z9X4DvoPnBCC2WhCmiw1e4b3ZcUfg7YJTKnwmZ53lrS1afjFYPdPhOxIbMLfeupW4xCJMnHBCK1H7xz9KNZkjnDDRNWkTrdi+gnC1CfDvML3TvFwrmZYISmhrsUbQCcuNWQCsKuNHPtJ6sAMhXAWQyK90D2PKtNTHWNWvsK3GDmMJ77WVTEsbW4H+K9N1yLTUBsPrpfeZR8sBqm1h0SLZOiJNiC2TEcBGpru6/D0Mx7oNYfOQyGWdDfRhP/G1r1XLlVa/pP5cUnwlmwe1/aIo39tU2w/bqjUEodQHx5Rpjjqe6bD/XbjQnw4pXQev41/+UtYnrN9GoEwnp4Pro3ictYHqMnQR80xbySpHKhSVtIwnbWgIZ6VjxtjIfswzHZ7mZCXTkqIrRY6Q7ksdMm2dEVteOqkTjMVnlvyHkuJRFK3lLl8u+y3Hj2/1dcfazMSJrUvqVjKd8kfytioRacrP0mlJbcvi7Yvt1j7wwNZyY8QjJEZr15aneoXl8udG9zLW/gmx+zxtmhwxRFvCtirTlE6aOIdEQRqwJcIoDZr0fPkgbt2sBVRtDxL5ldqgdNCU1Gas6iFQvWZpYk/pLMp02PYlhR3ofzSP2IQ97LNiE2zJLrjZZtWJnuTbl1RB64Q4pnBqSjJNRiRPd3+Vbgl1yLTkSbZsoJdgVabp2YaxxEM4V62jVZmObdK13uemyXTY9qVxE6i2hTPPLOsTlr0RKNOWtZUbnHNHOBcbCTcBXHut7Jm2kOmLLmrdyGUl0yllmjes1DKe1TMdvnhWMi2pUNIBIe0o07ENiLFOxqJMhzGSYyoU7zCLIk5WJZInxQueMKFKpiWC1zSZtg4QdZRpS9sPB+wXvzheLm9bsXckJBQpoiVtDg7b7/XXe1WcEJukSW1QqmOMJGsKtlWBomvR4kynlnPD9zgVgSB8l2bNav157VrgF79o/d3y5VVrivU6Ykq3RGrDtrBsmTyx6q/NI/YOSzY2izIdezetynTYx9x+u/f7hgjvS0yZljzY7WxADBGbjEirKE17pmO2B4kMWjbQS6DnFk6ENDK9apUP+2m5FiuZlp5H0zaPOhYsaW+QND7ENmJvpJ5pC5k+EcCVANY555Y751Y455Zr/zSs8NxzwGOPtf4ubAgxQjF9emsnn7J5SLPXT36yNU3YqGPEo47NQ1pC1EI4xTpBSZlu1+bBy73hBu9htQyIEsJZM22OkJQW3il0dfmfY6SW57lunTwQW5XpkHTHOkFpw5slNF4MTds8wnSdncBJJ1XThWR11ar4CZKWwSYW4zdsG1OmtK6spKKchINmUeh2C/ofzVudGjQlZVorN+VBrbMhL4wYExIUHseXQCH0YnkRpDYjTYZj8fHDtmAlb9YNiOedJ5fbX5tHjJyH15xSpnn9fvCD1okgQVKmY2Q6JPEWRfzuu4G//c1m87A8D6pDf7U6SVDo6an2HzF/vxSW1Lnqexe2feeqbVC6h/R3+uQhWMO2Lk2s+kumKU24CtWOzcNqweL97513At/7nt1CBFTLGQ42DwAoimJiURQdRVGMKopi0vqfJ2n/N2xAD1Y7JjzWGVnJL1DN773vlUP8WJbErZ5u67VIipZz1U5woJXpa67xn5Yl0803B267rTWNdbd7mPapp1rDvKXyjO1eDo9ZjT0T6yEroYK9dKlsL7GS6XY2IMY6VZ4uRowkZVp6vuHAnlI8LMp0OEBYiRa9w1pYsr4+4IADqgqidB1NK9MpMs09m7GJGn/fY6tkL35xtb1JYoHVryptDrYq09aIAVZlesECr7KHCN/NWH5hubEJtrSZLKaI83KvvtoTFanc0EsuKfYWqwBQHRuuvrr8fQqpSZDlvlgR1u+pp/zGcYu6uXKlLGzxMYzqGjs3gF+LRZnmfw83T7ejTIfpnKvmd8EFrbHvedqB8kzTqYd1yLRU9jCxecA5N8U5t49z7kD6GuiKDRkQ4dPCl6UiM4S2jBiZ5qSuTn4Wm0eKTIcvyl//qvsZY4NIf5XpWIcaEgrKS7qH4b3p6/MdK8fIka3lxvxcVBa97E8+KStBlM5i87CqQZZOGvCDJO8cU7FxeVs47DDgRz+S69dkNA/p4CCJ8MTIqla/FIkP7x+gK0EpokWbg1L1syrE7SjTls1GqWVz3lZjE2IqWyPT4eQQqBdJIWwz48d7cYA/J6syffXVzZJpQL4vVmXaahsJ0z36qEzw6NRHDik/qe+IlWsZv8L7TG0gvOY//rH1ZEnrSkHM/iL1YxLC+/fkk1U7EqWzWLWA1jFswYJ42f0h01SHq65qPZgEqPZv55wjk0jJWx2b0IXXfMMN1XT9jeZhUabpf6xhFwFb/zEEoZJp59z7AdwEHw/6tPWfpw5stYYQKFZs2CgtSzxAVS2N2Tx+9CMf5J4QU93C/GJ+3zonIPKXmDpsbak2tbzZH2X6Va8qVY+wXMlLLg104b2RVPsttvAbJylGbWzzIdDaWWr3j3ceMd9jeC2xJV0rmd5ss1YyHVNaQhLf0yOrVZISuu++1XRWC5GkTMdURusGRAsJlSxYQHVlIWwvqQ06vP2feWbr8cCxcmMKsWRXsdhLenr8z5oybbV5pLyvEpmWLF3h6pKkNFo3Fo4YUQ0pl2ozdB3hKbFhnpZ7w+tIhEIioXRYDM/PouhayfTPflaqeRxSRBQLmbauBqWUaZ4ftYGwLUyf3rrR0WrziJHp++6Tj32X6sfv89NPy/HBpb4tRqb5GEbt+/Ofr6azWD1DEk3pt9uu2g7Da1m0CLj1Vv1aUntqpIgeIfhYSvmG/X5/PdP0P5ofP0WWh4vNA8AJAPYGMK8oilcA2B2AMXjsMACRrrARSpuh2lGm58yxba4K84sNNnx2TXWPDZz8JV60yHdGYdD7/irT3d1yupBMp0JC8XJj6nBYx74+uaMeMcKTUDphMmXz4DPsFJnmnSo9D4nsS8qqZSk0FceZD7CxCVj47FIEhddv55293y2ENUZtmC52D/urTNexeUyfXu4W5+VabB5hHWPkzaoQ11GmFywoyVXqxEee37/+JVsUgNZ7mFKwJTItWbqI4BMku4XVMw34587JaqzN8IH4iSf8Z0g2AbtHnDYYUxpAfkdmzSrLo+uwbA62kmlAPuynHWXa8s5Zo3kQAdSIYLvKdDg+xFbMpPss5UfqK3/fY30/H8P6+nzc749+VL8W6V6TKMDfpS23BHbZRb8WKiOEdSwO33WgejgZIbR5XHlltcz+eKZTyjS/f7HTdmNlD0FYyPTaoijWAoBzbnRRFA8AEA54H6agJSOJTPPf/f3vcsOyeqYl322sU6i761wL28cJ6+LFciilGTNaBxGrMh0L2B4uEcdU2rDTHz8+fsw0f+nWrPFlaETe6plO3UM+sMcGEcBuDbIOiFwhLgqb6kb5Wci0NTxYu8p0WL+YdUlaDbJuQJw9W1dMYyoj0Hpv5s6tbgym+lmV6ZDgxVRBwC+hA3HiQYSR2v5pp8nXQGXzTVExBdti83Cuukoh9UfWsGRAq/JL90hTTEnJliLWWInHtdcCRx3VWu5LX1pNN2VK60TFSlZjnm6JTH/hC9V07ZBpy2qQNQQhbSDWokdocbWp7BUr4vtL+ApFSO5i5cYECvIQW/Zc8DEstf+A3+uf/MRv9gzL3msvv8mZrrenRx4PAXkfkUUcifUf4crq6NFVkQyoeqZnzKj6uaV2+pe/yKIRFzMoX61+f/tb9e+psocgIiNHC550zk0G8AsAv3XOLQEgnKs8TMEDqHOEL/F3vuOXbkKEs6qYzcO6Mc6qMvJBTiPTvOOPkd/Zs4Fnnil/tu5inz9fDthuVabr2FX4RCPWmYd5Wsm0pkzTNccmN4BsZ7AcVbtqlT4pIJUg5n+12EuaJtPhKkXsHob3Ze1a+b5YN+5JyrR1UEqt3lDa2DMOn9uTT5YrIKl0KWWaf6bCq9G1dHbGB3+6DqvNg9pCzOYBlJPiMWN8+r6+6rVYN1IC1dWg2MSUkzxKf8QR8nVYVx8IPT2+7zjoIDm/MHpErK2G/bTUZnp7W61adPhUCMnmYYmNH7N51NmAKPlatQOBli6VN+3xKBgdHd5OIOUfToiljXNUbti3xfppWsmjdhdbVeD9m5VMH310+b8hZs9ufZdiE3ZpwmR9dpoyHXu+QNUzHRNk1qwpD5Xp6vIbYKW2yp8dld/OBsSNxOahkumiKCiu06nOuRsBbAbgNwNaq6EITZkG5KXV/irTq1fL0SMkm4fUSXMik+pgwmv51a88AdbKTW28AcqXbsUKuVMNyXSM4IUdTOrwGV7HFJnmZVs3IKYmJPwESY1M8zbz3HNeBUiVC8SPwebqfqqzDAf2dtU06ZRLTeEB0sp0WG5s97xlaTociGPlhu9mbFAK6xgj++Fze9/75LzqRPOgsoF4pAeeZ2dnmizyNpgiluFkHJAnatw3HbM4WTcg8uug/Cz7FHp7fdSUdidMhDrv0rJl8dUCi83joov856c+5fuuWD8obfa02Cis73rqeUgWizBCTfhuLl0q78vgdRw5Enj964Ftt5XT9PaW40gs8pNEpmP99NixflydNMnnG3vfedu3kumRI/37qZHfWJ8FyIcbtdOmQzIda/ehMh1bTQN8NK03vAE4/nj/P3PnymlDz3SdDYghNhKbh0qmnXPfAPCToihuLooicnTaMMf55wMHH9z6O/4icWtBCKtn2qpMSzaPmHpYx+ZBL90NN8izTetmLZ62szN+HZ2dPh0NXDGSHJLpVGfJO5nYiWNAVZmObUDkRCFVLu8E65DpRYviRyCHnjOtfqlOWrJ5WBRiqzK9cmV7nmmJeEgTSWmfgkWZnj9f3pRUR7UMlWntuaUgKdOpiSn9LWb9ojy1vRFhutT18gknhWA7/ng5Hb1LdXzBFltBHWU6Rn77S6Ytk6oHHgAeeaQ9Ms3R21vaEUKE7xIAvO511XRWMh2+68uX22K7jxrlQyJqnully6qb2KU6brYZsMMO1TTcljFypN0znRKO+FhCpFEijv1Rpqn9aRuJrco05XvMMdV04UQo1qZ5/azKNEX4kfJ697vL/SLz5vnPmMU05EYWC1EMw8jmcTuALzjnXgTg5/DEWthiOozxwQ9Wf8dfYiJSFmXaavOIKaZ1NiD2xzO9xx7Ay16ml6uRaa4Qa8rvwoXAHXe0r0xbbR5WzzQvO1UuX4JNDZqSAqst1XKfunQd5C9NddJ1yHR/bB533ikrFGG65cvlZzJ2bKsik7JRhEvssePT+bv0+ON+qTVEHaIVKtMWm0cM4XXcfXeckFHZQPx6KS2V3YTNg78jRx7pP3fbrZqOT+hi94Vv/uK2uaaUaY381iXTmnee8qP+1TKBsJDpVD8dbopzrrQWcEg2D8tq0GOP+U3wIcIJ7BFH+NCaUjqeX+pwMl7H1L2m93jkyDiZqmvzoIACKXIZ3msLmabxTgszmSqXjzfr1vmfX/3qajreBvv64tYMLiqk7rPF5kH5hZOHWD8YKtOWjfYAcNNNcv02AjKtbkAsiuKHRVEcAmAfAP8C8FXn3L8HvGZDHRKZvuWWarqmlWlrJ91fz7T1cAGNeNA1pxRiuod02p/0wpHyxQewlAJrsXlYPdO889VsHlyZtm5AtISPojinvxGcVfw66qhzqcgpVD9acraQ6eXL5TBWYbpHHvE740P8//a+NNyuosx61R0yB8I8JUCiICAgQ0BwAAQFxEZouxFFhRY+aVEfFRHaARu1bZzadvhwVlocaVtRGqVR4EMQIQxhkskAkTEhgYSQhCTkJqnvR523T2Vzdr2rzq17z7n3vut58pyTe+vWrr2rdtWqVaveip8zUN8GqwN7XduqvkuPPfbCDTVA6KQffHDjASelTDNkutUmOK18J57Y+gCOqjKdItMxQW+1bC6o7vCvGzjZQ5ViZTplp4kHbICLa5zazFtV2Nm2n3rfBdq7VF0BaGVJakeZThHB6kEideVrV5letYqLoFOnXOaQ6epEKHUv8j61WvVtdd3UM4z76VSbqZJBhlymELcZ1uaRavtxm5Y+q1WdzJoVIvvIdVllmrlfafusMs2KDy9pEdtihNg8mGgeghcD2A3AzgDuH5LSjCTEL7GE3po9+4XpWnmmGQJQZz+o5pcKQRQvl7Ke6Toy2I7NQ+5DU6blJW81+3Ru406mxAbEadOamyk1ZVpIHttJp070Yr3LcWe+ciVw6KHAUUe9MF0OmWYGnGqb7utr3bFWPdPf+lbrwa5KoOr881UyXdcGW0UMqPMux6R22bLWtgy5t5tvDp+sIllCmWbStatMb7tta0uGXFue4YoV9QdIsWSaUablHqoTOk2ZZmO750wkU/2CgPVMr1sXLA+szaNVm77gAuCII8L31IQ9npiWINOtQuPVWQXidHXKZSsyzdg8UvcSk7KVK0Os50WL0tdNrSDG+Q3WQ1y9j9Rx6KzNgw3F2opMt8KWWzY3QA/W5gHwZDrufyUvtr+s24g9GpRp55wo0Z8GcDeA/b33xw55ybodrGevSihSu7/j2dxvfsPbPDQVL6XmSlpGmc6JyRsr03VkVa6rEQvWbsEq07vttnHs3pQyHV9X29gC8J7p224LqoG2/JU6MbM6sA92A2K1HdQpI638m7K6EKPa9uvybEWmmc63ro5bnYBYRyiAZhmH0+bBKlpAc0BilenUgB33CwsXto60A7TeDNUKjGca4De8taNMa8SIIdNf/3pzXww7Mc2ZwNb1q9tv33y/NWW6XTLNhOSrm0hWV4NKKNPs2BmTsueeC/soqitgORsQWRIfPxuWTNe9l9X8Usp0nB+rTGvkPBZbmMkDa/OQ69cp09XxoW68qVrTWt3LaLF5APgrgIO990d77//De18To2aMYfFi4Mwzw3dt81eVTNeFt5J0ovTUKbXMBsS44ac2LgGc6la97qJFYdm+FVhlWjrC9evDy7b77q3TxWSa3YCYItNVsl/3bOJYp6mBbvPNQ3xugCfT++8P/OxngyPTbKfKeqbjdCm7SqvOUt6Fan4MmZ48OQy+cbq6CSIzYFeV6TrvrZAChkyzNg9WcWbSSRznmExr0TyAdH8U30fd8fNAe8q0FmM9Jih1JKUqAqTyY3y31TZY1y9st12zjbBEi53Aep9ebYnf4bo+hl2FauWZHuwJiO0q04xnOkXy4knx17/eerNajs0jh0znKtN77QV85jOt08VtlZ3osmS67tRbgG8z1RMQmfsVxVvb+KiFxpPfyzU1btTFUDcgeu+/NRwFGXH42c+a37WGGndaKTJdPSSh1WDGEpS4oaYULclT0taRy+p1P//5+vxyNyCuW5f2ebLKdNXmUXfdatSPHXbQ06WU6S23DJE5gDzPNMBNhJil85yl7roBZ8KEpkLMKtOyqawVQam2/TpyNGMGcMklzWfMbEB89FHgoYfqvdo5yrRAU6aH0ubxzW+2TnvssdykmFWm43Sp/GIyffLJ9Uv2rDK9Zk14R6ZPb5L9uqgBsTKdIka50Tw2bKhfiWIJXjXcWIoYxel6euqXsGM7HmvzSJUvXuHMsXlohAfglekUyWM3IFYnxa1Wv4aCTMf9Vopcxsrv+vXAAQe0ThdvsNaUacaaGdddatISk+nUcwbybR6veU19umo0FPlZKj9JN8qVaUMrfPe7ze/sLBeoJ7Zxg5GGeMwxrfNjNiDGDVUj03GH9PTTrQ9tqV736KOBQw5pnV87No/Ui171TDOrAKlOppqOId2p606Z0uzoc5a6AV2ZZq0HqTqO7yMVy3bWrEBQAZ5MS16tBpz4Oa9f3wyXWMX++4dPiUySUvHkucydGz5bkbzqIJxa6o7BkqgSyrTswgeAPfYIcZJbgZ0U5yjTzEQtJtO9vcC++7ZOFxMKbZPdySc30zGKs6Z0M+S3OnGeOLE+8kEuOWdtHuxqleb3ZYhRKztInZLMKtNxm44jstTdB5D24+d4puP3uJUyzQoFOddllelWh2a1QnUjO7OqwK7yLF9eP9GNo5KwVlTW5uF96xNCq+mkzurODaiS6bpoKCNAmTYy3S6OPLJ51HjqBYlJ8rp1oVHUKRTSYAYGwmEerQYIdgNi3Anmkuktt9Svu2ZNCKPXCnHauvil8XU1Ml21eTAbM+bPB2bO1Mt3662tYxBLflIn//Vf9UQp7ow0olCdYQ+GTMf5aZOHKlFo1WFutVVTYU915rHikbIexM+57kAPIAyam2+uk7yY8EybFjZm1qmbjDIdb+KRT+ZZD5ZMO8fv8GcnxTmeaYbkxUQhNZFkffZAs23Vxf2u3odGjHKjeaSsX6xa2o4yzZJpTZlmiGD8bq5Zw6mbkiezATFlz2E3ArKktvo+tVqFGoxnmvHZp8h0fFhXqs1UQ/IxE13W5pHq99vxTLM2D3ZCt349cMYZ3CFXdbj8cuBzn9PTdRhGpttF/BLvuSdw332t08WETAbDVgSgqkyn1Fcm5FKuzSMecFqR3/g+li4N0TDq8oxfzieeqLdRxDYPlkyzNo+lS1ufLli9l9WrW4fjkXSS34MPAr/4hZ5f3fMDWts8tNBCrErGblRMEZSpU5ux0lllOmUViJ9Lyv8qZdQ2wVZ9snWDg7Sr+Nqt7jkeuCRPRmmsm0C0UlrqwCqh8T1/+tP19/zAA8APftDMj1lKziHTqagaTH5Ac5BevLg1MZL8hkqZTpHpdqKDsJ7pnM1kg7W1xLab++4DdtlFLx/Ab0CsU6blXY9JmfZ+avdSVaZbHWDSLonXxlhWmY7tG3X3244yze4XYG0erDLN2jzYSVDq+bF7RxYsaH0qc5ehlkw75/Zyzs1xzj3mnPuOc26z6Hc3D0/xuhitiFErxARPW4qPlem6F/3JJ0OkD0HKM52rTHtff+34PvbeG/jiF7kBYunS1kp3fN1cZZrpBNkQeqlnXVXj62IIx+nOOqt5OlQV1eO1Ab3uWB+vpkwzZHqTTZobAVMEYOLEjS0ZOcp0HRiSl6NGxuS3znvbikxrNo9bbgkkRSPT8nnTTfX55Q5Mq1Y1bTit8JWvhE92k1NqIhRbq1IEpR0yncrviiuACy8M39kTEFPp2HCZOZOb3GgeJZTpuB3cdFM4ZKUVYgK1YkXrkJBSvpIbEKurLevXcwpnioTG6eo85+16prUN6rnKdKotxNGetHed2S8QTzJYm0fqRMp2bB7sJIgRPRi0sp52GVLK9DcBfBLAXgiHtVzvnHtR43eJOGtjBGzsw1bKtJZfiuDJLlpBSZtHKrZwfB9PPBE+r7yydX7xy5m6l3bINEveNDsIU76qV6uOTFfbwjXXtE631VbAU09t/LNSZDq14Ycl09tt1xykU/GyZ84M6WRDV6o+4gg1WqzzmORpbTo1CANczFaZ5DExW0XJkzi3dSsKsRI0YQJw4IGt88vx6MZtMPUey++0peR4E2erY9uB9pRpbcIUn36Yet/l/WFPQNT2KcjzS63e5PhpmQg6U6Y0V3lKeKbj+33rW1unATaOrsKutAD198xuQKzeC6tMs3YBduPjZZeFuPLadVNkmrV5VJXp1H0w+xlYz3RMkllleunSekLajs2DvV+tHUjd1a1UAcBnPhPEuy5HokfDFO+9HLv2b865uQCucM69A0D3u8GHGu0o0ywRTBG8ahivEjYPIQophaenJxCom29uvnx1oYDiAYzpPLTBtXrCIDNwpjqjHEtNTJLPOac+v5jwtDpuFwgdRvXQAY1Ms+pXasMPS6Z32SWcFpgK5QWEZcsNG8KzY6ON5Ng86vKM06SIL9DchDhhQv21N9sMOO64vDjT8h61Kt+ECc32rO2eb4e8AfX7AIBm2dhoHgsWtD6uGGjPM52jTNfl96//2tzMqynTLJlux+bBeOdT9bbjjmGyopWvasFi7DkpxDYP9j5uuokLVQiklcvq+1mKlKWO6o4388rvW212q16XDZ2qKdPsiYqxvYRZNdJsdvGpo3Vtq7+/OaFbtizsM2mFePw66qjmgWap8mlgIQT+AAAgAElEQVQKe6xMM+3g6KNDhJBW+PjHW/+8y5BSpp1z7n9bpff+GgB/B+BHAHYa6oJ1PVgynaNMS7oHHqj3YItCK8vsJWweQhQ0awQQlrmlnHWe5CpZ1ZZMc5TpVOfBksYcZVry22Yb4I1v1NPtsgtw7rmt08UDnXQwml2A3RSnKdPM8qEc+7xhg64yimqUsgpUlWnN5hEPJMxzSbWZnNPE2DjTGzY076EubvWUKWFio7XpeGBiNjBLGT/2sfo8TzopfLKbnLR0zLuUQ6Zj5ZyZIGrKtOZhl/xK2jzYjaOTJoXyy8SUifDD+n1TaEeZvv328Mkov6wyzS7vM6RMiHLdXqN4vBk3rvVpsdXrllCm2XCF1ftllOnUO8dG6ah6plN2Rulf6og08EKRjFGmtXYQh1ite84jBKnSfx7ARqdoeO/vAnAEgEuGslAjAvFgc9BB9ZvTWM90nK7uKGCg+YJpntV2PNMa6QCaO/KB+pBy8cvJDOzDbfNoxzPN2kEYWwvQTFPS5sFsQEx57OIysmRaIzI5No8cZVqzecQdtTaBiJVGTZmW+6l71lOnhrpgypdj85A0dffx4Q83J7dsNA+WNLKe6VSbed/7wkZtyY8h8an8nnmmuXekhDLNTtRYZTo+EKiEZ5rdrFUlUMxEPLXEHrfTu+8Gfvc7TpkuaRdIEfj4uqk9P9XrLlgAbLtt63SsMs2+w1WhgNlkyirTGplmvMvVldU6sJtv4743ZfOYOrW5Ryf1nEcIakvvvf+p934OADjnpjjnJjd+/qj3/l3DVcCuRVWhmDGjPl2uMn3GGcA++7ROd9ZZ4VNTpllPoaRllen4IBlN7ZPno3VGGpmOl5xzbB5MCL0SCna7thGAI9OMBYCNGPDss/XLfQBPpqWMOZMbxuYhy7qaf1OzeVRJSqpdx8q0RkIHBoDDDqsf3GWA0JRzViGWuksRLUnHKKY5JL6kMr3HHmWv+/Wvh1Uy7brVCWeJaB7MfUha7/mYwWw0jxTi1S92Ij5pUgj1Wle+gYHw7/rrw89KK9OacqmplnLd9etD2RgldMEC7rCuhQtDuFjtPlibh3bwUq5nmj1OXCPTDNi2X1Wm6+pu2rSmv300k2kAcM6d4Zx7FMAjAB5zzj3inHvP8BSty8EqMlVlmiEevb1pL+Nee3E2D3ZjkHToF19cv3lDGnqsjtTtFJd7SQ3qct12yDRDGhmSLISf3WzEKNOpe2llDWKiQjADYupZ3303cMEF4fuyZfWewjjPEjYP1sMOcOQ8JjwaWWXD8lXJtKbkaW1ayLTWpnNJbao9x+UDeF+m1lYZLy9LpuP7ZSecqTYjlhaAj2STClvJqqWsMg00+0HW5sFG80ghtnnkrDyk6gMIcX7l+2CVafY9jpVphkyn7gN44WotY/N45zuB227T74O1eaQ4QJxf6n3PUaYZMg1wyjTb9que6brrTpsWVpgAffVhBKC2hTrnzgVwLIDDvPdbeO83B/AaAK9v/G5sozrYMIN1TkzeVKcweXKezUMjMtKx/tM/NZddWqUBQrp/+IdwnLh2L6lBHeBtHqwyzYZik3RSvrqXuLQdpBWZHqzNgyFkBx/c/M6uUjBkOkeZZiZ0cl2GkGk2CiFRjz0WBrDBeqblWWttNSbTmnLOkLe4rabINKtMt2PzKBHNI0f5ZfrVU08FDj88fNciFQylZ1qb0Glkuro5bbCeaVaZrhKjVN8GhNjgMgYMt2eatXlo7wi7afWyy4DTT6/PJ84v1+ahKdNM0ICqZ7qu7lgy3a7Noy4/NprH5MnNkIGj3DP9DgBv8t7Plx80vr8ZwMlDXbCuR09PaDCXXKJbCtoJjZfqFCZPbu54Z2weOZEU6hCHtXIuHfeRVabbsXmkyNaNNwKf/WwzXUrB1vx1cTpGwc71TMvz1Mj0+efXd3RsmK599gmxwQFO4WRtHppnujqRTJF4aQvsUdOa0iJt8Nprm3+bSqflGQ/YqbYqGxCZaB7r1zevXTeQSNti6w0AfvWrje1Yra4L8Ars0qX11iBWmY7TsYdSsVatZ54JkVnq0sUHKjE2j4GBwUfziK+dei4x4RkKzzSrTKfuIy4DwIfGG6zXOI7mwSjTmggVkzytP1q8uP53gpxJAaNMx+k++tFmCNoqusEzrdlamGgecTSU0W7z8N6vafGz1QA2tEg+tiAVf999/KEB7AZEbeBklWlmUAI4Mh3bPDQis2ABcPzxnDJd0jO9dm0z9jWrTGtkuqSC3Y7NAwi+vbr8mIE93nWuTdQkT22wiW0ejF+V2QSrKd3sICzX9j7c6/Tp6brLtXmkriunnWltf9484I479HSsZzpuCwBwxBH16XK8watXB5993WatKplOTYRySbwWqpNpW+1sQExt0s1RphmbR3zwR+rd7Olp5veudwHnndc6XTWaBzMp0PrBuAzxZ921H344hAAtqUwPhc0j1b/FqIta1Y4Sn2qr1X6/zl7CTphyPNMlNyCy0TziwAKjnEw/7px7QY/snDscQM3oPoYgg3NPTzlluh2bRx1plPwY/2tvL/Dzn9f/Hmjer2z0SJFpAJg7l/NMMzYP6Ty0zTwxGGWa2dTFku6cQ2DijktTpoEXnppYLR/Ak2l2I5s2AYttHkxoPNZekuOZZmwey5aFGKZ1kDKuXRv+JqUQy8SPWW3RVoN22imoXywh0ybYMcmbMIE70n7uXJ1sSZ/FqJGaRYexnVU904wyzXqwtUNb5D5SSnc7ynTqucQHf2jvpjxD7+s3z4kaGUeAqSsbY/Oo/g2Q3ny7cmXz0B02modmF9BsHuy+AtbmEeNVr6qP1NWOMs32b0D9IWHthMZLKcRVMp2aSJaM5jFx4sbK9Aj3TKfWdt4P4FLn3PUA5iIc1HIAgFcCOG4YyjYy4By/AVHzlwLckq6Q6bVrQ96an1Eb2JkZYeyZZsg0EJ5LSZvH2rUhHVNeZrVAU2lZBVvSnXdeevmreuSu3FsVVTLNDoillGlpM3UqnpQpJzQea/NIEQ9W3QTy6tj7oL5uummaNMarFHV45JFw8MhPfpK+7jHHNK1i7ISOWVHQyJs858cfb/5fuy6ziRjgbR4pUstuQGRj2bejTKcOuGjXM113H7EyfdZZQQX98pdbp2XEB+eaiiS734K1eWjKtOwXkHeeUWoZuwBr88hRpp97Lr1SJiixDyBHmY7HBtk0XkW7Ng8mzvTEic2Qk1W0q0ynbB6iTI9mz7T3/h4AewK4DsDOAGY1vu/Z+F3bcM590Tl3v3PuLufcr5xziVhdXQ7n9MgR7FK3NGpt4JwyJXQGTz8djkSuIwDyEjM2Dw3tkOnUQSJyXYZMx5YCRpVev74+vBqQ75lm04nFhNkss349cN11rTuQKpl+0Yvqr8uocznKNDsBkzKyGxC1ZdXY5sGcepcijECzTljCI2Q6lY5pq3/8Y7BwaBNimSCy6iarTK9ZE9JpkRS0gYtV4lmbR6xWpaJqVDcgDjZspfdNcsp6prUJXcloHrEyPW1a2NxdB1Z8EEUyRVTZDYjxvTDK9IoV+j4AVtEdymgeixeHg7g0pMh0zv4DRpmOy7fjjsBLXtI6XbvKNGPzmD69Pu54/G7On897puuuG5Pp0WzzcM69GMD+3vsLvfdnee8/5L3/PoADnHM1ozuNKxFI+d4A5gH46CDz6yy0MDbSsJiTCJnlKlGmn3qq3s8FbKz2aTYPDfEGxBwyXTdoynUZm4d0/GvXcktz2uShHc80o0xrvnNg43t+1atap5FOVTquM8+sL99VVwH33ssvu7EKJ7vhjY1Qw9o8tFjADHGTazMeZxlIUuHV4muzS+La85PNNyzZZz3T7AFNcZ+Uyi9HmU6R0HhJN1XH1Q2IjB0kVcbHHttYjWSUac27nOvb18i0WNgOOijEMK+DlDFljYjzTKWT58dEXQIC0deUaVHZ4xCvqftYsya8d4xnmhEocmweixenD6sRaGSasZ2xyjRrY4uV6RJxpufNA+68M3xP2TLid+6++4BHH62/jw0bmv80G4/YUUcrmQbwFQCt4qStbvyubXjvf++9F+ltDoDpg8mvo5g2LTSKuoYQb55jlGlm4Mwh0+vWdc7moREUVmlhJxkCJhRgDklmlWmGTPf0NEO1aSsK8lxSigcQNvywy26sZzqHTJcIjSdtIdWmq5tqU+Q8jijDkGl2ksEuiZdSpnND46UmN3IfMZmuU+Mlv1I2j3izkRYdJHcDoha2UpCa3E+aFPJcskSPqpHjmdaU6Z6ekMfatdyzlpXGVNuXjYCa5Sxu+6nrvv3tQSkV1G1Wi61Gcm+tIP3bPfc0y9sKudE8cjcg1p3gG6O0zYM9tCU1xpZWpufNA/75n8P3FKmN3zn5fys417yXlM1D9qgI6R7hnukUi9q5cXz4RvDe34pg+yiFUwH8T90vnXOnO+dudc7d+tRTTxW8bAGcemrooFODV+yJ+9rXmkHKWyG2FZRQpuPOl7V51PmlpKH/5Cc8mV61Kt1hsco0S/AEDJlm7Rss6X7iCV6ZXrVK9w8zKwDxsivrmdYUXRmY2AgwOceJa9ddty7dpqvLpSWVaSaqBjPxEzDKdLwPIHXdnNB4mp1GJiQDA8Cuu9YvJbejTKfqJCbTDzwA7LJL63SlNyDGA7SmTG+7bbDOafaSktE8gOYqBUMGmToWEqUp2PE7krrupEnNfhrY2IJWzS8O98gotfvu25loHiU2skt9CBlMTR6kzWih8ZjoIFXPdCrOdLwCxYzZOWT67W+vz0cmQtoYJnXMcoouRopMp9bTVee+c+4q59zdLf4dF6X5OIB1AH5Sl4/3/jve+9ne+9lbpYhjJ9DfH8Iopch0rEwDwAEH1Kdld+4Ppc3jDW+oL5uAbfis35JdwtbSCa68Mn2/7ApADum+4grOg7diRYhNzviRU8qSpAPC/WjLfdKpLlqULie7ZMqobjnhHuW6qeXXHGU6xzPN1HEcGq+EzUO8so89FnyKqfKxthvW5sGuVpW2eQiZXrMmbfNgVjNKk2nJU0hZalN3yWgeQHOMYMmgVsdi82Am43K/ms1OViSB+igT8mw0O4jch3a/bDSPHJuHbGhkyTSzh0Oes7bSCPCh8Rhl2nvgZz/jlOlvfAP47W9bp4vBkmnnuGedsnlIuhzraBcjJbHc4px7l/f+u/EPnXOnIUT3SMJ7/9rU751zpwD4GwBHeM8EOexC9PeHjUsp9VUIwPr1wO67A7Nm1aeNVahus3nEYBu+1kmzZD/X5sGolt6HXfspG0qOMg0A220HfOQjevl+/WuOTGvKkpRJNsHW5RmT6YULQznrEE9cGAV7/vywCbYV4o0tOTaP2bPrr5mrTA8McBMrZsJUUpkePz70HQsXAttvr98Ha8/J8Uwz+TFk+vnng3Vj3rw0mZbTzhgvL8Bv7C5FpplJe+loHkCeMi1e41Qdi81DK9/AQDgue9dduQkTo0zHxFdTppkTC4cimkdOVCgmuhAjejAbEHM802LjAepJfKxgA+H91KCRaVHitTqJlWk23Qgn06nW9EEA73TO/cE596XGv2sB/B8AHxjMRZ1zRwP4JwBv9N6vGkxeHcW4cWFA1HzQsfLALAtefnm6YYnK88wzwOab16djbR5MpxJ3UqWU6SefDIHpGZXxF7/Q70OgEUF5zvPmAbvtpqdjiIyAIVq9vWVsHjGZTj2beEPIggU6ecvxTD/2GPDSl9bnVdLmMZSeaWYTLKPiCbTnt3Il8IMfBIKZInisZ5rZEBqny/GIM0Trhz8M/09N6JhwaOwGRPagpKpnejiV6RybB6NMyzui2TxYZRoIyibb9uNJRCvEZOv003WlljmxkLF5xONrqk2Losuq0gC3AVF7fjnKdGzzSCnOYo0ANrZeVNPFZFo2AKeQetbS9rXJA8DbN0aRMl3bQr33i7z3rwDwKQAPN/59ynt/sPf+yUFe9wIAUwFc6Zy7wzn3rUHm1xkwNg+gSX4ZJUM81XIoS106RqktGc2jvx/4VqOaSinTv/998JGzIe9YZXrVKk6Z1qKDSLqHH07fh3RmGzZwRGvbbdPlYzYQSTogTL5uuSVNPIDwnLVd7PfeC3z727ytQDu0hdlMJvlpGxBzlWmGJLObsHJtHtrALiqttq+A9UyLurlqFUemWaWbJdMyALMxwlllWjt4SdLVPZv4sKmBAT6aUillWovmATQtP6xnWsuPVaYF7GExmjIdT9pT48PzzwcRhVWSNZvHJpuEcZgh52vX8mRaJgapDeDMCiKrTMfpUnnmkOnYkvO+99WXUcDYPJh2FVt0NEFoDHimAQDe+2u89/+38e//lbio9/7F3vsZ3vt9Gv/eXSLfYUd/fyC9GsHbZpuwnMt0vueeG76vaBVIpQFWNZKXk7FRMDjllPBZSpk++eSwpK+pjHF4tdSzfuUrw6dGpp0LquBdd3HLtCecEMhqHWT2//zzeidz0kmBzKbKJzaegQFOmb700vCpDRBnnqmTPCAcFsCsZsjArpF48SgyE7/UakuuZ5ohvzm++JI2D0FOuExtk9jq1aGfqTv6G+CXxHOVaWmnDJlOTRJj5ZfZgCh5pqJWAOF9mjRJ995q9xyXj11pZMh0jmdaa1txnGmmn/7iF4Frr63/fY7NQwhoakz50pfCvhHtfuW5aPlde22Iz61NJHOVaUmXUtgZsSq2tQD198x6puNDeYD66CqxzWP6dOC00+rLKChFpmNlOlV3rLo/AjCyA/t1Gv39YQDTGsEOO4RoD4xKJsuldb5RgFeN2M6XJdO9vc0OpIQyfcQRwUeudUYsmf7Yx8Kn5mOX+/3BD7hoHhpyyHRfXxjYNZvH+PFhWZoh03KvGnm77z5uiQ7gbR4pUlsl04zNg4lbzfhQc2weDOkubfOQNs0o08wqlHiSGU/844/zG0xzlWntNFagnDK9YQMXUx7Q/dKSp6j2qevmeqa1iV/OBIfZuBfHmWYJyv336+XTNiDGYc5SY8qJJzbzYSLeMKfjPfpo+hh4YGNlmj2vgCHJWn6x1505uArgNiDm2DxYiyRLprXxn1Wcx4LNw0Bg3LgwgGkd1rRpYRmKUcmAEK5qr73q08UbZTTCMzDAxahlEB9OUkKZjjsZhkxrHYJ0Kk8/ne5UY6WBiTP9pjcBn/pUfbq4w9IsAL29YWDXlJGpU8PgoHVEQLODZtQWpiMEOFuGdsoasHFEA8bmkRO6LzUwzZsXQrCVCo3H2jz22CN8smRa8/GuWhVsPNo7LMq09lwuvxy46KK8DYiMn1bSaH5LQPdM5yjT7OZqbdISlzFVd/F9rFmTfoaPPw7ccINOoqQNMnYLhnTHNjGWoKT8tFVl+jWvqU8n40NqTDn1VOB1r9PvV07I02we118PHHywTqbbVabrEPdZDJnWVqGkfkUwGKwyHds82JWykjYPJprHWLJ5GBLo7w8vktYINt00qKXMwA7wCgqjTK9alT4gBOAbsRCj0tE8li8Pvrc6sMq0DHJLltQfCgFs/CwYZWnyZGCnnerTtaNMa535pEnB6pN6znIfW2wRPjUiz3iIBbfcok/UJF52qm3FmziZaB7awLR+PXDZZXq6lSuDpaaUZ5q1efzyl+H4d23wOv308Pnss+m2+s1vAn/+M69Ma/exdGn4ZDcgMoq9eCPf9a76dFVFV4tUAHCh8bQJtvw9syLDbL7t6QlRgADg5z8PG3BTOPtsbhWFOV+ADSnHHCdeBRuR6uyz621Esc1D67eYVQ85NZOJM71hQ/qYeiBc67e/DYfFpOrjhhvCp1ZvrI2SVaarHvG6frWnpxlFB9AP0dHa9EMPNUk+Q6aZdhWTZMbmYWR6jIO1eWyyCUem5aVgFRStM3riCeDuu/UZaY4yzZLp3XfnB+Jly9KEglWCJN2yZelONQYT51Srt9I2D0n35JPpaC1xCKr99+eOx80ZYLXVDO3wGSkj45mObR5anjfdxKtL7CaxFSvSbSZ+57QJIrNhUGJLP/MM1/Y1FU9UKK1PEJTagMiqpaxnWvYLSBkHq0yfc07zmlo/xyrTQFBDgbChV4PWplnffn8/8Ne/5tk8GIIyfjzwox/V/z7eaMes3mjkl71f2VTL5Md4l6VO7703nW6ffZp+7RL2jRxlmiWWIuQB9WTauSapTb3vM2Y0j7QvrUybzcNAgSXTkyaFhs/E/QTSKijAD3SLFwcFTCMd8vKkTjQCmuRN66QvvhjYc0+OeFxyCTBnTppQCFibhxzXraUDeIUndb9Cpv/0J71D6O0FrroqeFtT6OsDHnkkfaCHkOfVq4FDDtGPY5WTEtlOK+UXZ+0qpW0eQFOxYnyPrGd6+fL6o7WBjZVp9oAhbRLb2xsm2SkSz0SsAHjVUlB6AyIbXg1It8EpU0K70tqM1JvWJ8gqn6aWAhuTshSJB5rvfBx6rA6MzYN51nvsESbYOTYPZuK8007N1a1WiD3T2sSU2YAY+/G11ZY1a3TFOX7nGDI9b17aIy5EkO2zNNIttgz2QCWGWI4b1zwEKXUIl7SFVFSS/v5QJ2vXcnGmzebREkamBwOWTEvoI60RvvjF4VM7SY8d6OLrpyAvz0UX6XkBYdlZW8YTS4GmaglS1pZcm4dGplmbB7tcGg+o2pH3ks+cOel0/f2BaKUOlenrA447Tr9fwZQp4d7ZlQjW5pGC7OpmbB5y5K32Pm27bTllWtrqs8+myTRLGtk43ZKWXW1hbBnr1gWFnVWmmWgtDJletEgfDOX53X9/IEeaMi1KcmqjoqwAaBYKgFOmmc2eUm6xpTEEgPVMa896k0241YdcZZqxUUjbT+UX2wBS+bHx+4WEaqs3zCQICHuRAOCnPw2T5zrI+MraN557Lk2SJXQfo2DLpEWrt76+8Gw23RQ4+uj6dPG+rpTYIu9dyp/OHlMfpzWbh4HCZpvpm8SA5nKV1ghlMGc6fWagE7A2D03ZjMF0qszmJaaMzIYkoEm6V6/mD1lhlGmt3mIyzXSCAEdCV67k0mn3CwDHHw8cdhhv8Zg+PZyMVgeWTMt+AUblWb5c3y/w938frC8llWkh0ynfPmvzEOLBKtMaoYhtHkxowe9/H7jzzvR1Ac4jzkzY58wJPlSWTN96a7O8rTBpUhjUmdCMOdE8GALArCqMGxeUXOlrzjsvnSfAHTDE2jxEZUzdS+4GRJZMa6JCbPPQxgc2tvv69cG2p60aMeR3yy2BV7+6/vcC8SuvXs3t89Am4tOmhXtgbB433qjvlQGafYe2orvppmGyq/VFkyaF/jwlgIn1JdczbTYPgwo5GlxrWBMmBKIgyyl1kN/lePtKkGkZcEqR6XaUaYYkawPnzJnhU1Nq47KX2MjTDpnWVNW+vtCpaoSxt5dTpmfODOVkO6y6I8IFPT2czUMmnIxnesUKfb8Au+lHwHqmO2Hz6OnRffZygA17sAYQ9krUQd7xUjaPJUvCJ0OmN2xoLtdrYb+Y2PjM0j7QtDexIoVWd9ts03zWqegRAEfynGtaYLQlcZk4p/pqUSMvukh/n6SMmnrIKtOMzYO1tQiZXrQovVqb88719wMHHACcf346nYgFTDjPG26oj70NhDoYGND7c3m2WkhUIDxf7RwCIPih58/XeQIT71nI9FDYPCzO9BiHvBiMzWPJEn1THEtqY2WaWd7XXqQcEi1glQfNMy0ooTjPng2cdlqeMp1SI9nl0r/5m+Z37VlKPlq9lSbT4oljOyyNoLDKtGy+ZZZMly/XB3/ZFMoq05deWr9BB2gO7IzNg9l8k2PzkB35qfwuuyx8MmEwZUCviwMMAJ/4RPhkyCqz+hVHy2Am2KLM1ZEtIdNsHGzmOcsphCWUaUkn9aa97zIJSqWTSRVDeJhVqPHjm5s4mb6dUaZFPWSiH7EbENk6XrgQ2H77dDpmAyIQnh0TzpYh00JAv/pV4A9/qE/nXOgHn3wyrUzL+5vyN8flY8QRiQrFhGyVfqOu7toh06wIYMr0GIc0EkaZXrKEC3kXf9Yh1zPNEO5cMKGPmE1JAoZML1+e9hADzQGHjaud2njDKtPHHBPinMZl1cDs1mZtHqtWcZ3l88/zHRZDBJnyxeSohM0jV5kG0jF0heStWJFuWzlxl3M2IGpkeuutg62FCZsm6mbqubzhDWFSr90v28d89avhU1PTxKs/MAAcdVR9uvhgDY3sL1zIbVgFwn2zGxBZfz/T9zKTPuc4Mi1EUEs3blyTTMvqaQqPPlrGMx3bQUoq0wsW6AcR5SjTzD4nJlqRlO/Nbw4hLFPYdNNAplP5Sag7RnFmyXTORG3NmvRzick045keGNAPSzIybQDQbHjaizluXFjq1oiCqAilPdNMmlwwKhQTVkuQSicEVduIIuVat44n06nQc+I9ZDoPKaNGppkTFYE8ZVrbmCnpSivTTz+dfn5A3s541uah7U6vQkhmK8Sh+5iBkzl4KWcDojbQxQoPE80DAL785XQ6WXJmJw+p8m25ZSDnrPKrTXTj+021F+lL58zhxIKVKzmRQupOI3naxlGB5pMFQhtctKhp6alDLpmeNi19km6MEp7pWJku6ZleuLA+trXkxyrTEgWjpDLNEMFp03RlWuyCJck0O1FjJvY5yrT0M6tWpXmPvO/Me9LlMDI9GEgDZQbNJUvSy8iSDuCsAjnKdKdsHtpLFz+3VGcuBPXGG/VnKOXSOmlBigzGkQW0zoMl00LsTjghna6vL0QG0TyZrM0jl0wzqyiLF6eVfWBjMq2RQdbmIYo4225Ttod4yZnxELMh4HI2IDIRZZjyrVsX2nOqTsQmU0qZZu8DCHndfDM3edDay9SpwV41fz6/QsGqeH19OrlkyfSWW+qrac6F0xJ32CGdjl2FGj+eSxejZDSPUp5pIcnPPce1VcY/X9rmwYaKmzULuOuu9IT9ZS8Ln0OhTDO2QoZMr1nDjYfSZp57Tj8QiInBPQJgZHowkAa1997pdPKaMkUAAB0rSURBVL29obOUDXJ1yFGm77lH74y++93wKfEotevmIHVACNtZakqM4Mgjw+fDD+svnNRJKt2eezY7tRRZlV3YOcq0pjwLmf7a19Lp+vqCkqGRVblfZkL3jW8EBYyB5u/v7Q0rBSnPuZSvtM2DsZfESJHpOEwXGyqOtXloZIbZgJijTD/9dDjhkFmK15Zf2WgekpYhAADwq1/pBIohMgC/KhPnXSI/SacRivPPB3bbjRMzcvy+WvlEmc7Z0MWEL2MmYGycacYzLe8Sc+gNExoPaEYXKkGmYy+51va33z7YaVLj0lZbBTsLQ5KFTGtt2jmuL2La9IQJvDLd2xue8yOPpMcSIfHaavIIgJHpwUAaqLbULQ2eVaZ32y2dTl60xx7jFNjbbkvnl4s3v1kfEBllWgj5S1+avl6s2DCdDJCeDb/oRWGCcdxxaTIoHfjy5dwmp/izDqzNQ064KqHEx+lYPPmknh/r85T40Zr6xSjTYn9h1UggPWkTmwczsA8MhAN3mA2IGvGQPLUBTAjF0qXpthDnoYUCFD9oiQ2IUkY2UsxDD3G+1pUruQkiYw2Ky6nlx67yMMp0Xx9w7bXAfffp12UmI6zNQ5TpUmRaSPLSpWnxITfONGvzYCO7MBMSiQrCeKaZ0HgsmR4/PggzmhjEtgXZs6K1/aHwTDPl6+sL4tdmm6X73/7+0O9PnNieqNdFMDI9GEjD09Q0lvBIY3rLW7h0Wp5DZejXOqJ4AyITCUCbPMQoQaYFv/61PrOfOjXMrrUJk+C9703/PuXfjcEqzmy63LZw9dV6fszx6bffDnz721wowAUL9HobPz4oHpoyffXVwH77he/HH1+fLodMX3ddswypdBs2BFuX1mYkZGDqHZEjge+/P0wCU9dt9b0VGNLI2lokv5ywi1rdCZlmDpvSDjaqpk9h660DAShJpoH0hkugGbqP8aGynumVK8uT6WeeSbfpWJku4ZmWCZ22yTRnA6JMBkraPFgyzeyBYck0O5HM8UxrbVoEEabfl5XLVJ8F8Pa+EQAj04OBNDxmdgiUOzwljk7AxlNOIXdGyCwtMaHx5LrMkbwC7Z4kL5a0apg4MXRaGjESRVrbIMkq048/Hj5Zxbk0mf7Rj9K/ZzvVhx8OYaNKlW/ixKDwMBszBwaCmquFJZO2yoTpArgl56ee0mN1i/2KCTOl+edZZRpo+uxLKtMMARBVTluJylGmtePYq+VMYccdgQsuCHsBUhAVj303X/vadDoh04wyzUQRmTixea4BC5ZMM8p0qePEhSRrm4NzNiCy4WxF+dU2Jeco04CuTLOrPKwtLkeZZvpzCbvIkmltZVVWGke4XxowMj04SAMtrUxrkBA6QBkynQvG080c2iJIeVqrYMl0DkFPQSZKmvrFhsRjSf5NN4XPUmRaq7MqtEmBhKdjB2zG/wro5Zw4MXTSDJlmBgfWM93b23w/NZVMSCi7J4Ah0+vW6UfLx2VIgfWD3nADcMcd5Wwe0k8y4S2fe46bgC1fzpNprW2JH19DrjLNRHFiyTSjTE+dGt6RUsq0+PZZm8fXvpY+rps9TlzeJUaZXrqU85NLPnISZyrPlSvLhXWT65ZSpnt7Awll2lYpzzSQR6affVYvX2zzGOEwMj0YSIPXdmFLR8Vs5GEQhztiTlTSwA5GAkaZZo5eFsSTAw1afpLXG97A55mCvOTadVnFmU0nYCdgpTzT//3fXH4yWSkVao9FDplmQ0dJaDxNmZZnralkgK6IA83DfrRnLRMw1tLFTHbZWOzXXRdItZYfE82D7d96e4HTTwcuv1zPjyEUcb7M77/0JT1djjLNrFyyPtSVKzkyvWxZOTI9blwgq5oyLeR3//2bm8brrsXaPFatCmQrNbmX57dwIa9MM/uXNBuF3C9DpuU+S3qmGXtEbjQPZlLw3HNc+bTVL7mu2TwMcA447bR0QHmAVw9ZZVp8lNrfsARq+vTQWbJgCQqrTJe0eYgFppQqf8cd4VOrm9LKtEB7fhIVpJSNQtRU7boyKShlJWLb/sSJoa0ySjfr450zJ3ymSFlvb1PNYto0cz/yrDXSkzp0ph2wNg/BsmV6fmyoOEBfiWJJd09PGNhZVYuJ5gHwUURYZZo5+ZZVphct0veYTJ0aiGApMj1+PPDHP4Yyam2GicwgYssvf9k8XKYVenvDPor+/vQzjJ8bE2caAD72sXQ6UX6ZsG4Mmf6f/wmfTLAC1uZR2jPNbL4V7zdDzpn8zOZh+F9873ucEgSUjfc8MBA8fimkOqoqtHjGMVibB6tMl7R55KjcDPbfn0vHkumcaB7xZx3kfkuRadaSJJMCrc2K91o84HWQ56cNNpMmccp0T08YiBcuTKfbbLMQv3zHHdP38uCDeW2LIYTyjLV3ZN26sjvdWZuH4N//PZ1fT08g3KwVSg6XSeXHQKw87EDMKtPsQUmsMq3ZfdasAa64grP7ALoXX+q1lGeaDVk2f37wnDOKs/T5zz5bn06enzaZi8uulVUmpoxNgSHTrDL9mc+ET60tiAhQonxAHpn+5CdDyN0Uxo8PUcSY+2BsN/39RqYNGSht8xBsv3369/ffn5cfC62cq1cD11zTGWW6NJl+//u5dKWVablPlkSV8kxLOobgAbxirxEoyecTn0inkw2hDOFhcOCBYbDWCErc2adOYxMw9caeoArkxdXWkGPzALiY48uW6THHZSLJKNOvfjVw0UV6OqD7lWmtbV19dYgRzloFmKXz+JOBtmGQgZBejUw7F6LdAGmPOnvduH1qz2bGjPQZCYIHHgDmztVtHuvWcasKM2aET42EirWF2ajIhsZjPNOiEGvIIdPsO2KeaQMN1uZx8MF53iEtvw9+kM8rB1rHsWpV+Lz/fq5D72YyzZJZlkyz/nT2EBhBKc80q0yzZJqFDJyauimdbikyLdYO1nrw0pdy/u8cMs1MOFnPOTMoPf20Hnoufn7MRC1HmT7pJD0/5vCUXDLNHAgEcG2LiarBHCBVzZfJT9skWZpM54bzZCLjiCJ9yin16XL6LJmEa39z6KH8wVVAuu7kQKq5c/VnLf0+Q6YZxbmnhyPTOco0gwkTOPLL2kbMM23IAqtMf+hDedYMLT95cUtt/hIwyjQQBu3SyrRGWkuTaVYdYcn05z7HrRiwZPraa8PncNs8NKVZwD6XHM80UI5My7uhPWe5D5ZYMPfDRjABeGK0775cOoD3TDNK7cqV+gArz1BTBnNtFCxZZQ9AYk71fPZZPkIN2/9qbUuexxVX6OWLP+twzTXN76k2yE7o5XqaEupcuNdddgn7dUpg552beZdEiuTFz4yNZKNFSRKSrLXpceP4Q2C0aCiSjsH48dwmWJZMm83DkIXcJXsWrJet9HVZZRoor0xrA85IUKZf8hI+v113TaebNSt8DjeZFiW31MZMtjOXwY0lMhr22CN8au2GvQ9Bp07zyrluqs3EkxVGIV6/Xq+TnLaQo0yzqhZLprX3s7cXuPtuPV42e6CS4Mc/Tv9e3klWwdbe4cMOa35PtRupN20CGyvTmmc6Tl+HHLWSPbiHxfnn55VBqxPZR6S9n729QVDTrrtmDfDXv3LKNGPByiHTbGi8MbYBMWMdyNA2pKGWJnqdItM5BIq5dk6EC00RPeecsOxWCp0+4lSrY/FjahtIS3umS0dNKa1M5+4/KE2mmevfcgufX2mFH0iT33iQZidqWrocMs3EmS5t82BD2cnmKiYdwPfTGuSd1PbK5No8Jk5Mt9dDDw2f7GoQ45lmyqcRwBhxuNgSkLrV6niHHYAnngBmzixzXdbm8cc/cuXr6eEOTymtTEukkzHkmTYyPRyQZbLcAV4Ds3x455153jkG2qB42mnAe94Tvmte1BNPBA45hL+2RqaPPz59fHQuSts8WJxyStMuk8KECdy1WZLFKtNiR9LaVmkSmONrzYEWfm4olOnrr+fzGwoynSJ58eDGbtwrSaaZ2Li5ZJrduMdMHthT5Zjrsthll/D5859z1739di5fsUjUgbWrSNtjN7ey7+jhh+tpZs4s2wezqx4f/jBw5pl8rHPmuk8+ydu1GGX6ySd5Mn3MMel0EyZwYRelXEyovXXrRoVn2sj0cEAIZe6BHRoYxWPvvcteE9AJclwuLe3FF+ddm/XqlgI7ESlNpr/73bL5ifqvhajLJdOllOmccGhAeTLNrhpp4SgFDKndfHM+vntpuwyQfkY5SpFcsxSZvvfe8MlEEQH4srIKOxvNg1nqBvJC1KWw6aZcuFH5/RNPcPky9XLzzXp9SD6a351VpgUa2R8KsKsUpdHTE/pojdQKtLb/yCOhb2MUbAD47GfT6SZPDvsFtDYtvEN752SVZRQo0+aZHg4IoSxNuEotH+Yih9C++MVlrrnffuFTm2GXxnHHhdBVGkrXbWlInZU6rVNO7yulTHeSTB97LPCmN6XTyH1oG4gEpW0eLHJXIOogfQsT+aC0Mi1g22ppMs1srvKeP9iIbdsXXKCnYQho7kokUy8HHADsvjufTwnPdKt8hwusMl26bL29YRKkWXkE2jsiUVO0VU5p+1q/IPlpdSf9s/bOyThSMvRnh2DK9HBANtiNFjLNHrIybpweCojF3LkhOogWs7U0+vq4ZcaRQqY1sITi3HNDOKrh9kyz6mGOQitHqKcg9csSAOZ+Zs3iV6vY9sWqoOKDrYNzgewzMXnZCVjuO6LF884l02z52A1+Wlt45hmuXAJmYzKDoSDTufmknmEOmd5yS+AVrxhcudqBvL9a23rFK8pFJAHC3pclS/RTlQXaaZgSDECzsbHWG+krtXdJuImWTiYrw73iPAQwMj0c6KTNYyjANvzSHvHhJtI5YBXLTiH3sBh2QNY6Xxlg77wznS6XTJe2eWgYCjKdk44hPHPn8ooWQ7rZTV2SV0llevZs/mTZUso02z+z78jBBwNnnMHlyeQ3VPnkbABPIdfXz7yjTz3VfnkGAxmztTK+/OXhEJNS2HNP4De/0cn0b37TVHVTEDL97nen07ETHNlYqKWTd43lKMz+oC6HkenhgAxKpdXLUqpvLljrRmlC0834x3/sbt9XaWVawIZD07z7RxwBvOMd+vVGCpkuPfFj6k+sUAxK+XiBprpUUpnec089jaz4sZN2rXzsRkH2HZk5E/jGN7g8mfxY5IoYQ6FMp5Br8+gEOqWUisqtrcqw5ROSusUW6XSsMv3734eVWlaZZsl06UhnHUAXt+ZRhO23Bz7yEeCEE8rl+eCDzSNKhxOrVvGDTmllupvxzneGf92K3NUEZmC//vqgzJTA9tsDP/yhni6XTF922eDKJcgl06VXKnIOc2JQ8t2U/kAbiHMUUEaxZ/YyxJg3L/37Aw7g8sldvWFReuXywgu5dKXCf7LlHwlkulNg4+izG6FZSyZLpqV8JZXpefN4W0sXo6Nsxzn3Yeecd8518fp9IXz2s8BOO5XL70Uv6ozNQ4tJGmMsKdPdjlwyzdTdK19ZbgMiCykfS6ZLtUG5j9e+lktfkijsumv5qAI5ByVpYO+VHdgBro/J7f80//c223DtVdpUTmhDBitWlM2P3axdikyz77q8u91Mpju1B0bb5CnYd1+ujLn9vlYnIrJoZJ/1TAMh5KMWKWYEoGOt2Tk3A8DrADzaqTIYhhhjSZnudrCqoHTQnT6spg65GxBLDdjnnAMceCC/ulRyIvmnP5VfBi3pURyKqAzM87vhBuA//1NPd/PNIb999uGvn4KUjYl0kgMtMkMOnniCV/tKvevHHQd8//t6OpkYdrPY0ikyfdBBZa/N9vusiCLkWBMzcm0eowCdnBp+GcA5AC7tYBkMQwU5JczQHWAViuE+4CcXuTaPUgP2jBmcp7t6/RIo7b+eOTMM2qWQ4/Vl0zIT8fHjgZNP1tOx9g0W8o4cdVS5PKdPB172snL5sRtRS+LYY7l07IbVTqLbozOxYMk0e6Kt1BmrTHdzHRdGR8i0c+6NAJ7w3t/pulUBMwwO996rh+MxDB8OPxy4lJi3TpsGLF5c7rpHHgm87W3l8usUmc5FN6tu8+eXzS9nAsam7eZVLSESb35zuTw7aXno1BjcCcI/1sCS6YsuCp9av2rKdC2G7A12zl0FoNWW1I8D+BiAI8l8TgdwOgDsyJruDZ3Hrrt2ugSGGIccwh8vXDJKzE47AT/+cbn8csl0qaOcc/DGNwJvfevwX7dTyCGCJZXpTkGi9pScMHWKTH/oQ3qs4qFCyYgypTHWlGmBFpEqV5nu5joujCF7g733LXfqOOf2AjATgKjS0wHc5pw70Hv/ZIt8vgPgOwAwe/bsUdLCDQZDW8j1THeCTDMrAKMJOQPmaFCmhXCUJMCdWsn40pfK58lGNSodvaQkRguZzr0PrR2K5Yw90r6bN5kWxrDfqff+zwD+d1u1c+5hALO9908Pd1kMBsMIA0uSLfzW8IEN0dnfz22y228/4PWvH1yZhhKyKjIalOnSWLYMmDqVS2tkenhQsp1OmBBOT9VWL8U6NIZsvKPkDTYYDGMC0jmzamg3e5dHC848k9sI+MgjnIdy7tzBl2koMZqU6dJgw/EBRqaHC6Unan/4Q9n8Rgk6Tqa99zt3ugwGg2GEgd3YMlpISjdj/HhuM9koOJgBQHkyfcwxYU/DWMNoIqzdDKYP7O/PiwPPYgzVccfJtMFgMGSDPbp9tCyfG7oHpW0ev/1tmXxGGnJUbEN7uOkmTngYQ6R3qGAjjcFgGFlYvJg/rtvItKE0hJyMIT9ocTz0UHeHxhst5PLAA7l0uVE/GHz5y2H/wxiBjTQGg2FkgQ3dd/bZ3T1gG0YmxlC4ryHDrFmdLkEao4VMs9hmm/KTww9+sGx+XQ4j0waDYXTiC1/odAkMoxFGpkc/xhqZvvNOW2kZJIxMGwwGg8HAYgyd6jZmMdbI9NZb62kMSXRxZHyDwWAwGLoMO+4IfPKTnS6FYShhEyZDJoxMGwwGg8HAoq8POO+8TpfCMJR43/uAOXM6XQrDCIKRaYPBYDAYDAbBxInAy1/e6VIYRhCMTBsMBoPBYDAYDG3CyLTBYDAYDAaDwdAmjEwbDAaDwWAwGAxtwsi0wWAwGAwGg8HQJoxMGwwGg8FgMBgMbcLItMFgMBgMBoPB0CaMTBsMBoPBYDAYDG3CyLTBYDAYDAaDwdAmnB9BZ9A7554C8EgHLr0lgKc7cF1DPaxOugtWH90Hq5PugtVH98HqpLvQjfWxk/d+Ky3RiCLTnYJz7lbv/exOl8PQhNVJd8Hqo/tgddJdsProPliddBdGcn2YzcNgMBgMBoPBYGgTRqYNBoPBYDAYDIY2YWSaw3c6XQDDC2B10l2w+ug+WJ10F6w+ug9WJ92FEVsf5pk2GAwGg8FgMBjahCnTBoPBYDAYDAZDmxiTZNo5d6FzbrFz7u7oZy9zzt3onPuzc+4y59wmjZ/v7Jxb7Zy7o/HvW9HfnOicu8s5d49z7guduJfRgpw6afxu78bv7mn8fkLj51YnBZD5jrwtej/ucM5tcM7t0/id1UchZNZJv3PuosbP73POfTT6G6uTQsisk3HOuf9o/PxO59xh0d9YnRSAc26Gc+6aRpu/xzn3gcbPN3fOXemce6DxuVn0Nx91zj3onPuLc+6o6OdWJ4NEbn0457ZopF/pnLugkld314f3fsz9A3AIgP0A3B397BYAhza+nwrgXxrfd47TRem3APAogK0a/78IwBGdvreR+i+zTvoA3AXgZVFd9FqddKY+Kn+3F4D5Ub1YfXSgTgCcBODixvdJAB5u9GVWJ52rk/cC+I/G960BzEUQtKxOytXHdgD2a3yfCmAegD0AfAHARxo//wiAzze+7wHgTgDjAcwE8JCNJR2tj8kAXgXg3QAuiPLp+voYk8q09/46AEsrP34JgOsa368E8HdKNrMAzPPeP9X4/1XE3xhqkFknRwK4y3t/Z+Nvl3jv18PqpBgG8Y68FcDPGt+tPgois048gMnOuT4AEwGsBbAcVidFkVknewC4uvF3iwEsAzAbVifF4L1f6L2/rfF9BYD7AOwA4DgEAobG5/GN78chTDqf997/FcCDAA6E1UkR5NaH9/457/31ANZUsur6+hiTZLoGdwN4Y+P7CQBmRL+b6Zy73Tl3rXPu1Y2fPQhgt4YNpA+hMcR/Yxg86upkVwDeOfc759xtzrlzGj+3OhlapN4RwYlokmmrj6FHXZ38AsBzABYiKDr/5r1fCquT4UBdndwJ4DjnXJ9zbiaA/Ru/szoZAjjndgawL4CbAGzjvV8IBIKHsDIABGL3WPRnjzd+ZnVSGGR91KHr68PIdBOnAnivc24uwnLE2sbPFwLY0Xu/L4APAfipc24T7/0zAM4A8J8A/oiwjLpu2Es9ulFXJ30IS0Fva3z+rXPuCKuTIUddfQAAnHMvB7DKe383AFh9DAvq6uRAAOsBbI+wfH2Wc26W1cmwoK5OLkQga7cC+AqAGwCsszopD+fcFAC/BPBB7/3yVNIWP/NWJ2WRUR8tMRLqo6/TBegWeO/vR7APwDm3K4A3NH7+PIDnG9/nOuceQlBGb/XeXwbgssbfnI4weBkKoa5OEAaka733Tzd+dzmCb/Fqq5OhQ6I+BG9BU5WWv7H6GEIk6uQkAFd47wcALHbO/QnBUjDf6mRokRhL1gE4U9I5524A8EDjd1YnheCc60cgbj/x3l/S+PEi59x23vuFzrntACxu/PxxbKxwTgewALA6KYXM+qhFt9eHKdMNOOe2bnz2ADgXwLca/9/KOdfb+D4LwC4A5lf+ZjMA7wHwveEv+ehFXZ0A+B2AvZ1zkxpLPocCuLfyN1YnhZGoD/nZCQAurvkbq48hQKJOHgVwuAuYDOAgAPdX/sbqZAiQGEsmNeoCzrnXIajS1m8VhHPOAfg+gPu89/8e/eq/AZzS+H4KgEujn7/FOTe+Yb3ZBcDNjbysTgaJNuojlVd310end0B24h+CerYQwADCzPQ0AB9A2Gk6D8Dn0DzQ5u8A3IPgd7sNwLGVfO5t/HtLp+9rJP/LqZNG+rc36uVuAF+wOul4fRwGYE5NPlYfw1wnAKYA+K/GO3IvgLOtTjpeJzsD+AvCJqyrAOxkdVK8Pl6FsPn2LgB3NP4dgxAN4mqElYCrAWwe/c3HEaJ4/AXA661OOl4fDyNs6l3ZeKf2GAn1YScgGgwGg8FgMBgMbcJsHgaDwWAwGAwGQ5swMm0wGAwGg8FgMLQJI9MGg8FgMBgMBkObMDJtMBgMBoPBYDC0CSPTBoPBYDAYDAZDmzAybTAYDAaDwWAwtAkj0waDwWAAAMgBVQaDwWDgYWTaYDAYRiCcc//inPtA9P9/dc693zl3tnPuFufcXc65T0W//7Vzbq5z7p7Gcbzy85XOuU87524CcPAw34bBYDCMeBiZNhgMhpGJ76NxJG/j6Oq3AFiEcCTygQD2AbC/c+6QRvpTvff7A5gN4P3OuS0aP58M4G7v/cu999cP5w0YDAbDaEBfpwtgMBgMhnx47x92zi1xzu0LYBsAtwM4AMCRje9AOFZ8FwDXIRDov238fEbj50sArAfwy+Esu8FgMIwmGJk2GAyGkYvvAfgHANsCuBDAEQA+673/dpzIOXcYgNcCONh7v8o59wcAExq/XuO9Xz9cBTYYDIbRBrN5GAwGw8jFrwAcjaBI/67x71Tn3BQAcM7t4JzbGsCmAJ5pEOndABzUqQIbDAbDaIMp0waDwTBC4b1f65y7BsCyhrr8e+fc7gBudM4BwEoAbwdwBYB3O+fuAvAXAHM6VWaDwWAYbXDe+06XwWAwGAxtoLHx8DYAJ3jvH+h0eQwGg2EswmweBoPBMALhnNsDwIMArjYibTAYDJ2DKdMGg8FgMBgMBkObMGXaYDAYDAaDwWBoE0amDQaDwWAwGAyGNmFk2mAwGAwGg8FgaBNGpg0Gg8FgMBgMhjZhZNpgMBgMBoPBYGgTRqYNBoPBYDAYDIY28f8BMshmO82482cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "data['season'] = data['CO2'] - data['trend']\n", + "plt.figure(figsize=(12,4))\n", + "plt.plot(data['dates'], data['season'], label='saisonnalité', linewidth=1, color='r');\n", + "plt.xlabel('year');\n", + "plt.ylabel('CO2 variation(ppm)');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "La saisonnalité peut être représenter en fonction du jour de l'année. On peut alors identifier les périodes de maximum annuel (jour 100 à 150, de mars à mai) et minimum annuel (jour 270, septembre)." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt4U9ed7/3Zsixbko0t2cbYxvgiO6YOBQecQLiEgElapgzJdEo6nacTpmc6JGeek3qSnJ4z9M20p23e5sz0JD00Z96TMJcOmZ5pGvr2bXiSpm0CJmAIDuYSElwcW75ijJEl+SbJ1m2/f2zthWRsMBdjA+vzPDzG0tbea0vW+q31u3x/iqqqSCQSiURimOkBSCQSiWR2IA2CRCKRSABpECQSiUQSQxoEiUQikQDSIEgkEokkhjQIEolEIgGkQZBIJBJJDGkQJBKJRAJIgyCRSCSSGMaZHsDVkJ2drRYXF1/163w+H1ar9cYP6AYjx3njuBXGCHKcN5JbYYwwM+M8duxYv6qqOVc8UFXVW+bfsmXL1Guhrq7uml53s5HjvHHcCmNUVTnOG8mtMEZVnZlxAo3qFOZY6TKSSCQSCSBjCBKJRCKJIQ2CRCKRSABpECQSiUQSQxoEiUQikQDSIEgkEokkhjQIEolEIgGkQZBcJR5fkP6RMTy+4EwPRSKR3GCkQZBcFbsbu+kdHGV3Y/dMD0UikdxgpEGQXBVbqgvJy0hlS3XhTA9FIpHcYKRBkFwVdquJ7LQU7FbTTA9FIpHcYKRBkEgkEgkgDYJEIpFIYkiDIJFIJBJAGgSJRCKRxJAGQSKRSCSANAgSiUQiiSENguSG4PEFefV957RWMN+Ma0gkdzLSIEhuCLsbu3nhnTPTWsF8M64hkdzJGGd6AJLbA71yeTormG/GNSSSOxlpECQ3BLvVxBNrHbf8NSSSOxnpMpJIJBIJIA2CRCKRSGJIgyCRSCQSQBoEiUQikcSYcYOgKEqSoignFEV5a6bHIpFIJHcyM24QgFrg9zM9CMnNQxaYSSSzkxk1CIqizAe+APzTTI5DMj1MNvFPtcDsegxHJKpO+FppjCSSyZnpOoT/CfwXIH2GxyGZBvSJH0ioH5hqgdlkr58KXn+QF+ovfe31nFMiud1RVFWdmQsryibgD1RV/StFUR4E/rOqqpsmOG4bsA0gNzd32euvv37V1xoZGSEtLe06Rzz93G7jjERVvP4gNouJJINy1deZ7PX64+mpyQyPhsRP/bhIVGVoeJiQIYUs68SvvdYx3Whut898JrkVxggzM85169YdU1W1+krHzaRBeAH4MyAMpAJzgF+qqvrVyV5TXV2tNjY2XvW19u/fz4MPPniNI7153Mrj9PiC7G7sFqt+/f9X23s5/jzjX6s/5x4ZY+fBdlY5sjjkdLOuIoe6ZhfbNy7kibUOXn3fSfDsJxwP5vHiY1Wzuv/zrfyZzzZuhTHCzIxTUZQpGYQZcxmpqrod2A4Qt0OY1BhIZjfxrhiAF945gz8YxmIyXpVhmMil4/EF2XW4nSNtHhraPSwvsQNwd0EGD9yVw4bKXFaU9iW4ovb0N1P3sYvdjd3SNSSRTJGZjiFIbhMmigv4gxExuW+pLmR3YzcbKnN5r6kvwUjE7wr012+ozOXV953idTv2torzVuSms37h3IRzONZe3ILbrSYKbWa2b1wghfAkkqtgVhgEVVX3A/tneBiS60AXnhvvOrKYksSk/sI7ZzjwqYtDTjf+YJinH6oALt0V6G6feGPiD4bFDsFmTb7iqj/JoMidgURylcwKgyC5NdAn+7Lo5HEnfXIf7y7SDYTbF+SQ000gGBU7gIl2BRsqcznY4sI9oqWHPv1QxSXG5nLxBj3t9FriGBLJnYo0CJIpo0/2f7/KOOlkq0/W8e6iJ9Y6xA7C6RqhpW8YFD3OELlkF3Gkzc3i+RnUt7qpb3Vz+twg1cV2tq4sTogrPPvGSeqaXRxpc18SPJ4s7fRyRkQiudORBkEyZYQ/fqh10lz+eNeRxZSUsOq3W02819RHXbOLxfMz2L5xIf5gWBiB5zZVcqTNTV2zi/LcdFY5sghHVQ453RxyugHEOZ9/q4m6ZheOHCt1zS52He4QhsVuNWGzmNi+seySGIKsQ5BIJkcaBMklTLSKjn/sREPXhJNtPLphiI8FPLHWkRB8tltNeHxBGju8MSPRw4uPVYnU0kNON8tLbDy+YgFt/X68viA79nZysKWf+tZ+1lXk8NymSvacPEdjh4dDTjcHW/pZVpTJ4qSLgez4+7hRXdfkTkNyOzIbtIwks4yJpCX0x3Yd7sDrDyZM6K++7+R4p5ev/eRDnK6RhHNtqS5k+8aFYgLW4wm7G7vx+ILYrSaqi+2xoxVhSMwmba3S0O6lrd9PfWs/zX1DAORnpAhj4MjRsosOOd3YLMnUt/azY28rXn9wwvvQz3+9k7js7yy5HZE7BMklTLSKvhgbCNM7OCry+/WJ0ZFjxeny0eVpZPeTK4GLxWnjXTPxgWdQCAQj1NaUsbkqX7iXNlfl88vjZ+n2BijNtrKmPJuegQAN7V46PQEa2j0snt+DxWTE6xsDwOsPsbosm8q8OUSjXWyozBVjv9EretnfWXI7Ig2C5BIm6l0cHxvYV9fB+nET4r3Fdr75i49wunw8+8ZJFs/PZMfeFg586hIB4fFuG38wwo69LQCsq8gBFHbsbWHfmQucGwjQ7Q0AiDTTH7zdBEBFbhrrF84VgeviLAsAq8uy+fFX7mHX4Q76Loyy5+Q5nn7oLoBLXFfT8R5JJLc60mUkSeBKaqB6wDbe5fPEWgdLi2zsfnKlkJEAlXUVORxyutmxt0W4VuJX6pur8lldlsXSBRnUNbsIBMOsq8ihod0jjMHqsmy2rizB4wvS1DsMgM2aEjMqKstLbHS4/awuy+LHX7kHu9VEIBgGED9BS2ldV5Ejdg0SieRS5A5BksBUsnAmS+m0W028+FgVuw63EwhFKbRZWF5iY94cMz/7sIt7i+28/6mLHXtbRLppfatbrPDNJiMvPlbFK/udNHa6SU5K4pmH7mJ3Yzf+YEQEkreuLBbVy4sL5gCQn2m+6ApSlISfHl9QZCWtKO1LqGqWSCQXkQZBksBUfOOTpXTqq39Q2HmgTTxut47g8YX4D7s+ZIFNm/x7B/xkWkwUZ1nocPtx5FjZXJUPgNlkABQa2j383W/O0NDuYZUji20PlIKqsutwB5ur8vEHw/zr4Q4A3m3qEzsWc3Js46tqriJ/MEJds4viLAvukSBO18gl8hkSiUQaBMk4puIb12UhdPeSPrHqu4vamjJqa8rx+oK09Y/w5epCvvWrjxnwhxnwa5lCH7RddAvZrck4XT6ef6spFntojbuaKtxQ54dGcbp8AASCEVouDDMYCGM0KHj9Ib7xsxOUZls52e3lCzkGRkMXYwzLS+w0tHvYebCNlgvDMbfWxKmpEsmdijQIksuir/rjRel0xruXxu8unn3jJPWtbpYV2TAaDECEFKOBsXCUpQsySTJoaabHuwawW5Opa3YRikS5pzCDE92DzM8084MvLsZmMYmq5PmZZs4OBHjr1DnODY5isyTj9Ydw5Fipb9XqEwAeskfZe6YPc7KBDrefwUCIx+8vwmYxsfauHEALhOvn1e9BIrmTkQZBclni5ST0ibMi9ly8ARif1vnq+07qml0ie8jrD2G3JvPSlipOdA/w5skeOtx+IlFVuI2KsyzUt7optJkBKM62YrNoq/bF8zMoz02nscPD2YEA5wZHAS3V1GZJZlH+HLLTUpg3J4WjHV5MSX56BrRjDIp23KHWfnY/uZLdjd0x46NS39rP6rKsSyqqrwVZrCa51ZEGQTIheg+CQDBKbU05m6vyRc+BU0e1jKF495Ke1qnrCsUL1u052UNtTTlbVxYDsOuDDjrcfmyWZOE2Wl5iA6DD7afbGxAr/mffOEn53HR2HmwTuwGADLORwUAYc7IBrz/Emx/1Alr66rnBUZKNBhYXpNPpCTAYCAu31K7D7QDCpVXf2k9lXgbvNfVdd1qqlMWQ3OpIgyCZkPgeBNs3LsSRkyayc+KVRPVjdXVSXVfo6YfuEtIVO/a2UltTltDk5r5iG4qiBY4B+obGYumj2SwrymRzVYHIDApFooC2ys/PSMUfjDAQCIliOHOygbV35TA8GuaL9xRwsnsA31iAUz1amqpWrJYuqp937G1h+8aFQDKgBbFvRKGZLFaT3OpIgyCZEL0HQSAYxR+MJGTmxKed+oNhduxtZd+ZPkDvUazJYztdIxxs6WfbmhL0ojMdkzGJ+tZ+irMs5M5JpaHdgyPHyncfuVvIUWgprB14fUH8wTDJSUkA4tidj1ez7bVGnC4fLRdGcLp8HO/yEghpBqRynpXhsShDgTF2HtTGYTYlUVtTzobKXH7+YRery7LZXFWQIKlxrS4fWawmudWRBuEOZrzPe/zvTz9UwY/e/ZQde1s41ukVAduyuLTTXbG0z4Z2LwDLS+wc6/TidI3wzd0fcbxrgKFAkHULc4VhQAFivbzrW/t5pCqf5CQD9a39fOfN03z3kbv5+YfdfHR2AFVV+bBDO7cmb1HAt3/1CXcXZGCzmPjhl5bwzV98xNdXl/C9t5oIhKKkGrW007MDYwyNhunWXs5HZwdpaPewfeNC3mvqY+dBzX30/FtNQlRPunwkdzLSINzBjJ8Ax/+uKZFqLp3KvHTWlGeLGII+YepxgUAwjNlk5Finh/pWN8+/1UTfkBbUbe4b4VTPENs3LuSJtQ5+9G4zO/a28viKBSQn5bC5qgBAZAl9583TwvgAFNrMdHsDBEJR3mvq4+6CDHYeaMOcnITFlITT5ePVA20EQlEyzMbYDqOfoVGtUjk/I5Vzg6OEIhFWl2WJArlta0r46OxgzM3VztaVJfiDYdwjQX707qcJchsSyZ2ANAh3MON93uN/7jrcziGnm1WOLJ58sExMjiOjYZZ+/3e8tKWKxYWZWExJYvJ0ukZ4/q0mnttUya7DHbz2QadIM/UHIxzv9PLmyXMAHGjpp8PtZ0VpH5urCnjz5Dk63H5CkQiLC9JFDABg2wOlmJMNvPDOGVY5sgBo7PDwvUcXAdDj9dPh7gLgeNcAn6sysHRBJtVFdr58XyHf/tUnoqdCp/sE3d4ARfaL9QmBUFTc386DWlHdqbMDlzTekUhuZ6SW0R3M+Cwhrz9Rv8jr0zJ6dJ++rnHU7fXj8YV4ZvdJsat49o2TeHxBbBYTi+dn8POj3aQaDSKF1OMLsmNvC9/8xUd0uP2iPmB5iR1/MMyeWBqqI8dKQ7uXOeYUAJGJ1NI3zNaVJWzfuJDvPbpI6CTtiRmXratKKLJbGAyEsVmSCUaiHO8aAGDPyXMEQhFxX3pmU6fHz2+bzgNwssvLD379e460aUajOMtCXbNLyltL7ijkDkEiJvWDLS7qW934g2GefqhC9DZwukYS6hG+kJOC0RDhr9Y6uDA8Rn5GKnXNLl7Z30pWWkpCpfG2NSW0XBjhqfXl/Ob0eY44+0XKKIDRoLBjbyuFNjPLS2z8189/hqMdnli66jlR7fzcpkqAmPE4x3ObKllR2od7RDM0bl+QeRmpdHr8/OGSfNJCnQD89vR5Oj3+Se99MBCmyG7hww6viFXovRbGF+JJJLc70iDc4Xh8QfyxfgSBYJT6VjeBUJRX33fy7MMVmPa18NymSmwWEwc+1dJKV5ijhKMGftrQRYf74mT7zifn2fEn97C8xEYoolJdZBOuJo8vyN7f9wnpieIsCw9X5vLl+xbw5//yId1eTe765X0twk1jMSWxY2+nSHvVU1h1AqEIb53Sdgi/PtXL2YEA6ypy+OsNd3GiwcW6Cq29ps2STIrRwPmhMeakGpmfmcrZgVERY6gqzEBR4L4SO5nmZMwmIzbL5TOGZBGa5HZEuoxuU64kY62z63BHLB1U4ckHHWzfuFD46o92ePjJ1+7DkZOG3Wri7oIMQNMyAs3ltHRBhjiXPqE3tHs53jWA2WTklf1OvvpPR3hlvxOnyyd0hTrcfloujGCzmEhP0f4MrSYDdc0u4X6K77amG67HVxSxuiyLQDDCzgNtomJZNwa6MUkyKLz4WBWOHCtef4i8jFQcOVYerSqg6fwIQ6NhMszaeuh41wAdbj/nBgK0XBi5RK57ovdRdkyT3I7IHcJtytRTKFXxU8/F33W4g9qaskvlHFRVvKo4y8LxrgFWl2WJxwptZgptZhEABlUEaEORaEIrTV1DaHdjN8NjWt1AutnEvIwk8fgTax0JMY4de1tYV5FDfaubyrw5YieyqCADmyWZzVUFsTRYlcVJ2v3sfLya599qIicthTeOnWVVWTa1NeUiGwogPdVIcZaF0pw0Xvugk3UVOQlFdxO9j7IITXI7Ig3CbcqVJizd5bG5qoBAKEpjh5fjnV5e3tdCXbNL5OonTIax/gKBUIQOt59Vjiwq8zMozdZcM93eAK8d6aK2phyLKYkNlbmiMnnJfJtIZd11uIPyueksnp/BlupCKnLTeWb3SR4oy+aNY2cTJuR4cT3QBOk0FBravSKVFS4aDYD/dq+CxxfEkZPGi49V8Uf/cAiANtcIP/7KUgKhCG0uH+cGR0XjnUcsydTWlAOq6Mm8oTIXfzCCPxgW8togi9AktyfSINymXGnCig8SB8NRDjndnI+1wNQnZK8/yMGWftwjY3h8QdFnwJRk4PH7i2hzjbDzQBvrKnJE5k5+RipH2vpFodr//uoy4Wt3ukZEZTHobTPhRLcXjy9EpiVZ7CL0iVd3abl9QbKsJt7/9AJ1zS4Wz89M2HEAQj4jFIkyPHpxl7G7sZtOjz9WCb2I3Y3dCf0aAFY5shLkMk7F6hM0VBG7ePqhCiSS25UrGgRFUeYCq4B8IAB8AjSqqhqd5rFJrpHLBTzjV9y6gum2B0oxGQ1svb+YXR908NymStHfQC8W03WAVpdlEYz00e3xU9/qZl1FDk+tL6fN5aPT4+fc4CjnBkexW5O5t9ieYJiefeOkiCPMt5nj0jq1nYfZZLzEiOltME92aVlAq8uyYxXPF3c/P3q3OXYOlfpWN7U15eSNDbM+LvZQW1PG1pUlWgvQahP+YASvP8gnPQMkJyXx7MMVfOfNT4TaaqHNQm1NYjX2RWkOieT2ZFKDoCjKOuBvADtwArgApAKPAg5FUX4BvKiq6tDNGKhk6kzk99YNga49BAi5hvGS1XqbyQ2Vufz29Hl6B0apO9PHqZ4hFhfMwZRmIMVooDjLwlPryzna4aHTo/U1Ls1JY8/Jc3h8IV56t5k15Tni/FrqaJPIWtKvDWAxJSXIaOv9F3Q31cJ5c7gwPCYqmOtb+7GYNG0j/X62PVDK9o0L2VCZy4mGdvFe7NjbIsT1QGHrymK2rizm2TdOcrxrEIBvxnZHQMz11cm2NSV4/UE+cPazvMQuOrpJJLcrl9sh/AHwl6qqdo1/QlEUI7AJeAj4f6dpbJJrJF56Wg8KX+xmVk5tTTn+2Mo7vvOZ7qfXJ+bn32oSxV29MRmKUz1DPGSP8pvTfQAiTdQfjKAFqBUGAiGK7BZCETXBMDly0vjJ1+4T44zfDUwko13X7KK2poztGxfiD4ZFimu8jAbAgU9dHHK6MScbhMJqcHA0YSfk9Yd47QOtNsFiSsIfDFPX7OK+YhvhqMrxrgEhcaHE7uRnR7to7PSK9+C9JtmPWXJ7M6lBUFX1m5d5Lgz8alpGJLludDeNPrmCrl6qT9raqvrU2UGhKBrvp/f6Lzal1ydJ0ITriuwWksLaxGqzJPPU+nLhltqxt5Vta7RVutsXZOeBNlaXZU85E8cTUzUd339Br2PQUC7RGHr5T5cm7DY2VOZysL+ZNbFdRl2zi6ULMgEoyEwVRW8AF4bHsFk0GWyDoiT0XBgejeAaHgNgTqqRHq8/IbAskdxuXLEOQVGUTEVRvqEoykuKovxY/3czBnenM9VagsleE5/HD5o2j+ZeUVhdli16F+hG4nenz/PCO2eEMVhXkcOmxXkAFNkt/OCLn8UxN41IVMVu1SbOozHxO/0cp88NsqW6UASglxVlignU4wvyo3eb+dG7n054T3oPBospSXRKS0RfuyeiG0D9Ou819TE8GhKVxrU1ZWJi7xkY5b2mPrauLBad2iKq1tf57ECAP1ycT6HNTOW8dJYuyGRdxVyKsywMjYZ57UiXqJGQSG5HppJl9GvgCPAxIAPJN5FrkWMe/xrdJaTn/a+ryGFzVb5QMQWVrStLONY5INpJPrW+XKRafn5RHi0XRqhrdokJdk9/Mx5fKCE9dOvKEpGZo6ezHmnzcKTNzf4zF9j1QQfluekJ2T1PP3RXwtjjV/jf+NnxBBkNPRYAYJkg+BzPvcV2Gs8nUR0LaltMRrq9gVh19Dyx63igPJsOdxdJCnh8WsOdrauK+d6ji8R79tqRTh5fsQDox241UdfsYsNL+3lpSxXNfcPX3XKzP5bBJXcdktnAVAxCqqqqz0z7SCSXMNVagvhJaaLX6D2EV5dls3h+BntOnuOQU8sQ0jNvlhVlUt/aj6rCb06fF53M/u43Z1BVlaULMnGPaKvsQpuZ7RsXJFzX6w8SikTZtqZUxCz0c7RcOInHF8I3FmZ+ppmzAwGRPRRPvKtLLxrTM3viXV5XckG9vK+FpaYIL+9r4Sdfuy/hPYmfeG1WTUDv3pIsMi3aZP8X/3qUhytzMZu0ArniLAsnu710uP0smZ/BqbODeHwhal8/weBomN+ePs+a8mzxPl4Nuxu7RaxD1jRIZgNTMQj/pijKXwJvAWP6g6qqeiZ/yZVRFKUQeA2Yh7bz2Kmq6o7rOeftxlRrCeDiDiL+NU7XCN958xNKs9NEwZXeznJ8vv/mqgLeOtUrJKJBixGE4lRDj3cNkJWWQoVB4Ym1DvafucAzu0/y0pYqdn3QQX2rm+Qkg6h4do8Eaeod5OurS8UO4cMObYegp7HqxBu3LdWFuH1BTvcMiswerWFP4o5iMp7bVMnBA/0893DlZd/HrSuLRXYTwJZXDuN0+dh5sJ2lCzJZ5chKeD/e/7SfcFTFaFAosJkZ7B3meNeAeH+2riy5Kn2jLdWF7BtuZb2sdpbMEqZiEILAD4H/i3idAyi9zmuHgWdVVT2uKEo6cExRlHdVVW26zvPeUGaziNmVdhDPv9VEfaub+la3MAAWkzGh30EgFMWcbCAQjOB0+Si0mXHkWAlHVRraPTyUY8U9EmR5iZ28WED2REMrHl+Qv/75SQYCIf765yf5lz+/ly6Pn6fWlwPaJPytL3xGjGVxYSa7DnewbU0pZpNBNNbRGW/csqwmDjnd15TZ48hJozvLImS74xn/eca3zdz5eDVf/H8OMRgIc7xrgMdXFNEzEKA028qJ7gH+y+cq+Kf6dpwuH0aDQobZSEFGKk3nRwDlql18dquJ7LSUWfd3JblzmYpBeAYoU1W1/4pHXgWqqvYCvbH/DyuK8nugAJhVBuF62ipOhzGJP+eVeG5TJaHIJ1TmZYgx6Pegdy3TWV2WDSDkJ3SNotZYwdnnFs3j6YcqRErnrsPtLLCbGegJ8fDduRzt8OB0+Tja4aE423rJfesxAF1aejJXl54qOz4F9ka9j5N1iTvS5ubFx6p48K4c3vyol8q8dM6cH6LD7ad/ZIyRsQgv72vl376+XATdAT5bkML2jfMTPg+pbyS5VVFU9dKsjYQDFGUP8Ceqqk4uKn+9g1CUYuAAsGh8oZuiKNuAbQC5ubnLXn/99as+/8jICGlp15Y/HolqujY2i0mofE6VC8Nj9A2NkjsnlbnpKTdknP0jY/QOjpKemozFlETf0Ch5Galkp116/onGrj8Wjqoi8yYtxUh+phmvX6vqTTUaMBgUUGEwECIYiZJiNIgV99DwMGOKCdfwGGkpRhbYLYSjKr2D2liGR0P0Dmr3bVAQGUPd3gDDoyHSU5MZHg0ljFsfV1TlknvS73my+5zqexmJ3XMgFCE/00yK0UAkqopx5WWk4h4JEoxEMSUZSEsx4vEHMSgK0dj3xJpixJKcRCgSZWQsTKHNgtmUdM1/I9fzt3kzuRXGeSuMEWZmnOvWrTumqmr1lY6byg4hApxUFKWOxBjCN65jfAJFUdLQitv+eqKqZ1VVdwI7Aaqrq9UHH3zwqq+xf/9+ruV118uP3v2UHYdaqK0p4bEHr+z/jh/nZKtikTH0sYvammIsc4zcE8u3H3/sq+87eaH+DNvWFNLUO0xlXjpmk5Ed9S08vmIBB871c1+xjbwMCw8syRfSDalGGA1HYmmZETJSTQyOhtm2JpdvfaGS/fv3cyKUx47DWjzia+u1ncMLR8+wfWMRG5bk8vZbTRRGzDGxu2KefqhC3JNeH7A+brz6WGtryrHMSUp4Tn/d+qvYIUz0mb/6vpMXPtB2B9s3Fgl30YYHtLqEblR6R0d54+RZHquez4etHjrcUdJSkhgZi8SdKYLdmozHp+LIMbJpcR476ltZV2FLaLk5vup6oh3OROOcjW7KmfoOXQ23whhhdo9zKgbhV0xTEZqiKMloxuD/qKr6y+m4xkwyPmh5NcS7NuL93HarSUhO6BPNnpPn2LG3Rbg99ElkQ2UuBz518fbHvfQMjFLf2k9tTRm1NeX84lg3PQOjsRVyD6fODojMntGwll3c4dbkKDrdfgZHw0IVVLu3koR4RPzP+KwmjYv9E3SX1fi4wGSZQONfd63oRW/bHigFVcUfjMT1gtCql7VKbi3g7h4J0uH2Y7Mk873Nd/N///r3nB/S1kN6/YLdmhyTu1BYV5GTINsNiQKCuotpKvdxPW5KieR6uKJBUFV1l6IoJmAhWjC5WVXV667MURRFAf4Z+L2qqi9d7/mmg+tdqV3tRBaJqkJqYvwEG+/nHl+JXFtTljAh6a/xB8MJWTJLF2SKTJieAa36OCc9hS8uLSAQjFJos3Cy24PbF2KVI4u8TAu6YJymFHq3GOf49yX+XuPjAVNtQzndctJ60dv2jQsBEiZ/fXzxaa2a7hF4/SF+eaIHo0ErtEs1KjxwVw6PxPovxN+f/p5oEt/tBILRmAFCSH1PBdlrQTJTTEXt9A+AVwEn2lKvRFGUJ1RVfef8r0k6AAAgAElEQVQ6r70K+DPgY0VRTsYe+5aqqr++zvPeMG7mSk1rXh/ghaOJRWWgTQz6KnPX4XaxMtd1ejZXFbC5SovHV+Sm88j/qqfbG+Dx+4uorSnjSJubhnYv1UU2dh3uIBAM8/iKIpr7hlkyX5N02HlQk7E+1TMcS1EFUNlcVSCuF19z8EL95O/L5XYCE933tRrdq3ntRJOsLmGx63B7bMej7RIsJiObqwpo7PASjqrUNbt4rHo+ez46x2goymsfdFKQmcrBFhfVRVmX3HN8q099N1FbUz7l+5O9FiQzxVRcRi8B61RVbQVQFMUBvA1cl0FQVbWeWa4nfDNXarsbuwmOhlhXkXfJ9eLdRG5fkB17z+APRrDEiqdWlGpCc3XNLro8ftGboM01wk+/voLjnV6++YuPGA1H2XlQc5Fs37iQAps5QfCud8BPcZYFr2+M145omoaBYISWCyNsqMwVE5rNYmL7xsSOavo9XO3Efj1G92peO36S1XdY8dXP43dlh5xutq3RDEWmxcRo6GKhfs/AKD0DoxzvGsRsMiS83h+MsG1NCU29w0KdNRCMj0FIJLOTqRiEC7oxiNGGJoV923MjV2pXWs3qRUovrqsCSGxdGTcWTfsf4it2tZVuD7U15ay9K4e/+80ZQOW7j2gSDLq0c15GKrU15QRishRr75orpCzea+rjjWM9AMy3+UUhmy5p0eVpZPeTK0W/4vHiecA1TezXY3Sv12CPr36O/7z13ReKEmvIk0FtTTlef5D3mvqE4F9BZip1Zy5wqmeIfWcusGR+BjsPtlNbU8aPv3KPkOAwmy7Khl1N6rBEcjOZikE4rSjKr4E30GIIW4CjiqJ8EeB2DAZPB1dazcYXKcVPtOOPjQ/mev1BjrS5cY+MsfNgO9s3LqQ428r6hXOF/949MobT5SNJgfQUI6BiNhnYsbeV1z7oxOsPsXh+D5urCvjt6fP0DY1SmmMViqLxXc7GSyxMNCFf7SQ3vjjsanYX12uwJ6t+1qW/65q17mvxzXV+9G4z5wZHWV5iJxAMc6pnSMRjGto9nPVq2dkHW1yAwncfWXRJHCX+b0H2X5PMJqakZQT0AWtjv7vQmub8IZqBkAZhCky2mp1otXi5le/4DmR1zS78wQjrKnK4t9guVqT7zlygod3D8hKtB3FEhXdO9/HO6T4KbWbmmJOEzLPXF0rofaD5yM2ih8HuJ1dOuKKNH8v1KIDOpqyaeCFAR46V+lY3y4rscfeveTlDkSjNfRezrvTUVN04HO8a5HjXIBZT0iX3FP/5njrafXNuTCKZAlPJMvrazRjI7cJkrqHJVrMTrRYnOnai8z61vpwuj5+K3HReO6L1KLgoCqcVUi2ZnyH0iBYXZDA0GhKNZlKNBkbDUQ60uOhw+1m6IBPX8BjrFs5NmPynshK/nkl9NmXV6CmzekX1e019+INhcW9bVxbT2OFJyN4CuDs/Q4j55aSZKLSbqS7KSoizTJSRJZHMJqaSZVQK7ABWoM0yH6AVkbVP89hmNZNN/Fc7MY5fLY4/r9M1wvNvNVE+N42dB9sTUk91uYh5c1JFfn15bjrmZMOEKZEbKnP5+YfdfHR2QLg7Cm1mOtxaA/rkJAPd3gDdHv+Erht9bGVR9ZLH4qUmrpbZNEGOr4dwrE3D4wsmZFpVF9s55HSTYTbyucp5ZFpMoMDve4cYGg3jGgniGgmypnwu7zX1TdrOdDYYQIkknqm4jP4d+Afgj2K//wnwOrB8ugZ1KzDZxH+1q934yTASVYW7Qj/vRV+2KmoNdh3uwGJK4t5iO44cK4ecbs4PjeJ0+URP4eff0noX6xO7FpD+lJ0H21hdloWarPUjzs9MpWxuGnXNLpYtsNFyYZit9xcnjHF8P+b/sdo4YY/m2TKpXw9TMU5bVxZzpK2fhnYvqckGWi4MU9fs4pElebz9cS+xuj4OfHoBkzGJx+8vwh8Mi74HMoYgma1MxSAoqqr+W9zvP1UU5T9N14BmiqvNh4+f+Me/drIJZaJrxD/m9Qepa/YnNJ7RBOpOU5mXzucXad3LAsGIEIpzunw4cqw4XT6K7BZ6BgL8xb8epcPtJxj+hOpiO3o9gd4Up77VzSNL8rBbk/nq8iJaXSMsnp9JY4cHjy/E999uYnHhxU5n8f2Yt29cSHqoUxgu/bHbebWrVzQfbHHx468sBaAvVrV8oKWfDreWrnu0w0s4CvkZqRgUhRPdg4CmxaRVNGvprfG7KRlDkMwmpmIQ6hRF+Ru0XYEKfBl4W1EUO1x/X4TZwrVIF49vDH+l1050DX2y8QcjLI7l98cbDEdOGmvKs3nhnTOcPjfEIaebQpuFdRU5PLW+nBWlWWJHUNfsEo3kHTlW7i7IEHn2jR1eDjndolCqrtnF0GiYv/9tM93eANs3LuR7jy6aMKNovBvlF2+1Cj/7+P7Gtyeai6y+1c3uRm0C191sP/zSEl56tzkudgPzMlJFgL44y8LffqGSXR904PWH2LG3FX8wMuXeDhLJzWQqBuHLsZ9PjHv8P3Bj+iLMCqYjH173/z+3qRJHTtqEx+mdwwLBMElWZUKDoh/v9gU55HTT1j9CfaubxfMzRf/hFx+rYtfhdry+EE7XCN97dBE2i4mmc0PUt2qNXbatKQXUhIIpm8VE2dw0NlTmJmQUjQ+Gxo/LNoHh0pmNwmzXy9aVJej9nCeqdA5FNIORn5FKod1Ckd3C8a4BlpfY+cEXPyuMtS4pfqzTI9tmSmYlU8kyKrkZA5lpriewOdlrv/Pmaepb+wlFTvPTry+/5DiPL0hTrybwOr6D2ETnd7pGaOkb5qn15SwrciVku+gpkU7XiGgs88RaBz/+yj3CvaO7LmpryqjMn8PpnkHuzs9g58E2VpRqjWjG6yTBpbsevTBtImZTCum1MJFBm6heYXyls77zOjc4ii4pr6oqP/+wi7pmF6scWXz3kUXCOMi2mZLZyKSzkKIoq2PyEpM9PwdYoKrqJ9MystuAyrx06lv7qcxLn/D53Y3d1Le6sVuTWXtXDkPt54CJJ6X4ArHF8zM5dXZA9EXWmtKfEKt+c7KBilztmrrshW4UtMpkLQPp5T/V/OFZaaZLdjfXumOaTSmk18LVGLQt1YUcbOmnvrUfu9VE7pwUirKsfBAz0h92eDEZteB9dbEdR04aLz5WxSv7nRxscYlYgkQyW7jcDuGPFUX5e+A3wDG0grRUoAxYBxQBz077CGcRl+tRMNHjTz5YRlZaipgcJ2rf+EZjN06Xj5f3tbA1thfbdbidHXtb+e3pXiymZJ556C4hP2G3JtM7EKCu2aW5KGwWsRMBSE02EAhF+c6e0/xp3/Alktnx6qmQKKIXz7XumGZTCum1cDUGzW41JezAAD7tG8HrD1GcZeHhynmAyrIiG1tXFsdUUDt455Neur0BvvPmJ3y9bDrvRiK5OgyTPaGq6tPAF9DaXG4Bvo/WTrMceFVV1QdUVT16U0Y5S9AnUj2weLnHJzISEx1X85lcVjmyeG5TpZC/DsRE1I53DVLf2i+MgdGg4PGF+KBNW4GeGxzltSOd1Lf2s7zETm1NGd/ZVIk52UBVYQYvvHOGZ984KfzVT6x1YLea2FCZK3YWU8XjC/Lq+87rqki+FYh/n8Yz0XugG1s9PuD1h3DkWHnpsSpaLgyz82A7FlOSSDfdsbdFiA/mZ5hvzk1JJFNkUoMAoKqqV1XVf1RV9c9VVf2cqqqPqqq6/XKupNuN+ElgS3XhJSmWeuOV2pryCfVqdh3u4NX3nThdIzEVzFKRk767sZudB9p44K4cHDlpmqz0O2f4qNtLoU2bLIqzLPzwS0sotJkJR1WsKQZCEc1gLC6YI47Tefvj8wRCUdy+kKhb0I2CzntNfdQ1u3ivqW/K78NkxvBOYrL3QNspLGXbA6WscmSx8/Fq3v/URV2zi+UlNvzBCE7XCD3eAAWZqaSlaG6kTo/Wr/l2N7KSW4epVCqnAH8MFMcfr6rq96ZvWDPH+JX9ldwr8Y1X4msL3CNjrC7LJhAMi25muj6O0+Xj1NlBnttUCVxsLF+cmsy6CptwPzhyrOx8vBpHThr5mal0ewP4xqL4xsZw5FipWmDjtQ86yc9IpaHdQ0O7h6ULMlheYqcybw6fXzSPNpdP9FF4+iGtDOpa/PxSf+fKGlNZVhOHnG5RWQ5avYL++evSFtrxyVTkptE7eCHBlXc7ZWdJbj2mknb6JjCIFkcYu8KxtzzjDcCVJs+Jnt/d2M3Og5qyx7IiG7U1ZQSCUfzBMA3tXorsFtHHYEt1IU/9+3EOOd389/uTWDw/g5y0FN79fR9Ol4/vvKkVpVXMmwNAUZaVcwMBvvvIIr79Ky2er8R1lTjeNUihzUxDu4ffNZ2n06PpFh1p8/Cjd5uFaudEMgqXm4j013h8QbGqvdMmrivFRzZU5vKzWFZReW662KGtq8jBH0svzjAbceSkcbxrgOa+ERblp7KheuKueOO5HVN6JbOLqRiE+aqqfn7aR3KTGK8jM/4Ldj3SEzqazn4YUNi6sji2izgjegzPy0jh0XsKEhqxAHj8QXZ80Mr8TDNef4hUo0J9a78IGNfWlIvzAdxdoAnXhaMqPQOj5Gekcm5wVPioO9x+lpfYOT84KnYQoCSkUOoB7AOfunj5T5decaLZ3dhNcHBUpk1OwJ6TPUI40Jxs4MXHqvjv7/ye35zu5d4iO4U2M/eXZgkj3dDuYWO2Zs3ju+JN9t7e6im9ktnPVAzCYUVRPquq6sfTPpqbQPyXCq7c1OVavoRa3vpFlRrduNxbbOes109Du5fkJANbVxYL4/HL4z1Eopqcsj3NxNmBAKNhLZ+90GaOTfJqwgR+yOkWLqh1FTkU2i2iveMqRzbnBkepzJ9DQ3ubyJPX5CniV/fahHTI6Z7SJK838ll/i6aVThceX5BjnVp18uqybLET++3p8wwFIuw9o7kBu4+dBcBmSaYk28rwaL943+MzwSbiVk/plcx+pmIQVgN/rihKO5rLSAFUVVUXT+vIpokrNXWZzGU0kYzxVNFTTP/jTxvFCrK+1c2WVw7zt1+o5NTZQZYuyIToMEsXZLKoIINTZweZNyclJj6XTr7br7VhjPmH7i7IwGQ0UNfswmZJptBuIdWo5Qj0DIziGhmjvrWfZUWZCYJ341egW1cWx0apTmmi0Rv5wKVd3e5ktJqSfhw5Vr77yN0A/OjdT0lJSszbmJNqJMmg4PWHqExOIi8jlXvi/rYuZ5Bv9ZReyexnKgZh47SP4iYyUW/deMYbDH0yH69CqqPnloPK1pUleP3BBLkKnV2HO2ho94rfU40GnC4fT/70GKPhKBlmI2VlsKY8WxxzfmiM80NjHO/SRNIa2j1sW1Mi2ls+tb6cj84O4PGFeO2DTlaXZbNtTQlmk5HNVfkiRqGPSdc+Gt/r4Fp0daT7QiNe/lvfte052YPFZBRVzHrfiVSjgc/fncsbx3qwW5N59uEKhto/EhLZbzR2s/PxamwWk4wVSGaEqUhXdCqKsgRYE3vooKqqH03vsGaOiVZh8U1TxqecxhsKzWWgUt/qpr3/KI9U5bO5qoA9J89xpE2LAxRkppI7J5XRYJim8yOMxrSSBwNhLCYjD8aOf3zFAj45N4Sqqnx2fiaf9AxyvGuA0VCUlgsD1DW7OHV2EI8vRJHdwryMVOpb+1lTni3Gb6vWJpaDLS7qW92EIlHWlOfckPdJui804g2j3ichEIwSCAVZXmIDFBraPcK1l5dpEcHml/e18NUilS3LLxYoPv9WEytKs64YYJZIpoOppJ3WAn/JxVaZP1UUZaeqqi9P68hmCXqdwbYHSjEnG/D6gwlpgnXNLjLMRgYDYepb+1m6IBObJZkOt58de1s5dXZQGIxCm5mNi+Zhjls9piQpjMXE0cKRqJCnWFeRIxQzrSlGFhVkcLxrgLrmC3R7A6Kjl74LAC7xP+uT1eP3F3HWG0jo/HW9q3rpvtAYbxgtpiT8MXlygFWOLGprytlclZ/QsEhfSHwhR/sK1izMJTttgPKY0OCVAswSyXQwFZfRXwDLVVX1ASiK8ndoXdNuO4Mw3v1zsbq0NaF+QOtjrGURrS7LEtLHhTazmMS1yT+PL99XSCiiSUt0ewPsPNhObU2ZcPv0Do7yRuNZUowGkgwqTpcPc7KBrfcXE4qosSwjNzG9NLq9AVY5sijPTWfPyR4xTpjc/eUPhulw++lwc8kuR3J9TOSC1AvNdPHBnoEAXt8YNmuKeI0eQLZFumJpym3Yrck0tHvISku5YoBZIpkOptQgB4jE/R5BT025zdClBUBrZKIHleOLynQ/vHskyM6DbTy+YgFnvQE63H7yM1PJz9RqALq9AX5xvJvPL5rHj79yD7sOd2hBYVT0dFTQ0j51oxKJas8FQlH+4/85xt//8WJApTQWiwiEwiQnJXF3QQY7D7QB8IHTzSt/Vo3darokTz2+dkCXb443IJLpQY/LeHxBtrxyGKfLR4e7C9B2EE+sdeD1BznS5qawIIo/EhaZZIU2M/6g9nWTO4M7l5mqOZmKQfgJ0KAoyv8X+/1R4J+nb0jTz0Q7AdBW1G5fkI+6vbhHgmKlt3h+JsFwlENON7/5pJeWCyMU2iwA1DW76PYGyDAbaWj3sm1NKUsKM3ntcDseX4ja10/w1RVFwgB842fHqW91c6zTw7IiGzv2trK6LJvlJTaCEReLC2w09Q4SCEX59p7TeP0hkpMMwu0EsKLULtJIP+zwCrdCvD97fOWrbMhy87FbTfzwS0t45o2T3FdsJy/TLFb8esbXCkuUHSdauacwg25vgPzMVHbsbRGGQ3JnMlNJG1MJKr+kKMp+tPRTBfiaqqonpntg00n8TiC+UEuXH2ho99LQ7sVsSuLU2QHRKvKBu3LYd+YCDe0elpfYEtxFgwGtEtVsMmAxGUUNgcc3xgvvnMEfjBAIhsXx+s/lJXYhTgeQnmoUPXkf+sxcMq0pnOzy8viKIlKTDZhNRrauLGZzVYGoYo73Y/uDEfzBsOjEBnKlOZMc7fDQ4fbzlfsWiJ4W3/jZCbKsyRTZLaSZRoEo95Zk8flFedxbbOflfS1sqMyVlcl3MDOVtHG5fghzVFUdirXK7Ij905+z38qtM7dUF7LvTB8N7V4CcUJzW6oL2VCZy8EWvYeBmtAqEuC3p88DsU5npmQAlpfYqMidQ3PfMF5fiEAwwtIFmRzvGsAXjIrjm3q1wrOCzFSSkwzUt7pZ5dBUMpfMzyBPHeIvl5XS5fGTnmKk0xOg0xPgww4tXdWaYuS5TZXCHfTTry9PuC+71YTFlBTrf1x22/c6vhWI/2I7XSNseeUwHl9IPD8W0RYFqGpCosLi+T0c6xygvrVftty8A5mppI3L7RD+HdiEpmGkxj2ucIu3zrRbTawozY7tAoyXVC/r6Zv3Ftt561QvT60vx2418aN3PxVB41M92uTuyLHy1eVF/O2eTxjwh4WAWX5GKgBWkwFfMIrZZOSZh+6idzDAovx03vzoPMtLbDz7cAX8rhkUhfSUZL7/dpOQngDN2GhaOBHqml2EIqdZU5496apxfP9jycwS/8XWVGdD2CzJ/OHifJyuEXxjfUJW5EibmxWlWbGEA4Rkidcf5Gs/+fCS2pbLIXcXkmthUoOgquqm2M/bsoXm1pXFWExJoi9ubU2ZKOI62OLCPRLkpXc/Fc1rfvK1+0i0i1omkdPl49t7TjPg11xGSxdkYjQoYlVfMW8On7t7HluqC9l1uB2ny0dQ9wmh8PK+Fg453RxyuvnWPSpOl0KG2UhBppm0FCM/+OJibBYTr7zvxGhQqMxLv6xvUaaDzl40dduLRYseX5D39tWRnqIyPBbhVM8Qp3qGYsWFSSLVubHDG9O7aor9HV4ZWTh4azDbDPdl+yEAKIqydyqPzWb0xjNO14jobaBPnO819Qlf++7Gbvac7KG+1c3Og23kZ6TiyLGy9f5iXn3fyT2FNjItF23ouoVzWVeRwwNx1cVryrO533Hx90X5GcIVoDe+WVcxN+YqUkW/3dVlWYyFIzhyrAwGNPfS/Y5srfF9XN+EJx8sE1IUd0LDmlud+H4aegvN95r6xN/g3PQU/uie+QBYY30Sfh5Ldf6oe4DGDi9/uaZU1J1MtVHRRL07JLOPyXpszFRDqsvFEFIBC5CtKIpWcqkxB8i/CWO7YXj9QV6oPyMqdg+29PPjr9wDEGtaU8KRNm3bvu2BUhEs7vT4cLp8/O/3W2lo95JpTmYgECbDbGThvHRSjUnUNbvYtkZ7TWl2GqCwuSqfY50e6lvd2KzJQpBu6YJMETxWFGho9+LIsfK9Rxdhs5jYV1fHzoer+favPomtCLUdiV6otKEyVxiyV993XrICnG2rDcmlK/XxmWAXhjVFeV2pFrQEhUxzsnA/hiJR3nhyJcCEn/tEyJ3ircFkwePZmGX0BPDXaJP/MS4ahCHgH6Z5XDcUm8XE9o1luEeC1Le6qW/t5xs/O4GqqhxyulleYhdfvtM9gzz7cAXJSS0U2i0x/SHt1gcCoZhRCNHQ7mXJfBurHFkcaXNzqmcQfzAiYgw//spSoXHzrV9qQrH6c/q19GK395r6eGKtg+y0FBw5abz8p0sTipL0DmcrSvtwrNV8yPEZRfpqcyqa+pKby/gvvK5u6w9G2HW4A+PQKK993CmOt5gU/EGVBXYzVl8SPQOj9A6Ois94os9dcusymeGeqSyjy/VU3hGLH/xnVVVLVVUtif1boqrq/7oRF1cU5fOKojQritKqKMrf3IhzTkSSQeGJtQ6efNDBtjUlFGdZqG/t55DTHetRoK3EzckGDjndvLyvhbpmFyc6PdgsyXx1+QKxC9i8RNscrXJkYTZpx5/q0cTnLgxpq73GDg9ev7bV23PyXEKnLIDKvHSWl9hYVZYtYhfxjO/rO9H2X3tOZcfeVnYdbhfH6To5d3Kry9nE+M9SywTTpUtUTDE1VL2t5sJ5GQCc6hkiy5qMzZJMtzeQ0BvbYkpix95W+Rnfpky0079ZLqSp1CG8rCjKIqASSI17/LXrubCiKEloO42HgLPAUUVR9qiq2nQ9570cdquJrLQUOtx+iuwWOj1+KvPSGQ1FOXN+mMFAmNVlWsN7f/BjMZH/z70tbFqcR32rm9LsNOHPBWjs8FJgM9PjDfDswxXCmOiFR7pMRSAY4Z1PemNtMCM09Q7T0O6ltqb8iqu8ybf/SsLPeEkE6TuevcSv/n63tx2I8AefzePcwCil2VaSkxQa2r0ik63QZk7QNYrfZchdwu3HRO6im+VCmoq43XeAB9EMwq/R5LDrgesyCMB9QKuqqm2x67wOPAJMm0GAi66WQDCC2WQAFHYebBHPl+ak4chJIzlJm2TNyQZ++KUlvP+pVinc3DdMQ7uH8rndtFwY5pDTzfaNC/mbjZ9h1+F2Cm0W7iu2kZOewipHFpurCnDkpOF0jfDR2QHyM1P5r5//DH/3m9+LOoipMn7loGdKjd85SN/x7EZ3/exu7KbYYmL7xiLcI0HeaDxLfWs/tTXlrCjN5pfHz9LtDZCXkcoXlxbgD0ZwukZ4r6kPUGRF823K5Xq2TPdC74pZRsCXgBrgvKqqXwOWACk34NoFQPye92zssRuOnmWkr6YCwQg7D7YRCEbZurKY2poyCm1mAN442sX+MxcozU4jNz0Fu9XEUCAEqNTWlFORq/nw3/mkl7pmF6vLsnD7gjz178fZsbeV14508mGHlzcaz3LI6Y59eTWpgoZ2DxaTkaVFNlaUaplIZtNU1EMuSm3HZyTETywy2+jWQl/xDY+GYhO65rZcuiADUNlclc/GRXksL7FRtcAGwI69LXznzdO88M4ZAsGIzCK6RZiqu0c/Dpix77WiqurlD1CUD1VVvU9RlGPAOmAY+ERV1buv68KKsgX4nKqqX4/9/mfAfaqqPjXuuG3ANoDc3Nxlr7/++lVfyzs4xNkRlbyMVGwWE62uEYLhKCajgeIsK8OjISwmI+39PqKqitGgEI5efF+SDAqRqEqWNYXRcATfmLaqT0sxYk0x0jc0mnCcKclAMBIlLcXIArumeeQaHiMQipCfaSbFaCASVXHHPuwsq4kkg8LIyAhpaRMXHvWPjNE7OEp6ajKFNjNJBiXh8byMVNHJ7EpEoipefxCbxSTOczVcbpyzhdk8Rv2zj6oqKWqQOenpuH1B+oZGSUsxMjIWFj9NRgPBcJQsawojY2GspiQ8/iC5c1KZm34j1mVTYza/nzqzdYzjv6OTjTP+OIDewVFy56RiUCCqQt/Q1X3P41m3bt0xVVWrr3TcVJanjYqiZAL/iJZtNAJ8eNUjupSzQPzyZj5wbvxBqqruBHYCVFdXqw8++OBVX2jvvjpMmQtYH7O6L5w4g4IBFVhdZqG+1c22NQsYMAX5XdN5vr95ET853HGxH0Gs2rg4KyXWAlN72+4rtvHCHy/m5x9289vT5+n0+FlXkcNT68t5eV8LW5cV848H2whHVRra/WzfuJDPxW3v9RTC7RvLeGKtg/379zPZ/enuos3jUkr1x9dfRarpq+87eaH+4nWvlsuNc7Ywm8f46vtOXjh0BkeOlUfnjWHKXMCW9drf5pJiOy+924x/8GLGmiMnney0FBraPawus7OmPJsN15hafK2pybP5/dSZrWPU3/N7KnN5r6mPMkuXGGf85wGI77L+/9aYqvLyEhsrSktYv7J4WmNGUwkq/1Xsv68oivIbYI6qqqduwLWPAuWKopQAPcCfAH96A847If5ghFf2OwFVNKUxGeDUWS1DqLHTI76AvzzRI16XYlTwBaMU2szMSTUyJ9XI0Ki2Q/iww8uek+cwm5Lo9PhZXZbNc5sqRUBZb28JE/chuBq/4GSxgWuJGchuZzPLlupCDrb0U9/ajzFfoSI3XaQoP/9WkxA+XLogk7b+EZwuH6scWfSPjPH11SU095v35BQAACAASURBVA0nnO9qJnlZwXzzGV879N/uVS5JFQft84ivKfIHwzR2aoktDe1eVpRmTXsCweUK0xaqqnpGUZSlEzy3VFXV49dzYVVVw4qi/Cfgt0AS8C+qqp6+nnNOhtsXZMehi4HjuekpXBgeIzk5SUzu5wY0/aB5c1Koa3ZhigWVx8Iq6ypyCEWi4otqsySTNyeVpvPDeH1BnK4RAJYVZYqaAb3GYH6mmQKbWYjSxTNTAWAZeJ4Z4ifuyrw51Lf2E46qfP/tJpwun+i7scqRxd0FGbzzcS8D/jCZFiOpJiNOl08c6w9GREKBPqn4g1ob1ssZBrkYmDn03irDo73i78AfjEyYeq435kpk+tvQXG6H8Aya7/7FCZ5TgfXXe3FVVX+Nlrl008ibk0pvzOfvyLbS6fEzGAhzPlZDoNcPBCOqqEjWex+EIlH0Hrl35aYD0Nw3REO7N6aIelH2aUNse6i3U3yv6WJRmeTOJH41qGW4gSnJwCpHNpsW57O5Kl+0RN3d2C1EDgf8YczJBlFjUmS3cKStn4Z2L0fa3LE06XCCOqpuLGbLIkRyMS38vX1eemKFiTv2trCuIrHPub47iC+YXeXIEorL08nlxO22KYpiAJ5TVfXQtI9kGklLMWJOjhIIRcnLTMUxN41QJEJDu5fVZdmUZlv45NwQzgsjDI6GSU9NItNsYl3FXF470hmrVkZkdexu7MY9MkZDu4cl822sX5ib8OXTv3COtZqA2fjUUMmdyaX9l43Yhlp54VAn2zcuxJGTJv5m/MEIjy0r4JDTzdz0FDZXFbB1ZYnoxdzp8ePIsYoKdovJSH1rf2xyUa/aLSRlT24OdqsJg6JljNXWlAkj/42fHWdZkY3NVQUJNUwrSrMIBMNTzka8Xi57FVVVo4qi/A/g/psymmniwvAYgZBKqlFbldW39rO6LEs0p4FsET+wWZL55633srTIhscXpK3fFzv+ouS03pYyKy3lkmrC8V8quSKT6EzUf3nvvi62b0x0GegNnBw5VnoGRukZGOXnH3aRlZbCU+vLCUWiVOZl8PlF80QzHZvlYlU7IFxHU0XGFm4eupSO/vl842cnRO90vWe7I8fK2rvmcrTDg9c3xs6D7QSCYb71hcppHdtUzM7vFEX5Y+CX6pVyVGcpeRmpOHIMOF0+jncNxKQr3Kwu05rTVOal4w+GOd41gNcf4miHh6VFNuxWEz/+yj0Jk3z8pD++TaX8UkluBLpvuXfAT//IGIOBMB+dHaSh3SNapyYnGTB/ahA7BL2CWf97lIkGN4/xC8HJdlv648VRFZI09/R7TX0inrTKkaiS8PzbTRzvGhA1UnqDrelkKgbhGcAKhBVFGSXWIEdV1TnTOrIbSIrRwM7Hq/mLfz1Kh9uP3Woid04qpdlWlhXZ2bqymG/8TOsKWpxlEV+KiT5YXblUD+DFGwD5pZJcLboSLyT2wbaYknjjmJbt5sixUpGbRkO71o5Tl7Ioz02ntqYMty/ID95uoql3SCQ+XK0CrtzJXjuTKdqOD/K/8r6TnQfa+HY1vNB4RiQRbIuTNwdo6tUyH3tiMaSlCzLxBcN8ffX0t6aZStpp+rSP4iaw5+Q5Otx+zMmGBNVRPaCjdzP74ZeWiC/OxCv+i/pB4w1A/JdK+mQlEzH+7yLefRCvVjs+UFzzmVyxO8jLSKXbG8CcHJNeOdAmzj8+vVnuWqefiRRtQUt1j3/vT8dEMFGJ6ZuFKZ+bLlLeB/wn8fpDDI9GADAmKdTWlHOs04PHF+L7bzexuDBzZusQAGL9EMpJFLc7MF2Dmh40b1cgFCXDbGQw1tegrtnFhpf2s+mz+ThdPuEu0iP9tTXlCV+weP2gy62q5BdRMhHj/y50JV797211WbZwAz39UAUeX5Bdhzs40uYWu4PiLAuKomgNl2Je3PuKbdzvyGbruMIluWudfsbPA7qkzK7D7Wx7oFRIlT/7cAXnf/ERc9PDHDw7QF2zSxh5gBPdmsHQXUTd3gCnzg7wzEMV9A5+hNPlEwKH08VUxO2+DtSiVRKfBFYAH3AD0k5vJltXlhAIRTndM4gjx8prR7oYDGjpfB5fiAMtrgRtGD0PePvGhZcNGk+G/CJKJuJyDVF27G2ltqZM9MyGizLnevphtzfA/9/eucdFeZ55/3szMMAAAgOIJ5SjWmKN8RzFGINpa9c1PaW73e3G5m3XZvd9UzbNdru2bptu89m83W6bTbNvm9pDanbbJnGbbtL0kzaeI1o1aNQoFWU4CorDMCDMDAwzc79/PAcGHA4aDoPc38+HzwzPPPM81zww9/Xc93Vdv6tRX0o6XtvGqjw7q/LSuXNO+g3OwHi/uiEZOaM1szf+nkYWkU3PEnI4PbR6RL9aJYCUBAud3UESYmP423sL+J/TzQRDUu+jLtn50HL2VraM+XgykhlCGbACOCal3CCEWAh8Y0ytGiMykqw8+xdanV16khUQ3JWTxjd/W8m3P3EnS+elm/sO1YAGhr/rV19ERSQG+78wuuIZ6rjQNzhdadfqZopnppAQZ6G53cfV6z3kpCeajuJ4rZvzzR08+xdLhwxsKoZmtGb2hkS5zx9i8Zy0fr3bZ4omtq2bSUV9G4tnTyPWEkMgGOJs03W6AyGe+E0lPWbfdS0r8uuvnud7n7pr4iqVw+iWUnYLIRBCxOvVywvG1KoxYGA3scfu7/sI9y6cfsP+RiOSp964wNnLHXznk0vUXb9izIjUFc9IYJiTpi0heP3BfpkmWSnxzEpLoDcoOdXQzhGHy1xSUEuWt8atfscHOmBj4N55uIay0kJeO92s1x4UER8bw/naDjOWGY5FQDCoOQNrDNwxO5V3Gjsor24d8+UiGJlDuKyL2/0PsEcI4SaCCF20Y5SNH6hy8vjLp/u1mBzsbir8PcYfQ325FO+VgYJm0L+1Zl/TGy2BYU1hBifr3fzTnxTz/YPVnKhzMys1wRxQHlo9l3VFWkHaxuJsfnjIwcbibPO4ipEz3Mx+sLFioANu8/g5WW8M+AIjhllR10ZxXqifmnJOeiIbFkznQNU1szodwB+Ce+ZP5575WYQnsYwlI8ky+qj+9AkhxAEgFfjdmFo1ygRDkt0VjXpaV+UNTmGwu6mb6UCmpuiKkRL+/2bMU43Wmk+9ccFsemMkMHj9ARxOD1UtndxdkMmJOnc/2fKaVi//9ZH3mz0zDlQ5VV/tMWKwscIYHwyH7PUHKa9upSAriS1LZpFus3Ky3k15tYt7UkIcr/UxOy2BYEjS6PaREGdh06IZ7DxcS0q8hbzMJFYXZLJlySwzdjAef8thG+QIIZ4RQqwBkFIeklK+JqWcVN1Y3F4/T71xgb2VLXznk0soKczgQJWTXUfrAO2PWVZaZMYLwhnYE3cwjH8U1edWMRyRemRH2m78721dk2duXz8/C3uS1md5VZ6dtQUZfOMBrTXJc4ccHKhy9mu5qRg9Bss8hL6/1d7KFrOBkRE03vZCBW6vn+JZWr9sv74k1NTebWqovXHuCn+2ci5rCzLo7Alq8QR/0GyIZIxVY81IloxOATuEEPOBXwMvSSkrxtas0SXdZqWsNA+v3q5y2bx0vYBHm7aFN6wH+sUXRoqKLyhGynBS5kbnrPD1aGP/x18+TZunl4KsJH7w6WUA+mAhOd3gNo9lKGiqmevoYcR0ykoLB72WG4uzeeuiJn3vcHpIjNMUEj7+/aPMtSf223d6spVrXdoNaKPbx7YXKlgWltjym7PNuL2afP7NtNp9L4xkyWgXsEsIYQc+DnxLCDFXSlk05taNEpYYgc1i0afjsWxdkxdB60UMeOxjJF8qlVWkGC0irUcb/RKKslPw9ARYOGMau47WYvRWBq2i1chr9/WGePzl0xRlp7DzrZoRSWMrhkMbG07Wt4fFefqzt7KFIw6tWtyeFEebp5eE2Bjafb20N/X227dHnylMS4glJCUOpwe/nl2UEBuD29tr/j2jQtxuAIXAQiAXqBwTa8aQ8Dv4SIN3pIb1BipjQzGeDJxthmfIGfnrLxyrB2Dbujzm2W3Ut3k51dBOWWkhNmssb110csThwh8ImdWu5dUuFVt4D2xdk8tZvaDMuEEceKNoJAccq2njeG0bK3PTaWr30dTebXZejBGC7JR4Wjp7zCJZgw0Lp9PY5uVAldOUsxiP+gODkRSmfQv4GOAAXgK+KaW8MV8qyhnuDn6o19VykGI8Gfi/GB6wNJIiSgozWTYvDV9viPo2r95isS8I+fgHFmDdf8kcUMqrXcyz2/TYWe2Il0WN2UlhaFLqWo4qA5NMDEe9/0ILcZYYvvHAIgqyktm6Jo/Dl1oBCIQkTe3d2JPimJNm42xTByEpmZWWQEtnD4lxFjp8ARbPTmFaYjxb1+SSbrP2czTj2UdlJDOEWuBuKWXrWBsTrajlIMVEEv7/ZwxIK4zey35N96a5vRtfb5DXTjeZFfbGvkYKapPbxwvH6jXJixFiDHr/VjI+SxbRzMCl443F2bxc0Wj2S9n2QgW7H1nDrrB+7IAZXE6I7WFaQiwQwBprAeDq9R42LMhi8ZxUntlXzWunmwdtbjQejCSG8Nx4GDKWBEOyX5BOoZjsfHdPlalsahFaUHLnWzWUlRZpCqhdfv7mvyo4XuvG6w+wdU0eX/il3vVWjvz7YMxO0oMNY/p5JgN9KqZBPR04iMPpYVWenZbr3abWkJGskhAbQ2FWEi+fbCItMY7mDq3iPD7Wwpc/tJBDF52ANDst2qyxeP2BCV2eHjbt9HbASDs10vCMLI6BKaYKRbRjDErFM1MpKcwgJz2RoL6ak5OeyPr5Wbx+9go7D9eYd64g2F3RSHm1iw0LskjU6x1GkpZqzE7C6x6mCgPHCSMt2KermPr8QbZvWsgPPr2Mn3xmBYtnp/L9g9UUZiWTk55IdyDEG+eusiovnfXzMwGtZ3tPIMihi9d47P75bF2TZ/4dBqYYTwRTYh44sEORChIrJiuG5tGfrcyhIOt9OJxd/P3Lp2nt8vPNBxbxpf/WVDHn2W18cNEMkFrKoq9Xa+bedzeq2roOh9Hz2OsP8tj9800V00d/oc20Kq908I0HFrHraC0n692c1eWt/+6l02ToM6/OHq1V79K5Wg3CrLREwIORsRTeX+Wx+xdM+PL0lHAIhsSwgQoSKyYrAzWPCrKSuWf+dJ7Zd4kfHHKYzuCnD6+gICuZp/dcNNNSt63Lv+WOarczg6eVS/PRkCGvqGvjiMOFPSmO8moXX3nlXVNgcEF2MtXXughKzPoCg6sdWgFanCWG7GkJbFyTC2DGc24mrjOWDLpkJIR4vxDimBCiUQixU++JYLx2YnzMGxtGWn2sUEwUgy1rbizOZsOCLDYWZ5v7uL3aPr16XntISnYdqePpPRf7FTS9ce6KWfVqvNfh7Jryy6eRVAa06yHMWZV2J3/JdAZtnl69uVZf9lVPIMTHl80BIM6izQCs+mNzRzcFWUkcr20jRmCOPVqTo77HiWaoGcIPgCeAY8DngHIhxBYppQOIGwfbFIopy2DLmuEzBK8/wDP7qrkrR1uOWDRrGh2+XhxOT1+dwj35lBRm0Bvs66ng8wfN4//yRAN1Lq+5LDIVibRioPUzuGT2QzHu4HPSE2l0+5iTlkiHr5ec9EQyk+NwdfVS5/KSPS0eALvNSktnDwtnJHO2qZO1BRn880cWsbeyhfRggzkr2bJkdoQiWY2JqDIfyiEkSykNEbt/E0KcBH4nhPgrwt2iQqEYdQZb1gzfbujbGCmM6Unx7HxoOV/afYbmdp+2Xi0l5dUuykqLkFJyos5Nd28Ar99CSWGGmalkfKWnotSFERsI/9zh6rMOZ5fZ/nLDwukcqW7F4fRwud0XQcJamNe1ICuJJ7a8n7fr2iI2RBoujjkRsc6hHIIQQqRKKTsApJQHhBAfB34F2MfFOoViihIpuKitY2tyFdBXXb+xOJu9lS3mY2KchavXe7h6vYd1RVn9slZO1LmpafVSfqyBstJCls2zE576OFUTLsI/t+EcDFmQs5e1XhMlhZlUXb2Ow+lhxrR4YoSgpDCT1q4eDl10kpIQy/HaNh5aPY84SwwHqpymM9hd0WjWgfzfuy08uHH4OOZExDqHcgjfAt6HtmQEgJTyrBCiFPinsTZMoVD0x2jLCJgS2eagXawVRjmcHrbdk48QkJ+VbMYQ6lo9HKtxsSovnS/eP18XUZNmZbPBVE24CO+QaGQXlZUWUlZahM8fpGh6CuebO8xUXkOltLnDR73LS1BCuy5BUdVyndX5mSyek9qvojk3wwaArzc4omyiicg4GtQhSCl/YTwXQiRrm6RHStkA/PV4GKdQKPowljEiNUt58vVKHE4PuRk2EuNi+N6nlvLcwWp2Hq4F4PWzzWb/3mf3XzIrY89e7uBAlRPATLSYSjODcAydorLSQnNWZcQSNizI4ohDc6gg6A2GONXQTnm1i/nZSQCkJVpISbAyLyPJ7I5mLD8BrMi18+z+S8xK65rATzk0Q6adCiH+BtgOJGm/ik7gW1LK74+HcQqFog97kjWiBlGbx0+O3cY8u417irJ4Zl81bm+vmTWTm2Hj25+4k2/97gJNbh8HqpwsnpPG9k0L2Viczer88RNPiwYixUl2VzSagnJb1+SZfamN/gdblszSA/lBntl3iVV5djPAXN+qOdp2X5B2n49ZLq9+pj55fcPJPv/wSg4ePDjeH3nEDOoQhBA7gDXAvVLKGn1bPvCMEMIupXxynGxUKBRDsLuikRf+oGUVpSdZKSst5GdH6/D1hkiMi+Enn9FqElbn23lmXzVrCzLYuibXHAwHE0+L1OpzMjHSdpdwoxoyYM6wtq3LI92mbVs/P4tXTzeZGVtGCirArNQEmju6uXNOKvctnD4pr9tQM4S/Au6UUnYbG6SUNUKITwJnAOUQFIooIHwpaeuaXHZXNJqSykXTk83BzAhG3zE79YaBcrC75oGtPicTw7W7DB+wwzONNOHAi9Q4taWdM5c7zNakS+emUqfPAEoKM/hcST5P/OY8d85J4+r1bjYvnskj9/ZvoDOZMreGXDIKdwZh23xCiOgoq1MoFDcsJT24PIf9F65xvLaNs03Xee6Qg0stnTx6n9bTyqi2hb6BMlKWjaGS+uDyHM6+PfnacQ4WIB8sTmJcg8S4GLPuIDEuhhnT4nn1zBVW5qZTeeU6ACkJFr73qaXsrmikzuXlencvbZ5eYmPEkI412uMzQzmEy0KIUinlvvCNQoj7gCtja5ZCobhV7ElWVufbOV7bRklhBuebOkwHsDo/gyMOTeQufKAMHzxHewCbqDvk8IF/OBuMeIERF7DECOKExNcb4g8ObXlICEFXjyY3npNuw+31c/iSk1V52rUuyErijtmp/RRRH1yeM6kyt4ZyCF8AXhVClAMn0SIkK4C1wAPjYJtCobhFjDaxG4uzeelEI0LAjs3FAByrcbFjc3G/gTG8n7Ory8+qPDuurh5T0qJVf34rA3o03CEPZUObx99vSajR7SMYkgT11729WmD58CWn+Z6UhDiefL2S8moXJYUZ/Wo9MpKsN8hYD/W5o2lJaai00/NCiEXAXwB3oC1AvgV8PtJS0s0ghPg28KeAH60T28OTsQubQhFNDBxYPr++gKf3VLHzcA2r8tLZdbSOQ1VO6tu8rM5vIX25NeLyxs7DNQAcr20j0Wrh7OUOllq72V3ReEsDejTcIYdXHg90bOEZRkXTUzjVoFUl222xtHkDlBRm8sqpyzS6fQCk2WL58ocWAtDQ5uWL9y9g6TxT6s10rINJUgwkGhymwVBZRoVAtpTypwO2rxNCNOuaRrfKHmC7lDKgt+jcDnz5PRxPoZiShDuBSHEAYy38eK3bLKoqyEpiY3G2eVdsLG9sLM7G6w+ybV0eCKELrgkOVDlZvyKOLbc4oEdDbYM9yYpN7wNxsr6NZfPsbNUVR71+TRp8y5LZvHa6mVV56RyvdZObmcz74iy4vX7TGUxLtNDuDfC7c1e4dK0Lh9PDs/sv3dCn+mY+czQ4TIOhloz+HfhKhO0+/bU/vdWTSinfDPv1GPCJWz2WQjGVGegEjEdj+9qCDB5aPY+qluvMmJbA6cYOvv2JO02RvJLCTDPIfKzGZd4pGwOcdqdrISfYMOrLGeO9VPLg8hzzM5ZXuzh7ud0s0NOUS+GZfdWUFGaYcQGAeIsgMymOWWkJxFosnGpop/JKJ+XVrRRkJXGgynnLsyeIDodpIKSMrFMnhDgnpVw0yGvvSinfPyoGCPEb4CUp5X8N8vo2YBtAdnb2shdffPGmz9HV1UVy8vg1qr5VlJ2jx2SwEd67ncGQxO31k26z9utqFgxJGt0+Ort7SUmIo7O7l/hYCz2BICkJccxMTaCzu5eQhJbr3ea2Kx3ddHb3MjM1gczk+H52JtqSzHMB/c5r2GGca6A9kWjt6uFKR/cN57pVRnItgyGJy+OnqyeApyeAzRpLIBjCHwxhtcQQZ4nB4w+YLTLDiY+NoScQIjk+1nyePS0Brz8wos97M3aONhs2bDgppVw+3H5DzRAShngtcbgDCyH2AjMivPRVKeWr+j5fBQLAzwc7jpRyJ7ATYPny5fLee+8d7tQ3cPDgQW7lfeONsnP0mAw2wtjaadyBryvO5snXKznwrhN7UiJtnl4KsmLY+dBa0m1Wdh2txY1gy925gNYprBHJfSvyzDv3gwcPUiVyeKr8Ats3FWrS2+XVlBSmmumXT5VfYMOCdA5UOdm+qXDYu17DvvtGaYYw0mvZ5vHz6C9OmZlXWlsYrR/BjNQEtiyexcvnrpjLROFsWJBNUVqyKQmyfVMun//Azd3dR/P/5lAO4W0hxF9LKX8UvlEI8Vm0rKMhkVJuHOp1IcRWYDNQKgebpigUihExsKrYUEU11skXz0nDHwhxxOEiMS4Gh9PDZ3/2Nq/87Vpzbf31s83sfGg5NquFp964gM0aawZIW7t62Liqry7huYNaCLG82sVzhxw8og/+NyOFMVpLJcZnLwwNP4y0efx84ZeaM0iOt9DVE2Tx7GnUtHro6glytaOb35+/SqPbx7SEWK53awV+q/LsrM63681y6gAoKcyMinX/0WQoh/B3wK+FEH9JnwNYDliBj76XkwohPoQWRF4vpfQOt79CoRia8FgC0E8VVftdE1uzxsaYYnZ1Lq8+uElyM2yaUuoLFXz7E3eaXdmMY/s7unFVtpgOovJKh3mu800d/Qb3waQwxgrjs/9bSeThzJAN9/WG+tVkGDUF9W1eVubaOXTRSVBqv29YkMWOzcW8dKLR7J1ckKV9LkN2PBrSREebodJOW4A1QogNgBFL+K2Ucv8onPc/gHhgjxAC4JiU8pFROK5CMSUZmKkSSRX1weU5uL1+eoPnyc+0gRBmOuXSuWkAOJwevvNmFUccLhbPaeKx+xfw4PIc9l6vpskfwOHs4mv/c44jDhdL56aRGGfh8Q8s4IeHHGM+QA4WhDY+o9GJbNfROnz+IO3eHk7UubmnKJMXjjWY+6/MTScQkgRCknqXhw5fgP1VfTUGaYlxPHpfEQVZyWQkWymvdrG3ssV0dNEUBB5thpSuAK0xDnBgNE8qpSwczeMpFFOdgYPUQFVU485eK6ZqZdm8Ql4/27dOfqqhnbLSIkByrEbLrjlZ7zZz9mMEply2cYe9PNfOVz78Pn54yDHiPPqRVAwP9vpg+frGZ9+3v8FMpe1PK2Wlhbg9vTicXdwxK9WstchJTyQYkuZswWoRtPt6eXb/JZ5/eGVUpYSOB8M6BIVCMTkJ77BmiN4ZaaW+3hAOp4fYGEEgpC0ZGfscr23DnhRHebXLHJxDEjNX3x84Z8Yi4Oby6Icrwhrq9eHO4/b6OVDlpaQwg+KZqeYM4Yk/vYOqlk7cnl6OOFzMTktkbUEGdS4PjW4fs1ITTIeQbrNSlJ1sVnXf7GwgmqqObwXlEBSKScDNDjThcgyAWXhmyFa8dEJbQjGcwU8+swLQlpqMHPxZqQn8/vxVfn/+KhtSuyFBUJCVzLN/sdQUvzOWikarCGuo14cbnNNtVrZvKrxBxfVv/uskx2vbmJ2mJU4ecbTS1N7N4tnTaGrvZmNxNgmxFt6svEqdy8v/Kskz4wU3SzRVHd8KyiEoFJOAmx1ojNlASWEGxbNScXX5zbX/1fktJFr7vvrZ0+L14Ol1yqtbWVuQAUBzRzfNHZpKzYb3w8CGL0/vqeKZfdV4/YGIjXsiMdyg/l7W5y0xot97tYyid8wCMyk1yeor7doyWXcgaC6TbVkym0SrVpn94PKcW77Tn+xLTMohKBSTgJsdaAZTLx2ocvrWxWv9ZC1KCjP54v3zaXr5NHUuL6mJsdw7P4vkuCvcs2T2gPRWoxBrZAVZIyX8HG6vFvfYsbnYvGsfarAOf23X0TrKq1sBTX+ouUPrV2DESBpcPkD2ayW6fZOmURQ+u7oZBzXZA87KISgUk4CbGWgGDphGA3mfP0CiNRa3189rp5vx+YO0dmlqpgmxMXQHQlx2e3nxRAN1Lq8pBe3y+OlKDPDa6SazZgH6p1+OJuEO7K2LTo44XPgD5/j5X68GtBqLSDOTYEj2G8ivdGgzgcWzU3j6z5fy2ukmXjnVRCAkEUB3IAQIykoL8fWGKJqejNcfZNfRWjPWMlnv9G8V5RAUituMgctLWgOd+WY20Otnm3E4Peb+CbGC7kCIeIugzuXF7dWcRFaKlcLpyeTYbdDVQngaa7iiqsFoBVSNc2wszmb/hWuAFuvoUynVZiQ+f6hfuqsRVDYG8o/+vyMANLRpy15nL3eYWVUSmJOWSGFWEl//zXm9ejsJh9NDWWmRKWc9GQPD74WYiTZAoVCMLg8uz+mnzx++fcOCLBxODyWFmWxbl09JYQbdAS020BPUHu+dn0VBVhKLZqVxoMpJuk3TOTL6MBtOZiCGI9pd0b+7WpvHzw8POczeCsNhOHA0RAAAGR9JREFUnGNvZYvZeOZ4bZt53K1rctm+aSGJekX17opGHM4uOrsDbFuXbwrzPf1nS7AnxdHu69WkO6qcpCb23QNfbvfxD786S5un16ze3rAgi61rcgf9jLc7aoagUNxmDLa8ZE+y8p1PLukncfHcQQdef4CW6z00tXdrjXE8fhxOD5sXz2LbunxO1rspzo0z1U8HmwUYWUxGhbNBpID4SGYT4TOFvZV9chjG53M4uzh7uZ2NulbTUmuAS52duL1aMLl4Zgq7H1mjL48F6A2GKK/WaihSEix0dgfx9YZIs8XyzS2LeOWdphsaB001lENQKKYQ4c3kvf6AWaAF6A1iNOG23AwbW5bMMruCbUzXlmkGDu7hA7shqb06v6WffEUkRzGSrKnh5DCM8y2e00zR9BSSfU52fKCYr796nvLqVsqrW0m0Wqioc3PE4SInPZGHVs8lPSket8fPC8fqAdh6dx7NHd0RbZ9qKIegUEwxjMG4rLSIbevyOXPZzZ1z0nnk3gJTuK3O5eWlE43s2FxMb/AcVks7T++5yJYlswDM1MzwJjsgKSstumGpKpKjuNX0zHAHFC7TsfNwDV+5K8RLJxrISIoDwGYV7KlsofJKJwCNbh81rV7Wpdvw+bXV8pLCDFMA8Fbsud1QMQSFYophxBi2LJlF5ZUOjte69Rx8AGkWcL1x7grpNivrirJweXp4Zt8lPvuzt9lYnI09ydqv8tlI3zTE9J7ec5Gn91TR5vFHjGkMFYsYioFxCi17KsjstAR6AiF2Hq7ld+ev6q9J0xnMmBbPPLuN/EwbT71xgURrLNs3LeR7n1qKPcl6y/bcbqgZgkIxxTAGvx8ecphr6ifr2wEtnXNlbjpN7d00un08/vJpdmwu5kDLHwFt5vD1V89TPHMaZy672bYunz9bmcNLbzeytiCDFbn2ARXSsaPSZN7Yx2jz6fUH2HW0jmf2XQJgVmpf+5YePUieZI3B4w+RmhjLB+6YwQt/qKem1au1CIUpmUU0HMohKBRThEj1CS6PnzfPX9UF79LZvmkhG4uzee10MxV1beZSDyEJCBJiYyiemWLGHmzWWPZWtrDzLe136/5LZmvOZfPS+s0KBp7fUCb9g6OVE3XuISue/31PFS8ca6CyuZ0zl69T5/LywJ0zSYyLwdcbYuP7pmPt1pT04y2CnqAkOT4Oj7+HDl+AGmcXawsyKK9uJc6i9Ym2WS2TuohsLFAOQaGYIkSqT8hIslLn8prplsYd82P3zzelrl0ePzlWCyDJz0oC4KG751Hj7OLR+4o4dPEa2+7JJzEuhi1LZpsNcsL1hHYdreVkvduckXx+fQG7KxrNO3zor64a/j4Q5ozjt++2ENAb4fzu3BV6ghAbI/jIXXOoPtsMBOgJSrOmACA1MZbyahcPrZ6HNTaGR+8rYnV+xpSPF0RCOQSFYooQKZA7sNAsnL2VLRxxuDjicPE1vRtv5ZVOKq90sn3TQrauyWXbCxU4nB62b1o4aEaQUVkMWhA3/JxGBbWmo+Tq16xecxja+x66ex6/OdOM29tLamIsHb6A6QwCIckXXz7NIwsk29blk2iNYf386Tz520qcnT3cnW/n5ZNNOJxdupZThpoZDIIKKisUU4RIgdPwNNTwwrE2jx+vP8hDq+dSUphJQpwWLF46N421BRlsLM7m66+ex+H0kJOeiNcfxOHsGqQArU/rKD8r2TyXPcnK1jW5ZCTH840HFlFWWojXHzTf/+DyHMpKC9l2Tz7ptjgeXDYHgLgYgUUfuT5212zSbXHUubw4O3tItFp47P4FHLro5FRDO41uH/VtPspKC/nnjyyKWLCn6EPNEBSKKU74UlJ4jcIz+6rZsCCL8upWtmTHUlZaREVdG0ccWgex/Ewb5dWQmWzlmX2XOHu5nQNVTvZfuEacRZhtJ7euyeVkfRvl1S4c17p44Q/1eP0BbNZY8zyAqZN09nK7WW382P0LTMmNstIi5tlt1LdpsQKL0Npdur295mdxe3r0Z339lY/XtrE6P4OCrGTSl1sndb+CsUY5BIViihNJGdXQ89lYnM3q/BYygg24LRaOOFysykvn8CUn+br66Iq8DD60aCYbi7Pp8J0x5aa3vVDB7kfWALBsnp1l89LZsmQ2r51u4lhNG8dr29h2T755117X6iHNFsuBKicf+/4Rs0fD4UutfHLZbE7Wu1mVbzcdQlBqg/3MaQlcua7pFZ1u7OCHhxysnz+dk/XteP29nGrowHAQk71fwVijHIJCMcUJrwg21vVBmnfRBeuT2be/AVeXn5LCDLz+IMdrXXj9AUoKM0FKU17C2andocfGCBxOD1/45TtIKTnicFFWWshrp5s4Wd9uOg2kNM/9+MunafcGAC299cnXKwG0imM9m6ikMIOHVs/l5ycaCerB5bkZNtMhXOvs5qk3LvQTqvvgHTNviJ+oZaPIKIegUChM7ElWbLponFFDAODy+Nl5REstXZVn1/cWpkTEm5Ut1Lm8FM9IJi0xji9/aAE/Lq81+xFoxWvCzCrKzbBR5/LS3Rvi0z8+TvHMFLbenUv1tS5SEuKIjZF4/UE+vWouZy630+bpxZ4Ux+dK8jla4yIzyUpLZw9L56bxLx97P1t/cgLoJEYISgozKK92mZlTQL9lIjUzGBzlEBSKKUykorBwUTlDXtqgpDCTbzxwB3srW3Bc6+JUQzspCRbqXNoyTuXVLgDerGzB4fSQm2HjnqJMEqyxuD09rMqzc+ecND60aAbP7r9EVUsnx2vbKK9u5dK1Ll2e2kdBVhJnm9pobvfR5uklITaGNk8v3/xtpZlOmpth48dbV2BPsvK9T93FsaOHae7oJseeSFlpIVvX5GFPspoxCFDLRMOhHIJCMYWJFFA2eiQbA6nXH2Q2mIOsQX2bNjB3dgdZOjcNZ2cPjW4f8+w2tt6dS0ObF4fTQ16mz6wjALgzJ41n9QK2bevyibPEkJ9pAyFYOjeVOIuFv1lfwI/La7jUojmY7kAIe1IcDqfHTDvNnpZAXauHR39xikBIUpKsLSEdr3Vz38LsGxycWiYaHuUQFIopTKSA8rEaFzs2F+P1B8yewy3Xuznb2gH0OZFt9+RztaOH+jav6QyMpaBdf6jD4fRQkJXEo/cVsXhOmlmRfL6pgyMObUnnkXsLcHv9Zj2DwZ05aQC06DGJnPREvvnAInOGYPRI+NJ/nzHf98HlsXodQv8ubmqZaOQoh6BQTGEGBpSP1bj0u/lKs8fwg8tzeO13Dg686zQrh7et0yqTf/rwCrP5DMA9RVnkZXr7zRC+u6eKZfPSeerji9lb2cKKXDtiz0Wykq184Zfv4PUHcDg9Zo8CgDfPXzWXoWalJrDp/TN5p9GtN/fJoHhWKqULJd2BEP5AiEa3DwE8cq8SqHsvKIegUCiA/g10VuRqgeMVuXZ2VzSSm5pAWekcs55gw4IsXQ8oVpfIPk9+ZpIZE6ht9VDn8pJui6O82kV5tQubNZYHl+fw+MunzWAzaHf/AKGQ9vuMafHUubymOF1zRzc736phVZ5dcwYzp7HzrRrThtwMGytz0+nqcfL4y6fNGgbFzaMqlRUKhYkxY3hbF7Z7dv8lnnrjAm6Pn9fPNpvOYMfmYrNOQWui00qj22umk9a5vORm2MyisXl2Gyty7Tz6i1McqHKyKs/OJ5fNJjfDxj98cAH2pDg8fm12EKeXIXv8IdOu1MRYPfjsMqWrd2wupiAriTqXF2ushZSEOA5UOc1K6Jtp26nQUDMEhUJxA+GZRqvzW/A5L5hr98YdePpybcmnvLqVVXl2iqanUDQ9hXavnxN1bazMtZuzhPo2L9/dU8URhyZud2dOGmca3dS5vPzr76to8/SSFG8hEAjxt/cWUNvq5VhNKzWtHrp6gnT4AqzKS2d1fiZblsxib2UL6TYrOx9azpOvV7JjczF1775NWensG6SxVfxg5KgZgkKhuAFjplCQlczn1xeQlRyPPSmOf/qTvp7DuysazaUfKSU7D9eQaI3B2dVDncvLibo21hZk4Pb2UpCVRH6mVtlsFLMdr3UDWiezgqwkPD1BeoKSf/19FYlWC2ebrrMkJ9206c6cdGxWC6+dbjab5BRkJfP8wytJt1lxe/0YjXpAKt2iW0A5BIVCMSytHj9tnl52/aHO3LYi105OeiJL56aycMY0AF451URWcryZbRQIhcjNsOFweqhp9VBWWsj3PnUXCE3wbnZaAtvW5bPzoeUsnatlFrm9vRy+pMUGPleSR1lpIWWlRSTGxfDUGxfw+YNsWJB1Q4/mKx3dgNCVWPNUB7RbQC0ZKRSKYZmZmsCGBclsvTuXh58/wY7NxTy7/xKNbh+Nbh/rirJMuYjGk5dZlWdnTnqi2f9ACy5rzWncXj/nm7QU1k8sm2M2xfnx1hU8d9DBm5VXOdXQDsAPDjlYna8FuLcsmW0K4kXq0by/s5r7wno6KG4e5RAUCsWwxMfG8PzDK3n4+RNmWqqWXXSO4pmpbF2Tx5Yls/nMT0/Q6PZxvLaNVXl27spJ5Z3GDrOPwYEqJ73BcxxxuCjISmL9/On8y2//SEW9FoyOswjqXF5y0hNpdPtobveFqaFqHc7aPH4zY8nAnmQlMzleOYP3iFoyUigUI6LN46doegolhRl6hk8y3/vUUhKtMew6Wke6zcrHls4x9z9e29ZPmrrDpwnX1bu8rMxNx+H08KX/PsPOwzWcamjnVEM7x2vdrC3I4Gf/ayUbFmTR6PZRUphBWWmR6QAi9XVQjA4TOkMQQvw98G0gS0rZOtz+CoVi7AlvaL+3UmuHGQxJHn/5tFmsVqBLX4d3NbNZLaaYXHgXtJLCTIpnptDdG+LVM000un30BkOkJWpSFKvy7Pj8AWpdHjq7gyzPtVOQlcx3PrmEXUfrANmvvadi7JgwhyCEyAHuBxomygaFQnEj4RIWRgVyhtfPgSqt9/LAFpxefwAQpkDeY/fPB24UzvvhIYc5S7h6XZOkKMhK4gefXmaeU1tGyjJF9SIpryrGjomcITwN/APw6gTaoFAoBjCwBuHB5Tm8c7yB7ZsKzcE9fLA3gsJtHj9P77mIT++nkGiNNWcMPzzkYGNxNl5/kMOXrnGqoYMYAZ8ryTPbeB6+pElpf3fPRTOdNZLyqpopjB0T4hCEEFuAJinlGSHEsPsrFIrxI1zfyMjiscSIfnfokTqPactHl/ody2bVejEbM47vfHIJPn+QUw0dhCR863dVXO8O8ODyHJbNS6O8upXimSmsK8rs179ASViPD0JKOfxet3JgIfYCMyK89FXgK8AHpJQdQog6YPlgMQQhxDZgG0B2dvayF1988aZt6erqIjk5+abfN94oO0ePyWAjTF47gyGJ2+sn3abdrbu9flIS4ujw9RIKSUJS0hMIkT0tga6eAJ6eAF09AWamJhCS0HK9mxghSEuMo83rZ2ZqAuk2Ky5daiIjyYolRkQ8X/j2oWyMVibCzg0bNpyUUi4fdkcp5bj+AO8HrgF1+k8ALY4wY7j3Llu2TN4KBw4cuKX3jTfKztFjMtgo5eSz09XVI587WC1dXT3ma88drJbzvvy6fO5g9Q3bPvPT43Lel1+Xf/mjY/K7b16Qrq4e6erqkd9984L87ptVsvpaZ7/jRTrWzdoY7UyEnUCFHMH4PO5LRlLKd4Hpxu/DzRAUCkX0EGmpKLyngsPZxZOvV/LofUWm+J0hpR1n0e7stTadseZxjGWlgcdSjD+qME2hUNxApNaaEHnADo85GKmpAM8/vBKAHZuLaWirMJVIP7++wHy/1x/o52BUM5uJZcIdgpQyd6JtUCgU/Yk0E4C+wd+Qlx7oMHZsLsaoYjbYq/dXDk9ZDT/OwKpjxcQx4Q5BoVBEH8Mt3QzmMAz1UeibZazItZs9FIB+jkTNCKIL5RAUCsUNDDdQj2StP7zYzOH0sDq/BUClj0YxyiEoFIqbYrD4wkDCezRHqnBWRB/KISgUiptisOWigYT3aA53HmpmEL0oh6BQKG6Km0kNNWQpRjKjUEw8Sv5aoVDcFDcrP23MKHZXNJrbjCylNr0yWREdqBmCQqEYUyLNKEa67KQYX5RDUCgUY0qkjCVVkRydKIegUCjGHVV/EJ2oGIJCoVAoAOUQFAqFQqGjHIJCoVAoAOUQFAqFQqGjHIJCoVAoAOUQFAqFQqGjHIJCoVAoABBau83JgRDCCdTfwlszgcnQolPZOXpMBhtB2TmaTAYbYWLsnCelzBpup0nlEG4VIUSFlHL5RNsxHMrO0WMy2AjKztFkMtgI0W2nWjJSKBQKBaAcgkKhUCh0popD2DnRBowQZefoMRlsBGXnaDIZbIQotnNKxBAUCoVCMTxTZYagUCgUimG47R2CEOJDQogqIUS1EOIfJ9oeAyFEnRDiXSHEaSFEhb7NLoTYI4S4pD+mT4BdPxVCXBNCnAvbNqhdQojt+rWtEkJ8cILtfEII0aRf09NCiA9PpJ1CiBwhxAEhxB+FEOeFEGX69qi6nkPYGW3XM0EIcUIIcUa38xv69qi5nkPYGFXXclCklLftD2ABHEA+YAXOAMUTbZduWx2QOWDbvwL/qD//R+BbE2DXPcBS4NxwdgHF+jWNB/L0a22ZQDufAP4+wr4TYicwE1iqP08BLuq2RNX1HMLOaLueAkjWn8cBx4HV0XQ9h7Axqq7lYD+3+wxhJVAtpayRUvqBF4EHJtimoXgA2KU/3wV8ZLwNkFK+BbQN2DyYXQ8AL0ope6SUtUA12jWfKDsHY0LslFJekVKe0p93An8EZhNl13MIOwdjouyUUsou/dc4/UcSRddzCBsHY8K+Q5G43R3CbKAx7PfLDP2PPp5I4E0hxEkhxDZ9W7aU8gpoX1Jg+oRZ15/B7IrG6/t/hBBn9SUlY+lgwu0UQuQCd6HdMUbt9RxgJ0TZ9RRCWIQQp4FrwB4pZdRdz0FshCi7lpG43R2CiLAtWtKq1koplwKbgP8thLhnog26BaLt+v4AKACWAFeA7+jbJ9ROIUQy8Cvg76SU14faNcK2ibQz6q6nlDIopVwCzAFWCiEWDbH7hNg5iI1Rdy0jcbs7hMtAeBfvOUDzBNnSDylls/54Dfg12jSxRQgxE0B/vDZxFvZjMLui6vpKKVv0L2MI+BF9U+8Js1MIEYc2yP5cSvmKvjnqrmckO6PxehpIKduBg8CHiMLrOdDGaL6W4dzuDuFtoEgIkSeEsAJ/Drw2wTYhhEgSQqQYz4EPAOfQbNuq77YVeHViLLyBwex6DfhzIUS8ECIPKAJOTIB9gDkYGHwU7ZrCBNkphBDAT4A/Sim/G/ZSVF3PweyMwuuZJYRI058nAhuBC0TR9RzMxmi7loMyUdHs8foBPoyWNeEAvjrR9ug25aNlFpwBzht2ARnAPuCS/mifANt+iTal7UW7e/nsUHYBX9WvbRWwaYLt/E/gXeAs2hdt5kTaCZSgTf/PAqf1nw9H2/Ucws5ou56LgXd0e84BX9O3R831HMLGqLqWg/2oSmWFQqFQALf/kpFCoVAoRohyCAqFQqEAlENQKBQKhY5yCAqFQqEAlENQKBQKhY5yCIopga42+fdjePwsIcRxIcQ7Qoh1Y3UehWIsiZ1oAxSK24RS4IKUcuuwe44CQohYKWVgPM6lmDqoGYLitkUI8VVdY34vsCBs+18LId7WNet/JYSwCSFShBC1uoQDQohpQutZETfgmPOEEPt0kbJ9Qoi5QoglaBLMH9a17hPD9i8VQvw67Pf7hRCv6M8/IIT4gxDilBBit64lhBDia7p954QQO/VKYoQQB4UQ/yKEOASUjd2VU0xVlENQ3JYIIZahSZXcBXwMWBH28itSyhVSyjvRpJ4/KzXZ54PAn+j7/DnwKyll74BD/wfwgpRyMfBz4HtSytPA14CXpJRLpJS+sP33A+8TQmTpvz8MPC+EyAR2ABulJnJYAXzROIdu3yIgEdgcdrw0KeV6KeV3UChGGeUQFLcr64BfSym9UlPuDNewWiSEOCyEeBf4S+AOffuP0QZs9MfnIxz3buAX+vP/RJN9GBSpSQH8J/BpXePmbuANtKYpxcARXSp5KzBPf9sGPR7xLnBfmH0ALw39sRWKW0fFEBS3M4PpsvwM+IiU8owQ4jPAvQBSyiNCiFwhxHq0rlXnBnn/SM4RzvPAb4BuYLeUMqAvA+2RUn4qfEchRALwfWC5lLJRCPEEkBC2i2cE51Mobgk1Q1DcrrwFfFQIkagry/5p2GspwBU9PvCXA973AppwXqTZAcBRtOUk9PeWD2eI1KTOm9GWiH6mbz4GrBVCFALocYz59A3+rXpM4RPDHV+hGC3UDEFxWyKlPCWEeAlNubMeOBz28j+hdQSrR1OgTAl77efAk2hOIRJfAH4qhPgS4KRviWk4fg5kSSkrdfuc+uzkl0KIeH2fHVLKi0KIH+l21aFJuCsU44JSO1UowhBCfAJ4QEr5V6N83P8A3pFS/mQ0j6tQjCZqhqBQ6AghnkVrafrhUT7uSbS1/8dH87gKxWijZggKhUKhAFRQWaFQKBQ6yiEoFAqFAlAOQaFQKBQ6yiEoFAqFAlAOQaFQKBQ6yiEoFAqFAoD/D3SxmXOOV78gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "doy_list = [date.timetuple().tm_yday for date in data['dates']]\n", + "data['DOY'] = doy_list\n", + "\n", + "plt.scatter(data['DOY'], data['season'], s=1);\n", + "plt.xlabel('day of year');\n", + "plt.ylabel('CO2 variation(ppm)');\n", + "plt.grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Modélisation du CO2\n", + "La modélisation de la concentration en CO2 atmosphérique repose sur deux composantes :\n", + "- la tendance long terme qui peut être modélisée par une fonction polynomiale\n", + "- la saisonnalité annuelle qui peut être modélisée par une fonction période\n", + "\n", + "La fonction polynomial adoptée semble a priori d'odre 2 ($ y(t) = a.t^2 + b.t + c$).\n", + "La fonction période peut être ajustée par un fonction du type $ \\alpha cos(\\frac{2\\pi t}{365}) + \\beta sin(\\frac{2\\pi t}{365}) $.\n", + "\n", + "Ainsi, la concentration simulée (notée CO2*) est égale à:\n", + "$$ \n", + "CO2^*(t) = a.t^2 + b.t + c + \\alpha cos(\\frac{2\\pi t}{365}) + \\beta sin(\\frac{2\\pi t}{365})\n", + "$$\n", + "\n", + "L'ajustement des paramètres (a, b, c, $\\alpha$ et $\\beta$) peut être effectué par la [méthode des moindres carrés](https://fr.wikipedia.org/wiki/M%C3%A9thode_des_moindres_carr%C3%A9s).\n", + "\n", + "La variable t doit être numérique pour cete modélisation, les dates sont converties en dates *proleptic Gregorian ordinal*." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def Simulation_co2(t,a,b,c,alpha,beta):\n", + " co2sim = a*t**2 + b*t + c + alpha * np.cos(2*np.pi*t/365) + beta*np.sin(2*np.pi*t/365)\n", + " return co2sim\n", + "\n", + "date_num = [datetime.toordinal(date) for date in data['dates']]\n", + "data['date_num'] = date_num" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Les paramètres du modèle sont:\n", + "a : 9.750717467133496e-08\n", + "b : -0.1373113380069189\n", + "c : 48644.37669447582\n", + "alpha : -1.9895707307020227\n", + "beta : -2.0474089148616845\n" + ] + } + ], + "source": [ + "import scipy.optimize as optimization\n", + "\n", + "xdata = np.array(data['date_num'])\n", + "ydata = np.array(data['CO2'])\n", + "\n", + "# Initial guess of the parameters\n", + "x0 = np.zeros(5)\n", + "\n", + "#least squares\n", + "parameters = optimization.curve_fit(Simulation_co2, xdata, ydata, x0)[0]\n", + "print(\"Les paramètres du modèle sont:\" )\n", + "print('a :', parameters[0]),\n", + "print('b :', parameters[1])\n", + "print('c :', parameters[2])\n", + "print('alpha :', parameters[3])\n", + "print('beta :', parameters[4])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulation du CO2 en fonction du temps d'après le modèle construit sur la base de la tendance long terme et de la fonction période." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAEKCAYAAADZxnkxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xdc19X+wPHXYW9QQVFxIKIpQxRU1FTEvffKTEuzbtn8tby3upZW3tu6t+Ft2XJk5sQtGuIWXCDg3uBAUET2Or8/QPTb9wupAa738/Hg0Zdz3ufzeR8qe/fhfM5RWmuEEEIIIYQQf53ZnU5ACCGEEEKI+4UU10IIIYQQQlQQKa6FEEIIIYSoIFJcCyGEEEIIUUGkuBZCCCGEEKKCSHEthBBCCCFEBan04lopZa6U2quUWlHy/YdKqYNKqVil1BKllMsNsVOUUkeVUoeUUj0rOzchhBBCCCEqUlU8uX4BOHDD9+GAr9baHzgMTAFQSjUHRgE+QC9gplLKvAryE0IIIYQQokJUanGtlPIA+gLfXWvTWq/TWheUfLsD8Cj5PBCYr7XO1VqfAI4CbSozPyGEEEIIISqSRSVf/z/Aa4BjGf1PAL+WfK5LcbF9TWJJW5lcXV11w4YN/2KKQgghhBBClG/37t0pWmu3P4urtOJaKdUPSNZa71ZKhZjo/wdQAMy91mTiMkZnsyulJgGTAOrXr8+uXbsqLGchhBBCCCFMUUqdupm4ylwW0gEYoJQ6CcwHQpVScwCUUuOAfsAYrfW1AjoRqHfDeA/g7B8vqrX+RmsdpLUOcnP70/95EEIIIYQQospUWnGttZ6itfbQWjek+EXF37XWjyqlegGvAwO01lk3DAkDRimlrJVSnoA3EFVZ+QkhhBBCCFHRKnvNtSlfANZAuFIKYIfW+mmtdbxSagGQQPFykWe11oV3ID8hhBBCCCFuS5UU11rrjcDGks+Ny4l7D3jvr9wrPz+fxMREcnJy/splxF9gY2ODh4cHlpaWdzoVIYQQQogqdSeeXFeqxMREHB0dadiwISVPxkUV0lqTmppKYmIinp6edzodIYQQQogqdd8df56Tk0ONGjWksL5DlFLUqFFDfnMghBBCiAfSfVdcA1JY32Hy8xdCCCHEg+q+LK5F1fj666+5fPnynU5DCCGEEPeRi1dz73QKf4kU15Xg/PnzjBo1Ci8vL5o3b06fPn04fPgwAPHx8YSGhtKkSRO8vb2ZNm0a17b6njt3Lv7+/vj7+9O+fXtiYmLu5DTK9e6771K9enWqVat2p1MRQgghxH0iNSOXNxbFkp6Tf6dTuW1SXFcwrTWDBw8mJCSEY8eOkZCQwPvvv8+FCxfIzs5mwIABvPHGGxw+fJiYmBi2bdvGzJkzAfD09CQyMpLY2FjeeustJk2adIdnY6igoKD089tvv83w4cPvYDZCCCGEuN9Enyz+jfgbi2JN9p+7ks318wfvTlJcV7CIiAgsLS15+umnS9sCAgLo2LEj8+bNo0OHDvTo0QMAOzs7vvjiC2bMmAFA+/btS58EBwcHk5iYaPIeDg4OvP766wQGBtKtWzeioqIICQmhUaNGhIWFAVBYWMirr75K69at8ff35+uvvwbg3LlzdOrUiYCAAHx9fdm8eXPpNa9ZuHAh48ePB2D8+PG8/PLLdOnShddff53MzEyeeOIJWrduTcuWLVm2bFkF/vSEEEII8SCLSUwjoJ4LdlbGG9rl5BfyTljCHcjq1khxXcHi4uIIDAw02RcfH2/U5+XlRUZGBunp6Qbts2bNonfv3iavk5mZSUhICLt378bR0ZE333yT8PBwlixZwttvv1063tnZmejoaKKjo/n22285ceIE8+bNo2fPnuzbt4+YmBgCAgL+dE6HDx9m/fr1fPzxx7z33nuEhoYSHR1NREQEr776KpmZmTfzoxFCCCGEKNe5tGweDW5AkdYkpxvuPDZ352msLMzu+o0T7rt9rv9owo/RFX7NWeNb39Y4rXWZ/0Dc2B4REcGsWbPYsmWLyVgrKyt69eoFgJ+fH9bW1lhaWuLn58fJkycBWLduHbGxsSxcuBCAK1eucOTIEVq3bs0TTzxBfn4+gwYNuqnievjw4Zibm5deNywsjI8++ggo3vrw9OnTNGvW7OZ+CEIIIYQQJjzzVSSjfvkUl8s98WzSjTOXs6jpZFPaf+LiVd6NmgfDfOEuPqjuvi+ub7cQvl0+Pj6lBa2pvk2bNhm0HT9+HAcHBxwdHQGIjY1l4sSJrF69mho1api8jqWlZWkxbmZmhrW1denna+uitdZ8/vnn9OzZ02j8pk2bWLlyJWPHjuXVV1/lscceMyju/7hHtb29felnrTWLFi2iadOm5f4chBBCCCFuxomUTKavSGDo8u9xSUtBTZuG74cNOFPdjsAGxTEZuQXYHD6E87JF8OmHdzbhPyHLQipYaGgoubm5fPvtt6Vt0dHRREZGMmbMGLZs2cL69esByM7O5vnnn+e1114D4PTp0wwZMoTZs2fTpEmTv5RHz549+d///kd+fvHbtocPHyYzM5NTp05Rs2ZNnnzySSZMmMCePXsAqFWrFgcOHKCoqIglS5aUe93PP/+89GWCvXv3/qU8hRBCCHH/KyzSTPgxmjVx5436ki5nY5GfS8dNYcwd8wq88QYtfvmWpLTs0pgjF67S7nQsqkuXqkz7tkhxXcGUUixZsoTw8HC8vLzw8fFh6tSp1KlTB1tbW5YtW8b06dNp2rQpfn5+tG7dmsmTJwPF29ulpqbyzDPPEBAQQFBQ0G3nMXHiRJo3b06rVq3w9fXlqaeeoqCggI0bNxIQEEDLli1ZtGgRL7zwAgAzZsygX79+hIaGUrt27TKv+9Zbb5Gfn4+/vz++vr689dZbt52jEEIIIR4Mby6NA+C3XWeM+izNFd6HY0iu5UFKzbrw6KM4b/qd3IuppTFHkjNofnA3hIZWWc63S93t25mUJygoSO/atcug7cCBA7L+9y4gfx+EEEIIcc1L/12DVoqrTtV5b7Af7s7X11JHnbhE6rMvYOvsSNS453mt10Nk9x/IfDc/Rn/9DjaW5rwftp/XxnfGIi4O6tS5I3NQSu3WWv/pk095ci2EEEIIIW5LTn4h320+TvTJS2UHHT/O9H+MZNo/RuJ6+QJJaVkG3V9HHsMnPopOz47hlR7F73SpMWMI3r6G6JOXOJ2ahc3e3ZjV9bhjhfWtkOJaCCGEEELcltnbT7H9WCpfRx4rM2bzxFfY0HU4kSGDeWrzLySlXd84ISuvAKcrqbhePItZcFvMzIo3WLAZNIDG545xNv4osUlp9Dq9F7O+fSp9PhVBimshhBBCCHFbEi8XP4W2sjAzfWR5fj6BO8LZ2GUovb75gPrrV3Dh7PW11M/N20uzhGiKQkLA4oZN7GxsyO03AMeli0hJz6FBxCoYMKCSZ1MxpLgWQgghhBAGNh5KLn+pR4nEy9kEN6pBvWp2nEvLMeq/sHYjyTU9qN3ME4va7uS3DcY5fKVBTNsju3Dob/xU2u6ZpwleMZesXxZgZmEO7drd/oSqkBTXQgghhBDCwOztp/hq4zH2J14pM2ZqWDy9V/5En3+9godlIeeuZBv0n0zJJPrrX0ht34lXez4EgNVjj9L89+Xk5BeSX1iEKirCL34n9OhhdH2z9u1I6dSVp756E5vP/wt3+cmM10hxLW5KfHw8y5cvv9NpCCGEEKIKeNV0AOA/6w+XGWOzYytdIhZhnpVJyPz/EXPGsBCPO3uF5vE7yevavbTNfMgQvI7s59zh02TmFtAs+ThmLs7g5WXyHp6//cyFC5dRJg7Fu1tJcV0Jzp8/z6hRo/Dy8qJ58+b06dOHw4eL/+GMj48nNDSUJk2a4O3tzbRp00oPZJk7dy7+/v74+/vTvn17YmJibvqeb7/9dunhNH9VSEgIN25xePr0ad577z06d+5cIdcXQgghxN2tmp0VnZu6AXA0OcOoX2tN6IaFrO49lqsf/QePxfM4fSa5tKa5mpPP1p2HqJ98muAx/a4PtLfnYkh3Ls76idTMPAL3b4U+Zb+oaGluRh1Xx4qdXCWT4rqCaa0ZPHgwISEhHDt2jISEBN5//30uXLhAdnY2AwYM4I033uDw4cPExMSwbds2Zs6cCYCnpyeRkZHExsby1ltvMWnSpJu+77vvvku3bt0qZU7169dn3rx5ODk5Vcr1hRBCCHF3yc4rwLeuM/4eLhy/aFxcb084i1/sNo536493YDNU+/a0id3MydTiFxxn7zhF/b3b0R07oWxsDMbajH+Mekt/5cT5dFptXA6PPFIlc6oqUlxXsIiICCwtLXn66adL2wICAujYsSPz5s2jQ4cO9ChZV2RnZ8cXX3zBjBkzAGjfvj3VqlUDIDg4mMTERKPrFxYWMn78eHx9ffHz8+PTTz8FYPz48SxcuBCAhg0b8ve//5127doRFBTEnj176NmzJ15eXnz11VcAbNy4kX79rv+f5OTJk/nxxx+N7rdu3TratWtHq1atGD58OBkZxv+CCSGEEOL+cubAcazWrKa5uwPJV3MN+q5k57P1p2WcrePJP8Y+XNw4ejQddq4rfcqdX6DxjduBZW/j5RzVB/UlGzMajR6IWW13+AsnUt+NpLiuYHFxcQQGBprsi4+PN+rz8vIiIyOD9PR0g/ZZs2bRu3dvo2vs27ePpKQk4uLi2L9/P48//rjJe9WrV4/t27fTsWPH0sJ7x44dvP322zc9l5SUFKZPn8769evZs2cPQUFBfPLJJzc9XgghhBD3npysHF791zM0++f/4TvnK6Pi+mhyBq2P7qbByAGYl+xLzaBBuMft5sKx0wCYoWl7OBp69TK6voWlBWve/owETz8sfltwz7yoeLMs/jzkHlcZf8Nu88h4rTWqjHxubI+IiGDWrFls2bLFKK5Ro0YcP36c5557jr59+5Y+Bf+jASV7Qfr5+ZGRkYGjoyOOjo7Y2NiQlpZ2U/nu2LGDhIQEOnToAEBeXh7t7pFtcIQQQghx644mX2XbtC/oUK0G5mG/UqtNW9J9ewJNSmMSL2fR8UAUFi/NvD7QwYHcHr1wCVsM/VtjfSAOZWML3t4m7/PM+K4UPRZaemjM/eT+f3KtdcV/lcPHx4fdu3eX2Xfji4IAx48fx8HBAUfH4sX6sbGxTJw4kWXLllGjRg2ja1SrVo2YmBhCQkL48ssvmThxosl7WVtbA2BmZlb6+dr3BQUFWFhYUFRUVNqek2O8N6XWmu7du7Nv3z727dtHQkICs2bNKnf+QgghhLi7JV7OMvmSIkBs4hV8tq0jKnQweHmhO3TAc3N4af+Bc+n8vjkB56RTEBxsMNbm8XH4/h7Gpcw86oevoHDAgHIfct6PhTU8CMV1FQsNDSU3N5dvv/22tC06OprIyEjGjBnDli1bSnf1yM7O5vnnn+e1114DinflGDJkCLNnz6ZJkyYmr5+SkkJRURFDhw5l2rRp7Nmz57bybNCgAQkJCeTm5nLlyhU2bNhgFBMcHMzWrVs5evQoAFlZWaW7ngghhBDi3nMqNZN/Lo3jg1UHTPabFxby0MHdmPcq/s242SOjabVtDWcuFb+ouD/xCs0TojALCQFLS8OxPXvgknGFLf/+lo5bV2Dz1JOVOZW7lhTXFUwpxZIlSwgPD8fLywsfHx+mTp1KnTp1sLW1ZdmyZUyfPp2mTZvi5+dH69atmTx5MlC840dqairPPPMMAQEBBJlY4J+UlERISAgBAQGMHz+eDz744LbyrFevHiNGjMDf358xY8bQsmVLoxg3Nzd+/PFHRo8ejb+/P8HBwRw8ePC27ieEEEKIO+/y+x/y9ZPtab9lBZcy84z6L0VsJtW1NsP7FNcgasAAvI7HsX17PAAnUzMZeH6/6X2nLSzY8Pw/6Tv9BTIGDwUfn0qdy91K6dtcP3w3CAoK0n9cZnHgwAGaNWt2hzIS18jfByGEEOIuk5JCnldj5jz7HqO+fItjO2Lwa1bPICRs4JNY5ufSe9XPpW2pQ0cS7+5Nxy+mMfHHaL6ZMhDzLZuhcWOjWxw4l87HqxP4eHQgzraWRv33MqXUbq31n25tIk+uhRBCCCHuAzn5hayNP0+ZD05//ZWjgZ0I/NsY0tt2IO3bHwy6P153CJ+4HbR8cqThdUc9gve6pVzNLaDp2SOYOzqYLKwBHnJ35KnQJvddYX0rpLgWQgghhLgPfBp+mAXRZ9ifdMVkf96q1Wxu0oZqdlY4PDme2quWUlB4fXODU4fPUPfcCdz7GB5K59inJzapFzm5djM9d6yEsWPLzEEpReuG1StmQveoSi+ulVLmSqm9SqkVJd9XV0qFK6WOlPy12g2xU5RSR5VSh5RSt32I/L281OV+ID9/IYQQomqdjIql69TnaR6/k0PnrxoH5OWhNm0iwacttlbmOAzoh3viMX5ff32Hs8BjezHv+DDcsMsYgJO9DdtGP437k4/RbOtauIUTpB9EVfHk+gXgxldS3wA2aK29gQ0l36OUag6MAnyAXsBMpZT5rd7MxsaG1NRUKfDuEK01qamp2PzhqFMhhBBCVJ7sCZOwdrTnhe+ncuLYWeOAbdu4Ws+TDEcXrC3NwNqaPa1CsF28CIA1cedpHB2J6tvPeCzg+feXWTr4KVIWLgd398qcyj2vUg+RUUp5AH2B94CXS5oHAiEln38CNgKvl7TP11rnAieUUkeBNsD2W7mnh4cHiYmJXLx48S/nL26PjY0NHh4edzoNIYQQ4r6xcHci/fxrY2Np/NxRHziAe+Jxwr+aQ/Mv3sY77Bf0iDYGB9RlhK1km1cg49o3xMmmeD205WOP0uzDd4AZhO05zYzYbVjM/dLk/ZvXdab+Z1NwsL7/zx/8qyr7J/Qf4DXA8Ya2WlrrcwBa63NKqZol7XWBHTfEJZa0GVBKTQImAdSvX9/ohpaWlnh6elZI8kIIIYQQd9rR5AxW7z+HTx0nmtV2MuovXLmamBYPY+Ngh+XTT9F63CSu5n5YWkTnFRSRsngFcY+8xGuNXUvHXW3bAavLqRATQ+8L8ZjXrwcNGpSZhxTWN6fSloUopfoByVpr08cVmhhios1obYfW+hutdZDWOsjNze0v5SiEEEIIcVcrKuLCZ1/hcfowF6/mmo5Zu4Y4v2B6NK8FDz+M89U0Lu+KKe0+GnecmsmJvPzWOINTEXOLYEWX4RS98gotfvyCjAmylroiVOaa6w7AAKXUSWA+EKqUmgNcUErVBij5a3JJfCJw42aLHoCJRUNCCCGEEA+Gwv/8l4d+/JLXP3meZev2GuzuAUB2NmY7tpPSpkPxkhFzc0527YuaP780JHnBUs4FtsPK1vBFxSKt2dBtBIlmdpypVhvHpyZUxZTue5VWXGutp2itPbTWDSl+UfF3rfWjQBgwriRsHLCs5HMYMEopZa2U8gS8gajKyk8IIYQQ4q5WWEjeBzP4bNJ0cvsNoHP4AqNTFePnL+dobS/OFFqVtl0aNJxqS3+Dks0dXCPDcRg22Ojy/fzr0DvIk3dGv8kPT/4TOzvZjKAi3Il9rmcA3ZVSR4DuJd+jtY4HFgAJwBrgWa114R3ITwghhBCiSpS3u1nRrt3kODiTWL8J1i89T+ftK0m+kl3aX1ikSZq/lHjfYBq62pe2V+/YjqxC0Dt2kJOWjue+7dQcMcjo+uZmippOxU+zJ3ZsVIGzerBVSXGttd6ote5X8jlVa91Va+1d8tdLN8S9p7X20lo31VqvrorchBBCCCHuhLTYBF79dGWZBfbGz2YT1bQ1ALatAtAOjuyav6q0/1RqJgEJOxk0ZQJv9Wte2u7r4UxU92HkfvAvTnw8k8NNWqJq1zZ5D/OSHUV86zpX1LQeeHJCoxBCCCFEVdu3D9v2bXl76mOkHztpMqTR7i3E+bXjo+EtUEqRO2QYHuuWU1RUXIynHTqO49XLqMBAg3FKKS49NoH8+AQaf/Quef94s8w0ghpW573BfrITSAVS9/JhK0FBQXrXrl13Og0hhBBCiFtSNGwY860b4plzCVfzQrwX/GTQH7v/BN5