diff --git "a/module3/exo3/Concentration de CO2 dans l'atmosph\303\250re.ipynb" "b/module3/exo3/Concentration de CO2 dans l'atmosph\303\250re.ipynb"
new file mode 100644
index 0000000000000000000000000000000000000000..71269e7f9ac7273354681d2059bc3304cc64e8cf
--- /dev/null
+++ "b/module3/exo3/Concentration de CO2 dans l'atmosph\303\250re.ipynb"
@@ -0,0 +1,594 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "La concentration en CO2 atmosphérique est une donnée majeure dans un contexte de changement climatique. Celle-ci est mesurée à l'observatoire de Mauna Loa, depuis 1958, à l'initiative de [Charles David Keeling](https://en.wikipedia.org/wiki/Charles_David_Keeling).\n",
+ "\n",
+ "L'analyse de la chronique de la concentration en CO2 atmosphérique a pour objectif de mettre en évidence:\n",
+ "1. l'évolution à long terme du signal\n",
+ "2. la saisonnalité du signal "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#import des packages\n",
+ "%matplotlib inline\n",
+ "import os\n",
+ "import urllib.request\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from datetime import datetime\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Importation des données"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les mesures de concentration en CO2 atmosphérique sont disponibles sur le site wet du [scripps](https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record.html). \n",
+ "\n",
+ "Les données sont téléchargées au format CSV. Ce fichier comporte une notice de 43 lignes qui seront ignorées lors de l'import. Il est structuré en deux colonnes, la date au format \"yyyy-mm-dd\" et la concentrations en CO2 en micro-mol CO2 per mol (ppm).\n",
+ "Le dataset a été téléchargé le 26/03/2020 et couvre la période de 29-03/1958 au 01-02-2020."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,4))\n",
+ "plt.plot(data['dates'], data['CO2']);\n",
+ "plt.xlabel('year');\n",
+ "plt.ylabel('CO2 (ppm)');"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Tendance long terme"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "La concentration en CO2 entre 1957 et 2017 présente une cyclicité annuelle superposée à une tendance à long terme. La tendance à long terme peut être estimée à l'aide d'une moyenne glissante. La [moyenne glissante](https://fr.wikipedia.org/wiki/Moyenne_mobile) est calculée pour chaque temps t en faisant la moyenne des n points autour tu temps t:\n",
+ "$$ \n",
+ "MoyenneGlissante(t) = \\frac{1}{n} \\sum_{i=t-\\frac{n}{2}}^{t+\\frac{n}{2}} data(i)\n",
+ "$$\n",
+ "Cette opération a pour objectif de lisser les cyclicités annuelles et donc d'isoler la tendance à long terme."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VGX68PHvMyWZ9J4QSCABRLqUUAQLoigqa1lRsb2oKK7ruq6uDbuuqPuzK2LD3gABBRWx0URBIPQqoaeQ3stMJvO8f5yZyQRCcWXSuD/Xlcs5Z86cPBPD3HnafSutNUIIIcTBTM3dACGEEC2TBAghhBCNkgAhhBCiURIghBBCNEoChBBCiEZJgBBCCNEovwcIpZRZKbVWKfW1+/hZpdQ2pdQGpdQXSqlIn2snKaUylFLblVLn+bttQgghDq8pehB3AFt9jn8Aemut+wK/A5MAlFI9gXFAL2A0MFUpZW6C9gkhhGiEXwOEUioJuBCY5jmntf5ea+10H64AktyPLwama63tWuvdQAYw2J/tE0IIcXgWP9//JeBeIOwwz98IzHA/7oARMDwy3ecOKzY2VqekpPzJJgohxIklPT29QGsdd7Tr/BYglFJjgDytdbpSakQjzz8IOIFPPKcauc0heUCUUhOBiQAdO3Zk9erVx63NQghxIlBK7T2W6/w5xDQcuEgptQeYDoxUSn0MoJQaD4wBrtH1yaAygWSf1ycB2QffVGv9ltY6TWudFhd31AAohBDif+S3AKG1nqS1TtJap2BMPi/UWl+rlBoN3AdcpLWu8nnJPGCcUipQKZUKnASs9Ff7hBBCHJm/5yAaMwUIBH5QSgGs0Fr/TWu9WSk1E9iCMfR0m9a6rhnaJ4QQgiYKEFrrxcBi9+OuR7huMjD5z3yv2tpaMjMzqamp+TO3EUdgs9lISkrCarU2d1OEEH7UHD0Iv8rMzCQsLIyUlBTcPRRxHGmtKSwsJDMzk9TU1OZujhDCj9pcqo2amhpiYmIkOPiJUoqYmBjpoQlxAmhzAQKQ4OBn8vMV4sTQJgOEEEK0NQUV9ib/nhIgmshNN93Eli1bjvt9Q0NDDzm3Z88eevfu/afuu27dOubPn/+n7iGEOD4OlNZw36wN1G8baxoSIJrItGnT6NmzZ3M3o4G6usOvIpYAIUTLkVtmzPltzi4DoLSqlmqH/3cBSIA4ziorK7nwwgs55ZRT6N27NzNmGKmmRowY4U0L8s4779CtWzdGjBjBzTffzD/+8Q8Arr/+ev75z38ybNgwOnfuzKxZswCoqKjg7LPPZsCAAfTp04e5c+cetR1Op5Px48fTt29fxo4dS1WVsScxJSWFJ554gtNOO43PP/+8QbsKCgpISUnB4XDwyCOPMGPGDPr16+d9D0KI5pFXbgwvVdqNPKdz1mby2+5Cv39fCRDH2YIFC2jfvj3r169n06ZNjB49usHz2dnZ/Oc//2HFihX88MMPbNu2rcHzOTk5LFu2jK+//pr7778fMPYdfPHFF6xZs4ZFixbx73//+6hdze3btzNx4kQ2bNhAeHg4U6dO9T5ns9lYtmwZ48aNa/S1AQEBPPHEE1x55ZWsW7eOK6+88n/5UQghjpPymloACisdACzbUUCYzf+7FNrcPoiDTXh/1XG/5zvXDzrsc3369OHuu+/mvvvuY8yYMZx++ukNnl+5ciVnnnkm0dHRAFx++eX8/vvv3ucvueQSTCYTPXv2JDc3FzD2HjzwwAMsXboUk8lEVlYWubm5tGvX7rDtSE5OZvjw4QBce+21vPLKK9x9990A8oEvRCvzzYYcwmwWKmqcuFwapeCUpMijv/BPavMB4kgf5v7QrVs30tPTmT9/PpMmTeLcc8/lkUce8T5/tL/8AwMDD7n2k08+IT8/n/T0dKxWKykpKUfdh3DwUlTf45CQEO9ji8WCy+UCkL0NQrRAf/8kHYDI4ACqHE5KqmsJD7JiMft/AEiGmI6z7OxsgoODufbaa7n77rtZs2ZNg+cHDx7MkiVLKC4uxul0Mnv27KPes7S0lPj4eKxWK4sWLWLv3qNn6t23bx/Lly8H4LPPPuO0005r9LqUlBTS041fQM+cB0BYWBjl5eVH/T5CiOOrzqWZ8P4qSqqM4SR7rfEHXPuqIoY9fDtFReVEBwc0SVskQBxnGzduZPDgwfTr14/Jkyfz0EMPNXi+Q4cOPPDAAwwZMoRzzjmHnj17EhERccR7XnPNNaxevZq0tDQ++eQTunfvftR29OjRgw8++IC+fftSVFTErbfe2uh1d999N6+//jrDhg2joKDAe/6ss85iy5YtMkktRBP74Nc9QMN9DzEFOYy7+zoOpHanyKmIDm2aAKGael3t8ZSWlqYPLhi0detWevTo0UwtOjYVFRWEhobidDq59NJLufHGG7n00kubu1l/SGv4OQvRGk2as4G8MjtRIQE8d/kp/HPKDzww+SaKr7uR53pewKUDOlDtqOPytOSj3+wwlFLpWuu0o10nPYhm8Nhjj9GvXz969+5Namoql1xySXM3SQjRDFwuzWPzNnuXr4IxxATQKToY6uq49bVJVJ8/hrhHjFWNW3PKSAi3NUn72vwkdUv03HPPNXcThBAtwPdbctlfVEV2STUnJYQBUFhhzD0EWEzUPvwILpOZnPsfITU0kNTYELbllHNp/w5N0j7pQQghRDPJLDY2sHr2N3iG/ENtFpK/no3j/Q+ZNvFxBnUxyivHhhmrHIMDmuZvewkQQgjRBPYXVfFLRkGDc5uySoH6ndLl7qGmG6oyOOPt//L0bc9RFhGD1b2k1bN6KbQJNsmBDDEJIUSTmLc+mzV7ixnYKQqb1YzLpSmvMQJCvjtA3Dl9HSdvXU3fdx/htX89S3D/vqT5LGmNDjEeh9uappqjBAghhGgCntQYn6dnct3QTjjqXN7nSqocoDVnLprNpXPeRH85mw1Z4aSFBNCnQ/0y+NO7xTbZBDXIEJNflJSUNMh9dLw1luJbCNGyJUcFAxBkNQPgdNVvMbBnZuP6y18YsfgLqhYtwXz2SKKCrWzNKSMiuL63EGgx0yfpyPumjicJEH5wuABxpPTaQoi2rc6dQ6naYQwreVJ43125mdvuupyMxC48+fB7xA3oA0BSVDDlNU5iQgIPe09/kyEmP7j//vvZuXMn/fr1w2q1EhoaSmJiIuvWrWPLli18/PHHvPLKKzgcDoYMGcLUqVMxm82EhoZyxx138PXXXxMUFMTcuXNJSEhg9+7dXH311TidzkOywwohWofPVu4DoMC9jHX6b3sZO/NVum9bxgv/foHokadTt6MAk8nImxbp7jlEhTTNfENjpAfhB8888wxdunRh3bp1PPvss6xcuZLJkyezZcsWtm7dyowZM/jll19Yt24dZrOZTz75BDBqSQwdOpT169dzxhln8PbbbwNwxx13cOutt7Jq1aojZnAVQrR8FXYnuFycPeN1Ttu5GpWeTmW/NLSGM7rFea+zWYyhqED3f5tD2w8QSh3/rz9o8ODBpKamAvDTTz+Rnp7OoEGD6NevHz/99BO7du0CjDoMY8aMAWDgwIHs2bMHgF9++YWrrroKgOuuu+44/FCEEE3Jk1fpkv4doKwULriAxFW/UD5nHkRFERFkJae0mqCA+mAwdmASr1zVv7maDJwIQ0wtINeUb3ptrTXjx4/n6aefPuQ6q9XqTcttNptxOuu33x+cvlsI0bLtzK+gU3QwFrOJVbuLAIi2aMY9/S9qBvbiycsfZcrJxh+OEUEWtueWcUpyfY0Hk0kREti8H9FtvwfRDI6UKvvss89m1qxZ5OXlAVBUVHTU9N3Dhw9n+vTpAN7hKCFEy1Vhd/LUN1tZu78EwFjSqjW9HrmLssAQlt71H1xmi3f4KDzIir3W5V3p1FJIgPCDmJgYhg8fTu/evbnnnnsaPNezZ0+efPJJzj33XPr27cuoUaPIyck54v1efvllXnvtNQYNGkRpaak/my6EOA5+de+Yrqk1Vi6WVNUy+tuPCN+7i2k3P05ulZMhnaO91wdYjI/i5OiWFSDa/hBTM/n0008P+9yVV17ZaNnPiooK7+OxY8cyduxYAFJTU73FfwBvrWohRMvkmUsocudYypr/E7d99ymmTevotq2aZTvyGdAxynt9krvnEBnUfCuWGiM9CCGE+JPyymu8vQUwpj4DLCb2FVZBVRU3TnucH//+ECQnExVsxVmn6ecz39C9XRhn90jwLnFtKSRACCHEnzRp9kZu+6S+vPC6/SXEhAaQXVqNvv12dqf2osvfbwAgyp1PKdInx5LNaubqIR2bttHHwO8BQillVkqtVUp97T6OVkr9oJTa4f5vlM+1k5RSGUqp7Uqp8/7X79maq+S1BvLzFaKeb2lQj/X7S8gpqSH1u7non5fx6fX3e3sMoe6VSVHBLWs4qTFN0YO4A9jqc3w/8JPW+iTgJ/cxSqmewDigFzAamKqU+sM7RGw2G4WFhfIh5idaawoLC7HZmi5hmBAt2YpdhQAkRQU1OJ+Qs5erPn2Bdc++TlVg/eRzuwjj345vD6Kl8usktVIqCbgQmAzc5T59MTDC/fgDYDFwn/v8dK21HditlMoABgPL+QOSkpLIzMwkPz//T7dfNM5ms5GUlNTczRCiWWSVVGNWyvtB/8WaLAAq7MYchN1ZR/yBfTz+1r18Nf5OfnXEAA7v63u1j+CBC3t4Vy61ZP5exfQScC8Q5nMuQWudA6C1zlFKxbvPdwBW+FyX6T7XgFJqIjARoGPHQ8fsrFard9eyEEIcb498uYn4cBtP/7VPg/PlNbVorfn4P9O4/6UHsPx3MusTT6NPXCi1Pqm9AbrEtY6MzH4LYUqpMUCe1jr9WF/SyLlDxom01m9prdO01mlxcXGNvEQIIfwrxCclRoDFRI/EcALMCseLL3H5Kw+x4pnXUX/7G5nF1WSXVDdZgZ/jzZ89iOHARUqpCwAbEK6U+hjIVUolunsPiUCe+/pMINnn9UlAth/bJ4QQ/5PdBZXex707RHBqhxDqnp2EKWcHTz44jWvGnOl9PiOvgl4dmq6Gw/Hktx6E1nqS1jpJa52CMfm8UGt9LTAPGO++bDww1/14HjBOKRWolEoFTgJW+qt9QgjxR613p84AY8FGlcNJxoYMul59KeHV5eyc+x1lCUmc3M4YVR/VMwFwV4xrhZpjluQZYJRSagcwyn2M1nozMBPYAiwAbtNaS4UdIUSLsSHLSHUTFGCm0lHHK4+9y8OPj6d06Gks/M9Ucl1WTCZjXwNAj8RwAC7ok9hsbf4zmiRAaK0Xa63HuB8Xaq3P1lqf5P5vkc91k7XWXbTWJ2utv22KtgkhxOHMSs9s0GtYvM0YETebFI6PPuGO1yex7P5nSJ7yHBEhgazYVYi9tn5CuqymFoCoVrCktTGSi0kIIQ7j24055CRHNkjDjdacMettAn+Zx8xn3mPAhcZ8Q3xYIMsy8hvshxjYydgHbG5hKTSOlQQIIYRoRIXdqMcS7N75nFdWg9np5OWlb1G9cSUrP/mKrcVmRoUavYOOMcHYa130bB/uvUdwgIXTT2q9qy1b/k4NIYRoBp7kexl5Rm2X3zbt558v3UlQYR6/vf8F+WGxFFQ4aBdubJgLdi99DWulS1obIwFCCCGAPQWVbMisn2/IKakBoLS6lqriUk6/ewLVcQkwdy626Eh+3VmA1tqbgdViMj5O0zpFHXrzVkoChBBCANOW7eLlH3d4j/cVVQHQzuTEOnwYGyxRTBv/AFgsRARZKa9xNni9J3VGfHjbyVMmcxBCiBNehd3p7TF4zFmTCVpzxVtPUNG3PwuuuJdrehvLVSPchX1OOynWe310SADvXD+o6RrdBKQHIYQ44RRVOtiUVV++d7PP47zyGordleDO+WEGcVl72PzAU+SW2emWYGyA81R+a2k1pI836UEIIU4493y+HsD7F3+gtT630uasMgDO/e4TLvhpBr+9N4esCmNvQ6x7xZKnB5EY2XaGkxojAUIIccLLLqkGYECnKIKtJto/9yQnL51H3c/LCDZHsG9bHvHhgVjMxqCLxWzizesGeo/bqrb97oQQohHR7rKfnsJis9MzAYg01ZE4+WHUV1/zzKQ3Ce2aSlCAmT0FlQRZG/493daDA0iAEEKcYIorHRS55xjK7U5v7yFp/w7GTLiYgN27+PK5Dxg3uj8Ws8lbcyAk8A8XuGz1ZIhJCNGmaa2xO13eBHpvLNkJGMtRiyoc7MirYMjyBdw05xU2/ethtpxzMUV5ld6Kcb3bG6m6PRlaTyQSIIQQbdqs9EwWbDrgnZDOyKsAIDHCRuWadaS98hwDVq/G9NNPVIS0pySzlKJKu3cYKsBi4u9ndaFnYuus6fBnyBCTEKJNW7DpAADOg8p+Dv5xNidddTEZKT2Z9eZc6NuX+DAbWcXV1NS6vCuVAAZ2iiYoQIaYhBCiTaqwO4l0p90+66fPOeWnT/nx7S+YXWYjuMpIlxEdEkB2STWJkTaUap0ZWI8n6UEIIdqM0qpaNmbWb3rzrFICvKkxzvv2Y8Yumcn2T+eyN7o98eE27hrVDajfAFflkFplIAFCCNGG/LKzgJd+/N177JlvAHh14Q4qXniZEYtmo5csIbRnN4oq7VQ5nN75BpNJcWqXGP7aP6nJ294SSYAQQrQZnv0MnnkHu9NFUICZmNAA/vLLl5j/7/947t7XCErtRHRIILsLKqmocRIWWD/aftPpnRvkWDqRyRyEEKLNMWo4tGPx9jw6hVsZ9/FzhK1czoYP59AzJB4w0mVoDWE2izdlt2hIehBCiFZp+sp9THh/VaPPdY039izs2LyHi++5npC8A3zx2kwWuyIoc89FeMqAunSjtxBIgBBCtFI/bMkFjIlpgMIKu/e56lontd//wKOPXotr8BAy3/uUEksweWV2UmNDvNdd2DeRf4zs2rQNb0UkQAghWjVPYZ97Z23wnit4/V1M113HrL8/xsnvv0aQLYBNWaUEWEwM8Kn49tcBSd4U3uJQMgchhGjxnHUu5qzN4oq0ZO+59pFBZJdUU+OsX5IaUlHKQ3NfxLl5C/s/nUOhPQqllHeOIa+shrjQwCZvf2slPQghRIu3dn8J32060GA3dG2di+BACyt3FwHQce92Hn5iPMHduvDmy7PY3/Ek4sKMYJAaUz+s5CkNKo5OflJCiBZv7b5iAHLLjXmG4koH+eV2zukRj8vuQL/6Knc9fzvmZ57B+exzlLvM7CmsomO0UfHNZFIEWuXj7o+Sn5gQosULcNdeOFBq1I3+cPleALrVVTDu75din/Ml7zw+jegbryMk0EKF3cmegkpSfCakzSb5uPuj5CcmhGjxqmtdhNos3lrRCeGBJB/YS9exF7Bh2HmsfXsGgf37AWA1m6hzafYUVHp7EACnJEXQOS6k0fuLxskktRCixcnIK6dLXKg3Yd7qPUUkRQVR6XCCw0HsK8/zwPyPqXnqGRbEDKZLVinhQfUfZ0qB1nhrQICxQ1r8MdKDEEK0KG8v3cXT87exJacMgLIaY59Dt3ZhWLZvg7Q0YjetYemHX2GdcCMVdiflNbX06VBfr+G/l/XlX+d0a5b2tyUSIIQQLcqKXYUA3rKgry3MACBl2Y+ccdNYim66lVfveJ7gHt0ItJhwOF1k5FUQH2bz3iMmNJA+SSdegZ/jzW8BQillU0qtVEqtV0ptVko97j7fTym1Qim1Tim1Wik12Oc1k5RSGUqp7Uqp8/zVNiFEy+GpCX2wHPeE9K6cEm7ev4KBk+/nxbte4vUuZ4JSnNo5xjsE5azT3oys4vjx5xyEHRipta5QSlmBZUqpb4EngMe11t8qpS4A/g8YoZTqCYwDegHtgR+VUt201pKYXYg2amd+BU99s5UXx/Uj3GbUYuiXHInFbCK/3A4LFvDC3ddi65iMacF89m6BM6OD6ZMUeUhBH9nfcPz57SeqDZ5k7Fb3l3Z/hbvPRwDZ7scXA9O11nat9W4gAxiMEKLN+tGdT2nx9nwASqoc7MirYHBqFGzegr72Wqbe+jR1q1djHjyI+PBACsrtBPtMPv93bF8mXdC9Wdrf1vk15CqlzEqpdUAe8IPW+jfgX8CzSqn9wHPAJPflHYD9Pi/PdJ87+J4T3UNTq/Pz8/3ZfCGEn8W4017MW5cFQEGFnYTwQHpEB3LRs/eQfe8jOIYN965GCrdZ2Z5bTlRIfb3o2NBAb/ZWcXz5NUBoreu01v2AJGCwUqo3cCtwp9Y6GbgTeMd9eWMJ2Q9JxKu1fktrnaa1TouLi/NX04UQTeDbjTkADO9qFOiptNcRFGAh+PFHKUrowIbRY0mMqJ98tlnNOOs0vdrLBHRTaJJBO611CbAYGA2MB+a4n/qc+mGkTCDZ52VJ1A8/CSFaOa01E95f1aAMqEeduyhD8e5MzpozDT77jO/ueIKM/Eoig+snnzdlGfWmffc3CP/x5yqmOKVUpPtxEHAOsA3jQ/9M92UjgR3ux/OAcUqpQKVUKnASsNJf7RNCNK1tB8oBmLl6f4PzI3vEU1LpgOefZ+iY00gqyIRvviEwIYG9RVVEBtUPJ911bjeuGtyxSdt9IvPnKqZE4AOllBkjEM3UWn+tlCoBXlZKWYAaYCKA1nqzUmomsAVwArfJCiYh2g6H08jEutPdg/CkzRiaHE7+A3eii/fwzJOfcMeEURASQMQvu9mQ6Wgw39CrfYQMLzUhvwUIrfUGoH8j55cBAw/zmsnAZH+1SQjRfDw7oj3mfL6EkT9+T8rT8ygNTSRj1jdUpucR5d7PEBFsBIaIINnf0FyOKUAopaIw9iZUA3u01q6jvEQIIRpYvae4/uD11xl3/4PsHHQGpldf5bWsSC4u11TYnd5LbBZjnqGLJNhrNocNEEqpCOA24CogAMgHbECCUmoFMFVrvahJWimEaHV25lfQLtxGSKAFZ52LTVmlXNSvPQVT3sL13bs88eC7DDknjb4Dkugyfytz12Y1eL3DXRzo4A1xoukcqQcxC/gQON29CslLKTUQuE4p1Vlr/U6jrxZCnLC01jz1zVYA3rl+EFW1xnTigB/nEDHndXLmL6BgWx2X9je2OoUEWIgJDeDULjHee4zsHk+yT7pu0fQOGyC01qOO8Fw6kO6XFgkhWr3S6obzDd9vzqXHlpUkf/Akb/zfh1SWhQBl3t5BSKCZwgoH7SOCvK8Js1kZ0DGqKZstDnKscxB9gRTf67XWcw77AiHECe1AWU2D432fzmHi24/B11+iXR3YsqeowfO7CioBGux5EM3vqPsglFLvAu8ClwF/cX+N8XO7hBCtyIT3V/G5z/6GA6U1DOhk/PWv583jprcfI//D6XDGGUQFWwm1WRqUA811Z26NCrYiWo5j2Sg31J3aYrzW+gb3141+b5kQolVZubu+V/DR8r2EBloYsnYR3Hwzb9/3CjHnjgCMXkJFjZMhqdHe6yeclgpAXFhgk7ZZHNmxDDEtV0r11Fpv8XtrhBCtjmdpqqfAz687CwA4e+2PhH/4LFmz57L7gI2IoIa9gx6J4d7Hw7rGMsydj0m0HMcSID7ACBIHMGo8KIxs3n392jIhRKuwbEfDrMpfrs1i+M9f0WHBO7z55DRO7tCVmPI874R036QIvt6QTVJUUGO3Ey3IsQSId4HrgI2AbJAT4gTmrHNxy0fpRARbeeGKfgB8vjoTALNJ4ait46pf53DS19NQSxdh329iZ14Fobb6j5r2kUFMuXpAs7Rf/DHHMgexT2s9T2u9W2u91/Pl95YJIZpVpd3JhPdXUVpVv2S12P3Yc67Gvb/hrwOSSC09AGMupMPcmez9cgGcfDJ1WrN8ZyHbcsqb/g2IP+1YAsQ2pdSnSqmrlFJ/9Xz5vWVCiGZVXGXMKdw1c5333OLted7HWmtKqmqxOmoYPesN7njwWsoHD+P5Jz8ivvfJAGzLKQOggwwntUrHEiCCMOYezkWWuQpxwiiurO85aG3Ua6hxuhicGk1EkJWSqloKZn7BEw9dhXnLZqa/MZddE/5BiRNi3An3PMV+Kmqch34D0eIddQ5Ca31DUzRECNG87M46iiodJLp3M5fb6wPE5uwyEsJtLN6Wx42npeLYtRvr5ZcRl76eT667lzuf/yfql93sLawiIsiKyWRMSF/Ytz1vLtnJDcNTm+U9iT/nWDbKdVZKfaWUyldK5Sml5roL+ggh2pAPft3DQ19s8h6v2FnIGd2Msr6Vdif7iiqx1DpIeeslbv7X5RSf3JtHnvyUztddBkB0SAA78ysaLGcdnBrNaSfF0iVeMrK2RscyxPQpMBOjAFB7jDKh0/3ZKCFE09Ja89uu+o1utXUuNmeX8UtGAf2SI7GgCVv4A48/cjXtt21g4UffsOq623BaA/lL3/aAsTrp9wPlVNc2rPN1w/BUggP8WZtM+Mux/F9TWuuPfI4/Vkr9w18NEkI0vXKfOgzVjjpqXS7Qmp57NnP2Fz/Sddn3VETGsu3ex2h35w0Ebc9j3c5CEiNt3uGkduHGfENap+hGv4dofY4lQCxSSt2P0WvQwJXAN0qpaACtddGRXiyEaPl8J5F3FVQQ9utSHnv0LuJMdaw951J+fHMWs8uCmHC6MbocGxLIzrwK+iZFel+X4A4QdqdUCm4rjiVAXOn+7y0Hnb8RI2B0Pq4tEkL4nbPOhdOlsVmNqm0zfRLtlU15ky7TXmDVnY+RfP8tfPTpGuxlLkJtFm896NiwgAb/BQiwGCPWnnkL0fodyyommZAWoo2ZPH8r+eV2747mjZmlANyR8RNd3pvCnOc/pvPw/qAU409NYfkuY7NbuHtHdLR7GWtMSMPkeu9cP6gJ34Xwt6MGCKWUDfg7cBpGj+Fn4A2tdc0RXyiEaLH2FVY1OI4PD2TorrV0f+tFZr8ynZ2hCQxxZ1YND7KSkVdBbFiAN59SoLtetNkk5UDbsmNZxfQh0At4FZgC9AQ+OuIrhBAtRmZxFfM35hxyXqn6DXB1u/Yw6qm72T9lGgdiOpBfbic21AgQEUFWqh11h/QWXr26P6N6Jvj/DYhmcyxzECdrrU/xOV6klFrvrwYJIY6vt5fuIrO4mpHd47FZzdTWuTCZFMEBZooqHdRWVPH3KfdRdced6BFnUfgoCQQuAAAgAElEQVTrbmrrXN7hJIvZ6CXUHLR8VZautn3H0oNYq5Qa6jlQSg0BfvFfk4QQx1NmcTUAOe6qbQdKazApSIwIIq+oAsvEm3B27kLsI5MICTSTU1JDbGigdzjJYjI+JjLyKprnDYhmcywBYgjwq1Jqj1JqD7AcOFMptVEptcGvrRNC/CElVQ6mr9znPd5fVD/XUFRpB+CxeZtx1mnam2tJuPYKaguKWPvoc6AUQe5VTfE+ld080wwvjuvXBO9AtCTH0kcc7fdWCCGOi3/PNEZ/xw5MwmI2MXXxTgBG9oinyCf53hhnNmfd8RDF3fvw+U0P0DvaWL4aGWysTvLsafCce+ayvoTbpF70ieawAUIpFaq1rjhS7QelVKh/miWE+DMKKx0khNsIMCsSI21EBQdQUlaNa95X3PPMY3Qpz2P/xNv5/sy/4qp20iWu/p/y5WnJpKVENbif1Io+MR2pBzFXKbUOmAuka60rwUjeB5wFXAG8DczyeyuFEH9IblkNCeE2CiodnJdgpc9bLxD92YcUx7djyYjL6f7qfbiK7eSv3IfdWUdIoNn72tG92zVjy0VLctgAobU+Wyl1AcYO6uFKqSjACWwHvgHGa60PNE0zhRAH+2FLLr/uLODRv/QCYHdBJQCnnRTLgdIa+ibB0PVLuPC9p8k/azT//dfLRAzubxQCsloJs9VRVl1LUaWD0EBZkSQOdcTfCq31fGD+/3Jj9wa7pUCg+/vM0lo/6n7uduAfGAHnG631ve7zk4AJQB3wT631d//L9xbiRPDtphxKq2rRWqOUYkNmCQDJUcHk5pVgv/lRzp/7DaZ589gUnkrWyn10DglgYCdj+CjAbKKo0qga55uiWwiPY1nF9L+yAyPdeyj6AaOVUkOVUmcBFwN9tda9gOcAlFI9gXEYm/JGA1OVUubGby2E8Ewal7jrQ6/aY+TNTCjI5NybL6U2L593XpmNGjqU006KxWo2kV9h92548wSFxEibd0mrEL78FiC0wbNw2ur+0sCtwDNaa7v7Ok+R24uB6Vpru9Z6N5ABDPZX+4RoTSrtTm79ON278xnql7Bm5Bv/zArKHQxYvYgefx3NulGXsfmFtwhNiAEg0GLCYlb8nltBQrgRIDxpumtqXU35VkQr4s8eBEops3uiOw/4QWv9G9ANOF0p9ZtSaolSypPdqwOw3+flme5zQrRpX6zNxFlX/yGttWbC+6v4Pbfce259ZgkOp4viqvqlqkoZmVMLK+zgcjFm5hRu/OJVCj+bzbLzrmRvcTUdo4Pd1yoSwm24XNq7lNVD0imJw/FrgNBa12mt+wFJwGClVG+M+YgoYChwDzBTGf3bxn5N9cEnlFITlVKrlVKr8/Pz/dh6IZrG1+tzyCu3e49f/OF3wMih5DFnTRYA2SXGruitOWVoDYkRNspzC6m75FK6/b4OtWoVllOHkFduJ6ekhg5RQd57eF7rScsNxv6Iy9OS/ffmRKt22AChlOqjlFqhlNqvlHrLvYrJ89zKP/JNtNYlwGKMuYVMYI57CGol4AJi3ed9f1OTgOxG7vWW1jpNa50WFyd550XrtsPdS3DW1f8tVFTlOORcsXsy2ZMuY+E2Y2Q2KWMT5153AblhMTx3z2vY2rcjJNCCw+liY1YpcaH1+xcigqzEhDbsPVwzpBODUqQCnGjckXoQrwOPAX2A34FlSqku7ueOuuRBKRWnlIp0Pw4CzgG2AV8CI93nuwEBQAEwDxinlApUSqUCJwF/KBAJ0drkVxg9h7Ka+qGjTtEhADhdDTvQJpPy1ntes7eYwb99T7cJV/HD9Xex8YGnOKO3MSIb6O4haK0bbHB74MIePDymp//ejGhzjrTMNVRrvcD9+DmlVDqwQCl1HY0M/TQiEfjAvRLJBMzUWn+tlAoA3lVKbQIcGPspNLBZKTUT2IKx/PU2rbXULhRt2js/7waM4aTeHYx0F/kVdrq1C/OWAfVkUY0KtjJ3bRYXdY/h0tlTGbXmRyq+/pYV+62cUm4n0Z0ew3dFkqdiHCCpMsQfdqQAoZRSEVrrUgCt9SKl1GXAbOCofVKt9QagfyPnHcC1h3nNZGDysTRciNZof1EVye6JY19ZJcbQkcPpYmdeBRf2TfROSBdWOkiIsDGmbyI/vzMH3fdakkITsa5aiTkhgeJt6ezMq6CfT31oIY6HIwWI/wI9gBWeE1rrDUqps4GH/d0wIdoah9PFY/M287cRXRqM+1vNJvLdk9RLfjcWXnSIDPKm6X7i8zX02fgrA977hV6/LKfk5VeYEdyDfu0TMWFUddtfVEV8eP1w0sQzOtO9XXjTvTnRJh0p1cannsfupHxaa12ptd4H3NwUjROiLfltdyEAhRXGhLNn6Oj2s7vy6W9Gim67s47Y/Cw6f7aI4J+WwV17mbJlG7u69ML1z1t46pJ/c+2IvsRuqc9yU+eeq4gJqZ+AHtI5pknek2jbjrjMVSl1q1JqH7AX2K+U2quU+nvTNE2I1qvC7mTC+6u8PQOA93/ZA+BNibE1pwyApMgg4tatgocfpsel5/HQf24gZPtWtvdIQ7/9NndN+Z7UTasJ/NtEiixB5JbVNJh8DvVWfvPrqnVxAjrSMteHgL8AI7TWMVrraIwsrue7nxNCHIYnMLyxZOchz20/YCxtDcfJGUu+JDytH1dMexLtdPLD1beTu3Unrrff5ttB55PfvS+WyAgCLCbM7jKheworvfWiATo1MqchxPFwpDmI64BTtNY1nhNa611KqSuA9cCT/m6cEK1ViXsvwx53htVC93LW8CArZdW16N27CTpjFKcntkdNmcJ/cyN59KLerJuzkRsTIrG660D/vKOAWJ+9CxFBVnbkVnBKcv2E9C1ndsHulHQZ4vg7Yp/UNzj4nKvG2NwmhHC79eN05qzJ9B6XVtcS7JNCu8y9ZPWhM5K48Kt3cQ0azOIzLmH2f96CkSOJDg1ka04ZUSFWAiwmlFL0bB/O7oJKEiPqd0MnhNsoqLA3mG8ICbQQHdJwA5wQx8ORAkSme8VSA0qpkUCO/5okROuitcbhdPHNhvp/FiVVtYzsbuz0r3NpinMLufHn6USd0pPE7D38Pms+P426kgmndQYgNNDCom15BPjMI4TZLGzNKaO0un4TXYXdCDSpsSFN8dbECe5IQ0z/xKgqtwxIx9gcNwgYjpF5VQgB3g/wePdGNa01X63P5oI+iQTYq3E89Qw9X3yBwiGnYVq6lJ/3QM/ocKz7c7x/+Vc76thdUEmYrf6f5G+7jPTd5/epr/DmSc0h6blFUzjSMtfN7uR6V2PUaFAYBYBuaWzoSYgT1asLM4D6dBkPfrmJ8NJCzv1yPqNefZXaM8/gi2fep9/o4XRIjiQqbxdbsssY0Kl+HsFTuGfiGV2850b2iGfh1jy6xYd5zz14Yc8GKb+F8KfDBgilVFcgQWv97kHnT1dKZWutD12eIcQJwFPBzcMzEV1Xp6mpqmHAp29y/rcfEXLlWD574SO6jhzC+pX7GOPOrBoeZGF9Zgld4+O997hqSEfeWLyzQTI9TxlQk08+bhlaEk3pSHMQLwHljZyvdj8nxAnppg9W8/T8rQDU+tRx6F64B/PQoQzYuZatXy2Ed97B2bMnWcXVlFbVeoeTggMsVDvqGuRG8gSDKJ9aDRf2SeSlcf2a4i0J0agjzUGkuPMpNaC1Xq2USvFbi4RoBfa7azV4dkU/U7KSkEcfpuDhx5kcM4SLoxMBCLdZvJPXnl6HZ6I5ymfl0UnxoUw8o3ODWg0Ws4kw2fwmmtGRAoTtCM8FHeE5IdosT9Edm8XIklpc5WDM0tnELZrBp1Nmkji4Lyzfy+hexsRyeJCVOpfmvN71E81l7kntXu3rcyVZzCZJjyFanCP9ebJKKXVIziWl1ASMVU1CtHlTFu5g0bY87/HqvcUAVDmMPEqBU6dw9oJPYdEifqqL4OPle4kNDfT2BDzDSL6Fe8YPS+E/l/RukIpbiJboSAHiX8ANSqnFSqnn3V9LgJuAO5qmeUI0r7X7Svh4xV7vcZDVTOe4EGrrXNS8/CoJ777BL2/PhJQUrh+eAtAgq2pEkNFJ952rsFnNtI+UTrho+Y60zDUXGKaUOgvo7T79jdZ6YZO0TIgmNis9k/KaWm4YngpAbtmhq7mnrzSyrp61cBa1333Et69OJ76rsdktPswYld2ZX+G9PjrECBYjTo5HiNbmSHMQgFEoCFjUBG0Roll9u9GYTPYECM/QktVsoqa2zhgS0porF39G/wUzmfX8xyyrCuKhGGPpqafUZ/9kb/l2okMCeP3agQ0mn4VoLY4aIIQ4EfjWhPZIjQ1hUGo0ewsrKamqZXfGHm5+6xEGVGSz/LOvqLVGwK4iUmKMbKqd3P8d7TMhDUhwEK2W/OaKE9LXG7K9RXoADpTWDyd5CvA4XRqLSREZHIBz1iz6nT+c6qAQ+OVXQrumsrugkoQIm3f5qlKKxy/u1WhJUSFaI+lBiBPSvHXZ1Lk0Vw/pCEBBhZ3BqdFszy2npMpBTGggc9Zk0SUng6tnTCH6QCZLHn+FmqHDCQgPJba2krwyO30PqgOdFCXBQbQd0oMQJyTPrmZP2c+CCgexoYEkhNvILqnBvv13Ln/xPq55ZCJFw85k4Yzv+TwoFat741qMe9lqcrSsRhJtlwQIcUJw+BTU0VpTYXcSZrN4K7+t319CTGgAJx/YRbsbr0YPHkJOYgq1W7eTe8PfKHOZCQm0cNpJsQCEBBh7GMJ80mUI0dZIgBBt3nebD3Drx+neLKhl1U7MJkVqbCj57kpvBbuzSLn/Dkb/ezw5/Yfy72e+4OuLJhDbPpaQQAu/7iygprbOmzPJM+/QLvxICQeEaN1kDkK0edtyjJyThZXGMFJueQ3xYYFEh1gpqbTjeuklnnroUSzjx7Pyu+XstJup2VHgfX1KbAjVjjpiQgMw+2RWfef6QU3+XoRoStKDEG2Ks87lnVfwKK5yEBFk9ablnvbzLixmE9EBio6PTaJm6pu88fx0Al97hYh2sRwosxNms/CfS4z9oe0jpJcgTkzSgxBtyi0fGWnCPH/d19TWsb+oigGdoih0F+UprHAwKDGYYXfdSEWNk29fn0n7sAgA2kXYvFXbEtzDR57hJE/mViFOFBIgRJvk2fnsqdSWFBVEbW4+2Xf/jcc2baaDqZaKPqfw2b2T2b6/mssGGpPPkUHG6iar2dRgOOnG01K9K5+EOFHIEJNotXJKq5nvTo/hkRhp/NW/2z2cVFTpIMBiwpSRQdrVF1IRE887Nz+GmvslVR99RrHdWN10qjvVtjcLa1DDv52Gd42lR2I4QpxIpAchWq2HvtgEwJDUaGJCA8kuqSanpIa0lGiKq4yew4s//E7nnRs56/VJzB4zgZDb/84gqxnVN5HgmlrKa5yYTIrwoIbLVSOCZPmqEBIgRKvhTZh3kJzSGmJCA1m2o4CQQAuxoQFkFhuFfc5e8Q2XTH+VkilvsNSZwpkOJzHuoaIgq5lqd10H3+GkoAAzpyRHHvJ9hDjR+G2ISSllU0qtVEqtV0ptVko9ftDzdyultFIq1ufcJKVUhlJqu1LqPH+1TbQ++wqruO2TNewvqvKeCwm00CcpglJ3hbbvNh+g0u6kc2wwjvS16BtvZOSX75L/9XcEXnIRAHsKqoh174K2Hqac56tX9efCPol+fkdCtHz+nIOwAyO11qcA/YDRSqmhAEqpZGAU4M2WppTqCYwDegGjgalKKSm5JQB4/KvNAOSVG0n1th8op9LupENkkHd1UoC9mou/+4i+I4dw4aO3UR0dy5OPfEB02inEhAYSZrOQWVzlnac4HKWUd+WSECcyvw0xaWPbqqdyitX9pd3HLwL3AnN9XnIxMF1rbQd2K6UygMHAcn+1UbQ+m7LKGNgpmjeX7gQgNiyQ7b9noZfM4unHniR45JlUffgxT2bZuCwtiZ77S7zpMJwuTZ1LEx3ccDXSP0Z2bfL3IURr4NdVTEops1JqHZAH/KC1/k0pdRGQpbVef9DlHYD9PseZ7nPiBHTH9LWUVDXcdzC0c4x32WppVS1BVRXw/PNcde05OBYu5r27X8T6+UyCTx1Mud3JluyyBrWgPfMNpoN2Q/fvGIUQ4lB+naTWWtcB/ZRSkcAXSqm+wIPAuY1c3lifXh9ykVITgYkAHTt2PI6tFS3F8p2FVNQYH/DDusbirHNhNimGdo7hu80HYPdu/vXeY/RYtZiykaN4/u4pjL3hfFxbclFKYTUrrBYTOaU1pMaGeO97Xq92JMiuaCGOWZPsg9BalwCLMYaRUoH1Sqk9QBKwRinVDqPHkOzzsiQgu5F7vaW1TtNap8XFxfm76aIZTPt5FwC/7S4CoKS6ljqXJspl59SpT6HT0tgZnUTutl0EzJ5FUZeTyS6ppkNkfertGkcdewoqGwSIKwYlc2Y3+Z0R4lj5cxVTnLvngFIqCDgHWKu1jtdap2itUzCCwgCt9QFgHjBOKRWolEoFTgJW+qt9ouV4ev5WNmSWHHLek331vlkb6JKxgcSzhmEtLqJ01VoWX/k32ifHE2w1U1PrIqukhnaN9A5k97MQ/zt/DjElAh+4VyKZgJla668Pd7HWerNSaiawBXACt7mHqEQb9vWGbDLyKpiVntmgOltydDC1Lg21tVwy5w3OWPIl6t23ebM8mevrgugYE+JebWQEkq05ZQzvGnPI/SODJUAI8b/y5yqmDUD/o1yTctDxZGCyv9okWp4v1mQBkOXe2ObpNZzZLY70havgkf9HJ3sAe378hVMGdSdixjp+3lFAt4SwBvcprnSQGC7V3YQ4niQXk2gyWmsmvL+KAneRHg+lID7cWG00Z00WVkcNw2a8yS33XUPlFVfx2r9fpG/ayQB0TwxjZ14FnWLqaz/3c+969s2f1D0xjPaREjCE+DMkQIgmU253ArBke36D8zcMT6XOpUFrHB9+yORJlxO4cT1PPfQuK/9yjXc4CSA00NjT0Cm6PkA46oyEe76b2+48pxuP/KWnX9+PEG2d5GISTWb7AaPOQok7NcbcdcbwUpfoILouWYB++kbOLreT98a7xFx+AdHfbWNXfqU3NQbAuv3FAMSF1Z/rGh96SK/Ecpg0GkKIYycBQvjNvbPWc9mAJIa4U2nnlNbQIzGczGIjn9I3G3LosXkl7f5vPKNqLVQ/9ShTzCfx/05LBYxkevuLquibFOG9Z1JUMIUVjga9hYv7deDifrKnUojjTQKE8IvM4ioKKxz8uDXXGyAKyu10axfGwq25cOAAE6Y+SOddm2Da63xEFy7u34HCn3eREmPsXbBZzWQWVzGye7z3vjednkqVQxa3CdEUpB8ujovskmryymq8x9N+3g3ArvxK77mCCjudY0NIXf0z+pRTKIpOYNZ738JFF9Eu0sbyXYV0jg3xDg/ll9vRmgZDTMEBlgbHQgj/kQAh/jSXS/Pwl5uYNGej95xnjiDFZydzQXkNKW+/wg3vPknxB58w64rbGT/KmEiOD7Oxbl9Jg5VHGXlGrsfYUNnLIERzkAAh/rB/fraW9L1F3uMd7g/yDlH1H+5r9hqTyYXuyeP0zfsY++w9hMz/ig9fnsHWrv2IDA4gOMAY5QwNtFBb5yLRZzf0ZQOTgIYT0kKIpiMBQhzRjtxyvt98wHustabS7uTHrXnec57ynmXu1UmezW7n90mkptaFY8F3pI4+k+DocNTSpUR0TeXXnQUNPvjr3K9JjKgPMqN7tePlq/pLbQYhmolMUosjeubbbQCc26sdYFRtA/jdvWQVIK/cznm92vH9lgNorY2U3FpzbnEG/Z+9H1VZwGcX30rEtVfS22YjJjSQxdvzGeEz+Vzp3iPhW8zHZFKEBsqvqBDNRf71iSMKDrRQZXeitUYpxeerM73Pec7NXZtFz/bhaJem4oeFlE2dxitLfyQkNopVF15H2T9uYc+aHO7plQDAhsxSAJJ9hqTG9G2PzWom3F3cRwjR/GSISRxWtaOOKvdf9rsKjNVIp3aJ4SR3HqTCSgeVdidmp5Mrc9Zx39MT0TfdzM6YZJa8Pxd+/53df72GCpeitLrWW8nNM1eR5BMgAiwmLpA60EK0KBIgxGHtKjAmn/slR3qruy3fWcipXWIw1Tn56vVZ1N1zD8/+ewwd3nqVX0eN5bdvlrHs4vH0HHYKAJX2On7JKCQy2OpdvnrZAGNTW1yYFO8RoiWTISbh9ejcTQRazTxwQQ8AdhdUcl6vdjhdmtrlK3FOWcgtS9Yy6PVy0jZvxZHYgdKzzuHrZz/i1okXELshm1KHi7zyGm/yvdiwABZuzWuQyjvIaiYtJZpwm/z6CdGSyb9Q4ZXpTrntsTu/khEU0uG+OwnIzqTmuuvYPWwkg8eezgpHKIXhMXy36QBR7qI8NouZn7bmoZTyLl8NcPcaapz1u5+VUtw6oksTvSshxP9KAsQJavrKfazPLOXpv/YBjM1uAOFB9ZPEUV9+Tq/PXiT7X/fy/sALqTOZcGngtO7YMgooyynDFmDmvtHdAdiYVepd6upxTo8EFmw60GDVkxCidZAAcQJYvrOQkEBzg2GeH7bkAuBwugiwmCi3OwkKMFNWXUtpdS1q3jwu/vB51K9LcbVLpXTZLjKLK73LUKNDAli3v4QaRx0R7qAysns8m7JKvRvcAIICzAA8PEZSbwvR2sgkdRvjrHNR4V555DHt5128/OOORq/fnG0sOf1tVyE2q/FhvvrZN7Hddivf/ncaqlcvwmwW7/DTUHfivYggK9WOOpKjgwmwGL9GPduHAxDmM7cQaDExune7BgV+hBCtg/Qg2pjZazL5fnMu71w/CIBadzEdgLyyGuLDbTicxrn2kUHeYDJj1X4C7DVc/uVbpP22gEWvfkxo375Aww/8MX3bA/VDUR19CvdYzSYmntGZAZ2ivOeUUlyeluyPtyqE8DPpQbQx3282ho486S6yS+onnvPdeZE+T98PGFlSy6qdUF7O4BXf8cRDV9LfXMn8D+ezOT6VDu7EeY0V3wlxDx3td9d28BjSOQarFOsRok2QHkQbtWZfMQM7RZNbZgSFYV1jjRQYYCw7jQui5seFWNYtpe63bzm9fVdiP/2ATT0Gs29TDr9nlfL/Tu3U4J7jBnf0PlZKMXZgEiNOjkcI0TZJgGjFtNaszyylX3Kk9xgg1GYhq6SGgZ1g3nqjrGecVWP9dj5135Rw/9T36Lp3KweSurCq93B+eG8uZR1S6DkomajiKu+Ko5iQ+jTbr10zgEBLw57B+bLzWYg2TcYCWglvEjwfc9dl8+pPO9hfZAzzFFcZS0yvSEsmq7ga7XJh3riRJ5e9z+jzB9Pp3alUrFrD8rETUOXl2H9bxZoJ/+LzEhs295CR7/CQbxZVm9UsWVWFOMFID6KV+G7zAT5fncmb1w30zgl8tT4bMDa4JUcHk19up2t8KNGBJpK/mYXrHx9x+4EiXGPHkvv9YqbscXFW93hMFXYICCA8CMpqjKDSvZ2RX8lskiAghDBID6KF2nagzLt5DaCm1lh5tKewflLY82G+dEc+AN9uyqH35hV0PWsIvefPpOQ/z3D//31B6CsvkDSwF4WVDrZkl9I5zqjyFm6zUOrudXhWI3nKeXqWswohTlzSg2iBduSW8+yC7fxjZFf6dzSWjFY5jFQVNbX1KStsVjPn925HVkk1FBdzylMPMGDjL1S/9RZTapO5sn9H+u8u8qa9sFlN7Cuq8k42+65O8uyBAKOSW4/EcL+/TyFEyyY9iBZo5mpjGarvhrefthrLVxdtMyq5rdpTRKXdScdQCwnzv8DVuzfK5YL16wkYcwHFVbXsL6ryLlUFI313eY2TmKPUeL6gTyKpPrWkhRAnJulBtECxoYEUV9WSX24sUf2/BUZVN4tZef/qn7cgnSu+fJ/u//6O4Had2Pb8G3xU044R7eO9q5m+2ZDTaFK8QEt9b8FiVg16D0II4SEBwo/S9xaRGBFEe5+/4j0f3p4VQRl55Tw9fxuvXTPA+0G9v7iKoZ1jyCmtAWC7e9np34a0J/vDmTg/2cI9M2Zx4MJLsf+6gufSyxjbL4kz3ZvWfFcbJUXV73R+cVw/7LX1O6sBXrmqP3U+cx1CCOEhQ0x+kl9uZ+qincxOz2xw/rF5m5m9Jst7/NbSXQDc9skawFhVlFNSw4COkTi2bodTT+XVv4/kkXkv0mf06Zz01QwyYpJ4+oG3OenTaQR164LCqN3gmWD2FR9Wfy7cZiUurOE1gRazd45CCCF8+S1AKKVsSqmVSqn1SqnNSqnH3eefVUptU0ptUEp9oZSK9HnNJKVUhlJqu1LqPH+1zR+K3OU3Pcrdy0etPpvLCirsZBZXsyO3PvV17w4RDe6zyVOveeF8brr/WuquuZannvqUhP69ML3+Oi/eM4WMq2+i+xkDUUqhlCLIaubXnQUNNraNG9wRs0lhkmWrQoj/kT//dLQDI7XWFUopK7BMKfUt8AMwSWvtVEr9F5gE3KeU6gmMA3oB7YEflVLdtNZ1h/sGzWVzdimdYkIIDTR+fPuLqnhs3mY6x4Xw4IVGWutq92oj36CxcGse3RPDqLQbz2mtWbI9nzNPjmP5zkKoqiLyv0/yzLqVWAsPMPXBqQwbcx51azKx/fUvAETM3kBGXgU9fVYZeTbQRfkEiFE9ExjVM8GPPwUhRFvntx6ENlS4D63uL621/l5r7fnUXAF4igdcDEzXWtu11ruBDGCwv9p3rJx1LnLLahqce+H733lk7ibvsecDeld+pffcrvxKzCZFeY3xVqsddSzLKOD83onsL6pCa+1Nod0tJoj+y+aju3fHsjOD0ltug7VrKe7Rl+0HyukSF+q9r8mkyMirID780HrOkT7FfoQQ4s/y6+CzUsoMpANdgde01r8ddMmNwAz34w4YAcMj033u4HtOBCYCdOzY8eCnj7tbPkoH8KbP9vAdzvlg+R7v40q7k6nbGgsAAA0xSURBVJBAC/uLq0hLiWJzdhkAK3YX0iMx3LvstLzKTvWLL3PXkp/pdfdK4qI64PjwI6YeCOf2s0+CiFD2F/3O/qIqLvDJeZTrnrj2nVvo3SGCTVmlDarBCSHEn+XXSWqtdZ3Wuh9GL2GwUqq35zml1IOAE/jEc6qxWzRyz7e01mla67S4uDh/NNvLUzfBl2f+4P+3d+/BVZXnHse/v+xc2LkYcgMiAQNCELxQEEGpBKegRaq9OR4v6Niip2PH6eWUqdZexzK0as/p9JzqTC+21tpWa631aKdWKcV2qFDkJldBoMidCCRACCHZ4e0f693JStwBEk323snzmdmTlXevtbKe7L3Xs9/3Xet96xraptY80tDM9DFlDC4cwJFjJ2DhQg7tqWHG2MFUrllKbN48Dhyo4/yyPIryshl0Tg785KeUPP0kTdXTYfVqfjj/F/whdwTHGmPt7l0AWmdsA7hqTBBzuEN67pUj+M4nL7bLVY0x76teuXzFOVcn6VVgFrBe0h3AdcAMF7/uM6gxhGeWqQD29sbxxf1l4wFycyJMPb8UaN9/EGs5RWYkg6eWBzexHWuMcTLW0npPwewxJQx58jGK73uWhuZmPld7hMKPXcddL/wRN+I8hh9sJjr/AQAGuSaiDy7gF/f+kOr/uBqGDeRY4/7WaUDjJ/phxbnsOtxAYW5bghhZls+rm99pncUNggRSaLUHY8z7rMcShKQyoNknhygwE3hI0izgPmC6cy4828wLwG8kfZ+gk3o0sLynju/UKUdjrKXdJZ5PLd8J0JogahuaiGSIllOO17YdorqqjKFFUUrys9ld20BN3QkKV7/Obb98lJKvvsbY4aPZ8s0HWTNyPIPWrWJWzUaefPQ5Zo4qYvyMabR8aDIUF/Lxxx5n12XVbB86is9VtL+K6fbQHAzx+xPCI6xOPb/kXVc+GWNMT+jJGkQ58ITvh8gAnnHO/VHSViAHWOhv6FrmnLvbObdB0jPARoKmp3t68gqmrz2/jpqjJ1v7FmKhqTmdc0ji+TV7aTnliGZHWgfG213bwE0lMbY88Qj5n32JWG4utRNnoMWLWfhONuWFA9i35wiXXj8Tzr2BnCX/YldBLkvmzOPTT/8aIhFycvJY8OG7aWyMvWsI7fiYSwD/OW0kD7y4gfGhJCLJagvGmF7RYwnCObcWmJCgfNRptlkALOipYwr9HWr8TGtx4bkWjje1kJ+TyYY9wT0JM8syyV60EPfLTVz3pyVU7VjL7gkz+b/PfpeCqZMZXpIHYyr4x9LXAcjNyaRiYHAHc0leNuv2HKFu9ifRR78BwI6tB2lc8i+KQx3d8z9+Ed94fj0Xh2oHw0ty39U5bowxvaXf30Lb2NzCgKwIX312DWREGFoU5XB9E27lKu768beY8OZyIi0xakeNZf8VU9l0xUwmvvRb9m49TmljjFVv1zLrouAqo3nXjOF/XtlMYTSztd9gT90J1u0+wrTRpa1/M97pcsfUytayeDNSRVH7DmpjjEmWfpkgJHHNhYN5ZcMB9h9ppLKlnge+OYeN//sY206JAfd+iQEvPMfOGbcy5ZmfsuxkDuv3HiWaFWFIYRSVlTHueIRFfmTVqsHBfQrxeRbK8tvuUSgvDJbDl6DGW5Xi6wOU5mfzmeqRNmubMSZl9NuxmG66bDhDi6K8vGE/jcWlvHTt7cy46wY+/amraTp6nIe/9zsWXjuHjGEVnBPN5uiJGDsPN7ROrJMVyWiduzk+wmp8zubMSNtJftZFQwBa77qObwu06yCXxBSbpMcYk0L6ZQ0ibsyQAv66qYbqqjKWfvAjzLlzNssONLI8ZxDb9x/j9suDK4oKo1nUnWji8PEmhhUHTUDhJBAX//Z/XknbCKq52Zl86/oLOXdgW61iwrCBfHFmVU+GZowx71m/ThCzLhzCqrfrWLjxAJdUDCR6+WjOefswWxZvA2DKiOAbfWFuFvvqGinKy2791j+yNGhWmnfNmHb7vO/aC6gsaT/ZzvBQwoCgxnFxhV2qaoxJbf22iQmCfoFjjc28sauOwmhw4h9VVgBAcV420ezghrUC3zwUvrw0mh3hzitHMLa8oN0+qwYXtLuJzRhj0lW/rkFkRTLIyYqQIbhqzCCA1quPwn3F8aajQ/XtL42dOqoUY4zpq/r9V91po0qpb4wF4yOFRBOMazTxvKLeOixjjEk6tQ2FlH4mTZrkVqxY8Z724ZzjrZp6qga3NRXtrm0gPyeTgbnZp9nSGGPSk6SVzrlJZ1qvXzcxQdB8FE4O0H4eZ2OM6a/6fROTMcaYxCxBGGOMScgShDHGmIQsQRhjjEnIEoQxxpiELEEYY4xJyBKEMcaYhCxBGGOMSSit76SW9A7w9hlWKwUO9sLh9LS+EIfFkBoshtSRrDjOc86VnWmltE4QZ0PSirO5pTzV9YU4LIbUYDGkjlSPw5qYjDHGJGQJwhhjTEL9IUH8JNkH8D7pC3FYDKnBYkgdKR1Hn++DMMYY0z39oQZhjDGmG9IyQUj6uaQaSetDZeMlLZW0TtKLks7x5ZWSTkha4x8/8uUFobI1kg5K+kEqxuCfu8Q/t8E/PyCdYpA0p8OxnpL0gTSLIUvSE758k6T7fXlSY+hGHNmSHvflb0i6KtlxSBomabH/v26Q9AVfXixpoaS3/M+i0Db3S9oqabOkDyc7hu7EIanEr18v6ZHQfpL+ngKCGdXS7QFUAxOB9aGy14HpfnkuMN8vV4bXO80+VwLVKRpDJrAWGO9/LwEi6RRDh+0uBran4etwK/C0X84FdgCVyY6hG3HcAzzulwf5481IZhxAOTDRLxcAW4BxwMPAV3z5V4CH/PI44A0gBxgBbEuRz0RX48gDrgTuBh45zX57/T3lnEvPBOH/Ye1O/MBR2vpUhgEbE63Xyb5GA7vi26dgDLOBX6VzDB22+Q6wIN1iAG4BXiRI2CX+w1+cCjF0MY5HgdtC6y0CJqdKHP7v/z9wNbAZKPdl5cBmv3w/cH9o/ZeBK1IphrOJI7TepzpLEMmMIy2bmDqxHvioX76R4AMRN0LSakl/kzQtwba3AL91/tVIos5iqAKcpJclrZJ0b4JtUz2GsJuApxKUp3oMzwLHgX3ATuC/nXOHO2ybKjFA53G8AXxMUqakEcClvPt1SlockiqBCcA/gcHOuX0A/ucgv9pQgpNm3G5fFpbU1+Is4zgbSYujLyWIucA9klYSVO2afPk+YLhzbgLwJeA34bZ972YSn7B6W2cxZBJUQ+f4n5+QNKPDtqkeAwCSpgANzrn1CbZN9RgmAy3AuQTNGvMkjeywbarEAJ3H8XOCE+oK4AfAa0Csw7ZJiUNSPvB74IvOuaOnWzVBWccTaNJeiy7EcTaSFkdmMv5oT3DOvQlcAyCpCviILz8JnPTLKyVtI/hGvsKvOx7IdM6tTMZxh3UWA8GH+W/OuYP+uT8RtDcv8r+nQwxxCd/saRLDrcCfnXPNQI2kfwCTgO1+3ZSJAU77mYgB/xVfT9JrwFuh35MSh6QsgpPqr51zz/niA5LKnXP7JJUDNb58N+1rPRXA3tC+kvZadDGOM+0rqe+pPlODkDTI/8wAvg7Er1YqkxTxyyMJ2vO2hza9hRT5xtdZDATtq5dIypWUCUwHNoY2TYcY4mU3Ak8n2DQdYtgJfEiBPOBy4M3QpikTA5z2M5Hrjx9JVwMx51xS30+SBPwM2OSc+37oqReAO/zyHQRt+vHymyXl+Gay0cDy0HZJeS26EceZJPc9lazOm/fy8P+wfUAzwTeJO4EvEHQabgEepK1z7gZgA0G76yrg+g772g5ckMox+PVv83GsBx5O0xiuApZ1sq+UjwHIB37nX4eNwJdTIYZuxFFJ0Gm6CfgLwcieSY2DoOnUEVytt8Y/ZhNcDLCIoIaziNBFAcDXCK5e2gxcm+wY3kMcO4DDQL1/7cYlO474w+6kNsYYk1CfaWIyxhjz/rIEYYwxJiFLEMYYYxKyBGGMMSYhSxDGGGMSsgRhjDEmIUsQxiRZ/EZOY1KNJQhjukDS/PgY//73BZI+L+nLkl6XtFbSA6Hnn5e00s8N8JlQeb2kb0v6J3BFL4dhzFmxBGFM1/wMP2SCH8LiZuAAwVAPk4EPAJdKqvbrz3XOXUowZtPnJZX48jyCobmnOOeW9GYAxpytPjNYnzG9wTm3Q9IhSROAwcBq4DKCQfFW+9XyCRLG3wmSwid8+TBffohgVNjf9+axG9NVliCM6brHCCZ4GUIwdPYM4LvOuR+HV1IwledMgolsGiS9CgzwTzc651p664CN6Q5rYjKm6/4AzCKoObzsH3P9HABIGupHUi0Ean1yuIBg9Fdj0obVIIzpIudck6TFQJ2vBbwiaSywNBjtmXqC0Xf/DNwtaS3BiKPLknXMxnSHjeZqTBf5zulVwI3OubfOtL4x6cqamIzpAknjgK3AIksOpq+zGoQxxpiErAZhjDEmIUsQxhhjErIEYYwxJiFLEMYYYxKyBGGMMSYhSxDGGGMS+jdJ3NZtFbvSDQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "n = 52 #taille de la fenêtre de moyenne glissante fixée à 1 an (52 semaines)\n",
+ "\n",
+ "#lissage du signal par moyenne glissante\n",
+ "data['trend'] = data['CO2'].rolling(n, center=True, min_periods=52).mean()\n",
+ "\n",
+ "plt.figure(figsize=(10,4))\n",
+ "plt.plot(data['dates'], data['CO2'], \n",
+ " label='signal brut', alpha=0.7, linewidth=1);\n",
+ "plt.plot(data['dates'], data['trend'], \n",
+ " label='trend', linewidth=1, color='r');\n",
+ "plt.xlabel('year');\n",
+ "plt.ylabel('CO2 (ppm)');\n",
+ "plt.legend();"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Saisonnalité"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "La tendance long terme étant identifiée, on peut la soustraire au signal brut pour isoler la composante saisonnière. On obtient la variation annuelle autours de la tendans long terme.\n",
+ "$$ Saisonnalité(t) = data(t) - MoyenneGlissante(t) $$"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXeYZUW1/aruaSYySXIcgoQRBBSQoICkBwZExfAURQVR1GcA00NERH/Pz8QzooKIT8X3nhEDioISHorCgCggQVCQIEHSBGamZ6br90f19uyzz6pw7+3b3SNnf19/93bdc07VOadq773W3lXlvPdopZVWWmmllYGJbkArrbTSSiuTQ1qD0EorrbTSCoDWILTSSiuttDIqrUFopZVWWmkFQGsQWmmllVZaGZXWILTSSiuttAKgNQittNJKK62MSmsQWmmllVZaAdAahFZaaaWVVkZlykQ3oBNZb731/IIFCya6Ga200kora5Vcc801f/fer587bq0yCAsWLMCiRYsmuhmttNJKK2uVOOfuLDmupYxaaaWVVloB0BqEVlpppZVWRqU1CK200korrQBoDUIrrbTSSiuj0hqEVlpppZVWALQGoZVWWmmllVFpDUIrrbTSSisAWoPQSiuttNJfeeABYPnyiW5FkbQGoZVWWmmln7LhhsAJJ0x0K4qkNQittNJKK/2Wu+6a6BYUSWsQWmmllVb6LatXT3QLiqQ1CK200kor/ZY1aya6BUXSGoRWWmmllX5LaxBaaaWVVloB0BqEVlpppZVWRqWNIbTSSiuttAKgRQittNJKK62MSmsQWmmllYb85S/AyMhEt6KV8ZaWMmqllVYasvXWwH//90S3opXxlhYhtNJKK1Qee2yiW9DKeEtrEFpppZVWWgHQGoRWWmmllVZGpY0htNJKK1S8n+gWtDLe0iKEVlpppZVWALQGoZVWWolIixCeeNIahDJxzg06537nnPvxRLellVZaaaUv0hqEYnkbgJsmuhGttDJu0iKEJ560QeW8OOc2A/BcAF+eyHaMqdx2G/DBD050K1oRefxxYJNNJroVrTzRpUUIRfIpAO8G8M8zl/+cc4DTTpvoVrQi8uCDwN/+NtGtaOWJLq1BSItz7nkAHvDeX5M57njn3CLn3KIHH3xwnFrXg6wl0PAJI5Nx3aCWMpoYueUW4Mgjuz//1lu7P3ct0QsTiRD2BXCEc+4OAP8D4EDn3DfsQd77s7z3u3vvd19//fXHu42dy1ry4p8wMhkNgpUzzwR+/vOJbsX4yYc/DHyjMdSbcvrpwOzZ9bLrrweWL++u3h12AH7wg+7O/eMfge237+5ckSVLujvv4ot7q7cDmTCD4L3/d+/9Zt77BQBeDuCX3vujJ6o9YyZrCTR8wshkfB8WIbz5zcCJJ9bLVqz450US738/cOqp+eN+85umEn3qU4GPfKQ/7UpJTJlb47RqFXDRRfWywcHwOTxclS1eDDiXr/exx4BDDilvZ48y0TGEfz6ZjAroiSxXXjnRLagkpeAtspw+Hfj2t/vbnomUEuQWe17dIoReZNWqZtkllwAzZtTLzj8fOPTQetmUKeFTG4ClS8vqHWd9MikMgvf+Uu/98ya6HWMiLWU0uWTjjcPnZKCObrstfDJFx/rNTSYb++abx75NEyW9GISJQE7auxe5555m2cqVzTJBCCWIwMo499tJYRD+qaRFCJNLZEBN9vfCDIL1hHfcEfj738enPf0Wq9SZIi1V/EuXAg891Hub9PV+//t6GXs/TMHfdVf8OH0/P/tZWVuk/46TEWwNwljLZFc8TzSR9zEZEMI668R/YwqHlU2G+xgLsfcxbRrwileUnWuV41FHAeutVy9buhS48ML8tS65pKnYTzkF2HXXehl7F9KOFSuqspNPbh43c2b41LrhDW+oXyMmUu846ZXWIIy1yAv8Zw0Irm0iA0kPqOXLgXXXHf+2CHXAlDrrL0wJdEM7TEa5995mmd1JLqYEL7us/v8DDzSPOfNM4PDD8+2wtBwQAr5WWAxBJGekJVNKHyffc+e2BmEtkrPPBs46q14m3kIbS5gcwgbUkiXlQb2xFFH6jB5hopXFE9HB+MUvePk1ZurS9OnNY0qRFDOwTPmnEELu3UhQWbeJOSpMpC3jhAxbg9CLHH98Bf1EHn88fLYGYXIIG3gDo91+vOkXqa+ULy/xKK+4omwm9urV+fu9//61E4GIwtUyHgahND6VQob23L/8hdfbIoS1QObMaZYtWxY+21jC5BA2oFKKuZ8i9WrOOeU46DbHFMOzngW86U35umfOBN73vvQxf/1r/jqTUcbDILAyCSDn6po7N36cff9bbw3cd1/z9xYhrAXCNkvvxSDcd191fkqWLp0YyoPJLbdMbq+SBZWlLMUL90MEBUgqLFDNnGUDnrWZHVfy/IeHm5kz4yFvfCPwspf1tw7xwLWwFF0W1O8FIbz//eEzN9bnzw+fOYQgbdZ1tQhhLRehjLp5gRtvDLzmNfnj9twT2H33zq/fD7nzzoluQVoYZSTfc9zvihW9GbsddqjXIQphgw2abbn//ub5Oc75pz8NnwOFw9gqTu/7H6f41rfCXz+FGYTzzmuWbblls4y9XzbnIIXkSr33nEGQQLtuU4sQ1nIRD7/bF6jhYkxuuil45k9kOfNMYL/9muXOVUYZ4B4WMwgPPgh86Uv1a5UiiHvvBU46qV7mfXhH+hqd5pQzykj3q3PPDZ+lRsvOYXjuc+uZOP0wCI88MvbXtMIoIybMcLIy9t7FSJRmgzFhx+myu+9utkna0iKEtVR6jSGUenuTRWLKaCyVy3XXNes591zg//6vXibKUhuEFELQXvnXvhboDSb2XmbOBG64ofr/pz8FzjiDn6O9TRYYTilz1mYWHLfy+c8DV1/dbMusWfXjLr20vqheJ+/s1FPHZ2mN3XbLH9OLQWDPn6EBeY8lgWEr8lxz5x5zTP14oOrLLUIYJ/G+N+VlU96WLQs57k8Ug8DkpJOAbbbJHzcyElaQ1EFWJlr5ijz6aLNMBq2e4cs8awkm65RhUSoaoUm/sHU9/ngwUiJTpzbbwlJMWZpiyiAwyuiCC6oy6Su2z7zlLfU9OeS5HHFE/Th7XidK50MfCll2/ZaSsVlqENizLo0hpAzCWFFG7DiJFbYIYZxkYKA5MPbfH/jd78rOX7iw+j4yEpTbrFndv0C2PgqTyRLIZe249NJm+hyTa68Na8z/+c/1cruyJBvwrEyUL0MIevKSfNfvSBSPNiYyMLUStr8BPFhZihCYSBqpPk4M29vfXpUJd844ev1eYumRtt9Lm7/2tXT7RJhR7kZSSr9E2bIYApNSg6D7j0iKyx8rhMDKWsqoj3LUUdUCYym5/PLytUbsDNhp04ChoXxHvuSSJu8MAH/6U1m9Y2kQVq0C7rijXuY9n7FZIqXGVO7BKqbZs4Hbb6/+Z4FrpoRTBkEbGRZXkHO+/vWqjClSySzL0T6iBHTbWQyBnSv3wSgjLaVoMjYJKtaHrrqq7LpWbr2VzxrOScoglCCEsTYILBsrZcxLlXU3BkG+2/hWn+SJZRC++93yjUjOOafsOM03LlsW+GXn8gbh859v8s6diO3IN9/c9KwfeaTpfTP5zGeArbaql519dnOexdKlzXrZgBoaytcJVANZD2jxxrX3+d73Ns8VhKAVhsRvWFBZ01KpFM699moep+/x+uub5zI0IGV63X/mKZZ6x70YhE4RQrd89fbbAxtuWHbsU5/abB+TXikjfX5pDCF1nW4oo04RApuQOE5zRJ5YBgEo7wAlSAJoepkzZoQ6ch15rCmfHXcE3vWuetkxx5Rx+WzuA9tZis27YPcRG6DOAQ8/3KxXD1RJpcwNMqlXP/9PfSp8MoSguXyGEJ7xjGaZtGHTTauy1ODW6+LIcdphYAiB8dVyb4wy0pIyCPq9xBCCpXxKl2IYC5EF33L19YoQcmisdBx2ihBKs5FyZVLfOFHErUHoVfTL0wgh15G/853e6mX3YSerMcrnsceaSogplp/8pFnG4hudGAQgpHeKHH108xpMGYroZy3HaUUpM0K1gStFCPK+cjOa2XFS9pvfNMv22ad5vZyiZ8auHwghdtx4GAQW42BSglYs3akll5XVC0LYY49mHSKlSCJ3LkOpfZTWIPQqlrIoNQi9SmqxLRE2AObObVIwTGkyeelLy9pW6rGxtf1T6wwx1KaN2047hU/9bGRA5QyCfGcePaOCWPv00hBynJ4MJehIB64ZvZYyCLr/pqi5EoRgJYYQWF+bNy99rZzoOkoRQuy4Sy6Jn5+L9bzqVc0yjV5s3ex6OUXfS1BZztEUWx+lNQgxeclLOr/2smXllFGp3H9/fNXHnMQUs41dSAfMLcjHFuliz1OOY89Al4lC09cTg5A7V0QbBLbSLDMILGOkU4TABreOubDrSZ65pt422aR5HXsN3WYt06bFz9VSihBiBmFoqCwWVSKl75X9lnNYmJQuNa6F9WmG7tg7TtXbS1B52215W8dYnngGoVOY3Yk8/vjYI4T3vAc4+OCyY0sQApPULEwtktmjldOzn908TvLyGT/OBhQzCOz5s710mUFgM3yZkWBeHFtKgCEEjW6k7PnPT19POHs2e1mLnKMNOkMIKYOQQwgpxcza1G3GWawOtqQHk5jzUTo+S/l9LamsMYYqdR37798sG4ugcpt22if5whfKjivtcGNNGdlNuzuZqGa3ESw9l6U5MhGPPnfc614XPrUiFWXNKAD9rG+8sVlmr6HPzRmE1ExlhgZyC4uxYLHIFltU34XeytWR8iTZmjYauaZiNbl5CD/+cbxe1qbSzLGcMINQmmnFZvDmpNSj11JqELwPx+rridOUQwjbbRdvC+sz7UzlPsm115YdZ1/AihVcIY21QbCdsTTHGmim1JaeyxbkY0sGMITARBSVNggyozs3UGT+RylC0G1JIQRd9spXNutIUUbMIOj3xN617OrFBrxuc2ofBNlpS19HpweXZhmx+2Cr5crvskaSltLZwDnpFCEwus5+T0mpp66FPVemmEdGAkorTTrQ58oKsKVB5dYgTLDoF/DII0GhPe1pVRl7yaVpp6nfrEH4/vfL22ylFCHIzFjdOVnQUMpyBoEFY+1vQNpjY89IGwR5Tox+sfTQlCnl0Jx570yBl6Yw5tBFKf/MUI3Ux6ij889Pn8s8/lRbXv3q5m/diDwDPfktNR406mXvS4vO8mLX7gdCmDGDO4q6DnFychSlSM4p6aO0BiEmbBYryzPvBiGkrL3tjJYG6kRKDcKCBeGTKRstF18cPnsxCCmPOFem2/eiF4VPbRBi9NA66+QVLxugKWqJKZpc7jkb3KmduBh9xTj1XHCZXY9J6hl1O3s5dj1bNmNGfqOb3IS+iy5Kn98LQrDnrlgRZjTHDMJYBZVbymiSSC6Thr34UoPQy4bdnUgndBOQz9kWyaW8CoQuRQjdDB5RHgwhWIU7dWp+4L3znc2ylHeWy15JUQf6+aUC77lAuAgL7GspTTstnTjVi8SC2UND5UbblouksoP0924QglXMkilm0Wdp5tGVV5YdV/ruxkhagxCTnGKOGQRGGT3jGcAvf1n9P177Lfey1k2nBuG3v62+yxr4TNnpOmSpjZxyfdazwq5TTDn0ghB0mawhxSgjhpxKDUc/DQJTPmyJg1QsJNbWVBnQ/XyeGEIcHAy/2b7QCULIldnnFXPaShCCyJQp3Tk5kkrOxlKLECZIZAE1vaWhSC5oxWiCWNrpVVfVZ/6mDMJYTpxLTZzRklJ8TFj79Ubv8r1056nc4FmzJnj5ukyuneP8Uwghh0LY/AwW5GODNpVNU2oQdFtkCXCGXPVxbOOkUi+zlNLoRWLGf2AgGAVbX8wgsOvk+lYpZcTiK7FzBwfL42KlzzfXt/oo2dQB59wGAPYFsAmA5QBuALDIez8+LeynyKqcuWBgKuhZShnp46TjSuqZlrE0CIzvZpIKWKaOj4ko67EyCCMjTU9MeNsShGDpiKc8JaS36utttlnYsSpHQZWmsbL76AUhyMq4OS8+1YaxpIz0mlSdCEsXHRkJ/W3KlHDPWiHHMot6MQg5hMAMgkzmlOvJ+IghhF4MQmnf6oNEEYJz7tnOuZ8BuADA4QA2BrAQwCkArnfOfdA5Nzt2/lohAg1z3GMvBoF5lKmNs7vZgSz226JFzbo326x5HFMYnVJGWuQ6zCCUKh1mEPRxzCDEFPg669SvJ4vV7bBDVSbbF+oVYz/5SX49275UaqAuk+UHWLCYnVNqPHNZSym6iR2XK+tF3vGOZlkKIQBpBKYlNU5XraqSQnKOUmrORQ4hpDz6tRwhPAfA6733DVLSOTcFwPMAHALgu31qW/8lpfRyBoG9KJZ2Kgort9qmSMwgCM/KJNaxZS3+XGcaixgCu56+59S5JQjB7jEh17YGwU4UYpTRmjXBGOiJZCJ6YTxZI4dlBeViCNIu3eZDDgmGhx2n5bOfbV5Pt11EAuusLVr6gRBSIhO2mOhtS0U0QrDe+8BA+H1gIJSts04znpRqqxwnEx71cXrc3Hxz5SCIQWD3wWIIpUHlbsomC0Lw3r+LGYPR31Z778/33q99xuCQQ6rvpQhBvq+3XlVWmnYqn7feWh23enU4JrXSZao9VkrjHTFhCuNHP4ofr9st8Re9lejq1eH/3NIVqTI2l6CEMlpnnea5NqhcmnkUa4s9jiGEd7+7WfaJT4Q04hxlJHtC5AKO8+Y16bBShMBkLA1C7jedYqoRgr1njRpGRoIxEONQ0lZ5/jo1lPU3nRQhUuK8dBtUFmFt1vHGyRZUds7Ndc691Tl3hnPuM/I3Ho3ru3SKEPTgZXnhzCDI7zbLaNq0zhBCamCWKvzY9VMKg11bD5TBwbApip1VO2NGPu00VWa9Xqv42EJ2IyNlyp/RSKVtSQWVS3njnEFgx73nPeEZ20ly229fr/fYY8Pn1luXtS/X1n4ZBPv8nKsrfznOGgTn4htQlRoEhhDY9VIOTSyGUNIXdL3suDPPbJ4zWQwCgJ8AWADgegDXqL+1X1IIgSkBreBiBmHGjLABO8sKEVm1KhiEfiAENhj1HgSpa3ej0LxvGjdBCKUxhFKDkKOM1qwJyr8EIZRMVmNtYZRRaQzBXkPav+22wH77VWWMdhgcBDbfvH6/3jcpCwn2MoeG3a9e6nmsDAK7jkXM1qvWQWVdpjl6QRIxhJCaH8OUdkwxS3mJQ9NNlpHefKoUtU00ZaRkmvf+RO/9ud77/5K/vrdsrIVRPDLDU8NXoXZyCGHVqqBUWNopAHzkI83riKQoi04QAlswjnXi3GY8KYXGBpn1yhltMX06jyHIbGctepmFWB2MMpo5sxlDmDqV00i2fbF9r3O0yZe/3CzrxaCuXg1ssEE+PVVQZc4gsDaz9kkdG2xQL5szB5g1i1+nVJiy/sMfmr9pZW2DymIQBgbq/XNgII4QSigeG2MSKTUIto5uKCOdol2K2iYRQvi6c+71zrmNnXPz5a/Xip1zmzvnLnHO3eScu9E597Zer5kU9mBnzgwwXFNHbM9ceWnWs7O58UIZAemOIYO7V4QgSxL/6ldVGVPCuc6UUmi6jVttFbKULEIYGirP/f/0p5tlLF5hFRozCOuu21T+VmmmKKNSBa6fqSxax/pHqYHJ9SN2nPdNYwfUvepYvaWUoPdhQ5+FC9Ptl4mHdr0roQ1TS3nYYLGUWcoIaJYJZRRDCGyZeIsGdD/qBiG88Y31Y0oQwuabA3vv3aSb7HFM/uM/yo4bIylZwnAYwMcBvA+APEEPYOvoGWWyGsBJ3vtrnXPrArjGOXeR9/6PPV6XCxsUMsjYC83xfDKQ9YJr2iCkzk0pzFhcI6UwZN1+oDuDkFIYw8PVPbF2xxBCLEbCRHhvAHjSk8LgYQZBl61c2TQIpQiBUUbz5zf5eBG257S9X63gtOSMhPQjzXHPnBmCz5bmsPcmCEHn9s+YEf7P8dox6sYqODlHZ7iJohTDYI9lStH2a/H8pT75PRVDEMoohhBSayFpg8BiCKUGQVK59X2wZ22fq643ZxBOPjl+H32WEoRwIoBtvfcLvPdbjf71agzgvf+b9/7a0e9LANwEYNP0WT0IU3ojI3ELzwaFFksZjYwEJSU0VAlCYJ2wE8qIxTFKtta0ZSmEIBSJ/G45ekZbiMIt7cR2QJVQPCtWBGrDxgus0mRtYUHl3XYLnhxrc2wylf4+MsLpsJIYgnVK3va24G1b732ddfKU0dvfXt2jbYOul+1Jza43MhKei2x6JGXyPxsnrO9LfcyzfuyxcL82XmBjCDmEwDx/+S4T+2wd9lwtzCDIPsoM6Ui5prnk2hqZ5AyCZOzpZz6JYgg3AijcjaI7cc4tALAbgEbul3PueOfcIufcogdzwdGUMFgvAyDnTcl36QxAU9E8/nh4kdYTYsZGPG22rHIsQyOVBcHaD1R7DOcCjPaeNcrQXiAzCDGEEKNkmDBlzepgBsEiBEsZxRACQ2jWORDJpTjKd6EbY/em69ffrXGaMgXYZZemwrLGThwa3ZZp0wKtwRCMpWOe+cymU2LHA3t+IyMBUQ0NVe1ZvDjUMXVqGiEwRfrQQwEZ6jamYggxNMbqleMkhlEScxHjywzCa15Tr4s5lJpC/cQnAoLXx+UMghyn659ECGENgOucc1/qR9qpc24WwuS2t3vvG/v0ee/P8t7v7r3fff311+++oi9+MXzmuOkYQrABZOvZWbqIXUf2pU0hhJhBSCGEGPTdaKPm78zgXX11vewalURmr90JQujFIOTeE6OMzjkHuOuufJYRQwhCl+R4dn0N3b6FC4Ejj0zfmwhrnzXqstibboNFCO94R1gkTbfl1FOBe+5pti9mZHOI+T//M6z5ZfuqKH9xHlaurBwiabdua4lBsHWzVNQUZZTKKBKJIQSZDAhUCx2m0k5TCEEb7ne9q1lvqUHIlfVBSmII54/+jbk454YQjMF53vvv9aOOf8jNN4dPNgBym6gzRWgpI0k5FTnqqOZ1hHoQhel95fWwTqrFcpMLFzYpoy235N6RDv4xjlNmj8q5Ng4i0ilCGCvKiMUQbrkleNF20Nr1iBgaYAarU4OQM2LsOF2/PpehVGsQGELQ19Dyy1/WkeqaNQFN6XgXe28shvCtbzXvQ/qs9qKlzdogyIqeQOcIQeihToLKzNmxzz8WQ7jjjvpxw8PprKWYQZD+a99TDH2ytqSO67NkDYL3/r+cc+sA2AEhmHyL955gqc7EOecAnAPgJu/9Gb1eLyuss8gAYJyjVXDMIGiEoFNO3/xmYJNN6vUC9dz5KVOqzp4yCM6F2cCa6pkyJfxJp2MBOKl7xoz6+kWMMhL5yEeAww6rtsoEKpQh59jsqFiWkVWQs2YBL35xfba3bqeuI0cZSXaVRQgi3aadDg7y65UghCVLeLZUbnAzOkyCrbYNU6eWpUIyDnv27Pq2meed11xGQ9DejTcGXn/OnLoDITSOGASt5KQfa+9dp7SWIgTdP8XA6LFRghBkP2tdJhLLMmLSjUFgSA6II4TSeMZkoYycc88BcDuAzwD4HIDbnHOHj0Hd+wJ4FYADnXPXjf49Zwyuy4V5xgwiS4e0CikXrBwerhSp7rAxhCBK3cY2WMfQCuP++6vzLUKI8ZmpeIGWyy8PnzJ4Fy6sLwDHYh+PPcYRAstG2mSTeqDMtknOZW1mQTnbFpFu0k4ZQjj8cGDnncsMgiylnro33abYvQFhT4MVK5p9wR7H2gI0DYIYcv1cfvIT4I9/5M8AAC69NHzutVf41H36sMPCOllaGYoC17P01123SmG1QeUcZaQNgp2voMvYeJG26zKRWAzBSsw5sOPUjrnlyzmSy1FGawtCAHAGgGd7728DAOfcNggroP60l4q991cAGMO1njMSQwhTpgAPPFCVyWBl2Sspykg6K8CXrgAqyC5L/Oq1W5hBECShB4/sz6q9cj3ImPdpFZBtl8guu1TtB5oK0ipSmY1dEkMQhZZb32hkBPj2t4FHH62vB8SM50YbNT1mO/EoFVTWqZ5yv7otc+fWg6SxNqcGawllZLOMPve58KnnA7CAb6x+hhSHhuqUETtXGwSRl788zKQ+99xKScueC7pfinNl+76kgqYMwpIl1XwgHaBfsiSgDF2HXbqCoXstDAUyJWxlYCCdscfuY9mygE62357PF5F6GUKwYyB3H32SEoPwgBiDUfkzgAdiB09aifGLMgD+/Oew/gtDCPfeGwJ1mj4RgwCEzqFhvh0U22wTMn4kn70UIYjhsIoeqCtXjRBYtgSjS3TZuusGOkeWZ47BYWsYRaGWxBBEOaTmSXgf/l74wirmo9usj5szh3P+NvjPjJO0T6eTMoTA+H39m20/kxKEENs+ksUQ2HG2zFIqqRiHpf90HEzqZZPGgCZCEDpH2n3ttWEpDb2qLOtbjIKSBf4sGrB1pDzrXXbhCKGEMmIL7bE6dJtlPDDKKJZ2WkIZxWbV90FKDMKNzrmfAPgWQgzhJQCuds69CAD6HgweK2GxAfG6gEo5yLr4ujPIxKk776x41FWrKmU9MlI3LtYgDAzUPXUxCAwhaBGEcPvtwRt/8pOrAHGMMipBCLaDrVoVMkSst8K8bW0Q9AJfJZQMU66HH95UDE95SppnTymp7bfPK8NUUJnRV7nJfimEwFJRc+9Dt0l/jxknq7jEIGjOP2Z07DOQGI/26GN7FeQoIxk3W23VrJfNVNaOj+5jtn/Id/0p19EybRqPITCEoFPKgbBnBsviswrcGjZg7IPKsXfXBylaywjA/QD2B3AAgAcBzAfwfIQ9EdYOiUEzC5E/+MHwybwDoB4YHhqqOqx4SADnPfVA0QbBDgCGEIAqYDlvHrD//nVFH4shMEXAEMLwcD0NVtpgB6MgDmsQ7PVSlJFu3+zZYb9pHUgUjjh1bkxJbbghcPzx3CDkymLPzyYdAHzylkxItCK78mmxbYkpehZDKEEIQP3dpRCCoDL5bmf7ivFluf85yojdC6M3xSDo9ykK1Y4lm2XEkNqWWzbbJ8Ke4frrA//yL/X27bRT1QaZ7KfrYIkcUhZbYiSFEFKGLWZM+iAlWUavHY+G9F3rv033AAAgAElEQVRiCEEMgn0JsWWJV6yoMm1EqYtB0AjBejXMIOjO+ZnPNNshx82ZEygdadfQUJ0ykh3ArCJlGUDWSMinVhhs0Mr9aWSSQwhMuaaUsNShy+68M0yOs/QaMwgzZzYVOJv4VZp2Ksra9g1m7E44IeTsp2S77YDTTgPe+c76uSUGoZMYgr4XeZYxL1Pesdwn4/w7oYweeaSJqBjFw1YxtX1BzrXH2QC3fV5z54ZJd96XUUbM6OhxI6m38rs+d731mmWdUEYlCCGWDt0HKcky2to59yPn3IPOuQeccz9wzhEMOMnFdjQpixkEhhDWX7+JEGRA5SijGEKw6xGxoPI++9Q3VBdjIucODgLPex6njJjy0hSFZEcx6KspI1EudvAA+bRT8UJZFhTzMnWZ7HRVQhnZ60m7YzEEFowtQQgMcUydWo8xMZk1K8RrGIrLGYQ//SmuGGIGoQQh2Dx/ixA6pYwA4HuGRdZ9X7LM7Hu3lJFQOExZa4Mgiw1KW+U4QSspB+Scc6r2WaPDKFn93fuARGbNao4blh4ce8cx5kJLzBHog5RQRt9EiB9sDGATAN8G8D/9bFRfJAbNZACkDMK73x089GnTmgZBBoqmjHIGQRS99nplyeFYUFnaLcbEUkbiWediCJYyEoPAoK+lHewgO+GE8KmvJ9SSLtMcsfV6WS67vl+2EYkMWpYDbpV66VpGsRhCKUJgx1lhaKAUIVx+eUgVZcdZ5+XII5uTvGIIgc0Etm0uQQjSz4FmarHu+0ccEZBSbLVTKZsyJWQ4MWWdm5gmbWHH6TH3zW+Gzz32aBodlrShv+s+bXXLtGncIGjUI1KCEGJLdfRBSgyC895/fXTbzNXe+28AyPT8SSg5hCDCFv2aORPYccd6qqI2CIwy6hQhbL55+Fy6tEoP1GmnOtZgqRtRpLl5CFK/HhTaIFjou2BBEyHo+5CAqaWgbHxED1Bt2JYurdfLjhMloxV4LwhBaITYLF3WPyzdwSaSlXhxTPmXxhCA4IzkKKNttw27q3WLEDQSlTZ0ihAkfVlEK8CZM4EDD+QTzixFKX1fnsNznxuWWSlZuoLFouz9yvH77luGEJ785HpfsAZBftOOo4juM6kYwutexxHCZKGMAFzinHuvc26Bc25L59y7AVwwVvsijJvIOjNWCViEcMopwAc+EL5bKkOv3WJTQrWHVBJU1ugCCJkY++8fvj/0UHWcjlNI++1MZc29pxACU7iaMtKKYZddQse2Az7mvVvDkVP0slSAPc7WoQ1CTkmJUteDVnLc7X3k4hn6WVuDwILK+rgrrgifT31qPdgcQwiMTnjpS/PIRN93SrnmEMLISOD+Tz65eqfM+DLP1b53m62j2yifzLO2Bl76vlb+f/97+Pztb8OkOisMaTKEYBW4jfnZ+5Vd6I4+Oo0QpO1aT4jEDII1TrEZ9JMIIbwMwBsAXALgUgAnAHgdwjaai+KnTTKZPj0o3FwMQQatVbgDA/UXbZefiAWVzz47ZJrkgsojI5XykOvEKKPBwbqi18pad7Drrmt671aRxigjy+mKcmRZJPo+pH1WIcWoIEY7sOMsQkgZBG3sRkYCHZdqnz43FVQWGoAZBF2vzDfZfvt6XKGUMtp/f+DQQ5vPOcZDMy/fOhGpoLIgXDlffzIDo+tNvTuRP/0pjAO5HvOsbZm8p1jWkl4nScTGEFib2dwfO9ehJKsqZRCYISpFCKzecQwql2QZrX0BZCaMIz755Oaid6I0ReHKLFLrudoYgjYuuhPLKqs5ykgPShE2U1kbk1QM4dFHq2uw4yxCyGV9aEWqszOAer2MMmKcv54NnVIq8qmPO+usMF8kR2MwJMbaJ23MLTL3iU+EzxjtYwOnG2/c5Iath/r974eUx9T1RHJxgKEhbsxjKMQ+L6ByeFLeOxAoTkYZxeica6+tvscMAntPTEEefTRwyCHNOmw/uvjigHwOPbQ6Rj9/zemXGEDbllgMIYc+UwhhYKB8DkMfJIoQnHPPTJ3onJvtnNtp7JvUJ5EBr1+yGIM99mhCX8bRa2VoJ6bJMQD3anIIwftqC0I9gc3OVI5RRkyBS72MMrIIwSoQhhDsgGcUihgO66EuX96ZQWBenJTJftWxGIJ9zszzLKGMLrus/t5kVdgYZSTnikF4rcnYtscJFRGLSZQiBNuPLEL4y1+4wwFUz8YqyZSylvP0c126NEzujAVALe3GYgjMAWFjiaV16mtLPwLqS7nbZyXjwlK8KYrM9v0YQkidqyV1PZFxNAgphPBi59zHAFyIQA89iDBJbVsAzwawJYCT+t7CsRIZjGxQMA5cG4SPfhQ49tg0QtCUEYOM1iCIVy51nHYacNNNYZq/5VHZQGGUkR60X/pSVbfUK4bjhhvCejlnnZWmjKxStwNUPgcH68bJBsJ/+MPquWgFL+cyKih3nJSlKCNL6+n7YJQR8wptggDA510whKDRxeLFwK238nz0HDIRSSEEPbHRGtUz1GLC8m5F5J3Ye9xgg3D+e94T/t9uu3rd1juWiV3PelbeIMRiCLmgsn4ONotHH6edM/aspA62JhNDs/qeSymjlEFgCEH/NhkpI+/9O5xz8wAchbBcxcYAliNsdfml0cXp1h6xGTdaLHUjBkF7IV/5Sn2jbDvb2FJGrDNpgzBjRv1F33RT+NTKhlFGGiGkYggStPW+ya0C1WBIUUb6eo8/Hmga603J85PsK+2By7lLloTPXAxBIzEpW2+9JkrShihlEFJB+RxC0B4bMwh6n2Xr+eu4lJwrS6OUGIQYQojtMSHPwfuwUqq9FxF5hnqugVVeN94YlPqUKdVCiroOkRKenQmjtBgKefvbw7ImbCzpndp0+7SBkXdghWV0saByjDLKGTbbFn2upqhEUv0t1eY+STKo7L1/xHt/tvf+Nd77f/HeH+m9//e1zhgAPIYgYj3IgYG6wgWaL5+lnXZDGdkccm2crr8+5J/rzqTP1XnSLFis7x0IuzfJXgKvfGV1XIwy0s/rfe+r7sN24hKOHuCQ2w5GG6t59NEwIZDRBDEv32Zz2edXElTW96Y9TyBkgek198UgW+Q0fXr9PuV6tg+WGoQcZSS/DQ/Hg8CxdyLnXn559U6k7OlPb7Y75kWXUEa2b8W88gsv5AqSlennrykjK7FnIOd++9thjOj2yRLwpUHl3IQ4kc0359ToJKWMAADOuakAXgxggT7ee396/5rVB2ExBBFGKdgJXc99blj73xoEGXgWIaQMgqUy9LG6jcJ/xigjUZBveEP4fOEL6+2T+5brS6bHUUdVi+QNDzcDrzKgtFKRJcJjCCEVQ3jjG6tzcwbBKobDD6+MlqUJ7EApRQgWwci5JcsaAGGGqt5hSxCCVnq77lpfXE2jAcanMwpKYgwiOYSrnYEYAmLKcM2aJo2kqaXXvx4488z6ucuWBUM9MlKhTTk3ZRBYsFg7IPadMOWaU5o5g5BCCLL2FPP8OzEIzIhZZPi614UtX4F6PGMCKaMkQhiVHwB4AYDVAJapv7VLOjUI2nvfd9/gXediCJ0gBFmPaM2a+oYeGiE861mh08Qoo5QHyAyCCAsq55Qm4ziZQWAxBF2vPVcv5cAMghgBxhvnUMhnP1tt5GLfLzuXxSksNw0EI6XnF3z3u3VjIgpOK1lGD8W8QnmGjz9eUUDyDFIIVxvlEoRw8smBBhweru5xwYLqHWtUY899+OGq3bLsyre/nTcIGqFZ5RqjWlLKlR2XiiGwcaPP/cIXqjLdZ2y9YxFD0G0RSnGCEUKJQdjMe/8y7/3HvPeflL++t2ysRWApUD3cF7wgLLXM+EeW1qlflk5pFMpIEAJTNtogfP7zIcNJlL/e2jDnqeuZyikKRRCAnl2p69AK11JGWmkyjz6FEFIK1xqEbbZplsWoiBhvnKKMfv3r5v1K++zkIRtUTt3v295Wf6behwFtaRF7HYAbBOsFa49dKza2KKFcU1NGT31qHiE885lVIPiss6pjt9iiiRAsHSn12/dk58wA+MfS1ymEwGJWIrF4XA4hyFiUJWHYcSI5JVxqEPR4KDEI+jiJSa0FBuHXzrmd+96SfsuSJc0Ou3Ah8IpXNJWhxBBsWqdFCNoT1sE65oVY1HDppdVxOgBmJ87IYLQIwVJaQH3Q7r478LKXBY/Pir0Pm2XEgtS5oBejjHIGwT7TlEEogdKWMtID2d7b9OnNHcSYAVy2LGxaL88q1ha9n4QoOP3OtRIQ1BYzCKtXVx6jRhl6Vr0+XlNGs2bFg6I2RhILbsr9iTFi75MZBPvuDjgA+PKX621gCEFTRlI2Zw5wySXlMQRL7Q0MAKeeCpxkEiFltrfE0oA8LcXozV4Qgoh+pvK+N9xw0huEZwK4xjl3i3PuD865651zf+h3w8ZcvvSlsD8u88CZBxnL4olRRsJXAzxYbA2CDAB9HlCnjGSgWGRig8r6XO35r79++F5CGdkBahFCTHnZNjMPUNdbahByBlXqlePe9a4Q57AxBPtc5F1Om1bfQtMaE/kUlCHPyt6HtElvtakpIxsv0OXayFqDINtn6nvWRlo/H00ZaZSqr7ntttwgzJkTJnnZtmvKiCGEQw6p2q2PY56/lhhCsEZsww3DxL7SGMKCBdU9PPRQeLfMcIhB0OMzZmCkLXPn8npZqmysfbrsJS8JnxotLlsGHHwwsNlmecenj1JiEA4H8GQAh6LaFOf5/WxUX+T665ueMFNKTPlLme6cKYOgFaSIVWjvfW91rpx33HF1b/uWW0JHyVFGr3418NWv1u9NgsUxRWopI4sQrGJ+2cvCJxs8saByDiEwyG0NdOz52XrPO6/ZvhRCYAFpO8ELCJPL5swJ34ViYjSBTgkVBccMgj4/RRlNn14pB019Sbv18dJubRDknqVe2z+kjXvuWUccmnYTRf/b3zaV3PnnNw33/ffz96nvnyEEGQOxsVkSQzj44KrsHe8AvvOdNP1i4zspr3yvvYAPfajeFmbM5TNmEOx40AZheDg4FZOdMvLe3wlgLoIReD6AuaNla58wSsEahAceAJ70pCacjiEEKbMIIeXh7rxz2JHJUkYvelHdmHz608A3vsEpI6EeAL4Dm1BBsYwHOe6NbwwbqDMv+uGHgZ/+NJR95zthz+ncxBk2uHW9KYTw8MMhtsIGRc4g6DI59+ijwzwGdm+5gSd1DQ2FSVpAtd+w9vClflk2Qs4VykgkZxA0YtAzrL2vMl90uy1CEMrIxrGkjq23rj+vK6+sx02sMdNKU9IwtYGdOrWpqK68kht9oFr0jiEElg0m/aM0hsAMR+y4VFBZl+m2bLABRzUxijLlhIloPXHEEWEf6Qk2CCVpp28D8HoAsuvFN5xzZ3nvP9vXlvVDrNfLvJW776624LNZC/pFWyXcCWWkKRl9nsQu7Ll28EyfXu/sWoHIvX3gA2FyTw4hHHhgM1f/+QQAXnll8z709RhCSMHmnXdulsn2l6UGITa45dwZM8Kqofq4Rx4B/va35rk2qGyVNRC80MWL696/cNHaIGhFWIIQRLnIp13pk1E3cu5226UpI7mvjTduGtAVK5qIQ56/jTHkkLV+hlL2q1+F533ccSF5A+BjjvXfP/+5QpDy7A47DHjrWwNiyin/3XZLK2abZpsyHGefHZa/15vhpGIIG24IPPhg83q2jpkzy4zd4GAzw65PUkIZHQvgGd77U733pwLYC8FArH1iudDPfAZYtKhpJCzVwrya0hjCfvsFD9waBFH+FubnPGvrPUpbrIc1PBxmP+cU6fbbB0VXylPqet/xjrCJCUMIOWXN2iLLG3eDEFjQWwy5fi4vfWngmJnBYghBX29kJGTh6DbKImtCK4mn3wllZO+ZLSQo7dMIYWAgzFXJUUZC21hjojlwmyGllaamFHUsxL6nZz6zqdAWL+b0kB1zuv/K2Bkezs9T0c9PPysx3CUIoWQi2U9+0qSMmEE49NC64dD12rIZM8rQymSijAA4ALrVa0bL1j5hCveeeziVYecNpILKljLStM/gYJiRaA2MtEWuDVQ8NkMIVuEyhMA8QKZI/+u/gDe9KXxfubI5DyElut6pU6sUx05jCCK63m4MglXgMXpI2qIn2Mlxf/lLWI2z5HqiXOX8664L/++1V/VsWJaRfE6bVh2XMgj2HQPN1XXnzg3KR/qR9F3dbq3YtfMiz9QaCR1DkGsJPSTH2Wcg8oIXNBWazez71KeaE+csQpBg/8qVTYNcSiNJvTEnwhroHPq0hogZBEH+sf5ry2QlZVvvBFJGJQbhXAC/dc6d5pw7DcBvAJzT11b1S2QT9tQD1wFkrcBTMQSGEJgCZ5SR7pxybIoXZ94jW+ZZrueI7dbZNTqY1SlC+Otfm20ujSF0WpZDCMLzs3cZo6/k3D/9qXk9Of5pT2u+N2lPzEsVJWxjCHPmhPkh+jj5zXqa+h1L8sD73ldHCLotEs9gCCFmEPTzsopOGxLZr1uOswZBIwn77ljG2XXXcQMo7ZP+uWBBOUKw/SMXJ5JjN9qoLJOpxCCIwxAzWCUxMH09odkmk0Hw3p8B4LUAHgbwCIDXeu8/1e+G9UWe/eym4mMvtcQgWCWsPX3t5bNlfKXj2AlFokxjMQTvq1mxOQ4WaHq7TDRCKDEIurN/85vA+99fR0QMTdn76KYsN6BkbSaG9pix04NMDLmeCex98MCHhqolJCxCiPHYWmn+/e8VjSRB6RxlpPvgyEiIBQFhVnfMU7cGwcYQdB0aIVjKSK6r72333avjtAGw70lnycjzZtRSLIYgbV61KvDwc+ZwhBDz6HUZQ1hynL5fSwXpNtr3UzIPgVF98hw6NQibbBI/rk8SDSo752Z77xePbpN5x+if/Dbfe/9w7NxJKc6FTmYfbrcGwfL2q1cHBALUlfqvf10FyGzHFkVqEUKMMnr44bBMAKOMmCcsCCFlEAQh6HP32SdsOfrud/PnmOrYLI1V30epQZBz3//++Dr7ug5RUno+QA4hSNnQUPjUaYB6YtjixWFio0YIKR575crQDmnTz34WssqsIpV2zpwZ59lj2S8WDbAyq8DleQni0FkyDCHoMo1mrYGRd6DHiARBLfoBAm2Wcmi0sUshBP1s7rorjDORFGWkxxxrn35++jx7vZRBKHFocuNBjh/H1U5TWUbfRJhzcA0AfSdu9P+t+9iusRd58TlFpQ2CSCqoLB1HjgHqHjMAbLppCP7JC16+PGQKMYRgz5XraWWkYw76PHtvM2eGBfkkbZGJIAQ9ADbdtMq0smIHxd571+t95JFwb2NFGQ0MhPvQA0quzYLKsX2gU22Rd62N8eabV8cB4X2zGIIWUV5iZOW6K1fWqRuNEKZPR2PTeY0qY4qKKc0YQkhRRvp6QB0hWK8+FkMQg6oVpF5LyypwSy1ZhGANr0XWOlYj8pWv1J9TanKkDax3Qxm99rUB/emy22+v4h5jQRmlyvokUYPgvX/e6OdW49KSforOjMjxyXrQlwaVUzGEwcGwSN2PflRdb9myKp6hvZWRkbpS2mor4MMfDhy3HgAyYPQgZgbhnHOCck9JamIak0cfrfazPeCA4MGvXFmde8wx4fMtb8l7XVLGPH/tJYkSkPs/8siwYivj/HWgTj+XVFs0dcTShUWYV26vKQhB5oDocmYQZG6HtGfvvatj5Lz3vQ+46KL6s3n44ZAQoa9fGkOwCEFTKAwhaH4/ZhD23LNexhCCXtGTGUDtXOUQgtBwMYlRRvZ+Ba3Y69k+Y8f/DTfU7xeoNhN61au4QbCSMwgaIYwTZRQZ9ZU4535RUjapxQ7GFJ8sg2rFivpaRtZjY1lGLIbAgsorVoSOaDM81l23/vI32CAYBT1Q5JrWc7Ke8NSpwPz5+WfDKCPtoVn50IfCrG/7DFjHZs+5U49IKA+b9SUD2VJGzKMseecAX0BPzyewc0ZiCMFSRimDIIpP2vOb3zSvN2dOSF/W5/7rv9YdHfHKNUodGQGuuKJaOK0kqCxtkrLttw/9KGUQWJksia0NgvbKGUWm62AIQcrt9ZhYym2vvYAf/KAZVJb3ZK/HKKPh4fpSJvp+tThXLWutRRucww4rHw+TIajsnJs2Gj9Yzzk3zzk3f/RvAYBNxqV1YyWiVID8S5BOd911YR14IB5UtovbWYOgaQ9RaOLJ6SWspaMcfDBfQ0k6hDYI2jiJ4rNKnXklVmSJixhKsqKvmTIIsbJOKSNRpM7Vg7sWEU2dGoKvjP7L1as94ZxBEHokpgiGhyuDoOvKGYQUzaCdDbnnhx5qXv9vfwtZM1K2Zk1IqRWRcx95pLq+pVCkndJXFyyozo21mRnKF7ygqsMqXGsQLGVUghAsZWTFIoShoSpIrcfclltyioxRRl/8YlD0NmXVtuXb324aDu3QLFgQ9pfoZjz0WVII4Q0I8YMdRj/l7wcAPt//po2h6ECYfQmxwBBQpSOy7IHUnsraIOiOrQe3wHWhjPbfP/yvDYJMmrMekVxXUhKvuqqpIPU9pyRGGcn1RHbYIawVzwyChbSHHFKGGo45ptwgXH99lfPPDILll/Vx0uaREeCUU0LQ3L5z3T49uLV3mkMIG24Y5jl0gxBSFJSOT8lx+j3IPa9YUSU2WE9YytasCauA6jLbt6Sv2vbZILWUMUMp5x15ZLP/MsrIBpVjCEG/Y/28BEGJWIQgz18/l4024ohj7tymnhgYqJCWjcHY5yxzXbRYhBubvKn7729/Gz4nA0Lw3n96NH7wTu/91t77rUb/dvHef24sKnfOHTa6iuptzrn3jsU1qbBOLPLmN8cNgkgqqMwMgih6XaYNgs5qsYPMBpUlcMUoo5GRsDyAnGc5dYsQZswI6Zlf+1rILQf4Bjky8L761erczTar+G4R/QykzdttB5x+ehz6Svv22w94zWvKDYJ4tUB87RtrtD/60cqTlmNnzw48vUVEQKiHoQQ5RlMyrN0Svyg1CKecwnfoEhHlwBCCfg9yrlCRUhZDbdtvXz9XG0G9/pWltOQ461wxQ6lTeS0K0cgE6A4hWM7/LW8JcSURO171uTa2Yg3MoYdyykhmpev+YQ3Crrtyvp8ZhJjTJMfJPimTKYbgvf+sc24n59xLnXOvlr9eK3bODSIgjcMBLATwr865hb1elwrr2MLxPe95ebqkZKay9mq0orcGwfK8ghCkThvY1JSHNlrSibUHp++DIYRNNgne4YwZlVFKbZDzlKeEDq7LtLFklNGMGfG0U2uw7DMFqsGoDYK9jxRCGBioZ7h897vV89GKwBoTXZduj0UI1hNed91g2HRZqUGQhQN1mZZShCDHLV9eNwgxgyzLOe+4Y/UcJFHgggvSBoGhGmYodT+xlIx9/p0iBOaV2wCypYxsn7HvQxsYSbO1COHoo8PMfIYQ5Ng3v7l3gxDrB+MgWYPgnPsAgM+O/j0bwMcAHDEGde8J4Dbv/Z+998MA/gdhq86xF+vVrFkTtg+U/1lQWYuU6W0cRTlo790qdevplCAEvS6NiHQSFlTW96XvQ3d4fR8DA/XjYgjBKmtLvwDcIDBlDVRLLGiDIINbsmX23z8sC66NE0M6rA5ps8wbEIOvPWtRIpaysM+aUUYWIYiy2W8/4MUvrs5ds6aZdjowEJaGFj6/JM1RH5dDCJoyEoMg/U2Uvz53zZqQHbb++lWb//M/wzGbbtq5QWCGUqctW4fm6U/nlJFuXw4hWMrIvjc7D8HGk/TYsQhB6tHX13upsLRdXbfeXlW/o24NAktZ7ZNkDQKAowAcBOA+7/1rAewCYGr6lCLZFMBd6v+7R8vGXiwlwzzrmEH43e+qzjNrVsUj6olpsRgCo4xKEYLdrc0aBIsQrPcjdWrRsRCNdBhCiD0X7a3nDIKcu/nmYXIW8+gffrhaw4gZImmfFjagdJuBahVS/Z618bV0AlCGELQnLErT9i0WVL7zzvr/doCnPENGyTCEYCkj4cmFX4/Rm7bPS1+97LKQmaOPu/rq5npQDCEccQRwwgn1Z79mTchYeuUr6/f7+OPxeQhLl4ZUZyCsIDowUJ+HMGVKfX9nuWbMobH9wL5L/Uylb82dG/Y2l2egKSMbq5k9O1Cmg4NNBCPCKE8g6JrJjhAALPfejwBY7ZybDeABjM2kNJYC07hr59zxzrlFzrlFD9olZUtFK1x50ZLep5WDwEat9M46qzpu+vRqBquljFgMgVFGdhE8hhBWr662d9xvv3onBipDINBWrsWup4UpXBZUTiGEEoNgA2Zz5tSXXdB1yPOUcy2C+eUvq4ld+jg9uG2b5T3LsfJ8LEKQ3174wvD55CfHDYJ4htYTtn1rZCTc04wZdYUzZ061h3Fs0I+M4B97EAOV4tOUkdzH4Yc3j9OGSKeiipHQ/cMiJ3kGcq73YSE6ETmO0VzWEMlzWXfd+rmWChoZCethAc2MPXmmF1wQFmK8+GLgvvuqdycKfPr0sD6Uflb2uQBB2VqEwIL88s4ZaxBDCPrco44KjuPOO4dYnbRDrgvwoPLcuVXG0yQ3CIucc3MBnI2QZXQtgKvGoO67AWyu/t8MwL32IO/9Wd773b33u68vW0J2KtaLi1Eyomi1MtXeqfbyly1rBsxsDKGUMrLUz+rVgV7YdtugWLTRAQKvz2IIcm/Dw7wDMUXKKKMUQshRRmy10xtuaCp6Bsvvv79piH7/+zA5z95HDCHoQS7tkf+1sbTeGRAGMhuQ0l7mCTMK5ZFHwgDXQUutrFMGYdtt62U27VTuY5NNgA9+sH4cQ6RaWTNKRq63005hrwF9rm1fbNywe2PPhZWJ46P7hx5LInol3JgxlrEJVHSYzf7RFE8sqGz7pjUIUv61r9XbInNj5Lo331xdP0cZpdYAe+ELJ49B8N6/yXv/qPf+iwAOAXDMKHXUq1wN4MnOua2cc+sAeDmAH47BdZvCYgjvfGf1u3QSO0sVaHoc3gevBWhmGVnahyEERhkxhHDppfXBIktsjwIAACAASURBVB124cIqEG4pIynTueciDz0U8tTZvgmxoHIKISxeHK6ZiyHYgWwV+IYbVm28/fZq8xo9KE45pQm5YzEEbYD1+7OeYUzx23J5VzGEYJWcGOR11qkP4he/uJlRdNxxIWaiy7bfHjjjjOoeLEKQ4xiNpNsi/U2WSZFnwCgjMXZ6CQqrgFKO1MqVTYTAnosu+973QoLD8HBIXrBzIgaMatLX0s/FGhgZwx/7WPNdrlpVp1VLKSPpW/oZbLFFmJGsDYLuo95XRvKjH62eqTbwbNzYNp90UjW3ZBwkahCcczuMfj5N/gDMBzBl9HtP4r1fDeAtAH4G4CYA3/Le39jrdalYhDAyEl6WLLMgL+F3v2sqCWYQ9KbbjDLqNKhsYwhr1oSOoJcmYJ5djDKaMiXQH0ClXO4dBV8yOUc68dKlnVFG739/+F+oHmtgbMeWa2oEo+t4+tPrz3v58nq9e+8daDOtoNgKrTaGIPKNb9Tf5a23hvP13AQtdkButll1XEwJ274lCk3aJopAAt1y7pQpzQ13RkYqVMoQgqYttLNh+6BGCKKYmEHQRswahFNPBY49tlmvfVa6Dv3etbNijYTsXKfRBXOuRLTylueijZ0OwM+bV993QkT6nFXgOiYh7yuGmMVwWOrLGmOgeo+HHloP1IvxKzEIIpMAIZw4+vlJ8veJsajce/8T7/123vttvPf/byyuGamIeyvWS1q+PGS6aLEGQa53wAF1r4bFENgAtYM7hhC0MKNjO7uljGRw77038IxnVOfplSaFv9WxELnnGGV0+OEhXVFkxoym56/hsA5wpxS4Pk7XK57ry19e1bl4cQje6TZ/9KPAl79cf0dDQ2HJcyAEHq+4IhiIb32req76/cpzHBkJBlVQ5FOeEo5jlBGLIcizkkliMaOTMzAphGDLYpSR9t4ZJaMRgigwOXfKlMo7TRmEGGWUUpoiGpmkKCNrEGS82iA6C/xL39LzC6xR1AghRhmlkAnL6tPXT8UQpY7YgnzjmGWUWtzueOfcAIBTvPe/GpfW9EusF8e8bfF0xOMQscrZ+4oS0NfTnTg1D8EaDgtfU/sh2EHGcqdFcWkvU+5N5hRoHnWLLZp0Tgoh6AG1ySZ1Q7RiRUAig4PVvUr7LGdq70XKYwZhs82qIKW8J6vQ//znusKxSmXTTcMsZVH0scE3MgKst14VaNXKsIQykmc1ZUpwMGIZRVZ5WbQ4FgjBKutYDGF4uO5ts74qlJa9DxZUFgQUq1dEG4TUccwg6PEqZSw1+Iorwv+xJBDdZqB6B/I+9HiIIQRGGelnJ78xJ0A/axvP0O9jHCSFEDCaXTQmaGBCxcYQYh6M7tgiWjnLi9EeODMwGiFYyihmOOy5WthAsR1Hp0zq9sm5zFO03hnz3q1B0ArJZr7oWcEamks7rEGw70TuSxsIvcy4HJPK49ZUkFYqkvs+bVpAF7Ze/axtOilTNjGDEFM2to7xQgjMeWFOiT6OzUOQd7LRRhWNxBCC7pcpykikG4QgdcQoI933va/WwIohejaWdFskKMzoMIYUbWKD1CPvyCIEuZ7U4X1F8errjYMkDcKo/Nw592LnxrFVYy1Ll4YcZiDuJcUMAoshMGUYg6AMIVjln0MIMSNWghDkXMbzWmXB0AAzCDLwrIevlYx+znL/zOjo84GQmskQgqbI5PnLQNUKV96Lbp9+/vqedb2S7skGODOCWonYGALrC1qYQdD9w5ZZhMCev1W4DCHEDMLISFCasjpuCs2y52eDysyYxBQ9c14YQtDXkjq0QYhRRmLI5b4YopdzZRkY7VzZMZyiwyxC0G1OUUbM4Ns+MxkQwqicCODbAFY65xY755Y45xb3uV1jK5/+dPVddwirkJhB2GGH6jt7qSmPgyEEfVwqqKxFOslnP1steGVhrg6y2kEWg/UMrgPllBHjQu1ztgZB87Ra2axaFY6ZN69+nEYIMihi7ZYBucUWTaWS8pgB4G1vaz5X6+Ey75PFEKxiLkEIsb5ljQR7/owyknO/8Y1qTRxmEOR6y5dXMQ+GZuXcH/2omvSXcjaYwf/ud4Hbbqs/C4ZSGZJglNHSpVWbY89UGwTdZoa2v/CF8L+mjOx9WKeOUUYWIchvMYNw+unVCgiMvposlBEAeO/X9d4PeO/X8d7PHv1/9ng0bsxk5crqO/MQpJMsWVJ1MJEZM4ATR+PrOpWRTS5LKf/YICsJKkvn/OY3qzLtrWyxReDzY17cyEjYOU04eLneWFNG0m47g1vaq+kwq3CHhznNkqKMbLv1s9bPXq7JDMLISDD6hx5ar5s5DCWUEVO41iBoeiNlEPRxOYTA+tvISNiX4Mtfrj8r5uHamARLkV6zBrjwQuC88+rnsv7GxtdHPoKGMMpIG179zOT6UseSJVWf1sqfzSYXib0jjba32SYfa7AG4YEH6gsw6nqXL08bhMsuq7dPI4QNNphcBgEARvdD2NM5t5/89bthYyp2sbgYD/j3v4cJLfZceYFAGWUkL/CBB6qNQmKUEUMI0t558+p1aNFKQFIjReGyoPJjj1XpsrEYgvXeO6WM1qwJbZ49u+4pyv2nKCPJEddtBpqUUYzKkGcnwhACU14MLZYihNhxrC+wd9cLQvj5zyuvMhVUlnbpZxXzeu25993HHQZ9H9awpZSmfh9nnBE2ibF91Rpe/f7kGP0uWZYRm00uklL08jzPOKMqe+ihaj5QijL68Y+bbRVkIpMUU7rDPlNp87HHTi6D4Jw7DsDlCPMFPjj6eVp/mzXGwhajYi9VK4vTTw+rWJYM2pjHcemlVb0pysgihFWrwo5Yn/tcvX1amIKbNy94KYwyYjxljHpJIYQYZSHPRRsdjRCe9KS6UrEe5PBws31AkzKSdtisMaBaUM25eAzhj3+sI4oSgyD3nAsC62fNjJs9rhuEIOfee2/l+WtPmBkExllbJMHact55VR+MOSWlXrTuL0BwvObP506JLvvOd0K2lza6zKCmKCO9wB8br3KcpNjqFQi+/vX6uTHKyIZYpX1AQPAp3cFSefUM+0kWVH4bgD0A3Om9fzaA3QB0uajQBIlFCMxLsh6gUDAMSsfWI7Id7ClPqVbCTFFGLKjMlICsxy5lAuulzTNnhiU1GEJgSi+GELTyL6GMUkHINWvC7Orp0+vxEdueUsrIIjapZ968ilITykh7pPK8gDryYnRfzPNnlNGiRdU9MQWpFbM10t0gBG0AtdKwqHf16ooqZRlxObpJ2qxnmscQQs4gyPNj74M5JfoZSJ957LHqmJTyZ89v6lTgoIOa79w+gxe+EHj+85vH2ftlzqROx5WxzMqY7mAGwU7YnCwIAcAK7/0KAHDOTfXe3wxg+8w5k0te8pLqu7yEG2+sBgyDqkxp5mCfVireh9m8kgUxa1YIxunjpLPLYmhSJimr1pPYb79q2W6GENZZJ/wfy9ywFA+D60CeMpJObBWIVVxWWegYgqXOcgZB89qaX5Z65s8Ps7ClPQwhyP0JxZby8mMIgW2haWeUM+Mr70eXMeXFqDjmHOjrMcrovPOq1UZlMyRtEFKKVJ71RhsB55xTP1dLyiAwh0vvJCb1siyoFSuafUa2s9WUEXt+bB4CSzv/yleqrCLtBIizwOgmliyi6bDnPKc6Vs478sh6WSzLyD7TJUvC/9I3x8kgRCemKbl7dHG78wFc5Jx7BGQRukktWjFIhxAo+OlPV2UjI80Bv2pVUOZAZ1lGkhYnin7OnJAVwRSkDo4NDYUy4dx1m5lnpxWkGASWdmrrFWPCOGKhb7TyWbYsThmllJltM+NhSygjzcsyhGAVAYshyDGWbrrjjvoAt2mTKYQg1869J3k/+lzm4bJzmQMCAJ/8ZP04fa7I059eGQb2rNi5K1eG973ddoHq0+dqySEE2xfsuTZ1VO7tda8L/593XlUmS6UIQkhRRjYTjBn3c89ttsU6KQwhWJTPnADpDzbz6JFHglMoMYkUQhAZ5yyjrEHw3su6uKc55y4BMAfAhX1t1ViLhaqp4FgO1gNxK28H8sUXV5Ab4DwvUPeSJIYwOJifjCRKKocQYjA3Rhk9/nign0RJ3XtvuObAQGXEYsoshRCkXDKrYpSRfs623SmDoJGcRQixc/X6QvZ5MYSQMggxyqgEITCUFTO+a9aEzChR1syYiFjDJohUPyv77iQ28cxnNs/VkuqXzKCyc9m2n0ccUa36ahVkp5RRJ22xTkqMMrKGw5aJaIPgPfDrXwMHH1ztqaLpPRGbpjzZ0k6dc592zu0DAN77y7z3Pxzd4Wztkf32A/7f6FJJqY5tPSeraIDOYgiXXVZxnyzLSK6n6xgaCv/nqANNGaUQQgrCx4LKQmHJcbINZY4ysmXO1T1//bxSlJGUrVxZRwcDA6FMX0/avXhxPQWRIQTWFr2irH42mkbS98woI90+5hzIcZJ2yQwMe4aibFgZc0B0HxRhBuFnPwuxD32uNaBAk2qR/vGCF9TvjVFasgChLhscBHbfvbrfkRGOEDbdNOzfbZ+f/J+j3NjkQWvctaTiRrJIpD0uhYjk2WmD8IxnhEC6GAN9P8PD9f8tTTWOQeUSyuhaAKc457YD8H0A/+u9X9TfZo2xzJpV3zIzZRAYZZSKITCFK8cddVQILOsyRi3ZelmANkUZlSCEWAyBTQqSzi3nSraUIATGQ1vvVo63il5iJHaW6fLl9b0nRPlrY+xc8Cj1cWJMli+vU3vWW9aUka5DB2b1s7nttjq3bR0GHZPQbWEIQdIP9c5lKYTAaLdcVlvMS2UGAah2cGMIIXbuyEhQbHbJbtaWRx+trwq8Zg3w2tcCe+xRlQllJEuJMPpFyqZPr/L5U2ggNg8hh3RY9tCaNeEenvvc9HHWmGgFbtGjFXF8dFv0ceuvHxD6ZEEI3vv/8t4/B2EP5FsBfNQ596e+t6xfIg98aKiawZyiBEqCyjHKyCpNgFNGzBDFjE63CMHC4RhlJHU4V50rwbJp0+recsq7lWvGvPKRkbrCfeihKqAn7bYGQQyH3p5ycDBws+uuWz3PW2+t9lXQ5zLKiBkEmSikDRZDCKLoFy5sPmt9PT0ZD6hnkuUytVIIgc3ItRO6YspQdlxLIQSmmG1ZzCDYYLFFU9JmtoGPRiZyvbe/vWpXCg3E5orYOI8WRrmxfh57v8wY64lu+jgrOYMg7ZssMQQl2wLYAcACAH/sS2vGQ+RFP/3pFXxlCrIXg8A8GKCMMtKZEbpzSuZRDiGsWhVHCCnKSBsnO7idC3MyNHy1nD8Lakpn189gypSgcCVwLufr5Q+k7phB0MuLDA4GGG5Xqf3Qh+r55zHKiBkEgfWSEMA8ejEIU6dW6YXMmEs8Ayg3CLnYkaXsWF8QsQZh1Spgq62APfes6rV1nHxyiK3cfHPTmGjlmkMrtswqSJaGneL8jzuuvnx76TwEa2BSCIGNa0ZBpSgjFlROGQRLGU2gQcgiBOecIILTAdwA4One++f3vWX9kphHzxTkyEjYJk9W8YwFlWOUUc4DzFFGNhebtVkrfwlIs9m41vtZvbp+nJRfdRVfVyUVoI1RRjGEIOsxiQitYusoRQiWlpJ3pA1vjDIS5aDfnXy3CMHSEfbe5Di75LQgiRKDUJp2mkOLJ58MHHssV67Ww7X1brxxoHEYumApnCUGQc4tSe9lHvjKldW6YjGDEJvHETMw+r3Z67FYWSllBDRjCP8sBgHAXwDs7b0/zHt/rvf+0X43qq9y+eXABz7AOzHrTADwv/9bnZ9KO00hCSm7886wVaSUAXHKSNqn5yZYJcA2NsmlnU6fHjxyltMvG8rotlhUEzMILLOHIYRdd61iK+x60pbly5sxhE4MQi6GIB6ztEE+xaNn1I1+T8zYiWLWBtnW0SllFPNcGUKQ9m2wQUA4OYXLEAJTchohlFBG7D6kPl1vicEaGQnLSfz85/VzS2IIMaNz9NH1BQ2t8k8hhNwe0jGEYJGJlOvF92IGYZykJO30i+PRkHGT3/8+fJYiBKCpcGOeRG6SjPfAe95Tb0+MMrIIgU1W855vfZhLO50xI2QSWYOglb5cD4grV0YZWQVpDcLgYDBGm2wSvx4Qsob+7/+a7bvggmpCkVyPGQRmxJgC14NRjtNUk5TFEII1gGIQGEKQjBVmEG69NaQoM8+aIYSYMrTbb5YodYZMOlHWuXhXjjIqQQgAcM01zTanYggxo7NmTRgDgjgEgTPkbzPnAG4QYjEEG7s47rh6mqnttzEkMYkQwj+XHH10CF7mDIJ0usHBKl0wZhBi3KWegSwd453vrPZyjilwO0C1AmEIwZ7LVp/UHXZoqAo+W4RgZcqUag6CSClCEOVv67BGQnh2m+XCKKOf/KR+jCj1bhCCKHUt8gyfprYNT8UQGGWkn/+UKeE+1luvrhysQXjggbDMSQlCKKGMSr38HEKwHm43CIFRRillzYyEfUe9UkbaQRKqNZbNpfu5jXcxhysVQ5g9u46OBwerzCt9nJZJGlT+55Ajjggv9IYbeKDODoqFC+tLIsQmD7G8fG0QgFA2ZUqYAaqPsx5lCiFYmmD16uauUffdF/ZS1te7+GLgwAPr9ZYYBOaBS4CWcatM4VrKaMWK5nFWqR90UKjHUkbHHlstFaHr6CaGIMZJi7SFGUD9jNi9ybPWOfhiEOzzs8pLpCSAnKKMUmtYxQxCDCHE5tuMBWWUU9a2DKgvXhhDJqXzEHSZnvuTiiHINXXqM3vOQKXAUzETqWfffauU5JhBeOihOjLpkzzxEIJzIa/35pubHTZG3VhvKkcZaUVv6aabb65vNwhUm8bbOmwQOBZDsPWuXFntfiUd7He/q5Y6iBkESxkBFULIBZVtm6XdMcrIKnqrrMXo2PZZw5GijFJt1ucC1QAeGOD3cddddS/tgguAL34xH0Ng7WPerEguxXSsEYI25inEnDIIf/97NWu6E8qoRFlrx+zjH48/PzYetNGx1I1FzHYyKIvVyDV1HIshcI0Q7P2yTDybcccoI2lnnyVqEJxzOzvnfuOcu8s5d5Zzbp767aq+t6xf4ly1kUUJZaSh4BlnAJ//fDzLyHZEO2gXLwbOP79u5S2SYN52DiGwYLa9N/sMAJ5lZEUUWgllVJp2GqOM7MDTnjarV7evBCF84APAddfVrycGQRtQhhDOOqv5bK67jhudkZH6u2MIwToWIiUxBCmzfZU5NFYZxiijmHK1BkGnompEZFFqt5RRLE4xd2754oBsPwRmdKR9YhBY8F5fT85nBoEhhFxWlW6PNdBaVqyofuuzpGr4AsK+BzsjTEi7wjm3zehv/TdV/ZKBgXqHkc8SuCmzO1mWkT0X4F4cUEcI1ujotmiOM5Z2ygYFG4xWekEIljKKUSAzZoQZqwwhMMrIljEkwZa4YAZh112bbbYi5+6zT33gxpAOE9tmMXZyPWYQUgihNMuIGf1egsq5rCX9DHKpo7FsKXtuJ0FlplzPPRf45S/rZbkxzJ4BixHJcQy5xiijVAyB6QQ5XzsvrJ/On99cDrtPkoohzPLeyyJ2n3DOXQPgQufcqwCMT4SjH6IVs17+OoYQbPYAkKeM9HHy8q++OqwhAzQpI5bXnEMIMc8uNRiPO65+XGkMQW+iLm20CEHuQ19j/vxAJ+g4SgwhxOYhWISwejVfukKf+5rXhOvde2/9XHZvNg4gbbE8b4y7ZWiFpc92ghByMQRpn/XyGWVk5w10ElS2BkHiKJpesyiklDLqJKhsDQKjVWJxhVicwo65WNqpfUfy/O2CfNbzB8J4k/ijfXe6TFNGUnbMMcBee4X/Z8yo1p7qs6QQgnPO/eNuvPeXAHgxgK8D2LLfDeubCD0BNL1oBrlvv50bhBKuUSu5v/yl+u1Btb+QRQiMj0+lnTLFzIJtBx9c7Qshx5UahFzGDqtXym0cgCGEWAaQRQgxyohRMqzNVsTo5GINAwNhVrte6GzePGC33fJBdIY4GAoUiU1Cs+mutg42wTFGvzCPviS1lcVbGCVTQhmllLU1MLFz99mnWtqbjYfY/VrKKEb7yjOwfVB79Hr8W8po1ar6asdiVG1fYCnSa9bwPttnSRmEjwLYURd47/8A4CAA3+tno/oqMuDnzKmyfRhk1Fzeww+HT/EKLEIQpaJfoFVK2ku+6qrqGDbzMRZDYGmntsNK+yydY9EFUEYZxbyaklTPmAIvyTJyjqedxlZFtQbGDjLnQnrfllvWz2XKNTaBbcGCquz1rw8GIne/MeMkSkXaeOyxwEkncXSnz7/99jC50tbBKCOrDDVFWYIQLFUlBkG885TRYYHwb3wDuP/+9Lmi/K2RYJRRzIjl5iHE6i1B/vrdybkAn69gpRQhSFo4G499lihl5L3/pnx3zs0KRX6Z9/6vAF4/Ho3ri4g3KrtmARwia1i6227h8wc/CFCO5aNb5WgVAfPEGdXCOnsuqJxSrs41O7FICUKIKetVq+rrB6UyhVhQWZaqjp3LKCNGLTGFC3DEtu66zfkFzCCUGIlYmd7tSx/HDKo+d9ttQ7wlFlSWY7836otJVpocl5qQmDIIOYSgjRMzCJ2kogLAn/5UtaWToLKco8tknpC+HnPq/va3avkZabN2GFIOIRtf1tmQOJtFCFZiaNFeb2go9P1JhhDgnDvBOfdXAHcCuMs5d6dz7k3j07Q+SSyjhcUQJBgrHWKDDcIfg9IsfnDbbfVBISIT04C0x5YzCNLmEj6eKU2rcFMGIafQvA/wOEUtSR2MMoplGeUoI0EDtl6GEKxRHBpq8vsxFMKeAYsXlFBGzFAyRcroyB1HQTs71y5jMtYIQWJuouwk2aEkhmATGxhlxNqslb9+fqzNsVTU006rDKmOUzDEnKLNpJzFmHRZrwhhnXUmn0Fwzp0C4PkADvDeP8l7Px/AswEcPvrb2inM42Uvnx0nq4nqjsiUnhZmEP7lX6pzYxkeui25oLLNxCnpxIzfZxA1xnuyzJ6HH85TKCyoHHsnsbRTq1wvuqjas0GkxEhMmxZWNi1FA+wZ5NBFzNgxw8aUnCgLafe//VvYp5cZxVxAdawQgjYIq1fnYwjigetzY8qftY9RRrE22xjCDTegJgw56fuzxqQEITCHoVeEMDw8uQwCgFcBeJH3/s9SMPr9pQBe3e+G9U1+//sQ1GUv2VJG9uXJi2KGI2cQ5HO99arf5IVrb4UNqBhCuOOO4OGWKC+mSFnA18rAQFjc7+676+fae95qq3hQuQQhlKadMkV67bX1NjPlzwbj1KnVXtH6uNgy2Qwh5AzlwECoQ2dppRACU8K5Z6rbzDz1EoTAOHWr1MUg6B3OVq/ujDLSAemY8o/FFVIohDlIMQeHBYHFAbEG9eMfry+XEkMIbAtYKymEoMsmI0IAAO/9ClK2HMAIOXztEJlLYCkB1pmsAhGEUEIZ6WvrT/uSf/ObOv/IPEUZeCww/MADeY+UeTBAeQwBaG5KXuJFx4xOycQ0CSqXIIRDDqmW6pAyhhDYwHv88XpbfvzjsKheDmGxZxBT4I88wtMPWaaQVaRsDoh9b7FnNTJSXxYlhhDkmWqFa5GJPk4v0tcLZTQyEmZ8a34/RRnZtNPY/Ayb/QZUMSsdp7BjxC7HIkZMNkyS42w/KkUIMeoxFlSeAIMQDSoDuNs5d5D3/he60Dl3IIC/9bdZfRR5UbEYgu5MjHNmCKETg2BpG6AJfRkctp6hXEcPCrkmUzYxHrskywioBoeugw2oHP0yZUr5xLRYDMHex9SpwDbb1NvNYgjMK7T17rQTsHRpWlnIucPD9eD4wECgzWR5c32cDY7H9lJgXnnJ+409e5t1Y2fQxq4XS+/dfPN6WaeUkb4PKbv++vq5LNCcyzLSmXh2jLz0pfjHOl7ynEsoIybMo+8khlBCGU0gQkgZhLcC+IFz7goA1yBMRtsDwL4AXjAObeuPxAyCDMaSGIJdcrrEILDOIgMilycNVNy7RQixGAKjjKyC/NWv6qt9phBCTpHGvNkYZcSooG6CykA8gMwQgi771a8Cx6yNyYEHBo+QpZ2WUEayZr9tc8nzE+Skn3kMIZQY1McfD1SVVv6S366Va0mMiBlFjRC6pYzssypBCBpNyT0PDYX3y+bH6DIxMDnKSM73HvjoR5vPOkUZyX3usgvw1remz40hhMlGGXnvbwSwE4DLEbbN3Hr0+06jv3UtzrmPO+duds79wTn3fefc3PxZYyw5DjYVQ1i2DJg5szq3JIbARGB0bCaq7hAM0so1SmIIsYlaMvtUt/Wcc+rnAvX8/RyPbdvCPM3SGEI3aacxNGDLJOCYi3GklKY9zgpDmrHnx7K+ShBC7LnEMrJsW0oQh6ABaxBKYwiWMtIIQdfbSdopQwg2Dgg0kTVzuGIo8KCDgJ13bj6HEoSw2WbA+uvXr9cJQmD9qc8SrdE5ty3Cdplf8d6f5L0/0Xt/DoA91JpG3cpFCIblqQjrJP17j9crlxhCKMl8EYSwdGndILCMG1ufiB4E8t0G/piBsYovRRmVIAT9m/2+667NsjPPrMr++tfA/eYGVEzxlWbxlFJGJfMQmGLWbRexSEx+Z0FlZuysyIBn7yNnAHtFCOxZxWizXPu04rXPhcUQbHCcKf/YEtGXXVY5Khoh6PuIJV7YxAaAU62xJIFcRlEJZeR9iFVqVKOfa8n1LGoYJ0mZoE8BWELKl4/+1rV473/uvV89+u9vAGyWOn5MRSBcTvkwRbPOOhVCmDWrOjeFEMQzkg6tB4b8Zr2pkoluIjFvsUQ5yG8iNt4h36dMqe5XS0nKZWkZu4+S1U5LEQIrY/chBqEkqDzWCIEt1dEtQlh33WYacAoh5CgjOYchBLmOHFdKGaXiCnpGc2zpCkvxAs1xLGU5CjAWA7OKOUYZ6TIZ19pQ6nMZerdswCQ0CAtGl6qoifd+EQKFNFbyOgA/jf3onDveObfIObfoQb0GULey4Ybh02a+3HUXVy2UgQAAHxpJREFUsETZPwbvBgdDR1yypL4TWiqGIPXJQNBrm2jKSEPkEoQgYgPDpQhBYgc5g8C8JJEcFRRT4N0iBHnWpco/R5vZ+5bvljKSAc/Qj63jSU8C/vVf0/WmPHqWtVSKEPRxc+aEmc+lCCFnFGPOwqpVzZhEijKy8xDkuxznfaAn9923qqMkqAxUEw2tQYih1BxLUIqoBgeDkyjtk/uymUIxuomhlUm4ltG0xG/TE78BAJxzFzvnbiB/L1DHvA/AagDnxa7jvT/Le7+793739TUf163Ig2f8bf0GOMUg/J7dRD0XQ2BpaAwhMI9Nt8de75578p2d8b8imh+VvYpZOiTrnHZAPfRQPb0ylslUmjlTghCApvKXMmskuqWMYgihE+qmBCHEMplKDSrzbnMoiTkQkglm+xB7Vuy5lGQZacrInsvm5eTmIUh77LwcoGxeSSyGYBXz4GCgtPS+GoODgUL9j/8I/8cMQooymiQIIZVldLVz7vXe+7N1oXPuWISso6R47w9O/e6cOwbA8wAc5D3Tln0SxoXKC5I1i6Rs1aomVSIZALrDphCCSKlBiCk9W66vxzIjSmMIG2/cLGNUQQlC0MF2aQtDMDoGI2XMi46tdpqLITCEkKKMLFq0cxMYQoh59Ez5s3v7wx/C0iapeytFCDHaZ9WqZlC+E4TA5qjY45jSu/zy6rt8puihQw6pH6fbyAyCjiHY9jCE0AsFyJ4XUN2jfjaLF4dPGdc2UyiGTNjM50loEN4O4PvOuVeiMgC7A1gHwAt7qdQ5dxiA9wDY33v/eC/X6ljkwbP8e/viFy+uXrKIDeqKp5MzCPvsA3zuc/UyFlSW61mPV9rCEIdVuEAeNaSkG4MQG2QsMAzUZ2ynBkovQWXmibFnoO/j058uv7dSKoJ56toYpM6NxWBKlgUfHq4vglcaQxCEoGdXpygjpjDtvVnKSPr5vHnV5i8xuqlk6QppdwllFIshWEdA+pZV6lbs2O8GIUwSgxCljLz393vv9wHwQQB3jP590Hu/t/f+vh7r/RyAdQFc5Jy7zjn3xR6vVy4phGAHChPLe8pnTtlqXlmEIQTJrtDpoFpyCo21R+6rdINu9mzY81i2rPo+PBwGlK73hz8MzytnsGJeL8DTTktSKWPzEHIIQWI8OYohRvGUzH+IKc1uYwgphNDPGEKMMrISo4xiKaaMMpL26zKLAiWGYBV0SVA59j6Z967bIs8BAF4wyoZrhJBzSlKUEXuWfZaMW/uPjXEuGctKvffbjuX1OhJmEKzXb79rYR3bXi8mOisDqBsEuY4EoWP1S1tlU3NbtywDoDvdAw+Ez2mpsBCA448PeweXIoS/qQnr11wTP44ZhFKl2QtlZI1ESXBcJPcMxEtltErOA2TGNaaQOokh5AxCrC2MqmLLeAN5yih2bzHKSGfiyKdNspAsIy2yG14JZRSb82HfXYwyyiGEoaGwO+Dxx4f/5V5jlJHtHzE0O5kQwj+tsI7dDUJInRsTvcwBwCem5ZCG/K6Ve06hye85hCD3wBQBex4MxbD2M8qoJCgKlK1lVDIPgSlDEfb8mMNQch/6eF1vKULoJoYQQxe2LQwlxZ79yEh5llEvlJFe9kLfnw1Ia8oo9iyF6ipJO7XHpQwCuz89HoaG6gY0ZxBKEMIkzDL65xQ2uNnqiJ0ihBJ+PjVJzdYX6ww5hcuOk2vpXduYsAHHvF4RZhBKEUIJ5cHOtcrrppvq+07IcSU0kkjOoMp3a5zsuawvMCUc86JLZgx3Qhmxtlhve+XKsPhe7rn0ShmJQfi3f6vawpahtgZUp3LK9402qpC0ba+mjOT4EoTA3qc8L4YQUgZBEiZY2mkJQmC01DjJE88gsIHCDEIpQiiNITDR0/m7CfiKMIWm21+axJVScux5MEPULWVUghB+/evmhjY33dSst5RG+p//abbvwx9uti9GX8XKmIK0ZVOnAieeWC8rpYxiy5WUGKdrrqnPhZG9vnNxqBjVancKSyEE58Le1FJmV16V8pK8fNanb7+9vnSFrFFVihDsPaeUtZYpU+pxjx13DNl7DCGwe2MIAWgNwrgI6+zjhRCs6O0cSygnIE9v9CIpyoihi5NOapb1QhkxVJNDP7EytsKozd5iSm6PPZrXK6WMYjQNK4tRNznKSCSHEFhbfvzj5nXs8brNpQghx7HHuHMbQ5Dy2Ho/pU6ORgi77NJczkJoqJJ+yd6TXFuE6Y/NN+dZRnYNpRYhTBLRL6AXhCAT2tig1ZO0mOy4Y32ddi2xWdmlCEFLKUKQFFtmEHT6ooieS2CP19ILQmAGIUfxOBeQhI6zpLz30iwtRhkxpVISkI6tb1SCEGybY+fatsheIExyhjdmEGwMgN2vKGA7viQ2UIKo7CTFVJ8ujfXk5lkw713OlT0h9HX0s2FLWMfurcTojJM8cQ1CzsLHPHbbEdlieSKf/3z9/0cfjbenFCH00yD8+tfN6zFl+OrRDfNYhy3xZllZLPCq603VYQ3CihX1IHrMEMXaxzy2bpW/PU4yzey5Dz4IXHllvV4WVLZtLqWMGO+eegalz6WEMtLXkLIYZWTbPTDQ3HUu1acZ/cLQDjPwOZpRfj/11KpMrs1YB2YQSoLK9txxkieuQdABUfbymEckEgsKdiN2xcecsPZ0W3fsOkzJ6QHFBuPLXx5vS6nHlvPijjuueZw9XreRGQSmfHIIJoUGtNFPUUa6XlEmsWwZXVaCEEopo3e8I3xOn14/196bvYY+juXfl1BG9rhUUNnWPThY7e0gwvrgUUeFT31/vSCEe+4JRjqn1BlCSDmZDC3mDO04yRPXIOiF7OTl5bwIEf2iUgihRCwFlZNu6ymRlDLMGQRZAiMXQ0h56jmEkDLSJV50t8elPMp77kmfm4ox5QxCCiHkZiqnFNcBB6Svx56L/U1fW9ObUq9drtqeKwghtk6WNR6rV9cpytgm9kB9jk4q1pNzVOxv+nuOck71I0YZtQhhgoXFC9hLyVEWdhZlp9KLQTjmmLJzSikjdi/Mw00NxtIYQqmyztE0IteQ5bVylEenMYTS7UZzCEGkBCHYgGgMIehlTWJtST2/nNFmUoLUtOh+I56xrs8eIyJoPhdDSBld3VaZUGkntcWukUs7LX3vsXdi40mtQZgAyXklzItgx+mJNlZKFHGnBkHXbXeh6lVYWxilxe4rpUTGijJig1vkEjWZPsWB59BPKuWy1CBoqoopga98Jd4WoXX07/o4WbZct3nVKh6ktueWxlFs/VpK6SHWRyxqYBMF2XlsO8mUU8LKmPLX15RFLHNGLkXnlKLeXD9vg8oTIKnOA3ROGbGX1w+D0M25nSKEbspSnnApR1+a2cMUFaMoukEhqeApa8t//3fZcfp6W2/dbEupAbzjjmaZvI9cmminzyBHGYkcdlj6dyaMOwfifXX69PxxKSXNjL6WuXObx7HjY/EQXZc+rgQhAPy9M2e0z9IaBC2Mr85RRhttFD7HizLSUooQSg0CSyNNoQYtpXREitMtRQilcZRuKKPSQStlds9cIJ/dxOqQ9aZyFNkrXtFsc2kd7DgxTqXzPZgwY1xyHFueIdZXS5RjKUJgIiniuaQNpuhZ3+rF8Ukh4T5LaxC0iJcAVC+DGQSdobTVVuFTBrSWEkXcy1YQY00ZsclnpQbh7rvD53ggBDZQmFIqrbeUMtJtkfRQpixKZy/rOuR6OYTQKR2Wq/dZzwqf+j2XxhBE2LlMcusEpcS+814QQqqP6vY/97nNMsbvp6i40kBzKV3dZ2kNghbt2clL2XPP5nF2dzUAuOiisnp32qn+f8wgsJxxK0xZ33gj8K53ldVRcr3SMjEIpQHLXAyBKfUUQth227I6ctRSaVD5llvqv+nvpVyyLlu+PHzeeGNVxu6XtZnRlqWUkZSdpzYtTNF/TEoRgo2tlMYQgOY7Z30w5d3nKCMmKaOaYw5SjgXrl5ttlj5unKQ1CFrYgDr99PGtV2TLLfPXuuuuZtnChcDHPpa/PvM+GOIopbRSWUY5r/yXv2wexzJL2LlfHN1Kg70npgR+qrbvZoq+NKjMMmRSAz5nON7ylvApyzrr43IIwf4WqyPlyR59dPN6uaCySKlBsEuJ2DkIKSlBK73EEFJZS+y52nux9XcaQ2Cz6luEMI5SahDG2kqzzsjaUkIHXX11WZ05NCTClL/MXtbSaQwhB69lSQX9rD/1qfCZQwilQdFUVpk+7ve/D585r5AZhNSAzykGtsxJKUKwv+k6LrigWcbO1Xtr94syYsa9NIZg25LKdGPC+P2cpN5d6Sz4blKBW8poAiSXZTQWqV+drjKqRW+k06vksnJEmBESKkNLp1lGWv73f8NnLs1x6dJmWanCTRmEXFC5FCEcdFD41Juts/YJisvdB5OUl5+jjORcHe9KKfqcMrO/aemGMpLj5D2za8XaB4SZy1bOPz/etm7GMdMBLJ7USwyhNMlinOSJaxAk71gL82R7kQ02SNchwpRoCVUjAe2clMLy0iA1MxLMm33DG5rHpYLPTDHnUBs7jl0v5e3p42QbxFwM4fnPD5/6PbH2yYQ5vcRFStFrkbIzz0y3JTUXRtOHKUPUzTwEkdS+HlpYsH3HHevHlBoEJqWol7VRbwdrj2PORi6GUIoGJhlCGH8TNBnklFOA17ymWV6qOHMbzQBhK8t585rluQlxIiXKuRSBPPZY2XGl8YILL2yWMY9IZ23FjteSG/QpCkXXK16xNvoy4HN0E6uj1BCxwS3n6Cy0lEeZ87ZLEYJtU6xekVKEwKSUMrr55ma7bB2xvcQZIrCycCHw17/G25Zq41e/2ixjCEHGZWnaac4BaRHCJJAPfQhYsKBZXhpsYt6BlfnzO+cqtZQYhPGYqVwqbICXXo/lgLP9n1PZOWzQ6i1LP/GJ+jX099J5CLmYRMogaIXTKUJgZaWTxnIGy/6Wux6TUsqIXfuGG8qOv+++/DGMZi2NNbz+9c0yhhBYHcyAyozyXlBDG0OYYCk1CL28KFYH835KlH1pnOHQQ5tlpTGEUmEeUSmCkVmoWsmxdF/mOcmS4rpeeT/MqLz2tdX3lEHQ10ulcGq0yK4nbWErcHZDGaUMQmlcrBQhXHVVvE1auplLU4rGO5HDDwcOOaReVooQ5s9vlrH+VmoQBJWXooZJQhm1BkEL66Qs1jDWBoFJvxECG8Qpiqf0evq6pYpCEBdTuFpSilQ/1+9/v35dLQsXNs8tXe2UIYRXvrJ53EMPVWVyTukyGh/6ULOsm6CyrSt2Pdt2fRy7nmxZqqUXhNCtyFacWk48Efj5z+tlrA+ydG2m6JmnHqO0gLznn8rOaymjSShWCXnPPQdmEHpRpkzGEiGUDr4LL0zvqiXCgsXiiXXjLbLlx5mUcrUSbGcGoXRhsVJYzxayk/WGdH2568l9MIPVTdqprStWr22nlhUrmmXXXtss0144S6RgkuqTspxGSmS59ZyUjpHDDwf23bdexvpHKUJgSLM0XbtFCJNEZPZpTnIroKZkLBFCL6mprHOutx6wxRb5c9mAZQah1DiwDUZSwnhxXfbJT4bPnEFgyrU0qMwye5gSkHMefrh5XC44XhqYTCGE3BwQEdaWP/6xeRwTu6x1r1JyDZZRxCTl0Ws56CDgiit4O/R41xMHReR56TbJM9HGMpXxlOtv4yStQdDygx+UHdeLQSiVEmX6yU9Wyq+fYrOqGL8vnT03AJiUIoTSfRiE5sutVJuKIei4TmnAPGUQ/vCH9PVKs5b6hRBKjTGT0vfM0DaTkrYceGBwYHIiwd1uhBkEZiTF6LD+oZ9NKWU0gUHlJ2baaa9iX9TvfscDmN3Kq14F7LJL/jjZUjInvQQCX/5yYPbsetkBBzTPl45fuhG6llKEkMoY0e9EPLWc4U4NRp3VwlADQ3DsOLn2scc268gZhE4po9Kgcm7OQcq5OffcZtmiRc0yRumUZOfZtojotaoA4IQTwl9O2Hs66CDgF78oPzenmBm1JuOBpZ5rkWfCqKWxdjILpDUIWkpfgB1Qu+46tnV87Wvl1yuR0oHIRK/3nxLpxDqdt1OD0A1CEMlRN0xS8xByS3anEIJdux+oe8edUka5lVz7FVS2snp1OZKw7+q3v+UJGkzYeyuNGZRIaTKGzF3JjVm9MKCI9A+2YKYW2e5T1yHLp0yAtJSRllKDMAFQridu9uyzm8HAXpbdZsIGGatDzw0QYQihU+9IPx9WR+ocFkNgq0/mEIJcT6MBMQ56r4lOEYLe/7tThFA6D4Fdb//96/93QivZd7/nnvWAeUrYfXTbX7ud9AmUTYaLCXMYWIYWk7326r7eHqVFCFpKle5Yp52WBMhWr66nM3YiG2zw/9s79xgrqjuOf766W7ZCawRxVVwKKhZBUQSxGotSodY2okSJqI0YTNBiolbFINY/rDa1PtomGmONj/hHW4u1LxKjVWK1rWgVlKcvtJRiNzwUo2h9n/4xZ8rsvXPvzN7XzNz9fZKbnXvmnDPnO7P3/Oa8fif97I9aSbtvwm23la8SDyujpPtfbVvG0jGENBVIpS6Uzz9P7lqq5h0z2n24cCGcfnr8ddO2EKKu0Ps7qJy2hRAtcxgvjcfdStTzwlFavsMOi19LUytnn51uPCPOnUVa4n4PaQfpR4yo/bp1YgYhSlYGIc2PR0o3iJaWrq76BtxKSdpDN6TaQqGkrq20BiEtldKWPqO4FsL48fDww/H5RvPr6urrSTR6PslXUHg8c2Z5WC0GodJ1zzyz8W+l9RiE0uexZk19ZSkl7fhD3AylU0+FpUuT09azvW3aGVRNwAxClEmT0sWrtT8zrnKAxnffpOGyy/rOl6+XtC2EtFPpFi8u77Kodp/itv9MIixzUvdUpbUEp5wSX76k/NJ2GYWkHVSO27gpjUF48MG+36uVJS31pG3GKuZaiCtH3P/5oEHl9z4u3qJFcOONydctncTRQswghNxyS3kFFMemTckzByqxY0fy9o+t4rrrGptfWoMwZw4cdFByftOmBZ+k/MKwWgxC2r7kONcacfR3M6Ekh3Jxey6Ex9G31/Ae3HFHX6+qe+4JEyeWp01avxLXfVWNUsPYn7Rx5NkgHHdc+T4kaXcVTPvmf/TRfd2qt5BM77ykKyU5SQ3sC6mRK66IXw5fSk9P+tkSpXR1ZbLYpCWkNQidncGPqhbqMZxpXSPHEa7DqGWMI45q00mjYXEVd9hduX37rrCw/z86wwsCP0/RFmlY/htuqF6+ODck1Rg7tjysnkq9njURpdTTUpk2rXyh5uLFsGVL37C0Ow2m7S6W0k07bwKZ1U6SeoAZwKasypAbsmghNJq0BiGOeuKlTbt8OfT29g1L20Lo7AymAiZVLo1uIcTl19EReE6dPn1X2PnnB+MvUb9KcYTXCB0CViK8p1OnVo8HgVvvuN3e8mIQ6uHaa4NPEmlbCHlp+VQhy9fVnwFXASmXB7cxGSxAaThxFXN06mYrrxvHxIl9u0+gf84BJ0xIjpO2K7G/XUalzJ3b93tnZ3lYHOE1Zs2qHi+8p1HPsJUYPrz6tWqhABVnGaV6t20rj9PI6bRNIhODIGkm8KZzbpXaoTKsh/Xr28MgXHBB+e5XixbBggXJaRcvLh8viKOeFkIc9ez/EEd3d7ryxA1Sxw1IN3q/izDvON//URpxXwaaQSgt85tvJsfJIU0zCJIeB/aNOXUNsBhINbFY0nxgPsDINI7XikZpJVpUFiwor/w7OtLN954xo9yPfRyNNggHHwz77197+loJxzOSuocabRDS5luvQbjyynQeSyvRyIqzVS9babq5CvDi1zSD4JybHhcu6XBgNBC2Dg4AVkqa4pwr2xbJOXcXcBfA5MmT89W+MlpLow1Cd3f8m1yziVvHElcJ1+PNthpJFX69BuHmm9PHPfnk8rACVJxl1GoQBnqXkXNuDfD/ZbOSNgKTnXPbKyYyjHai2sY8UcaMac4ipWYbhLS8915jnUJmSZpWzcyZsGJF88tSB206B9JoSxrdQsiSzZv7dlftvXf5/sIjR8Z70qyXpAq/Vfe00vTtIj7TNC2EQw+FJUv6huVMa+YGwTk3KusyGAUhZz+euojzVzN+fGuunTSGEHrgzIoiPucCDBinIXODYBipiXMZUsTKI2uSDMLQodne10b67GrFeMTy5fEuz0s3lioAZhCM4nDhhTB7dt8wMwj9p1VjBLWwaVPj9ydvNpUcA6ZpNZx3Xu2eD5qAGQSjOOy2W/nb47x5tfkxGsg0azprI+jpyboEjWHIkHROMIcNS14X0kLMIBjFpqcnmPdupCfPLYR2YcOG/Ljg6AdmEAxjoJHnFkKjyWpNQ3RTowLRHkPjhmGk49Zby3dwa2cKOLCbJdZCMIyBxOWXZ12C1rJkSe1bzw5AzCAYhtG+dHcXtvsmC6zLyDAMwwDMIBiGYRgeMwiGYRgGYAbBMAzD8JhBMAzDMAAzCIZhGIbHDIJhGIYBmEEwDMMwPHIFch8saRvwrxqT7w20wzadpiN/tIsW05E/GqXlK8654UmRCmUQ6kHS8865yVmXo15MR/5oFy2mI3+0Wot1GRmGYRiAGQTDMAzDM5AMwl1ZF6BBmI780S5aTEf+aKmWATOGYBiGYVRnILUQDMMwjCoU1iBIulfSVklrI2FHSFouaY2kpZK+7MNHSfqvpBf9585ImrMkrZa0TtJNedfiz03w59b581150NLPZ3Ju5Hm8KOlzSUcWUEenpPt9+EuSro6kKZKOL0i6z4evknRijnT0SHrC3991ki714UMlPSbpNf93r0iaqyVtkPSKpJOLqkXSMB9/p6TbS/JqvBbnXCE/wFTgKGBtJOw54AR/PA+43h+PisaLxB8GbAKG++/3AyflXEsHsBo4IqJh9zxo6Y+OknSHA2/k5Zn083mcAzzgj/cANvr/t6LpuBi4zx/vA6wgeGHMg479gKP88ZeAV4FxwE3AIh++CPiJPx4HrAIGAaOB13P0G+mvlsHA8cBFwO2RfJqipbAtBOfcU8DbJcFfBZ7yx48BZyRkcyDwqnNum//+eIo0DaefWr4JrHbOrfJp33LOfUYOtNTxTM4Gfu2Pi6bDAYMldQBfBD4G3qV4OsYBy3y6rcA7wGTyoaPXObfSH78HvASMAE4jqAjxf8PNok8jMNIfOef+CWwAplBALc65951zfwM+LMmqKVoKaxAqsBaY6Y9nAz2Rc6MlvSDpSUlf92EbgLG+S6mD4CFE02RJJS2HAE7So5JWSrrKh+dVS7VnEnIWuwxC0XT8Fngf6CV4Y7vFOfc2xdOxCjhNUoek0cAkfy5XOiSNAiYCzwLdzrleCCpagpYNBBXsvyPJNvuwImqpRFO0tJtBmAdcLGkFQXPsYx/eC4x0zk0ELgd+JenLzrkdwPeA3wB/JWjuf9ryUsdTSUsHQRPyXP93lqSTcqylkg4AJB0DfOCcWwtQQB1TgM+A/Qm6J66QdGABddxLUHE+D/wceBr4NE86JA0BHgIuc869Wy1qTJgrqJZYmqWlo94M8oRz7mWCLhUkHQJ8x4d/BHzkj1dIep3gTft559xSYKlPM5/gx505lbQQ/GifdM5t9+ceJugnXpZHLVV0hMxhV+sgTFMkHecAjzjnPgG2Svo7QVfLG0XS4Zz7FPh+GE/S08Br/lzmOiR1ElSgv3TO/c4Hb5G0n3OuV9J+wFYfvpm+b8sHAP+BQmqpSDO0tFULQdI+/u9uwA+AO/334ZJ298cHAmOAN0rS7AUsAO5ufcnLqaQFeBSYIGkP31Q8AVhfkiY3WqroCMNmAw9USFMEHZuAbyhgMPA14OWSNLnX4f+fBvvjGQStg1z8X0kScA/wknPup5FTfwLm+uO5wB8j4XMkDfLdX2OAf/i8iqalWl6N19LKEfZGfgjeKnuBTwjeCC4ALiUYtX8VuJFdC+/OANYR9JOuBE4tyWe9/8zJuxYf/7tez1rgprxoqUHHicAzFfIphA5gCPCgfx7rgYUF1TEKeIVgkPNxAu+YedFxPMHg/WrgRf/5NsFMm2UELZllwNBImmsIZhe9ApxScC0bCSYH7PTPcVyztNhKZcMwDANosy4jwzAMo3bMIBiGYRiAGQTDMAzDYwbBMAzDAMwgGIZhGB4zCIZhGAZgBsEwWk64SNIw8oYZBMOogqTrQ5/1/vuPJF0iaaGk57w/+usi5/8gaYX3UT8/Er5T0g8lPQsc22IZhpEKMwiGUZ178C4FvLuHOcAWAncIU4AjgUmSpvr485xzkwj8GV0iaZgPH0ywL8ExLnBnbBi5o62c2xlGo3HObZT0lqSJQDfwAnA0gYO4F3y0IQQG4ikCIzDLh/f48LcIHI891MqyG0Z/MYNgGMncDZwP7EvgJvok4MfOuV9EIynYdnI6cKxz7gNJfwG6/OkPXbCRkWHkFusyMoxkfg98i6Bl8Kj/zPM+7ZE0wnue3BPY4Y3BWALPp4ZRGKyFYBgJOOc+lvQE8I5/y/+zpEOB5YE3Y3YSeKB9BLhI0moCL5vPZFVmw6gF83ZqGAn4weSVwGzn3GtZl8cwmoV1GRlGFSSNI9i/dpkZA6PdsRaCYRiGAVgLwTAMw/CYQTAMwzAAMwiGYRiGxwyCYRiGAZhBMAzDMDxmEAzDMAwA/gd5vzR4xfN4EQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "data['season'] = data['CO2'] - data['trend']\n",
+ "\n",
+ "plt.figure(figsize=(10,4))\n",
+ "plt.plot(data['dates'], data['season'], \n",
+ " label='saisonnalité', linewidth=1, color='r');\n",
+ "plt.xlabel('year');\n",
+ "plt.ylabel('CO2 variation(ppm)');"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "La saisonnalité peut être représenter en fonction du jour de l'année. On peut alors identifier les périodes de maximum annuel (jour 100 à 150, de mars à mai) et minimum annuel (jour 270, septembre)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXt4U9ed7/3Zsixbko0t2cbYxvgiO6YOBQecQLiEgElapgzJdEo6nacTpmc6JGeek3qSnJ4z9M20p23e5sz0JD00Z96TMJcOmZ5pGvr2bXiSpm0CJmAIDuYSElwcW75ijJEl+SbJ1m2/f2zthWRsMBdjA+vzPDzG0tbea0vW+q31u3x/iqqqSCQSiURimOkBSCQSiWR2IA2CRCKRSABpECQSiUQSQxoEiUQikQDSIEgkEokkhjQIEolEIgGkQZBIJBJJDGkQJBKJRAJIgyCRSCSSGMaZHsDVkJ2drRYXF1/163w+H1ar9cYP6AYjx3njuBXGCHKcN5JbYYwwM+M8duxYv6qqOVc8UFXVW+bfsmXL1Guhrq7uml53s5HjvHHcCmNUVTnOG8mtMEZVnZlxAo3qFOZY6TKSSCQSCSBjCBKJRCKJIQ2CRCKRSABpECQSiUQSQxoEiUQikQDSIEgkEokkhjQIEolEIgGkQZBcJR5fkP6RMTy+4EwPRSKR3GCkQZBcFbsbu+kdHGV3Y/dMD0UikdxgpEGQXBVbqgvJy0hlS3XhTA9FIpHcYKRBkFwVdquJ7LQU7FbTTA9FIpHcYKRBkEgkEgkgDYJEIpFIYkiDIJFIJBJAGgSJRCKRxJAGQSKRSCSANAgSiUQiiSENguSG4PEFefV957RWMN+Ma0gkdzLSIEhuCLsbu3nhnTPTWsF8M64hkdzJGGd6AJLbA71yeTormG/GNSSSOxlpECQ3BLvVxBNrHbf8NSSSOxnpMpJIJBIJIA2CRCKRSGJIgyCRSCQSQBoEiUQikcSYcYOgKEqSoignFEV5a6bHIpFIJHcyM24QgFrg9zM9CMnNQxaYSSSzkxk1CIqizAe+APzTTI5DMj1MNvFPtcDsegxHJKpO+FppjCSSyZnpOoT/CfwXIH2GxyGZBvSJH0ioH5hqgdlkr58KXn+QF+ovfe31nFMiud1RVFWdmQsryibgD1RV/StFUR4E/rOqqpsmOG4bsA0gNzd32euvv37V1xoZGSEtLe06Rzz93G7jjERVvP4gNouJJINy1deZ7PX64+mpyQyPhsRP/bhIVGVoeJiQIYUs68SvvdYx3Whut898JrkVxggzM85169YdU1W1+krHzaRBeAH4MyAMpAJzgF+qqvrVyV5TXV2tNjY2XvW19u/fz4MPPniNI7153Mrj9PiC7G7sFqt+/f9X23s5/jzjX6s/5x4ZY+fBdlY5sjjkdLOuIoe6ZhfbNy7kibUOXn3fSfDsJxwP5vHiY1Wzuv/zrfyZzzZuhTHCzIxTUZQpGYQZcxmpqrod2A4Qt0OY1BhIZjfxrhiAF945gz8YxmIyXpVhmMil4/EF2XW4nSNtHhraPSwvsQNwd0EGD9yVw4bKXFaU9iW4ovb0N1P3sYvdjd3SNSSRTJGZjiFIbhMmigv4gxExuW+pLmR3YzcbKnN5r6kvwUjE7wr012+ozOXV953idTv2torzVuSms37h3IRzONZe3ILbrSYKbWa2b1wghfAkkqtgVhgEVVX3A/tneBiS60AXnhvvOrKYksSk/sI7ZzjwqYtDTjf+YJinH6oALt0V6G6feGPiD4bFDsFmTb7iqj/JoMidgURylcwKgyC5NdAn+7Lo5HEnfXIf7y7SDYTbF+SQ000gGBU7gIl2BRsqcznY4sI9oqWHPv1QxSXG5nLxBj3t9FriGBLJnYo0CJIpo0/2f7/KOOlkq0/W8e6iJ9Y6xA7C6RqhpW8YFD3OELlkF3Gkzc3i+RnUt7qpb3Vz+twg1cV2tq4sTogrPPvGSeqaXRxpc18SPJ4s7fRyRkQiudORBkEyZYQ/fqh10lz+eNeRxZSUsOq3W02819RHXbOLxfMz2L5xIf5gWBiB5zZVcqTNTV2zi/LcdFY5sghHVQ453RxyugHEOZ9/q4m6ZheOHCt1zS52He4QhsVuNWGzmNi+seySGIKsQ5BIJkcaBMklTLSKjn/sREPXhJNtPLphiI8FPLHWkRB8tltNeHxBGju8MSPRw4uPVYnU0kNON8tLbDy+YgFt/X68viA79nZysKWf+tZ+1lXk8NymSvacPEdjh4dDTjcHW/pZVpTJ4qSLgez4+7hRXdfkTkNyOzIbtIwks4yJpCX0x3Yd7sDrDyZM6K++7+R4p5ev/eRDnK6RhHNtqS5k+8aFYgLW4wm7G7vx+ILYrSaqi+2xoxVhSMwmba3S0O6lrd9PfWs/zX1DAORnpAhj4MjRsosOOd3YLMnUt/azY28rXn9wwvvQz3+9k7js7yy5HZE7BMklTLSKvhgbCNM7OCry+/WJ0ZFjxeny0eVpZPeTK4GLxWnjXTPxgWdQCAQj1NaUsbkqX7iXNlfl88vjZ+n2BijNtrKmPJuegQAN7V46PQEa2j0snt+DxWTE6xsDwOsPsbosm8q8OUSjXWyozBVjv9EretnfWXI7Ig2C5BIm6l0cHxvYV9fB+nET4r3Fdr75i49wunw8+8ZJFs/PZMfeFg586hIB4fFuG38wwo69LQCsq8gBFHbsbWHfmQucGwjQ7Q0AiDTTH7zdBEBFbhrrF84VgeviLAsAq8uy+fFX7mHX4Q76Loyy5+Q5nn7oLoBLXFfT8R5JJLc60mUkSeBKaqB6wDbe5fPEWgdLi2zsfnKlkJEAlXUVORxyutmxt0W4VuJX6pur8lldlsXSBRnUNbsIBMOsq8ihod0jjMHqsmy2rizB4wvS1DsMgM2aEjMqKstLbHS4/awuy+LHX7kHu9VEIBgGED9BS2ldV5Ejdg0SieRS5A5BksBUsnAmS+m0W028+FgVuw63EwhFKbRZWF5iY94cMz/7sIt7i+28/6mLHXtbRLppfatbrPDNJiMvPlbFK/udNHa6SU5K4pmH7mJ3Yzf+YEQEkreuLBbVy4sL5gCQn2m+6ApSlISfHl9QZCWtKO1LqGqWSCQXkQZBksBUfOOTpXTqq39Q2HmgTTxut47g8YX4D7s+ZIFNm/x7B/xkWkwUZ1nocPtx5FjZXJUPgNlkABQa2j383W/O0NDuYZUji20PlIKqsutwB5ur8vEHw/zr4Q4A3m3qEzsWc3Js46tqriJ/MEJds4viLAvukSBO18gl8hkSiUQaBMk4puIb12UhdPeSPrHqu4vamjJqa8rx+oK09Y/w5epCvvWrjxnwhxnwa5lCH7RddAvZrck4XT6ef6spFntojbuaKtxQ54dGcbp8AASCEVouDDMYCGM0KHj9Ib7xsxOUZls52e3lCzkGRkMXYwzLS+w0tHvYebCNlgvDMbfWxKmpEsmdijQIksuir/rjRel0xruXxu8unn3jJPWtbpYV2TAaDECEFKOBsXCUpQsySTJoaabHuwawW5Opa3YRikS5pzCDE92DzM8084MvLsZmMYmq5PmZZs4OBHjr1DnODY5isyTj9Ydw5Fipb9XqEwAeskfZe6YPc7KBDrefwUCIx+8vwmYxsfauHEALhOvn1e9BIrmTkQZBclni5ST0ibMi9ly8ARif1vnq+07qml0ie8jrD2G3JvPSlipOdA/w5skeOtx+IlFVuI2KsyzUt7optJkBKM62YrNoq/bF8zMoz02nscPD2YEA5wZHAS3V1GZJZlH+HLLTUpg3J4WjHV5MSX56BrRjDIp23KHWfnY/uZLdjd0x46NS39rP6rKsSyqqrwVZrCa51ZEGQTIheg+CQDBKbU05m6vyRc+BU0e1jKF495Ke1qnrCsUL1u052UNtTTlbVxYDsOuDDjrcfmyWZOE2Wl5iA6DD7afbGxAr/mffOEn53HR2HmwTuwGADLORwUAYc7IBrz/Emx/1Alr66rnBUZKNBhYXpNPpCTAYCAu31K7D7QDCpVXf2k9lXgbvNfVdd1qqlMWQ3OpIgyCZkPgeBNs3LsSRkyayc+KVRPVjdXVSXVfo6YfuEtIVO/a2UltTltDk5r5iG4qiBY4B+obGYumj2SwrymRzVYHIDApFooC2ys/PSMUfjDAQCIliOHOygbV35TA8GuaL9xRwsnsA31iAUz1amqpWrJYuqp937G1h+8aFQDKgBbFvRKGZLFaT3OpIgyCZEL0HQSAYxR+MJGTmxKed+oNhduxtZd+ZPkDvUazJYztdIxxs6WfbmhL0ojMdkzGJ+tZ+irMs5M5JpaHdgyPHyncfuVvIUWgprB14fUH8wTDJSUkA4tidj1ez7bVGnC4fLRdGcLp8HO/yEghpBqRynpXhsShDgTF2HtTGYTYlUVtTzobKXH7+YRery7LZXFWQIKlxrS4fWawmudWRBuEOZrzPe/zvTz9UwY/e/ZQde1s41ukVAduyuLTTXbG0z4Z2LwDLS+wc6/TidI3wzd0fcbxrgKFAkHULc4VhQAFivbzrW/t5pCqf5CQD9a39fOfN03z3kbv5+YfdfHR2AFVV+bBDO7cmb1HAt3/1CXcXZGCzmPjhl5bwzV98xNdXl/C9t5oIhKKkGrW007MDYwyNhunWXs5HZwdpaPewfeNC3mvqY+dBzX30/FtNQlRPunwkdzLSINzBjJ8Ax/+uKZFqLp3KvHTWlGeLGII+YepxgUAwjNlk5Finh/pWN8+/1UTfkBbUbe4b4VTPENs3LuSJtQ5+9G4zO/a28viKBSQn5bC5qgBAZAl9583TwvgAFNrMdHsDBEJR3mvq4+6CDHYeaMOcnITFlITT5ePVA20EQlEyzMbYDqOfoVGtUjk/I5Vzg6OEIhFWl2WJArlta0r46OxgzM3VztaVJfiDYdwjQX707qcJchsSyZ2ANAh3MON93uN/7jrcziGnm1WOLJ58sExMjiOjYZZ+/3e8tKWKxYWZWExJYvJ0ukZ4/q0mnttUya7DHbz2QadIM/UHIxzv9PLmyXMAHGjpp8PtZ0VpH5urCnjz5Dk63H5CkQiLC9JFDABg2wOlmJMNvPDOGVY5sgBo7PDwvUcXAdDj9dPh7gLgeNcAn6sysHRBJtVFdr58XyHf/tUnoqdCp/sE3d4ARfaL9QmBUFTc386DWlHdqbMDlzTekUhuZ6SW0R3M+Cwhrz9Rv8jr0zJ6dJ++rnHU7fXj8YV4ZvdJsat49o2TeHxBbBYTi+dn8POj3aQaDSKF1OMLsmNvC9/8xUd0uP2iPmB5iR1/MMyeWBqqI8dKQ7uXOeYUAJGJ1NI3zNaVJWzfuJDvPbpI6CTtiRmXratKKLJbGAyEsVmSCUaiHO8aAGDPyXMEQhFxX3pmU6fHz2+bzgNwssvLD379e460aUajOMtCXbNLyltL7ijkDkEiJvWDLS7qW934g2GefqhC9DZwukYS6hG+kJOC0RDhr9Y6uDA8Rn5GKnXNLl7Z30pWWkpCpfG2NSW0XBjhqfXl/Ob0eY44+0XKKIDRoLBjbyuFNjPLS2z8189/hqMdnli66jlR7fzcpkqAmPE4x3ObKllR2od7RDM0bl+QeRmpdHr8/OGSfNJCnQD89vR5Oj3+Se99MBCmyG7hww6viFXovRbGF+JJJLc70iDc4Xh8QfyxfgSBYJT6VjeBUJRX33fy7MMVmPa18NymSmwWEwc+1dJKV5ijhKMGftrQRYf74mT7zifn2fEn97C8xEYoolJdZBOuJo8vyN7f9wnpieIsCw9X5vLl+xbw5//yId1eTe765X0twk1jMSWxY2+nSHvVU1h1AqEIb53Sdgi/PtXL2YEA6ypy+OsNd3GiwcW6Cq29ps2STIrRwPmhMeakGpmfmcrZgVERY6gqzEBR4L4SO5nmZMwmIzbL5TOGZBGa5HZEuoxuU64kY62z63BHLB1U4ckHHWzfuFD46o92ePjJ1+7DkZOG3Wri7oIMQNMyAs3ltHRBhjiXPqE3tHs53jWA2WTklf1OvvpPR3hlvxOnyyd0hTrcfloujGCzmEhP0f4MrSYDdc0u4X6K77amG67HVxSxuiyLQDDCzgNtomJZNwa6MUkyKLz4WBWOHCtef4i8jFQcOVYerSqg6fwIQ6NhMszaeuh41wAdbj/nBgK0XBi5RK57ovdRdkyT3I7IHcJtytRTKFXxU8/F33W4g9qaskvlHFRVvKo4y8LxrgFWl2WJxwptZgptZhEABlUEaEORaEIrTV1DaHdjN8NjWt1AutnEvIwk8fgTax0JMY4de1tYV5FDfaubyrw5YieyqCADmyWZzVUFsTRYlcVJ2v3sfLya599qIicthTeOnWVVWTa1NeUiGwogPdVIcZaF0pw0Xvugk3UVOQlFdxO9j7IITXI7Ig3CbcqVJizd5bG5qoBAKEpjh5fjnV5e3tdCXbNL5OonTIax/gKBUIQOt59Vjiwq8zMozdZcM93eAK8d6aK2phyLKYkNlbmiMnnJfJtIZd11uIPyueksnp/BlupCKnLTeWb3SR4oy+aNY2cTJuR4cT3QBOk0FBravSKVFS4aDYD/dq+CxxfEkZPGi49V8Uf/cAiANtcIP/7KUgKhCG0uH+cGR0XjnUcsydTWlAOq6Mm8oTIXfzCCPxgW8togi9AktyfSINymXGnCig8SB8NRDjndnI+1wNQnZK8/yMGWftwjY3h8QdFnwJRk4PH7i2hzjbDzQBvrKnJE5k5+RipH2vpFodr//uoy4Wt3ukZEZTHobTPhRLcXjy9EpiVZ7CL0iVd3abl9QbKsJt7/9AJ1zS4Wz89M2HEAQj4jFIkyPHpxl7G7sZtOjz9WCb2I3Y3dCf0aAFY5shLkMk7F6hM0VBG7ePqhCiSS25UrGgRFUeYCq4B8IAB8AjSqqhqd5rFJrpHLBTzjV9y6gum2B0oxGQ1svb+YXR908NymStHfQC8W03WAVpdlEYz00e3xU9/qZl1FDk+tL6fN5aPT4+fc4CjnBkexW5O5t9ieYJiefeOkiCPMt5nj0jq1nYfZZLzEiOltME92aVlAq8uyYxXPF3c/P3q3OXYOlfpWN7U15eSNDbM+LvZQW1PG1pUlWgvQahP+YASvP8gnPQMkJyXx7MMVfOfNT4TaaqHNQm1NYjX2RWkOieT2ZFKDoCjKOuBvADtwArgApAKPAg5FUX4BvKiq6tDNGKhk6kzk99YNga49BAi5hvGS1XqbyQ2Vufz29Hl6B0apO9PHqZ4hFhfMwZRmIMVooDjLwlPryzna4aHTo/U1Ls1JY8/Jc3h8IV56t5k15Tni/FrqaJPIWtKvDWAxJSXIaOv9F3Q31cJ5c7gwPCYqmOtb+7GYNG0j/X62PVDK9o0L2VCZy4mGdvFe7NjbIsT1QGHrymK2rizm2TdOcrxrEIBvxnZHQMz11cm2NSV4/UE+cPazvMQuOrpJJLcrl9sh/AHwl6qqdo1/QlEUI7AJeAj4f6dpbJJrJF56Wg8KX+xmVk5tTTn+2Mo7vvOZ7qfXJ+bn32oSxV29MRmKUz1DPGSP8pvTfQAiTdQfjKAFqBUGAiGK7BZCETXBMDly0vjJ1+4T44zfDUwko13X7KK2poztGxfiD4ZFimu8jAbAgU9dHHK6MScbhMJqcHA0YSfk9Yd47QOtNsFiSsIfDFPX7OK+YhvhqMrxrgEhcaHE7uRnR7to7PSK9+C9JtmPWXJ7M6lBUFX1m5d5Lgz8alpGJLludDeNPrmCrl6qT9raqvrU2UGhKBrvp/f6Lzal1ydJ0ITriuwWksLaxGqzJPPU+nLhltqxt5Vta7RVutsXZOeBNlaXZU85E8cTUzUd339Br2PQUC7RGHr5T5cm7DY2VOZysL+ZNbFdRl2zi6ULMgEoyEwVRW8AF4bHsFk0GWyDoiT0XBgejeAaHgNgTqqRHq8/IbAskdxuXLEOQVGUTEVRvqEoykuKovxY/3czBnenM9VagsleE5/HD5o2j+ZeUVhdli16F+hG4nenz/PCO2eEMVhXkcOmxXkAFNkt/OCLn8UxN41IVMVu1SbOozHxO/0cp88NsqW6UASglxVlignU4wvyo3eb+dG7n054T3oPBospSXRKS0RfuyeiG0D9Ou819TE8GhKVxrU1ZWJi7xkY5b2mPrauLBad2iKq1tf57ECAP1ycT6HNTOW8dJYuyGRdxVyKsywMjYZ57UiXqJGQSG5HppJl9GvgCPAxIAPJN5FrkWMe/xrdJaTn/a+ryGFzVb5QMQWVrStLONY5INpJPrW+XKRafn5RHi0XRqhrdokJdk9/Mx5fKCE9dOvKEpGZo6ezHmnzcKTNzf4zF9j1QQfluekJ2T1PP3RXwtjjV/jf+NnxBBkNPRYAYJkg+BzPvcV2Gs8nUR0LaltMRrq9gVh19Dyx63igPJsOdxdJCnh8WsOdrauK+d6ji8R79tqRTh5fsQDox241UdfsYsNL+3lpSxXNfcPX3XKzP5bBJXcdktnAVAxCqqqqz0z7SCSXMNVagvhJaaLX6D2EV5dls3h+BntOnuOQU8sQ0jNvlhVlUt/aj6rCb06fF53M/u43Z1BVlaULMnGPaKvsQpuZ7RsXJFzX6w8SikTZtqZUxCz0c7RcOInHF8I3FmZ+ppmzAwGRPRRPvKtLLxrTM3viXV5XckG9vK+FpaYIL+9r4Sdfuy/hPYmfeG1WTUDv3pIsMi3aZP8X/3qUhytzMZu0ArniLAsnu710uP0smZ/BqbODeHwhal8/weBomN+ePs+a8mzxPl4Nuxu7RaxD1jRIZgNTMQj/pijKXwJvAWP6g6qqeiZ/yZVRFKUQeA2Yh7bz2Kmq6o7rOeftxlRrCeDiDiL+NU7XCN958xNKs9NEwZXeznJ8vv/mqgLeOtUrJKJBixGE4lRDj3cNkJWWQoVB4Ym1DvafucAzu0/y0pYqdn3QQX2rm+Qkg6h4do8Eaeod5OurS8UO4cMObYegp7HqxBu3LdWFuH1BTvcMiswerWFP4o5iMp7bVMnBA/0893DlZd/HrSuLRXYTwJZXDuN0+dh5sJ2lCzJZ5chKeD/e/7SfcFTFaFAosJkZ7B3meNeAeH+2riy5Kn2jLdWF7BtuZb2sdpbMEqZiEILAD4H/i3idAyi9zmuHgWdVVT2uKEo6cExRlHdVVW26zvPeUGaziNmVdhDPv9VEfaub+la3MAAWkzGh30EgFMWcbCAQjOB0+Si0mXHkWAlHVRraPTyUY8U9EmR5iZ28WED2REMrHl+Qv/75SQYCIf765yf5lz+/ly6Pn6fWlwPaJPytL3xGjGVxYSa7DnewbU0pZpNBNNbRGW/csqwmDjnd15TZ48hJozvLImS74xn/eca3zdz5eDVf/H8OMRgIc7xrgMdXFNEzEKA028qJ7gH+y+cq+Kf6dpwuH0aDQobZSEFGKk3nRwDlql18dquJ7LSUWfd3JblzmYpBeAYoU1W1/4pHXgWqqvYCvbH/DyuK8nugAJhVBuF62ipOhzGJP+eVeG5TJaHIJ1TmZYgx6Pegdy3TWV2WDSDkJ3SNotZYwdnnFs3j6YcqRErnrsPtLLCbGegJ8fDduRzt8OB0+Tja4aE423rJfesxAF1aejJXl54qOz4F9ka9j5N1iTvS5ubFx6p48K4c3vyol8q8dM6cH6LD7ad/ZIyRsQgv72vl376+XATdAT5bkML2jfMTPg+pbyS5VVFU9dKsjYQDFGUP8Ceqqk4uKn+9g1CUYuAAsGh8oZuiKNuAbQC5ubnLXn/99as+/8jICGlp15Y/HolqujY2i0mofE6VC8Nj9A2NkjsnlbnpKTdknP0jY/QOjpKemozFlETf0Ch5Galkp116/onGrj8Wjqoi8yYtxUh+phmvX6vqTTUaMBgUUGEwECIYiZJiNIgV99DwMGOKCdfwGGkpRhbYLYSjKr2D2liGR0P0Dmr3bVAQGUPd3gDDoyHSU5MZHg0ljFsfV1TlknvS73my+5zqexmJ3XMgFCE/00yK0UAkqopx5WWk4h4JEoxEMSUZSEsx4vEHMSgK0dj3xJpixJKcRCgSZWQsTKHNgtmUdM1/I9fzt3kzuRXGeSuMEWZmnOvWrTumqmr1lY6byg4hApxUFKWOxBjCN65jfAJFUdLQitv+eqKqZ1VVdwI7Aaqrq9UHH3zwqq+xf/9+ruV118uP3v2UHYdaqK0p4bEHr+z/jh/nZKtikTH0sYvammIsc4zcE8u3H3/sq+87eaH+DNvWFNLUO0xlXjpmk5Ed9S08vmIBB871c1+xjbwMCw8syRfSDalGGA1HYmmZETJSTQyOhtm2JpdvfaGS/fv3cyKUx47DWjzia+u1ncMLR8+wfWMRG5bk8vZbTRRGzDGxu2KefqhC3JNeH7A+brz6WGtryrHMSUp4Tn/d+qvYIUz0mb/6vpMXPtB2B9s3Fgl30YYHtLqEblR6R0d54+RZHquez4etHjrcUdJSkhgZi8SdKYLdmozHp+LIMbJpcR476ltZV2FLaLk5vup6oh3OROOcjW7KmfoOXQ23whhhdo9zKgbhV0xTEZqiKMloxuD/qKr6y+m4xkwyPmh5NcS7NuL93HarSUhO6BPNnpPn2LG3Rbg99ElkQ2UuBz518fbHvfQMjFLf2k9tTRm1NeX84lg3PQOjsRVyD6fODojMntGwll3c4dbkKDrdfgZHw0IVVLu3koR4RPzP+KwmjYv9E3SX1fi4wGSZQONfd63oRW/bHigFVcUfjMT1gtCql7VKbi3g7h4J0uH2Y7Mk873Nd/N///r3nB/S1kN6/YLdmhyTu1BYV5GTINsNiQKCuotpKvdxPW5KieR6uKJBUFV1l6IoJmAhWjC5WVXV667MURRFAf4Z+L2qqi9d7/mmg+tdqV3tRBaJqkJqYvwEG+/nHl+JXFtTljAh6a/xB8MJWTJLF2SKTJieAa36OCc9hS8uLSAQjFJos3Cy24PbF2KVI4u8TAu6YJymFHq3GOf49yX+XuPjAVNtQzndctJ60dv2jQsBEiZ/fXzxaa2a7hF4/SF+eaIHo0ErtEs1KjxwVw6PxPovxN+f/p5oEt/tBILRmAFCSH1PBdlrQTJTTEXt9A+AVwEn2lKvRFGUJ1RVfef8r0k6AAAgAElEQVQ6r70K+DPgY0VRTsYe+5aqqr++zvPeMG7mSk1rXh/ghaOJRWWgTQz6KnPX4XaxMtd1ejZXFbC5SovHV+Sm88j/qqfbG+Dx+4uorSnjSJubhnYv1UU2dh3uIBAM8/iKIpr7hlkyX5N02HlQk7E+1TMcS1EFUNlcVSCuF19z8EL95O/L5XYCE933tRrdq3ntRJOsLmGx63B7bMej7RIsJiObqwpo7PASjqrUNbt4rHo+ez46x2goymsfdFKQmcrBFhfVRVmX3HN8q099N1FbUz7l+5O9FiQzxVRcRi8B61RVbQVQFMUBvA1cl0FQVbWeWa4nfDNXarsbuwmOhlhXkXfJ9eLdRG5fkB17z+APRrDEiqdWlGpCc3XNLro8ftGboM01wk+/voLjnV6++YuPGA1H2XlQc5Fs37iQAps5QfCud8BPcZYFr2+M145omoaBYISWCyNsqMwVE5rNYmL7xsSOavo9XO3Efj1G92peO36S1XdY8dXP43dlh5xutq3RDEWmxcRo6GKhfs/AKD0DoxzvGsRsMiS83h+MsG1NCU29w0KdNRCMj0FIJLOTqRiEC7oxiNGGJoV923MjV2pXWs3qRUovrqsCSGxdGTcWTfsf4it2tZVuD7U15ay9K4e/+80ZQOW7j2gSDLq0c15GKrU15QRishRr75orpCzea+rjjWM9AMy3+UUhmy5p0eVpZPeTK0W/4vHiecA1TezXY3Sv12CPr36O/7z13ReKEmvIk0FtTTlef5D3mvqE4F9BZip1Zy5wqmeIfWcusGR+BjsPtlNbU8aPv3KPkOAwmy7Khl1N6rBEcjOZikE4rSjKr4E30GIIW4CjiqJ8EeB2DAZPB1dazcYXKcVPtOOPjQ/mev1BjrS5cY+MsfNgO9s3LqQ428r6hXOF/949MobT5SNJgfQUI6BiNhnYsbeV1z7oxOsPsXh+D5urCvjt6fP0DY1SmmMViqLxXc7GSyxMNCFf7SQ3vjjsanYX12uwJ6t+1qW/65q17mvxzXV+9G4z5wZHWV5iJxAMc6pnSMRjGto9nPVq2dkHW1yAwncfWXRJHCX+b0H2X5PMJqakZQT0AWtjv7vQmub8IZqBkAZhCky2mp1otXi5le/4DmR1zS78wQjrKnK4t9guVqT7zlygod3D8hKtB3FEhXdO9/HO6T4KbWbmmJOEzLPXF0rofaD5yM2ih8HuJ1dOuKKNH8v1KIDOpqyaeCFAR46V+lY3y4rscfeveTlDkSjNfRezrvTUVN04HO8a5HjXIBZT0iX3FP/5njrafXNuTCKZAlPJMvrazRjI7cJkrqHJVrMTrRYnOnai8z61vpwuj5+K3HReO6L1KLgoCqcVUi2ZnyH0iBYXZDA0GhKNZlKNBkbDUQ60uOhw+1m6IBPX8BjrFs5NmPynshK/nkl9NmXV6CmzekX1e019+INhcW9bVxbT2OFJyN4CuDs/Q4j55aSZKLSbqS7KSoizTJSRJZHMJqaSZVQK7ABWoM0yH6AVkbVP89hmNZNN/Fc7MY5fLY4/r9M1wvNvNVE+N42dB9sTUk91uYh5c1JFfn15bjrmZMOEKZEbKnP5+YfdfHR2QLg7Cm1mOtxaA/rkJAPd3gDdHv+Erht9bGVR9ZLH4qUmrpbZNEGOr4dwrE3D4wsmZFpVF9s55HSTYTbyucp5ZFpMoMDve4cYGg3jGgniGgmypnwu7zX1TdrOdDYYQIkknqm4jP4d+Afgj2K//wnwOrB8ugZ1KzDZxH+1q934yTASVYW7Qj/vRV+2KmoNdh3uwGJK4t5iO44cK4ecbs4PjeJ0+URP4eff0noX6xO7FpD+lJ0H21hdloWarPUjzs9MpWxuGnXNLpYtsNFyYZit9xcnjHF8P+b/sdo4YY/m2TKpXw9TMU5bVxZzpK2fhnYvqckGWi4MU9fs4pElebz9cS+xuj4OfHoBkzGJx+8vwh8Mi74HMoYgma1MxSAoqqr+W9zvP1UU5T9N14BmiqvNh4+f+Me/drIJZaJrxD/m9Qepa/YnNJ7RBOpOU5mXzucXad3LAsGIEIpzunw4cqw4XT6K7BZ6BgL8xb8epcPtJxj+hOpiO3o9gd4Up77VzSNL8rBbk/nq8iJaXSMsnp9JY4cHjy/E999uYnHhxU5n8f2Yt29cSHqoUxgu/bHbebWrVzQfbHHx468sBaAvVrV8oKWfDreWrnu0w0s4CvkZqRgUhRPdg4CmxaRVNGvprfG7KRlDkMwmpmIQ6hRF+Ru0XYEKfBl4W1EUO1x/X4TZwrVIF49vDH+l1050DX2y8QcjLI7l98cbDEdOGmvKs3nhnTOcPjfEIaebQpuFdRU5PLW+nBWlWWJHUNfsEo3kHTlW7i7IEHn2jR1eDjndolCqrtnF0GiYv/9tM93eANs3LuR7jy6aMKNovBvlF2+1Cj/7+P7Gtyeai6y+1c3uRm0C191sP/zSEl56tzkudgPzMlJFgL44y8LffqGSXR904PWH2LG3FX8wMuXeDhLJzWQqBuHLsZ9PjHv8P3Bj+iLMCqYjH173/z+3qRJHTtqEx+mdwwLBMElWZUKDoh/v9gU55HTT1j9CfaubxfMzRf/hFx+rYtfhdry+EE7XCN97dBE2i4mmc0PUt2qNXbatKQXUhIIpm8VE2dw0NlTmJmQUjQ+Gxo/LNoHh0pmNwmzXy9aVJej9nCeqdA5FNIORn5FKod1Ckd3C8a4BlpfY+cEXPyuMtS4pfqzTI9tmSmYlU8kyKrkZA5lpriewOdlrv/Pmaepb+wlFTvPTry+/5DiPL0hTrybwOr6D2ETnd7pGaOkb5qn15SwrciVku+gpkU7XiGgs88RaBz/+yj3CvaO7LmpryqjMn8PpnkHuzs9g58E2VpRqjWjG6yTBpbsevTBtImZTCum1MJFBm6heYXyls77zOjc4ii4pr6oqP/+wi7pmF6scWXz3kUXCOMi2mZLZyKSzkKIoq2PyEpM9PwdYoKrqJ9MystuAyrx06lv7qcxLn/D53Y3d1Le6sVuTWXtXDkPt54CJJ6X4ArHF8zM5dXZA9EXWmtKfEKt+c7KBilztmrrshW4UtMpkLQPp5T/V/OFZaaZLdjfXumOaTSmk18LVGLQt1YUcbOmnvrUfu9VE7pwUirKsfBAz0h92eDEZteB9dbEdR04aLz5WxSv7nRxscYlYgkQyW7jcDuGPFUX5e+A3wDG0grRUoAxYBxQBz077CGcRl+tRMNHjTz5YRlZaipgcJ2rf+EZjN06Xj5f3tbA1thfbdbidHXtb+e3pXiymZJ556C4hP2G3JtM7EKCu2aW5KGwWsRMBSE02EAhF+c6e0/xp3/Alktnx6qmQKKIXz7XumGZTCum1cDUGzW41JezAAD7tG8HrD1GcZeHhynmAyrIiG1tXFsdUUDt455Neur0BvvPmJ3y9bDrvRiK5OgyTPaGq6tPAF9DaXG4Bvo/WTrMceFVV1QdUVT16U0Y5S9AnUj2weLnHJzISEx1X85lcVjmyeG5TpZC/DsRE1I53DVLf2i+MgdGg4PGF+KBNW4GeGxzltSOd1Lf2s7zETm1NGd/ZVIk52UBVYQYvvHOGZ984KfzVT6x1YLea2FCZK3YWU8XjC/Lq+87rqki+FYh/n8Yz0XugG1s9PuD1h3DkWHnpsSpaLgyz82A7FlOSSDfdsbdFiA/mZ5hvzk1JJFNkUoMAoKqqV1XVf1RV9c9VVf2cqqqPqqq6/XKupNuN+ElgS3XhJSmWeuOV2pryCfVqdh3u4NX3nThdIzEVzFKRk767sZudB9p44K4cHDlpmqz0O2f4qNtLoU2bLIqzLPzwS0sotJkJR1WsKQZCEc1gLC6YI47Tefvj8wRCUdy+kKhb0I2CzntNfdQ1u3ivqW/K78NkxvBOYrL3QNspLGXbA6WscmSx8/Fq3v/URV2zi+UlNvzBCE7XCD3eAAWZqaSlaG6kTo/Wr/l2N7KSW4epVCqnAH8MFMcfr6rq96ZvWDPH+JX9ldwr8Y1X4msL3CNjrC7LJhAMi25muj6O0+Xj1NlBnttUCVxsLF+cmsy6CptwPzhyrOx8vBpHThr5mal0ewP4xqL4xsZw5FipWmDjtQ86yc9IpaHdQ0O7h6ULMlheYqcybw6fXzSPNpdP9FF4+iGtDOpa/PxSf+fKGlNZVhOHnG5RWQ5avYL++evSFtrxyVTkptE7eCHBlXc7ZWdJbj2mknb6JjCIFkcYu8KxtzzjDcCVJs+Jnt/d2M3Og5qyx7IiG7U1ZQSCUfzBMA3tXorsFtHHYEt1IU/9+3EOOd389/uTWDw/g5y0FN79fR9Ol4/vvKkVpVXMmwNAUZaVcwMBvvvIIr79Ky2er8R1lTjeNUihzUxDu4ffNZ2n06PpFh1p8/Cjd5uFaudEMgqXm4j013h8QbGqvdMmrivFRzZU5vKzWFZReW662KGtq8jBH0svzjAbceSkcbxrgOa+ERblp7KheuKueOO5HVN6JbOLqRiE+aqqfn7aR3KTGK8jM/4Ldj3SEzqazn4YUNi6sji2izgjegzPy0jh0XsKEhqxAHj8QXZ80Mr8TDNef4hUo0J9a78IGNfWlIvzAdxdoAnXhaMqPQOj5Gekcm5wVPioO9x+lpfYOT84KnYQoCSkUOoB7AOfunj5T5decaLZ3dhNcHBUpk1OwJ6TPUI40Jxs4MXHqvjv7/ye35zu5d4iO4U2M/eXZgkj3dDuYWO2Zs3ju+JN9t7e6im9ktnPVAzCYUVRPquq6sfTPpqbQPyXCq7c1OVavoRa3vpFlRrduNxbbOes109Du5fkJANbVxYL4/HL4z1Eopqcsj3NxNmBAKNhLZ+90GaOTfJqwgR+yOkWLqh1FTkU2i2iveMqRzbnBkepzJ9DQ3ubyJPX5CniV/fahHTI6Z7SJK838ll/i6aVThceX5BjnVp18uqybLET++3p8wwFIuw9o7kBu4+dBcBmSaYk28rwaL943+MzwSbiVk/plcx+pmIQVgN/rihKO5rLSAFUVVUXT+vIpokrNXWZzGU0kYzxVNFTTP/jTxvFCrK+1c2WVw7zt1+o5NTZQZYuyIToMEsXZLKoIINTZweZNyclJj6XTr7br7VhjPmH7i7IwGQ0UNfswmZJptBuIdWo5Qj0DIziGhmjvrWfZUWZCYJ341egW1cWx0apTmmi0Rv5wKVd3e5ktJqSfhw5Vr77yN0A/OjdT0lJSszbmJNqJMmg4PWHqExOIi8jlXvi/rYuZ5Bv9ZReyexnKgZh47SP4iYyUW/deMYbDH0yH69CqqPnloPK1pUleP3BBLkKnV2HO2ho94rfU40GnC4fT/70GKPhKBlmI2VlsKY8WxxzfmiM80NjHO/SRNIa2j1sW1Mi2ls+tb6cj84O4PGFeO2DTlaXZbNtTQlmk5HNVfkiRqGPSdc+Gt/r4Fp0daT7QiNe/lvfte052YPFZBRVzHrfiVSjgc/fncsbx3qwW5N59uEKhto/EhLZbzR2s/PxamwWk4wVSGaEqUhXdCqKsgRYE3vooKqqH03vsGaOiVZh8U1TxqecxhsKzWWgUt/qpr3/KI9U5bO5qoA9J89xpE2LAxRkppI7J5XRYJim8yOMxrSSBwNhLCYjD8aOf3zFAj45N4Sqqnx2fiaf9AxyvGuA0VCUlgsD1DW7OHV2EI8vRJHdwryMVOpb+1lTni3Gb6vWJpaDLS7qW92EIlHWlOfckPdJui804g2j3ichEIwSCAVZXmIDFBraPcK1l5dpEcHml/e18NUilS3LLxYoPv9WEytKs64YYJZIpoOppJ3WAn/JxVaZP1UUZaeqqi9P68hmCXqdwbYHSjEnG/D6gwlpgnXNLjLMRgYDYepb+1m6IBObJZkOt58de1s5dXZQGIxCm5mNi+Zhjls9piQpjMXE0cKRqJCnWFeRIxQzrSlGFhVkcLxrgLrmC3R7A6Kjl74LAC7xP+uT1eP3F3HWG0jo/HW9q3rpvtAYbxgtpiT8MXlygFWOLGprytlclZ/QsEhfSHwhR/sK1izMJTttgPKY0OCVAswSyXQwFZfRXwDLVVX1ASiK8ndoXdNuO4Mw3v1zsbq0NaF+QOtjrGURrS7LEtLHhTazmMS1yT+PL99XSCiiSUt0ewPsPNhObU2ZcPv0Do7yRuNZUowGkgwqTpcPc7KBrfcXE4qosSwjNzG9NLq9AVY5sijPTWfPyR4xTpjc/eUPhulw++lwc8kuR3J9TOSC1AvNdPHBnoEAXt8YNmuKeI0eQLZFumJpym3Yrck0tHvISku5YoBZIpkOptQgB4jE/R5BT025zdClBUBrZKIHleOLynQ/vHskyM6DbTy+YgFnvQE63H7yM1PJz9RqALq9AX5xvJvPL5rHj79yD7sOd2hBYVT0dFTQ0j51oxKJas8FQlH+4/85xt//8WJApTQWiwiEwiQnJXF3QQY7D7QB8IHTzSt/Vo3darokTz2+dkCXb443IJLpQY/LeHxBtrxyGKfLR4e7C9B2EE+sdeD1BznS5qawIIo/EhaZZIU2M/6g9nWTO4M7l5mqOZmKQfgJ0KAoyv8X+/1R4J+nb0jTz0Q7AdBW1G5fkI+6vbhHgmKlt3h+JsFwlENON7/5pJeWCyMU2iwA1DW76PYGyDAbaWj3sm1NKUsKM3ntcDseX4ja10/w1RVFwgB842fHqW91c6zTw7IiGzv2trK6LJvlJTaCEReLC2w09Q4SCEX59p7TeP0hkpMMwu0EsKLULtJIP+zwCrdCvD97fOWrbMhy87FbTfzwS0t45o2T3FdsJy/TLFb8esbXCkuUHSdauacwg25vgPzMVHbsbRGGQ3JnMlNJG1MJKr+kKMp+tPRTBfiaqqonpntg00n8TiC+UEuXH2ho99LQ7sVsSuLU2QHRKvKBu3LYd+YCDe0elpfYEtxFgwGtEtVsMmAxGUUNgcc3xgvvnMEfjBAIhsXx+s/lJXYhTgeQnmoUPXkf+sxcMq0pnOzy8viKIlKTDZhNRrauLGZzVYGoYo73Y/uDEfzBsOjEBnKlOZMc7fDQ4fbzlfsWiJ4W3/jZCbKsyRTZLaSZRoEo95Zk8flFedxbbOflfS1sqMyVlcl3MDOVtHG5fghzVFUdirXK7Ij905+z38qtM7dUF7LvTB8N7V4CcUJzW6oL2VCZy8EWvYeBmtAqEuC3p88DsU5npmQAlpfYqMidQ3PfMF5fiEAwwtIFmRzvGsAXjIrjm3q1wrOCzFSSkwzUt7pZ5dBUMpfMzyBPHeIvl5XS5fGTnmKk0xOg0xPgww4tXdWaYuS5TZXCHfTTry9PuC+71YTFlBTrf1x22/c6vhWI/2I7XSNseeUwHl9IPD8W0RYFqGpCosLi+T0c6xygvrVftty8A5mppI3L7RD+HdiEpmGkxj2ucIu3zrRbTawozY7tAoyXVC/r6Zv3Ftt561QvT60vx2418aN3PxVB41M92uTuyLHy1eVF/O2eTxjwh4WAWX5GKgBWkwFfMIrZZOSZh+6idzDAovx03vzoPMtLbDz7cAX8rhkUhfSUZL7/dpOQngDN2GhaOBHqml2EIqdZU5496apxfP9jycwS/8XWVGdD2CzJ/OHifJyuEXxjfUJW