t/Dh3+CSN6pVsn3f4MFfadoBTp3F2siXyhak0PZWA+9IFRtePOnGJdbtPYpWbzZDu/jSu6WgUI26NUmq31jroz+LkybUQQgghRFVKT0etXUtM14E0/eBN6qxaSkrKFYOQjFVrOeLdAk+PGtcbmzThSq265KwoXkrivmEVdiOGmbxF/ep2nMgo5FC+FfWr25uMEZVDimshhBBCiIqUm8tnYXuJPnnJdH9EBMnNA0gxs6F6k0ZcburLxXkLDULsIjZg1be3wSmLAGcGjcLsm29YE7aVOqcO4ziwr8lb2FkXn+Q4sWMjrCyk3KtK8tMWQgghhKgoV69CixZMHNWJ2PU7TcesW8fJwA40cS9eqpExdAQ2v/1a2n0pI5f6UZtwHtTPaGjR6NFYHT1Mx2fHsKHbSJS96afS9lYW+NZ1JrhR9b8+J3FLpLgWQgghhKggl//zJbsc67Ky33hafP2R8aEvQP7qNayq7U+bhsWFr+tjo3HfvR3S0gA4E7EdcxtrardpYTS2vocrs97+msgxz+Hx0fQy8zA3U7zUvYnRk29R+aS4FkIIIYS4CVdz8vkq8hhL9yaVGWMz92fCu48iInQYzeOjmPpdhEF//OY9ZF66QqJHY3ILigvvanXcOOTTmuxffwPg4uxfSevRB0wUxnVdbIm3qs7iZp3xayBPpe9GUlwLIYQQQtyE8IQLRB9PZXnMWdMBSUlYXjjPscZ+5NrYcaRNZ1rsCDcIyV+zjniftjRwdSCkqRtQ/JQ5qfdgCr7/gZycPHw3r6LW+NEmb2FhboaLnRX9W9TB2sK8QucnKoYU10IIIYQQN6HF1P/jq2e74Hk8ntwCE4dIr1vHHu9AtJk5/x7mT62nniB4xxqDELuI9cT7BuPv4YyN5fXiOK9vP9SFCzB8OHmOzth07lRmHh+PaMGglnUrbF6iYklxLYQQQgjxZzZuxHXPTs78/V0eW/Afkq/kGHRrrTn400LifYNp39iVGg7WWPTqgXPSafIOHwXgSloGHvt20ObpUfT1NzwxsZqLPf+eMJ2MmrVZN+Ujk0tCxL1BimshhBBCiD9x6b8zWREyjNzxT+CSfonzG7cZ9G87nEzd3VuJ921Lu0bFe1M7ONiyq3VXzv1vFgAXV4WT1rAxAS29sTQ3LMH8PVxIqteYxeNexcm3WdVMSlQKKa6FEEII8cBLz8kn4Wy6yb7406lYh69ld1BXnB1sSBs0DOsbts4DsNy7h3TnGrz/fB+a13ECwNrCjB3BvXALWwhFRZjNnceV3gNM3qO6vRXOdpbEn003eqot7i1SXAshhBDigVb48ScoNzfW//s7rmTnG/UfXbmRS9VrcsXFFSdbSwpHjKRB+HJ04fV1186bfyejc1eDA1uUUrQa1YcsKzuYMgX3TeHYPflEmXl8PLwF/xkZgL21RcVOUFQpKa6FEEII8eA6fx49bRq/PPJ/PPrzv0i6kGYUUjtqM/E+wQDYW5nj1i6QdHsnji8uflnxQnoOFmvXUNirl9HYRjUdWDz5HQq2bGXhY69Sr0mDMlNRSsm+1PcBKa6FEEII8eCaM4dt/p3Y2a4XF9zrYxG2zCik8b5txPu2ZUJHT5RSOFhbkNx/KFa/zgMgLvY4tc+ewGNAD6OxHtVsiXGpz7LP5nN12EjMzKR4vt9JcS2EEEKI+9bGQ8l8vuFImf2Fq1cTE9ARgORBI8ifMw+t9fWAK1ewOxhP4yE9S19UBGDUI7itWwU5OTgsXcTVzl1xcnYwur6dlQW9/dxZtf8cLeu7VNi8xN1LimshhBBC3JfyFy8huE1Tanz/NduOphgHZGaid+zkYLMgJoc2xvXRkXjGRZF29mJpyMG5SzjS2J/WzTwMlmzUC2jCsSYtYPp0Gv/6A1njJ5SZR1+/2rzUvQnBnjXKjBH3DymuhRBCCHH/ycsj+2+TmTPyRQYu+5aFK6KNYyIjufSQH92DvWlZvxrNm9XjhH8wWb8uKA0pXLWGqyFdqeNiazDU1d6a+aNeJPeXX4nzaoH7oD5lpqKUwreusywJeUBIcS2EEEKIe05yeg45+SZOSbxm/XpSnV3Z3r4Px7r1p/PGxYbLPYDURcvY7NmKBjXsgOIiOHXQcGzmzy8O0BqPqEhqDR9odHkzM4Xybswnn4dxZNrH2MoOH6KEFNdCCCGEuOdMWRTLs3P3cP4PJyWWWrOG2JbFa6mtHx9H26hwsnILDEIKV68lzq8dLetXK22zG9wfu4PxcOYMlzZEkm1uhWMLX5O3aFjDnqPJGbSV5R7iBlJcCyGEEOKekhm5hS//FsLjs95lwa4zRv0pGblcDVvJvubF2+c1HdANy4J8LmzeWRpTdPwE1plXce/U1mBsTVcXtrbtSdGMGeR//AmnB42mprPhkpBrnnjYk09HBeDn4VyBsxP3OimuhRBCCHFXKSzS5fZffOo5fnnkZbwP78Nt1zaj/iPbYyi6nMaZet7UdrEBpdjRujuHPv3m+jV+XcyJwId5qou3wVh7a3OWD5hA3vJVmB09RtEzfys3Fycby1uYmXgQSHEthBBCiLtGXkERk37exdUc45MSAYiPp0bqOeK6DUK9+goPLZ5D0R+KcduIDcT5BqPNzJg+yA+ABs9NpMPuDVBUBID5ypWkdTM+9MXe2oIMRxeWL4pk+rQ5NGkkR5GLWyPFtRBCCCHuCgWFRbz6/RbMC/JJzcgzHbRyJUfbdWV8J2/sHn2Epvu3Ex1z3CDEZdMG0jp2obff9cLYrX0QmVa26M2b0SkpOOyNpvrgfkaXt7E0Z3yHhqyJv4CzrSXV7a0qdI7i/ifFtRBCCCHuChmx8XzwYh/ef3csizYdNBmT9OtSNjcKxM3RGgd3N9Lad8Z86dLS/pzMbGrt2UHQkyMYFuhR2l7LyYYt3YdTMG06KR98TEJwV/we8jB1C1rUKz7spV41uwqcnXhQSHEthBBCiLuC1bR32TT8SVzatMLzt58pKCwyDMjIoEZCDAcfCix9onx14BBqrb5eXB/5bSVXGnhRy6u+0fXPDB5N5uV07Gd9TfKLrxkcCnOja+uoba3MK2hm4kEimzIKIYQY8MjbAAAgAElEQVQQ4s7LzsZm3RriZoXTy8uCLn0HcTp1Oo1qOl6P2biRM14+vD48CCuL4ueDFv374TblJUhORru5kbV4KXm9TB/o4uFejf+b/DlKF/FOxxblpjOxYyOaujuWGyOEKfLkWgghhBCV7uqR47zx7yWsT7hgOiAykqN1G5OorSEwEGVjzeXIrQYhUV//QkyzNtSvfn25Ro2a1YgLeBgWLOByejaNt67H7dHhJm8xNNAD/3rVcHKwoY6zTbn5tvOqIeutxW2R4loIIYQQlSrv7HloFcjbUx9jy8L15P9xuQdw6IcF7Pdrx7uDfEEpkrr3w3rxotL+nPxC6kdvJs6vncFyDmdbSyJChlL08cekf/UtebVqYxvYymQe5maK57s25uPhLcpcEiLEX1VpxbVSykYpFaWUilFKxSul3ilpD1BK7VBK7VNK7VJKtblhzBSl1FGl1CGlVM/Kyk0IIYQQVSf/m2/Z17IjS4Y8zYjVP5B4Odug/2xaNs6bNlBtcP/S9c4R/iHUXrccXVh8xPm8+Ruxzc6k3eAuBmOVUpz2acXeJkHUnfp3zr41vdxclFJSWItKVZlPrnOBUK11CyAA6KWUCgb+DbyjtQ4A3i75HqVUc2AU4AP0AmYqpeRNAiGEEOIuprXmxfl7yfjD0eKlCgux/v47IkKH0XLqS3jF7+Lk/qMGIXs37sYxN4vQ0defq3Ue3IUse0eSV4QDYBm+jsKu3ejpV8foFi9182bm6Nd4emYEjQZ0r7jJCXEbKq241sUySr61LPnSJV9OJe3OwNmSzwOB+VrrXK31CeAo0AYhhBBC3LUWzVqO//qlvDh3t8n+ok2bSbd1wKFDMM0b1yGnRy+y5y8wiHHYuIGskK5gdr0s8avnQtLAkfDjDwC0i1qH/ZhRJu9Rx8UWKwszvN2dqCbrpMUdVqm7hZQ8ed4NNAa+1FrvVEq9CKxVSn1EcXHfviS8LrDjhuGJJW1CCCGEuBtdvEjP/xtPpp0jtllXKRzfBnMzwyUXaWErifFtz4QOngA4PfYI3q+/Q1beO9hZWXD8YgbOkRuwff5Jo8vnjhiFc/9O5HwxkxoXkrDqZ3oXEBtLc/73aGDFz0+I21CpLzRqrQtLln94AG2UUr7A34CXtNb1gJeAWSXhphZA6T82KKUmlazV3nXx4sXKSl0IIYQQf+LCh/9lb0An8ucvoM/Kn0i9lG4UYxXxO1c6dMbZrngtterZE4/Eo5xNKD5V8VRiCs2P7MOhf2+jsY18GrH80ZconDad2H/MQFlbV+6EhKgAVbJbiNY6DdhI8VrqccDikq7fuL70IxGod8MwD64vGbnxWt9orYO01kFubm6VlrMQQgjxoDtzKYszl7LK7C9c8BtbH+5H3Y5tyGrQiOSFyw0DLl/G+sghLDp2uN5mbU1il97on38GIG/NOjKa+4Grq9H167jYsiaoF8//axl+f3u0QuYkRGWrzN1C3JRSLiWfbYFuwEGKC+bOJWGhwJGSz2HAKKWUtVLKE/AGoiorPyGEEEKULXP5as71Gsjn34dTVGT0i2Q4fx6X1PMcb+SDmZkibeBQHJb8ZniNtes55OWHf6NaBu3po8fitugXdFER1VYswXzoEJM5XFtiohSy57S4Z1TmmuvawE8l667NgAVa6xVKqTTgv0opCyAHmASgtY5XSi0AEoAC4FmtdWEl5ieEEEIIU9LSsHpiHAVNgnjiu3dZ3CWQYYEehjHr1nG2ZTse69S4+Pthw3D/9H3IzAR7ewCSF4aR1q4zPtVtDYY6h3biCpZYvvAyzffvwGHlL2Wm8u1jQcjOeeJeUpm7hcRqrVtqrf211r5a63dL2rdorQO11i201m211rtvGPOe1tpLa91Ua726snITQgghRDnmzCElqD0/PPEWbheT2L9qk1HIkZ8XstUrEL+6zgC4N67PEU8fLswtfnqdm1+AS0Q4jR8fYbSvdANXe2ZN/CeXN21n7bNvg4tLmamYmcm+1OLeclPFtVKqmlLKRynVSCklpzoKIYQQ9zJtYpnHjX77jQ1BPXi0Y2MuDR5Ou22rycm//stkXViI+87NxPkG42JXvFzDxc6SncE9yZs9B4CTv29HWVni3ral0eUtzc0wa+HPP1/6AvcJYytuXkLcBcoslJVSzkqpvyul9lO8Rd7XwALglFLqN6VUl7LGCiGEEOIuNWsWWFjA55+b7k9PJzd6F1s9fAlqUA39yKO03bGWpNSM0pDPP1rAVadqfPh//UvblFI0mDCGWvui4dw5Tn0yk62B3ShrTUdhyTruwAbVKm5uQtwFynsKvRA4A3QsWabxcMkuHfWAGcBApdSEKslSCCGEEH9dZia89hrL3/uGjClvkn78jHHMxo0c8/Qhz9oWe2sLmoS2pcjVlez1EaUh9XZGktohxGioax1X9vYcBmPG0G7baqq/PLnMVDp6u+JT1xkbSzmMWdxfyiyutdbdtdazS7bR+2Pfbq31i1rrWabGCiGEEOIu9Ntv6A4dWOruz95WnVkz5UOjkEuLlxPnG8w7A31K2y70HYz94uK11CdSMmmxbzPNn3zEaGxTd0fm9HoCHRjIDxPepmXHgDJT6eHjzsvdm1TApIS4u9zsmmt/pdQApdSQa1+VnZgQQgghbkFREYSFwYULZccsX05Kz+KlHNva96X91lUG3Rm5BeSvXkO8bzAe1exK23OHDqfWhlWQl8fPC7dSMzkR85DO/JGdlQVZFlaEj/8/znfuLk+lxQPpT4trpdT3wPfAUKB/yVe/Ss5LCCGEELdixgyKnv4bGe07ovPyjPsLCuD33wn3aEG/FrV5fMpYbHMyydi1pzQkNmIX1nk5vPjSUIOhzg81JtG9IRlzf6Xr5jB2B4WCpWWZqfwafYYAj7J3ABHifnYzT66DS9Zaj9NaP17y9USlZyaEEEKIm5OVBZ9+yvwPf+aMlRPnv/nROGbnTooaNGRHliUtPFyo6WzH8dC+ZPw4tzTEInwdmSHdqOZgeMx4vep2LB00CdtXXqTlinl4/2vqn6YU1FBeVBQPpps5RGa7Uqq51jqh0rMRQgghxK3buBHt48OGfCcudR/JkO9/gMmTDELSl65gS11/MnMLqONSfKhL1pDhOLwyCT7/CJTCMWI95s9MNLq8pbkZtj268aG5Ofau1Zncxr/MVL4bF0SRvn66ohAPmpt5cv0TxQX2IaVUrFJqv1IqtrITE0IIIQSQng6jRsGMGWWG6NWrORdcvAa6+eMjcD4UT0FikkFMSsmLiu8N9itdC129Q1vyMIPoaJKOJ9Lg4F5qDTG98rOBqz1HmrSkxyM9yz3URSklhbV4oN1Mcf09MBboxfX11v3LHSGEEEKIivHuu1y8dJWsz74kPTzCZEj+ylV8bdeEdl41CG3ZgEOtO5M579frASkpuJ87iWvPLrg725Q2V3e0JjpkAHzyCTkzv+Fk286o6tVN3qO/f22+HhtIU3fHipydEPedmymuT2utw7TWJ7TWp659VXpmQgghxH1uQfQZsvMKyw7Izqbo+x/4sMckfusxlmOvTzWOOXqUrMvpJNbzZkCLOgAk9RqE+fxfSkNSl6zgmE9rxnY23PrOxdaS5Z2HUbh3L7VnfsLZ518rMxWlFBbmckizEH/mZv4tOaiUmqeUGi1b8QkhhBAVIy0rj+3b4vn7/8I5mnzVdNCmTVxu4EWqax1cJ4zloYO7yblw0SAkd8VK4nzb0aphdWo6FT+VLuraDYtTJ+HYMQDSF4ehe/TA8g/FsZ2VOdmWNjzzyve8+vEKHgoJqvB5CvGguZni2hbIBXogW/EJIYQQFeLMnnim/WMk0/4xkm9/2mA6aO1atjcOpGuzWvTt2IxjLTuQPvsXg5DcFatJCu7Es10al7bVcXPkUOfeMGcOOj0d983rcRo9wujy19ZOF1hakWNrj7uTjVGMEOLW/GlxfcP2e4/LVnxCCCFExbD/7D9Ehg4jqu9o+i3/njk7DFdc5hUUkb1iFfuataVrs5oAbGrVlczZ80pjijKzsNi2hS0NWxqMretiy/qOg+HLL8l+4WUO+balfvNGJvNwc7y+7Z4s+xDir7uZQ2QaKaWWK6UuKqWSlVLLlFKeVZGcEEIIca/6adtJvoo8ZrIvOzOHuquXUO2V5+nyxTQCd0Wwfe8Jg5jY7fspOHeekw0folbJE+WQFx+j9rGE0lMY537wI6frN+Wf4x42GFvb2YYztRuSMeVNCo+fIOq5NzErYwePdwb60NDVnoEt6/7VKQshuLllIfOABUBtoA7wGzC/MpMSQggh7mXn3/sIzykvEnMwyWT/Z9N/4nz1Otg2rI9ycyOrTTBdDm03iLGJ2MCB5m14MsS7tK1WrWrEBTxM0cKFAHjv2EBG9164/uHQF6UUvnWdie49il+mfYOtV8Myc7W2MOfNvs1KX4YUQvw1N1NcK631bK11QcnXHEBXdmJCCCHEvUhHR2P18Ye4XL5Iv7DvSU7PMYrxidtBnF87nGyLjxC3GTeW5ptWGcRkr1gFPXvStlGN0rYaDtbEh/anYOb/SE1Kxm/Hemo/Oc5kHr51ndmfdIWdxy/RrpHp7fWuKW/faiHErbmZ4jpCKfWGUqqhUqqBUuo1YKVSqrpSqvx/W4UQQogHTP6n/yW852giXniH7puXsDPujEH/sYsZ+MbtIM43GOeS4tp68EAaHtyLTk0FYP+JFJrHR9Fy0ijj63frQY61LQ4dgtnbshO1fb2NYgD8PZyJOZMGQOOasje1EFXlZorrkcBTQASwEfgb8ASwG9hVaZkJIYQQd5uMDNi1C3QZv8AtLESvXMmpbv15dnwoWQFBJM3+jaKi6/FbtyVQ+2ISr7/7eOlyDksXZxJ82nJq1lwAUlevJ6dhIyw9jNdB16lmx/y/f8G+x5/jyoeflrmW2s7K4i9OVghxO25mtxDPcr5Mv3oshBBC3G+Kiijq1o3cTp05+e6HpmOio7noWIPDFk5YmJvhPOExOu4KJ/FyNgCFRRq9LhyzLiFgZWUw9EKvgTgvXYjWGuuliynsZ/ow5Ca1HNiZYca6wJ7U93ArN+VvHgviu3Gyd7UQVelmdguxUUq9rJRarJRapJR6USklG2EKIYR4sKxeTUZ6Fu/9fRY1//tvyMoyCilas4Y4v3YMC6wHgBo0CO8Duzh5LBGAo8kZBCTswLJvH6OxNkMGYnX0CJd+mof/1jU4PTPJZBrXlnicTMnEu5ZDuSmbmylZTy1EFbuZZSE/Az7A58AXQHNgdmUmJYQQQlS1y5l5nE3LLjtg3jxi+46kUZe2JDVoig4LMwq5sGAZcX7B9PJ1L25wduZy24dRy5YBEHsyhYf2bYW+fY3GNm3oxuIn3sDlmSeJG/s0Ng3qlZnKKz2bMqVPM2wszW9tkkKISnczxXVTrfUErXVEydckoEllJyaEEEJUmRUryPXxZf60b0nLyjPuLyyEdeuIatqGjk3ciO3Qi7Qf5xiEpJ0+h8uJIxzxDjBozxkyDNeVS4tjfo8Ej3pQz7hwdrC2YOND7Zny83YKX32t3HSb1Xaicc3yn1oLIe6Mmymu9yqlgq99o5RqC2ytvJSEEEKIKpSVRf74J9jSugePfz+d32POGMfs2UNRzZoctq5O/ep2eDzxCHabI+HKldKQ2J8XkdqqLV9NbG8wtPqoodQ/Gsf52IO0WLsYq0cfMZnGtafQqRl5NKxhX3HzE0JUqZsprtsC25RSJ5VSJ4HtQGel1H6lVGylZieEEEL8RZm5BRy/mFFmf8H8XzlQtwmr+44jv1lz7JYtMY5ZuYrwei3JLyzC0twMf9+GHHyoFYWLF5fGuG5cD337GK1xtqvmzIauw8ntPwj//dtQEyeazMPaovg/yUENq1PHxfZ2piqEuAvcTHHdC/AEOpd8eQJ9gH6A6VeZhRBCiLvArtiTrBr7Et99t8bkYS4A+7/4kZ1te/Df0S1xmvQEddcuI7+wyCAmK2wl+/3aMalT8SZZtlbmHOnSj9zZ8wBIuZJFvZ2ROA0bZHR9czPFhmGT2NahL0XLl0ONGkYxUHyQy5OdGvF0Z9mIS4h7WZnFtVLKAUBrfaqsLyC1yjIVQgghblHes5MJ3B3BS5++QMKpi0b9OjeXpgd3U3fkQBysLbAZOhjvw/tIPH7DseWXLmF5IIGTD7U0OC0xv28/LKJ2QnIyaSvWkOVeB6cmXibzeKxTY1InPo1dh3bl5hvcqIbs7iHEPa68J9fLlFIfK6U6KaVKF38ppRoppSYopdZS/FRbCCGEuPucO0erfZv55P8+R3s3oWjOXKOQ1PWRJNeqR0hHn+IGR0cutHmY7PkLS2N2ffsrh5q2ZMrQlgZjfb3rkNC5D7z3Hs4zP+P00DFlphLYoDqTQ02fpCiEuL+UWVxrrbsCGyg+nTFeKXVFKZUKzAHcgXFa64VljRdCCCEq09Z1URw6klRm/9U5v7C7RUcm9AvAYfLT1F2xiLwCw+UeaUtWcPnhLganGSb3G4LtogWl3+cvDSOvZ2/q/mEddA0HK1YNfQpWreJS6lXSR42toJkJIe5l5a651lqv0lqP0Vo31Fo7a61raK3ba63f01qfr6okhRBCCAOrVxPUvxMOXTqRmppuMuTy4uXE+rfH0cYCuyGDqH/mCEd3J5T2X8nOx3pDOHVHGq6TPhrYiZpH4uHcOQqyc/CL206rp413+KhmZ8UxMwfS9yfw7ze+wrdR+aclCiEeDDfzQuNtKTnZMUopFaOUildKvXND33NKqUMl7f++oX2KUupoSV/PyspNCCHEvU2//TbfPDWd1OrupH7xtXFATg4190VxoHkbnGwswdqai117kzf/+hPppAPHcUs5S82eXQyGDu/ozd5Wncn75jsu/DSPZM+mWHg2NLqFrVXx1nkrY8/hUc2WWk5yeLEQohKLayAXCNVatwACgF5KqWClVBdgIOCvtfYBPgJQSjUHRlF8GmQvYKZSSo6eEkKIB0xBYRE/bD1BTn6h6YC4ONJPJxET8DBZk5/Dfs5PRiGFkZtIrOtFlqML1eytAMgbNhz31UtLY/JWruJC6w5gaWkw1sLcjJixz6D+8yk1/vE65yZNLjPXrs1qsT7hAn4eLrcxUyHE/ajSimtd7NrGopYlXxr4GzBDa51bEpdcEjMQmK+1ztVanwCOAm0qKz8hhBAV52RKJhm5BX8atz7hAguiTRzScs2lS+T5+tNuwjCiEhJNx6xaxYFWnZjUpQltHh+GfcoFMmPjDEL2fDufOL92fDcuCEvz4v/U2ffqjsO5RDh+HK01as0a7Ab2M3mLuq392frFHJa8PAPHQWXvOlvLyRoAnzpO5cxaCPEgqcwn1yilzJVS+4BkIFxrvZPio9M7KqV2KqUilVKtS8LrAjf+iZtY0vbHa05SSu1SSu26eNF4WyUhhBBVb9qKBOZHnS43ZmpYPL9EnWZtfDmv7Hz4IXtcG5FrY8u5GZ+aDMlZvpKopm3wrumAmaUFx7r05eoP148i11pTZ/tG3P+wltrRwZY9bbrCvHkcSDhN05jtuI4eZvIetZxsmJ3vxlbPlnjXdCwz3cAG1QB4yL3sGCHEg6W8fa79lFI7lFJnlFLfKKWq3dAXdTMX11oXaq0DAA+gjVLKF7AAqgHBwKvAAlW8qaepjT21iWt+o7UO0loHubnJyyNCCHGnxZxJA+BqTvlPrs9cyir9XFhk9Mc7FBZS9N0sVvYdh9nUfxL6+0Jy8/9wzatXMdu9i4MPBeJsW7ycI3PwUOyWLARdfM3f1+3CKf0ybYf3MBhqb2XO+k5DyPn0v5i99gppoT1QNWuazNWnbvGT6DFtG5SurTbFxc6KWeNby97UQohS5T25/h8wFfADDgNblFLXdse3LGuQKVrrNGAjxWupE4HFJctGooAiwLWkvd4NwzyAs7dyHyGEEFXv0PmrABQUFZUZU1BQyLDl3zLh239ilZvDwfMmdviIjuaSUw2S3evTvH9XtIUlmZu2GoSkhK3mqKcPuTZ2mJkVF7QePUMoyM6GmJjioDVruNo5FGVuWBQrpUiq15hFvcdhlpxM3vv/KjNfJxtLnursRVDDamXGCCGEKeUV1w5a6zVa6zSt9UfAZGCNUioYE0+U/0gp5aaUcin5bAt0Aw4CS4HQkvYmgBWQAoQBo5RS1kopT8AbuKkn5EIIIe6ctfHnaehqz6nULC5l5pmMOf7LUtrsDKeVfRHjtvzKkQsZRjF69WqimwbhU9cZc3MztrbtSfJXPxjEnP91KXG+7fhyTKvStvo17NnZpjtF835Ba43HhpXYDRtsMg9PV3t+7zaSfz37Ec6N6pc7rzae1UvXawshxM0q708NpZRyvvaN1joCGArMBhrcxLVrAxFKqVggmuI11yuA74FGSqk4YD7Fh9ForXU8sABIANYAz2qty3hVXAghRFUoc8eOEqv3nwOgr39t2nhWJ+rEJaOYgsIiLGd+ybmnX8Bm5he0WvELGenGxXX+qtUcbtmBZ0KKf0maOXgYddavhMKSHLSmzs5IHn7+UWwsrz+VtjA3Y2twbwp++IGUdRupe/IwLqOHm8z3xtUozna39EtYIYS4KeUV1/8Cmt3YoLWOBboCi//swlrrWK11S621v9baV2v9bkl7ntb60ZK2Vlrr328Y857W2ktr3VRrvfr2piSEEKKiPDt3D39fsr/M/rXx52kWH0WrLz7Ay1aTeDnLKGbNrhPU3rcTi2FDoXFjcps0xWVThEFM8skkCuITcAztXFo4t+nRlkzXWhAZCcDVmDgoLMQ9ONDoHi5BAZzu1h+3XqHse/Y1sLY2me+wQA96+rrz/hC/m/4ZCCHErSjv+PN5WusdAEopB6WUfUn7aa31k1WVoBBCiDsjLukKABeu5JCVZ/yyYlGRhuRkJn/zJuzdi89nH3DuSo5RnOP2LZyu3wT3+rUAyB42As/wMIOYHV/N53DTVtR1v77G2cXWkqi23dHz5gGQ9stvJAV3wczEUg2fOk78b9BzfPbbDmyfnlTmnJrXcWJEUD058EUIUWnKXUymlPqbUuo0cAo4o5Q6pZR6pmpSE0IIURkKCov4ZtOx0uLZlJz8Qj4NPwxATSdrTqYYP5E+kZpJ541LKBg0GObNw2npQvLPXzCISU7PIX/lasz69MHFrvgwF7vRI2m0axMFV68vDfHctRnXof3p0bxWaVtNJxu2tAylcNFiuHQJx3mzyR/zqMl8W9RzIS07n/hsc/zqyoEuQog7p7yt+N4E+gMhWusaWuvqQBegd0mfEEKIe9CZy9nsPH6JT8MPk5KRazLm2bl7qJFylqkHV5B5NpmP1x0yisnMLaDl3khsxo0FNzd0jx403ryWgsLru4ZsPHyRlgd20mDMkNI2B4/aHPf04dwvxSsMc3LyaBi1ieojhhhtaWfX2JOkrn3QLVqQ4liD+v26msy3jostAPWr22FlIS8hCiHunPL+BBoLDNFaH7/WUPJ5BPBYZScmhBCicpxMycTZzhI3R2uW7k0y6s/KK0AVFfHcf1/BI2IN/1rzGRbmivwbiuYzl7KYGxZFnZSzWHR8GADzUaNoG7WefSX7XmutObw9Bpf8LCxbtTS4x6423Uj5vvjgl9MrN5DtWhO7Jl78UTsvV7a/8E8uvfM+s1//D66OZS/nmNLnIZ7qbHwNIYSoSuX+773W2mjxnNY6m+K9qYUQQtxlzlzK4sX5e8vd5SM28QoDWtSht19tth9LNVpPfTYtG9/926lV3R4VGYn1nl3UOnWUVSU7g0DxaYve+7Zj0S0ULEt23ejVi0ZJRzkZdwyA4ymZ+O3fjnnPnmBm+J8b/+fG81DcDkhOJnfWD1zpZ3ia4jXetRyITclhXoNg6jSsXe7cG9d0xNXB9IuMQghRVcorrhOVUka/f1NKhQLnTMQLIYS4w6aGxXM1p4A1cWUfMX7u7EWCVs2ns0M+1e2tSLlquDf10eRMeh3djtX4cWBjgxo3juDtq8nMLS7YrxXunY7twqxPn+sDbWy42qM31VcXv6wYtu8sbeO3Qb9+Rjm0CGjMtra9yBs+koab1+H68nMmc21Yw54LV3LYdyaNDo1db+lnIYQQd0J5xfXzwNdKqR+VUs8ppSYrpX4CvqH4QBkhhBB3kf2JxS8odmjsyqlU4xcQAb6OPMbA/03DftY30K8ftZ2sOXrxaml/cnoOy2OSaLx7C/TuDYAaOZKQmI1k5eYDcCo1C1VUiHfMdujVy+D6esQI6q0L49L/t3ffYVFd6QPHv2foCAIqWBDFXlFU7L333stG04yJm02ym96TXTfZzSa/JOumm6LGqLEX7B0b2GgqCnZUUIo06ef3x4zIODMkKkTF9/M8PBnOfe+dc+eN8Ho895zMXE7GXcI7/AD072/RD4NBsXTsTLZU8OO7mf/Es3YNq/21M+3C2LFeZZr7eliNEUKI+0lJS/FFA82BnYA/UNf0urnpmBBCiPtEcmYus7edBGBMUE0iLqSSlp1nFvP4j2HEHjhKYPQ+1L59YGdHm4gQjl++WVzHXcmkS/Zl7J2doFEjY2PLljg6O5IWsg+Ag2dTmGKXiKpWDfz8zN7DfchAql0+y47gvQw+uRe7bl3Bw3pRXL2mN0vGPcsjbz5u8SBjccMCazCxXcm7KQohxP3C3tYBpVR9oKrW+vtb2rsqpS5qrePKvHdCCCF+l10nr1CYm8dz8XupGOcKwOajCYxqXROAnHzjVI62oZtwnDAO3Nxg+nTarFpDSNNORdeJvniNTtH7jKPWNwpepbCbOIGAkPVk503g9NUM+oeHwODBFv1wdHXmxPhp1P3nm9S5dhlmf2azz84OBpSCyr8xT3p4oO9tfRZCCHEvlTQt5FMg3Ur7ddMxIYQQf5CwM8k8/mMYV9KtL5236shFBq39iYbzvobevZkWUIlr12+OXCdcy8HN2Z5xV6OxG2qaAz12LBV2biPt0lUAMnLy2THdwD8AACAASURBVBuXRMNDN6eE3KAmTqRt6CZSMrK5kHIdry0bYOhQq3259uzzXHdyJXfIMIvrFPd0j/p8Mj7wdj4GIYS475VUXPubtjs3o7U+gHGaiBBCiD9I6OlkALbHJFocy8jJxz4vh77blmC3aiX07Uvj5T9zMfV6Ucz3u0+Tl5oGoaHQs6ex0dMTevak6cHtZOTks/xwPM7XM7E/eOBmzA1Nm5Ll6s7cf83H+8IpDAkJ0KGD1b4GNfPj6jc/4PF/H90c/bbCzcmeis4Ot/lJCCHE/a2k4rqkvWFdSrsjQgghrLuceh2X+XN50/48O05cMdukBYzL77U9eYgKLZrj0KQxPPUUlZcuJD4lC601AF6ujjxRcA7atjVOCTFR48bRas9GNkZfJiM7n2cLT0PnzlChgkU/Nvccw/CV3/KXkAXw5JNgb31moZO9HUNa1MDByjblQghR3pX0ky9MKfXkrY1KqceBg2XXJSGEeHicuZrJJxtjzEaZb3XhizkMXvMj/i88hd/FU2TkmK9LvTE6gU4nw1BDTHOgO3XCkH2dqnHH2XQ0gbTsPCLjU2kascdidQ+GDqX+ySNs2xtD1MVr1Nm33erSeQCDPn2D2vV9qZKeDC+9dDe3LYQQ5VZJxfXzwKNKqe1KqY9NXzuAJ4Dn/pjuCSFE+fZL6DmiL6axKvyi9QCtqfvDFxx86T3UK6/Qfel37I5NMgs5fuka9Q7uulk4GwwwfjzDToSQX6gJOXmVtrW9cN6yyXJZPHd3dK/etD64jYKMTJzWrbU5l7qKlxsuq1fCjh1QseLd3roQQpRLJS3Fl6C17gS8B5wxfb2nte6otba9O4EQQgi01vwz+BgnEqw9F250MfU61Zb8zCuRqzl8NpnruZa7KsaFHIKkJOpNGgXTptEiPITg3TFFxxPTsvG7Go9jYT40b37zxPHjabJrPdHxqSw9eIEeKgWys6FFC4v3MDw1nf7rf+btM1uhXTuoXfvubl4IIR5iNpfiu0FrvQ3Y9gf0RQghyo1jl9KJS8zgX+uOM2daW6sxIXOWMmzld1Ty9WFQoTPxA5pQ38fNLMZ+4waiAjrSztsNHOxIad2eVod3kJTRkcpuTnwXcpoepw+gBgwwf3gwMBB7B3uu7w2FOk1pGLbDON3DygOGLkMG4dC7C/Y/fAWbN5fq5yCEEA8bedpECCFKWXZeAR9vvDm6fOsDiDd0WT2X8zP/hvrsM7ovm0N8ivmuiksOXiB9+SrsBg/C2cEOAN8Zj9I2dBM/7jlDYaEmLjGDNkf3Q/FtyAGUwn7iBNqFbiagpgdq0SIYMcJ6h5XCft48uHQJmjW78xsXQgghxbUQQtwOrTWz1h4lNtH2dI+Yy+n03PIrny2dhW9+JmeSMi2DMjPxDttD0uAR0KMHjrqQFNMOiDecPX+F+nGR1Bo37GbjsGE0PhlOLZVLYnoO1R0Kcdq/F/r0sXyPqVPpF7aemUlH4MoV6Nv3Tm9bCCHE7yTFtRBC3IbTVzM5dSWT73efKVrm7lbxuw8wNvgH3CpWYOqqL4lNtCyuL69cR1ytxjhW8jTugDh5IhWWLC4a5c7NL8Rzfwi0boOff7WbJ1asSHrnbmT/upQj51PpFh8FQUHWHzBs0ADDX57FYeojMHs22NmVymcghBDCNimuhRDiNkRdTCPQz5O063mcTMywGuP907dkPPkU/Pe/1N6+nuMRsWbH07PzOPfzMiIDOuLmZHz0xWnKZNqGbSbxmnFJvp/3n8U/dBcOQwZZXD9x0Aha7VnP5mMJdAjdaHu6B8Dbb8P16zaX1xNCCFG6pLgWQgiT/IJCsnLzS45ZtJinx3VkbMoxDp1NsTh+MSWLevu3U/GRyVCpEoZBA/HZuJbc/Jvzrl9YdITaB3ZRY8JIAv08jY3NmlHgXpG0rTsByM4toPPJMOwGWxbXjR+fiF98HA22rsF96yaYMqXkGythl0QhhBClS4prIYQw+XTzSZ5dcJjUrFyrx6/HnKTff9+FF1+k08fvEHUu2SLmq9krKbC3N+6UCBgmTaJT2EYS0rIBSMvOw/vSOTzJp/PInqhihe+l/sNIn/sz+QWFZEREY5+fCwEBFu9hcHcj5vV/MG3eh6i//x0qVy6FuxdCCFEapLgWQgjgVGI66YfCqeXlzJHzqVZjkr+aQ0yf4di/+gr2PlWofWBXUdEMxlVC2hzbx/Xe/W6OFvfvT7XzcSTEnAZg98mrBETupbB/f4sRZe8nHqHBzvXM3hRDp/0bsBs9yuaoc7uXnsIpIx1mziyFuxdCCFFapLgWQpR7GTn5ZtMyrMl59XXeeXsKz/76MRuiLffJSs7MJWfVGpxHjwClUJMn0+XQVi4UWz5v8YHztIzai++EkTdPdHLiave+ZP2yGK018anX6X86DJcRwyzeo2pQC1J8/anz1Se02bQU9dRTd37TQggh7gkproUQ5ZrWmud+OczT8w/aXG86/9Jlai2ey5H1IXhtDMYx9iTZeea7Ja7fFkG1S2doNHqgsWH0aOru3UrwgbMA5BUUcijyLLVOH8OuT2+zcytNm0TVjavZFpNI/JmLeEUehn79rPbl8gcfExS2heRHHjPfcVEIIcQDQYprIUS5lpaSTt8NC/A9H0voacs50gA5vy4lMqAjdTsGoh5/nL77g4m5fHMd67l7z5C5Kpi8rt2xd3E2NtaoQX7zAKrvNz6A+NOeM9SP3I+hY0eoUMHs+q5DBlHzQhypx07SYNdGVK+e4Ga+E+MN7Yd0I3z9brz/Pevub14IIcQfToprIcQDa3tMIssPX7C53jRA6vMv0uvgJl7/7wscPnbeakzG8lWcbNsdT1dHmDCBZiEb+HzziaLjJxLS6RIbhtvIoWbnGcaPo+WeDQDkF2pGXzwMQ81jAHByIn78I9R5/w2GrJuLevZZm/01GBSDAqrjYCc/noUQ4kEkP72FEA+kxLRs5u09y5rwS6yLspwjDXA6Lp4qSxeSs2IVhs6dqb5kgUUhnpmWScV9uwlrGGRsaNGCfDs7/E8fK4q5np1Lo4h92A0ebHau8/ixNDu8i5z0DC4lZeCzc7P14hq48uxfyXFyJnvseOu7KQohhCgXpLgWQtyXfushxN37j/Piv5/m7U1fE5tguRW51pptH83hSuv2+DWti+MzMwgKCSb6YppZXFLwJuJr1uWvEzoZG5TCadIE44Yuadnk5BfgfTQcVa0q+PmZnauqV+divWac/24+lXdsRtWpC/7+Vvvr71+Nb2f8g0offXB7H4QQQogHSpkV10opZ6VUqFIqXCkVrZR675bjLyqltFKqSrG215RSsUqpGKVU/7LqmxDi/hZxIZXnfjnMO6uibMbU+vwjqgc0puah3dhtWEdhofmIdEpWHk3D95DQxTRK3KsXPulJxOw8YBZ3/IfFnO/QA/8qN+dJO0wcT9uwzcSnZHH0YhrdT+xHDbNc3QNg+8jH8Jz1PmN+nY3hb3+12V9fTxfmTGuLvUz3EEKIcq0sf8rnAL201i2BQGCAUqoDgFLKD+gLnLsRrJRqCkwAmgEDgC+UUnZl2D8hxH0o/HwqcxeFUPnqRRLTcqzGRMTE03jbGvL//j52b71F302LOJucZRZz4mIqzaL24TrMtMOhnR3ZQ0dQKXhlUczF1OsEROyhzpQxZue6tG6FoUIF7MPCiDifSvOwbTane+yt04o1Qx/F/umnYNy4u7hzIYQQ5UGZFdfaKMP0rYPp68bQ0v8BLxf7HmA4sFBrnaO1Pg3EAu3Kqn9CiPvTke0Hee+dyXwwaxpVL53lhJUpH9u/WMi5Wg2p3KAOjBhB7dgoIg7GFB0vLNTErN2OoVo1Ajre3OHQZcoEGuxYT4FplHv/xn145V/Hv28X8zdQijMDRlBp3vekbtqKiwFo395qf4cF1uDqhEfwfvMV2WZcCCFE2c65VkrZKaWOAInAJq31fqXUMCBeax1+S7gvUPxR/gumNiFEOVFQqHl9eSTz9p21GdN68XfET34Mu5df5pEt8zh1JcMiJiByD5m9+xq3Dnd15VCLLmTMW1B0/GxyFtX3bsd5qPkDiE7du1ExI5WrhyLJzMknb8Vq8gYMAoPlj8KT46ZSYedWnvjva9i/8brVGIDhgb682L+R2TbmQgghHl5lWlxrrQu01oFATaCdUqoF8AbwtpVwa7+ZLNbXUkpNV0odUEoduHLlSul2WAhRpo688QH9P3ubPeHWi+v869nU27qGKi89BzNmUG//NjISk8xiouNTCYjYS+vpk4raakx/hLZhW4q+33o8kVbR+7AbNND8DQwGTnXrT8HCRURfTKPj4W24jRtltS9DujYhdO5Kcr6dA1On3uEdCyGEeNj8IU/WaK1Tge0Yp37UAcKVUmcwFt2HlFLVMI5UF38UvyZw0cq1vtFaB2mtg7y9vcu660KIUhIVvIN6X36CV3IiQ1fNIfx8qkVMwvqtXK5Wm0r1/cHLi+S2nUhb8KtZzJ41IVRwNGBo3qyordaEEfjGnyLr9Dm01kQeOkHlC6egWzeL99jRaQiuP3xH3OLVVE5OQA0caBED4OpoT7+hnag0aqhM9xBCCPG7leVqId5KKU/TaxegD3BYa+2jtfbXWvtjLKhba60vA6uACUopJ6VUHaABEFpW/RNClB6dk8Ou4D08/mOYzZjKc75ic98J8NVX9N61gnPnzf/lKSkjh4hvfyEyoFNRW9aoMQSFbi5aCSQ5M5cqu7biNHSwWcGrnJ2JbdedrIWLSUjLoWPMfgx9+oCjo0U/InzqEh7QiYmvTuPki2+Bvf3d3r4QQghRpCxHrqsD25RSEUAYxjnXa2wFa62jgcXAUWA9MFNrXVCG/RNClAatOdqmOx2HdafrjhVExV+zjCkowH3zBvZ1GEDT9s24HhiE44Z1ZiFhZ1JoEbGHqhNGFrXVmTaBBrER7A417pYYfj6Vdsf2YbhlMxeAY10GUPDzAiLjr9Ft33oYO9Zqdz8a25K5U19j5hdbCfjbjLu4cSGEEMJSWa4WEqG1bqW1bqG1bq61ft9KjL/W+mqx72dpretprRtprdfdGi+EuP9krN9EpaTLfPjOD4xY8Q3/DY60iNFhYVxz98Kpbm3jOs8TxlMteLnZbolb14fikZ5Ch3HFlrh3c+Nal+4kL1hMYaEmNOIM1WIioFcvi/dQA/qjk5LwfOtVKsefgZEjLWIAKlVwBKXIdnHDYJDpHkIIIUqX7GYghLBJh4QQ0bILC//7q82YvB9/YluvMbzy+iQMTZvQ78xBi5hVH84hMqATbw1pCoDHxLE0iA5j9+HTgHE3xlZH9+E4xHLlDrcpk2i0cz1RF69R9+AuDJ07g5ubxXuMaOfPD0++i+vxozB/ntUpITcopXi+T8Pf9RkIIYQQt0OKayGEdfn5FE6eQqJPTXr9/QUuXEmzCMnLy8d+4wZSevXFwc6A85+m4L9ptdluiTn5BQRE7KHq+BE4Oxj3hVJeXqS17Yhh9WoAjl1Ko/2x/TgOHWLxHhVGDcMvNoqt60Lps2slysbKHU72dsTWbc4nL83GsU/vEm/tu6lBBNT0+N0fhRBCCPF7SXEtxMOooAC9ejXZlxNtx6xeTZKXDwn/+Bf2NX2J/fZni5B/fbCQDGc3WnRrDYDjuDE0i9rHxQs3H1a8dPIcNRLO0WqS+Q6H2SNHU22Dqbg+lYhfVBj062fxHsrNjY39JjLltWl4JF6C0aNtdrl3k6pMal+rxFsXQgghypIU10I8jN5/n7zHn+Ryh+5QYP254cJVq9jUvBsd6lYm/09/ouLKpUU7G97Q7EgIkS060qV+FWNDpUokB7QmaYlxi3GtNeHfLeJKUEeLaRo5Awfje2QfOiUFtWY1ha1aQ6VKVvuybfQThD/7Gobt28DJyeZtTWpfi95Nqv7eT0EIIYQodVJcC1HeaIu9l8xdu0buZ5/z5svfUGgwkLpwiWVMYSGFweuICuhE7UquVJo0jiaR+4gvNiIdm5hOQMQeKo8dabY7YdbwkbiuXgHApWvZ+O7chM9ky5U7XKpU5njb7mS9/w+6rZ6H4zO2V+74z/jWdH9zJtSs+Rs3L4QQQtxbUlwLUZ4cO0ZhFW8u9h5EVk6e9ZgNGzheqylJVaqztfdYkv73rWXMkSPkuLrRtHsb7O0M2Ff14WqzQHJW3VxN85d1h/GNP0WbPw03O9V7ynh8Q3eSmZLG4ROXaHE8DKeRIyzeoqqHE/OHzSDz50UUVK2KGjfO5m052huMq4wIIYQQ9zn5bSVEOVLw8iss6TOJ/Ng4Dn/2o/WYNWuJaNmZd4c1Y8Dr041TM9LMH1YsXLuWqBad8K/sWtSW0G8obqYRaYCGh0LQPXpYTNPwqFWDS00CufbDPJK/n0d+m7ZgZTdVJ3s7kitX47V/Lyfmy7kWq4QIIYQQDyL5bSbEg6CggKgpM1gx8inbI9Lx8eiQELb1GsORidPxmDfHMqawkIyVa4hs0YmKzg74+lfndONAUpesMAtLWLickIbtaF3Lq6jt+pChVArZhs7M5Ep6Do1Ct+Myxvpa0lFT/4znrPcYvuRLXN963eZtDW1ZA/8qFRjQvNpvfwZCCCHEA0CKayHuA//ZEMP8fWdtHs+fMwfXPbtoG7qJM9/Otx4UHMzF9t1o1cSXwW/OoO6paK6fv2gec/AgmW4eXPX2xcPVAaUUl3sPpnDxzXWs089fxOP0CR59bSoVnG5uDR7Qsj6xdZqRMH8xJ2PjaRK1HzXUfAWQG64Ftee7Ka9w4vW/Q2/by+KNaOXLW0Oams3ZFkIIIR5kUlwLcY9FLFmP6+oVbDtue1m8lA/+w9IxM4l+5mWcPv3EbGfDGwqDg9lWpw29Gvtg51aB2LY9yFiwyCzm0i9LiWjRmdcGNS5q0yNH4B6yA9LTATg3bwnHmrbDy8t8oxZPV0eOjphM7qwPuPLeB6R06QE+Plb7W8XNifBW3WCU7WXzhBBCiPJIimsh7qVTp2jw+CQeXz6btvs3ERV/zTLm5EkcUlM43iSI1s9MwSfhAif2RpjH5OaSvXEzh5u0o04VY1Ec1rYXGT8vLArJLygkZ+VqakwaRX0f96L2+o1qc7pxIJg2dHEOXo3n+NFWR5O3NurI5er+dNm1Gq9P/m3ztgY2r8YHowJoU9vLZowQQghRHklxLURZyciAiIgSQ/I++T+2dh1O8mdfMHbdD+w6ccUi5vqK1UQEdOK9Ec2p4uVGfJ9BRH3ytVnMlY3bSPDxo2WbhtgZjEVxWIMgqsYehUTjiHj0weN4J1yg6dhBZudWcnNkT8eB8OWX6AsXqHYklEqTra/c0a95Nb5+ehZbNoTh1KSRzftSSuFT0VmmewghhHjoSHEtRFkoKIAePdAdOlD4w4/WYwoLyftlISFdh1J99BDcKMDtaLhFWNxPi4lo2ZmaXsaVOyI79ScobKtZTO7qtZxt140JbW/uTvjO+CAiW3Qie7FxHevs5atJ7doTe2fz1T0qONqxJ7AHuVeTyOvYiYP9xuBVw3J1D4CRrYzrTNeu5Gr1uBBCCPGwk+JaiDtxy9J1Flas4FqeZtaLX5D16uuQm2sRog8eJMPZjScf6wdKkTt2LD6rl5OYnl0UU5CWTv24SKa+9XhR24BnxuGZeoX0o8cByCsoRK1ZQ27/gbg42hXFVfdw4WKfwRT8vACtNVWWL8Rt0niLfiilqOlTkVef+pi9T71M3jvvlXhrL/ZvJNM9hBBCCBukuBbidr32Gnh4UPDf2bZj5s1jd7+xnK7bjGQvH9i82SLkwvwlnAjqRp0qFQBw/9NkOh7ZTtSF1KKYq6vWEV+/Ge4+lYva3Cs4c7ZrX67NNc6n3rNhPxUyrtF0uOWqHLHte5B7+iwJT8zE8+plPCZa7pQI0LleFa55VmFuzfZUreJuNeaGJtUryoYuQgghhA3yG1KI23HuHHzzDf984zuy33gLfc3KA4g5Oeht29hZvx3vDmvG/nZ9yVvwi0WY3Yb1VBk34ua85IAAHFydSd2xB4D5+85yfM5CMvv0tzg3dfAI3FYvp6BQkzJ3AbkDB1OzsptF3LmMAr56/B2S9h9iy+sfg729RQxAz8Y3V/2o5uH8ez4JIYQQQlghxbUQJmkLl5Dr6EzCK2/ZDpo3j9Tho4mr34JjjVqz/4MvLGN27aKgcROue3jhV8mVva17UbByFeTkFIVEHjqB1/nT1B058OZ5SpE9YhSVg1cCsO1YAgHhu/EcZ7lRi32vHhhSUkhYsooum5fi8PRTVrv7ztCmxDZoyScv/pdRz02weVs3HoKc2smfKm5ONuOEEEIIUTIprsVD4XxyFueTs2wH5OWR++e/MOeJt3H73+ckHz1hPS44mDOd+wCwv31/PNessAhJX7GanfWC8PV0AWDM0Lacq1GXnLXrimLO/byM7G7dcXQ1HyX2/NNEmu7dxKnEdOqfj8He1QW/9oEW71G/uieLJr5AjfEjSGnTHs/una1290ah7Oxo95tTOd4d1oyuDaqUGCOEEEKIkklxLco9HR2Nc6P6nBg3jezcfKsxhRs3kepZhQPt+rK782DC3/rIMigpicLIKL4s9KVz/So8Outpap0+St6ly+bvtzaYkIbtSL1u3KY8wNeDsLa9yV24GIDsvAKq7d6K26jhFm+hAgPJc3Bi2Udz6b59ORVnPIEyWP4x9anozL6ALsz8YisO8+eVeP/fPhLEZ+MtC/Rb+VVylaXzhBBCiLskxbUo91JnPk9I12EEROwhZsk6qzEpS1ZwpFU3/tqvIQ1emE6T3Rvgll0Qry5ZRXi9QPIdHGlc3R1XD3eimnXg2sIlRTE5MSdRqSkUtgxkZCtfANydHVCjR+O8IRhyclgdeoom0ftxGDLYsiNKceH5V3nym7dpGxkCT1mf7nFDtosbtU0PRNpiMCh5AFEIIYT4g1h/ukmIB8HVq9CvH9SoAcuXg4ODZUx8PG5HDrL+o3fJrFCRhp9+jp44xHyEVmtU8FpOvfgpo6tXJM+7K9cK8sk6eBjXoNZFYecXLCWyRSe+eSSoaI7ywaCeuP+4gCov/BmA8C/nY2jdlVeHNMPZ4eayeA1aNeKSX32qrVhF8vYT5LdoCdWrW72tStMmsRlnRo/sBN7W15sG+L8Jgbg42MlosxBCCHEfkeEs8eCaNYv8wEDOnb9C0uyvrYYUrl7DwSbtGNa+LpM/eYkW0fuIjjWfxpEbGY3OL2DghL4opXB0sCOqY1+uzV1QFJOcdp36h3Yz6OVHiwprgNx+A6gbGwEpKRQWajw3rKHRjD+ZFdYAfl6urOgziYKXXmLk0i9xeelvNm+rvo87o1+eCg0alHj7FZ0dcJARaSGEEOK+Ir+Zxf0nJ4fcTp3JquWPvnzZZgxz5/J60xEs6j+Vgv9ZWbUDyFyxirh23enfrCrK25uMgECSl64yi1kx61tOBnUjwM+zqM0wZgwuq1cWfR+1ZB15VatRpVlDs3Mn9mpKTLP2sGgRm9eH4ns+FvchA7mVq5Md4S27sKTHeDYMmIzD8GG/99MQQgghxANEimvxxyoshMzMkmO++44LuQZ2N+7I2Rdesx6zaxe59RuQVKU6ae074ZB0lZyIKPOY7GycQ3ZSYeiQojnHWcNG4rXuZnGdX1BIi4jdnG7fw+zUhsN6U5CWTsahI2TnFZC/bAV2Iy2XxPN2d2J93wnoDz+k4b/fIXHMRHBxsYir4GgPSrG91xiqvvICyFQOIYQQolyS4lr8cQoLYeBACj08iVq01maY/uknNg+cQtyjT1NtzTLIyLAMCg7mdFBXOtarzPujWhLWrjfJP5ivmnHop+WcrlGP2g1rFrW5jBtNvbCd6CzjsnyRkafxP3ucIc9PNju3uqcrMZ37kjfvZ6LPJdEmdDMek8dZdEMpxeWWbUmZ8ihXsvJxft/61uF2BsX0bnUB6NOkqs17F0IIIcSDTYprUTpyc+HIEYsVNsysXUv8yXN89/jbuLz+KgUFhZYxCQnokyc52bg13XsEcqF+c1i/3iJMBwezyDuAbg29UUrhPnkCzqtWmsXkrlpNRMsuNKh6cztv7/q1ueDfiNzgDQCcnvsr1zt3xb2Sh8V7RAydhMuP35P3zw8pqOELgdaXs/NydWTz8MdY//bnVK9lu3BuU9uLv/VrhMEgo9ZCCCFEeSXFtSgd48ZBx47w4Yc2Qwq//Zb1vcaRPGQkXulJXAnZb3Zca03+mjXEtuhAch64O9uzp0U38pcsNb9QXBzpl69yrlYjGpoK58p9e2CfmgwxMQCcu5pJg/3b6P3SY7g5mS+KExrUm8y580nLzqPBjnV4TBhrtb9hDlVY1W8ytdavoOCzz2zeV/s6ldgQfZkGPpbbjxdnb2egaY2KJcYIIYQQ4sEmxbW4e6GhcOQI6WGH4D//gdRUy5jsbPS27aT1HcCrQ5sT1W0wpz771ixk18mrhH/5Mzsbtqd3k6rU9HIloWd/9Lp1kJ1dFJeyZCWRzTswqm2torbK7s5EBPWEpcZC/PS2PSgHB7zatrLoyv72/XDYtoVTs7+nflwkhonWtwWf2K4WGwb+idmzV1KlW0ebt9+rsQ8+FZ1pWeyBSCGEEEI8nKS4fkhprVly8AIzFxwiI8f6roU35ERGc3XoKHShlWkcAPPmsbf3KJ4/kMGxJkFkzv/FMmb7dq7WbUSdhsaCuP6fH6Px7o1m00iyM7NocjSUyIBOjGpt3IClV88WXPBrABs3AnAyIZ34eYu53ncAA5tXKzrX09WRQ217k79oMWiNy7Kl5A4eavXBwep1arBk7LM0fPtFLr41C1xdrd5Wn6ZVmTOtLf8cGVDiWtL2dgY+GBVAk+oyKi2EEEI87MqsuFZKOSulQpVS4UqpaKXUe6b2j5RSx5VSEUqp5Uopz2LnvKaUilVKxSil+pdV3wQkno6n+nMzaLxvK4fPpdiMKyjUXHr8aaqsWU7k0g2WAVrDmjWsq9MOgG2BsJX/GAAAFI9JREFUvTj/1Y8WYcmLlrGrYXu6NqgCQPVu7SlAkb43rCjGcXcI6XUb8q+nexetE93Kz4sD7fqQvcBYsAfvjqF+XCS9X3jErOC1MygqD+rD9bQM8ufNp0nwYjyen2n1nl7u34iQbsN49out+P5leskflBBCCCHEbSjLkescoJfWuiUQCAxQSnUANgHNtdYtgBPAawBKqabABKAZMAD4QillZ/XKwqbCQs2euKvM33eWnPwCm3HOr7xEJZXHU3P/SUrsWZtxOz+bS8VL57nw/Kuon36yDDh6lJz8AuJ96/LJ+EAmvPMUtU9Fk32x2PrUWmO3LhjD0CFUdnMCQBkMnO0xkPSfFwKQm1+I3ZrV2A8dYrYBi8GguD5kOPbBwZCVhVvwarI7dkZVtBwlblG7Ml+PeQHDjBkc6Tcal+ZNrd6TvZ2Bv/VrxF/7NbTY7EUIIYQQ4m6UWXGtjW6soeZg+tJa641a6xvzEPYBN9ZJGw4s1FrnaK1PA7FAu7Lq34Mo5nI6T88/SEGh7RU5LkWeoFH7AFo8NZkd0ZesByUk4LpxHfte+ZDUEWOouuBHq2FbIy7Q/ON3cf38UwyPPUa9HeuMm7cUU7hmDSENO4BSeLg4UMnbk5jAzuQtXVYUk3owgoL8AoZM7Gt27vWhw3FfsxK0ZufxBAIPbqfyIxMt+uFR14/EoE7k/vND+m9aiMfzf7baXw8XB441a8eT/9vGpZfftvkZATStUZFmNSxXCBFCCCGEuBtlOudaKWWnlDoCJAKbtNb7bwl5DFhneu0LnC927IKprdzLKyjk080n+GnPmRLjzoWE4XPqOAfOJNuMSXnpNfa370d1uzzOzf6Oa1l5lkHr1hHesA3+9X2xnzaVeptWWcynjrxwjbSPP8OjcQOcRwyjQj1/LtSoy+Wlq83irv26goiWnXnStIYzQGy3AdgtK1ZcL17GxS69cbxllDg/KIjCrCx0RARpW3dg5+EBTZpYdNfb3Ylvh85Af/89af71UUOHWr13n4rGUXGUorqns83PSAghhBCirJRpca21LtBaB2IcnW6nlGp+45hS6g0gH/j5RpO1S9zaoJSarpQ6oJQ6cOXKlbLo9h9u6/FEIi9cY+cJ2/eTFRFFp2kjeeXfzxC1djvaynrSWSnXqLdrI9VnvU2V999i0M7lRMRbrtyRung5J4K606ORN17dOqINipQde8xiVm8NZ8iaH3D8/FNQCndnew4E9YZfl9wMSk7G9VgUbR8bRYe6lYuaL3XqieOBUEhORmuNWruWaz37WfTD3s7Alm4jyH31dZp98wlqpvU50s2qe3DOqwbP/HM5xz752ubuhk72drT088Td2Z7mMiothBBCiHvgD1ktRGudCmzHOJcapdRUYAgwWd+sEi8AfsVOqwlctHKtb7TWQVrrIG9v7zLtd2koad4zGFftuPLhJzw39x84X8+wGX/5zb+zsd9Est58mw7zvyDuiuWuhWFzlnLGvzGtAuuh+vencsJ5suPOmMUkXk3DccdWfMaPQCmFMhi40HswmQsW3Xyva9l0XfAFdpMmQlPjvGWDQVFl6gS8tm4wbhgDnFmwjGMNW9G8rvnGKTV8q3CudSdYtoxXP1pJpXNxtJw2yqK/dkqxqd9EcrOyya5QEZenrT9c6OHqgF8l44oe/YutEGLNX3o34NMJrfCq4FhinBBCCCFEWSjL1UK8b6wEopRyAfoAx5VSA4BXgGFa66xip6wCJiilnJRSdYAGQGhZ9e+PkJmZzVufriE40sbcZyAz9ABD1vxAkwqa4Su+5cvtcZZBOTlU27yWHT1G4vn0kzSIDuNMzDmLsMrbN1Jh9AjjNw4OZPYfRM7iX4uOFxZqln22kCRff3p3D7jZPnoMHsGripbFC427Qru9G1CvvGJ2/UZtmnCpWi301q0UFmqSFy7FZcQwPF3NC1lHewNLOgwn/x+zGL/oU3IemYqbh+UGKx3rVSbXyYXnH/2Qz5/+AJxtT+WY1L4WPRr7WGwII4QQQghxPynLkevqwDalVAQQhnHO9RpgNuAObFJKHVFKfQWgtY4GFgNHgfXATK11ycO+94jWmrNJmUReuFZiXPrwUXz48iguffYV2XnWbyXxHx+xuc94HL7+ii67VnMi1rIQT1yzkYu+9fjXM32w96hIUpeeXPxuPoXFHmxceuA8vru3UnHMiKI298njabh7c9EUkvALqbSK3E3NKWPNlrHz69mR3IJC9OHDaK1JXLcZ/PygZk2Kq1XJleOd+5H+/VziYs7R5PBuGj4z1aK/SkFMkyDWtOpHvr0jVT78u9V7L96H4a1Knl7fsKo7f+pQu8QYIYQQQoh7rSxXC4nQWrfSWrfQWjfXWr9vaq+vtfbTWgeavmYUO2eW1rqe1rqR1nqd7avfW8t+Ws/5ERPZu2aX7aDdu1GRkSybvYgJy74gPC7RIiQjKwfv7RsJ7z4YatTAqVsXgiJDLOZTJyxcRv6AATjZGx8IPNNrMG0ObiM+9TpgLPaj1u6g0NUVz8Ciae049OtLzfMnuHw6HoCo+Gs0O7TT4oFA74rOhLfrw/VfFnEh5TpNd63HceJ4i/4qpUgaOxnnLRvJGzOWY537oqxMzenXtBqjWtdk9fAn+PrpWeDubvNj+t/k1gxv5cuQgOo2Y4QQQgghHhSyQ+MdaPL1J7hcz6DXJ2+SlWu5u2Fadh7HP/+O3V2G4DegJ5n+9ShYu9YiLmT+WlK9vJk+qTsAdhMn0Hb/Jq6k31zuLuZyOt67tuA+6uaItNOQgdQ5FUXCGeOU9O0xV2gRHkKlsSPM38DZmaPN2hP16RySM3M5H3IAVwohMNAsTCnFqV6DUAt+4fDhOFqHbkFNsL4luHsNHz5+6gPO+Teh/ryvrcY42hto7mtch/r5Pg2txhR10cGOYS1rYDDY3gFRCCGEEOJBIcX1HVC/Luarp2dRNSWBM5t2Wxw/cDqJyts2ktpnAO3rViZ3wiQ8li42izmZkE7+6tUkde9LTS8XY+Pw4dSPPsCWA6cA44j0ppUheOk8anRvX3Ru66Z+pHToiiHYWLDP33eW7sf2oIYPt+hL8/deovHKBRw6k8yAo7swjBxhdbWNfZ7+xPj4021sb/L7D4B69azeeyVXR2IbBnLs+TeoWLWKzc/Ix904f7q+j+VcayGEEEKI8kqK6zvQ2NeTf4xtxaVJ0yiYPdts7jNA3PZQXAzw2IxhAFR/dBJ1j+whIyUNMBbNP+8/R4fj+2k5feLNuceenmS0bkvt/dsBiE3MoM7+bTgOHYwymKfqat/B+GxcS2xiOl5JCXglxkPXrhZ9dR7QD8fsLI7NW0qzNQvhySet3tNzfRrw7fT3+WXiC1SY843Ne3dyMPbjmZ7Wi+8bXBzt+G5qEC6OsgOiEEIIIR4eUlzfAaUUVSs6U/WFmdTbsY7le2KLjl1MvY7X1o2c7dSraITYzrsKiY1acHXJKgBOJGSQEXsaz6TLqI4dza6dPGAI1bcYp5vviUuiQ+RuqyPSmf0GUOnAHj5fvI8Rx7ajRowAeysraRgMrBj5FM/+68/GudbNm1vGAAG+HgQ09UOPHYtydbV579UqGkekb8z/LomysR61EEIIIUR5JcX1XfDwr0l285ZcWxVc1LY6/CJdj++l3mPm23hf6DWQxJ8WAPDv9cfpdiIU+4EDLQrinMFDqb5vB2mp6Rw6eBKvE1HQp4/Fe/vVqUFou35M+vljOgcvgD9b3xIcoMHzT/LZ0jAc53xrM0YpxYzu9XimR/0S79mvkitzprUtMUYIIYQQ4mElxfVd8pw8jib7tpCVm8+V9ByOhsfhfT4O5769zeIaTJ9CsyO7ORWfjJODgSFnw8DKiHTDgHqcr9eMyI+/ZuTh9RhGjgQXF4s4v0quLB/9NA3d7VAvvQStWtnsY6/GVXluVJDNnQ2FEEIIIUTpkB057pJh5Ehavv0u5xPTSc0tpE/sfgx9+4KTk1mcT6M6nKxRh+gfl9LAvzGGfftg0SKL6zk72HF+5t8IenE6LvYKdu6w+d6fPdsXnu1b6vckhBBCCCHujIxc361atcjx9WPfD8sIib1Kh8PbYfRoq6GGJ56g6U//Y8C6+caYihWtxkXXa8mXz3xA7opVNudICyGEEEKI+48U16XA841XmPDN+1SOOkzlo0dg8GCrcX5/mU5BBTca7t4I775r83qPdqlDj+ljqNCtcxn1WAghhBBClAWZFlIK1OTJOMXHM+1vE+HVV23uSOjo7EiTwyG/eT03J3va161c2t0UQgghhBBlTIrr0vLyyxAQAL17/3asEEIIIYQol6S4Lk0DB97rHgghhBBCiHtI5lwLIYQQQghRSqS4FkIIIYQQopRIcS2EEEIIIUQpkeJaCCGEEEKIUiLFtRBCCCGEEKVEimshhBBCCCFKiRTXQgghhBBClBIproUQQgghhCglSmt9r/twx5RSV4CzpXCpKsDVUriOuHuSi/uD5OH+Ibm4P0ge7h+Si/vDw5iH2lpr798KeqCL69KilDqgtQ661/0Qkov7heTh/iG5uD9IHu4fkov7g+TBNpkWIoQQQgghRCmR4loIIYQQQohSIsW10Tf3ugOiiOTi/iB5uH9ILu4Pkof7h+Ti/iB5sEHmXAshhBBCCFFKZORaCCGEEEKIUlJui2ul1PdKqUSlVFSxtpZKqb1KqUil1GqlVEVTu79S6rpS6ojp6ytTu3uxtiNKqatKqU/v1T09iG4nD6ZjLUzHok3HnSUPpeM2/0xMvuUzL1RKBUou7t5t5sFBKfWTqf2YUuo1U7vkoRTcZi4clVI/mNrDlVI9TO2Si7uklPJTSm0z/T8erZR6ztReSSm1SSl10vRfr2LnvKaUilVKxSil+pvaJBd34XbzoJSqbIrPUErNLnYdyYPWulx+Ad2A1kBUsbYwoLvp9WPA302v/YvHlXDNg0C3e31vD9LXbebBHogAWpq+rwzYSR7++Fzccl4AcMrGNSUXZZgHYBKw0PTaFTgD+Ese7kkuZgI/mF77mD5zg+SiVPJQHWhteu0OnACaAv8GXjW1vwr8y/S6KRAOOAF1gDj5XXFP8lAB6ALMAGaXcN2HLg/lduRaa70TSL6luRGw0/R6EzD6915PKdUA4w/UXaXSwYfEbeahHxChtQ43nZuktS4ofqLk4c7dxZ+JicAvtzZKLu7MbeZBAxWUUvaAC5ALpBU/UfJw524zF02BLabzEoFUwGyNX8nFndFaX9JaHzK9TgeOAb7AcOAnU9hPwAjT6+EY/9KZo7U+DcQC7YpfU3Jx+243D1rrTK11CJBt65oPax7KbXFtQxQwzPR6LOBX7FgdpdRhpdQOpVRXK+dOBBZp01/DxF2xlYeGgFZKbVBKHVJKvWzlXMlD6Srpz8QN47FSXCO5KE228rAEyAQuAeeA/2itby0GJQ+ly1YuwoHhSil7pVQdoA2Wf14kF3dJKeUPtAL2A1W11pfAWPhhLNLAWPCdL3baBVNbcZKLu/A78/B7PJR5eNiK68eAmUqpgxj/ySPX1H4JqKW1bgX8FVigis0DNpmA9QJD3D5bebDH+E9Mk03/HamU6n3LuZKH0mUrFwAopdoDWVrrKCvnSi5Kj608tAMKgBoY//n7b0qpurecK3koXbZy8T3GIu4A8CmwB8i/5VzJxV1QSrkBS4HntdZpJYVaabu1eJNc3KHbyMPv8VDmwf5ed+CPpLU+jnHqAUqphsBgU3sOkGN6fVApFYdxFPWAKbYlYK+1Pngv+l3e2MoDxl9cO7TWV03HgjHOh9xi+l7yUMpKyMUNVn8wSi5KVwl5mASs11rnAYlKqd0YpyKcMsVKHkpZCb8n8oEXbsQppfYAJ4t9L7m4C0opB4wF3c9a62Wm5gSlVHWt9SWlVHUg0dR+AfN/NagJXCx2LcnFHbrNPPzWtR7aPDxUI9dKKR/Tfw3Am8CNVUG8lVJ2ptd1gQaYfnmZWJ1zKu6MrTwAG4AWSilX0xzT7sDRYqdKHkpZCbm40TYWWGjlVMlFKSohD+eAXsqoAtABOF7sVMlDKSvh94SrKQcopfoC+Vpr+flUCpRSCpgDHNNaf1Ls0Cpgqun1VGBlsfYJSikn0xSdBkBosfMkF3fgDvLwWx7ePNzrJyrL6gtjQi8BeRj/lvs48BzGp19PAB9ycxOd0UA0xjl1h4Cht1zrFND4Xt/Tg/h1O3kwxU8x5SIK+Lfk4Z7mogewz8a1JBd/QB4AN+BX05+Jo8BLkod7lgt/IAbjQ16bgdqSi1LLQxeM0zoigCOmr0EYV4zagvFfCLYAlYqd8wbGVUJigIGSi3uWhzMYHwrOMP0Zaip50LJDoxBCCCGEEKXloZoWIoQQQgghRFmS4loIIYQQQohSIsW1EEIIIYQQpUSKayGEEEIIIUqJFNdCCCGEEEKUEimuhRBCCCGEKCVSXAshhLDqxuZaQgghfj8proUQohxQSv1dKfVcse9nKaX+opR6SSkVppSKUEq9V+z4CqXUQaVUtFJqerH2DKXU+0qp/UDHP/g2hBDigSfFtRBClA9zMG1RbNq6ewKQgHFr6HZAINBGKdXNFP+Y1roNEAT8RSlV2dReAYjSWrfXWof8kTcghBDlgf297oAQQoi7p7U+o5RKUkq1AqoCh4G2QD/TazBup94A2ImxoB5pavcztScBBcDSP7LvQghRnkhxLYQQ5cd3wDSgGvA90Bv4QGv9dfEgpVQPoA/QUWudpZTaDjibDmdrrQv+qA4LIUR5I9NChBCi/FgODMA4Yr3B9PWYUsoNQCnlq5TyATyAFFNh3RjocK86LIQQ5Y2MXAshRDmhtc5VSm0DUk2jzxuVUk2AvUopgAxgCrAemKGUigBigH33qs9CCFHeKK31ve6DEEKIUmB6kPEQMFZrffJe90cIIR5GMi1ECCHKAaVUUyAW2CKFtRBC3Dsyci2EEEIIIUQpkZFrIYQQQgghSokU10IIIYQQQpQSKa6FEEIIIYQoJVJcCyGEEEIIUUqkuBZCCCGEEKKUSHEthBBCCCFEKfl/rDp5dN3ZqSoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "CO2sim = Simulation_co2(xdata, \n", + " parameters[0],\n", + " parameters[1],\n", + " parameters[2],\n", + " parameters[3],\n", + " parameters[4])\n", + "data['CO2*'] = CO2sim\n", + "\n", + "plt.figure(figsize=(12,4))\n", + "plt.plot(data['dates'], data['CO2'], label='CO2 mesuré', linewidth=1, alpha=0.7);\n", + "plt.plot(data['dates'], data['CO2*'], label='CO2 simulé', linewidth=1, color='r');\n", + "plt.xlabel('year');\n", + "plt.ylabel('CO2 (ppm)');\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Le modèle reproduit bien le signal observé, on peut tenter une extrapolation jusque 2025." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAEKCAYAAADZxnkxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XlclVX+wPHPYUdZRMAFQUHckEVUVARXrDQ11zTNJbeszKxmKmtmNCsrm6np17RnluaSu2LuWmipmLgACiruCuKCC4iyc35/XLx6vRcjA9fv+/W6L+893+c5zzkwE18ezvM9SmuNEEIIIYQQ4q+zutMDEEIIIYQQ4n4hybUQQgghhBDlRJJrIYQQQgghyokk10IIIYQQQpQTSa6FEEIIIYQoJ5JcCyGEEEIIUU4kuRZCCCGEEKKcSHIthBBCCCFEOZHkWgghhBBCiHJic6cH8Fd4eHhoX1/fOz0MIYQQQghxn9uxY0eG1trzj467p5NrX19ftm/ffqeHIYQQQggh7nNKqWNlOU6WhQghhBBCCFFOJLkWQgghhBCinEhyLYQQQgghRDm5p9dcW1JQUEBqaiq5ubl3eijiDzg4OODt7Y2tre2dHooQQgghRLm475Lr1NRUnJ2d8fX1RSl1p4cjSqG15ty5c6SmpuLn53enhyOEEEIIUS7uu2Uhubm5uLu7S2J9l1NK4e7uLn9hEEIIIcR95b5LrgFJrO8R8n0SQgghxP3mvkyuxe3x9ddfc+HChTs9DCGEEELcTwqyIXPfnR7FLZPkugKcOnWKAQMG4O/vT+PGjenatSspKSkAJCUlERUVRYMGDahfvz7vvPMOWmsAZs+eTUhICCEhIURERJCQkHAnp3FTb7/9NlWrVsXNze1OD0UIIYQQ9wtdDD9HwaomkBp9p0dzSyS5Lmdaa3r37k2HDh04dOgQycnJvPfee5w+fZqcnBx69OjB66+/TkpKCgkJCWzZsoUvvvgCAD8/PzZu3EhiYiITJkxg9OjRd3g2pgoLC43vJ06cSL9+/e7gaIQQQghx30lbAWhovxziX4eSG5D3Ekmuy1lMTAy2trY8++yzxrbQ0FDatm3LnDlziIyM5JFHHgGgUqVKfPbZZ0yZMgWAiIgI453g8PBwUlNTLV7DycmJ8ePH07x5cx566CG2bdtGhw4dqFu3LsuWLQOgqKiIV199lRYtWhASEsLXX38NQHp6Ou3atSM0NJSgoCB+++03Y59XLVy4kGHDhgEwbNgw/va3v9GxY0fGjx/P5cuXGTFiBC1atKBp06ZER9+bv1UKIYQQ4i50dDbUewZqPATKCs5uvhbTGg58BUX5d258ZSDJdTnbs2cPzZs3txhLSkoyi/n7+5OdnU1WVpZJ+7Rp03j00Uct9nP58mU6dOjAjh07cHZ25l//+hfr1q1jyZIlTJw40Xi+q6srcXFxxMXFMXXqVI4cOcKcOXPo3Lkz8fHxJCQkEBoa+odzSklJYf369Xz00Ue8++67REVFERcXR0xMDK+++iqXL18uy5dGCCGEEKJ0xUVwah14dQWlwHcwHJ15LX4pBZLeBau7e3+M+67O9Y1GTo8r9z6nDWtxS+dprUutkHF9e0xMDNOmTWPTpk0Wj7Wzs6NLly4ABAcHY29vj62tLcHBwRw9ehSAtWvXkpiYyMKFCwHIzMzkwIEDtGjRghEjRlBQUECvXr3KlFz369cPa2trY7/Lli3jww8/BAylD48fP05AQEDZvghCCCGEeHDFvw7H5kP7n6BKoGnsfBxU8oZKXobPvoNhVSg0+z+wcYSTq6FmF0PifRe775PrW02Eb1VgYKAxobUU+/XXX03aDh8+jJOTE87OzgAkJiYyatQoVq1ahbu7u8V+bG1tjcm4lZUV9vb2xvdX10Vrrfn000/p3Lmz2fm//vorK1asYMiQIbz66qsMHTrUJLm/sfZ05cqVje+11ixatIiGDRve9OsghBBCCGEiMxkOT4f6Y2DnyxC11jR+cjXUvC5vqewDVZtD6lLwHQhpy6DB87d1yLdCloWUs6ioKPLy8pg6daqxLS4ujo0bNzJo0CA2bdrE+vXrAcjJyWHcuHG89tprABw/fpw+ffowc+ZMGjRo8JfG0blzZ7788ksKCgoAw9KOy5cvc+zYMapVq8bTTz/NyJEj2blzJwDVq1dn7969FBcXs2TJkpv2++mnnxornOzatesvjVMIIYQQD4iD34L/09D4dbiYCFkppvH0G5JrgLoj4NC3cPk4XNhlWDJyl5PkupwppViyZAnr1q3D39+fwMBAJk2ahJeXF46OjkRHRzN58mQaNmxIcHAwLVq0YOzYsYChvN25c+cYM2YMoaGhhIWF3fI4Ro0aRePGjWnWrBlBQUE888wzFBYWsmHDBkJDQ2natCmLFi3ixRdfBGDKlCl0796dqKgoatasWWq/EyZMoKCggJCQEIKCgpgwYcItj1EIIYQQD5D0VeDTC6ztoM5AODrrWizvvOHOtmcb03N8esOVVPjlIaj3LFg73N4x3wKl78ESJ1eFhYXp7du3m7Tt3btX1v/eQ+T7JYQQQtwnUqPhxBJo9hHY37C0NfsorGkJfU4ZqoCc3wm/9YUehwyfjy+EQ99Bx5Xm/WYfhvR1UHe4ITG/Q5RSO7TWf3jns8LvXCulrJVSu5RSy0s+/0cptU8plaiUWqKUqnLdsW8opQ4qpfYrpcwXCwshhBBCiLtP3jnYOhwKMmHXK+bx9DWGJR+qJPV0awq2znCm5Fm0k6ug5iOW+3aqC/WfuaOJ9Z9xO5aFvAjsve7zOiBIax0CpABvACilGgMDgECgC/CFUsr6NoxPCCGEEEL8FYe/h1o9IPx7OLEUck6ZxtNLKn1cpZThTvTh76Eo1/DQok/f2zvmClKhybVSyhvoBnx7tU1rvVZrfXWrv62Ad8n7nsBcrXWe1voIcBBoWZHjE0IIIYQQ5SDtJ6jzBNhVAe8ecGzetVhxAZyOgZoPm57jOxhOroS458Ej3FAd5D5Q0Xeu/w94DSguJT4CWFXyvhZw4rpYakmbEEIIIYS4kzKTYf//oCjPPJafaVhDXa294bPvYDjyw7V4xu+GpR0O1UzPc/CElt9AzkkI+7Tixn6bVVida6VUd+CM1nqHUqqDhfg/gUJg9tUmC92YPW2plBoNjAaoXbt2uY1XCCGEEEJYUJQHMV0Md6VzTkLoFNP46V/AIwJsKhk+V4+CvDNwcTdUCS5Zb13Kemqf3obXfaQi71xHAj2UUkeBuUCUUmoWgFLqKaA7MEhfK1eSClz/9wBv4OSNnWqtv9Fah2mtwzw9PStw+OJ6SUlJ/PTTT3d6GEIIIYS43Y7PB5dG0GElHPjacKf6eumrwevRa5+trMFvqGHDGK0N59fqeVuHfCdVWHKttX5Da+2ttfbF8KDiL1rrwUqpLsB4oIfW+sp1pywDBiil7JVSfkB9YFtFja8inTp1igEDBuDv70/jxo3p2rUrKSmGQulJSUlERUXRoEED6tevzzvvvGPckGX27NmEhIQQEhJCREQECQkJZb7mxIkTjZvT/FUdOnTg+hKHx48f591336V9+/bl0r8QQggh7iEnlhiS5UreUL0DnFh8Laa15TvTdYfDkZnX1l57hN+24d5pd2ITmc8AZ2CdUipeKfUVgNY6CZgPJAOrgee11kV3YHx/idaa3r1706FDBw4dOkRycjLvvfcep0+fJicnhx49evD666+TkpJCQkICW7Zs4YsvvgDAz8+PjRs3kpiYyIQJExg9enSZr/v222/z0EMPVcicateuzZw5c3BxcamQ/oUQQghxB+VmGLYet7T3SXGBYdnH1Z0TfQfD0ZnX4pcOgC4Clxv2rHCuB/WegS1PQrOPDdVBHhC3JbnWWm/QWncveV9Pa+2jtQ4teT173XHvaq39tdYNtdarSu/x7hUTE4OtrS3PPmucFqGhobRt25Y5c+YQGRnJI48YfrurVKkSn332GVOmGNYuRURE4ObmBkB4eDipqalm/RcVFTFs2DCCgoIIDg7m448/BmDYsGEsXLgQAF9fX/7xj3/QunVrwsLC2LlzJ507d8bf35+vvvoKgA0bNtC9e3djv2PHjmX69Olm11u7di2tW7emWbNm9OvXj+zs7HL4KgkhhBDirqA1bOgCsUNg30fm8bNbwLm+4eFDgFrdDVuXXz5m+Jy+Bmo8Yjl5bvIODCiAWnf/luXlSbY/L2d79uyhefPmFmNJSUlmMX9/f7Kzs8nKyjJpnzZtGo8++ig3io+PJy0tjT179rB7926GDx9u8Vo+Pj7ExsbStm1bY+K9detWJk6cWOa5ZGRkMHnyZNavX8/OnTsJCwvjv//9b5nPF0IIIcRdLn0NFBfCw5sg+QMovHJD/Ib61Nb2UHsAHJ5h+Jy6BGp1K71/qwdvy5IKqxZy16iIP0Pc4pbxWmtUKeO5vj0mJoZp06axadMms+Pq1q3L4cOHeeGFF+jWrZvxLviNevToAUBwcDDZ2dk4Ozvj7OyMg4MDFy9eLNN4t27dSnJyMpGRkQDk5+fTunXrMp0rhBBCiHvA8XngPxJcGoJbs2v1qq9KXwPN/2d6Tt1hsOlx8OkDFxLA6ybJ9QPo/r9zrXX5v24iMDCQHTt2lBq7/kFBgMOHD+Pk5ISzszMAiYmJjBo1iujoaNzd3c36cHNzIyEhgQ4dOvD5558zatQoi9eyt7cHwMrKyvj+6ufCwkJsbGwoLr5Wfjw3N9fCl07z8MMPEx8fT3x8PMnJyUybNu2m8xdCCCHE7XMlv5Dcgps8olaUayiJZ4nWhrXWXiXLNvwGGx5CvCr3DGQfBo9Wpue5h0HVMFjTAhq/bribLYzu/+T6NouKiiIvL4+pU6ca2+Li4ti4cSODBg1i06ZNxqoeOTk5jBs3jtdeew0wVOXo06cPM2fOpEGDBhb7z8jIoLi4mL59+/LOO++wc+fOWxpnnTp1SE5OJi8vj8zMTH7++WezY8LDw9m8eTMHDx4E4MqVK8aqJ0IIIYS48/65ZA//WbO/9AN+6wurw+DgN+axi4lg4wTO/obP3r3h7GbIOW34nL4OqncEK1vzcyPmwEO/QsArf30S9xlJrsuZUoolS5awbt06/P39CQwMZNKkSXh5eeHo6Eh0dDSTJ0+mYcOGBAcH06JFC8aOHQsYKn6cO3eOMWPGEBoaSlhYmFn/aWlpdOjQgdDQUIYNG8b7779/S+P08fGhf//+hISEMGjQIJo2bWp2jKenJ9OnT2fgwIGEhIQQHh7Ovn37bul6QgghhChfuQVFZOUUcDTjMvmFxWaxfbvXQNY+eGQL7J5kvrviyVXgdd16alsn8OkFR2cZPqctM11vfT1rO3Bv8UBVASkrpW9x/fDdICwsTN+4zGLv3r0EBASUcoa428j3SwghhLg1SSczWZZwkvPZ+QxpXYcQ7yrG2JaDGaidL9O6cUMI+hf88rCh9rTvk9c6WN8RAv5uqABy1emNEPec4a70T/Wgx2Gwr3obZ3X3Ukrt0Fqb3/m8gdy5FkIIIYS4x2itidmTTv28C3QKqM7uNNNdE9fuSSdEx4B3yc6I9Z6Fg19fO6AgG85vh2odTDuu1g7s3WFNGNQZIIn1LZDkWgghhBDiHnImK5f1e8/QfNLfeLx3JMEbl3PifI4xnl9YjGfKz1Q6cxZcgwyN3j0gKwUy95Z0ssGwrMPWybRzpaDtYgiaaNj8RfxpklwLIYQQQtyF9qZn8duBs2btH67dz6ZFP9No73ZOLF1NzXcnknY2k6tLfQ9nZNPgQDoqaci1NdFWtuA/4tqDjWkrSl9P7eBpONbGsSKmdd+T5FoIIYQQ4i5zJiuXD9fsZ/rmoxQXmz4fV1CkCY9dzeY23SmMbIOVvz/Bu34jp6QkX8rpbAL3bYdOnU079X/asHV5/kU4sdC0nrUoN5JcCyGEEELcZVLPX8b1YgYAK3anm8SqOdsTuGcriSGRONpaw6hRtIyJ5uRFw9KQg6nnqZ4QBx07mnbq5AtVW8L6duAZCZXr3I6pPHAkuRYV6tKlS3z55Zfcy1VphBBCiPKktWbJrlSWJZws9RifV17gvy93pfXmFZzLNi2hl7H/CNUunuHZ1wZSw9UB+valQUo8K9bFcyYrF7V1K8rfHzw8zDtu8RnU6gktLdS9FuVCkusKcOrUKQYMGIC/vz+NGzema9euxs1XkpKSiIqKokGDBtSvX5933nnHmHjOnj2bkJAQQkJCiIiIICEhoVzG895775VLP39k0qRJfPjhh8bP+fn5jBkzhvbt25e67bsQQgjxoDl67grLE9KJ3pVGTr757oppW3dit24N77/xDYOjvyLz4mVjbP+pSwQm/U5Gq7ZUda1kaHRywqpXT2qviWZ3WiaPpGzBqlcvyxd3qgtN3gGHahUxNYEk1+VOa03v3r3p0KEDhw4dIjk5mffee4/Tp0+Tk5NDjx49eP3110lJSSEhIYEtW7bwxRdfAODn58fGjRtJTExkwoQJjB49ulzGVFpyrbU22QK9vNnZ2TFz5kwaN25cYdcQQggh7jVZOQUAuFayJe3iFbN43g+ziY3oyqC/D8KqUUNcYtYBUFSs+ffqfQTu2YpX/54m5ziMGkGrTctZtes4fhtWQ58+FT8RYZEk1+UsJiYGW1tbnn32WWNbaGgobdu2Zc6cOURGRvLII48AUKlSJT777DOmTJkCQEREBG5uboBh6/HU1FSL11i7di2tW7emWbNm9OvXj+zsbDIzM2nYsCH79xu2QB04cCBTp07l9ddfJycnh9DQUAYNGsTRo0cJCAhgzJgxNGvWjBMnTvDcc88RFhZGYGAgb775pvE6vr6+jB8/npYtW9KyZUvjNujHjh2jU6dOhISE0KlTJ44fP242xkOHDtGlSxeaN29O27ZtZWdHIYQQD4SFO1KZsHRPqfG8wiI+XbcP94x0Ar1cSb2QYxI/lZkLa9aQ2CSS2u6VsB06hKYbf+JyXiFX8gtRxUU02x+H1aM3VPro0IHKFDF0yksU+/tDcHBFTE+UgSTX5WzPnj00b97cYiwpKcks5u/vT3Z2NllZWSbt06ZN49FHHzXrIyMjg8mTJ7N+/Xp27txJWFgY//3vf3F1deWzzz5j2LBhzJ07lwsXLvD0008zZcoUHB0diY+PZ/bs2QDs37+foUOHsmvXLurUqcO7777L9u3bSUxMNN45v8rFxYVt27YxduxYXnrpJQDGjh3L0KFDSUxMZNCgQYwbN85snKNHj+bTTz9lx44dfPjhh4wZM+bPfSGFEEKIe9DZS3mcvJjDyOlxFuP/Xr2fodPfZ8prvWi5bhFHMi6bxD+dt4Ua6Ud5+c1hAKh+/WiUHMfJQ6lczisi5GQKtrV9wNvbtGMrK4rmzud81eo4zZpRATMTZWVzpwdQ4eZUwFrfJ2/t4Tytdalrj69vj4mJYdq0aWzatMnsuK1bt5KcnExkZCRgWNfcunVrAB5++GEWLFjA888/f9P12nXq1CE8PNz4ef78+XzzzTcUFhaSnp5OcnIyISEhgOEO+NV/X375ZQBiY2NZvHgxAEOGDOG1114z6T87O5stW7bQr18/Y1tenunDGEIIIcT9qKarg/F9dl4hTvY3pFopB2iSsIn3//ktr38+npn120KkH2DY/KVeQiyZrdpQ07GkH1dXTkd0JHPGbIpfHkfzpFiwcPMNoGrLpnTYsLhC5iXK7v5Prm8xEb5VgYGBLFy4sNTYr7/+atJ2+PBhnJyccHZ2BiAxMZFRo0axatUq3N3dzfrQWvPwww/z448/msWKi4vZu3cvjo6OnD9/Hu8bf6stUblyZeP7I0eO8OGHHxIXF4ebmxvDhg0jNzfXGL8+6S/LLwZXx1GlShXi4+MtHi+EEELcrwqKiunb3JuN+8+SmHqRCP9rFTtyC4poEBfDrmbteWb8IKy2zSNo2y+c6dGEai4OPDdrByPjN1NziOnDiK7PjoTx/+LwUyNp9ttKeGn+7Z6W+BNkWUg5i4qKIi8vj6lTpxrb4uLi2LhxI4MGDWLTpk2sX78egJycHMaNG2e883v8+HH69OnDzJkzadCggcX+w8PD2bx5s3H985UrV4yVSD7++GMCAgL48ccfGTFiBAUFhgcmbG1tje9vlJWVReXKlXF1deX06dOsWrXKJD5v3jzjv1fvkEdERDB37lzAUOGkTZs2Jue4uLjg5+fHggULAMMvBOVV+UQIIYS4m62LP8Gl2G2E13Xj7CXTv9r+uO04wYlbUF274uFkjxoxgqjYlew9dQkAVVxM4J7foYvpeuoqPbvhkHsFt5FDsXFzg5Ytb9t8xJ8nyXU5U0qxZMkS1q1bh7+/P4GBgUyaNAkvLy8cHR2Jjo5m8uTJNGzYkODgYFq0aMHYsWMBePvttzl37hxjxowhNDSUsLAws/49PT2ZPn06AwcOJCQkhPDwcPbt20dKSgrffvstH330EW3btqVdu3ZMnjwZMKx/DgkJYdCgQWb9NWnShKZNmxIYGMiIESOMy02uysvLo1WrVnzyySd8/PHHAPzvf//j+++/JyQkhJkzZ/LJJ5+Y9Tt79mymTZtGkyZNCAwMJDo6+i9/bYUQQoi73fBp7/D4C0/QdO63nM7KNYkdPXqa+keTafNMyc6IPXpQPWUPZ/YdBqDByQM41fQEX1/TTm1s2DDp/8jBGutZM69taS7uSupe3twjLCxMb9++3aRt7969BAQE3KER3V98fX3Zvn07HpaK0JcT+X4JIYS4X7wxZRGvvz8auw0/YxfVkY++XsNr/Q13mYuKNV/87b+MSVyJ9S8/G8/JGjSUWPvqdPhmCqufeJ4etR1RJTezrqe1Jq+wGAdb69s1HXEDpdQOrbX5nc8byJ1rIYQQQogy2phiWEt9o8KiYkISNxPftB2OTUMpbNueur8sN8ZH/7Cd4ITNWHfranKe4/CnCPw5mh1HzxPx+xpU374Wr6uUksT6HiHJtSjV0aNHK/SutRBCCHEv2ZZ4lITPf+DzNXvNYnmFxYQkbmFfU8NzSGr4MJr8HM3Rq6X2tCbiQBx0NU2ubaM6YmelsBs4gErOleGG5Zni3iPJtRBCCCFEGdQa+zTDv5tMv/mfkldoum35loSj+B/aTeQz/QGw694Nr7OpHP49gfTMHLxOHsbWxhoaNTLt1MqKxA8+p8DGDmb+IOup7wP3ZXJ9L68jf5DI90kIIcTdRGtd+s+mvXupsnc3cUt+JnLzCg4kHDSGsnILSPkxmsN1Awlq5GNotLXlfLdeuC9dwJGMyzy0dxOqVy+LybNvh1bMHDuZymHNKmJa4ja775JrBwcHzp07J4nbXU5rzblz53BwcPjjg4UQQojbYOycXYyasd1irHjFCuKCIvAOrs/FR7qSPW26MRZ35DyB8Ztx72danzq7/wDqrFzMiTOXaBa7Fvr3t9h3vWrOfDHI8u7O4t5T4ZvIKKWsge1Amta6u1KqKjAP8AWOAv211hdKjn0DGAkUAeO01mv+7PW8vb1JTU3l7Nmz5TQDUVEcHBxK3ehGCCGEuJ2O7NxLx6XfsbFDb9Izc6jp6mgSv7L0JxKb98Df1hrH0SPxHvUsOR+/g6O9DQWFxbRK3orTF++anOPbpSNpjq4EPj0QO6fKcN3uyOL+dTt2aHwR2Au4lHx+HfhZaz1FKfV6yefxSqnGwAAgEPAC1iulGmitiyx1WhpbW1v8/PzKb/RCCCGEuK/p4mKKnhhA28Jcmp45SEL76abJdVYWDrt2sG/w21hbKVwf7khh7hVObozF76E2xC6NoZ2Njdl6akd7GzZO/Ji607+g0f/eBqv7bsGAsKBCv8tKKW+gG/Dtdc09gRkl72cAva5rn6u1ztNaHwEOArIFkRBCCCH+stQLV1ibdMpiLDc+AdeLZ0ldsR7v5J3k7E4yiWctX80+vyAim/pS09UBZW3NgYd7UGXhPLJyC2i+PQb69La4nnrEkCgClszGJiiwQuYl7j4V/SvU/wGvAcXXtVXXWqcDlPxbraS9FnDiuuNSS9pMKKVGK6W2K6W2y9IPIYQQQpTF95uPMi/uhMWYXr6SxCZtcKjiwqXHB1BzyVyTePxXs9kdEknfZt6okgQ65ZHeuCxdyKWL2URsX0+lJwdY7FspRQ1Xeb7oQVJhybVSqjtwRmu9o6ynWGgzeypRa/2N1jpMax3m6en5l8YohBBCiPuf3rqVR98ah1faIQqLis3i1qtWkhgSSeOaLtiOGEGjn5dBkWFV6vnsPEJ2b+HR8SNMNnH5VVUl2aseVbtEUeBaRdZTC6OKvHMdCfRQSh0F5gJRSqlZwGmlVE2Akn/PlByfCvhcd743cLICxyeEEEKI+11hIbkDB1FgY8uobybxv/UpJmF97hzWuxPJbBWBUgqXsCZkObuRt86wRfnRtb9RWKkyVZqYLutoU9+D70dMYH3dlvzy5idSn1oYVVhyrbV+Q2vtrbX2xfCg4i9a68HAMuCpksOeAqJL3i8DBiil7JVSfkB9YFtFjU8IIYQQD4CNGzmNHdOenoSHvcIr/neT8IxJ37CnXigncgyflVLs7tSDS1O/M3xevIjL3XqYdTs80g/3uj4s6/U03R9rXeHTEPeOO/HY6hTgYaXUAeDhks9orZOA+UAysBp4/s9WChFCCCHEg2fHsfMcPHPJYixl+nziQ9uhrawoGjoU71VLjHthFBdrGu74jdNtO/F+n2DjOWrgQJzXrqT4zFl8Vkdj1b+fxb6vbm3uWsm2nGck7mXqXt5sJSwsTG/fbrnYuxBCCCHuf/nfTSfvxZdY+dwEnvj3383iabXq8t3IN3l1wmAcTp0kOyCInVuTaBfkzanzl3Hy88FpdzzUrm08Jz0zh6N9h9AiOZZ9VX0ISIzF2sp82cfvh8/h4mhLQE0Xs5i4/yildmitw/7oOCm4KIQQQoh705Ur8MrfWdhvLI9OnUJelund652/xeN86SKPDO1qeBjRx4fcBo2wW7sagGM/rSPPs7pJYg1Qw8WBBUNe4deRr7Drgy8sJtYAreq6S2ItzEhyLYQQQoh7U3Q0FwJCcHvhOc7XDyDpix9Mwulzl5AUFE6reteqi2U8/iReiw2l9tSSxeT3NN2yHErK51Wvwmz/NviHK1H9AAAgAElEQVQ1qG0WF+JmJLkWQgghxN2pqIiEJet5a0mi5fiqVaz1b0lGdh42Tw3FddE8Y0hrjXfsBtweN30Y0e7JAXgkxHFmcxwNY1ZgN9Byfer9pwx3wcPrVi2fuYgHhiTXQgghhLgr5b/wIoEDuhPx5fvmweJi9Jo17A6JoEcTLzwG9adm8i4uH08DIPXURerv20HNG5Lr2j6erH5sOB4dItgTFE7V5iEWr/1K54a80bURNtaSKok/R/4XI4QQQog7orComItX8i0Hz56lcPoMJrw1m/DYVSyNjjUJX4rdRrp1Jc55eFHNxQGHKi4cCo/i0oxZAGRErySrfgCutb1MzrOxtiJp4NN8/MFcLv7vC+OOizcKqOlCvWrOf32S4oEjybUQQgghbrus3AKembmDv89PwGLlsjlziG/aljM1arO9xUMUzZxpEo79bBZ7gk13Rczo1R+HuXMAyJ4zj/we5uupAdIu5pJctTatGtYon8kIcR1JroUQQghx251LOkC/ef/D42wa5y+b373OX76C+KbtAYh4cxytt6xCF1/burz+rk3sCWrNB49fW9bh0u0R1IULFEz9lmY7N+Lz3HCL1/7vE02Y+FhjPJzsy3lWQkhyLYQQQojbTWvcxz5DSNo+Xpz2Jqcyc0zChdmXKd60meTGLfiwXxPs27XFtjCfK78b9rY4ffQkNY4dpKhde9wq2RnP8/FwZtrAV7B67TV+6z0c5WW6JOSqSnY21HGvXHHzEw80Sa6FEEIIcVvp/fsp2ref6I9+oFJ+DtnrYkziMz6YyQnveuRUcsatsh0oRWzrR9n3ny8AOL9kOalNWvJqzyYmNag9nOxJCm7Nl4t+J2XY87d1TkJcJcm1EEIIIcpdTn6RsZzdjea99TWJTSLJVzZcGjQU59mm9am9434jKSicLwc3N7Ztbd2FRhtWQEEBDovmo3v2NOvXykrRqm5Vdh2/yGNNLN+1FqKiSXIthBBCiPK1eDHFbm5s/ud/LK6nDk7cwu6QCGysFZWHD8V383oKr9tdsVnSVlo8Pxg7m2tpyuNPduKMfwB6+HA8du/EY+RQi5d+KsKXT59sip+HLPsQd4Yk10IIIYQoP4WFFD4/loX9X6Df/E9JO5JuEtaXLuF/eA97A1rQObAGbn4+HKoXzMFphiofq5fHYpd1Ec92rU3O8/dwYsaQ8Vy5dJmF496lajU3i5e3t7Gmkp1NxcxNiDKQ5FoIIYQQf0p2XiGX8wotB2NjOevoyq/te7EvoDmVFs03CReuW8/huoHU9qtBvWpOKKXI6z+AKlePW7GCU63aYXdDguziaEOetw8v9f0ntt26VsS0hCgXklwLIYQQouxyctjyzqeMn/abxXDBT8vZEWi465w75CnUDzNM6lgfmrGAxJBIxndpZGyr/ERfqsTHwYkTBK1ZTPVnzUvoKaUY1bYuxcWatvU9ynlSQpQfSa6FEEIIUWbnRj1Hi8/fZ/TXE3htYYJZvHj5ChKbRPLxgFDqP9kb94x0shKSAMjNL6Tabz9j81h3k3N8aldnw0P9KWwdAYWFOPfoZvHa/p5OfPtUmJTRE3c1Sa6FEEIIUTYXL1J5yUImvTWLmicP45K4yySsjx2jMDUNx8jWuDjYUsPdiQOdupM7w7C74qXY39H29jw+MMrkPCd7G9b2e4Zfhv+NmE9mYG1jXeoQStuuXIi7hSTXQgghhAAgv7CYkdPjeH72TssHrF3LkUZNyXZx48zjg3ho2yqT8IWFy0gMDCfU79qyjaw+/am8cB5ozfnvZ/N7WCewkCA7OTkyz78NzVsFluuchLjdJLkWQgghBADn1/zMpAlPErRljVmN6qJiTdrshewIigCg7t+fI2jTagqvXNtd8crSZSQ2iSSwlouxzTkynGxlA3Pm4LVsAe6jh1m89ssPNWBkWz8ae7lYjAtxr5DkWgghhHhAaK3JLSiyHCwupvCZ59jVrAODf/iAU6mnTcJpGdk4x6wnMSQSAAd/P1K967Hz6x8NB+Tm4rEjls4vD6Gas4PxPKUUPwz8O/qpp9gRFkWTLm0sXt6tsh0R/vKgorj3SXIthBBCPCCmbTpS+pKPnTuxKy7kxIuvkRneFmbNNglf2RLLJRc3znnUZNqwFiilON+7H7VXLgYg76eVHPUNwLuej8l5Hk727A8I4/v1yWx9+S0cbEtfTy3E/aBMybVSyk0pFaiUqquUkoRcCCGEuMccOHGOgrnzcLxyiYKiYrN4/vIV7Gvejh6htbB5agg1Vy7hSv61WtZqxUpORkQxOLyOsc26Xz/cYjfC+fOc/+4HznR+DBtr0zTB16MyLfyqsvloJk1rV6m4CQpxlyg1UVZKuSql/qGU2g1sBb4G5gPHlFILlFIdb9cghRBCCPHXOE78J0Pn/R8vfzGe2IMZZvG02YvY1qgVns721OjfC+9TRzm/7xAAxcUap5/X4DmgDx0bVTOe41uvFvHhD6OfeAKnLb9S+4VRFq/dLbgmAEG1XCtgZkLcXW52F3ohcAJoq7VuqLVuo7UO01r7AFOAnkqpkbdllEIIIYS4dZmZVF/0I+t+WE7Ny+fJWvuLaTwjgxpph8lo2tKwbMPOjiNtH4E5hvXUxxP245aRjm+Ph01O83SyZ1bv50moXIOpz06mjl9Ni5evVcURAPfKduU/NyHuMqUm11rrh7XWM7XWFy3EdmitX9JaT6vY4QkhhBCiLLLzCtlx7LzFmF67ln2+geR71qBg1GiqL51nEj+1IJp9DZsz8fGm19p6P0GV+bNBa458PYP09o+AjemW5FZWipBgPz7tNQ6PXl1LrUFtZaX4fFAzWW8tHghlXXMdopTqoZTqc/VV0QMTQgghRNkcWrCCghpeJE/4gD1pmWbx47MWkRgSQbsGntg/OYCA32MgP98YPzJzEbtDIqhkdy15VpGRFBUVw7p1BKyYj/vTwyxe++l2dRnT0Z8BLWrfdIySWIsHxR8m10qp74DvgL7AYyWv7jc9yXCeg1Jqm1IqQSmVpJR6q6Q9VCm1VSkVr5TarpRqed05byilDiql9iulOt/yrIQQQogHiP3kt9nYoTe9F3/FvvgUk9iZi1dw3bieav16UcPVAXvf2pz08iVhmuHudWzKGQL3bGVfU9MSedVdHZnRawzF3bqRXcUD1+5dSr1+8zpVsbORegdCANj88SGEa60b30LfeUCU1jpbKWULbFJKrQLeBt7SWq9SSnUF/g10UEo1BgYAgYAXsF4p1UBrXUpBTiGEEOLB8FPCSapUsqVtfU/z4O7duJ08xsoX/o9Iuyu4zp8D3VoYw9uiY4hwcubhnobkWSnFtvDOtJg/F54bQtK85dSv6cV7L3Uz6bZxTRemto7idZ+FtGzdmHpWkjwLURZl+X9KbEni+6dog+ySj7YlL13yurr9kitwsuR9T2Cu1jpPa30EOAi0RAghhHiAXUw/S9Gkt1i9cANaa7P4lW+m8XuHnjz9UEPcxz1Hk3VLOHHusjHu/Ms6ijqb3nVu/+Y4am/7DTIyCNu6luI+5qs9lVL0be7NOQ8vmjWw/KCiEMJcWZLrGRgS7P1KqUSl1G6lVGJZOldKWSul4oEzwDqt9e/AS8B/lFIngA+BN0oOr4WhOslVqSVtQgghxAPrygsvEhr/Gy/87xViElPN4vmr15DXuQthddywimiNg7Xi1C+/AbD/1CW8Y2Nw7t3D5JyavjWJC3+EgqFP0WDjKoqeGmbx2m3rezJtWAvqejqV+7yEuF+VJbn+DhgCdOHaeuvHytK51rpIax0KeAMtlVJBwHPAyyUl/V4GrlYcsfSIsdmv6Eqp0SVrtbefPXu2LMMQQggh7k2ZmbitWEbs13O56OqB3crlpvH0dBxOp+PaprWhUodSnOvVj8rz5wJwOuUYPulHcHjIdGsKG2srEp8fT0KeHRv/9g41GvrdrhkJcd8rS3J9XGu9TGt9RGt97Orrz1ykpJzfBgwJ+lPA4pLQAq4t/UgFrt8z1ZtrS0au7+ubknrbYZ6eFtaeCSGEEPeQ2HXbmLhol8VY8Zq1HKwfQpZ9ZRzHPEOtRXPM4smNmtPA283YpoYMpva65VBQQN6ixZxv1wkcHMz6TsOBL4f8g3rPDy+1hJ4Q4s8rS3K9Tyk1Ryk18M+U4lNKeSqlqpS8dwQeAvZhSJjblxwWBRwoeb8MGKCUsldK+QH1gW1/cj5CCCHEPUN//z2tOofTY8orxB01r1FdtHw5iSGRdA2uifPA/lTflwDp6cZ46vxo0lq0xcPJ3thWo2kgpzy8KFywkEbRs3Ee8ZTFaz/f0Z9uITWpX925/CcmxAOsLMm1I4bKH4/wJ0rxATWBmJL12XEY1lwvB54GPlJKJQDvAaMBtNZJGLZXTwZWA89LpRAhhBD3rcJC9L8mMOUfU6lzdC9rvltmEtZFReT+tIKzbaPwqVoJNw9XdjZtT8bU6QDk5xXgtnkDzZ9+wuQ8B1trFj3+PGroUHLsK1O5T0+Ll/d2q0SfZt4VMjUhHmR/WIpPaz38VjrWWicCTS20bwKal3LOu8C7t3I9IYQQ4p7yyy9ke1Qju3lLzvQfTOSm5VzJH2zcyOXYuk3YOTrj1LghYKjeEdv6UWpP+wQmvsGBxavw9KyBV2iAWddevbrwSs2faBBQmway5EOI26osm8jUVUr9pJQ6q5Q6o5SKLlm2IYQQQojSJCRAUBB8/rnF8LkFS/nZvyVhddzweGYkYXHrOZpmWBqitSbhq9mkhndgWISv8ZyIkX1xu5IJe/Zw9uvpJLd+yGLfle2syXJ1p3PTm++aKIQof2VZFjIHw3KNmhg2d1kAzK3IQQkhhBD3vBdfJKlFB7LH/4OMpBSzsF6zht0hEYTVqUr1kIZc8m9IwfKVAKReyCE4cTOeA3pjY33tR7VfdRd+fagf+qmnCNv+My7jnrd46eBarlhbKfw8KlfM3IQQpSpLcq201jO11oUlr1lYKJEnhBBCiBKnTkFCAp9EDmJr6y5s/ud/TML6yBHsLl7ALbIVPlUdAbjQux9Vli4AYNmKbVQ7k4pf70dNzqvp6sD6bkPI7voYX415j6ZhDSxevn51Z74ZGiZVQIS4A8qSXMcopV5XSvkqpeoopV4DViilqiqlqlb0AIUQQoi7zoUL8NJLsGmT5fjKleR2iKLIxoaETr2I2LwCrttd8ddPZ5EUFE5UYI1rCXDfx/GM3Yi+eBG31ctJbBIJtrYm3SqlyCpUvNe0D7pTJ0mehbgLlSW5fgJ4BojBUKv6OWAEsAPYXmEjE0IIIe5W48eT+fsOMrv1JO/8BfP4ihXsadaWTgHVee7lxymwcyDr543GsEvMejz79yLQy9XY5lm7BokhkVz+50Q6rZ9HlbHPlnr5M1l5NK7pWmpcCHHn/GFyrbX2u8mr7u0YpBBCCHHXyM2FefP4euz77G/YjItff2caz8+neP3PzHRtjJ9HZSrZ23Kscy9yZswEICMjk0b7d+A/2HTLiGouDmwe+XeK16zlcHBLAp6wXPV2cHgdPJ3t6dBQNlIT4m5UlmohDkqpvymlFiulFimlXlJKmW/1JIQQQtwPiopg7lw4ccJyfONGCgKD2F9gz+8de1Iw7XuT8PGlqzji4UO2ixvN6xh2Tszv1x/XFdFQUMC+2dFcrNsQ5eFh1rWuXYeX/zWTwi+/QllZ/hHdsVE1pvQNobL9H1bTFULcAWVZFvIDEAh8CnwGNAZmVuSghBBCiDvmP/+h4NXXKOjYCQoKzML50cuIrtUUT2d7hvxrJE7nTqP37TPG1YqVJDaJ5KP+TbCzMfyYdQ5syPmadWDJEjzn/cDZ3v0tXnpUWz/GdPSnTT3zxFsIcW8oS3LdUGs9UmsdU/IaDVh+PFkIIYS4i+UWFBF39Dxal1L0qrCQoo8+YtKYjzho68LvH3xlGtea7EVLSWzShsebe1PF2ZGE1p3JnT7TGHf+eQ3eg/tRpZKd8TS3SnasfOI59MiRVD2QjNfzoyxevkolO5rXqSoPKgpxDytLcr1LKRV+9YNSqhWwueKGJIQQQlSMLYcyiJ69jjHfbCKvsMj8gK1byXSrxqmavuzuPoBqi2/Y1iE5meIiTVqtuoT5GgpmnejaC6sf54DWZP6+g6L8Apo81sHkNLdKtsTWbsKbr33D5AnTca8uxbaEuF+VJbluBWxRSh1VSh0FYoH2SqndSqnECh2dEEIIUY4cF87nzUlDefmjF/j90DnzA1auZEvDVvQL86HTKyOovi8RfeaMMZyzJJqEJm345qkWxjbbli0oUFawZQuZU6dzrFM37GytTbp1dTSU1EvzqUe2i5vcmRbiPlaW5LoL4Ae0L3n5AV2B7sBjFTc0IYQQ4s87eTHHcqC4mIZf/5c5b32NQ34u8V/O4nJeoTGck19ExrzFJIZE0qa+B26ebuwOieDUd7MAKCrWpM9aSGKTSKytriXHPlUrs73vCBg9mmoLZ6OfMS+hd30y3SmgejnNVAhxNyo1uVZKOQForY+V9gIs/NovhBBC3BkHUlKZuDiRE+evmMV2/xRDYZEm6pl+2L/4ApGblpORnWeMH0/cj/2ZUxz2D8TJ3gYrK8Xlx5/AcZ5haUjSzv1UP3GQIf8YZtJvo5ouLGnWheJRo1jw4nt4BjeyOLZpw1oQUc+DrsE1ym/CQoi7zs3uXEcrpT5SSrVTSlW+2qiUqquUGqmUWoPhrrYQQghxx2WtWIN/ozo8/9lr7E/PMolprTk4YwHxwa1xrWxH9eGDCNobx7m0a0s+0n9cQlJQOB8OaGZss+rcGbvjR2D/fo598wMHWrTHw8N085aqle2o4mTPukcGsqFuGNVc7Esd48g2fiYPOgoh7j+lJtda607Azxh2Z0xSSmUqpc4Bs4AawFNa64W3Z5hCCCHEzRX/4x9MHf0WNdKPce6nVSaxzJwCgnbHsic4Aic7G6hShTMtIrFbFg1AfmExrr+spVLvHibJb2NfdzZ17A2vvEL4kukc7TPI4rWb+FRhftwJWvu743DDemshxIPlpmuutdYrtdaDtNa+WmtXrbW71jpCa/2u1vrU7RqkEEIIQXFxqSGdkoJt6gmOdeqG5z9epc7SuSZLQ1ZsTMIn7RBdxvTHqmS9dEqnx7Ca+yMA+4+cotG+HQSNHGDSr6eTPcs6DyHX2pbtkV3p9rzl+tRNaxs2i3F3krvSQjzoyvJAoxBCCHFnJSZS7OTEyZ6Wk9uMBUvZGRhO35Z1sBnQn9DdW4jfmwpAQVExuStXo9q1o3Hdaw8TVh/QlzpH9sLJk5xfuIxLQU2wcjctkaeUwqGKC588+x67n30FW2vLPzZ93SvxQqf69AqtVU4TFkLcqyS5FkIIcdfTf/8783o9h03sFgo3bDSLO6xby+6QSGq6OoKnJ/mtwrH6aRkAx85dpnnSVuwf62ZyTmP/6sS17kLBe+9T6/uvKBg+0uK1e4Z6kXLqEo29XEodn1KKUJ8qUmJPCCHJtRBCiDsvr7CIhBMXLQePHaN4Vzx7egxkV5+nyP70C9P4lSvY/h5LcuOWeFVxBEAPfJLaa6LRWpN04gKNdm2C7t1NTrOyUiQOH0vhsp8ocnDEa9Rgi5cPq1OVLkE16BwoVT6EEH9MkmshhBB3VkoK2rMamYOHsTs10zy+ahXn2kbhXcMN2wEDcFyzCq5cW099eP5PHK3TiNbN6xrbKvfvi//+eM4cSeP8ml9QtWpBnTpmXV+q4sHYtxew/pOZKDvL66Ud7azpF+ZT6pIQIYS43s3qXAcrpbYqpU4opb5RSrldF9t2e4YnhBDifpc97mVWRvUnYG8cv32/2CyuV60iLqAVvu6VCI8I4FDdQHIXLzXGLy5YglOvxxjU6lrybOPqwq5m7Tk46d+ERs/GZuQIi9c+fPYyAO6V5UFEIUT5uNmv4V8Ck4BgIAXYpJTyL4nZVvC4hBBC3AeKizWHzmbzzvJkioq1WfzK8VTUpk2se2QgvPQyLVcvoLDouqogeXnkr/+FtTWDqevpRCU7G4517kneD4ZdE3PzC/GNjcGlf2+zvpf1GEXoounUSz+I9SjL66lrVnHAykrRL8ynfCYshHjg3Sy5dtJar9ZaX9RafwiMBVYrpcIB8/9CCiGEEDf4dflmPP1rEzXlNbYcyjCLn/xxCcmNWzB5UCs8Rw0lMH4TqWnXNv/VmzaRVqMOzcPq06C6k6GtV28ct2yC8+c5vG4z2tYWl6YhZn0PHdyR8f+JpnBnPDg7Wxzfm48F8uWgZibbmQshxF9xs+RaKaWM21BprWOAvsBMwHzhmhBCCHGDhp99wM8P9afegURyV68zi+csW05aeAfcneyhWjUuBIVyaf61pSGpsxeyOziCHk28jJU4Ahp6syc0Er79lsrTp3GqZz+wUKUjoIYLL/drgdsNOypez9baChtZSy2EKEc3+y/KB0DA9Q1a60SgE2C+KE4IIcQD53D6Rc5n51mM6StXqLo5hsP9h2L7yt/x/HEGWl/7w2dxfgH+CVsJGvmEse1Cz8dxWjwfgKzcAmxWraLBqIEmuybWquLI0u4j0e+9h/u6FVwa8bTF61tZKfw9ncpjmkIIUWY32/58jtZ6K4BSykkpVbmk/bjW2vJ/ya6jlHJQSm1TSiUopZKUUm9dF3tBKbW/pP3f17W/oZQ6WBLr/NemJoQQokLt24eXnxfH2z5Mbn6hWfjy6nUc865PgwBf3EYOoVHCFo4dSjPG4xeuJqu6F3WD6xnbjrfvTPX4bXDuHGnbEnHOu0xA1/Ym/drZWJFWow5pMVuY8NYsajfyq7g5CiHEn3TTv4UppZ5TSh0HjgEnlFLHlFJjyth3HhCltW4ChAJdlFLhSqmOQE8gRGsdCHxYcq3GwAAgEOgCfKGUsr6lWQkhhKhw+p//YlnPUbifSyd91gKzeObCpSQ0aUOx1qiqVTnbMpKsOfON8cKfVqAffdS4HTlAVKt6JIZEkPvNt9hM+5aT3fqAleUfVbNOWeHi62OsbS2EEHeDm5Xi+xfwGNBBa+2uta4KdAQeLYndlDbILvloW/LSwHPAFK11XslxZ0qO6QnM1Vrnaa2PAAeBlrc4LyGEEH/g+iUalmQcS+d/q/ZYPi43l/w1a9jc5jFShz2H/vbbGzvHcc0qEpq0oZWfOwCX+/Sj6jLDqsKiYo33ll+w7/mYyWn2NtYkDhuLzZT38V7yIwXPj7U4tn5hPhw4fYnAWqWvpxZCiDvhZneuhwB9tNaHrzaUvO8PDC1L50opa6VUPHAGWKe1/h1oALRVSv2ulNqolGpRcngt4MR1p6eWtAkhhPgTruQXMi/u+E2PycwpYNSM7SSdtLBpC8COHVSp70v3sQPYfdS8ygcbNpDh24D+jzYleNxwaiRso+j0GWP4wPotFFlb89yYx6jh6gCAXc8eeOxLhFOn2Lt1N1UunKFqVDuzrqu1asbSzxcweeJ0aoc2sji8WiV3q4O8JLkWQtxdbrosRGuda6EtByi2cLil84u01qGAN9BSKRUE2ABuQDjwKjBfGR4Bt1QHyex2iVJqtFJqu1Jq+9mzZ8syDCGEeKD8fvg8a5NO3/TO9N/mxQNw4HS2xbh+803mDHyZAls7Tn/7g1k8a/5iYgNaU7tqJZw83DjYvC0XZ8w2xk/OXsiptg+ZLNmo6uHKjiZtKZw2jctffE1mz75gbb76r7Z7JVYVVsGvVQjODpa3VWjs5UJLv6o0rGG5xJ4QQtwpN0uuU5VSnW5sVEpFAel/5iJa64vABgxrqVOBxSXLRrZhSNQ9Stqvr+LvDZy00Nc3WuswrXWYp6fnnxmGEEI8EGZtPQbApTzzhwwBcguK8D5xAOes85zKMruHAllZFMVsYGvrR6k8/hUaLP3RNK41evlyEkLb4O5kqOKR0eNx1I+G485k5eL923q8Bvczls8DcHW0ZUX34RR/8G+Cls7CafwrFsfXoLohYe7dtPQ/XlpbKZ5p7y/1qYUQd52bJdfjgK+VUtNLqnuMVUrNAL7BsKHMTSmlPJVSVUreOwIPAfuApUBUSXsDwA7IAJYBA5RS9kopP6A+INusCyHEn3DxSj4A7k527Dh2weIxh+ZG84/3nmbi5OEk7Esz3RER0GvXss8vCGtXFyr1fAyPYwfIO/7/7d13WFVH+sDx79A7CHZEUMTeRey9994TozGJyWY3yabsJpv8kjVlk00z2XQTk9hLIsbeK6IIWLCg2EVQQECkSGd+f9wrcr0XEg1Y38/z3CeX8845d84bxZdhzsyNWXuJoeHkobBt1gxHW8PIs+fwQTieOQnnz3Nu31FqpsTjNdh00SelFIk1fHn7n7OY9f48XJuarPZazMXehtlT2hrWvhZCiPtMWUvxHQWaAjsBP6Cu8X1TY+z31AC2KaUOAREY5lyvBn4E6iqljgCLgceMo9hHgaVANLAeeFZrXXjbdyaEEA+h70MMj8lM7uDHjhjLU+fcP/mQ2Pc/xbNbJ/qFruRqdr5JPH+VYVT6n/0b4OruzMEWnYmfPb84nrJkOZc69+bNoU2KR6arV3Fnb+seFH3/A3Zz55DafyjYWp7Sccm7LvbNGpfH7QohxD3HprSAUqoeUE1r/eNNx7sopS5qrU+XdWHjhjOtLBzPAx4p5Zz3gPf+SMeFEOJhtDk6kUXhsXw+oRUu9ubfwo9fTCdo70YaNigk4aoteQVF2NncGEdZuWE/vU5GY/foRGjZgHaPP8PV7H8XjxLn5OaTv2I12Z8vplYlJ8OxkaPxmvcVzHgNAI+Na8md8Y7J51ZxtefTQY/R5b2pNMgv4EpImMX+d/D34nD8VYY0r1ku+RBCiHtNWdNCPgMyLBzPNsaEEELcYYvCDauAHIxNM4ulXcsjKHwTU9fMwmbIYOrmXyXh6k1zqtev51jjtlSu5AJduuCankpu1OHi8J6lG8hwcsWu/o2NXbK69cQuLhZiYsiJOYXrpQt4Dx9gcllrKyJ79/kAACAASURBVIVT/Xos+XoZn743n+otLE/5eKJLXT4f3wofT6fbTYEQQtzTyiqu/Yyjzya01pEYpokIIYQoR78diOerbafIybc8Iy54f1zx+4hzqWbxL7aeov/aedh9PwsefZQeGxaRlp1XHL+Qeo3qodtwGznUsHGLtTXx/YZitXRJcRv3rRu51rsfE4NqFx9rUMuTHW37ob/6irQvv+FUt/7YOdhxs4BqLmzJdaF2uxYmG8MIIcTDpKzi2qGMmGyHJYQQ5Uhrzaqoi+w/f4X9seYPIuYVFLHuwAUmLPiE12O3cyT+Khk5pnOlmxWk4ZWWBH37whNP0HDbao7F3xjh3n70Is2PhRMweXTxsatDR+GxIpiiwiKKijTVtm3AZexIbKxv/PPgX8WZ9QMeQS9ZQqW5s7nytxct3kPXAMMKTm39Kv2pXAghxP2srOI6Qin15M0HlVLTgH0V1yUhhHgwpd9UDJeUkpWHtZWig78Xs0POmo1e/xR6lt6bltAy6RR1v52J37loIkusBjJr52kygldQ1LefYbvwJk3AoxK523cChh0RUzbvwMa/Lsr7xhJ31u3aApq0nbu5dOAo7qmXqda/p8ln21hb4Vrbm3Pbwvhk5nLqtrb8MGKtSo68P7IZDarJ2tNCiIdXWcX1C8BUpdR2pdQnxtcO4Ang+TvTPSGEeDBsO57E3xcfJOqC+VxpMMyhbu1biUntfAE4m5xlEi8q0gzaGUzl2d/CK6/QZ8Mi5u8xrGettWbvmVSaHdqN2+jhxec4TJ6E78aVaK05lZRJ4JE92AwaaHLdNn5enBkylqJPPyXxPx9zceholI35g5LNvN1Zci6H01Yu1C5lvrRSiqpuDiZrWwshxMOmrKX4ErXWHYEZwDnja4bWuoPWOuHOdE8IIe5/WuvijV3CzqSYxYuKNGERMTzy+AAcR4+gXW13rly7MVc6KT2HjLAIHBztIDAQJk2i5eHduBUZ2pxJzsI2L4fmZ6IMU0KMbCdNpE3EFtKuXuPD9cdpum87DBtm9vmnx02hICIS/82rUC+9ZPEebG0Up5IymdLJT+ZTCyFEGUpdiu86rfU2YNsd6IsQQjyQ9hgL6qe61mVxxAUKi3TxzoI5+YU8u2A/4xd+g+rSBWKiaRK6gdD8PnT0rwzAhuhE+l04gM3gQYYLVq2KTYf2ND0QQm5Be47EX2VM1mmsWraESiXmO9epQ2LVWhz7ZhE1i1xwy8s2FOc3qV/PmzffXYyjteLzVg0s3kM1Vwdsra3oEiA74wohRFnKmhYihBDiT8rJL2R2yFnqJJ2nnV026dn57Dx5Y3OXsDMpWBcU0DlsHc4z3oR//pM2axaRnn1j6/KLadn4R4bAgBvL39lMmkjHiE1cTMvh2KUMWh3cBYMHm3/+1Cdo8NOXjN8wF6snnzDMx76Jn5cThTa2vD+pban30bFeZb59tM3tpkEIIR4aUlwLIcSfdCT+KtN+jiAzt8AsFnYmBd9zx3hlxhQIDGRYLTsup+cWx5PScxmafQ6HBgHg6wsDBmB/MoaC2Fi01sQkZHAlLhHnY0egW7cbFx4xgrpHwkmOS+RCahYeWzdaLK7dnpxKpos7Na8mwouWV/mo7GLP0939cbL73V9mCiGE+B1SXAshxJ+044RhJHrr8SSz2Lw95xm06idyZ7wLw4cTtHIe8WnZxfENRxMI2BeCuj4qbW+PGj6cdpFbuHItn+92nqbJ0b2orl3BscQqqO7uXArsRPTns/E5dgArJ0doZL5xi09VN2J/XEhh6G5wd7fYfysrRVs/zz+RASGEENdJcS2EEH9CUto1an3+Ia9e2EHIictmcY+CbFrFROI2fRr89a9UCV5MdFwaWmuuZhuW5guIDIGBJVbxmDCBFiHrWBB2Hnsba0bGH4AhQ8yufXzMFAat+om/bPgBnn0WSlmlY1hLbyobtzcXQghRsaS4FkKIMizbF8e0nyNITM+xGL/6w8+03reNet99RqWDkWiti2MnEzOoezAM1akjuLpC06ZYubtT99QhDsVdJeTkZbo6ZGOVcAnalpjv3KMHnmmXuRQRRWZmNk7bNsOgQWaf3XP6WJxe+CtuQW3gmWfK/d6FEELcOimuhRAPLa01aSWWvLNk/cELqKJCi1M+tNYwZw5xL/wT9frr9NuwgGX744vjRy+m0/vcPlSJwliNH8/Q4ztJyshl+f54Bl44YHhQ0dr6xoWtrVFjx9IpZDWBR3ajAgLAx8fs8+1srHB641/w1Vdga3sbGRBCCFHepLgWQjy09p5N5aWlURy7lG4xvmBVBB+9PJQvPn6CwycvmcXTE1KodeoodgP6wYQJNIoOZ0dYDAAFhUVsjk7AP3Kn2ZSPejvWsXTPGQAq79hk8UFEh3+8TK9dK5i8+FN4+eVyuFshhBB3ghTXQoiHUk5+YfHGLsH74yy2abloFme69sOhfgCt1y4mO+/GluTpOfmEfbOAk/Vb0qy+N3h4cK1rD9pEbiU5M5c9Z1KocuoY1m6uUK/ejYvWq4fy86NRdASdqtmhQkJMNn65zs6/Dg7r1qA++ghGjCjXexdCCFFxpLgWQjyQMnMLCDlp/oDhdXtOp9AsZB2tD4eSk19k3kBr/LauJXfaU6iXX6LbzpXEptzYkjz6Yjrum9Zxrd8A7GwM30rdH59Mu70bSbiaw4XUbCYkHzaZEnKd3dQpjAlfyaMx26FPH9ONX0rq2BHGjSv1QUUhhBD3HimuhRAPpOD9cfwceq7UBxEz1qxjyvKv+Mv893E4HEV+oWmBnRa+n2tFUNiwEXTqhJOV5sTqrcXx+MsZtIreS+CzjxYfsx0ymDoXTnDh6GmiL12l9p5tFh9E5Ikn8Em5iO3r/4I33iifGxZCCHFPkOJaCPFAOp6QQQ0PBxaHXzCLaa0JmD+L3H+/jXrtNYZvnM+R+KvF8Zz8Qg5+M5+oFp1xcrABpcgdPZbKa5YDkJqVx6nlG9B+ftj41r5xYUdH9jfvxJU5C3G7dAH7c2egSxfzztnbQ0QEnDkDLVuW960LIYS4i6S4FkLcl86nZJkse1fS5aQ0Jv/7KWa8PoFzsUnk5BeaxPcdPk+d4wdxnTQOHn2U+gdDOXX6xgOL3+88g3foVqyHDKFlLQ8AnCZPotHOdeiCAi6kXqPniT04jBhm9tmN33qZvhsWMm75d6gpUwyFtCXOzlCt2u3dvBBCiHuWFNdCiPvOntMpvL0qmnVHEizGM99+Dwc3F6zr+TMkdDmnL2eaxPfOWspp/2YoV1fw8iK7XUec1q0BIL+wiFPR5/C9dIYe08dgZWWY7+zQohkZLu5sn72co3FpNNm9EcaMMftsj749OT9gBFUKs+H118v5zoUQQtzrpLgWQtxXtNbEfjGLiad3EXIymcIi09FrXVSER/ASrr7yL3j9ddpuWsapxIzieNyVazQ7FEq1CSOLj1lNGI/f5pUAHL+UQbNDoeR06W426nx50Ehs588jadV67D0rQZMmFvvYZt5XOG3ZWPqDikIIIR5YNne7A0IIUVLEuVTCz6byVNe62Fqb//yfvn4T/eZ8iruzPRccPTiR6EujGm7F8YXzNjMgJ5cmA7uCtRV2VorTG3ZCq4kALAg7z3PHwnCc/XHxOc6jR1D3b3/l51X7qOpXk36nwnCbMsHss5vPeJmsgIY0ig7H+vOPzeJCCCGEjFwLIe4pP244wtGYePaeSbUYT3jrfZaPmI56+216rZpDbOq14ljoqWRs1q+lsF9/bGysQSmsJoynyfa1XMnK42xyFjnh+7D3cIeAgOLzlLs7R5u0g+Bgzp1LpOa+3RY3drGpWoVlH/zEjif/AZMmlf/NCyGEuO9JcS2EuGOu5RUQk5BRarzwcjLvvT6WD18bxc6Qw+YNMjKocySCmtOnwLhx1Dh6gA3bbrT7cddZmkeF4jFmePEx20kTab9vCykZOUScS6V99G6shpgXzr7/fI4+GxdRa8Fsinr3AS8vi318/JmhjPzgRVl7WgghhEVSXAsh7gitNX9beIAP1x9n2/Eki23CXniL2MAuOD06kaBfZ5ut8hH+wy+crNsUZ08PcHbmSpeetIzYgtYarTUeBdk0vHAc2759bpzUtCkFLq7k7wrlSlYenY7sguHDuVml4YOJr1WPvmvmYvveu+V670IIIR4eUlwLIcpNZm4BBYUWdjsETiZmMHrp/3h+2Uz2nTHfOfFUYgYNNwRT+9+vYvXii3QIXUv4iUSTNu7bNnGoeUea+7gD4DltMkHhm9lzJoXM3AIaHQ6DDh3AxcXkvPgBw3FcMJf4neE4pFw27Hx4Exsba7575j0i9p2ERo1uNwVCCCEechVWXCulHJRS4UqpKKXUUaXUjJviLyultFKqcoljrymlTimlYpRS/Sqqb0KI8nc47irPLzrARxtiLMavLlhC+5gImiSdoUbwIvIKTIvwubNWU2RlRaWgVuDnR5G/P8kr1xXHk9KzqbJrK0F/eQQ3B1sArAcOwCf2BInHzhJ9MZ1OR0NRw8zXnk6a8Bhem9fzxPdvYfXC82Bj+Vnu7ycH0qV+1dtNgRBCCFGhI9e5QE+tdQugJdBfKdUeQCnlA/QBYq83Vko1BsYDTYD+wNdKKesK7J8QopycSMxgzddLaHJ4D6eSMs3iOfmFuPzwHSen/x3r/35An42LOVti7WmtNc0PhXKqTReUleHbktW4sXhvXFXcJnpdCPm2dvi0a3Hjwg4OpPbuT91ta4g6lUi9yBAYOtTs86+5VeKL5z8mddR4rF56qdT7uL6mtRBCCHG7Kqy41gbX//W0Nb6uL0g7E/hHia8BhgGLtda5WuuzwCkgqKL6J4S4NXkFRRQVWd4R8dLeA/z1f6/w/Lz3CDhxgAslVvAA+HJZOH7njtNs+iTo2hWHnGvsWrG9OL4/9gptju6h/d8mFx9zmjSBphHbSLtieAAyJ3gFTiOHYWdr+jN34uhJ1Jr/A57zfkS1CwIfH7P+da5XGb8hfWj68b/B1vY2MyCEEEL8vgqdc62UslZKHQSSgE1a671KqaFAvNY66qbm3sCFEl/HGY/dfM2nlFKRSqnIy5fN520KIcpf7LkEXv52K/PCzluMV1o0n5RHH8f6vx8wafN8LlwxLa7rHtjNucatcXR3ASsrwtv0oMq6G6PSB6LO4hN7AtWjR/ExVasWqXUbcHXZSiLPpdIgYjsuo8wfRHTu3YNj9VszdNm32HzwvsX+eTrbMbFdbWwsrJsthBBClKcK/ZdGa12otW4J1AKClFLNgdeBNy00t/T7WLNhMq31LK11oNY6sEqVKuXbYSGEmZSLl3EObMX7/xzJ8b2HzXZERGtq7NiA07jRMG4cVY9HcTrqZHE4OTOX6ru2UG3CqOJjQa9Mp23EZnRREeeSsyhctx7dtSs4Oppc+nSfodjO/ZmEPfuokZmC6tbNrH+NarjRfvtvqPSr0KpV+d68EEIIcYvuyDCO1joN2I5h6kcdIEopdQ5D0b1fKVUdw0h1yd/n1gIu3on+CfGwOxSXxolEy+tPJ/x3JicDWhA2aCIDl3/PxbRsk/hPs9djnZNDpc7twcmJQ626YvPrL8Xx3SeSaB29F88Sa0+7du+MbUEeWeGRxF3JptepcGyHmc+VXtygG/ZHD9P2hcdJnvZ0qVM6bKytsLWRRzSEEELcfRW5WkgVpZSH8b0j0Bs4oLWuqrX201r7YSioW2utE4CVwHillL1Sqg4QAIRXVP+EEEBREfsCe+LcrQv/WxaJ1uZzqitvXMuuLkPoOvNN2h7YwaX4G9OxCos0LhvXEtWyi2FHRMD32WkEhW8iOTMXrTWXNu5AVa8Ovr7F5ykrKw51HUTGD3M4eSYB34gQGDLE7LOf6NuET175ktVDHqfmjNcrIAFCCCFE+arIkesawDal1CEgAsOc69WlNdZaHwWWAtHAeuBZrXVhae2FEH9ewvdzqHQlictVajJgzRzibxqVJiEBl9gzXGgaiK13TdJaB1Hw67Li8KboBFoeDKH7K9OKj1UZPpDql+M5sPMgxxMyqB+5A7th5oVzWI/huC1dSN2Z76G7dIGaNc3aBPp5kljdl92dB2NlJw8iCiGEuPdV5Gohh7TWrbTWzbXWTbXWb1to46e1Ti7x9Xtaa3+tdQOt9bqb2wshbs2VN2awvftILly6YjGuFy1mc+9xtJv7BV13r+ZiUrpJfNm7s4huEsS/RxnmMueNHoPLb8HkGzeKORN9jjoJZ1E9exafo+zsyBgwBPdVwWw8kkBQVAjKwvJ4Tzzak+XDnqTO+ePYffZpmffxcr8Gt3TfQgghxN0ij84L8aAKCcH2h1nUvHSWU29+YBa+knwVj72heI0ehqpfn3y/OuSsufEzrdaaOnu2YjVkCJWc7QCoPWUC9U9FEXc6juy8Qlw2r0f16Q329ibXLpgwgdrLF5G/eTOOFEH79mafX9XNgW29xrDp+2Dw9y/1NmZPaUujGm63mwUhhBDijpLiWoj7VXAwyW++Q0F+gcVw0c8/s773ODy++5LmK+ZzJSPHJD73vR+J9a1Pl3b1AcgdM45Kq4KL4ykp6TQ6to/WT0+8cZKrK3GBnVDLf+NEYgad92/FeuxYs89279uThBp+vPjxc1i9+w5YWf5WM7BZDQY1q3Grdy6EEELcs6S4FuJ+FB1N0fSnyflxDmc//MI8XlREwcpVRDbvQtVuHSlyduboL2uLw1prWhwMIapFF6q6OQDg9dgk/MO3k5Nu2Ptp09eLSfNvgLppycvYPkPwCF7C+cMn8Yk5BIMHm328q6Md817+hKzoYzBuXKm3MapNLaq7O9xOBoQQQoh7khTXQtyLQkMp+OlndFGRxXDup5+xsvMI5k/+B65ffgY3r/IREUGWiwcturcBpbg6YiyVVtx4EHFJeCzNo0Lp++oTxcfsvGuQGNCUC/N/JTO3gFpb1lF5kvmodFrvARTGX6TD9HFkTJ4Kzs4W+/jJpLa4Ngi4jZsXQggh7l9SXAtxr4mNpWDoMK78419sfetz83hREVYrVrCnwwACRg7AurCAzL0Rpm1WreJom6609fMEwHbSBPx2rIf8fADyI/eBoyMerZqZnJY9cgw2S5ew60gcgQd3YjtpgtnHt/Cvysd/+4SN3Ubi+uF/yueehRBCiAeEFNdC3GHJoREse+MLsnMtz5XWX37Jlrb9mDvlXzT46SsKCkxXpCwIj+CyrRPJVb0ZFehDXK/BXJmzyKRNyqJf2dmgA7U9nQDwbFKfxMre6C1bKCzSVNm0FqcxI80+23bcGKoeDKfmi89SENQOfHzM2vhXcSGpmg82zz+HrbPT7aZBCCGEeCBJcS1EOft1XxxhZ1IsB5OSsB/Un15fvc3hmbPM41pTtPQXdnccyPBXHsM5L5ukUNNR6ezfVnK4eSe6N6wKQN6Ikbiv+a14akhq9AlsLycx9aVx2NkY/oq72NtwqEt/Yr/+kXPJmbQN34TDIxO5WSXvqnw/9f8oyMzC+buvS73H90Y0Y2ygeeEthBBCPOykuBaiHJ3csoeEOYv4fucZi/Hkjz9nX6turHz+XWp8NZOiwpvmVB8/Tm52LjW7tsO/qivnew2icMlSkyaZwSuJatGJUa29AajaoxMFeQWwfz8A539YwKEWnanh6VJ8jlKK2tMfw2vrBk699g7K0RHatDHrn4ejLYdbdOKrv32EVd06pd5ndXcHlFJ/KCdCCCHEw0SKayHKS0oK3mOGMG3JpwTt3UhsyjWzJvqXX9jdaRCDX56CY3YWxzaGmsSvLF1OeOP2eBunc5zoNgC7Zb8Wj0onHD+DW/x5prwyCSc7GwB8vZzZ02kgeT/+BECV9Sup9dRks892qVObVUOfoP2vs8n+9DOwUBzbWFvx4ejmfDK2xZ/LhRBCCPGQkuJaiD/q4EFYuNB8ZQ6jvG++ZX+Tjlz67FtGrPmJ8LOmU0OuxZzCITWZVqP74eliT3yvgZz+do5Jm8TFwRxq0bl47efEek1QughtHJW+uHAZcUFdqFr5xqYqVlaKA92GYL1kMfkbNuJyKY7qIweZ9a+6uwOb+47nlS824D2sf6m36eVij4eT3R/LiRBCCCFMSHEtxB+RmkpR377kvPovsmf9YLFJ9sIlhHYaRN3xQ3HV+aSHhZvET/28lENNO9ClUXUA4nsPIjBiy41iPS0Nv/PH6fXXCcVTLp7pUY/DnfuT9tM8AFzWrcbVwoOIyr8u0b2GY9u/H3uffBkHZ0ezNm4Otrg72dLGt9Jtp0EIIYQQZZPiWgiAXbvgs8+gsNBy/PvvOdaqCzMffYPCd98zG70uiL2A7YXzDPnLGFCKvLHjqbnmNzJy8ovbeGzbiOe4kbjYG6Zz9Js6FIe8HFL2RAKw/7tFxNRvST2/qsXn2FhbkTZiLE5LFpG+LwrvYwepNmmMWfc6+lfms/5P8c7PO3B5alqpt/n+yGZM61z6XGohhBBC/DlSXAuRnIwePpzEz74h/5OZltsEBxPSvj9O3buSr6wh3HRUOn7hMk637kzDWoZRYfepj9Jh/xbOJ2ehtebAsTiqRkXgNeLGbobWNtac7TOEvHnz0VpT8NsKPMaOxN7G2uTaJ7x8iKwfiGP7IA6MfAxrdzdu1jmgMijFOe1IVVf7Um/V3sYaG2v5ay+EEEJUFPlXVjzwUuYvJmHKdIoysyw3mDWLpJ79+XraW2S9/18KcvNM44mJ6JgYjtZtxpROddjZuifZ8xYUh4uKNLm/rcR++FCsrIwPCTZpAs7OpGzeQXxaNru+WczZOo2p6lPN5NJpI8fhsWwJG9dF0OTQbnwtPIjYtX4V5kx9g/+8MZv6X/zX4i3YliiYfb0s75gohBBCiIonxbW4711INV+Vo9jFizg8PZ0r4fs5+NSLltusWMHS+l2I8wkgzb0y8SvWm4RzV60mtnUnqnm54e5kS0RQH3IWLAbj1uT7T1zE91A4AZNH3zhJKXJGjEYvWUL0xXRaHtzJtX4DzT7aI6g15xu1ovu4PsQPHQOVK5u16VSvMoU2NsT6NqCqu/lc6use6eDL+yObFa9tLYQQQog7T/4VFve1K+9/TGbnbhyJOGYxnjrzC8La9+Onx/+PBisXczU13bRBYiKFMTEc9mvGU13rkjFsJPkLF5s0yfz1N7bUDSQt2zB/uu3ATmS6uqNDQgyfsWoD15o0Q3l5mZznMnkiLfdsZN3mA3Q4FEKbV6ab9a9JTTc+m/Qvvpr+LlW/+6LU+3x3RFM+HN28zFz0aFCVqm4OZbYRQgghRMWS4lrc20p7wBDgxAms3/8PKV7VyXj+JbSFJfJyl68kMrAXbz8/iFjf+lxaHGwST1wczP76gRTa2FLTw5GiMWOotnUd5BsK6cKcXJx37eBwsw7Fy+MNa+nNoU4DyJ63kNSsPOzWrMZ26GCzz3Zu0YwTDVoz4/8moUeOhJo1zdo42FqTb+fA0abt8XArfSvxGu6OeLmUPpdaCCGEEPcGKa7FveuJJ8DZ2ezhwWLffUdI12EsnvB3WhwM4ezx8yZhHReHW0IcDUf1x8HWmquDR2D9668mbRIXLiOqRWd+eCwQH08nsqrX4nIVb/I2bwHgwJxgEmrW4f+e6EmPhjdW8bg6dAQ2wb+y4Lcw2kZuwWWK+VxpgNQvviHx4/9h+03pW4l/PKYFPzwW+EcyIoQQQoh7nBTX4u5IS4O9e0uPh4VRtHkL88c+T9z058zjWpMbvJyjXfrz+dM9SO/ak9jZC0yaxM77hcNN29OvZS0A7MaMptbenXDNMEf7YmIa9Q7vZfTrTxavKx3o50lE295kL1iM1pprS37BftwYPJ1NN1Wx8vcnonEHpjw9lPS+A8HHx+Jt9A/yJ+CpR8C+9FHnSs52spW4EEII8YCQ4lrceUVF5HbvSU73niR98a3lNj/+SGjfsezsOhyXc6cpOBptGj9xgrysbLqM6oW1lcL5kfHU2LiqOJxXUMSVpcvJHzAIB1vD0naNW/hztk4jUn/5zXCJRSu4Vr8RHn7exefZ2VhhP2kCjqtXErc/mtbhW6g0ZZJZ965cy2fuY6/y47Q3qTR39p9MiBBCCCEeFFJci/K3eze5/3yVnLR0y/HVq8kuhE9f+h+2775rPq9aa/Tq1aytG0SzOpXZ16YH52bNM2lyZUkwB5p2pEktdwCchg/F59RR0s7FA3AhLpkGx/fjXmJdaQdba1IGDuPavIVk5ORjvXw59uNGmXXPoY4v5/oOpXrXdsT3HIiDv/mmKxOCfCiwtedYm244uJQ+V1oIIYQQDxcprkX5ysggf9hwzi9fT8hY89UxAFi+nN0dBxA4YRDZLm6wc6dp/MABch2dsG5Yn7/1CsBp0gQqrV1h0iRh0TIONu+Em4MtANYuzhxv2ZGMRUsBODF/GVnNWtK8eV3Ta48cRZWIUOK27SFw/3ZcJz9i1j03Rxu2Tn+NmS/MJPfz/1m8BQ8nO/o1qc7UTn6/nxMhhBBCPDSkuBa35r33oE4dOHjQcnzePKL8mvHNs+/Taddqrl1OMY0XFlK0eg3bA9oRUM2VPa16kLf0F5Mm+StWsiOgHa1rG3Y7rDu8L7YpyRATA0D00fP4nTvO6H88ZnJe6sDh2Af/yrW8AjzXr8Jtgvk24TZVKrOm93gaDOpO4ohx4O1t1qZJDXciLqQTE9CSJr7m605fN7atD+3qepUaF0IIIcTDR4pr8cedPg2ffUbB1MfhOQsPGQIFy4LZ33kAH/21HyeatOXYFz+ZxD9+ey7xju6kVK5BbU8n9gX2QAcvL96QBSBtaTCHmneio7+hsPVycyQisCdFS5YAcH7eL8S1bEfNmqaF7S/VmmF36gSHv5lPi6hQ7B41nyvt7eHImsFT+dcHy3D72vKotLuTLU293XF1sMHaSh40FEIIIcQfJ8X1QyLtWh4fbTjObwfiy2x3Ze4iLs0sZdm4X3/lQIe+POPdm2vRMeQePmoaT0+HmFyf7QAAFE9JREFUsDAKe/XGxtoKm0kT8VzzW3FYa03jyO1EtejCM939sbZSDB3bgzRHVwgNBeCHxbtwunCeTlNHUN3dsCGKjbUVJ7sPoGDhInRREbW3rMFr4mhuNrJjPZaOfY52L0zl0jPPW9ztsLaXE7OnBvGfl4fjWca60X/vU5/PxrcqM1dCCCGEEDersOJaKeWglApXSkUppY4qpWYYj3+klDqulDqklFqulPIocc5rSqlTSqkYpVS/iurbw+jw/36k5+t/IWxLpMXNVgBSLyRQ6bGJ1HjxWdKuZpk3WLGCbfXbU2Rtw862fTn64Vcm4ayVazhWtxmdWxoeAPR9dDTVjx2kMOkyAOnZBbQ4GELb56YQ6OcJQJCfJ+Ht+5E9dz4FhUXYrVtDYqcedGxUw+Ta3gN6kVkIWf94Fb+Yg1Sa+qhZ9/o2rsb5/sN58ofdVHnnzTLzYSUj0kIIIYSoABU5cp0L9NRatwBaAv2VUu2BTUBTrXVz4ATwGoBSqjEwHmgC9Ae+VkpZV2D/7hulFcPX7Yu5xFvvLGRN1EXLDdLSaPvBv6juW51HF3xMenaBWZNreQWceOYlYsdOJqFpay4tXm7aIDGR/CNHiWnQms8ntKLBC0/gt2UNlOhb8uJlxHfuRTPjCh6uXh6cbtmR1AWGhwzDN+7BIyeTar06F59jZaVIGzYSm+BgYuNT6LBnHbWfNH/IsKlPJb4Z/woFa9ez5+V3US4uZm2UUvytZwAvD2qKi71NmTkTQgghhKgIFVZca4NM45e2xpfWWm/UWl+v7sKAWsb3w4DFWutcrfVZ4BQQVFH9u18UFBbxxJxIdp9OLrWNmjiBN96eytUPPyUn33y78MIFCzjeJIiUDz7F99wxkg8eMfuMpT+upeXuDfh89QmxQ8Zit8h0Q5bCVas42LAtBbZ2uNjb4NwhCF1UVPxgoy4ooPLOLTSbbloYJ/Ydgk3wr4YNWRYugVEjwcr0j51zgwAutwyk0oTRVMtMxWb4cLN7qORkyxn/Zrz0j9k4ThxXai6quzvQoLprqXEhhBBCiIpUoXOulVLWSqmDQBKwSWt985Z8jwPrjO+9gQslYnHGYw+svIIipv0cwbSfI0ptk7hsFc/P/Dv7NoRZHMFO2BqK7/kYDi5dx5A1P7Es9KRZm2vBK9jToiv1/apwqddA8hcvMYn/EnmB3t/+B7t3ZqAqV+ZQUE9qhIdA1o2pIckLf+Vku578d3RzANwc7YgI7IVeahiVTt28gxSPKni3bGhy7ROBXbHbv4/YiMN02rUaZwtL33m52PPR0OeJdK7JsS9/AhvzUWcPpxs7JNb0cCw1X0IIIYQQd1OFFtda60KtdUsMo9NBSqmm12NKqdeBAuD6EKmlSbBm1aRS6imlVKRSKvLy5csV0e07ZtaagzQ9vAdVVMi1PPOpGmRl4TZtClfdPRn0zdvEJGaYNTn+1U9EdB5E2xE9sWrWDKctG03iOjMT2z27qTtpFA621qixY6m0dmVxvKCwiJyFi6leeA2r6YZ1qScPbsNp/2YUrDTseKizsnAP20XAlLFUNj4E6GBrTXhgTwqW/EL8lWvsm/kDF7v2Mevf0fRCNvWdQM3eXcir5QOdOpm1aV/Xk3R3LxZPfJGGA7qWmq9XBzTkX4Ma4eclm7YIIYQQ4t50R1YL0VqnAdsxzKVGKfUYMBiYpG8Mx8YBPiVOqwWYTSLWWs/SWgdqrQOrVKlSof3+s15aGsXxhFJ2KQS6vvkcT3//FmN/+44dMeY/KCTM+plTAc05/c7H1Lgcz4lNoSZxrTUBYVsJet643vOYMfhsWVtcqGutmf/ObM7UaUyPdgEA1BzSB4fkJPJjTgAQfSmdAWvmYPPxR8UjxnY2VpzvOYjM+YsAiPx6PufrNqFRUz+Tzz/v25DkPM3ZT7+hw+51NH7jBbN7+Huf+qwe8jiz/vIfYr6aC8r8Zyh7G2ta+1bC18sZd0fbUvMVUM0V/youKAvXEEIIIYS4F1TkaiFVrq8EopRyBHoDx5VS/YF/AkO11tdKnLISGK+UsldK1QECgPCK6t+fdTEtm6T0nFLjCR9/wf9N782aT+ZanM6RGx5BzfgzZIftpdOWZazdGW3WpjB4OQn9hzOlW30yR4xG/fIrhUU3rrVgwVacs9Lx7GYYDXYeP4amh3ZzKeEKAEfi02kYuYM6j0/Azsbwv9rJ0Z6THXuTNmehoU3YEbySL0GvXiafXWnSWBx3bEWnpeH0yxI8n3zM/CFBpZg/8SXaf/AalydOwa1hgNk91K3sjLayYn/DIPzrVi81X091rcurAxqWGhdCCCGEuB9U5Mh1DWCbUuoQEIFhzvVq4EvAFdiklDqolPoWQGt9FFgKRAPrgWe11uZP590D1v2ylaiJ09m6/ZDlBqmpOM/4P9YNmMxj8z4kOj7NrMmxb+YREdQb94YBWPftTeC+rSZFeEbqVTwjw2gzfTwAecOGExixhSNxhmul5+Rjs2Y1yd363HhAsGpV4msHkLh8LQBR51NofjAEx5GmDwhmDB2J3fJl5OQX4rB8GXr4cLN5zgENa3M4sDsX+wzG++RhKk81nyv92sBGHG/clumzdnH19bcspkIpxTPd/RnZuha1y5jOYWttVfwDgBBCCCHE/aoiVws5pLVupbVurrVuqrV+23i8ntbaR2vd0vh6usQ572mt/bXWDbTW60q/+t3l/dF71Dt1iICPZpiNSmut2fbRbE7Ub0X69L+g3N3IWLfJpE3C1Ry8tqwjq99ArK0UDuPH0Wb/di5dvTESfnhOMEkBjanqa1jv2b5TB+zycrgaaVidY3F4LB2id1Nv2gSTa5/q0g+rRQtJycwleeM2bLxrGrYrL8GuRzcKk1M4vXw93Xatwu6xyWb36Olsx9zRz3HcrSaxX81GubmZtalX1QUvFztQiha1PMzi1wX6eTKoeY1S40IIIYQQDwoZKrwNRUuW8L/nP6HRgRASYs6axDJzC3DbtI5znXozrXMdssZNxHnJQpM2n36/Afe0FPpMM44oDxyIf0wUew+cAeBC6jX0qlV4jB1ZfE5lVweyho7Afc1v5OQXcjTqDLXOHofevU2u3ff9l2lxZA9bdhymT9RWrEePMuu/p5sjy0Y8Tf1JI7Gu5Q3du5u1sbG2IsvFg4WPvkKzCUNKzUWnepUJ9POUTVmEEEIIIZDi+ra08PPiwye7c6HvUI6+9REFhUXFsWWhp2kUHc6oN6djY21F1WmP4r9nK3mZhunlR+Kv0vJACE4jh+HuYtjeG1dXrrbrSK2QzQBsOHyRNodDcR9nWhinDxlBrU2r+WHnadoeCcW6T29wMp1qoTw9iWjdg9rvvkH9bWvhySfN+t+wuithHQcw499zsVu72uJDhtd1Cahc5gOEw1p680x3/7ITJoQQQgjxkJDi+jYopXC0s8b9r8/QbPtq9p83PECYnpPP1dXruFC7PlSuDICDrw+XfOsTu3g5uQWFzNx0gs7HdmMzfJjJNVMGDafGhpVcycrj8tZd2Fb2hADTBwRVuyAKcvPJ2rSNYeGr4RHzedAACS++ikN2FnrmTKhhPh1DKcVXk1rTa1QPnNxL33BlWCtvejWqdku5EUIIIYR4mElx/SdU79ERFxtF3E7D3jgLwmLpfGwPDZ6cZNLufO9BJM+ex4mETJwz0/A5fRT6mK4JbTtiOF4HwjkQeYJ+h7dhPcp8OkeD6m4sH/k0L8x8AVdVBEOHWuzXgP6BsGoVdo9PKbXvDrbW9GhYtcz7G9qiJj6esqa0EEIIIcQfJcX1n6EUhcOGU2n9agD2nblM0307YJjpqLT/04/RPCqUfTEXmZp0ENW3Lzg7m7SpX68mx3sNpdLfn6X5tlVg3NClJBtrKzq+/hcKd+6EbdvA2tpit1wdbGnpU/oDhkIIIYQQomJIcf0nOY0fQ/3Qjew4cZkmZw5h510D6tUzaePbuC5JDZpStHARDYPnwWTz1TkAfuz/ODkOzlh9/jn4+Fhs07yWB07t2oK7e7nfixBCCCGE+HNsfr+JKItN505UdrIl+r8fMTDhHGrcOIvtrr05g8ljBmHdpTMMHmyxzfThgRxo/TUdOvhVYI+FEEIIIURFUZZ2D7xfBAYG6sjIyLvdDbhwAdq0gcuXISUFPD0tNtMpKSh3d7MNW4QQQgghxL1NKbVPax34e+2kyisPPj4QGQnJyaUW1gDKy+sOdkoIIYQQQtxpUlyXl9q1DS8hhBBCCPHQkgcahRBCCCGEKCdSXAshhBBCCFFOpLgWQgghhBCinEhxLYQQQgghRDmR4loIIYQQQohyIsW1EEIIIYQQ5USKayGEEEIIIcqJFNdCCCGEEEKUk/t6+3Ol1GXg/N3ux22oDCTf7U48BCTPd4bk+c6QPN8Zkuc7Q/J8Z0iey5ev1rrK7zW6r4vr+5VSKvKP7E0v/hzJ850heb4zJM93huT5zpA83xmS57tDpoUIIYQQQghRTqS4FkIIIYQQopxIcX13zLrbHXhISJ7vDMnznSF5vjMkz3eG5PnOkDzfBTLnWgghhBBCiHIiI9dCCCGEEEKUEymuy4lS6kelVJJS6kiJYy2UUnuUUoeVUquUUm4lYs2NsaPGuIPxeBvj16eUUv9TSqm7cT/3qlvJs1JqklLqYIlXkVKqpTEmeS7DLebZVik1x3j8mFLqtRLnSJ5LcYs5tlNK/WQ8HqWU6l7iHMlxGZRSPkqpbcY/m0eVUs8bj3sqpTYppU4a/1upxDmvGfMZo5TqV+K45LoUt5pnpZSXsX2mUurLm64leS7FbeS5j1JqnzGf+5RSPUtcS/JcUbTW8iqHF9AVaA0cKXEsAuhmfP848I7xvQ1wCGhh/NoLsDa+Dwc6AApYBwy42/d2L71uJc83ndcMOFPia8lzOeUZmAgsNr53As4BfpLncs3xs8BPxvdVgX2AleT4D+W5BtDa+N4VOAE0Bj4EXjUefxX4r/F9YyAKsAfqAKfl+3OF5NkZ6Aw8DXx507Ukz+WX51ZATeP7pkC85LniXzJyXU601juB1JsONwB2Gt9vAkYZ3/cFDmmto4znpmitC5VSNQA3rfUebfiTPxcYXvG9v3/cYp5LmgAsApA8/75bzLMGnJVSNoAjkAekS57Ldos5bgxsMZ6XBKQBgZLj36e1vqS13m98nwEcA7yBYcAcY7M53MjbMAw/LOZqrc8Cp4AgyXXZbjXPWussrfUuIKfkdSTPZbuNPB/QWl80Hj8KOCil7CXPFUuK64p1BBhqfD8G8DG+rw9opdQGpdR+pdQ/jMe9gbgS58cZj4mylZbnksZhLK6RPN+u0vL8K5AFXAJigY+11qlInm9HaTmOAoYppWyUUnWANsaY5PgWKKX8MIzk7QWqaa0vgaFgwfAbATDk70KJ067nVHL9B/3BPJdG8vwH3UaeRwEHtNa5SJ4rlBTXFetx4Fml1D4Mv77JMx63wfDrsEnG/45QSvXC8KuZm8lyLr+vtDwDoJRqB1zTWl+f2yp5vj2l5TkIKARqYvg1+ktKqbpInm9HaTn+EcM/fpHAZ8BuoADJ8R+mlHIBlgEvaK3Ty2pq4Zgu47go4RbyXOolLByTPN/kVvOslGoC/BeYfv2QhWaS53Jic7c78CDTWh/HMAUEpVR9YJAxFAfs0FonG2NrMcy9nA/UKnGJWsBFRJnKyPN147kxag2G/Eueb1EZeZ4IrNda5wNJSqlQIBAIQfJ8S0rLsda6APj79XZKqd3ASeAKkuPfpZSyxVCILNBaBxsPJyqlamitLxl/RZ5kPB6H6W+/rudUvm/8jlvMc2kkz7/jVvOslKoFLAcma61PGw9LniuQjFxXIKVUVeN/rYA3gG+NoQ1Ac6WUk3Geajcg2virnAylVHvjU7uTgRV3oev3lTLyfP3YGGDx9WOS59tTRp5jgZ7KwBloDxyXPN+60nJs/F7hbHzfByjQWsv3jD/AmJfZwDGt9aclQiuBx4zvH+NG3lYC443zUusAAUC45Lpst5FniyTPZbvVPCulPIA1wGta69DrjSXPFexuP1H5oLwwjIxeAvIx/EQ4DXgew5O8J4APMG7aY2z/CIaHC44AH5Y4Hmg8dhr4suQ58rqtPHcHwixcR/JcTnkGXIBfjH+eo4FXJM/lnmM/IAbDw0ubAV/J8R/Oc2cMv+4+BBw0vgZiWKVpC4bfAGwBPEuc87oxnzGUWEFBcl3ueT6H4aHeTOPfgcaS5/LNM4Yf0rNKtD0IVJU8V+xLdmgUQgghhBCinMi0ECGEEEIIIcqJFNdCCCGEEEKUEymuhRBCCCGEKCdSXAshhBBCCFFOpLgWQgghhBCinEhxLYQQQgghRDmR4loIIYRFSinru90HIYS430hxLYQQDwCl1DtKqedLfP2eUuo5pdQrSqkIpdQhpdSMEvHflFL7lFJHlVJPlTieqZR6Wym1F+hwh29DCCHue1JcCyHEg2E2xu2PjdunjwcSMWzfHQS0BNoopboa2z+utW6DYZe255RSXsbjzsARrXU7rfWuO3kDQgjxILC52x0QQgjx52mtzymlUpRSrYBqwAGgLdDX+B4MW9UHADsxFNQjjMd9jMdTgEJg2Z3suxBCPEikuBZCiAfHD8AUoDrwI9ALeF9r/V3JRkqp7kBvoIPW+ppSajvgYAznaK0L71SHhRDiQSPTQoQQ4sGxHOiPYcR6g/H1uFLKBUAp5a2Uqgq4A1eMhXVDoP3d6rAQQjxoZORaCCEeEFrrPKXUNiDNOPq8USnVCNijlALIBB4B1gNPK6UOATFA2N3qsxBCPGiU1vpu90EIIUQ5MD7IuB8Yo7U+ebf7I4QQDyOZFiKEEA8ApVRj4BSwRQprIYS4e2TkWgghhBBCiHIiI9dCCCGEEEKUEymuhRBCCCGEKCdSXAshhBBCCFFOpLgWQgghhBCinEhxLYQQQgghRDmR4loIIYQQQohy8v+H0iepO4pA5QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#dates numeriques de la période extrapolée\n", + "end_date_str = '2026-01-01'\n", + "extra_end = datetime.toordinal(datetime.strptime(end_date_str, '%Y-%m-%d'))\n", + "dates_num_extra = np.arange(xdata[-1], extra_end)\n", + "\n", + "extrapolation = Simulation_co2(dates_num_extra, \n", + " parameters[0],\n", + " parameters[1],\n", + " parameters[2],\n", + " parameters[3],\n", + " parameters[4])\n", + "\n", + "#dates de la période extrapolée\n", + "dates_extra = [datetime.fromordinal(date) for date in dates_num_extra]\n", + "\n", + "#plot de l'observation versus simulation\n", + "plt.figure(figsize=(12,4))\n", + "plt.plot(data['dates'], data['CO2'], label='CO2 mesuré', linewidth=1, alpha=0.7);\n", + "plt.plot(data['dates'], data['CO2*'], label='CO2 simulé', linewidth=1, color='r');\n", + "plt.xlabel('year');\n", + "plt.ylabel('CO2 (ppm)');\n", + "\n", + "#plot de l'extrapolation\n", + "plt.plot(dates_extra, extrapolation, label='CO2 extrapolé', linewidth=1, color='orange');\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +598,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo3/scripps-week-CO2.csv b/module3/exo3/scripps-week-CO2.csv new file mode 100644 index 0000000000000000000000000000000000000000..e756b465798f4e99e8050aee4148ccdf86dffdd6 --- /dev/null +++ b/module3/exo3/scripps-week-CO2.csv @@ -0,0 +1,3200 @@ +"-------------------------------------------------------------------------------------------" +" Atmospheric CO2 concentrations (ppm) derived from in situ air measurements " +" at Mauna Loa, Observatory, Hawaii: Latitude 19.5°N Longitude 155.6°W Elevation 3397m " +" " +" Source: R. F. Keeling, S. J. Walker, S. C. Piper and A. F. Bollenbacher " +" Scripps CO2 Program ( http://scrippsco2.ucsd.edu ) " +" Scripps Institution of Oceanography (SIO) " +" University of California " +" La Jolla, California USA 92093-0244 " +" " +" Status of data and correspondence: " +" " +" These data are subject to revision based on recalibration of standard gases. Questions " +" about the data should be directed to Dr. Ralph Keeling (rkeeling@ucsd.edu), Stephen Walker" +" (sjwalker@ucsd.edu) and Stephen Piper (scpiper@ucsd.edu), Scripps CO2 Program. " +" " +" Baseline data in this file through 06-Feb-2020 from archive dated 06-Feb-2020 08:55:31 " +" " +"-------------------------------------------------------------------------------------------" +" " +" Please cite as: " +" " +" C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and " +" H. A. Meijer, Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and " +" oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, Scripps " +" Institution of Oceanography, San Diego, 88 pages, 2001. " +" " +" If it is necessary to cite a peer-reviewed article, please cite as: " +" " +" C. D. Keeling, S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and " +" H. A. Meijer, Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and " +" oceans from 1978 to 2000: observations and carbon cycle implications, pages 83-113, " +" in "A History of Atmospheric CO2 and its effects on Plants, Animals, and Ecosystems", " +" editors, Ehleringer, J.R., T. E. Cerling, M. D. Dearing, Springer Verlag, " +" New York, 2005. " +" " +"-------------------------------------------------------------------------------------------" +" " +" " +" The data file below contains 2 columns indicaing the date and CO2 " +" concentrations in micro-mol CO2 per mole (ppm), reported on the 2008A " +" SIO manometric mole fraction scale. These weekly values have been " +" adjusted to 12:00 hours at middle day of each weekly period as " +" indicated by the date in the first column. " +1958-03-29, 316.19 +1958-04-05, 317.31 +1958-04-12, 317.69 +1958-04-19, 317.58 +1958-04-26, 316.48 +1958-05-03, 316.95 +1958-05-17, 317.56 +1958-05-24, 317.99 +1958-07-05, 315.85 +1958-07-12, 315.85 +1958-07-19, 315.46 +1958-07-26, 315.59 +1958-08-02, 315.64 +1958-08-09, 315.10 +1958-08-16, 315.09 +1958-08-30, 314.14 +1958-09-06, 313.54 +1958-11-08, 313.05 +1958-11-15, 313.26 +1958-11-22, 313.57 +1958-11-29, 314.01 +1958-12-06, 314.56 +1958-12-13, 314.41 +1958-12-20, 314.77 +1958-12-27, 315.21 +1959-01-03, 315.24 +1959-01-10, 315.50 +1959-01-17, 315.69 +1959-01-24, 315.86 +1959-01-31, 315.42 +1959-02-14, 316.94 +1959-02-21, 316.61 +1959-02-28, 316.62 +1959-03-07, 316.81 +1959-03-21, 316.73 +1959-03-28, 316.71 +1959-04-04, 317.72 +1959-04-11, 317.12 +1959-04-18, 317.64 +1959-04-25, 318.32 +1959-05-02, 318.27 +1959-05-09, 318.78 +1959-05-16, 318.05 +1959-05-23, 318.43 +1959-06-06, 318.53 +1959-06-13, 318.14 +1959-06-20, 317.88 +1959-06-27, 317.76 +1959-07-04, 316.86 +1959-07-11, 316.83 +1959-07-18, 316.45 +1959-07-25, 316.16 +1959-08-01, 315.62 +1959-08-08, 314.91 +1959-08-22, 315.00 +1959-08-29, 314.15 +1959-09-05, 314.45 +1959-09-12, 313.93 +1959-09-19, 313.57 +1959-09-26, 313.54 +1959-10-03, 313.04 +1959-10-10, 313.15 +1959-10-17, 313.43 +1959-10-24, 313.46 +1959-10-31, 314.12 +1959-11-07, 314.42 +1959-11-14, 314.88 +1959-11-21, 315.20 +1959-11-28, 315.11 +1959-12-05, 315.06 +1959-12-12, 315.64 +1959-12-19, 315.86 +1959-12-26, 315.77 +1960-01-02, 315.72 +1960-01-09, 316.40 +1960-01-16, 316.73 +1960-01-23, 316.57 +1960-01-30, 316.68 +1960-02-06, 316.61 +1960-02-13, 316.98 +1960-02-20, 317.42 +1960-02-27, 317.00 +1960-03-05, 316.96 +1960-03-12, 317.76 +1960-03-19, 318.07 +1960-03-26, 317.77 +1960-04-02, 318.61 +1960-04-09, 319.34 +1960-04-16, 319.01 +1960-04-23, 319.03 +1960-04-30, 319.77 +1960-05-07, 319.96 +1960-05-14, 319.82 +1960-05-21, 320.04 +1960-05-28, 320.06 +1960-06-04, 319.46 +1960-06-11, 320.08 +1960-06-18, 319.42 +1960-06-25, 319.09 +1960-07-02, 318.18 +1960-07-09, 318.64 +1960-07-16, 318.41 +1960-07-23, 317.91 +1960-07-30, 317.33 +1960-08-06, 316.62 +1960-08-13, 316.70 +1960-08-20, 315.10 +1960-08-27, 314.78 +1960-09-03, 314.72 +1960-09-10, 314.58 +1960-09-17, 314.28 +1960-09-24, 313.33 +1960-10-01, 313.66 +1960-10-08, 313.32 +1960-10-15, 313.92 +1960-10-22, 314.21 +1960-10-29, 314.29 +1960-11-05, 314.50 +1960-11-12, 315.10 +1960-11-19, 315.10 +1960-11-26, 315.41 +1960-12-03, 315.84 +1960-12-10, 316.07 +1960-12-17, 316.21 +1960-12-24, 316.40 +1960-12-31, 316.67 +1961-01-07, 316.73 +1961-01-14, 317.02 +1961-01-21, 317.03 +1961-01-28, 317.01 +1961-02-04, 317.06 +1961-02-11, 317.75 +1961-02-18, 317.94 +1961-02-25, 318.00 +1961-03-04, 318.04 +1961-03-11, 318.51 +1961-03-18, 318.92 +1961-03-25, 318.71 +1961-04-01, 319.41 +1961-04-08, 319.55 +1961-04-15, 318.90 +1961-04-22, 319.74 +1961-04-29, 319.67 +1961-05-06, 320.67 +1961-05-13, 320.46 +1961-05-20, 320.61 +1961-05-27, 320.36 +1961-06-03, 320.09 +1961-06-10, 320.02 +1961-06-17, 319.62 +1961-06-24, 319.49 +1961-07-01, 319.26 +1961-07-08, 319.07 +1961-07-15, 318.49 +1961-07-22, 317.16 +1961-07-29, 317.97 +1961-08-05, 317.91 +1961-08-12, 317.33 +1961-08-19, 316.76 +1961-08-26, 315.26 +1961-09-02, 315.28 +1961-09-09, 314.97 +1961-09-16, 314.53 +1961-09-23, 315.06 +1961-09-30, 315.61 +1961-10-07, 314.97 +1961-10-14, 315.43 +1961-10-21, 315.48 +1961-10-28, 315.72 +1961-11-04, 315.82 +1961-11-11, 315.70 +1961-11-18, 316.21 +1961-11-25, 316.55 +1961-12-02, 316.52 +1961-12-09, 317.02 +1961-12-16, 316.94 +1961-12-23, 317.18 +1961-12-30, 317.46 +1962-01-06, 317.99 +1962-01-13, 318.12 +1962-01-20, 318.07 +1962-01-27, 317.78 +1962-02-03, 318.08 +1962-02-10, 318.35 +1962-02-17, 318.92 +1962-02-24, 319.38 +1962-03-03, 319.28 +1962-03-10, 319.46 +1962-03-17, 319.95 +1962-03-24, 319.78 +1962-03-31, 320.27 +1962-04-07, 320.26 +1962-04-14, 321.03 +1962-04-21, 320.78 +1962-04-28, 320.36 +1962-05-05, 320.89 +1962-05-12, 320.78 +1962-05-19, 321.05 +1962-05-26, 321.16 +1962-06-02, 320.91 +1962-06-09, 320.87 +1962-06-16, 320.52 +1962-06-23, 320.15 +1962-06-30, 320.23 +1962-07-07, 320.10 +1962-07-14, 319.95 +1962-07-21, 319.01 +1962-07-28, 318.75 +1962-08-04, 318.68 +1962-08-11, 317.24 +1962-08-18, 317.48 +1962-09-15, 316.65 +1962-09-22, 315.72 +1962-09-29, 315.92 +1962-10-06, 315.10 +1962-10-13, 315.40 +1962-10-20, 315.72 +1962-10-27, 315.78 +1962-11-03, 315.94 +1962-11-10, 316.49 +1962-11-17, 316.92 +1962-11-24, 317.08 +1962-12-01, 317.19 +1962-12-08, 317.31 +1962-12-15, 317.66 +1962-12-22, 318.18 +1963-01-05, 318.54 +1963-01-12, 318.73 +1963-01-19, 318.90 +1963-01-26, 318.82 +1963-02-02, 318.77 +1963-02-09, 318.95 +1963-02-23, 319.37 +1963-03-02, 319.35 +1963-03-09, 319.70 +1963-03-16, 319.80 +1963-03-23, 320.34 +1963-03-30, 320.29 +1963-04-06, 320.38 +1963-04-13, 320.96 +1963-04-20, 322.05 +1963-04-27, 321.92 +1963-05-11, 321.97 +1963-05-18, 322.28 +1963-05-25, 322.27 +1963-06-01, 322.32 +1963-06-08, 322.09 +1963-06-15, 321.83 +1963-06-22, 320.88 +1963-06-29, 320.49 +1963-07-06, 320.12 +1963-07-13, 319.82 +1963-07-20, 319.56 +1963-07-27, 319.06 +1963-08-03, 318.60 +1963-08-10, 318.27 +1963-08-17, 317.73 +1963-08-24, 317.12 +1963-08-31, 316.44 +1963-09-07, 316.81 +1963-09-14, 315.99 +1963-09-21, 316.03 +1963-09-28, 315.93 +1963-10-05, 316.28 +1963-10-12, 315.65 +1963-10-19, 316.14 +1963-10-26, 316.36 +1963-11-02, 316.63 +1963-11-09, 316.83 +1963-11-16, 317.13 +1963-11-30, 317.56 +1963-12-07, 318.07 +1963-12-14, 318.27 +1963-12-21, 318.59 +1963-12-28, 318.74 +1964-01-04, 319.04 +1964-01-11, 319.49 +1964-01-18, 319.88 +1964-05-30, 322.07 +1964-06-06, 322.06 +1964-06-27, 321.57 +1964-07-04, 321.14 +1964-07-11, 319.95 +1964-07-18, 320.28 +1964-07-25, 320.02 +1964-08-01, 319.14 +1964-08-15, 318.61 +1964-08-22, 318.23 +1964-08-29, 318.11 +1964-09-05, 317.48 +1964-09-12, 316.57 +1964-09-19, 315.59 +1964-09-26, 317.01 +1964-10-03, 316.93 +1964-10-10, 316.51 +1964-10-17, 316.86 +1964-10-24, 317.05 +1964-10-31, 317.65 +1964-11-07, 317.77 +1964-11-14, 317.65 +1964-11-21, 317.52 +1964-11-28, 318.11 +1964-12-05, 318.42 +1964-12-12, 318.58 +1964-12-19, 318.93 +1964-12-26, 318.91 +1965-01-02, 319.08 +1965-01-09, 319.17 +1965-01-16, 319.16 +1965-01-23, 319.79 +1965-01-30, 320.12 +1965-02-06, 320.20 +1965-02-13, 320.16 +1965-02-20, 320.70 +1965-02-27, 320.89 +1965-03-06, 321.07 +1965-03-13, 320.98 +1965-03-20, 320.49 +1965-03-27, 321.40 +1965-04-03, 321.95 +1965-04-10, 322.27 +1965-04-17, 322.17 +1965-04-24, 321.86 +1965-05-01, 322.46 +1965-05-08, 322.22 +1965-05-15, 321.94 +1965-05-22, 321.69 +1965-05-29, 322.26 +1965-06-05, 321.87 +1965-06-12, 321.77 +1965-06-19, 321.77 +1965-06-26, 321.99 +1965-07-03, 321.97 +1965-07-10, 321.85 +1965-07-17, 321.76 +1965-07-24, 320.47 +1965-07-31, 319.49 +1965-08-07, 319.47 +1965-08-14, 318.02 +1965-08-21, 318.82 +1965-08-28, 318.73 +1965-09-04, 318.39 +1965-09-11, 318.05 +1965-09-18, 318.26 +1965-09-25, 316.85 +1965-10-02, 316.60 +1965-10-09, 317.26 +1965-10-16, 317.86 +1965-10-23, 317.56 +1965-10-30, 317.63 +1965-11-06, 318.30 +1965-11-13, 319.26 +1965-11-20, 318.99 +1965-11-27, 319.17 +1965-12-04, 319.09 +1965-12-11, 319.37 +1965-12-18, 319.39 +1965-12-25, 319.70 +1966-01-01, 319.69 +1966-01-08, 320.49 +1966-01-15, 320.63 +1966-01-22, 321.09 +1966-01-29, 321.16 +1966-02-05, 321.26 +1966-02-12, 321.75 +1966-02-19, 321.67 +1966-02-26, 321.80 +1966-03-05, 322.10 +1966-03-12, 322.14 +1966-03-19, 322.57 +1966-03-26, 322.86 +1966-04-02, 323.55 +1966-04-09, 323.62 +1966-04-16, 323.88 +1966-04-23, 323.91 +1966-04-30, 323.53 +1966-05-07, 324.00 +1966-05-14, 324.10 +1966-05-21, 323.72 +1966-05-28, 324.31 +1966-06-04, 324.02 +1966-06-11, 323.88 +1966-06-18, 323.75 +1966-06-25, 323.32 +1966-07-02, 322.82 +1966-07-09, 322.90 +1966-08-06, 321.31 +1966-08-13, 320.85 +1966-08-20, 319.16 +1966-08-27, 319.64 +1966-09-03, 319.94 +1966-09-10, 318.22 +1966-09-17, 318.46 +1966-09-24, 318.31 +1966-10-01, 317.90 +1966-10-08, 317.90 +1966-10-15, 318.21 +1966-10-22, 318.61 +1966-10-29, 318.39 +1966-11-12, 319.59 +1966-11-19, 320.03 +1966-11-26, 320.24 +1966-12-03, 320.80 +1966-12-10, 320.87 +1966-12-17, 321.16 +1966-12-24, 321.31 +1966-12-31, 321.37 +1967-01-07, 321.92 +1967-01-14, 322.93 +1967-02-04, 322.19 +1967-02-11, 322.23 +1967-02-18, 322.86 +1967-02-25, 322.60 +1967-03-04, 322.94 +1967-03-11, 322.60 +1967-03-18, 323.33 +1967-03-25, 323.24 +1967-04-01, 323.15 +1967-04-08, 324.21 +1967-04-15, 324.41 +1967-04-22, 324.60 +1967-04-29, 325.16 +1967-05-06, 325.26 +1967-05-13, 324.78 +1967-05-20, 325.09 +1967-05-27, 324.94 +1967-06-03, 324.95 +1967-06-10, 324.65 +1967-06-17, 323.31 +1967-06-24, 323.50 +1967-07-01, 322.89 +1967-07-08, 322.85 +1967-07-15, 322.45 +1967-07-22, 322.40 +1967-07-29, 322.04 +1967-08-05, 321.65 +1967-08-12, 321.40 +1967-08-19, 320.48 +1967-08-26, 320.01 +1967-09-02, 320.07 +1967-09-09, 319.43 +1967-09-16, 319.35 +1967-09-23, 319.03 +1967-09-30, 318.81 +1967-10-07, 318.88 +1967-10-14, 319.86 +1967-10-21, 319.47 +1967-10-28, 319.86 +1967-11-04, 320.01 +1967-11-11, 320.34 +1967-11-18, 320.91 +1967-11-25, 321.54 +1967-12-02, 321.40 +1967-12-09, 321.89 +1967-12-16, 322.29 +1967-12-23, 321.98 +1967-12-30, 322.30 +1968-01-06, 322.46 +1968-01-13, 322.50 +1968-01-20, 322.59 +1968-01-27, 322.83 +1968-02-03, 322.66 +1968-02-10, 323.17 +1968-02-17, 323.46 +1968-02-24, 323.18 +1968-03-02, 323.15 +1968-03-09, 323.85 +1968-03-16, 323.85 +1968-03-23, 324.21 +1968-03-30, 324.77 +1968-04-06, 324.79 +1968-04-13, 325.04 +1968-04-20, 324.84 +1968-04-27, 325.45 +1968-05-04, 325.63 +1968-05-11, 325.09 +1968-05-18, 325.52 +1968-05-25, 325.86 +1968-06-01, 325.67 +1968-06-08, 325.71 +1968-06-15, 325.56 +1968-06-22, 324.99 +1968-06-29, 324.63 +1968-07-06, 324.70 +1968-07-13, 324.13 +1968-07-20, 323.94 +1968-07-27, 323.40 +1968-08-03, 322.49 +1968-08-10, 322.27 +1968-08-17, 322.02 +1968-08-24, 321.74 +1968-08-31, 321.42 +1968-09-07, 320.44 +1968-09-14, 321.18 +1968-09-21, 319.78 +1968-09-28, 319.89 +1968-10-05, 320.57 +1968-10-12, 320.52 +1968-10-19, 320.26 +1968-10-26, 319.92 +1968-11-02, 320.70 +1968-11-09, 320.89 +1968-11-16, 321.40 +1968-11-23, 321.78 +1968-11-30, 322.06 +1968-12-07, 322.44 +1968-12-14, 322.91 +1968-12-21, 323.33 +1968-12-28, 323.19 +1969-01-04, 323.39 +1969-01-11, 324.06 +1969-01-18, 324.36 +1969-01-25, 324.14 +1969-02-01, 324.16 +1969-02-08, 323.92 +1969-02-15, 324.37 +1969-02-22, 324.86 +1969-03-01, 325.14 +1969-03-08, 325.58 +1969-03-15, 325.72 +1969-03-22, 325.96 +1969-03-29, 325.89 +1969-04-05, 326.27 +1969-04-12, 327.13 +1969-04-19, 326.58 +1969-04-26, 326.57 +1969-05-03, 327.52 +1969-05-10, 327.82 +1969-05-17, 326.86 +1969-05-24, 326.92 +1969-05-31, 327.43 +1969-06-07, 326.51 +1969-06-14, 326.78 +1969-06-21, 326.73 +1969-06-28, 326.37 +1969-07-05, 326.16 +1969-07-12, 326.07 +1969-07-19, 325.72 +1969-07-26, 325.47 +1969-08-02, 324.50 +1969-08-09, 324.56 +1969-08-16, 323.14 +1969-08-23, 322.56 +1969-08-30, 323.14 +1969-09-06, 322.21 +1969-09-13, 322.79 +1969-09-20, 322.84 +1969-09-27, 321.96 +1969-10-04, 321.50 +1969-10-11, 321.82 +1969-10-18, 322.00 +1969-10-25, 321.93 +1969-11-01, 322.21 +1969-11-08, 322.64 +1969-11-15, 322.78 +1969-11-22, 323.10 +1969-11-29, 323.52 +1969-12-06, 323.91 +1969-12-13, 323.99 +1969-12-20, 324.22 +1969-12-27, 324.50 +1970-01-03, 324.70 +1970-01-10, 325.40 +1970-01-17, 325.05 +1970-01-24, 324.80 +1970-01-31, 325.55 +1970-02-07, 325.70 +1970-02-14, 326.02 +1970-02-21, 326.32 +1970-02-28, 326.17 +1970-03-07, 326.85 +1970-03-14, 326.80 +1970-03-21, 327.51 +1970-03-28, 326.95 +1970-04-04, 328.20 +1970-04-11, 327.84 +1970-04-18, 327.81 +1970-04-25, 328.55 +1970-05-02, 327.99 +1970-05-09, 327.56 +1970-05-16, 328.03 +1970-05-23, 328.33 +1970-05-30, 327.98 +1970-06-06, 327.55 +1970-06-13, 327.86 +1970-06-20, 327.71 +1970-06-27, 327.23 +1970-07-04, 327.29 +1970-07-11, 326.24 +1970-07-18, 326.28 +1970-07-25, 325.63 +1970-08-01, 325.24 +1970-08-08, 325.21 +1970-08-15, 324.86 +1970-08-22, 324.84 +1970-08-29, 323.33 +1970-09-05, 322.97 +1970-09-12, 323.58 +1970-09-19, 323.18 +1970-09-26, 323.15 +1970-10-03, 323.21 +1970-10-10, 323.56 +1970-10-17, 322.92 +1970-10-24, 323.02 +1970-10-31, 323.18 +1970-11-07, 323.69 +1970-11-14, 323.76 +1970-11-21, 324.23 +1970-11-28, 324.71 +1970-12-05, 324.73 +1970-12-12, 325.00 +1970-12-19, 325.29 +1970-12-26, 325.58 +1971-01-02, 325.77 +1971-01-09, 325.89 +1971-01-16, 325.90 +1971-01-23, 326.72 +1971-01-30, 326.68 +1971-02-06, 326.55 +1971-02-13, 326.49 +1971-02-20, 326.79 +1971-02-27, 327.05 +1971-03-06, 327.15 +1971-03-13, 327.34 +1971-03-20, 327.08 +1971-03-27, 327.45 +1971-04-03, 327.44 +1971-04-10, 327.10 +1971-04-17, 327.71 +1971-04-24, 328.56 +1971-05-01, 328.20 +1971-05-08, 329.07 +1971-05-15, 329.28 +1971-05-22, 328.92 +1971-05-29, 328.81 +1971-06-05, 328.56 +1971-06-12, 328.80 +1971-06-19, 328.18 +1971-06-26, 328.52 +1971-07-03, 327.92 +1971-07-10, 327.88 +1971-07-17, 327.55 +1971-07-24, 326.21 +1971-07-31, 326.74 +1971-08-07, 326.12 +1971-08-14, 325.61 +1971-08-21, 325.39 +1971-08-28, 324.04 +1971-09-04, 323.65 +1971-09-11, 323.51 +1971-09-18, 323.26 +1971-09-25, 323.30 +1971-10-02, 323.32 +1971-10-09, 322.95 +1971-10-16, 323.52 +1971-10-23, 323.69 +1971-10-30, 324.40 +1971-11-06, 324.36 +1971-11-13, 324.53 +1971-11-20, 325.04 +1971-11-27, 325.51 +1971-12-04, 325.38 +1971-12-11, 325.93 +1971-12-18, 326.28 +1971-12-25, 326.35 +1972-01-01, 326.61 +1972-01-08, 326.67 +1972-01-15, 326.62 +1972-01-22, 326.68 +1972-01-29, 327.24 +1972-02-05, 327.40 +1972-02-12, 327.95 +1972-02-19, 327.83 +1972-02-26, 327.42 +1972-03-04, 327.58 +1972-03-11, 327.16 +1972-03-18, 327.78 +1972-03-25, 328.62 +1972-04-01, 328.97 +1972-04-08, 329.47 +1972-04-15, 329.83 +1972-04-22, 330.13 +1972-04-29, 330.02 +1972-05-06, 330.04 +1972-05-13, 329.75 +1972-05-20, 330.11 +1972-05-27, 330.21 +1972-06-03, 329.71 +1972-06-10, 329.15 +1972-06-17, 329.04 +1972-06-24, 328.52 +1972-07-01, 328.63 +1972-07-08, 328.30 +1972-07-15, 327.72 +1972-07-22, 328.14 +1972-07-29, 327.51 +1972-08-05, 326.92 +1972-08-12, 326.66 +1972-08-19, 326.57 +1972-08-26, 325.05 +1972-09-02, 325.40 +1972-09-09, 325.77 +1972-09-16, 324.81 +1972-09-23, 324.26 +1972-09-30, 324.23 +1972-10-07, 324.88 +1972-10-14, 325.52 +1972-10-21, 325.11 +1972-10-28, 325.86 +1972-11-04, 326.32 +1972-11-11, 326.13 +1972-11-18, 326.44 +1972-11-25, 326.98 +1972-12-02, 326.94 +1972-12-09, 327.16 +1972-12-16, 327.60 +1972-12-23, 327.91 +1972-12-30, 328.26 +1973-01-06, 328.40 +1973-01-13, 328.44 +1973-01-20, 328.66 +1973-01-27, 328.86 +1973-02-03, 329.19 +1973-02-10, 329.53 +1973-02-17, 329.67 +1973-02-24, 329.70 +1973-03-03, 329.95 +1973-03-10, 330.11 +1973-03-17, 330.55 +1973-03-24, 330.83 +1973-03-31, 330.68 +1973-04-07, 331.22 +1973-04-14, 331.10 +1973-04-21, 331.94 +1973-04-28, 332.16 +1973-05-05, 332.21 +1973-05-12, 332.35 +1973-05-19, 332.63 +1973-05-26, 332.58 +1973-06-02, 332.27 +1973-06-09, 332.58 +1973-06-16, 332.02 +1973-06-23, 331.63 +1973-06-30, 331.43 +1973-07-07, 331.53 +1973-07-14, 331.07 +1973-07-21, 330.08 +1973-07-28, 330.13 +1973-08-04, 330.05 +1973-08-11, 329.54 +1973-08-18, 329.36 +1973-08-25, 328.53 +1973-09-01, 328.45 +1973-09-08, 327.65 +1973-09-15, 327.81 +1973-09-22, 327.10 +1973-09-29, 326.60 +1973-10-06, 327.05 +1973-10-13, 327.40 +1973-10-20, 327.48 +1973-10-27, 327.18 +1973-11-03, 327.59 +1973-11-10, 328.02 +1973-11-17, 328.20 +1973-11-24, 328.57 +1973-12-01, 329.05 +1973-12-08, 328.70 +1973-12-15, 328.65 +1973-12-22, 328.24 +1973-12-29, 328.71 +1974-01-05, 328.91 +1974-01-12, 329.29 +1974-01-19, 329.41 +1974-01-26, 329.85 +1974-02-02, 330.54 +1974-02-09, 330.81 +1974-02-16, 330.61 +1974-02-23, 330.68 +1974-03-02, 330.79 +1974-03-09, 331.20 +1974-03-16, 332.11 +1974-03-23, 332.00 +1974-03-30, 331.56 +1974-04-06, 332.47 +1974-04-13, 332.14 +1974-04-20, 332.93 +1974-04-27, 333.17 +1974-05-04, 332.95 +1974-05-11, 333.09 +1974-05-18, 333.27 +1974-05-25, 332.87 +1974-06-01, 332.93 +1974-06-08, 332.03 +1974-06-15, 332.03 +1974-06-22, 332.26 +1974-06-29, 331.73 +1974-07-06, 331.73 +1974-07-13, 331.29 +1974-07-20, 330.47 +1974-07-27, 331.02 +1974-08-03, 330.09 +1974-08-10, 329.92 +1974-08-17, 329.29 +1974-08-24, 328.97 +1974-08-31, 328.19 +1974-09-07, 328.03 +1974-09-14, 327.35 +1974-09-21, 326.91 +1974-09-28, 327.38 +1974-10-05, 327.39 +1974-10-12, 327.06 +1974-10-19, 327.56 +1974-10-26, 327.70 +1974-11-02, 327.99 +1974-11-09, 328.09 +1974-11-16, 328.83 +1974-11-23, 328.65 +1974-11-30, 328.75 +1974-12-07, 329.50 +1974-12-14, 329.73 +1974-12-21, 329.82 +1974-12-28, 329.78 +1975-01-04, 329.93 +1975-01-11, 329.82 +1975-01-18, 330.27 +1975-01-25, 331.13 +1975-02-01, 331.18 +1975-02-08, 331.47 +1975-02-15, 331.00 +1975-02-22, 331.72 +1975-03-01, 331.88 +1975-03-08, 331.61 +1975-03-15, 331.96 +1975-03-22, 332.27 +1975-03-29, 332.58 +1975-04-05, 333.03 +1975-04-12, 333.58 +1975-04-19, 333.54 +1975-04-26, 333.13 +1975-05-03, 333.94 +1975-05-10, 333.93 +1975-05-17, 333.76 +1975-05-24, 333.73 +1975-05-31, 334.13 +1975-06-07, 333.87 +1975-06-14, 333.38 +1975-06-21, 333.45 +1975-06-28, 333.19 +1975-07-05, 332.71 +1975-07-12, 332.05 +1975-07-19, 331.05 +1975-07-26, 331.57 +1975-08-02, 330.83 +1975-08-09, 330.70 +1975-08-16, 330.35 +1975-08-23, 329.30 +1975-08-30, 328.88 +1975-09-06, 329.45 +1975-09-13, 328.52 +1975-09-20, 328.09 +1975-09-27, 328.28 +1975-10-04, 328.03 +1975-10-11, 328.05 +1975-10-18, 328.57 +1975-10-25, 328.81 +1975-11-01, 329.35 +1975-11-08, 329.20 +1975-11-15, 329.17 +1975-11-22, 329.54 +1975-11-29, 330.14 +1975-12-06, 330.35 +1975-12-13, 330.54 +1975-12-20, 331.13 +1975-12-27, 331.29 +1976-01-03, 331.57 +1976-01-10, 331.51 +1976-01-17, 331.74 +1976-01-24, 331.87 +1976-01-31, 332.28 +1976-02-07, 332.19 +1976-02-14, 332.52 +1976-02-21, 333.26 +1976-02-28, 332.48 +1976-03-06, 332.81 +1976-03-13, 333.60 +1976-03-20, 333.14 +1976-03-27, 334.39 +1976-04-03, 334.73 +1976-04-10, 334.26 +1976-04-17, 334.42 +1976-04-24, 334.54 +1976-05-01, 334.74 +1976-05-08, 334.33 +1976-05-15, 334.60 +1976-05-22, 335.43 +1976-05-29, 334.87 +1976-06-05, 334.36 +1976-06-12, 334.63 +1976-06-19, 334.32 +1976-07-03, 333.66 +1976-07-10, 333.42 +1976-07-17, 332.85 +1976-07-24, 332.47 +1976-07-31, 332.13 +1976-08-07, 331.72 +1976-08-14, 330.65 +1976-08-21, 330.69 +1976-08-28, 330.09 +1976-09-04, 329.75 +1976-09-11, 330.09 +1976-09-18, 329.33 +1976-09-25, 328.42 +1976-10-02, 328.85 +1976-10-09, 329.06 +1976-10-16, 329.60 +1976-10-23, 329.17 +1976-10-30, 329.03 +1976-11-06, 329.84 +1976-11-13, 330.43 +1976-11-20, 330.59 +1976-11-27, 330.70 +1976-12-04, 331.15 +1976-12-11, 331.33 +1976-12-18, 331.92 +1976-12-25, 332.20 +1977-01-01, 332.58 +1977-01-08, 332.43 +1977-01-15, 333.14 +1977-01-22, 333.24 +1977-01-29, 333.22 +1977-02-05, 333.41 +1977-02-12, 333.33 +1977-02-19, 333.45 +1977-02-26, 333.63 +1977-03-05, 334.10 +1977-03-12, 334.67 +1977-03-19, 335.11 +1977-03-26, 335.02 +1977-04-02, 335.53 +1977-04-09, 335.94 +1977-04-16, 336.01 +1977-04-23, 336.12 +1977-04-30, 336.78 +1977-05-07, 336.80 +1977-05-14, 336.47 +1977-05-21, 336.84 +1977-05-28, 336.72 +1977-06-04, 336.49 +1977-06-11, 336.31 +1977-06-18, 336.19 +1977-06-25, 336.03 +1977-07-02, 335.59 +1977-07-09, 335.10 +1977-07-16, 335.11 +1977-07-23, 334.60 +1977-07-30, 333.76 +1977-08-06, 333.01 +1977-08-13, 332.98 +1977-08-20, 332.84 +1977-08-27, 332.85 +1977-09-03, 332.17 +1977-09-10, 331.21 +1977-09-17, 332.10 +1977-09-24, 330.96 +1977-10-01, 330.45 +1977-10-08, 330.95 +1977-10-15, 331.52 +1977-10-22, 331.52 +1977-10-29, 331.74 +1977-11-05, 332.13 +1977-11-12, 332.03 +1977-11-19, 332.59 +1977-11-26, 332.85 +1977-12-03, 333.20 +1977-12-10, 333.51 +1977-12-17, 333.85 +1977-12-24, 334.25 +1977-12-31, 334.67 +1978-01-07, 334.27 +1978-01-14, 334.63 +1978-01-21, 335.46 +1978-01-28, 335.94 +1978-02-04, 335.00 +1978-02-11, 335.13 +1978-02-18, 335.66 +1978-02-25, 335.70 +1978-03-04, 336.27 +1978-03-11, 336.10 +1978-03-18, 336.80 +1978-03-25, 337.39 +1978-04-01, 337.08 +1978-04-08, 337.99 +1978-04-15, 337.94 +1978-04-22, 337.47 +1978-04-29, 338.05 +1978-05-06, 338.07 +1978-05-13, 338.10 +1978-05-20, 337.82 +1978-05-27, 337.90 +1978-06-03, 338.48 +1978-06-10, 338.23 +1978-06-17, 337.86 +1978-06-24, 337.39 +1978-07-01, 337.69 +1978-07-08, 336.79 +1978-07-15, 336.72 +1978-07-22, 335.95 +1978-07-29, 335.69 +1978-08-05, 335.17 +1978-08-12, 334.84 +1978-08-19, 334.41 +1978-08-26, 334.37 +1978-09-02, 333.88 +1978-09-09, 332.88 +1978-09-16, 332.19 +1978-09-23, 332.38 +1978-09-30, 332.76 +1978-10-07, 332.10 +1978-10-14, 332.45 +1978-10-21, 333.02 +1978-10-28, 333.18 +1978-11-04, 333.58 +1978-11-11, 333.85 +1978-11-18, 333.88 +1978-11-25, 334.20 +1978-12-02, 334.52 +1978-12-09, 334.80 +1978-12-16, 335.15 +1978-12-23, 335.12 +1978-12-30, 335.32 +1979-01-06, 335.36 +1979-01-13, 335.97 +1979-01-20, 336.85 +1979-01-27, 336.95 +1979-02-03, 336.90 +1979-02-10, 336.54 +1979-02-17, 336.71 +1979-02-24, 336.79 +1979-03-03, 337.12 +1979-03-10, 337.79 +1979-03-17, 337.43 +1979-03-24, 339.02 +1979-03-31, 338.80 +1979-04-07, 338.17 +1979-04-14, 338.66 +1979-04-21, 339.25 +1979-04-28, 339.60 +1979-05-05, 339.30 +1979-05-12, 338.88 +1979-05-19, 339.86 +1979-05-26, 339.62 +1979-06-02, 339.93 +1979-06-09, 339.52 +1979-06-16, 338.90 +1979-06-23, 338.95 +1979-06-30, 339.00 +1979-07-07, 338.28 +1979-07-14, 337.82 +1979-07-21, 337.37 +1979-07-28, 336.84 +1979-08-04, 337.03 +1979-08-11, 336.59 +1979-08-18, 336.17 +1979-08-25, 334.56 +1979-09-01, 334.45 +1979-09-08, 334.00 +1979-09-15, 334.21 +1979-09-22, 333.28 +1979-09-29, 334.11 +1979-10-06, 334.10 +1979-10-13, 333.97 +1979-10-20, 333.74 +1979-10-27, 334.16 +1979-11-03, 334.73 +1979-11-10, 334.86 +1979-11-17, 335.59 +1979-11-24, 335.68 +1979-12-01, 335.99 +1979-12-08, 336.50 +1979-12-15, 336.77 +1979-12-22, 336.88 +1979-12-29, 337.40 +1980-01-05, 337.67 +1980-01-12, 337.48 +1980-01-19, 338.38 +1980-01-26, 338.49 +1980-02-02, 338.05 +1980-02-09, 338.14 +1980-02-16, 338.68 +1980-02-23, 338.26 +1980-03-01, 339.31 +1980-03-08, 339.54 +1980-03-15, 340.02 +1980-03-22, 340.54 +1980-03-29, 341.01 +1980-04-05, 340.41 +1980-04-12, 340.95 +1980-04-19, 340.75 +1980-04-26, 341.06 +1980-05-03, 341.52 +1980-05-10, 341.30 +1980-05-17, 341.38 +1980-05-24, 340.92 +1980-05-31, 341.72 +1980-06-07, 341.38 +1980-06-14, 341.39 +1980-06-21, 340.87 +1980-06-28, 340.40 +1980-07-05, 340.44 +1980-07-12, 339.78 +1980-07-19, 338.51 +1980-07-26, 338.92 +1980-08-02, 337.98 +1980-08-09, 337.77 +1980-08-16, 337.75 +1980-08-23, 337.79 +1980-08-30, 337.01 +1980-09-06, 336.65 +1980-09-13, 335.75 +1980-09-20, 335.28 +1980-09-27, 336.03 +1980-10-04, 335.83 +1980-10-11, 335.87 +1980-10-18, 336.10 +1980-10-25, 336.42 +1980-11-01, 336.65 +1980-11-08, 336.98 +1980-11-15, 337.14 +1980-11-22, 337.31 +1980-11-29, 337.41 +1980-12-06, 337.77 +1980-12-13, 338.10 +1980-12-20, 338.39 +1980-12-27, 338.72 +1981-01-03, 338.94 +1981-01-10, 339.13 +1981-01-17, 339.39 +1981-01-24, 339.36 +1981-01-31, 339.55 +1981-02-07, 340.57 +1981-02-14, 340.04 +1981-02-21, 340.20 +1981-02-28, 341.11 +1981-03-07, 340.73 +1981-03-14, 341.04 +1981-03-21, 341.89 +1981-03-28, 342.19 +1981-04-04, 342.42 +1981-04-11, 342.49 +1981-04-18, 342.78 +1981-04-25, 342.30 +1981-05-02, 342.95 +1981-05-09, 343.00 +1981-05-16, 342.80 +1981-05-23, 342.70 +1981-05-30, 342.75 +1981-06-06, 342.64 +1981-06-13, 342.54 +1981-06-20, 341.81 +1981-06-27, 341.64 +1981-07-04, 341.05 +1981-07-11, 340.87 +1981-07-18, 339.76 +1981-07-25, 340.21 +1981-08-01, 339.56 +1981-08-08, 338.92 +1981-08-15, 338.48 +1981-08-22, 337.57 +1981-08-29, 337.73 +1981-09-05, 337.20 +1981-09-12, 337.03 +1981-09-19, 336.75 +1981-09-26, 335.95 +1981-10-03, 336.30 +1981-10-10, 336.65 +1981-10-17, 337.13 +1981-10-24, 337.22 +1981-10-31, 337.56 +1981-11-07, 337.87 +1981-11-14, 338.14 +1981-11-21, 338.57 +1981-11-28, 339.30 +1981-12-05, 339.29 +1981-12-12, 339.41 +1981-12-19, 339.65 +1981-12-26, 340.23 +1982-01-02, 340.28 +1982-01-09, 340.39 +1982-01-16, 340.72 +1982-01-23, 341.13 +1982-01-30, 341.29 +1982-02-06, 341.94 +1982-02-13, 341.11 +1982-02-20, 341.14 +1982-02-27, 342.19 +1982-03-06, 342.66 +1982-03-13, 342.61 +1982-03-20, 342.78 +1982-03-27, 342.81 +1982-04-03, 342.96 +1982-04-10, 343.30 +1982-04-17, 343.50 +1982-04-24, 344.29 +1982-05-01, 343.83 +1982-05-08, 343.68 +1982-05-15, 344.29 +1982-05-22, 344.10 +1982-05-29, 344.10 +1982-06-05, 343.48 +1982-06-12, 343.50 +1982-06-19, 343.46 +1982-06-26, 342.91 +1982-07-03, 342.53 +1982-07-10, 342.03 +1982-07-17, 342.02 +1982-07-24, 341.81 +1982-07-31, 341.31 +1982-08-07, 340.57 +1982-08-14, 340.06 +1982-08-21, 339.71 +1982-08-28, 338.32 +1982-09-04, 338.88 +1982-09-11, 338.61 +1982-09-18, 337.84 +1982-09-25, 336.92 +1982-10-02, 337.32 +1982-10-09, 338.09 +1982-10-16, 337.60 +1982-10-23, 337.94 +1982-10-30, 338.70 +1982-11-06, 338.49 +1982-11-13, 339.20 +1982-11-20, 339.72 +1982-11-27, 339.88 +1982-12-04, 339.86 +1982-12-11, 340.43 +1982-12-18, 340.71 +1982-12-25, 340.82 +1983-01-01, 340.94 +1983-01-08, 341.44 +1983-01-15, 341.57 +1983-01-22, 341.25 +1983-01-29, 341.72 +1983-02-05, 342.00 +1983-02-12, 342.77 +1983-02-19, 342.50 +1983-02-26, 342.84 +1983-03-05, 342.38 +1983-03-12, 342.58 +1983-03-19, 344.06 +1983-03-26, 343.81 +1983-04-02, 344.02 +1983-04-09, 344.89 +1983-04-16, 345.07 +1983-04-23, 345.32 +1983-04-30, 345.46 +1983-05-07, 345.43 +1983-05-14, 345.77 +1983-05-21, 345.85 +1983-05-28, 345.76 +1983-06-04, 345.68 +1983-06-11, 345.60 +1983-06-18, 345.04 +1983-06-25, 344.97 +1983-07-02, 344.74 +1983-07-09, 344.59 +1983-07-16, 343.73 +1983-07-23, 343.66 +1983-07-30, 342.60 +1983-08-06, 343.05 +1983-08-13, 341.70 +1983-08-20, 342.14 +1983-08-27, 341.80 +1983-09-03, 339.94 +1983-09-10, 339.99 +1983-09-17, 339.86 +1983-09-24, 339.98 +1983-10-01, 339.87 +1983-10-08, 339.76 +1983-10-15, 340.12 +1983-10-22, 340.25 +1983-10-29, 340.37 +1983-11-05, 340.80 +1983-11-12, 341.00 +1983-11-19, 341.18 +1983-11-26, 341.70 +1983-12-03, 341.87 +1983-12-10, 342.85 +1983-12-17, 343.39 +1983-12-24, 343.61 +1983-12-31, 343.47 +1984-01-07, 343.78 +1984-01-14, 343.47 +1984-01-21, 343.50 +1984-01-28, 344.16 +1984-02-04, 344.35 +1984-02-11, 344.57 +1984-02-18, 344.33 +1984-02-25, 344.69 +1984-03-03, 344.88 +1984-03-10, 344.95 +1984-03-17, 345.45 +1984-03-24, 345.69 +1984-04-28, 347.47 +1984-05-05, 347.49 +1984-05-12, 347.78 +1984-05-19, 347.36 +1984-05-26, 347.03 +1984-06-02, 347.09 +1984-06-09, 347.02 +1984-06-16, 346.89 +1984-06-23, 346.37 +1984-06-30, 346.24 +1984-07-07, 345.82 +1984-07-14, 345.48 +1984-07-21, 345.25 +1984-07-28, 344.48 +1984-08-04, 344.05 +1984-08-11, 344.12 +1984-08-18, 343.19 +1984-08-25, 342.05 +1984-09-01, 341.65 +1984-09-08, 340.65 +1984-09-15, 341.37 +1984-09-22, 341.31 +1984-09-29, 340.85 +1984-10-06, 341.19 +1984-10-13, 341.30 +1984-10-20, 341.91 +1984-10-27, 341.67 +1984-11-03, 342.01 +1984-11-10, 342.65 +1984-11-17, 343.14 +1984-11-24, 343.75 +1984-12-01, 343.60 +1984-12-08, 343.95 +1984-12-15, 344.23 +1984-12-22, 344.58 +1984-12-29, 344.57 +1985-01-05, 344.77 +1985-01-12, 345.01 +1985-01-19, 345.01 +1985-01-26, 345.08 +1985-02-02, 345.95 +1985-02-09, 345.54 +1985-02-16, 345.82 +1985-02-23, 346.37 +1985-03-02, 346.77 +1985-03-09, 347.11 +1985-03-16, 347.58 +1985-03-23, 347.70 +1985-03-30, 348.27 +1985-04-06, 348.04 +1985-04-13, 348.08 +1985-04-20, 348.52 +1985-04-27, 348.84 +1985-05-04, 348.89 +1985-05-11, 349.31 +1985-05-18, 349.18 +1985-05-25, 348.18 +1985-06-01, 349.05 +1985-06-08, 348.49 +1985-06-15, 348.24 +1985-06-22, 347.90 +1985-06-29, 347.47 +1985-07-06, 346.90 +1985-07-13, 346.80 +1985-07-20, 346.43 +1985-07-27, 345.79 +1985-08-10, 344.70 +1985-08-17, 344.50 +1985-08-24, 344.38 +1985-08-31, 343.76 +1985-09-07, 344.29 +1985-09-14, 343.37 +1985-09-21, 342.46 +1985-09-28, 342.13 +1985-10-05, 342.40 +1985-10-12, 342.50 +1985-10-19, 343.14 +1985-10-26, 343.22 +1985-11-02, 343.38 +1985-11-09, 343.77 +1985-11-16, 344.25 +1985-11-23, 344.64 +1985-11-30, 345.30 +1985-12-07, 345.37 +1985-12-14, 345.67 +1985-12-21, 345.17 +1985-12-28, 346.30 +1986-01-04, 346.44 +1986-01-11, 346.09 +1986-01-18, 346.25 +1986-01-25, 346.46 +1986-02-01, 346.22 +1986-02-08, 346.84 +1986-02-15, 347.18 +1986-02-22, 347.20 +1986-03-01, 347.07 +1986-03-08, 346.65 +1986-03-15, 347.22 +1986-03-22, 349.15 +1986-03-29, 348.87 +1986-04-05, 349.21 +1986-04-12, 349.45 +1986-04-19, 349.34 +1986-04-26, 350.20 +1986-05-03, 349.99 +1986-05-10, 350.14 +1986-05-17, 350.23 +1986-05-24, 350.13 +1986-05-31, 350.18 +1986-06-07, 349.73 +1986-06-14, 349.54 +1986-06-21, 349.48 +1986-06-28, 348.92 +1986-07-05, 348.69 +1986-07-12, 347.77 +1986-07-19, 347.61 +1986-07-26, 347.41 +1986-08-02, 346.65 +1986-08-09, 346.23 +1986-08-16, 345.59 +1986-08-23, 345.62 +1986-08-30, 345.27 +1986-09-06, 345.05 +1986-09-13, 345.32 +1986-09-20, 344.43 +1986-09-27, 344.51 +1986-10-04, 343.99 +1986-10-11, 344.11 +1986-10-18, 343.99 +1986-10-25, 344.57 +1986-11-01, 345.17 +1986-11-08, 345.35 +1986-11-15, 345.63 +1986-11-22, 345.72 +1986-11-29, 346.41 +1986-12-06, 346.92 +1986-12-13, 346.77 +1986-12-20, 346.97 +1986-12-27, 347.08 +1987-01-03, 347.62 +1987-01-10, 348.37 +1987-01-17, 348.27 +1987-01-24, 347.96 +1987-01-31, 348.03 +1987-02-07, 347.91 +1987-02-14, 348.25 +1987-02-21, 348.54 +1987-02-28, 349.47 +1987-03-07, 348.85 +1987-03-14, 349.27 +1987-03-21, 349.79 +1987-03-28, 350.20 +1987-04-04, 350.82 +1987-04-11, 350.27 +1987-04-18, 351.19 +1987-04-25, 351.39 +1987-05-02, 351.43 +1987-05-09, 352.00 +1987-05-16, 351.73 +1987-05-23, 351.91 +1987-05-30, 351.78 +1987-06-06, 351.65 +1987-06-13, 351.17 +1987-06-20, 351.00 +1987-06-27, 350.94 +1987-07-04, 349.76 +1987-07-11, 349.84 +1987-07-18, 348.87 +1987-07-25, 349.51 +1987-08-01, 349.04 +1987-08-08, 348.15 +1987-08-15, 348.62 +1987-08-22, 348.01 +1987-08-29, 346.71 +1987-09-05, 347.05 +1987-09-12, 346.65 +1987-09-19, 346.29 +1987-09-26, 345.85 +1987-10-03, 345.77 +1987-10-10, 346.34 +1987-10-17, 346.59 +1987-10-24, 346.80 +1987-10-31, 346.91 +1987-11-07, 347.34 +1987-11-14, 347.65 +1987-11-21, 348.16 +1987-11-28, 348.75 +1987-12-05, 348.66 +1987-12-12, 348.82 +1987-12-19, 349.12 +1987-12-26, 349.29 +1988-01-02, 349.78 +1988-01-09, 350.28 +1988-01-16, 350.21 +1988-01-23, 350.79 +1988-01-30, 351.22 +1988-02-06, 351.81 +1988-02-13, 351.31 +1988-02-20, 351.53 +1988-02-27, 352.55 +1988-03-05, 352.88 +1988-03-12, 351.88 +1988-03-19, 351.78 +1988-03-26, 352.23 +1988-04-02, 353.13 +1988-04-09, 353.57 +1988-04-16, 353.15 +1988-04-23, 354.00 +1988-04-30, 354.23 +1988-05-07, 353.76 +1988-05-14, 354.30 +1988-05-21, 354.52 +1988-05-28, 354.20 +1988-06-04, 354.18 +1988-06-11, 354.20 +1988-06-18, 353.61 +1988-06-25, 353.19 +1988-07-02, 353.08 +1988-07-09, 352.56 +1988-07-16, 352.65 +1988-07-23, 351.96 +1988-07-30, 351.13 +1988-08-06, 350.95 +1988-08-13, 350.30 +1988-08-20, 350.49 +1988-08-27, 349.61 +1988-09-03, 349.38 +1988-09-10, 348.73 +1988-09-17, 348.95 +1988-09-24, 348.19 +1988-10-01, 348.82 +1988-10-08, 348.88 +1988-10-15, 348.68 +1988-10-22, 349.42 +1988-10-29, 349.29 +1988-11-05, 349.78 +1988-11-12, 349.89 +1988-11-19, 350.18 +1988-11-26, 350.48 +1988-12-03, 350.50 +1988-12-10, 351.02 +1988-12-17, 351.60 +1988-12-24, 351.36 +1988-12-31, 352.40 +1989-01-07, 352.77 +1989-01-14, 352.97 +1989-01-21, 352.51 +1989-01-28, 353.06 +1989-02-04, 352.83 +1989-02-11, 352.64 +1989-02-18, 353.22 +1989-02-25, 353.48 +1989-03-04, 353.17 +1989-03-11, 353.46 +1989-03-18, 353.55 +1989-03-25, 354.48 +1989-04-01, 354.56 +1989-04-08, 355.05 +1989-04-15, 355.41 +1989-04-22, 356.01 +1989-04-29, 355.90 +1989-05-06, 355.36 +1989-05-13, 355.82 +1989-05-20, 355.64 +1989-05-27, 355.76 +1989-06-03, 355.80 +1989-06-10, 355.09 +1989-06-17, 354.87 +1989-06-24, 354.90 +1989-07-01, 354.50 +1989-07-08, 354.76 +1989-07-15, 353.85 +1989-07-22, 353.19 +1989-07-29, 353.21 +1989-08-05, 352.62 +1989-08-12, 352.24 +1989-08-19, 351.16 +1989-08-26, 350.43 +1989-09-02, 350.79 +1989-09-09, 350.28 +1989-09-16, 349.41 +1989-09-23, 349.31 +1989-09-30, 349.71 +1989-10-07, 349.97 +1989-10-14, 349.74 +1989-10-21, 350.24 +1989-10-28, 350.47 +1989-11-04, 350.66 +1989-11-11, 351.29 +1989-11-18, 351.60 +1989-11-25, 351.46 +1989-12-02, 352.09 +1989-12-09, 352.16 +1989-12-16, 352.48 +1989-12-23, 352.59 +1989-12-30, 353.44 +1990-01-06, 353.47 +1990-01-13, 353.55 +1990-01-20, 353.80 +1990-01-27, 353.96 +1990-02-03, 354.13 +1990-02-10, 355.02 +1990-02-17, 354.87 +1990-02-24, 354.78 +1990-03-03, 355.72 +1990-03-10, 354.99 +1990-03-17, 355.84 +1990-03-24, 355.17 +1990-03-31, 355.95 +1990-04-07, 356.17 +1990-04-14, 355.90 +1990-04-21, 356.68 +1990-04-28, 356.18 +1990-05-05, 357.30 +1990-05-12, 357.09 +1990-05-19, 356.99 +1990-05-26, 357.13 +1990-06-02, 357.01 +1990-06-09, 356.63 +1990-06-16, 355.68 +1990-06-23, 355.53 +1990-06-30, 355.79 +1990-07-07, 355.51 +1990-07-14, 354.00 +1990-07-21, 354.59 +1990-07-28, 354.72 +1990-08-04, 353.56 +1990-08-11, 353.23 +1990-08-18, 352.92 +1990-08-25, 352.01 +1990-09-01, 350.99 +1990-09-08, 350.75 +1990-09-15, 351.33 +1990-09-22, 350.97 +1990-09-29, 350.92 +1990-10-06, 351.10 +1990-10-13, 351.08 +1990-10-20, 351.48 +1990-10-27, 351.47 +1990-11-03, 352.12 +1990-11-10, 352.62 +1990-11-17, 353.05 +1990-11-24, 353.18 +1990-12-01, 353.61 +1990-12-08, 354.07 +1990-12-15, 353.87 +1990-12-22, 354.51 +1990-12-29, 354.89 +1991-01-05, 354.28 +1991-01-12, 354.73 +1991-01-19, 354.86 +1991-01-26, 355.05 +1991-02-02, 355.22 +1991-02-09, 355.23 +1991-02-16, 356.40 +1991-02-23, 355.83 +1991-03-02, 356.41 +1991-03-09, 357.21 +1991-03-16, 357.69 +1991-03-23, 356.96 +1991-03-30, 357.94 +1991-04-06, 358.32 +1991-04-13, 357.83 +1991-04-20, 359.19 +1991-04-27, 359.24 +1991-05-04, 359.11 +1991-05-11, 358.94 +1991-05-18, 360.03 +1991-05-25, 359.08 +1991-06-01, 358.52 +1991-06-08, 358.46 +1991-06-15, 358.22 +1991-06-22, 358.12 +1991-06-29, 357.74 +1991-07-06, 357.27 +1991-07-13, 356.54 +1991-07-20, 355.26 +1991-07-27, 355.30 +1991-08-03, 354.89 +1991-08-10, 354.60 +1991-08-17, 353.78 +1991-08-24, 353.07 +1991-08-31, 353.22 +1991-09-07, 353.06 +1991-09-14, 352.12 +1991-09-21, 351.84 +1991-09-28, 351.69 +1991-10-05, 351.70 +1991-10-12, 352.18 +1991-10-19, 352.53 +1991-10-26, 352.72 +1991-11-02, 353.47 +1991-11-09, 353.76 +1991-11-16, 353.56 +1991-11-23, 353.86 +1991-11-30, 354.35 +1991-12-07, 354.54 +1991-12-14, 354.97 +1991-12-21, 355.22 +1991-12-28, 355.50 +1992-01-04, 355.69 +1992-01-11, 356.07 +1992-01-18, 356.19 +1992-01-25, 355.96 +1992-02-01, 356.05 +1992-02-08, 356.73 +1992-02-15, 357.33 +1992-02-22, 356.99 +1992-02-29, 356.58 +1992-03-07, 357.30 +1992-03-14, 357.80 +1992-03-21, 358.18 +1992-03-28, 358.42 +1992-04-04, 358.57 +1992-04-11, 358.99 +1992-04-18, 359.75 +1992-04-25, 359.25 +1992-05-02, 359.69 +1992-05-09, 359.73 +1992-05-16, 358.60 +1992-05-23, 359.65 +1992-05-30, 360.25 +1992-06-06, 360.03 +1992-06-13, 359.48 +1992-06-20, 358.75 +1992-06-27, 358.45 +1992-07-04, 358.47 +1992-07-11, 357.20 +1992-07-18, 356.37 +1992-07-25, 356.10 +1992-08-01, 354.99 +1992-08-08, 355.33 +1992-08-15, 355.32 +1992-08-22, 354.59 +1992-08-29, 354.34 +1992-09-05, 353.53 +1992-09-12, 353.66 +1992-09-19, 352.37 +1992-09-26, 352.75 +1992-10-03, 353.60 +1992-10-10, 353.38 +1992-10-17, 353.24 +1992-10-24, 353.51 +1992-10-31, 353.56 +1992-11-07, 353.99 +1992-11-14, 353.86 +1992-11-21, 354.57 +1992-11-28, 354.64 +1992-12-05, 354.85 +1992-12-12, 355.37 +1992-12-19, 355.46 +1992-12-26, 355.97 +1993-01-02, 356.29 +1993-01-09, 356.96 +1993-01-16, 356.72 +1993-01-23, 356.66 +1993-01-30, 357.03 +1993-02-06, 356.62 +1993-02-13, 357.23 +1993-02-20, 357.36 +1993-02-27, 357.68 +1993-03-06, 358.39 +1993-03-13, 358.52 +1993-03-20, 358.13 +1993-03-27, 358.85 +1993-04-03, 359.17 +1993-04-10, 358.87 +1993-04-17, 359.42 +1993-04-24, 360.03 +1993-05-01, 359.62 +1993-05-08, 359.78 +1993-05-15, 360.70 +1993-05-22, 360.62 +1993-05-29, 360.35 +1993-06-05, 359.79 +1993-06-12, 359.92 +1993-06-19, 359.34 +1993-06-26, 359.15 +1993-07-03, 357.91 +1993-07-10, 358.02 +1993-07-17, 358.10 +1993-07-24, 356.69 +1993-07-31, 356.52 +1993-08-07, 355.88 +1993-08-14, 355.95 +1993-08-21, 354.90 +1993-08-28, 354.72 +1993-09-04, 354.30 +1993-09-11, 353.23 +1993-09-18, 353.81 +1993-09-25, 353.86 +1993-10-02, 353.80 +1993-10-09, 353.87 +1993-10-16, 354.00 +1993-10-23, 354.45 +1993-10-30, 354.38 +1993-11-06, 354.78 +1993-11-13, 355.16 +1993-11-20, 355.65 +1993-11-27, 356.03 +1993-12-04, 356.27 +1993-12-11, 356.52 +1993-12-18, 356.99 +1993-12-25, 357.50 +1994-01-01, 358.14 +1994-01-08, 358.12 +1994-01-15, 358.43 +1994-01-22, 358.33 +1994-01-29, 358.78 +1994-02-05, 358.49 +1994-02-12, 358.61 +1994-02-19, 359.02 +1994-02-26, 359.64 +1994-03-05, 358.77 +1994-03-12, 359.86 +1994-03-19, 360.49 +1994-03-26, 360.83 +1994-04-02, 360.68 +1994-04-09, 361.01 +1994-04-16, 361.07 +1994-04-23, 361.34 +1994-04-30, 362.25 +1994-05-07, 361.63 +1994-05-14, 361.42 +1994-05-21, 361.78 +1994-05-28, 361.91 +1994-06-04, 361.04 +1994-06-11, 361.07 +1994-06-18, 360.93 +1994-06-25, 360.70 +1994-07-02, 360.22 +1994-07-09, 359.90 +1994-07-16, 359.43 +1994-07-23, 359.00 +1994-07-30, 358.81 +1994-08-06, 358.10 +1994-08-13, 357.52 +1994-08-20, 357.63 +1994-08-27, 356.39 +1994-09-03, 356.44 +1994-09-10, 356.46 +1994-09-17, 355.46 +1994-09-24, 355.50 +1994-10-01, 355.46 +1994-10-08, 355.81 +1994-10-15, 356.09 +1994-10-22, 356.39 +1994-10-29, 356.61 +1994-11-05, 356.97 +1994-11-12, 357.40 +1994-11-19, 357.93 +1994-11-26, 358.11 +1994-12-03, 358.43 +1994-12-10, 359.13 +1994-12-17, 359.25 +1994-12-24, 359.15 +1994-12-31, 359.52 +1995-01-07, 359.68 +1995-01-14, 360.28 +1995-01-21, 360.12 +1995-01-28, 360.04 +1995-02-04, 360.67 +1995-02-11, 361.09 +1995-02-18, 360.88 +1995-02-25, 361.36 +1995-03-04, 362.20 +1995-03-11, 361.24 +1995-03-18, 360.99 +1995-03-25, 362.00 +1995-04-01, 363.80 +1995-04-08, 363.44 +1995-04-15, 363.34 +1995-04-22, 362.89 +1995-04-29, 363.58 +1995-05-06, 363.24 +1995-05-13, 364.11 +1995-05-20, 364.18 +1995-05-27, 363.47 +1995-06-03, 363.92 +1995-06-10, 363.47 +1995-06-17, 362.96 +1995-06-24, 362.81 +1995-07-01, 362.53 +1995-07-08, 362.27 +1995-07-15, 361.97 +1995-07-22, 361.58 +1995-07-29, 360.98 +1995-08-05, 360.45 +1995-08-12, 359.21 +1995-08-19, 358.72 +1995-08-26, 359.29 +1995-09-02, 357.37 +1995-09-09, 358.50 +1995-09-16, 358.58 +1995-09-23, 358.20 +1995-09-30, 357.56 +1995-10-07, 357.65 +1995-10-14, 357.60 +1995-10-21, 358.04 +1995-10-28, 358.23 +1995-11-04, 359.19 +1995-11-11, 359.43 +1995-11-18, 359.69 +1995-11-25, 359.87 +1995-12-02, 360.13 +1995-12-09, 360.43 +1995-12-16, 360.53 +1995-12-23, 360.89 +1995-12-30, 361.73 +1996-01-06, 361.81 +1996-01-13, 362.06 +1996-01-20, 362.17 +1996-01-27, 362.23 +1996-02-03, 362.68 +1996-02-10, 363.12 +1996-02-17, 363.01 +1996-02-24, 364.03 +1996-03-02, 363.84 +1996-03-09, 363.66 +1996-03-16, 364.10 +1996-03-23, 364.53 +1996-03-30, 364.35 +1996-04-06, 364.57 +1996-04-13, 364.89 +1996-04-20, 364.40 +1996-04-27, 365.13 +1996-05-04, 364.92 +1996-05-11, 365.37 +1996-05-18, 365.74 +1996-05-25, 365.43 +1996-06-01, 364.86 +1996-06-08, 365.19 +1996-06-15, 365.27 +1996-06-22, 365.00 +1996-06-29, 364.30 +1996-07-06, 364.19 +1996-07-13, 363.75 +1996-07-20, 363.38 +1996-07-27, 362.84 +1996-08-03, 361.78 +1996-08-10, 362.10 +1996-08-17, 361.29 +1996-08-24, 360.85 +1996-08-31, 360.82 +1996-09-07, 359.86 +1996-09-14, 359.82 +1996-09-21, 359.09 +1996-09-28, 359.04 +1996-10-05, 359.45 +1996-10-12, 359.52 +1996-10-19, 359.86 +1996-10-26, 359.87 +1996-11-02, 359.94 +1996-11-09, 360.52 +1996-11-16, 360.79 +1996-11-23, 361.24 +1996-11-30, 361.40 +1996-12-07, 361.97 +1996-12-14, 362.68 +1996-12-21, 362.47 +1996-12-28, 362.62 +1997-01-04, 362.95 +1997-01-11, 363.00 +1997-01-18, 363.16 +1997-01-25, 363.51 +1997-02-01, 363.28 +1997-02-08, 364.19 +1997-02-15, 364.02 +1997-02-22, 364.24 +1997-03-01, 364.50 +1997-03-08, 364.16 +1997-03-15, 364.19 +1997-03-22, 364.75 +1997-03-29, 365.43 +1997-04-05, 365.80 +1997-04-12, 366.25 +1997-04-19, 366.69 +1997-04-26, 366.79 +1997-05-03, 366.76 +1997-05-10, 366.80 +1997-05-17, 367.03 +1997-05-24, 366.61 +1997-05-31, 366.36 +1997-06-07, 365.71 +1997-06-14, 365.61 +1997-06-21, 365.53 +1997-06-28, 365.16 +1997-07-05, 365.09 +1997-07-12, 364.67 +1997-07-19, 364.11 +1997-07-26, 363.80 +1997-08-02, 363.39 +1997-08-09, 363.36 +1997-08-16, 362.63 +1997-08-23, 361.51 +1997-08-30, 361.66 +1997-09-06, 360.69 +1997-09-13, 360.26 +1997-09-20, 360.08 +1997-09-27, 359.81 +1997-10-04, 360.54 +1997-10-11, 360.49 +1997-10-18, 361.07 +1997-10-25, 361.13 +1997-11-01, 361.71 +1997-11-08, 362.19 +1997-11-15, 362.06 +1997-11-22, 362.65 +1997-11-29, 363.51 +1997-12-06, 363.97 +1997-12-13, 363.95 +1997-12-20, 364.27 +1997-12-27, 365.09 +1998-01-03, 365.24 +1998-01-10, 365.30 +1998-01-17, 365.35 +1998-01-24, 365.38 +1998-01-31, 365.69 +1998-02-07, 366.06 +1998-02-14, 365.52 +1998-02-21, 366.08 +1998-02-28, 367.36 +1998-03-07, 367.02 +1998-03-14, 366.66 +1998-03-21, 367.49 +1998-03-28, 368.57 +1998-04-04, 368.69 +1998-04-11, 368.68 +1998-04-18, 368.05 +1998-04-25, 368.90 +1998-05-02, 369.17 +1998-05-09, 368.83 +1998-05-16, 368.51 +1998-05-23, 369.66 +1998-05-30, 369.70 +1998-06-06, 369.41 +1998-06-13, 368.88 +1998-06-20, 368.54 +1998-06-27, 368.36 +1998-07-04, 368.05 +1998-07-11, 367.54 +1998-07-18, 367.67 +1998-07-25, 367.36 +1998-08-01, 366.88 +1998-08-08, 366.46 +1998-08-15, 365.64 +1998-08-22, 365.63 +1998-08-29, 364.25 +1998-09-05, 364.74 +1998-09-12, 363.96 +1998-09-19, 363.50 +1998-09-26, 363.60 +1998-10-03, 364.01 +1998-10-10, 364.17 +1998-10-17, 364.46 +1998-10-24, 364.49 +1998-10-31, 364.70 +1998-11-07, 365.05 +1998-11-14, 365.48 +1998-11-21, 365.80 +1998-11-28, 366.00 +1998-12-05, 366.46 +1998-12-12, 366.74 +1998-12-19, 367.30 +1998-12-26, 367.38 +1999-01-02, 367.58 +1999-01-09, 367.87 +1999-01-16, 367.80 +1999-01-23, 368.33 +1999-01-30, 369.25 +1999-02-06, 369.19 +1999-02-13, 368.90 +1999-02-20, 369.05 +1999-02-27, 368.52 +1999-03-06, 368.13 +1999-03-13, 369.58 +1999-03-20, 370.27 +1999-03-27, 370.65 +1999-04-03, 371.11 +1999-04-10, 371.59 +1999-04-17, 371.07 +1999-04-24, 370.32 +1999-05-01, 370.82 +1999-05-08, 371.33 +1999-05-15, 371.09 +1999-05-22, 370.89 +1999-05-29, 370.41 +1999-06-05, 370.98 +1999-06-12, 370.33 +1999-06-19, 369.97 +1999-06-26, 369.97 +1999-07-03, 369.49 +1999-07-10, 370.15 +1999-07-17, 369.54 +1999-07-24, 368.66 +1999-07-31, 367.48 +1999-08-07, 367.65 +1999-08-14, 366.77 +1999-08-21, 366.44 +1999-08-28, 366.16 +1999-09-04, 364.22 +1999-09-11, 364.75 +1999-09-18, 365.25 +1999-09-25, 364.74 +1999-10-02, 364.62 +1999-10-09, 365.11 +1999-10-16, 364.94 +1999-10-23, 365.70 +1999-10-30, 365.81 +1999-11-06, 366.24 +1999-11-13, 366.75 +1999-11-20, 366.74 +1999-11-27, 367.20 +1999-12-04, 367.47 +1999-12-11, 368.10 +1999-12-18, 368.05 +1999-12-25, 368.27 +2000-01-01, 368.74 +2000-01-08, 368.63 +2000-01-15, 369.12 +2000-01-22, 369.93 +2000-01-29, 369.35 +2000-02-05, 369.18 +2000-02-12, 369.66 +2000-02-19, 369.45 +2000-02-26, 369.61 +2000-03-04, 370.11 +2000-03-11, 370.09 +2000-03-18, 370.98 +2000-03-25, 370.86 +2000-04-01, 371.04 +2000-04-08, 371.81 +2000-04-15, 371.91 +2000-04-22, 372.10 +2000-04-29, 371.37 +2000-05-06, 371.36 +2000-05-13, 371.83 +2000-05-20, 372.01 +2000-05-27, 371.91 +2000-06-03, 371.98 +2000-06-10, 371.71 +2000-06-17, 371.82 +2000-06-24, 371.41 +2000-07-01, 370.96 +2000-07-08, 370.17 +2000-07-15, 370.29 +2000-07-22, 369.85 +2000-07-29, 369.10 +2000-08-05, 368.86 +2000-08-12, 368.46 +2000-08-19, 367.78 +2000-08-26, 367.25 +2000-09-02, 367.28 +2000-09-09, 366.84 +2000-09-16, 366.35 +2000-09-23, 366.34 +2000-09-30, 366.54 +2000-10-07, 366.42 +2000-10-14, 366.75 +2000-10-21, 366.79 +2000-10-28, 367.46 +2000-11-04, 367.78 +2000-11-11, 368.10 +2000-11-18, 368.76 +2000-11-25, 368.42 +2000-12-02, 369.10 +2000-12-09, 369.74 +2000-12-16, 369.41 +2000-12-23, 369.64 +2000-12-30, 369.91 +2001-01-06, 369.95 +2001-01-13, 370.35 +2001-01-20, 370.10 +2001-01-27, 370.91 +2001-02-03, 371.45 +2001-02-10, 371.29 +2001-02-17, 371.82 +2001-02-24, 371.33 +2001-03-03, 372.34 +2001-03-10, 372.32 +2001-03-17, 372.23 +2001-03-24, 371.97 +2001-03-31, 372.18 +2001-04-07, 372.82 +2001-04-14, 372.84 +2001-04-21, 373.17 +2001-04-28, 372.91 +2001-05-05, 373.83 +2001-05-12, 374.08 +2001-05-19, 373.85 +2001-05-26, 374.05 +2001-06-02, 374.00 +2001-06-09, 373.27 +2001-06-16, 372.98 +2001-06-23, 373.04 +2001-06-30, 372.90 +2001-07-07, 372.29 +2001-07-14, 371.51 +2001-07-21, 371.36 +2001-07-28, 370.76 +2001-08-04, 370.07 +2001-08-11, 369.70 +2001-08-18, 369.43 +2001-08-25, 369.15 +2001-09-01, 368.61 +2001-09-08, 368.34 +2001-09-15, 368.18 +2001-09-22, 367.61 +2001-09-29, 367.56 +2001-10-06, 367.93 +2001-10-13, 367.73 +2001-10-20, 368.23 +2001-10-27, 368.92 +2001-11-03, 368.87 +2001-11-10, 369.03 +2001-11-17, 369.84 +2001-11-24, 370.44 +2001-12-01, 370.51 +2001-12-08, 371.03 +2001-12-15, 371.34 +2001-12-22, 371.51 +2001-12-29, 371.67 +2002-01-05, 371.94 +2002-01-12, 372.26 +2002-01-19, 373.04 +2002-01-26, 372.46 +2002-02-02, 372.85 +2002-02-09, 372.93 +2002-02-16, 372.84 +2002-02-23, 373.40 +2002-03-02, 373.29 +2002-03-09, 373.47 +2002-03-16, 373.37 +2002-03-23, 373.51 +2002-03-30, 374.29 +2002-04-06, 374.50 +2002-04-13, 374.55 +2002-04-20, 375.06 +2002-04-27, 375.47 +2002-05-04, 375.78 +2002-05-11, 374.95 +2002-05-18, 375.24 +2002-05-25, 375.92 +2002-06-01, 375.78 +2002-06-08, 375.66 +2002-06-15, 375.12 +2002-06-22, 375.50 +2002-06-29, 374.47 +2002-07-06, 374.62 +2002-07-13, 374.13 +2002-07-20, 373.68 +2002-07-27, 373.16 +2002-08-03, 372.93 +2002-08-10, 371.73 +2002-08-17, 371.03 +2002-08-24, 370.87 +2002-08-31, 370.12 +2002-09-07, 371.39 +2002-09-14, 371.16 +2002-09-21, 370.45 +2002-09-28, 369.97 +2002-10-05, 369.68 +2002-10-12, 370.04 +2002-10-19, 371.06 +2002-10-26, 370.44 +2002-11-02, 371.67 +2002-11-09, 371.55 +2002-11-16, 372.08 +2002-11-23, 372.69 +2002-11-30, 372.65 +2002-12-07, 373.32 +2002-12-14, 373.44 +2002-12-21, 374.16 +2002-12-28, 374.60 +2003-01-04, 374.49 +2003-01-11, 374.46 +2003-01-18, 374.82 +2003-01-25, 374.89 +2003-02-01, 375.23 +2003-02-08, 374.81 +2003-02-15, 375.70 +2003-02-22, 376.36 +2003-03-01, 375.82 +2003-03-08, 375.89 +2003-03-15, 375.76 +2003-03-22, 376.44 +2003-03-29, 376.82 +2003-04-05, 376.81 +2003-04-12, 377.30 +2003-04-19, 378.11 +2003-04-26, 378.46 +2003-05-03, 378.11 +2003-05-10, 377.49 +2003-05-17, 378.79 +2003-05-24, 378.71 +2003-05-31, 378.29 +2003-06-07, 378.39 +2003-06-21, 377.34 +2003-06-28, 377.85 +2003-07-05, 376.43 +2003-07-12, 377.05 +2003-07-19, 376.70 +2003-07-26, 375.98 +2003-08-02, 375.48 +2003-08-09, 374.67 +2003-08-16, 374.06 +2003-08-23, 374.47 +2003-08-30, 373.48 +2003-09-06, 373.09 +2003-09-13, 372.76 +2003-09-20, 373.08 +2003-09-27, 373.03 +2003-10-04, 372.87 +2003-10-25, 373.33 +2003-11-01, 373.50 +2003-11-08, 373.76 +2003-11-15, 374.45 +2003-11-22, 375.21 +2003-11-29, 374.72 +2003-12-06, 374.47 +2003-12-13, 376.15 +2003-12-20, 376.05 +2003-12-27, 376.43 +2004-01-03, 376.17 +2004-01-10, 376.17 +2004-01-17, 377.01 +2004-01-24, 377.29 +2004-01-31, 377.49 +2004-02-07, 377.47 +2004-02-14, 377.00 +2004-02-21, 377.35 +2004-02-28, 377.67 +2004-03-06, 378.05 +2004-03-13, 379.40 +2004-03-20, 378.47 +2004-03-27, 378.50 +2004-04-03, 380.09 +2004-04-10, 380.41 +2004-04-17, 380.56 +2004-04-24, 380.71 +2004-05-01, 380.28 +2004-05-08, 381.04 +2004-05-15, 380.51 +2004-05-22, 380.33 +2004-05-29, 380.66 +2004-06-05, 379.62 +2004-06-12, 380.00 +2004-06-19, 379.30 +2004-06-26, 379.07 +2004-07-03, 378.44 +2004-07-10, 378.04 +2004-07-17, 377.33 +2004-07-24, 376.99 +2004-07-31, 377.35 +2004-08-07, 376.56 +2004-08-14, 375.84 +2004-08-21, 375.70 +2004-08-28, 374.62 +2004-09-04, 373.82 +2004-09-11, 374.57 +2004-09-18, 374.14 +2004-09-25, 373.80 +2004-10-02, 374.01 +2004-10-09, 373.95 +2004-10-16, 374.05 +2004-10-23, 374.58 +2004-10-30, 375.02 +2004-11-06, 375.06 +2004-11-13, 376.13 +2004-11-20, 376.46 +2004-11-27, 376.13 +2004-12-04, 377.09 +2004-12-11, 377.37 +2004-12-18, 377.50 +2004-12-25, 377.68 +2005-01-01, 378.06 +2005-01-08, 378.21 +2005-01-15, 378.36 +2005-01-22, 378.34 +2005-01-29, 378.66 +2005-02-05, 379.02 +2005-02-12, 379.31 +2005-02-19, 380.25 +2005-03-26, 380.57 +2005-04-02, 382.07 +2005-04-09, 382.25 +2005-04-16, 381.35 +2005-04-23, 382.08 +2005-04-30, 382.38 +2005-05-07, 381.51 +2005-05-14, 382.53 +2005-05-21, 382.14 +2005-05-28, 382.58 +2005-06-04, 382.36 +2005-06-11, 382.31 +2005-06-18, 382.12 +2005-06-25, 381.48 +2005-07-02, 381.15 +2005-07-09, 380.90 +2005-07-16, 380.63 +2005-07-23, 380.36 +2005-07-30, 379.86 +2005-08-06, 379.21 +2005-08-13, 378.97 +2005-08-20, 378.40 +2005-08-27, 377.69 +2005-09-03, 377.82 +2005-09-10, 376.33 +2005-09-17, 376.14 +2005-09-24, 375.95 +2005-10-01, 376.33 +2005-10-08, 376.44 +2005-10-15, 377.12 +2005-10-22, 377.31 +2005-10-29, 377.24 +2005-11-05, 377.76 +2005-11-12, 378.07 +2005-11-19, 378.75 +2005-11-26, 378.77 +2005-12-03, 379.41 +2005-12-10, 380.09 +2005-12-17, 380.09 +2005-12-24, 380.14 +2005-12-31, 380.43 +2006-01-07, 381.28 +2006-01-14, 381.41 +2006-01-21, 381.57 +2006-01-28, 381.47 +2006-02-04, 382.04 +2006-02-25, 381.86 +2006-03-04, 382.39 +2006-03-11, 382.55 +2006-03-18, 382.74 +2006-03-25, 382.55 +2006-04-01, 382.97 +2006-04-08, 384.65 +2006-04-15, 384.67 +2006-04-22, 384.71 +2006-04-29, 384.62 +2006-05-06, 384.91 +2006-05-13, 384.87 +2006-05-20, 385.34 +2006-05-27, 384.30 +2006-06-03, 384.29 +2006-06-10, 384.31 +2006-06-17, 384.07 +2006-06-24, 383.55 +2006-07-01, 383.00 +2006-07-08, 382.78 +2006-07-15, 381.28 +2006-07-22, 381.81 +2006-07-29, 381.55 +2006-08-05, 381.22 +2006-08-12, 380.63 +2006-08-19, 380.20 +2006-08-26, 379.77 +2006-09-02, 379.52 +2006-09-09, 378.66 +2006-09-16, 378.80 +2006-09-23, 378.49 +2006-09-30, 379.00 +2006-10-07, 378.78 +2006-10-14, 379.14 +2006-10-21, 379.22 +2006-10-28, 379.57 +2006-11-04, 379.67 +2006-11-11, 379.81 +2006-11-18, 379.98 +2006-11-25, 381.42 +2006-12-02, 381.31 +2006-12-09, 381.60 +2006-12-16, 381.81 +2006-12-23, 381.96 +2006-12-30, 381.76 +2007-01-06, 382.64 +2007-01-13, 382.36 +2007-01-20, 381.84 +2007-02-03, 383.09 +2007-02-10, 383.60 +2007-02-17, 384.22 +2007-02-24, 383.76 +2007-03-03, 383.71 +2007-03-10, 383.64 +2007-03-17, 384.28 +2007-03-24, 384.96 +2007-03-31, 385.93 +2007-04-07, 385.46 +2007-04-14, 386.30 +2007-04-21, 387.00 +2007-04-28, 386.42 +2007-05-05, 385.85 +2007-05-12, 386.54 +2007-05-19, 386.03 +2007-05-26, 386.93 +2007-06-02, 386.60 +2007-06-09, 386.23 +2007-06-16, 386.29 +2007-06-23, 384.95 +2007-06-30, 384.85 +2007-07-07, 384.92 +2007-07-14, 384.75 +2007-07-21, 383.97 +2007-07-28, 383.41 +2007-08-04, 382.51 +2007-08-11, 381.72 +2007-08-18, 381.60 +2007-08-25, 381.67 +2007-09-01, 381.69 +2007-09-08, 380.74 +2007-09-15, 380.75 +2007-09-22, 380.94 +2007-09-29, 380.80 +2007-10-06, 380.68 +2007-10-13, 380.68 +2007-10-20, 381.10 +2007-10-27, 381.36 +2007-11-03, 381.76 +2007-11-10, 381.92 +2007-11-17, 382.43 +2007-11-24, 382.91 +2007-12-01, 382.90 +2007-12-08, 383.31 +2007-12-15, 383.79 +2007-12-22, 383.90 +2007-12-29, 384.04 +2008-01-05, 384.36 +2008-01-12, 384.41 +2008-01-19, 385.47 +2008-01-26, 386.06 +2008-02-02, 386.19 +2008-02-09, 385.72 +2008-02-16, 385.58 +2008-02-23, 385.24 +2008-03-01, 384.88 +2008-03-08, 385.88 +2008-03-15, 385.64 +2008-03-22, 386.17 +2008-03-29, 386.70 +2008-04-05, 388.00 +2008-04-12, 385.90 +2008-04-19, 386.38 +2008-04-26, 387.19 +2008-05-03, 386.94 +2008-05-10, 388.90 +2008-05-17, 388.84 +2008-05-24, 388.53 +2008-05-31, 388.48 +2008-06-07, 388.16 +2008-06-14, 387.79 +2008-06-21, 387.54 +2008-06-28, 388.11 +2008-07-05, 387.08 +2008-07-12, 386.11 +2008-07-19, 385.73 +2008-07-26, 385.96 +2008-08-02, 384.91 +2008-08-09, 384.68 +2008-08-16, 383.89 +2008-08-23, 383.55 +2008-08-30, 383.16 +2008-09-06, 383.18 +2008-09-13, 383.37 +2008-09-20, 382.98 +2008-09-27, 382.92 +2008-10-04, 382.66 +2008-10-11, 382.72 +2008-10-18, 382.96 +2008-10-25, 382.94 +2008-11-01, 383.61 +2008-11-08, 383.60 +2008-11-15, 384.03 +2008-11-22, 384.32 +2008-11-29, 384.46 +2008-12-06, 384.77 +2008-12-13, 384.89 +2008-12-20, 385.15 +2008-12-27, 385.80 +2009-01-03, 386.01 +2009-01-10, 386.53 +2009-01-17, 386.64 +2009-01-24, 387.05 +2009-01-31, 387.26 +2009-02-07, 386.51 +2009-02-14, 387.44 +2009-02-21, 387.40 +2009-02-28, 387.48 +2009-03-07, 388.54 +2009-03-14, 388.64 +2009-03-21, 388.44 +2009-03-28, 389.17 +2009-04-04, 389.39 +2009-04-11, 389.74 +2009-04-18, 388.67 +2009-04-25, 390.37 +2009-05-02, 390.16 +2009-05-09, 389.87 +2009-05-16, 390.30 +2009-05-23, 390.76 +2009-05-30, 389.35 +2009-06-06, 390.46 +2009-06-13, 390.01 +2009-06-20, 388.88 +2009-06-27, 388.72 +2009-07-04, 388.30 +2009-07-11, 388.68 +2009-07-18, 388.03 +2009-07-25, 387.48 +2009-08-01, 387.16 +2009-08-08, 386.67 +2009-08-15, 385.27 +2009-08-22, 386.05 +2009-08-29, 385.65 +2009-09-05, 385.30 +2009-09-12, 384.48 +2009-09-19, 384.61 +2009-09-26, 384.51 +2009-10-03, 383.43 +2009-10-10, 384.28 +2009-10-17, 384.55 +2009-10-24, 384.79 +2009-10-31, 385.18 +2009-11-07, 385.60 +2009-11-14, 386.09 +2009-11-21, 386.31 +2009-11-28, 386.73 +2009-12-05, 386.91 +2009-12-12, 386.81 +2009-12-19, 388.04 +2009-12-26, 388.19 +2010-01-02, 388.41 +2010-01-09, 388.17 +2010-01-16, 388.69 +2010-01-23, 388.59 +2010-01-30, 389.04 +2010-02-06, 390.91 +2010-02-13, 389.78 +2010-02-20, 390.84 +2010-02-27, 389.38 +2010-03-06, 391.07 +2010-03-13, 391.37 +2010-03-20, 391.55 +2010-03-27, 390.08 +2010-04-03, 391.15 +2010-04-10, 391.60 +2010-04-17, 393.27 +2010-04-24, 393.27 +2010-05-01, 392.99 +2010-05-08, 392.97 +2010-05-15, 393.13 +2010-05-22, 393.55 +2010-05-29, 393.02 +2010-06-05, 393.08 +2010-06-12, 392.35 +2010-06-19, 391.73 +2010-06-26, 391.46 +2010-07-03, 391.01 +2010-07-10, 390.20 +2010-07-17, 389.91 +2010-07-24, 390.12 +2010-07-31, 389.49 +2010-08-07, 389.06 +2010-08-14, 388.76 +2010-08-21, 388.12 +2010-08-28, 387.42 +2010-09-04, 386.91 +2010-09-11, 386.85 +2010-09-18, 386.97 +2010-09-25, 386.87 +2010-10-02, 386.75 +2010-10-09, 386.98 +2010-10-16, 387.03 +2010-10-23, 387.80 +2010-10-30, 387.78 +2010-11-06, 387.95 +2010-11-13, 388.27 +2010-11-20, 389.11 +2010-11-27, 389.59 +2010-12-04, 389.88 +2010-12-11, 389.75 +2010-12-18, 389.58 +2010-12-25, 389.96 +2011-01-01, 390.50 +2011-01-08, 391.61 +2011-01-15, 391.06 +2011-01-22, 391.25 +2011-01-29, 392.00 +2011-02-05, 391.89 +2011-02-12, 391.52 +2011-02-19, 391.82 +2011-02-26, 392.50 +2011-03-05, 391.59 +2011-03-12, 391.94 +2011-03-19, 392.43 +2011-03-26, 394.11 +2011-04-02, 393.40 +2011-04-09, 392.71 +2011-04-16, 393.73 +2011-04-23, 393.22 +2011-04-30, 393.59 +2011-05-07, 393.36 +2011-05-14, 393.84 +2011-05-21, 395.12 +2011-05-28, 394.49 +2011-06-04, 394.08 +2011-06-11, 393.42 +2011-06-18, 393.92 +2011-06-25, 393.37 +2011-07-02, 393.31 +2011-07-09, 393.61 +2011-07-16, 392.64 +2011-07-23, 391.13 +2011-07-30, 391.77 +2011-08-06, 390.76 +2011-08-13, 390.53 +2011-08-20, 389.82 +2011-08-27, 389.41 +2011-09-03, 389.23 +2011-09-10, 389.17 +2011-09-17, 389.15 +2011-09-24, 388.86 +2011-10-01, 388.91 +2011-10-08, 388.74 +2011-10-15, 388.91 +2011-10-22, 389.09 +2011-10-29, 389.45 +2011-11-05, 389.64 +2011-11-12, 390.24 +2011-11-19, 390.44 +2011-11-26, 390.77 +2011-12-03, 391.08 +2011-12-10, 391.70 +2011-12-17, 392.24 +2011-12-24, 392.09 +2011-12-31, 392.26 +2012-01-07, 392.92 +2012-01-14, 393.61 +2012-01-21, 393.04 +2012-01-28, 393.03 +2012-02-04, 392.43 +2012-02-11, 393.45 +2012-02-18, 393.97 +2012-02-25, 393.62 +2012-03-03, 394.17 +2012-03-10, 393.38 +2012-03-17, 394.79 +2012-03-24, 395.15 +2012-03-31, 394.91 +2012-04-07, 396.45 +2012-04-14, 396.38 +2012-04-21, 396.56 +2012-04-28, 396.70 +2012-05-05, 397.08 +2012-05-12, 397.28 +2012-05-19, 396.56 +2012-05-26, 396.28 +2012-06-02, 396.03 +2012-06-09, 396.02 +2012-06-16, 395.86 +2012-06-23, 395.73 +2012-06-30, 395.41 +2012-07-07, 394.86 +2012-07-14, 394.59 +2012-07-21, 394.35 +2012-07-28, 393.60 +2012-08-04, 393.39 +2012-08-11, 392.93 +2012-08-18, 392.31 +2012-08-25, 391.70 +2012-09-01, 391.98 +2012-09-08, 391.00 +2012-09-15, 391.03 +2012-09-22, 391.02 +2012-09-29, 390.99 +2012-10-20, 391.29 +2012-10-27, 391.46 +2012-11-03, 391.76 +2012-11-10, 392.77 +2012-11-17, 393.42 +2012-11-24, 393.36 +2012-12-01, 393.61 +2012-12-08, 394.05 +2012-12-15, 394.46 +2012-12-22, 394.83 +2012-12-29, 394.62 +2013-01-05, 394.99 +2013-01-12, 395.57 +2013-01-19, 396.21 +2013-01-26, 395.64 +2013-02-02, 396.39 +2013-02-09, 396.46 +2013-02-16, 397.31 +2013-02-23, 396.88 +2013-03-02, 397.13 +2013-03-09, 396.64 +2013-03-16, 397.25 +2013-03-23, 397.21 +2013-03-30, 398.39 +2013-04-06, 398.05 +2013-04-13, 397.43 +2013-04-20, 398.76 +2013-04-27, 399.33 +2013-05-04, 399.64 +2013-05-11, 399.78 +2013-05-18, 400.04 +2013-05-25, 400.22 +2013-06-01, 399.43 +2013-06-08, 398.91 +2013-06-15, 398.58 +2013-06-22, 398.50 +2013-06-29, 398.65 +2013-07-06, 397.56 +2013-07-13, 397.48 +2013-07-20, 396.83 +2013-07-27, 396.98 +2013-08-03, 396.61 +2013-08-10, 395.55 +2013-08-17, 395.24 +2013-08-24, 394.73 +2013-08-31, 394.33 +2013-09-07, 393.52 +2013-09-14, 393.25 +2013-09-21, 393.53 +2013-09-28, 393.22 +2013-10-05, 393.47 +2013-10-12, 393.52 +2013-10-19, 393.93 +2013-10-26, 394.13 +2013-11-02, 394.39 +2013-11-09, 395.25 +2013-11-16, 394.85 +2013-11-23, 395.66 +2013-11-30, 396.06 +2013-12-07, 396.27 +2013-12-14, 396.52 +2013-12-21, 397.30 +2013-12-28, 397.59 +2014-01-04, 397.90 +2014-01-11, 397.82 +2014-01-18, 398.13 +2014-01-25, 397.75 +2014-02-01, 398.02 +2014-02-08, 397.98 +2014-02-15, 397.79 +2014-02-22, 398.24 +2014-03-01, 397.92 +2014-03-08, 398.88 +2014-03-15, 400.68 +2014-03-22, 399.62 +2014-03-29, 400.34 +2014-04-05, 401.32 +2014-04-12, 401.22 +2014-04-19, 401.29 +2014-04-26, 401.42 +2014-05-03, 401.74 +2014-05-10, 401.51 +2014-05-17, 402.18 +2014-05-24, 401.44 +2014-05-31, 402.12 +2014-06-07, 401.55 +2014-06-14, 401.31 +2014-06-21, 401.21 +2014-06-28, 400.57 +2014-07-05, 400.06 +2014-07-12, 399.58 +2014-07-19, 398.54 +2014-07-26, 397.86 +2014-08-02, 397.86 +2014-08-09, 397.45 +2014-08-16, 397.23 +2014-08-23, 396.75 +2014-08-30, 396.37 +2014-09-06, 396.35 +2014-09-13, 394.80 +2014-09-20, 395.32 +2014-09-27, 395.55 +2014-10-04, 395.57 +2014-10-11, 395.49 +2014-10-18, 395.72 +2014-10-25, 395.91 +2014-11-01, 396.52 +2014-11-08, 396.90 +2014-11-15, 397.34 +2014-11-22, 397.24 +2014-11-29, 398.10 +2014-12-06, 398.26 +2014-12-13, 398.92 +2014-12-20, 399.09 +2014-12-27, 399.01 +2015-01-03, 399.92 +2015-01-10, 399.86 +2015-01-17, 399.72 +2015-01-24, 399.98 +2015-01-31, 400.20 +2015-02-07, 400.02 +2015-02-14, 400.15 +2015-02-21, 400.36 +2015-02-28, 401.03 +2015-03-07, 401.63 +2015-03-14, 401.80 +2015-03-21, 400.79 +2015-03-28, 402.50 +2015-04-04, 402.74 +2015-04-11, 403.88 +2015-04-18, 403.80 +2015-04-25, 403.22 +2015-05-02, 404.07 +2015-05-09, 404.09 +2015-05-16, 404.31 +2015-05-23, 403.85 +2015-05-30, 403.81 +2015-06-06, 403.45 +2015-06-13, 402.72 +2015-06-20, 402.63 +2015-06-27, 402.36 +2015-07-04, 402.25 +2015-07-11, 401.71 +2015-07-18, 401.02 +2015-07-25, 401.30 +2015-08-01, 398.74 +2015-08-08, 399.21 +2015-08-15, 399.12 +2015-08-22, 399.03 +2015-08-29, 398.80 +2015-09-05, 398.16 +2015-09-12, 397.10 +2015-09-19, 397.57 +2015-09-26, 397.42 +2015-10-03, 397.74 +2015-10-10, 398.51 +2015-10-17, 398.61 +2015-10-24, 398.43 +2015-10-31, 398.87 +2015-11-07, 399.53 +2015-11-14, 400.75 +2015-11-21, 400.42 +2015-11-28, 400.83 +2015-12-05, 400.91 +2015-12-12, 402.40 +2015-12-19, 402.32 +2015-12-26, 402.01 +2016-01-02, 402.25 +2016-01-09, 402.23 +2016-01-16, 402.68 +2016-01-23, 403.26 +2016-01-30, 402.79 +2016-02-06, 404.98 +2016-02-13, 403.22 +2016-02-20, 404.59 +2016-02-27, 403.98 +2016-03-05, 403.99 +2016-03-12, 404.51 +2016-03-19, 405.01 +2016-03-26, 406.16 +2016-04-02, 405.70 +2016-04-09, 408.56 +2016-04-16, 408.16 +2016-04-23, 407.70 +2016-04-30, 407.84 +2016-05-07, 407.51 +2016-05-14, 407.54 +2016-05-21, 407.41 +2016-05-28, 407.92 +2016-06-04, 407.52 +2016-06-11, 406.99 +2016-06-18, 407.02 +2016-06-25, 406.40 +2016-07-02, 405.96 +2016-07-09, 404.93 +2016-07-16, 403.64 +2016-07-23, 403.71 +2016-07-30, 403.76 +2016-08-06, 403.22 +2016-08-13, 402.11 +2016-08-20, 401.78 +2016-08-27, 401.43 +2016-09-03, 401.27 +2016-09-10, 401.13 +2016-09-17, 401.25 +2016-09-24, 400.85 +2016-10-01, 400.82 +2016-10-08, 401.20 +2016-10-15, 401.70 +2016-10-22, 401.82 +2016-10-29, 402.38 +2016-11-05, 403.15 +2016-11-12, 403.12 +2016-11-19, 403.95 +2016-11-26, 404.44 +2016-12-03, 404.16 +2016-12-10, 404.28 +2016-12-17, 404.63 +2016-12-24, 404.66 +2016-12-31, 405.38 +2017-01-07, 405.94 +2017-01-14, 405.91 +2017-01-21, 406.37 +2017-01-28, 406.35 +2017-02-04, 406.20 +2017-02-11, 406.02 +2017-02-18, 406.17 +2017-02-25, 408.07 +2017-03-04, 407.06 +2017-03-11, 406.53 +2017-03-18, 406.73 +2017-03-25, 407.89 +2017-04-01, 408.66 +2017-04-08, 407.19 +2017-04-15, 409.12 +2017-04-22, 409.89 +2017-04-29, 409.04 +2017-05-06, 409.54 +2017-05-13, 409.83 +2017-05-20, 410.18 +2017-05-27, 409.88 +2017-06-03, 409.67 +2017-06-10, 409.62 +2017-06-17, 408.82 +2017-06-24, 408.43 +2017-07-01, 407.77 +2017-07-08, 407.68 +2017-07-15, 407.11 +2017-07-22, 406.76 +2017-07-29, 406.50 +2017-08-05, 405.93 +2017-08-12, 405.55 +2017-08-19, 404.81 +2017-08-26, 404.54 +2017-09-02, 404.10 +2017-09-09, 403.39 +2017-09-16, 403.44 +2017-09-23, 402.95 +2017-09-30, 402.73 +2017-10-07, 403.19 +2017-10-14, 403.60 +2017-10-21, 404.05 +2017-10-28, 404.25 +2017-11-04, 404.28 +2017-11-11, 404.51 +2017-11-18, 405.53 +2017-11-25, 406.36 +2017-12-02, 406.85 +2017-12-09, 406.16 +2017-12-16, 406.50 +2017-12-23, 407.07 +2017-12-30, 407.24 +2018-01-06, 407.96 +2018-01-13, 408.08 +2018-01-20, 408.26 +2018-01-27, 408.05 +2018-02-03, 407.63 +2018-02-10, 408.41 +2018-02-17, 408.46 +2018-02-24, 408.69 +2018-03-03, 408.77 +2018-03-10, 409.64 +2018-03-17, 408.69 +2018-03-24, 409.77 +2018-03-31, 409.63 +2018-04-07, 409.41 +2018-04-14, 410.10 +2018-04-21, 411.36 +2018-04-28, 410.58 +2018-05-05, 409.75 +2018-05-12, 411.62 +2018-05-19, 411.43 +2018-05-26, 411.81 +2018-06-02, 411.15 +2018-06-09, 411.24 +2018-06-16, 410.56 +2018-06-23, 410.81 +2018-06-30, 410.19 +2018-07-07, 409.29 +2018-07-14, 409.07 +2018-07-21, 408.49 +2018-07-28, 408.08 +2018-08-04, 407.36 +2018-08-11, 407.28 +2018-08-18, 407.07 +2018-08-25, 406.63 +2018-09-01, 405.98 +2018-09-08, 405.61 +2018-09-15, 405.60 +2018-09-22, 405.69 +2018-09-29, 405.56 +2018-10-06, 405.56 +2018-10-13, 405.91 +2018-10-20, 406.42 +2018-10-27, 406.51 +2018-11-03, 406.83 +2018-11-10, 407.69 +2018-11-17, 409.11 +2018-11-24, 408.46 +2018-12-01, 408.56 +2018-12-08, 408.92 +2018-12-15, 409.56 +2018-12-22, 409.73 +2018-12-29, 409.26 +2019-01-05, 410.32 +2019-01-12, 409.73 +2019-01-19, 412.31 +2019-01-26, 410.91 +2019-02-02, 410.97 +2019-02-09, 412.12 +2019-02-16, 411.79 +2019-02-23, 411.46 +2019-03-02, 412.08 +2019-03-09, 412.26 +2019-03-16, 412.87 +2019-03-23, 410.73 +2019-03-30, 412.37 +2019-04-06, 412.62 +2019-04-13, 413.36 +2019-04-20, 413.94 +2019-04-27, 414.27 +2019-05-04, 414.41 +2019-05-11, 414.95 +2019-05-18, 415.08 +2019-05-25, 414.66 +2019-06-01, 414.21 +2019-06-08, 414.45 +2019-06-15, 413.85 +2019-06-22, 413.68 +2019-06-29, 413.38 +2019-07-06, 412.69 +2019-07-13, 412.30 +2019-07-20, 411.76 +2019-07-27, 410.32 +2019-08-03, 410.50 +2019-08-10, 410.48 +2019-08-17, 410.05 +2019-08-24, 409.52 +2019-08-31, 409.32 +2019-09-07, 408.80 +2019-09-14, 408.61 +2019-09-21, 408.50 +2019-09-28, 408.28 +2019-10-05, 407.99 +2019-10-12, 408.61 +2019-10-19, 408.77 +2019-10-26, 408.68 +2019-11-02, 409.86 +2019-11-09, 410.15 +2019-11-16, 410.22 +2019-11-23, 410.48 +2019-11-30, 410.92 +2019-12-07, 411.27 +2019-12-14, 411.67 +2019-12-21, 412.30 +2019-12-28, 412.59 +2020-01-04, 413.19 +2020-01-11, 413.39 +2020-01-25, 413.36 +2020-02-01, 413.99