5EibmxWlWbGEA4Rkidcf5Gs/+fCS2pbLIXcXkmthUoOgquqm2M/bsoXm1pXFWExJoi9ubU2ZKOI62OLCPRLkpXc/Fc1rfvK1+0i0i1omkdPl49t7TjPg11xGSxdkYjQoYlVfMW8On7t7HluqC9l1uB2ny0dQ9wmh8PK+Fg453RxyuvnWPSpOl0KG2UhBppm0FCM/+OJibBYTr7zvxGhQqMxLv6xvUaaDzl40dduLRYseX5D39tWRnqIyPBbhVM8Qp3qGYsWFSSLVubHDG9O7aor9HV4ZWTh4azDbDPdl+yEAKIqydyqPzWb0xjNO14jobaBPnO819Qlf++7Gbvac7KG+1c3Og23kZ6TiyLGy9f5iXn3fyT2FNjItF23ouoVzWVeRwwNx1cVryrO533Hx90X5GcIVoDe+WVcxN+YqUkW/3dVlWYyFIzhyrAwGNPfS/Y5srfF9XN+EJx8sE1IUd0LDmlud+H4aegvN95r6xN/g3PQU/uie+QBYY30Sfh5Ldf6oe4DGDi9/uaZU1J1MtVHRRL07JLOPyXpszFRDqsvFEFIBC5CtKIpWcqkxB8i/CWO7YXj9QV6oPyMqdg+29PPjr9wDEGtaU8KRNm3bvu2BUhEs7vT4cLp8/O/3W2lo95JpTmYgECbDbGThvHRSjUnUNbvYtkZ7TWl2GqCwuSqfY50e6lvd2KzJQpBu6YJMETxWFGho9+LIsfK9Rxdhs5jYV1fHzoer+favPomtCLUdiV6otKEyVxiyV993XrICnG2rDcmlK/XxmWAXhjVFeV2pFrQEhUxzsnA/hiJR3nhyJcCEn/tEyJ3ircFkwePZmGX0BPDXaJP/MS4ahCHgH6Z5XDcUm8XE9o1luEeC1Le6qW/t5xs/O4GqqhxyulleYhdfvtM9gzz7cAXJSS0U2i0x/SHt1gcCoZhRCNHQ7mXJfBurHFkcaXNzqmcQfzAiYgw//spSoXHzrV9qQrH6c/q19GK395r6eGKtg+y0FBw5abz8p0sTipL0DmcrSvtwrNV8yPEZRfpqcyqa+pKby/gvvK5u6w9G2HW4A+PQKK993CmOt5gU/EGVBXYzVl8SPQOj9A6Ois94os9dcusymeGeqSyjy/VU3hGLH/xnVVVLVVUtif1boqrq/7oRF1cU5fOKojQritKqKMrf3IhzTkSSQeGJtQ6efNDBtjUlFGdZqG/t55DTHetRoK3EzckGDjndvLyvhbpmFyc6PdgsyXx1+QKxC9i8RNscrXJkYTZpx5/q0cTnLgxpq73GDg9ev7bV23PyXEKnLIDKvHSWl9hYVZYtYhfxjO/rO9H2X3tOZcfeVnYdbhfH6To5d3Kry9nE+M9SywTTpUtUTDE1VL2t5sJ5GQCc6hkiy5qMzZJMtzeQ0BvbYkpix95W+Rnfpky0079ZLqSp1CG8rCjKIqASSI17/LXrubCiKEloO42HgLPAUUVR9qiq2nQ9570cdquJrLQUOtx+iuwWOj1+KvPSGQ1FOXN+mMFAmNVlWsN7f/BjMZH/z70tbFqcR32rm9LsNOHPBWjs8FJgM9PjDfDswxXCmOiFR7pMRSAY4Z1PemNtMCM09Q7T0O6ltqb8iqu8ybf/SsLPeEkE6TuevcSv/n63tx2I8AefzePcwCil2VaSkxQa2r0ik63QZk7QNYrfZchdwu3HRO6im+VCmoq43XeAB9EMwq/R5LDrgesyCMB9QKuqqm2x67wOPAJMm0GAi66WQDCC2WQAFHYebBHPl+ak4chJIzlJm2TNyQZ++KUlvP+pVinc3DdMQ7uH8rndtFwY5pDTzfaNC/mbjZ9h1+F2Cm0W7iu2kZOewipHFpurCnDkpOF0jfDR2QHyM1P5r5//DH/3m9+LOoipMn7loGdKjd85SN/x7EZ3/exu7KbYYmL7xiLcI0HeaDxLfWs/tTXlrCjN5pfHz9LtDZCXkcoXlxbgD0ZwukZ4r6kPUGRF823K5Xq2TPdC74pZRsCXgBrgvKqqXwOWACk34NoFQPye92zssRuOnmWkr6YCwQg7D7YRCEbZurKY2poyCm1mAN442sX+MxcozU4jNz0Fu9XEUCAEqNTWlFORq/nw3/mkl7pmF6vLsnD7gjz178fZsbeV14508mGHlzcaz3LI6Y59eTWpgoZ2DxaTkaVFNlaUaplIZtNU1EMuSm3HZyTETywy2+jWQl/xDY+GYhO65rZcuiADUNlclc/GRXksL7FRtcAGwI69LXznzdO88M4ZAsGIzCK6RZiqu0c/Dpix77WiqurlD1CUD1VVvU9RlGPAOmAY+ERV1buv68KKsgX4nKqqX4/9/mfAfaqqPjXuuG3ANoDc3Nxlr7/++lVfyzs4xNkRlbyMVGwWE62uEYLhKCajgeIsK8OjISwmI+39PqKqitGgEI5efF+SDAqRqEqWNYXRcATfmLaqT0sxYk0x0jc0mnCcKclAMBIlLcXIArumeeQaHiMQipCfaSbFaCASVXHHPuwsq4kkg8LIyAhpaRMXHvWPjNE7OEp6ajKFNjNJBiXh8byMVNHJ7EpEoipefxCbxSTOczVcbpyzhdk8Rv2zj6oqKWqQOenpuH1B+oZGSUsxMjIWFj9NRgPBcJQsawojY2GspiQ8/iC5c1KZm34j1mVTYza/nzqzdYzjv6OTjTP+OIDewVFy56RiUCCqQt/Q1X3P41m3bt0xVVWrr3TcVJanjYqiZAL/iJZtNAJ8eNUjupSzQPzyZj5wbvxBqqruBHYCVFdXqw8++OBVX2jvvjpMmQtYH7O6L5w4g4IBFVhdZqG+1c22NQsYMAX5XdN5vr95ET853HGxH0Gs2rg4KyXWAlN72+4rtvHCHy/m5x9289vT5+n0+FlXkcNT68t5eV8LW5cV848H2whHVRra/WzfuJDPxW3v9RTC7RvLeGKtg/379zPZ/enuos3jUkr1x9dfRarpq+87eaH+4nWvlsuNc7Ywm8f46vtOXjh0BkeOlUfnjWHKXMCW9drf5pJiOy+924x/8GLGmiMnney0FBraPawus7OmPJsN15hafK2pybP5/dSZrWPU3/N7KnN5r6mPMkuXGGf85wGI77L+/9aYqvLyEhsrSktYv7J4WmNGUwkq/1Xsv68oivIbYI6qqqduwLWPAuWKopQAPcCfAH96A847If5ghFf2OwFVNKUxGeDUWS1DqLHTI76AvzzRI16XYlTwBaMU2szMSTUyJ9XI0Ki2Q/iww8uek+cwm5Lo9PhZXZbNc5sqRUBZb28JE/chuBq/4GSxgWuJGchuZzPLlupCDrb0U9/ajzFfoSI3XaQoP/9WkxA+XLogk7b+EZwuH6scWfSPjPH11SU095v35BQAACAASURBVA0nnO9qJnlZwXzzGV879N/uVS5JFQft84ivKfIHwzR2aoktDe1eVpRmTXsCweUK0xaqqnpGUZSlEzy3VFXV49dzYVVVw4qi/Cfgt0AS8C+qqp6+nnNOhtsXZMehi4HjuekpXBgeIzk5SUzu5wY0/aB5c1Koa3ZhigWVx8Iq6ypyCEWi4otqsySTNyeVpvPDeH1BnK4RAJYVZYqaAb3GYH6mmQKbWYjSxTNTAWAZeJ4Z4ifuyrw51Lf2E46qfP/tJpwun+i7scqRxd0FGbzzcS8D/jCZFiOpJiNOl08c6w9GREKBPqn4g1ob1ssZBrkYmDn03irDo73i78AfjEyYeq435kpk+tvQXG6H8Aya7/7FCZ5TgfXXe3FVVX+Nlrl008ibk0pvzOfvyLbS6fEzGAhzPlZDoNcPBCOqqEjWex+EIlH0Hrl35aYD0Nw3REO7N6aIelH2aUNse6i3U3yv6WJRmeTOJH41qGW4gSnJwCpHNpsW57O5Kl+0RN3d2C1EDgf8YczJBlFjUmS3cKStn4Z2L0fa3LE06XCCOqpuLGbLIkRyMS38vX1eemKFiTv2trCuIrHPub47iC+YXeXIEorL08nlxO22KYpiAJ5TVfXQtI9kGklLMWJOjhIIRcnLTMUxN41QJEJDu5fVZdmUZlv45NwQzgsjDI6GSU9NItNsYl3FXF470hmrVkZkdexu7MY9MkZDu4cl822sX5ib8OXTv3COtZqA2fjUUMmdyaX9l43Yhlp54VAn2zcuxJGTJv5m/MEIjy0r4JDTzdz0FDZXFbB1ZYnoxdzp8ePIsYoKdovJSH1rf2xyUa/aLSRlT24OdqsJg6JljNXWlAkj/42fHWdZkY3NVQUJNUwrSrMIBMNTzka8Xi57FVVVo4qi/A/g/psymmniwvAYgZBKqlFbldW39rO6LEs0p4FsET+wWZL55633srTIhscXpK3fFzv+ouS03pYyKy3lkmrC8V8quSKT6EzUf3nvvi62b0x0GegNnBw5VnoGRukZGOXnH3aRlZbCU+vLCUWiVOZl8PlF80QzHZvlYlU7IFxHU0XGFm4eupSO/vl842cnRO90vWe7I8fK2rvmcrTDg9c3xs6D7QSCYb71hcppHdtUzM7vFEX5Y+CX6pVyVGcpeRmpOHIMOF0+jncNxKQr3Kwu05rTVOal4w+GOd41gNcf4miHh6VFNuxWEz/+yj0Jk3z8pD++TaX8UkluBLpvuXfAT//IGIOBMB+dHaSh3SNapyYnGTB/ahA7BL2CWf97lIkGN4/xC8HJdlv648VRFZI09/R7TX0inrTKkaiS8PzbTRzvGhA1UnqDrelkKgbhGcAKhBVFGSXWIEdV1TnTOrIbSIrRwM7Hq/mLfz1Kh9uP3Woid04qpdlWlhXZ2bqymG/8TOsKWpxlEV+KiT5YXblUD+DFGwD5pZJcLboSLyT2wbaYknjjmJbt5sixUpGbRkO71o5Tl7Ioz02ntqYMty/ID95uoql3SCQ+XK0CrtzJXjuTKdqOD/K/8r6TnQfa+HY1vNB4RiQRbIuTNwdo6tUyH3tiMaSlCzLxBcN8ffX0t6aZStpp+rSP4iaw5+Q5Otx+zMmGBNVRPaCjdzP74ZeWiC/OxCv+i/pB4w1A/JdK+mQlEzH+7yLefRCvVjs+UFzzmVyxO8jLSKXbG8CcHJNeOdAmzj8+vVnuWqefiRRtQUt1j3/vT8dEMFGJ6ZuFKZ+bLlLeB/wn8fpDDI9GADAmKdTWlHOs04PHF+L7bzexuDBzZusQAGL9EMpJFLc7MF2Dmh40b1cgFCXDbGQw1tegrtnFhpf2s+mz+ThdPuEu0iP9tTXlCV+weP2gy62q5BdRMhHj/y50JV797211WbZwAz39UAUeX5Bdhzs40uYWu4PiLAuKomgNl2Je3PuKbdzvyGbruMIluWudfsbPA7qkzK7D7Wx7oFRIlT/7cAXnf/ERc9PDHDw7QF2zSxh5gBPdmsHQXUTd3gCnzg7wzEMV9A5+hNPlEwKH08VUxO2+DtSiVRKfBFYAH3AD0k5vJltXlhAIRTndM4gjx8prR7oYDGjpfB5fiAMtrgRtGD0PePvGhZcNGk+G/CJKJuJyDVF27G2ltqZM9MyGizLnevphtzfA/9/eucdFeZ55/3szMMAAAgOIJ5SjWmKN8RzFGINpa9c1PaW73e3G5m3XZvd9UzbNdru2bptu89m83W6bTbNvm9pDanbbJnGbbtL0kzaeI1o1aNQoFWU4CorDMCDMDAwzc79/PAcGHA4aDoPc38+HzwzPPPM81zww9/Xc93Vdv6tRX0o6XtvGqjw7q/LSuXNO+g3OwHi/uiEZOaM1szf+nkYWkU3PEnI4PbR6RL9aJYCUBAud3UESYmP423sL+J/TzQRDUu+jLtn50HL2VraM+XgykhlCGbACOCal3CCEWAh8Y0ytGiMykqw8+xdanV16khUQ3JWTxjd/W8m3P3EnS+elm/sO1YAGhr/rV19ERSQG+78wuuIZ6rjQNzhdadfqZopnppAQZ6G53cfV6z3kpCeajuJ4rZvzzR08+xdLhwxsKoZmtGb2hkS5zx9i8Zy0fr3bZ4omtq2bSUV9G4tnTyPWEkMgGOJs03W6AyGe+E0lPWbfdS0r8uuvnud7n7pr4iqVw+iWUnYLIRBCxOvVywvG1KoxYGA3scfu7/sI9y6cfsP+RiOSp964wNnLHXznk0vUXb9izIjUFc9IYJiTpi0heP3BfpkmWSnxzEpLoDcoOdXQzhGHy1xSUEuWt8atfscHOmBj4N55uIay0kJeO92s1x4UER8bw/naDjOWGY5FQDCoOQNrDNwxO5V3Gjsor24d8+UiGJlDuKyL2/0PsEcI4SaCCF20Y5SNH6hy8vjLp/u1mBzsbir8PcYfQ325FO+VgYJm0L+1Zl/TGy2BYU1hBifr3fzTnxTz/YPVnKhzMys1wRxQHlo9l3VFWkHaxuJsfnjIwcbibPO4ipEz3Mx+sLFioANu8/g5WW8M+AIjhllR10ZxXqifmnJOeiIbFkznQNU1szodwB+Ce+ZP5575WYQnsYwlI8ky+qj+9AkhxAEgFfjdmFo1ygRDkt0VjXpaV+UNTmGwu6mb6UCmpuiKkRL+/2bMU43Wmk+9ccFsemMkMHj9ARxOD1UtndxdkMmJOnc/2fKaVi//9ZH3mz0zDlQ5VV/tMWKwscIYHwyH7PUHKa9upSAriS1LZpFus3Ky3k15tYt7UkIcr/UxOy2BYEjS6PaREGdh06IZ7DxcS0q8hbzMJFYXZLJlySwzdjAef8thG+QIIZ4RQqwBkFIeklK+JqWcVN1Y3F4/T71xgb2VLXznk0soKczgQJWTXUfrAO2PWVZaZMYLwhnYE3cwjH8U1edWMRyRemRH2m78721dk2duXz8/C3uS1md5VZ6dtQUZfOMBrTXJc4ccHKhy9mu5qRg9Bss8hL6/1d7KFrOBkRE03vZCBW6vn+JZWr9sv74k1NTebWqovXHuCn+2ci5rCzLo7Alq8QR/0GyIZIxVY81IloxOATuEEPOBXwMvSSkrxtas0SXdZqWsNA+v3q5y2bx0vYBHm7aFN6wH+sUXRoqKLyhGynBS5kbnrPD1aGP/x18+TZunl4KsJH7w6WUA+mAhOd3gNo9lKGiqmevoYcR0ykoLB72WG4uzeeuiJn3vcHpIjNMUEj7+/aPMtSf223d6spVrXdoNaKPbx7YXKlgWltjym7PNuL2afP7NtNp9L4xkyWgXsEsIYQc+DnxLCDFXSlk05taNEpYYgc1i0afjsWxdkxdB60UMeOxjJF8qlVWkGC0irUcb/RKKslPw9ARYOGMau47WYvRWBq2i1chr9/WGePzl0xRlp7DzrZoRSWMrhkMbG07Wt4fFefqzt7KFIw6tWtyeFEebp5eE2Bjafb20N/X227dHnylMS4glJCUOpwe/nl2UEBuD29tr/j2jQtxuAIXAQiAXqBwTa8aQ8Dv4SIN3pIb1BipjQzGeDJxthmfIGfnrLxyrB2Dbujzm2W3Ut3k51dBOWWkhNmssb110csThwh8ImdWu5dUuFVt4D2xdk8tZvaDMuEEceKNoJAccq2njeG0bK3PTaWr30dTebXZejBGC7JR4Wjp7zCJZgw0Lp9PY5uVAldOUsxiP+gODkRSmfQv4GOAAXgK+KaW8MV8qyhnuDn6o19VykGI8Gfi/GB6wNJIiSgozWTYvDV9viPo2r95isS8I+fgHFmDdf8kcUMqrXcyz2/TYWe2Il0WN2UlhaFLqWo4qA5NMDEe9/0ILcZYYvvHAIgqyktm6Jo/Dl1oBCIQkTe3d2JPimJNm42xTByEpmZWWQEtnD4lxFjp8ARbPTmFaYjxb1+SSbrP2czTj2UdlJDOEWuBuKWXrWBsTrajlIMVEEv7/ZwxIK4zey35N96a5vRtfb5DXTjeZFfbGvkYKapPbxwvH6jXJixFiDHr/VjI+SxbRzMCl443F2bxc0Wj2S9n2QgW7H1nDrrB+7IAZXE6I7WFaQiwQwBprAeDq9R42LMhi8ZxUntlXzWunmwdtbjQejCSG8Nx4GDKWBEOyX5BOoZjsfHdPlalsahFaUHLnWzWUlRZpCqhdfv7mvyo4XuvG6w+wdU0eX/il3vVWjvz7YMxO0oMNY/p5JgN9KqZBPR04iMPpYVWenZbr3abWkJGskhAbQ2FWEi+fbCItMY7mDq3iPD7Wwpc/tJBDF52ANDst2qyxeP2BCV2eHjbt9HbASDs10vCMLI6BKaYKRbRjDErFM1MpKcwgJz2RoL6ak5OeyPr5Wbx+9go7D9eYd64g2F3RSHm1iw0LskjU6x1GkpZqzE7C6x6mCgPHCSMt2KermPr8QbZvWsgPPr2Mn3xmBYtnp/L9g9UUZiWTk55IdyDEG+eusiovnfXzMwGtZ3tPIMihi9d47P75bF2TZ/4dBqYYTwRTYh44sEORChIrJiuG5tGfrcyhIOt9OJxd/P3Lp2nt8vPNBxbxpf/WVDHn2W18cNEMkFrKoq9Xa+bedzeq2roOh9Hz2OsP8tj9800V00d/oc20Kq908I0HFrHraC0n692c1eWt/+6l02ToM6/OHq1V79K5Wg3CrLREwIORsRTeX+Wx+xdM+PL0lHAIhsSwgQoSKyYrAzWPCrKSuWf+dJ7Zd4kfHHKYzuCnD6+gICuZp/dcNNNSt63Lv+WOarczg6eVS/PRkCGvqGvjiMOFPSmO8moXX3nlXVNgcEF2MtXXughKzPoCg6sdWgFanCWG7GkJbFyTC2DGc24mrjOWDLpkJIR4vxDimBCiUQixU++JYLx2YnzMGxtGWn2sUEwUgy1rbizOZsOCLDYWZ5v7uL3aPr16XntISnYdqePpPRf7FTS9ce6KWfVqvNfh7Jryy6eRVAa06yHMWZV2J3/JdAZtnl69uVZf9lVPIMTHl80BIM6izQCs+mNzRzcFWUkcr20jRmCOPVqTo77HiWaoGcIPgCeAY8DngHIhxBYppQOIGwfbFIopy2DLmuEzBK8/wDP7qrkrR1uOWDRrGh2+XhxOT1+dwj35lBRm0Bvs66ng8wfN4//yRAN1Lq+5LDIVibRioPUzuGT2QzHu4HPSE2l0+5iTlkiHr5ec9EQyk+NwdfVS5/KSPS0eALvNSktnDwtnJHO2qZO1BRn880cWsbeyhfRggzkr2bJkdoQiWY2JqDIfyiEkSykNEbt/E0KcBH4nhPgrwt2iQqEYdQZb1gzfbujbGCmM6Unx7HxoOV/afYbmdp+2Xi0l5dUuykqLkFJyos5Nd28Ar99CSWGGmalkfKWnotSFERsI/9zh6rMOZ5fZ/nLDwukcqW7F4fRwud0XQcJamNe1ICuJJ7a8n7fr2iI2RBoujjkRsc6hHIIQQqRKKTsApJQHhBAfB34F2MfFOoViihIpuKitY2tyFdBXXb+xOJu9lS3mY2KchavXe7h6vYd1RVn9slZO1LmpafVSfqyBstJCls2zE576OFUTLsI/t+EcDFmQs5e1XhMlhZlUXb2Ow+lhxrR4YoSgpDCT1q4eDl10kpIQy/HaNh5aPY84SwwHqpymM9hd0WjWgfzfuy08uHH4OOZExDqHcgjfAt6HtmQEgJTyrBCiFPinsTZMoVD0x2jLCJgS2eagXawVRjmcHrbdk48QkJ+VbMYQ6lo9HKtxsSovnS/eP18XUZNmZbPBVE24CO+QaGQXlZUWUlZahM8fpGh6CuebO8xUXkOltLnDR73LS1BCuy5BUdVyndX5mSyek9qvojk3wwaArzc4omyiicg4GtQhSCl/YTwXQiRrm6RHStkA/PV4GKdQKPowljEiNUt58vVKHE4PuRk2EuNi+N6nlvLcwWp2Hq4F4PWzzWb/3mf3XzIrY89e7uBAlRPATLSYSjODcAydorLSQnNWZcQSNizI4ohDc6gg6A2GONXQTnm1i/nZSQCkJVpISbAyLyPJ7I5mLD8BrMi18+z+S8xK65rATzk0Q6adCiH+BtgOJGm/ik7gW1LK74+HcQqFog97kjWiBlGbx0+O3cY8u417irJ4Zl81bm+vmTWTm2Hj25+4k2/97gJNbh8HqpwsnpPG9k0L2Viczer88RNPiwYixUl2VzSagnJb1+SZfamN/gdblszSA/lBntl3iVV5djPAXN+qOdp2X5B2n49ZLq9+pj55fcPJPv/wSg4ePDjeH3nEDOoQhBA7gDXAvVLKGn1bPvCMEMIupXxynGxUKBRDsLuikRf+oGUVpSdZKSst5GdH6/D1hkiMi+Enn9FqElbn23lmXzVrCzLYuibXHAwHE0+L1OpzMjHSdpdwoxoyYM6wtq3LI92mbVs/P4tXTzeZGVtGCirArNQEmju6uXNOKvctnD4pr9tQM4S/Au6UUnYbG6SUNUKITwJnAOUQFIooIHwpaeuaXHZXNJqSykXTk83BzAhG3zE79YaBcrC75oGtPicTw7W7DB+wwzONNOHAi9Q4taWdM5c7zNakS+emUqfPAEoKM/hcST5P/OY8d85J4+r1bjYvnskj9/ZvoDOZMreGXDIKdwZh23xCiOgoq1MoFDcsJT24PIf9F65xvLaNs03Xee6Qg0stnTx6n9bTyqi2hb6BMlKWjaGS+uDyHM6+PfnacQ4WIB8sTmJcg8S4GLPuIDEuhhnT4nn1zBVW5qZTeeU6ACkJFr73qaXsrmikzuXlencvbZ5eYmPEkI412uMzQzmEy0KIUinlvvCNQoj7gCtja5ZCobhV7ElWVufbOV7bRklhBuebOkwHsDo/gyMOTeQufKAMHzxHewCbqDvk8IF/OBuMeIERF7DECOKExNcb4g8ObXlICEFXjyY3npNuw+31c/iSk1V52rUuyErijtmp/RRRH1yeM6kyt4ZyCF8AXhVClAMn0SIkK4C1wAPjYJtCobhFjDaxG4uzeelEI0LAjs3FAByrcbFjc3G/gTG8n7Ory8+qPDuurh5T0qJVf34rA3o03CEPZUObx99vSajR7SMYkgT11729WmD58CWn+Z6UhDiefL2S8moXJYUZ/Wo9MpKsN8hYD/W5o2lJaai00/NCiEXAXwB3oC1AvgV8PtJS0s0ghPg28KeAH60T28OTsQubQhFNDBxYPr++gKf3VLHzcA2r8tLZdbSOQ1VO6tu8rM5vIX25NeLyxs7DNQAcr20j0Wrh7OUOllq72V3ReEsDejTcIYdXHg90bOEZRkXTUzjVoFUl222xtHkDlBRm8sqpyzS6fQCk2WL58ocWAtDQ5uWL9y9g6TxT6s10rINJUgwkGhymwVBZRoVAtpTypwO2rxNCNOuaRrfKHmC7lDKgt+jcDnz5PRxPoZiShDuBSHEAYy38eK3bLKoqyEpiY3G2eVdsLG9sLM7G6w+ybV0eCKELrgkOVDlZvyKOLbc4oEdDbYM9yYpN7wNxsr6NZfPsbNUVR71+TRp8y5LZvHa6mVV56RyvdZObmcz74iy4vX7TGUxLtNDuDfC7c1e4dK0Lh9PDs/sv3dCn+mY+czQ4TIOhloz+HfhKhO0+/bU/vdWTSinfDPv1GPCJWz2WQjGVGegEjEdj+9qCDB5aPY+qluvMmJbA6cYOvv2JO02RvJLCTDPIfKzGZd4pGwOcdqdrISfYMOrLGeO9VPLg8hzzM5ZXuzh7ud0s0NOUS+GZfdWUFGaYcQGAeIsgMymOWWkJxFosnGpop/JKJ+XVrRRkJXGgynnLsyeIDodpIKSMrFMnhDgnpVw0yGvvSinfPyoGCPEb4CUp5X8N8vo2YBtAdnb2shdffPGmz9HV1UVy8vg1qr5VlJ2jx2SwEd67ncGQxO31k26z9utqFgxJGt0+Ort7SUmIo7O7l/hYCz2BICkJccxMTaCzu5eQhJbr3ea2Kx3ddHb3MjM1gczk+H52JtqSzHMB/c5r2GGca6A9kWjt6uFKR/cN57pVRnItgyGJy+OnqyeApyeAzRpLIBjCHwxhtcQQZ4nB4w+YLTLDiY+NoScQIjk+1nyePS0Brz8wos97M3aONhs2bDgppVw+3H5DzRAShngtcbgDCyH2AjMivPRVKeWr+j5fBQLAzwc7jpRyJ7ATYPny5fLee+8d7tQ3cPDgQW7lfeONsnP0mAw2wtjaadyBryvO5snXKznwrhN7UiJtnl4KsmLY+dBa0m1Wdh2txY1gy925gNYprBHJfSvyzDv3gwcPUiVyeKr8Ats3FWrS2+XVlBSmmumXT5VfYMOCdA5UOdm+qXDYu17DvvtGaYYw0mvZ5vHz6C9OmZlXWlsYrR/BjNQEtiyexcvnrpjLROFsWJBNUVqyKQmyfVMun//Azd3dR/P/5lAO4W0hxF9LKX8UvlEI8Vm0rKMhkVJuHOp1IcRWYDNQKgebpigUihExsKrYUEU11skXz0nDHwhxxOEiMS4Gh9PDZ3/2Nq/87Vpzbf31s83sfGg5NquFp964gM0aawZIW7t62Liqry7huYNaCLG82sVzhxw8og/+NyOFMVpLJcZnLwwNP4y0efx84ZeaM0iOt9DVE2Tx7GnUtHro6glytaOb35+/SqPbx7SEWK53awV+q/LsrM63681y6gAoKcyMinX/0WQoh/B3wK+FEH9JnwNYDliBj76XkwohPoQWRF4vpfQOt79CoRia8FgC0E8VVftdE1uzxsaYYnZ1Lq8+uElyM2yaUuoLFXz7E3eaXdmMY/s7unFVtpgOovJKh3mu800d/Qb3waQwxgrjs/9bSeThzJAN9/WG+tVkGDUF9W1eVubaOXTRSVBqv29YkMWOzcW8dKLR7J1ckKV9LkN2PBrSREebodJOW4A1QogNgBFL+K2Ucv8onPc/gHhgjxAC4JiU8pFROK5CMSUZmKkSSRX1weU5uL1+eoPnyc+0gRBmOuXSuWkAOJwevvNmFUccLhbPaeKx+xfw4PIc9l6vpskfwOHs4mv/c44jDhdL56aRGGfh8Q8s4IeHHGM+QA4WhDY+o9GJbNfROnz+IO3eHk7UubmnKJMXjjWY+6/MTScQkgRCknqXhw5fgP1VfTUGaYlxPHpfEQVZyWQkWymvdrG3ssV0dNEUBB5thpSuAK0xDnBgNE8qpSwczeMpFFOdgYPUQFVU485eK6ZqZdm8Ql4/27dOfqqhnbLSIkByrEbLrjlZ7zZz9mMEply2cYe9PNfOVz78Pn54yDHiPPqRVAwP9vpg+frGZ9+3v8FMpe1PK2Wlhbg9vTicXdwxK9WstchJTyQYkuZswWoRtPt6eXb/JZ5/eGVUpYSOB8M6BIVCMTkJ77BmiN4ZaaW+3hAOp4fYGEEgpC0ZGfscr23DnhRHebXLHJxDEjNX3x84Z8Yi4Oby6Icrwhrq9eHO4/b6OVDlpaQwg+KZqeYM4Yk/vYOqlk7cnl6OOFzMTktkbUEGdS4PjW4fs1ITTIeQbrNSlJ1sVnXf7GwgmqqObwXlEBSKScDNDjThcgyAWXhmyFa8dEJbQjGcwU8+swLQlpqMHPxZqQn8/vxVfn/+KhtSuyFBUJCVzLN/sdQUvzOWikarCGuo14cbnNNtVrZvKrxBxfVv/uskx2vbmJ2mJU4ecbTS1N7N4tnTaGrvZmNxNgmxFt6svEqdy8v/Kskz4wU3SzRVHd8KyiEoFJOAmx1ojNlASWEGxbNScXX5zbX/1fktJFr7vvrZ0+L14Ol1yqtbWVuQAUBzRzfNHZpKzYb3w8CGL0/vqeKZfdV4/YGIjXsiMdyg/l7W5y0xot97tYyid8wCMyk1yeor7doyWXcgaC6TbVkym0SrVpn94PKcW77Tn+xLTMohKBSTgJsdaAZTLx2ocvrWxWv9ZC1KCjP54v3zaXr5NHUuL6mJsdw7P4vkuCvcs2T2gPRWoxBrZAVZIyX8HG6vFvfYsbnYvGsfarAOf23X0TrKq1sBTX+ouUPrV2DESBpcPkD2ayW6fZOmURQ+u7oZBzXZA87KISgUk4CbGWgGDphGA3mfP0CiNRa3189rp5vx+YO0dmlqpgmxMXQHQlx2e3nxRAN1Lq8pBe3y+OlKDPDa6SazZgH6p1+OJuEO7K2LTo44XPgD5/j5X68GtBqLSDOTYEj2G8ivdGgzgcWzU3j6z5fy2ukmXjnVRCAkEUB3IAQIykoL8fWGKJqejNcfZNfRWjPWMlnv9G8V5RAUituMgctLWgOd+WY20Otnm3E4Peb+CbGC7kCIeIugzuXF7dWcRFaKlcLpyeTYbdDVQngaa7iiqsFoBVSNc2wszmb/hWuAFuvoUynVZiQ+f6hfuqsRVDYG8o/+vyMANLRpy15nL3eYWVUSmJOWSGFWEl//zXm9ejsJh9NDWWmRKWc9GQPD74WYiTZAoVCMLg8uz+mnzx++fcOCLBxODyWFmWxbl09JYQbdAS020BPUHu+dn0VBVhKLZqVxoMpJuk3TOTL6MBtOZiCGI9pd0b+7WpvHzw8POczeCsNhOHA0RAAAGR9JREFUnGNvZYvZeOZ4bZt53K1rctm+aSGJekX17opGHM4uOrsDbFuXbwrzPf1nS7AnxdHu69WkO6qcpCb23QNfbvfxD786S5un16ze3rAgi61rcgf9jLc7aoagUNxmDLa8ZE+y8p1PLukncfHcQQdef4CW6z00tXdrjXE8fhxOD5sXz2LbunxO1rspzo0z1U8HmwUYWUxGhbNBpID4SGYT4TOFvZV9chjG53M4uzh7uZ2NulbTUmuAS52duL1aMLl4Zgq7H1mjL48F6A2GKK/WaihSEix0dgfx9YZIs8XyzS2LeOWdphsaB001lENQKKYQ4c3kvf6AWaAF6A1iNOG23AwbW5bMMruCbUzXlmkGDu7hA7shqb06v6WffEUkRzGSrKnh5DCM8y2e00zR9BSSfU52fKCYr796nvLqVsqrW0m0Wqioc3PE4SInPZGHVs8lPSket8fPC8fqAdh6dx7NHd0RbZ9qKIegUEwxjMG4rLSIbevyOXPZzZ1z0nnk3gJTuK3O5eWlE43s2FxMb/AcVks7T++5yJYlswDM1MzwJjsgKSstumGpKpKjuNX0zHAHFC7TsfNwDV+5K8RLJxrISIoDwGYV7KlsofJKJwCNbh81rV7Wpdvw+bXV8pLCDFMA8Fbsud1QMQSFYophxBi2LJlF5ZUOjte69Rx8AGkWcL1x7grpNivrirJweXp4Zt8lPvuzt9lYnI09ydqv8tlI3zTE9J7ec5Gn91TR5vFHjGkMFYsYioFxCi17KsjstAR6AiF2Hq7ld+ev6q9J0xnMmBbPPLuN/EwbT71xgURrLNs3LeR7n1qKPcl6y/bcbqgZgkIxxTAGvx8ecphr6ifr2wEtnXNlbjpN7d00un08/vJpdmwu5kDLHwFt5vD1V89TPHMaZy672bYunz9bmcNLbzeytiCDFbn2ARXSsaPSZN7Yx2jz6fUH2HW0jmf2XQJgVmpf+5YePUieZI3B4w+RmhjLB+6YwQt/qKem1au1CIUpmUU0HMohKBRThEj1CS6PnzfPX9UF79LZvmkhG4uzee10MxV1beZSDyEJCBJiYyiemWLGHmzWWPZWtrDzLe136/5LZmvOZfPS+s0KBp7fUCb9g6OVE3XuISue/31PFS8ca6CyuZ0zl69T5/LywJ0zSYyLwdcbYuP7pmPt1pT04y2CnqAkOT4Oj7+HDl+AGmcXawsyKK9uJc6i9Ym2WS2TuohsLFAOQaGYIkSqT8hIslLn8prplsYd82P3zzelrl0ePzlWCyDJz0oC4KG751Hj7OLR+4o4dPEa2+7JJzEuhi1LZpsNcsL1hHYdreVkvduckXx+fQG7KxrNO3zor64a/j4Q5ozjt++2ENAb4fzu3BV6ghAbI/jIXXOoPtsMBOgJSrOmACA1MZbyahcPrZ6HNTaGR+8rYnV+xpSPF0RCOQSFYooQKZA7sNAsnL2VLRxxuDjicPE1vRtv5ZVOKq90sn3TQrauyWXbCxU4nB62b1o4aEaQUVkMWhA3/JxGBbWmo+Tq16xecxja+x66ex6/OdOM29tLamIsHb6A6QwCIckXXz7NIwsk29blk2iNYf386Tz520qcnT3cnW/n5ZNNOJxdupZThpoZDIIKKisUU4RIgdPwNNTwwrE2jx+vP8hDq+dSUphJQpwWLF46N421BRlsLM7m66+ex+H0kJOeiNcfxOHsGqQArU/rKD8r2TyXPcnK1jW5ZCTH840HFlFWWojXHzTf/+DyHMpKC9l2Tz7ptjgeXDYHgLgYgUUfuT5212zSbXHUubw4O3tItFp47P4FHLro5FRDO41uH/VtPspKC/nnjyyKWLCn6EPNEBSKKU74UlJ4jcIz+6rZsCCL8upWtmTHUlZaREVdG0ccWgex/Ewb5dWQmWzlmX2XOHu5nQNVTvZfuEacRZhtJ7euyeVkfRvl1S4c17p44Q/1eP0BbNZY8zyAqZN09nK7WW382P0LTMmNstIi5tlt1LdpsQKL0Npdur295mdxe3r0Z339lY/XtrE6P4OCrGTSl1sndb+CsUY5BIViihNJGdXQ89lYnM3q/BYygg24LRaOOFysykvn8CUn+br66Iq8DD60aCYbi7Pp8J0x5aa3vVDB7kfWALBsnp1l89LZsmQ2r51u4lhNG8dr29h2T755117X6iHNFsuBKicf+/4Rs0fD4UutfHLZbE7Wu1mVbzcdQlBqg/3MaQlcua7pFZ1u7OCHhxysnz+dk/XteP29nGrowHAQk71fwVijHIJCMcUJrwg21vVBmnfRBeuT2be/AVeXn5LCDLz+IMdrXXj9AUoKM0FKU17C2andocfGCBxOD1/45TtIKTnicFFWWshrp5s4Wd9uOg2kNM/9+MunafcGAC299cnXKwG0imM9m6ikMIOHVs/l5ycaCerB5bkZNtMhXOvs5qk3LvQTqvvgHTNviJ+oZaPIKIegUChM7ElWbLponFFDAODy+Nl5REstXZVn1/cWpkTEm5Ut1Lm8FM9IJi0xji9/aAE/Lq81+xFoxWvCzCrKzbBR5/LS3Rvi0z8+TvHMFLbenUv1tS5SEuKIjZF4/UE+vWouZy630+bpxZ4Ux+dK8jla4yIzyUpLZw9L56bxLx97P1t/cgLoJEYISgozKK92mZlTQL9lIjUzGBzlEBSKKUykorBwUTlDXtqgpDCTbzxwB3srW3Bc6+JUQzspCRbqXNoyTuXVLgDerGzB4fSQm2HjnqJMEqyxuD09rMqzc+ecND60aAbP7r9EVUsnx2vbKK9u5dK1Ll2e2kdBVhJnm9pobvfR5uklITaGNk8v3/xtpZlOmpth48dbV2BPsvK9T93FsaOHae7oJseeSFlpIVvX5GFPspoxCFDLRMOhHIJCMYWJFFA2eiQbA6nXH2Q2mIOsQX2bNjB3dgdZOjcNZ2cPjW4f8+w2tt6dS0ObF4fTQ16mz6wjALgzJ41n9QK2bevyibPEkJ9pAyFYOjeVOIuFv1lfwI/La7jUojmY7kAIe1IcDqfHTDvNnpZAXauHR39xikBIUpKsLSEdr3Vz38LsGxycWiYaHuUQFIopTKSA8rEaFzs2F+P1B8yewy3Xuznb2gH0OZFt9+RztaOH+jav6QyMpaBdf6jD4fRQkJXEo/cVsXhOmlmRfL6pgyMObUnnkXsLcHv9Zj2DwZ05aQC06DGJnPREvvnAInOGYPRI+NJ/nzHf98HlsXodQv8ubmqZaOQoh6BQTGEGBpSP1bj0u/lKs8fwg8tzeO13Dg686zQrh7et0yqTf/rwCrP5DMA9RVnkZXr7zRC+u6eKZfPSeerji9lb2cKKXDtiz0Wykq184Zfv4PUHcDg9Zo8CgDfPXzWXoWalJrDp/TN5p9GtN/fJoHhWKqULJd2BEP5AiEa3DwE8cq8SqHsvKIegUCiA/g10VuRqgeMVuXZ2VzSSm5pAWekcs55gw4IsXQ8oVpfIPk9+ZpIZE6ht9VDn8pJui6O82kV5tQubNZYHl+fw+MunzWAzaHf/AKGQ9vuMafHUubymOF1zRzc736phVZ5dcwYzp7HzrRrThtwMGytz0+nqcfL4y6fNGgbFzaMqlRUKhYkxY3hbF7Z7dv8lnnrjAm6Pn9fPNpvOYMfmYrNOQWui00qj22umk9a5vORm2MyisXl2Gyty7Tz6i1McqHKyKs/OJ5fNJjfDxj98cAH2pDg8fm12EKeXIXv8IdOu1MRYPfjsMqWrd2wupiAriTqXF2ushZSEOA5UOc1K6Jtp26nQUDMEhUJxA+GZRqvzW/A5L5hr98YdePpybcmnvLqVVXl2iqanUDQ9hXavnxN1bazMtZuzhPo2L9/dU8URhyZud2dOGmca3dS5vPzr76to8/SSFG8hEAjxt/cWUNvq5VhNKzWtHrp6gnT4AqzKS2d1fiZblsxib2UL6TYrOx9azpOvV7JjczF1775NWensG6SxVfxg5KgZgkKhuAFjplCQlczn1xeQlRyPPSmOf/qTvp7DuysazaUfKSU7D9eQaI3B2dVDncvLibo21hZk4Pb2UpCVRH6mVtlsFLMdr3UDWiezgqwkPD1BeoKSf/19FYlWC2ebrrMkJ9206c6cdGxWC6+dbjab5BRkJfP8wytJt1lxe/0YjXpAKt2iW0A5BIVCMSytHj9tnl52/aHO3LYi105OeiJL56aycMY0AF451URWcryZbRQIhcjNsOFweqhp9VBWWsj3PnUXCE3wbnZaAtvW5bPzoeUsnatlFrm9vRy+pMUGPleSR1lpIWWlRSTGxfDUGxfw+YNsWJB1Q4/mKx3dgNCVWPNUB7RbQC0ZKRSKYZmZmsCGBclsvTuXh58/wY7NxTy7/xKNbh+Nbh/rirJMuYjGk5dZlWdnTnqi2f9ACy5rzWncXj/nm7QU1k8sm2M2xfnx1hU8d9DBm5VXOdXQDsAPDjlYna8FuLcsmW0K4kXq0by/s5r7wno6KG4e5RAUCsWwxMfG8PzDK3n4+RNmWqqWXXSO4pmpbF2Tx5Yls/nMT0/Q6PZxvLaNVXl27spJ5Z3GDrOPwYEqJ73BcxxxuCjISmL9/On8y2//SEW9FoyOswjqXF5y0hNpdPtobveFqaFqHc7aPH4zY8nAnmQlMzleOYP3iFoyUigUI6LN46doegolhRl6hk8y3/vUUhKtMew6Wke6zcrHls4x9z9e29ZPmrrDpwnX1bu8rMxNx+H08KX/PsPOwzWcamjnVEM7x2vdrC3I4Gf/ayUbFmTR6PZRUphBWWmR6QAi9XVQjA4TOkMQQvw98G0gS0rZOtz+CoVi7AlvaL+3UmuHGQxJHn/5tFmsVqBLX4d3NbNZLaaYXHgXtJLCTIpnptDdG+LVM000un30BkOkJWpSFKvy7Pj8AWpdHjq7gyzPtVOQlcx3PrmEXUfrANmvvadi7JgwhyCEyAHuBxomygaFQnEj4RIWRgVyhtfPgSqt9/LAFpxefwAQpkDeY/fPB24UzvvhIYc5S7h6XZOkKMhK4gefXmaeU1tGyjJF9SIpryrGjomcITwN/APw6gTaoFAoBjCwBuHB5Tm8c7yB7ZsKzcE9fLA3gsJtHj9P77mIT++nkGiNNWcMPzzkYGNxNl5/kMOXrnGqoYMYAZ8ryTPbeB6+pElpf3fPRTOdNZLyqpopjB0T4hCEEFuAJinlGSHEsPsrFIrxI1zfyMjiscSIfnfokTqPactHl/ody2bVejEbM47vfHIJPn+QUw0dhCR863dVXO8O8ODyHJbNS6O8upXimSmsK8rs179ASViPD0JKOfxet3JgIfYCMyK89FXgK8AHpJQdQog6YPlgMQQhxDZgG0B2dvayF1988aZt6erqIjk5+abfN94oO0ePyWAjTF47gyGJ2+sn3abdrbu9flIS4ujw9RIKSUJS0hMIkT0tga6eAJ6eAF09AWamJhCS0HK9mxghSEuMo83rZ2ZqAuk2Ky5daiIjyYolRkQ8X/j2oWyMVibCzg0bNpyUUi4fdkcp5bj+AO8HrgF1+k8ALY4wY7j3Llu2TN4KBw4cuKX3jTfKztFjMtgo5eSz09XVI587WC1dXT3ma88drJbzvvy6fO5g9Q3bPvPT43Lel1+Xf/mjY/K7b16Qrq4e6erqkd9984L87ptVsvpaZ7/jRTrWzdoY7UyEnUCFHMH4PO5LRlLKd4Hpxu/DzRAUCkX0EGmpKLyngsPZxZOvV/LofUWm+J0hpR1n0e7stTadseZxjGWlgcdSjD+qME2hUNxApNaaEHnADo85GKmpAM8/vBKAHZuLaWirMJVIP7++wHy/1x/o52BUM5uJZcIdgpQyd6JtUCgU/Yk0E4C+wd+Qlx7oMHZsLsaoYjbYq/dXDk9ZDT/OwKpjxcQx4Q5BoVBEH8Mt3QzmMAz1UeibZazItZs9FIB+jkTNCKIL5RAUCsUNDDdQj2StP7zYzOH0sDq/BUClj0YxyiEoFIqbYrD4wkDCezRHqnBWRB/KISgUiptisOWigYT3aA53HmpmEL0oh6BQKG6Km0kNNWQpRjKjUEw8Sv5aoVDcFDcrP23MKHZXNJrbjCylNr0yWREdqBmCQqEYUyLNKEa67KQYX5RDUCgUY0qkjCVVkRydKIegUCjGHVV/EJ2oGIJCoVAoAOUQFAqFQqGjHIJCoVAoAOUQFAqFQqGjHIJCoVAoAOUQFAqFQqGjHIJCoVAoABBau83JgRDCCdTfwlszgcnQolPZOXpMBhtB2TmaTAYbYWLsnCelzBpup0nlEG4VIUSFlHL5RNsxHMrO0WMy2AjKztFkMtgI0W2nWjJSKBQKBaAcgkKhUCh0popD2DnRBowQZefoMRlsBGXnaDIZbIQotnNKxBAUCoVCMTxTZYagUCgUimG47R2CEOJDQogqIUS1EOIfJ9oeAyFEnRDiXSHEaSFEhb7NLoTYI4S4pD+mT4BdPxVCXBNCnAvbNqhdQojt+rWtEkJ8cILtfEII0aRf09NCiA9PpJ1CiBwhxAEhxB+FEOeFEGX69qi6nkPYGW3XM0EIcUIIcUa38xv69qi5nkPYGFXXclCklLftD2ABHEA+YAXOAMUTbZduWx2QOWDbvwL/qD//R+BbE2DXPcBS4NxwdgHF+jWNB/L0a22ZQDufAP4+wr4TYicwE1iqP08BLuq2RNX1HMLOaLueAkjWn8cBx4HV0XQ9h7Axqq7lYD+3+wxhJVAtpayRUvqBF4EHJtimoXgA2KU/3wV8ZLwNkFK+BbQN2DyYXQ8AL0ope6SUtUA12jWfKDsHY0LslFJekVKe0p93An8EZhNl13MIOwdjouyUUsou/dc4/UcSRddzCBsHY8K+Q5G43R3CbKAx7PfLDP2PPp5I4E0hxEkhxDZ9W7aU8gpoX1Jg+oRZ15/B7IrG6/t/hBBn9SUlY+lgwu0UQuQCd6HdMUbt9RxgJ0TZ9RRCWIQQp4FrwB4pZdRdz0FshCi7lpG43R2CiLAtWtKq1koplwKbgP8thLhnog26BaLt+v4AKACWAFeA7+jbJ9ROIUQy8Cvg76SU14faNcK2ibQz6q6nlDIopVwCzAFWCiEWDbH7hNg5iI1Rdy0jcbs7hMtAeBfvOUDzBNnSDylls/54Dfg12jSxRQgxE0B/vDZxFvZjMLui6vpKKVv0L2MI+BF9U+8Js1MIEYc2yP5cSvmKvjnqrmckO6PxehpIKduBg8CHiMLrOdDGaL6W4dzuDuFtoEgIkSeEsAJ/Drw2wTYhhEgSQqQYz4EPAOfQbNuq77YVeHViLLyBwex6DfhzIUS8ECIPKAJOTIB9gDkYGHwU7ZrCBNkphBDAT4A/Sim/G/ZSVF3PweyMwuuZJYRI058nAhuBC0TR9RzMxmi7loMyUdHs8foBPoyWNeEAvjrR9ug25aNlFpwBzht2ARnAPuCS/mifANt+iTal7UW7e/nsUHYBX9WvbRWwaYLt/E/gXeAs2hdt5kTaCZSgTf/PAqf1nw9H2/Ucws5ou56LgXd0e84BX9O3R831HMLGqLqWg/2oSmWFQqFQALf/kpFCoVAoRohyCAqFQqEAlENQKBQKhY5yCAqFQqEAlENQKBQKhY5yCIopga42+fdjePwsIcRxIcQ7Qoh1Y3UehWIsiZ1oAxSK24RS4IKUcuuwe44CQohYKWVgPM6lmDqoGYLitkUI8VVdY34vsCBs+18LId7WNet/JYSwCSFShBC1uoQDQohpQutZETfgmPOEEPt0kbJ9Qoi5QoglaBLMH9a17hPD9i8VQvw67Pf7hRCv6M8/IIT4gxDilBBit64lhBDia7p954QQO/VKYoQQB4UQ/yKEOASUjd2VU0xVlENQ3JYIIZahSZXcBXwMWBH28itSyhVSyjvRpJ4/KzXZ54PAn+j7/DnwKyll74BD/wfwgpRyMfBz4HtSytPA14CXpJRLpJS+sP33A+8TQmTpvz8MPC+EyAR2ABulJnJYAXzROIdu3yIgEdgcdrw0KeV6KeV3UChGGeUQFLcr64BfSym9UlPuDNewWiSEOCyEeBf4S+AOffuP0QZs9MfnIxz3buAX+vP/RJN9GBSpSQH8J/BpXePmbuANtKYpxcARXSp5KzBPf9sGPR7xLnBfmH0ALw39sRWKW0fFEBS3M4PpsvwM+IiU8owQ4jPAvQBSyiNCiFwhxHq0rlXnBnn/SM4RzvPAb4BuYLeUMqAvA+2RUn4qfEchRALwfWC5lLJRCPEEkBC2i2cE51Mobgk1Q1DcrrwFfFQIkagry/5p2GspwBU9PvCXA973AppwXqTZAcBRtOUk9PeWD2eI1KTOm9GWiH6mbz4GrBVCFALocYz59A3+rXpM4RPDHV+hGC3UDEFxWyKlPCWEeAlNubMeOBz28j+hdQSrR1OgTAl77efAk2hOIRJfAH4qhPgS4KRviWk4fg5kSSkrdfuc+uzkl0KIeH2fHVLKi0KIH+l21aFJuCsU44JSO1UowhBCfAJ4QEr5V6N83P8A3pFS/mQ0j6tQjCZqhqBQ6AghnkVrafrhUT7uSbS1/8dH87gKxWijZggKhUKhAFRQWaFQKBQ6yiEoFAqFAlAOQaFQKBQ6yiEoFAqFAlAOQaFQKBQ6yiEoFAqFAoD/D3SxmXOOV78gAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "doy_list = [date.timetuple().tm_yday for date in data['dates']]\n",
+ "data['DOY'] = doy_list\n",
+ "\n",
+ "plt.scatter(data['DOY'], data['season'], s=1);\n",
+ "plt.xlabel('day of year');\n",
+ "plt.ylabel('CO2 variation (ppm)');\n",
+ "plt.grid()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Modélisation du CO2"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "La modélisation de la concentration en CO2 atmosphérique repose sur deux composantes: la tendance long terme qui peut être modélisée par une fonction polynomiale; la saisonnalité annuelle qui peut être modélisée par une fonction période\n",
+ "\n",
+ "La fonction polynomial adoptée semble a priori d'odre 2:\n",
+ "$$ \n",
+ "y(t) = a.t^2 + b.t + c\n",
+ "$$\n",
+ "\n",
+ "La fonction période peut être ajustée par un fonction du type:\n",
+ "$$\n",
+ "\\alpha cos(\\frac{2\\pi t}{365}) + \\beta sin(\\frac{2\\pi t}{365})\n",
+ "$$\n",
+ "\n",
+ "Ainsi, la concentration simulée (notée CO2*) est égale à:\n",
+ "$$ \n",
+ "CO2^*(t) = a.t^2 + b.t + c + \\alpha cos(\\frac{2\\pi t}{365}) + \\beta sin(\\frac{2\\pi t}{365})\n",
+ "$$\n",
+ "\n",
+ "L'ajustement des paramètres (a, b, c, $\\alpha$ et $\\beta$) peut être effectué par la [méthode des moindres carrés](https://fr.wikipedia.org/wiki/M%C3%A9thode_des_moindres_carr%C3%A9s).\n",
+ "\n",
+ "La variable t doit être numérique pour cete modélisation, les dates sont converties en dates *proleptic Gregorian ordinal*."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def Simulation_co2(t,a,b,c,alpha,beta):\n",
+ " \"\"\"fonction de modélisation du CO2 en fonction du temps t et\n",
+ " des 5 paramètres\"\"\"\n",
+ " \n",
+ " co2sim = a*t**2 + b*t + c + \\\n",
+ " alpha * np.cos(2*np.pi*t/365) + beta*np.sin(2*np.pi*t/365)\n",
+ " return co2sim\n",
+ "\n",
+ "#conversion des dates en type numérique\n",
+ "date_num = [datetime.toordinal(date) for date in data['dates']]\n",
+ "data['date_num'] = date_num"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Les paramètres du modèle sont:\n",
+ "a : 9.750717467133496e-08\n",
+ "b : -0.1373113380069189\n",
+ "c : 48644.37669447582\n",
+ "alpha : -1.9895707307020227\n",
+ "beta : -2.0474089148616845\n"
+ ]
+ }
+ ],
+ "source": [
+ "import scipy.optimize as optimization\n",
+ "\n",
+ "xdata = np.array(data['date_num'])\n",
+ "ydata = np.array(data['CO2'])\n",
+ "\n",
+ "# Initial guess of the parameters\n",
+ "x0 = np.zeros(5)\n",
+ "\n",
+ "#least squares fit des paramètres du modèle\n",
+ "parameters = optimization.curve_fit(Simulation_co2, xdata, ydata, x0)[0]\n",
+ "print(\"Les paramètres du modèle sont:\" )\n",
+ "print('a :', parameters[0]),\n",
+ "print('b :', parameters[1])\n",
+ "print('c :', parameters[2])\n",
+ "print('alpha :', parameters[3])\n",
+ "print('beta :', parameters[4])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les composantes lente (Trend\\*) et saisonnière (Season\\*) du modèle sont les suivantes :\n",
+ "$$ \n",
+ "Trend^*(t) = 9,75.10^{-8} t^2 - -0.137 t + 48644.376 \n",
+ "$$\n",
+ "$$\n",
+ "Season^*(t) = -1.990 cos(\\frac{2\\pi t}{365}) -2.047 sin(\\frac{2\\pi t}{365})\n",
+ "$$"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Simulation du CO2 en fonction du temps d'après le modèle construit sur la base de la tendance long terme et de la fonction période."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4XMW5+PHv7Kr3XqzerS5ZsnHB2NjGNmB6qKE49ARySbkkITfwSwgkJJeSBEIocS5JwBAwcWwMGHds4y5Zvffee5d25/fHWa8MyMZgr2TJ83mefdgze3Z2jmT21ZyZeUdIKVEURVGUL9JNdQMURVGU85MKEIqiKMqEVIBQFEVRJqQChKIoijIhFSAURVGUCakAoSiKokzI4gFCCKEXQhwXQmwxHf+vEKJICJEjhNgohHA76dzHhBBlQohiIcQqS7dNURRFObXJ6EE8AhSedLwdSJBSJgElwGMAQog44BYgHlgNvCyE0E9C+xRFUZQJWDRACCECgSuBv54ok1Juk1KOmQ4PAYGm59cA70gph6WUlUAZMM+S7VMURVFOzcrC9f8B+AngfIrX7wb+ZXoegBYwTqgzlZ2Sl5eXDA0NPcsmKoqiXFgyMjLapJTeX3WexQKEEGIN0CKlzBBCLJ3g9f8BxoC3ThRNUM2X8oAIIe4H7gcIDg7m2LFj56zNiqIoFwIhRPWZnGfJW0yLgKuFEFXAO8AyIcSbAEKIu4A1wLfleDKoOiDopPcHAg1frFRK+ZqUMl1Kme7t/ZUBUFEURfmGLBYgpJSPSSkDpZShaIPPu6SUtwshVgM/Ba6WUg6c9JbNwC1CCFshRBgQBRyxVPsURVGU07P0GMREXgJsge1CCIBDUsoHpZT5Qoh3gQK0W08PSSkNU9A+RVEUhUkKEFLKPcAe0/PI05z3NPD02XzW6OgodXV1DA0NnU01ylmws7MjMDAQa2vrqW6KoihnYSp6EBZVV1eHs7MzoaGhmHooyiSSUtLe3k5dXR1hYWFT3RxFUc7CjEu1MTQ0hKenpwoOU0QIgaenp+rBKcoMMOMCBKCCwxRTP39FmRlmZIBQJserr75KZ2fnVDdDUS4IbX3Dk/6ZKkBYQFNTE7fccgsRERHExcVxxRVXUFJSAkB+fj7Lli0jOjqaqKgofv3rX3NiKchbb71FUlISSUlJLFy4kOzs7Km8jNN68skn8fDwwN3dfaqboigzXlP3ED/dkMP4srHJoQLEOSal5LrrrmPp0qWUl5dTUFDAb37zG5qbmxkcHOTqq6/mZz/7GSUlJWRnZ3PgwAFefvllAMLCwvj000/Jycnh8ccf5/7775/iq/m8sbEx8/MnnniCG2+8cQpboygXjqYebUwvr74HgK6BEQZGxk73lnNCBYhzbPfu3VhbW/Pggw+ay1JSUli8eDHr169n0aJFrFy5EgAHBwdeeuklnnnmGQAWLlxo/ot8/vz51NXVTfgZTk5O/PSnPyUtLY0VK1Zw5MgRli5dSnh4OJs3bwbAYDDw6KOPMnfuXJKSknj11VcBaGxs5JJLLiElJYWEhAT27dtnrvOEDRs2sHbtWgDWrl3Lj370Iy699FJ++tOf0t/fz913383cuXNJTU1l06ZN5/CnpyjKRFp7tdtLJ4LCxuP1HK2y/O1dFSDOsby8PNLS0iZ8LT8//0uvRURE0NfXR09Pz+fK161bx+WXXz5hPf39/SxdupSMjAycnZ35xS9+wfbt29m4cSNPPPGE+f2urq4cPXqUo0eP8vrrr1NZWcn69etZtWoVWVlZZGdnk5KS8pXXVFJSwo4dO3juued4+umnWbZsGUePHmX37t08+uij9Pf3n8mPRlGUb6hncBSAtr4RAPaXtuFsZ/lVCjNuHcQX3fPG0XNe57q1c7/R+6SUp5zhc3L57t27WbduHfv375/wXBsbG1avXg1AYmIitra2WFtbk5iYSFVVFQDbtm0jJyeHDRs2ANDd3U1paSlz587l7rvvZnR0lGuvvfaMAsSNN96IXq8317t582aeffZZQJtWXFNTQ2xs7Jn9EBRF+doa31jP5f0d9Mc/hMEoScvcTVLUKAQvtOjnzvgA8U2/zL+p+Ph485fyRK/t3bv3c2UVFRU4OTnh7KxlRM/JyeHee+/l448/xtPTc8J6rK2tzQFFp9Nha2trfn5inEBKyYsvvsiqVV/emG/v3r18+OGH3HHHHTz66KPceeednwtQX1zD4OjoaH4upeT9998nJibmtD8HRVHOjXveOMoz7/wB77ZG/nH7XXQPjrLwyHasFoVY/LPVLaZzbNmyZQwPD/P666+by44ePcqnn37Kt7/9bfbv38+OHTsAGBwc5L/+67/4yU9+AkBNTQ3XX389//znP4mOjj6rdqxatYq//OUvjI5qXdOSkhL6+/uprq7Gx8eH++67j3vuuYfMzEwAfH19KSwsxGg0snHjxtPW++KLL5pnUxw/fvys2qkoyueNGYzc88ZROvq120k2w0O4dbXTGj4bh4I8OvqH8W1vhEnIVKACxDkmhGDjxo1s376diIgI4uPj+eUvf8msWbOwt7dn06ZNPPXUU8TExJCYmMjcuXN5+OGHAW3qaHt7O9/73vdISUkhPT39G7fj3nvvJS4ujjlz5pCQkMADDzzA2NgYe/bsISUlhdTUVN5//30eeeQRAJ555hnWrFnDsmXL8Pf3P2W9jz/+OKOjoyQlJZGQkMDjjz/+jduoKMqXrdtfCUBHvzYw7d1aT6v3LDpik3AtzqO9bwT3lvpJCRBisufVnkvp6enyixsGFRYWqvvh5wH1e1CUb+bx9YcZaG5n1M+fP92aykvf/z0X7/sAuzVX0Lz/CP1PP8PKy+Zg1d8H3zBrgRAiQ0r5lX+Bqh6EoijKFBkzGLn370fpGRo1l61Z9zue+9GVxPo4AODTUod7cjyzli4gqKaEpsw8hoNCvnFw+DpUgFAURZkiH+U1IaW2UvqE8JxDGIXAu7yIvuExfJtrISoSl/npBDZUYszJxTh79qS0TwUIRVGUKXJiAdyJPEtycBC3rnZylqzBNTeTfx6sxqe5lsD0RHByYsDHj7SM3TBJt29VgFAURZkEhY09bMqq/1zZgbI2AFp6tADRkVdMu6cvLksW4Vacz7GqDnyba9HP1qaV98TEk3p8L1ZzUielzSpAKIqiTIJdRS1szmqg1zTeYDBKokqOc8cbvzX3IN56cyctvsH4XDIfn4oiEj1scO3vgqAgAHquvQGj0GG/euWktFkFCOWM5Ofn88EHH0x1MxRl2nJz0LbgffeYlmNt1GBkyZ7/sPTTjegKCwDwba6l2TcI+7RU/GrLCWisYjgkHEyZDGY/eCfVTV3g4jIpbVYBwgKmIt33E088YV6Ad7aWLl3KydOHa2pqePrpp1myZMk5qV9RLkT+rnYAuJsCxajBiG9zDa3es3DJzmBo1IBvcw2LVl+E3tWFXk8fnD7+gLGTshZY6XWE+ThPWptVgDjHpird95NPPsmKFSssck3BwcGsX78el0n6q0VRZqKRMYlOJ8yJ96pa+/FrrGbs5lvxKs5jc3YDvs212MdpM5S6ouJIP/Ax+ri4KWuzChDnmKXTfRsMBtauXUtCQgKJiYm88MILgJaW+0QOqNDQUH7+85+zYMEC0tPTyczMZNWqVURERPDKK68AsGfPHtasWWOu9+GHH+aNN9740udt27aNBQsWMGfOHG688Ub6+vrOwU9JUS48/zlQSnhxFu2mFBo79mRj0Ovxv/FqQmuKGRo14NNcizCl2elOSMa7tQHbS6eu564CxDlm6XTfWVlZ1NfXk5eXR25uLt/5zncm/KygoCAOHjzI4sWLzcHj0KFD5nTgZ6KtrY2nnnqKHTt2kJmZSXp6Os8///wZv19RlHGXbXubx35zHzY11QAEtNTC7NmQnMys2jIM3b249nVBcDAA7bet5V+3PILVZZa5M3AmZnw2V4usNvyG6UnORbrv8PBwKioq+P73v8+VV15p7o180dVXXw1o6cD7+vpwdnbG2dkZOzs7urq6zqi9hw4doqCggEWLFgEwMjLCggULzui9iqKMq2kfIKyyAIOtHUGZnwErsS4tRh8bC66uDLp74bLzE/qDQnG10r6WVy6ajVz4wqSsmD6Vmd+DkPLcP04jPj6ejIyMU772xdxRp0r3vWnTpgnTfbu7u5Odnc3SpUv585//zL333jvhZ52cAvzE8xPHY2NjWFlZYTQazeVfTPGt/egkl112GVlZWWRlZVFQUMC6detOe/2KomgOV7QzOGIAIK+hG9+mGtquug7vimLKW/twrCzHNl5b8NYVE0/Ejs0Mhkd9ro5T/UE5WWZ+gJhklk733dbWhtFo5IYbbuDXv/61OV331xUSEkJBQQHDw8N0d3ezc+fOL50zf/58PvvsM8rKygAYGBgwz8ZSFOXU2vuGeX1PGcdrtW1BR0dG8W5tYOya6/CuLKaqTRug1sdpAWIgLpGUrH3o0iZnAdyZUgHiHLN0uu/6+nqWLl1KSkoKa9eu5be//e03amdQUBA33XQTSUlJfPvb3yY19cv/ML29vXnjjTe49dZbSUpKYv78+RQVFX2jz1OUC0nxho/46z3zkU1NAPQWl9Hr4o7fyqUE1pZR2NBNSHstmKawNl2qbexlf+MNU9bmCUkpp+0jLS1NflFBQcGXypTJp34PyoWs8bbvSAny2C9+L6WU8vkf/VHmxc2TUkrZ4+Urf/W79+SYjY2UIyNSSimLm3rkPesOSaPROCntA47JM/iOVT0IRVGUs3S0quNzGVnti/LJnrcc/XHtFrBfYzXEmKavRseTuv9jhsMiwFpbNBfh7cT3VkRP+ZjDF6kAoSiKcpZe2VPO/2zMNR+LsjIy51+GR3EeUkp8m2vwS08CYDA+iUX7t2BISDKfr9cJ5gS7T3q7v4rFA4QQQi+EOC6E2GI69hBCbBdClJr+637SuY8JIcqEEMVCiFXf9DPlNN4lbyZQP3/lQlJTUsPdr/8S+4FeraCnB9uhAY7NnodvTRnt3QP4N9XgmaYFhJ6LFuLR2YK45OIpbPWZmYwexCNA4UnHPwN2SimjgJ2mY4QQccAtQDywGnhZCKH/uh9mZ2dHe3u7+pKaIlJK2tvbsbOzm+qmKMqkqHvt7yw68BErCj/TCsrKaPENxNbDnS43L7J2HsGnqRpMMxP9rruCv93zBHZ3T7zI9Xxi0YVyQohA4ErgaeBHpuJrgKWm538H9gA/NZW/I6UcBiqFEGXAPODg1/nMwMBA6urqaG1tPev2K9+MnZ0dgYGBU90MRbGIg+Xt2NvoSQlyA2AgO59mnyBmZR8BoCevkBafIJ64Ko76P8xmYPdenPq6zSukAzwcufXlJ7Cy+dp//046S6+k/gPwE+Dk9IO+UspGAClloxDCx1QeABw66bw6U9nnCCHuB+4HLYncF1lbWxMWFnZOGq8oivJFf91XgYejjTlA+DZVc2DRFVx0eBsGo2THpv3Y+QaR5mDD8bAY5n72MX0R0djqxwOC/TQIDmDBW0xCiDVAi5Ry4mXFE7xlgrIv3SeSUr4mpUyXUqZ7e3ufVRsVRVG+FqOReYc+wdt6/KspqKUW59tuxKutkb72bnxb6gicmwhAjm8E/lmH6YpLOlWN5zVLjkEsAq4WQlQB7wDLhBBvAs1CCH8A039bTOfXAUEnvT8QaLBg+xRFUb4WuWsXD7z6OD6b3tMKBgdx6mzFPSWR1uAIhjIy8WmqwXuOFiAK4uaRH38RFVfdPIWt/uYsFiCklI9JKQOllKFog8+7pJS3A5uBu0yn3QVsMj3fDNwihLAVQoQBUcARS7VPURTl66p6bwttnv7EFh7DYJRUHc6h1dOfzhFJW3Q8hmMZ+DdW4z03GYDbl0bz/H+/yNiciTM8n++mYh3EM8BlQohS4DLTMVLKfOBdoADYCjwkpTRMQfsURVEmVlrK4YtWElpbQt/wGB9t2EOTXwhh3o70xCZhtWM7Qhqx8vMFwMlWG+ZdEPHlxJvTwaQECCnlHinlGtPzdinlcilllOm/HSed97SUMkJKGSOl/Hgy2qYoinIqzz+3gc2ZteZjfXkZ2amLcWtrpLGhjbShFnznJhHh7cRIcgo+n26nNijKnKJ7ZEzLmOxqbz0l7T9baiW1oijKBGRpKT/67xtxffsfpgKJT0sdHaGRNPmFUvPpERyqys0J92znaLeVupePr/GdF+bB09clnncpNM6UChCKoigTGNy6jRFrW4IOfwpAYWYJI9a2/GbtYmRyEn6VRThXleOUFA9AgK87D728m7q149sNCyHwc52+i0ZVgFAURZlISQkHLl6DR14WUkq6cgpo9g3CxkrHYFwidnk5+NVX4Jym9RxsrXQM2Tvi4Tx9A8IXqQChKIoC7Dhcyl/3lpuP+/KKyIufh/XIMD1VddhUljMaFgHAaGISvru2MmDvhPDwAMZ3Bp2uA9ITUQFCURSlr48V86OxWfdXc5FTTSUtfsG0hM9m8EgGLcdyKHPzB0CfloZrTwcl0Snm893sbUgKdMPOenqskj4Tlk61oSiKct5r3bINbyDt2C6twGDAqraGFu8AOmPiscnMJLyzHqfr1wLg4uPB7372CtGL55jrsLfR88iKqC9XPo2pHoSiKBecLTkNPLet2Hw8lFegrW+oKuR4VTsVGQX0OrsxamPHQHwS+uwsnKsrcDYNSLs6WFMSMwe38JCpuoRJoQKEoigXnI0ZdRQ09JiPHaorKItMYsjOAVFVRW9uIS2+QTy8LBJSU3E8fgzP9kacE2YD4GxaAJcY6Dol7Z8sKkAoinJhkZIXfnA5K7a9bS7qys6n2S+Yvph4bPNzoaSEZt8gwr2dsImLxbmlkS7fQISDA6BNX123di5eTrZTdRWTQo1BKIpyYamvx6Wng4sOb2PMYESvE7jVV9PsG0Tv7Djs83KpL6uja1YIrvbWjOl0/PW+X2IbHsodU932SaYChKIoF5Tq/RkYQ2MJqCuns3uA2tYeEnq7GPAPYJAEPD76N1FdvRjvvAmAEE9H1i28gjkh59+e0ZambjEpijKjDY4YyK3rNh/v37KfqrBYenxn0X88B1FWRpuXPy/ePpfR+ERcigtwrynHLiUBAD8XbeHb/HCPKWn/VFI9CEVRZrSy9MWURSaR+O9XAPBrrKbJL5RA/RhkZuLi4sywaQGcfWw0To11GIUOqyhtZ0q9TvDXu9KnbT6ls6EChKIoM1dnJ4m5B/FrqmZo9M/YWevxb6oiO+ViBr1sccrJ4figNV5egYQBXq4ObLn5YUZsbLnezsZczYUYHEDdYlIUZSYrLqYqZDbOvV30N7UCph6EfyjG5GQcCnLxb6xEHxcLgIejDRtX30n+TXdPZavPGypAKIoyYxQ09PDrLQXm47GCQpr8Q6gPCKf5QAaypwfH/h5+cPdyrFJTcSspILi5hrjlFwHgYKOlyegZHJ2S9p9v1C0mRVFmDJc7b2OBcKT/srdwtLWi7Xgezb7BDNvaU//hp0h7O5z9gpnlao8hNBCMRgLL8xlM1XIqCSF48toEHGZQPqWzoXoQiqLMDH19BO78kKW73+e1PWUA2JSVYh0fi+PcOVzUU4d1aQkts8Kw0uvwcLRh+/KbOLDwcuw93czVBLjZ4+5oc6pPuaCoHoSiKNNS3/AYo2PG8S/zoiJqgqNx7Otm9lAbAAO5BeRfcit+oc64fPQ+vT7eWCdo4w0ONnr+c/2D+LnasXCqLuI8p3oQiqJMSz94O5P/flfbzAeA0lKafYOoCY7Bp7QAOTaGT0sdw+ERyMRE3CpK6D90lFIfbfrqiZlJ1nr1NXgqqgehKMq09J3Xf4VrdztVV+0kzMuR4n2ZNPsGYdRZEZidzUBZJcNOrnx7eTxDowY6XDxJzD2I/euvmOt4+fY56C7QKaxnQoVORVGmBYNRfu54TuanJOQfprdDWyXdkZVPi28wtUFR6HJzGMgroCswjDAvR6z1gsPzV9EYEI6HKSMrgK2VXvUgTkP9ZBRFOe91D4xy/z+Ojd9O6ulBj5HqyARGDh4GwKe5lmbfINbcsZLQhnJGcgvoCdVWSLvYW7Ppugd4/Mn1uDtYT9VlTDsqQCiKct77OKsW/dgYQ6NGraC4mBa/EJqjE+ncfwgA3+YaHOJjsI+Jxr63G/3+fYzFa/mUfJztsLfRI3W6C3ZV9DehAoSiKOe91N8/zjM/uZbKtn4ACnYfod43GK9L5hNUVcRAUwt6g4Hv3bQQR3sb6oMi8dv1MXZz06a45dObChCKopz3gvZtx6Ozhf6iUgAGcvJp8gtGl5aGZ2kBjUdy6AoKxdpKj4ONnoPzLmPQzhHvSxeZ69DrVM/h61KzmBRFOb91d2M10E9B+hL0WcdhWRq+TdUYl1+BTVICro111B04DOFRgDZ9ddeKm9m97Fu87uZgruYHK6IZGjVM1VVMS6oHoSjKeaWvrZPHnnmfroERAGRJCU0+gXRExmGfnwOAKCpmLCoaJxcHmgNC8dm6mbGoGHMdt84LxsnB9nPjDWFejsT6u0zuxUxzKkAoinJeOXjb9/jtY9+irLYdgNJ9mTT5BuM8Px3r/FyGh0fwaamjMzAMRxsrKoNiCMg+gsvCueY6lsf68MLNKVN1CTOGxQKEEMJOCHFECJEthMgXQvzKVJ4ihDgkhMgSQhwTQsw76T2PCSHKhBDFQohVlmqboijnr4jyXADGDmnTVwv3ZtDiG0SOZwjupYV8uu0YfU6uzE8IQq8T5CYupN/BGceVy811CCHUbKVzwJI9iGFgmZQyGUgBVgsh5gO/B34lpUwBnjAdI4SIA24B4oHVwMtCCJVSUVFmsJExI/f949h4wdAQgfXl7L/4KnTHjgIwq7WW5OXzWHjZXBwG+jB+doDu0Eg8nWwBKFu8kv/6806cPVyn4hJmNIsFCKnpMx1amx7S9DhxI9AVaDA9vwZ4R0o5LKWsBMqAeSiKMmN9vCuHOYe3c7Bcu51kyM6h3T8E22VLcCzQehI+zbW4JccR4etCU3Akcbs/QCQlmuuYE+IOXLi7vlmSRccghBB6IUQW0AJsl1IeBn4A/K8QohZ4FnjMdHoAUHvS2+tMZYqizFCz33yF7778c4qO5APQkVNAm38wESsW4VlaQF1HP96N1TiZMrC2RsQSfGQv/QnJ5jrumB/CurVzJ6xfOTsWDRBSSoPpVlIgME8IkQB8F/ihlDII+CGwznT6ROFffrFACHG/aeziWGtrq6WarijKJBjOymVMb4XD4QMAyIoK+gNDcE1PwaO5jua8UnRWVghvbwDKV19Pu4cvHt+6ZiqbfcGYlFlMUsouYA/a2MJdwL9NL73H+G2kOiDopLcFMn776eS6XpNSpksp071N/2gURZke8uq7GR4bX4vg31TFoQWXk9isbfAjyysYCQ5Fb29H26xQ5IYN9IaEm8/f4RLKT577AL8Q/0lv+4XIkrOYvIUQbqbn9sAKoAjtS3+J6bRlQKnp+WbgFiGErRAiDIgCjliqfYqiTK6OrHw6bruLdw9WagWDg7h2tZO3YAUuhXmA1oOwjYkEoD0yloCPNjJkWgAHWtI9UOMNk8WSK6n9gb+bZiLpgHellFuEEF3AH4UQVsAQcD+AlDJfCPEuUACMAQ9JKdWyR0WZIUbe+AeX7N3Esx9cBosjobSUNp8AFt20Es+/PA5SYldTReAcLcFeb0w8iTv+Q/ldd5vreP6mZOSXbjwrlmKxACGlzAFSJyjfD0yYQUtK+TTwtKXapCjK1LEpK6HD3YeIMm12Uta2Qxj8QgiZHcaIzorh7HwcujpwStB6DK2rryZ/zw7E1dea69DWN0xJ8y9IZ3SLSQjhLoSIF0KECyHU6mtFUb7aF/7U1xUXcXj+KoJrSgAYyM2j0T8EN3traoOi6PvHejpnBWNlq+0xbR0SxPP//SLBs0MmvemK5pRf9kIIVyHEz4UQucAh4FXgXaBaCPGeEOLSyWqkoijTzMGDoNNBrTZzXY6N4VBdSePl1xBcXYTRKNEXF+ORloyVXkd3dBy6d96m2mc8GJzYQc7JVuUUnSqn6w1sQFuXsFhKGSOlvNg0eygIeAa4Rghxz6S0UlGU6eXDDwHIfunvAIyUVdDr4k7Q0gW49HbSXt+Cf2MV0UvSAeiITWJWYxXNCXPMVYR4OmBvo5IpTKVThmYp5WWneS0DyLBIixRFmfYMhUWUxKbT95m221vL0Wy6/ENZEutHS0g0LXsOEd9Ug21aEgCNS1bycd7deD04PiCdFOjGS7fNmbB+ZXKc6RhEkhDiaiHE9Scelm6YoijThJTw8cdgNJqLDIWFHEtfRkBdOQCZnxygyT8UGysdnVGxtL35Dn1OruCiZd0x2Niy4boHcZrlNyWXoEzsKwOEEOJvwN+AG4CrTI81Fm6XoijTxdatcMUVdP3rfe3YYEBfUUHF4lX4N1aCwYB7TQXuc7T8SQOz41n02UfUBI/v33CsqgMANwfrSW++cmpn0oOYbxp7uEtK+R3T4+6vfpuiKBeEjAyMQkfGug3acU0NQ67uxCRH0u3qxVhRMcEt1UQu0fIlDc6bj2N/D1bLx+e5+LvZAeDtbDvpzVdO7UymBxwUQsRJKQss3hpFUaYdY1ER+y652ryPQ39OPtVegdhY6WgKjcH2SAbedZVYJ2kL4GRSMs//+E+s/O7N5jqeujaRMYMRK72aRX8+OZPfxt/RgkSxECJHCJErhMixdMMURTkPDQ7CbbdBebm5aCy/kKPzVuDfUAEjI+zetJcmvxCuTQmgPWI2ox9swWhlhY1pfMHWWkd+wnyiQjw/V7UKDuefM+lB/A24A8gFjF9xrqIoM5j84APE22/T4hWAz5/+F6TEUFRMzT0xtHkH4J+TS0RHPZn+Ieh0gq6YeLx+9RCVcxbhbFoCvSDck3mhHiogTANn8huqkVJullJWSimrTzws3jJFUabUmMHIuv2VyJNWRI8cPkJJVDJtOz8FQDY0MGptQ2JSOPXhcQwdPopLTQUpyy8CoH3eIgA+S1xsrkMIoYLDNHEmv6UiIcR6IcStapqrolw42vtHKDmQze8+KjSX9ecVcWzuCoJqSkFKurPyaPIL5ookf9piEjAey8ClshSZm7sfAAAgAElEQVR30/qG450GHv7zTqpuuH2qLkM5C2cSIOzR9pdeiZrmqigXjN6KGn730+uY9e4/xwtLS6hPTAedYLCympG8AjqCwglws6cnNhGbHZ+gGxnBMzYC0NJkDDo4U9k+MEVXoZyNrxyDkFJ+ZzIaoijK+UXs3IlRCJKz99HYPYiXgzXOdTXMW3kRLe/E4Hz0OOX7M6n1CmI+MBSfiE1dLdVx6URZa18tCYGu7Clq4Y4FKuHedHQmC+XChRAfCCFahRAtQohNpg19FEWZQQ6UtfHgP8cz6OhKSii94kZCKwupbO2j8HA+fY4u6Jyd6I6KZTQrG6eqMlxS4gFw8HQj/8qbOXLD+N+Ut80LBiDO32VyL0Y5J87kFtN6tCyu/sAstG1C37FkoxRFmWRSMvjg9wgs1dYyGI2StuO5ZEenopNGXDvbcKgup9kvmLmhHgzHJiBycgior2DhtdqCN39XO57/1o+pnLfUXK1eJ1i3di4+LnZTcVXKWTqTACGklP+UUo6ZHm8Cak8nRZlBhrNzWb7zPVZufYsxg5GhMQO+TTVUeQTSHR2PyM1muLAYq5ho7Kz1yKREXA/tx35oAJfZ2hah/q5aEPBSq6FnjDMJELuFED8TQoQKIUKEED8BPhRCeAghPCzdQEVRLG/oaAZVobOJLMuhtW+Y9p4hfJtrCZyXRFdULLZ5uTQezmYsUtvtzS45EceOVppjkzixxZu/qz0AoZ4OU3Ydyrl1JgvlTqyHf+AL5Xej9STCz2mLFEWxvNJS8PMDZ2cAOrPyyU1cyLKd77Fzfx6BTtZ4Ojlx28okXt8QRPL+fQQO9+F3kfZ14OnhzG8fe43IlGhCTVU6mjb2cbFXCfdmijOZxaQGpBVlJhkZgehoCtfcTOwH2nBic0YuTUmL6IuNJ6CmlM4RyUh4JA5A/OWLidz6BnJgEOcULSOrp5MtZdEpJM4O+FzVr96RphbBzSBfGSCEEHbA94CL0XoM+4BXpJRDFm6boiiWkJ3NqJU1Xof2motmtdSy3S+Y0YRkrHNy0FvZQaQ2tuCckohHbSVjVtboI7QbBo6mnd7GDJ8fjlTBYWY5k9/mP4B44EXgJSAO+Odp36EoynljcMRAdXv/eEFJCVmpl+Dc1w2dnSAl3o3VRC1KxZCYiEtxPvYVZVjHxwHg5upA5pwlFFx6lbbPNFq6jDsXhrI6QW3wM5OdyRhEjJQy+aTj3UKIbEs1SFGUc6vqW7eT5eRP0JvPodMJZHExjf6huHe1EXD4GMbZszFY2+IT6o/Up+DxxxcYdfPB7v6bALC10vHn7/8v6aEeJJ1U75Jo76m5IGXSnEmAOC6EmC+lPAQghLgI+MyyzVIU5ZwwGon94B0Cndyo73qKIA8HRguL6Q5MpHOsH7djmbR1DeEcHMalMT7Uutrg2lSHQ1c7+gRtAZxep81S0nZ9i5jCi1Em25ncYroIOCCEqBJCVAEHgSVqXwhFOf+MGoyUtfSZj/tLyul088Z6bITu+mYAmo7lUO0ZSP/sBIxZ2RiLihkM1b74bR3t6HbzxLG3C8I/P0HxZ5fPnrwLUc4LZ9KDWG3xViiKck688D+vYdBb8bOn7kEIwZZ/7SQhIBwv3RijGZmQEIpPUw1t/sEYHTyx+fhf9I7qsY+MBsDbyZbfPPBr5vvasdy0vsHD0Yb7Lwknytd5Ki9NmQKnDBBCCCcpZd/p9n4QQjhZplmKonwTj7zwQwx6PZ0/vxMPRxt86ytpDQjF3sMBfU42smE+I9a2fGfNHHrbu3CqKMXPxgG+dTWgDT6Pzr2IQFMOpRNlF4V7nuojlRnsdLeYNgkhnhNCXCKEcDxRaEred48Q4hNU70JRzh8DA+iMBgDayrS/63TFxeji4zDEJ2BfmE/Jvkya/YJJDHDF09eDXndvQrIPY5U6x1zNL6+OJ8ZP9RaU0wQIKeVyYCfaCup8IUS3EKIdeBPwA+6SUm6YnGYqivJFxSV17N2fZz7uzc6n2TeYruh4BjKyAAhtrSFicTojCYnYF+ZTtPswjf6h6HQCNwdrMhdfQXFMKvZhQVN1Gcp57LRjEFLKj4CPJqktiqJ8DeLmm0mqLEZ2tiKEoGjvMYR/CF6RwRhzc+kfuhaP2gpsL0ols6qflY1VxLZUIhZovQVbKz3rr7gHrriHV+3OZDhSudBYbNmjEMJOCHFECJEthMgXQvzqpNe+L4QoNpX//qTyx4QQZabXVlmqbYoy7RkMhBVk4NLTwVB1LQDGgkKa/EIgIQH7ogI6q+rRIbH29+PStFA6PPwI2vkRxGkL4JxNQcHP1U6tgFYmZMl/FcPAMtMiuxRgtRBivhDiUuAaIElKGQ88CyCEiANuQVu1vRp4WQiht2D7FGXaGB4z8I+DVeMFtbX0OrpSGDePhk8PaWWmBXDGhETcy4voz86jKzgShMDRRk9lZAL2vV04XXoJANamoDA8Zpzci1GmDYsFCKk5MSHb2vSQwHeBZ6SUw6bzWkznXAO8I6UcllJWAmXAPEu1T1HOFwUNPUj5+ZxGT2zKo6Fr0Hzc/f+eYtEdV9EzNKoVlJTQ7BfMWEIixoxMAPwaq0lcPg99chKe1eUMZx5nODoG0GYiHbjvUZ557FXc/T4/I0mq3V2UU7Bov1IIoRdCZAEtwHYp5WEgGlgshDgshPhUCDHXdHoAUHvS2+tMZV+s834hxDEhxLHW1lZLNl9RJsVz24pp7hk2H2/IqKO+c5Ciph5z2dC7G4goz6M1twSA7uw8mn2DkMnJ2BbmMzIyhl9TNbOXpOPg6U63uzdeH29Gl5pirqPG2oXS6FTsrMc75kEeDiyP9ZmEq1Smo1MGCCFEohDikBCiVgjxmhDC/aTXjpxJ5VJKg5QyBQgE5gkhEtAGxt2B+cCjwLtCCAGIiaqYoM7XpJTpUsp0b2+VC0aZ3mo7BgBtBfQJn5Zof/iYi6TEs7GGsohEBj87CED90Vya/YLRJSXiXFpI4dECBhyccfPzwtFWT3loLLNyj2F90XgnfMxoNKfNOOGXV8dzRaK/Ba9Qmc5ON3XhL8AvgUPAvcB+IcTVUspytNtFZ0xK2SWE2IM2tlAH/FtqfeojQggj4GUqP3muXSDQ8HU+R1Gmm9Y+refQPzJmLru8rQjbTRsZSfuj6aRWjEKQl7iAhBxt+qqhqJimZd8iNSEep8Y65PEs+kMjcAfsrfXsWn4jQkriLllorvcXV8ad2PxNUc7I6W4xOUkpt0opu6SUzwIPA1uFEPM5gz2phRDeQgg303N7YAVQBPwHWGYqjwZsgDZgM3CLEMJWCBEGRAFn1FNRlOnqz7vKAKjtGB9viH7zNZbvfA9RWgrAaF4+Tf6hdEXHMpRxHACf5loSlqbj5u5Em28Qbh+8jyEhAdDGG8qiknn1u0/jaDf+t9wsN3vztqCKciZOFyCEEML1xIGUcjdwA9peECFnULc/WmrwHOAo2hjEFuBvQLgQIg94B23BnZRS5gPvAgXAVuAhKaXhm1yUopyv+obHJixv7NYChNEocakupzMmAcdM7e+jgZx8WmaFErFsIQE1pRiGhvHobGHJqnm4OdhQHRBB6LbNkJLypXqF6jIoZ+F0AeJ3QOzJBVLKHGA58O+vqlhKmSOlTJVSJkkpE6SUT5rKR6SUt5vK5kgpd530nqellBFSyhgp5cff7JIU5fw0ajDyyNvHKWgYH3z2aarhqk1/pdkUIA4UNuDe3kzP6jU4FRcAkPHJQep9Q4iYl4D9yCC9e/bR6eWPlb0dNlY6MtMuBcD2qivN9S6M9OL7y6Mm8eqUmeh0qTbWn7QHhNOJfExSyhop5X2T1UBFmSny6rsBqOnQdnczGCUrt73Ntf95DYdCLRhQXk67py/6uem4lRUC4F1fSaN/CA62VjQERWF85190h0aa681IX8ZDL+/CI3w8wd49F4eREuQ2SVemzFSnneYqhPiuEKIGqAZqhRDVQojvTU7TFGX6Gho18LP3cxg4afD5JdN4Q1W7NnMpv6GbkOoiDLNn45OXAUDWjsM0+YVglZqMd2UJUkr8G6u4/4ErcbK1oiowEpf33mYgMsZcr621jiF7J2ys1Gpo5dw63TTXXwBXAUullJ5SSg/gUuBy02uKopxCU/cQrb3DvLC9xFzm2NfNsh3vcrSiHQA7Kx2+TTVw0834lhcgpSS4tQ7/eck4hAXD2Bid+cW4dHdgHx2JlV5HXUwyVgP9DCxeYq43yN1h0q9PuTCcbprrHUCylHLoRIGUskIIcROQDTxl6cYpynTVPaiteG7sHjIfL9nzb254/y/UhMQA89i1r4C7dDr0q1YS+s936Rkaw6u+Eo/brkRna01pUBTGV/+OZ0AIvnptcVvZsiv4Py8v4pYtM3/WA0si6D/F4LeinI3T9klPDg4nlQ0CKnmLopzkd1uL2F3UYj7uGhxFCBgc0SbitfcNE16RjyE4mOji4zR1D9F5PJeOAC25nl9DFcX1XcxqrsY6Lha9TtAVORvfDzbQExNnrtfbzYn9YXPwdLY1l3k42hDkoXoRyrl3ugBRJ4RY/sVCIcQyoNFyTVKU6UVKSUlTL28eGt98sberl/trDyGMBoxGSffgKMHt9Yx960aCa4pp6xvGr6kGt+R4cHFhwN2T/H2Z+DRWw2xt7+eh1DQ8q8uojUk113tixXWopyOKYmmnu8X0X2i7yu0HMtAWx80FFqEl1lMUBeg13d7xchr/q77u/95hzSv/w8EfPE//SBoVjd0kNdWhv/UWwt9+j8MdA/g21+C4MB6A1tBorHftxGgETClk3glMZ+CKOwm47y5zvQWNvQAqPbcyKU4ZIKSU+abcSbehpeAWwF7ggYluPSnKheqfB7Wew8Codjvp2U+KiW6oQOr1JBQdo6FriJ7iMgze3uhTUnDpaKGssok1vU0QvQaAEp8w5h/cCkmJnMiHcUlyCO/bPMyrseMZaB5ZHoVRpV9VJsnpZjFFAmlSyr9JKX8spfyRlHIdMFcIETF5TVSU89vxynYu3rsZ4+Agw2MGCht7mNVQibjtNqJbq+gbHsVQWATRMWBlRW9oBCPZeXjVVUJ0NADRqxcTWZ4Lc+ea67U1TVs9ubeQGOhKslrfoEyS0/VT/wD0TlA+aHpNUS5I97xxlBd3anmSxgxG4vMO8Z3/e4olx3fRNTBKrL8Lsd0NcNNNeFaV0tA1hGN1Bdax2tqFvug4/ErzcKyvgRitbGzlao6nXoLNffeaP+eq5Fn8/ltJk3+BimJyugARakqt8TlSymNAqMVapCjTQK5pVXRb3whBtaUYHRyJLTxG58AIxXUd2NVUwrJlWA8Ps+ezQvyaahCmweeO8BjSju1iNDAQ7OwAiAjxpuvt97BJGJ+xZGOlw/OkcQ1FmWynCxB2p3lNpYRULkjN3YMs/vQ/eI9pq6E7B0YIbKlBd8/dBJbm0do7jHdLPSIgABwc6I+Jxbe6hLieRvPtpOrASGILj2GVnm6u18ZKx6UxauMe5fxyugBxVAjxpZxLQoh70GY1KcqMt25/JZ+VtZmPizdtZ+0bvyF963sAdPSPEN5WC9dfj0NTHet3FRLTWYsuVstzORIXT1BtGe5VJRCvzVi67MEbGU6bi9W990z+BSnK13C6aa4/ADYKIb7NeEBIR9u/4TpLN0xRzgcHyto4UNbGokgvAGZlH6HDL4jIwmP0DY/R3jfM3JoKSExkJGo2QbWlhLfWQJzpVlFiIrPXb0QMD0OAtoOug5MDHFNbnSjnv9Nlc22WUi4EfgVUmR6/klIukFI2TU7zFGXybMqq563D44vdWroHufKDv+HdWm8uazyaw4H05QTVlbH+cDUDNfVgbQ2enhhSUgmuLsa2tARMPQibeXNJzdqLPjUFtZ2bMt185WobKeVuKeWLpseurzpfUaarzVkN7CocT5dx5JODXP/vV1j9yXqGTGscfJtqaJ53MdYjw8jmFmoOZGI0jS0YkpMJri4mrLXaHCDcLlmIMTYO3Z13Tv4FKcpZOt0tJkW5YPQMjX6pLLq9lgF3L6LLc+gaGKW8tZOE5lpWX7+UkU1xBNSXY99Yha1p5pHHxRcR/seX8OxogMRErRIh0BXkT+KVKMq5o9brKxekLTkNrD9cYz5u6h7i1reeJaYoA4NRW6lsW1ZCxbIr8W6spqu9m67GFmyHB/GODmU0LgGZk0tEex3C1FsQyckE1pejmzULHFWuJGX6UwFCuSBtzmpgZ2Gz+bi3oJgVO97lqk/epGtgBIDWo9mUzoqgNzCEvqxcZEkpQ2ER2Fjr0Scl4lpWRGBjlTm5Hg4O2r7Qt98++RekKBagAoRyQfJwtAEwjy2M5eXTFR1PSEU+DZ2DDI0a8Kotp8A1gL7oOPR5uTQcyWEgNBwA+7QUAuvL8a0s0oLCCZmZ8MtfTvblKIpFqAChzHhSSnMgOHF8/QuP8a0t62jtHQagOzOXvvkLETo9vZXVrNtXgV9TDQ8+cCVDsfHYF+YT3FKD5xxtbME+NZnwinysRoZh1qzxD1MzlZQZRAUIZcbbmtfEQ29lIk1ZUHtKK5j32UdcvHcTLaYAYVdRRltgOL3RsYicHCqPFzNka49noC+j8dp4g09dOdYJCQAINzdyki+m+5bbVVBQZiw1i0mZ8WqKq7EbHKStbwRvZ1t6MnLoSpxHQGkuva2djAW64tdYRcCSh+mor8KqIJ9ZDgE0zQrDDfBamI7DIyUMuHqgix/PlZR0fK8KDsqMpgKEMqMMjRoYMRhxsbM2l3373itZGhJD1eVb8Ha25dDHBwgPjsDVMIQhN5cj7i4ktdTimBhPZ2Ixdlu2EhpsIHhRGgC+MeHQ14VzX9f4gDSo4KDMeOoWkzKjPPRWJj98J8t8PFDfiFN3B+HFx2nvHgTAs74Km7gYRmLjsM7Po7a0FpuxUfDzw2luKm7lRXhWl2GXrN1OQgg2X30vO1bcDDY2U3FZijIlVA9CmVEiS7LQGw30D6fiaGvFQE4BjeEJ+I32oSsr5T9GiGqqIeziu+h1tMExI59yWz8GwiOxEQKHlCQcmmqReit0KT821xv44u9xd1DBQbmwqB6EMm2Vt/bx+t6Kz5X94E8/5ofPPUJ1Wz8AvTn5NPkF0xYxm8rt+5FI/JqqcUiIwyYlGffyIgJaqnFI1MYWbFyc6HHxILiqCJKTzfXOCXYnzEstflMuLKoHoUxbv/mwEIBrUmfh42xHXU0L3qMjjDk6MlBRDQFJFH16lAH/EGxcbQmsLWO4fwC3/m4ICcHayhbf6lJmBZVjtSTBXO+/b/gu8V11LHJ2nqpLU5TzgupBKNPGiRXOJ1y6awM3v/08zd3aVNXDnxyk1TeYnthE+o9qGepDWutwS0kgcPE8AuvL0JeVMRQUAno9dgH+jOmtiM85gO6kxW41l1/L4P97cvIuTFHOUxYLEEIIOyHEESFEthAiXwjxqy+8/t9CCCmE8Dqp7DEhRJkQolgIscpSbVOmn+KmXn78bjZVpltHAGu2/B8rt71Db3MrAO3Hcmj0C4bkZKxyc5BS4l5XSeTFaTilpxJYV85wfgGGqCgArPQ6qkNmM6uxCubNM9f71LWJrIjznczLU5TzkiV7EMPAMillMpACrBZCzAcQQgQBlwHmbGlCiDjgFiAeWA28LITQW7B9yjTyh03Hce9opq1P6y3kFddh399De1IaxoxMAPyaahgIi0SXnIxrWRGtHX14tTXiMycB57honPq68cw6inVSkrnejdc/yJt3/AQ8PafkuhTlfGaxACE1faZDa9NDmo5fAH5y0jHANcA7UsphKWUlUAbMQ1GAm/71J5798VVkV2rbf25891NafIIYjE9i6NhxpJQEtNQwb/V8bOek4FVZTE1GAYPevti7OIJOR2NgOPMPbsVuzvjgc03obOY/+4upuixFOa9ZdAxCCKEXQmQBLcB2KeVhIcTVQL2UMvsLpwcAtScd15nKlAuMlJJ73jhKU/eQuSwh7yAGK2scco4D4N1QTbNfMDmeIdgV5tHaO4xfUzX2CfE4JMXj0dJA576D9EVEmesoikrFsb8Hceml5rJ1a+cS6aMGoxVlIhYNEFJKg5QyBQgE5gkhkoD/AZ6Y4PSJlqXKL50kxP1CiGNCiGOtra3ntsHKeeHo+9u56Z0/UGkabxjpG8Ctq43ea2/As0ybuRTdXY9XWiIJqxcxq76Cuo5+fBprICYGK3s72nwDCdj5IYbY8dQYfr97ksp3PwBv7ym5LkWZbiZlFpOUsgvYg3YbKQzIFkJUoQWOTCGEH1qPIeiktwUCDRPU9ZqUMl1Kme6t/kefkUb++BKrPllP1rYDAHTlFNDm6Q9pabiWFiClxL6yAq/UBLwumkNAQyWdBaWMOTuDiwsANQERxB3cgV3aHHO9KUlhhN24ZkquSVGmI0vOYvIWQriZntsDK4DjUkofKWWolDIULSjMkVI2AZuBW4QQtkKIMCAKOGKp9innB2k08uMXPuKzsjZzmX9jJW2e/kSV5wHw3vpdNPmFYDMnBa/KUlr7hglorcUpKR57T3f6nFyx3baVoejxPEnH05YCYHfl6km9HkWZSSzZg/AHdgshcoCjaGMQW051spQyH3gXKAC2Ag9JKQ2nOl+ZGT776W957kdXsnW7NhMJKfFvqKLy8uvwKMoBwK9JG2+wT0nCv7aM49Wd+DZWQ3Q0QgjqAyLw3boZER9vrvfY3BXc//pnOAf6T8VlKcqMYMlZTDlSylQpZZKUMkFK+aWVR6aeRNtJx09LKSOklDFSyo8t1Tbl/GGz91MAQjK120myoQGD3gqn1ZfhUloEgG9zDUnL5yF8fDDY2lL98W6wtTVPTa0MiyOq+Dh2ixZ8rm6DlTWKonxzaiW1MmlkZSUHF1xOVXWLucyvsYrCi1cR36zlVNr41g4aAsIIvXQBs2rLaOgcYFZzDf5ztbULPZGzCdn5ISOzY811dNx8O0fnLsfuumvMZRdHeZES5DY5F6YoM5QKEMqkGfzr/7Hg0Faa3vk3AMYxA77NtYibbsSzqgQA+4oSWgPDsZ/ly5idPSVH8/FvqkaY9mHoiYhh/sGtWCeO505q8/Dhle/91jxADfCdRWF8f3kUiqJ8cypAKJZhNDLy0UdIo9Fc1J+dS11ABPbHDgPw9vuf0e/oQuAVy/GrKtEWuzVWEXKxtlFPR3g0cudOhBDg4wPAvrBUXHs6sF25wlzvoggv5oerldCKcq6pAKFYxgcfYHPllWS8+ra5yLq0hLoVV+JYWgxA85EsmvxDcAoPQW800F1Vj0N5KbYJ2mBzZ8RsArZ9QH9EtHn3Nvs1V/CnH/0Bce215noXRnpx3yXhk3hxinJhUAFCOTfk59c0Nn24nQF7R/q2mOYaGI04VVcwdv31eFeXAuDfWE2jXygIQXtoFPX7juBdX4n3PC2zam9ULNFZBxhOHE+NcduCMB783fdBr9J0KYqlqQChnL3GRtDpKN+yy1zUm53P4fmr8K3UegtUVzPg7Ib33FRshgcZamrBr6kK5xRtLKE/OpberduxGx1GBGnrJbfMSqLH2Z2xm24y16vXCWys1D9bRZkM6v805ayNbngfgPIX/2ouc6+tIGfhKkLqSkFKZGEhtT7BeLvY0RwSTc+RTPwbq0lbOV+rIy6eyG2b6ImONd9OcgicxQ//9AnOSy+Z/ItSFEUFCOVrGhtjz6XX8/F/9pmLeo9kkjlnCdH12q0jhodxbW0iPzQBg9Dx/9u78/i4yvPQ479nNNoXS7Jk7dYuWZsl7wvYGEyMocGUtCYsDRBo06S0JM1NckNIAyGluUluetPPTVJCgilJSClhSVgSs3kB432RZO2SJVmjzZYtybIkW+vbP87xSHZlwA7SjKzn+/nMR3OeOefMeWZ79J7lfU1rK7Xb99Mel0xEkC9dGdl07T5AQlsDPnlWX0lnlywj6mQbZ5df5V7v+vxYfBxCRLCOBa2UJ2iBUB/ozfJ2vvHyYff08K7drNn2MnHPPu2OOWprqF29njkNVVZroa6Ok7NjuG1lOq1JGZw5WEzHgRJ8cnMREUbzCuCtt3COjkKC1WFve0o2T3/2YUYffNC93uVps3ny7sVTl6xS6jxaINQHqvv3Z+h3jfWZuOu19+iIjif00D53zPdIHSHXX8ugXwAjjUc5eeAw7bHJrM6Kpjstm/4DxUS76glfYB1vOJWZQ/b+7ZzKyXfvTgr1d7Jj9S3EpCehlPIOWiDUxblc/N1Pvs5Nr/8HZ4esbrH6S8rYvXw9ia5azNAQpqcHZ88p6nzDaU5I5/jOfTTuPMhwZhZ+Tgd9WTlw+DCJLUdIvdY63nAwLouTkTGc3nin+6nWZEfz3U8VEOCrZycp5S20QKgxDQ3Q3++e7Nuync6IOWRXHcLVacWzTroIXbWC7vA51L1/iN7DFRyPSeS2ZXNpSUynfed+nDXVBBVY1zL0Zs4jbMtbDDn9CEu2difNT57N1374Kn6fvdv9XCLCnLCAKUxWKfVhtEAoy/AwpKUx+pWvuEOnisuoueZG4o8dpauzB2MMoQ11RC8tojkpg0Ovbaf/cAXtscnEhgUgBQXEHq0lqqmO6BXW1dC1sWn4dXfiyltkXRENrMm2roqODvWf+jyVUh+ZFoiZanAQxnWDQb3VWd7xl193h4Yrq/BbtIC+pBQGSsvo6+ohrKeTvKuKOJObR2FnE027DtGVlIqIELJ4AYGV5US76pm1yLq4LS42ku9+4+fs/+I/udfr53Twj5/IIsjPOTW5KqUuixaIGWo0J5eB+/9mLFBZSVneMsK7OqCnBwC/I7WEFeZzNicPSkroLSmjM34uOJ0EL15ISE0FprIK/3zrVNXu1AzC62voCw7DL9LqSTVldhB1mYWUyfnjPucnzJqaRJVSl03/hZuJOjpw1B/hTOcp/DcZEGG4rJzmpEyCz/aRWlrK6IqVhDc3ErK0kL69hQSUlfPKyQGunptOLHtlRwoAABWXSURBVOAoLCTsnx9mNCCY8HXWOAw1PSMM3Pq3dEXGcJ/9VHl2IXA6JhpyXCnlzbQFMQOUXL2e8hv+YixQVcWR9HycQ4OcrG8CYKS8nO6UdFzxaXTvOUBrZT1D/gGExEThU1RIZF0l8a0NHItPBSA4O53gE8dIctURXGSN1XDH0rm8tuF+0r76gPupgvyss5L+6ZO5U5StUurjoi2IK0x3/yDtPWeZF2uPjTAyQuH7bzDi8GF4YBCnvx9UVtIWl8qQ0w+f3QeYnZ5M574Sjty+FpN4Gp833icgMhHflHRCAf9FC5jTWEOPM5A5D/w1AGFB/lTmLmGWDJMYHARAVIh10DkiaOzKZ18fB49uyCPYXz9qSk03+q29wtTc9TlG2o/BLqsX1dNVNQzOjrUKxKEK4pcX0V9aRltcMgHhoYQfLoPRPyfCVU9bXCqzzBCrSrfTXF7BcFY2ACFzEzgtDgpLduC4dhMAYYG+fPNL/8qC5Ai+YD+3j0P42WcW4fQ5v2GaFBk0ZfkrpT4+uovpSmIMC177T1bs3syZLutAc19JOa1xKZxOz2Kg1Ooyo3nnQdriU+lOn8fI4TJGjzZxJjCEooJklt58DdFHa/CtqsRpj9omDgftsXNxmFFIs8ZdCPD1YcTpS3BI4HmbcGFxUEpNX/ptns5+8AO4ZWwcZk6cYNDPn8bkeVS+uQOAjr3FtMWn0J+VgzlsFYgIVz2LbljB3uB4fCvLqdm6h7b4FP56VRrhKQkMOv1I2vsuYQvHxmF479Ef0fD2DnfXGAA/2FjI3StSpiRVpdTU0wIxjY0+8TN45RWGm1sAGC6voD0umeH8AkaLS6x5yisYSM9iOCcX36oKert6mHWqk5XXL2bhTVcR39rAmYPFBC2wDjSH+Dtpik9nTkcLgatWup/r/jvXkLr2qvOeP1J7WVXqiqYFYpo48+OfcjolfWzktjNnGGlupjx3KW1b3gegt7SMjoRU/BcvwLe8jOGRUUIaasm+dik+8wsIrqmkeXcxp+KTEF9fCvKSORs6i9DNr9OVaXWN4RDhhdv+gac/+00IC/NUukopL6AFwhsZA31954X6fvYLQo/W07t3vxWoreV4VDxNyVmc2m3FBsurGMrMwpGfT3hDDX0Dw8S2HYWcHJJWLCSkrYXTO/cymGkdfA4LcNKUnE3GkcOk3LQGgFA7tmP1hilLVynlnbRAeKOf/xxCQug+0W1Nj44SfqSagwuv4fT7e6xYdTVdCSl0pufgX1kOQNueQ3QkpOIzv4Doxlo6610Yh4PM3BQiIkLoiEkk8vWX8SmyxnwO8Xey+frb2XH1zYTau5jOnY56Q17s1OaslPI6WiA8bXQUamrOC7Vvetb6+/vNVqCpiYGQMGozi3DYB5pHKqtwRSeRu24lsxus5WPbjuKTM4/AhHhGRTiz+Q160zIRh/U2NyVlkX5oJ4ErlgJWD6rV8xbx0j88htM51s32oxvyuGl+3KSmrZTyflogPO1Xv4LsbDh61B0Kbqhl75Lr8Ss+CMDw4TIa5yTTkphO//5DADTuPEhbbDJhhXmEtrlobGgjsvM4Gz61iqAAJ80J6YS+9FsGc/Pd631v9QZcSRmE3rjuvE041T903nRSZBAhemGbUjOeFghP27vX+rvZbi309RHY3cmx69bjW1oMwIvPvk1bXAoZa1cQ6zoCxiC1tbTHJhMWEUZndDwjL/2Ok7GJiJ8fvj4OmhPTSdq1DeeSsSE7q+ct4tHHfoMjcGzchfX5sazNiZmydJVS04cWiEkyMmq4/z/2sbXq+Hnxvnvvp/f1ze7p43sOcWjBao5v22kFamroiEki5prlhNZWARDT3kR77Fyyi7IwoyM0ltcT23aUu+6+nlmBvrgS0gn93QsM5uS517tn+Q2c9Q8k9C//3B176t4lPHXvkvO2Z+PiJO5cNvfjTl8pdQWYtAIhIgEisldESkSkXES+bcd/ICJVIlIqIi+LSPi4ZR4SkToRqRaRGyZr26ZC69F27vrV96mvHtt1ZIaHCX5mE40/esIdC66rZveK9fTuPQDAsX0ltMTMJXV5EUEnO+D0aeKOu7j25pXERwTSkpjBmVdfZ8jXj+TsZPycDk6mZjFnxxYG8wrc63WsXMEDT2wndG7C1CWtlLqiTGYLYgC4zhhTCBQB60VkOfAWkG+MmQ/UAA8BiEgucDuQB6wHfioi02KA4uGRUb63uYry1lPumM/WLVy35QUy337FHav/43YAgjpPWIGODmRoCMe6dcS31MPoKP2HKxhIzyQqPIi2+FROHygm+piLqAX5hAb40paUzqzfv8hAdo57ve8VrAZg6Jax1sJnlidzz8qUScxaKXWlm7QCYSy99qSvfTPGmDeNMcN2fDeQaN+/BXjOGDNgjGkA6oClk7V9f4ov/PoA79V2uKfryuv58s3z2frUy2MzVVTQHR5FVOkBd+j48y9zdN0GouutXUdDZeW0xKfiFxVJf3AoNDZiqquJWFCAiHAiLRvXH7YS2tuNf5rVzXZXWjbxe95lsGC+e71tCWncv2kPgfljXWonRgSxOit6sl4CpdQMMKnHIETER0SKgePAW8aYPRfMch/wR/t+AuAa91izHfOozWXtPPL7svNicbVl/GFvg3t64O2t+A4PkbvtdYx9pXP/oVL2L1tHZGMtAK7OfhJ2bSPg83+LY2iI4dY22ndZnebdUpRAS2IGI6WlhNTXukdoa0rMIOKVF+lNSgUfqzG1J/8qTofMYmTjbedvqAjhQb6T9TIopWagSS0QxpgRY0wRVithqYi4z7kUkYeBYeDZc6GJVnFhQEQ+JyL7RWR/R0fHBIt8vH6730Vz1xn39NnGJr712L1c98Zv3LGG9/ZTlb2Q1IYKOvsGAQhvrGX23bcT2ebCDA5SVlxL7DEXETdchysxg/6DxYyWV+BbkEdksB9tiekMHypmlque4CLrZaqLSSWuupSewkXu5zJxcXzp/79F6Lh+kjYuTgIgLEALhFLq4zMlZzEZY7qBbVjHFhCRe4BPAneZc/9yWy2GpHGLJQKtE6zrSWPMYmPM4ujoj3cXytDIKCOjYzWpb2CYu371fdJrS92xI8++RH9gCHMP7nS3FuJbG/D79F8S39ZI79khevvOEuZqJHXdKk5FRtNXXknQ1i2cWnE1fkEBdGXMY6S4BCrKceRZxeB4Siatv3yenrBIYhOsvOrT82lMmUfXbXe4n39BUgQAEeNaC+vzY3nq3iU4dFhPpdTHaDLPYoo+d4aSiAQC1wNVIrIe+N/ABmNM/7hFXgFuFxF/EUkFMoG9k7V9E/nKT9/hC5t2uacHKqq5bssL3LD517R0W62Ik/tL2bXyRhKO1tLdN4gxhvj2RuJvXMtQUAjdVUfY/odddIdHER4VzsmULPoPlOB/uBhZvhyAM/PyGDp4iIj6GrLWLgOgNiaN1MZKTuaMdbG9KDeR7zzyS3oXLnPHVmVFsSwtEhEtBkqpyTWZLYg4YKuIlAL7sI5BvAb8GAgF3hKRYhF5AsAYUw48D1QAm4EHjDEjk7VxHacHeL/uxFjAGP7twXXc8ZsfukOtr71JbcZ80urLqTtuHW9P6nARc/MNjIpwpLSWPXUdzGlrIqAgj560TKSi/LzBdnoy5jF8+DDBTQ2EFljHFpxFhQRv24LDGCIyrYPPzUmZvLv6Fgb+7u/dz392yEo/P2GsV9W4WYF8bnX65LwoSik1zqT1p2CMKQUWTBDP+IBlHgcen6xtGu+Pf/8IJ6LiueqHDwJw5qiLQCCvbA8jowYfh9Cxv5Su+Sv5s7efw3nsGGRFE9R4hOAlhbQkpvPuS1uJX5hLRlgkUcHBNCWkM7TnID5nB/DJty5aG8jJxbz9KgmuOvyL7DOP8nIJ7jrB4fzlFNgtgftWpbFJHmZjfiLn2hBfWJPBjroThAfpuAtKqak3I6+kNoOD3P3L7/Hp//o393GEva+/R3X2AsJOd9HdcgxjDOGuetpjkzmdOQ8pP0xndx+Rx1oIn59LS0IaaccaOb6nGEee1TJon5uJs6KcWQ21BC+0isFwbj6z9u0ipO8UpFv/+TvDQnnmnoc4/a1vu7cpc04IANeP6/bCxyFco6eqKqU8ZEYWCPHz44GfbiGqo5WuU9ZhkNb3D9KckMGJ1Gz69h7gSEcvMe1NfOqO6zg7LxffinJK3j1If3QMfiFBpK1ZRvaJo8S3NhBYZF3BvPa2tSS21JHcUodzvlUg3pMIQvp66M4rArtXVWPg3TW3Enft2AhtgX7Waaw6prNSylvM2F+j79x9FafnxHNy7yGMMcS1NrBg/Up6MnMYLi6hoqmT6BOtxC4qYCQvn+CaSvpLKzBZ1mA7Qzm5BNdWkdBST2ChVSACCwtIctUxu7kB8qxdTHddlcZjjzzD3m+NHdtw2mcbpUYFu2OhAb7/o58kpZTypBlbICKD/WhMzWHHc29wrGeAhNZ6RnNyGMzJxae8nJJ3i+mPjIbAQHzmFxBxpBpHVSW+9kVsw/NymdNcz9ymaii0jho4Q0OoSy+gdckq8LOOG6RHh3A0JYec5WPdbsfNCpz6hJVS6hLN2AIBkLxmOenHGzl6opeEtgZmLyni7Lw8hktKmdV0BGee1d+Rf1Ehka4jRDbWEDjf+qEPi41ixMdJQku9u7UA8JNHfkHv8y+c9zxP3buE9OgQ9/Tc2UHaWlBKeb0ZXSBCivKZ7arnudf2YRw+SEwMyWuWktBaT2pHE8F2MZgVM5uesEgW7N+KY761OykhPJDnP/0gQ488CgFj4yv8v88sZd7cKE+ko5RSH6sZXSACCvKIaW1k3kkXJsdqLUQmxtAXFEpuyfvWSG+An9NBU1IWfgNnYZHV7YXDIXx20z/j++gjHtt+pZSaTDO6QEhqKrN6ThJVUYwj32ot+Dt9aEnMIL18PywZ2w303J1f5l++8Qvw1f6OlFIzw8weeNjpZGTFCm596QnkySfd4d5PbuDMsXoCi4rcsTs2Xn3ecQSllLrSzegWBEDAQ1/HYQyyapU7tvLxrxHY3uruYhtg4dwIZgVq60EpNXPM+ALBunWwbZv7eINSSimLFggRuOYaT2+FUkp5HS0QSimlJqQFQiml1IS0QCillJqQFgillFIT0gKhlFJqQloglFJKTUgLhFJKqQlpgVBKKTUhOTcm83QkIh3A0Q+ZLQo4MQWbM9muhDw0B++gOXgPT+WRbIz50AHvp3WB+ChEZL8xZrGnt+NPdSXkoTl4B83Be3h7HrqLSSml1IS0QCillJrQTCgQT374LNPClZCH5uAdNAfv4dV5XPHHIJRSSl2emdCCUEopdRmmZYEQkU0iclxEysbFCkVkl4gcFpFXRSTMjqeIyBkRKbZvT9jx0HGxYhE5ISI/8sYc7Mfm24+V248HTKccROSuC7Z1VESKplkOviLyjB2vFJGH7LhHc7iMPPxE5Gk7XiIiazydh4gkichW+3UtF5Ev2vFIEXlLRGrtvxHjlnlIROpEpFpEbvB0DpeTh4jMtufvFZEfj1uPxz9TABhjpt0NWA0sBMrGxfYB19j37wO+Y99PGT/fB6zzALDaS3NwAqVAoT09G/CZTjlcsFwBUD8N34c7gefs+0FAI5Di6RwuI48HgKft+3Ps7XV4Mg8gDlho3w8FaoBc4PvA1+3414Hv2fdzgRLAH0gFjnjJd+JS8wgGrgY+D/z4A9Y75Z8pY8z0LBD2C3beDz/Qw9gxlSSgYqL5LrKuTMB1bnkvzOEm4NfTOYcLlvkX4PHplgNwB/AqVsGebX/5I70hh0vM4yfAX42b7x1gqbfkYT//74FPANVAnB2LA6rt+w8BD42b/w1ghTfl8FHyGDffvRcrEJ7MY1ruYrqIMmCDfX8j1hfinFQROSQi20Vk1QTL3gH8l7HfDQ+6WA5ZgBGRN0TkoIh8bYJlvT2H8T4N/OcEcW/P4QWgD2gDmoD/a4zpvGBZb8kBLp5HCXCLiDhFJBVYxP98nzyWh4ikAAuAPUCMMaYNwP47x54tAetH85xmOzaeR9+Lj5jHR+GxPK6kAnEf8ICIHMBq2g3a8TZgrjFmAfBl4Dfj9+3bbmfiH6ypdrEcnFjN0Lvsv7eKyNoLlvX2HAAQkWVAvzGmbIJlvT2HpcAIEI+1W+N/iUjaBct6Sw5w8Tw2Yf2g7gd+BOwEhi9Y1iN5iEgI8CLwJWNMzwfNOkHswh9Qj70Xl5DHR+GxPJyeeNLJYIypAtYBiEgW8Gd2fAAYsO8fEJEjWP+R77fnLQScxpgDntju8S6WA9aXebsx5oT92B+w9je/Y09PhxzOmfDDPk1yuBPYbIwZAo6LyPvAYqDentdrcoAP/E4MA/94bj4R2QnUjpv2SB4i4ov1o/qsMeYlO3xMROKMMW0iEgcct+PNnN/qSQRax63LY+/FJebxYevy6GfqimlBiMgc+68D+CZw7mylaBHxse+nYe3Pqx+36B14yX98F8sBa//qfBEJEhEncA1QMW7R6ZDDudhG4LkJFp0OOTQB14klGFgOVI1b1GtygA/8TgTZ24+IfAIYNsZ49PMkIgI8BVQaY/513EOvAPfY9+/B2qd/Ln67iPjbu8kygb3jlvPIe3EZeXwYz36mPHXw5k+52S9YGzCE9Z/E/cAXsQ4a1gD/h7GDc38BlGPtdz0I3HzBuuqBed6cgz3/X9l5lAHfn6Y5rAF2X2RdXp8DEAL81n4fKoCvekMOl5FHCtZB00rgbayePT2aB9auU4N1tl6xfbsJ62SAd7BaOO8w7qQA4GGss5eqgRs9ncOfkEcj0An02u9drqfzOHfTK6mVUkpN6IrZxaSUUurjpQVCKaXUhLRAKKWUmpAWCKWUUhPSAqGUUmpCWiCUUkpNSAuEUh527kJOpbyNFgilLoGIfOdcH//29OMi8qCIfFVE9olIqYh8e9zjvxORA/bYAJ8bF+8VkcdEZA+wYorTUOoj0QKh1KV5CrvLBLsLi9uBY1hdPSwFioBFIrLanv8+Y8wirD6bHhSR2XY8GKtr7mXGmB1TmYBSH9UV01mfUlPBGNMoIidFZAEQAxwClmB1infIni0Eq2C8i1UUbrXjSXb8JFavsC9O5bYrdam0QCh16X6BNcBLLFbX2WuB7xpjfjZ+JrGG8rweayCbfhHZBgTYD581xoxM1QYrdTl0F5NSl+5lYD1Wy+EN+3afPQYAIpJg96Q6C+iyi8M8rN5flZo2tAWh1CUyxgyKyFag224FvCkiOcAuq7dnerF6390MfF5ESrF6HN3tqW1W6nJob65KXSL74PRBYKMxpvbD5ldqutJdTEpdAhHJBeqAd7Q4qCudtiCUUkpNSFsQSimlJqQFQiml1IS0QCillJqQFgillFIT0gKhlFJqQloglFJKTei/AUbZfUdBtlHeAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "