{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Analyse du risque de défaillance des joints toriques de la navette Challenger" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Le 27 Janvier 1986, veille du décollage de la navette *Challenger*, eu\n", "lieu une télé-conférence de trois heures entre les ingénieurs de la\n", "Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La\n", "discussion portait principalement sur les conséquences de la\n", "température prévue au moment du décollage de 31°F (juste en dessous de\n", "0°C) sur le succès du vol et en particulier sur la performance des\n", "joints toriques utilisés dans les moteurs. En effet, aucun test\n", "n'avait été effectué à cette température.\n", "\n", "L'étude qui suit reprend donc une partie des analyses effectuées cette\n", "nuit là et dont l'objectif était d'évaluer l'influence potentielle de\n", "la température et de la pression à laquelle sont soumis les joints\n", "toriques sur leur probabilité de dysfonctionnement. Pour cela, nous\n", "disposons des résultats des expériences réalisées par les ingénieurs\n", "de la NASA durant les 6 années précédant le lancement de la navette\n", "Challenger.\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Chargement des données\n", "Nous commençons donc par charger ces données:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountTemperaturePressureMalfunction
04/12/81666500
111/12/81670501
23/22/82669500
311/11/82668500
44/04/83667500
56/18/82672500
68/30/836731000
711/28/836701000
82/03/846572001
94/06/846632001
108/30/846702001
1110/05/846782000
1211/08/846672000
131/24/856532002
144/12/856672000
154/29/856752000
166/17/856702000
177/29/856812000
188/27/856762000
1910/03/856792000
2010/30/856752002
2111/26/856762000
221/12/866582001
\n", "
" ], "text/plain": [ " Date Count Temperature Pressure Malfunction\n", "0 4/12/81 6 66 50 0\n", "1 11/12/81 6 70 50 1\n", "2 3/22/82 6 69 50 0\n", "3 11/11/82 6 68 50 0\n", "4 4/04/83 6 67 50 0\n", "5 6/18/82 6 72 50 0\n", "6 8/30/83 6 73 100 0\n", "7 11/28/83 6 70 100 0\n", "8 2/03/84 6 57 200 1\n", "9 4/06/84 6 63 200 1\n", "10 8/30/84 6 70 200 1\n", "11 10/05/84 6 78 200 0\n", "12 11/08/84 6 67 200 0\n", "13 1/24/85 6 53 200 2\n", "14 4/12/85 6 67 200 0\n", "15 4/29/85 6 75 200 0\n", "16 6/17/85 6 70 200 0\n", "17 7/29/85 6 81 200 0\n", "18 8/27/85 6 76 200 0\n", "19 10/03/85 6 79 200 0\n", "20 10/30/85 6 75 200 2\n", "21 11/26/85 6 76 200 0\n", "22 1/12/86 6 58 200 1" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "data = pd.read_csv(\"shuttle.csv\")\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Le jeu de données nous indique la date de l'essai, le nombre de joints\n", "toriques mesurés (il y en a 6 sur le lançeur principal), la\n", "température (en Farenheit) et la pression (en psi), et enfin le\n", "nombre de dysfonctionnements relevés. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Inspection graphique des données\n", "Les vols où aucun incident n'est relevé n'apportant aucun information\n", "sur l'influence de la température ou de la pression sur les\n", "dysfonctionnements, nous nous concentrons sur les expériences où au\n", "moins un joint a été défectueux.\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountTemperaturePressureMalfunction
111/12/81670501
82/03/846572001
94/06/846632001
108/30/846702001
131/24/856532002
2010/30/856752002
221/12/866582001
\n", "
" ], "text/plain": [ " Date Count Temperature Pressure Malfunction\n", "1 11/12/81 6 70 50 1\n", "8 2/03/84 6 57 200 1\n", "9 4/06/84 6 63 200 1\n", "10 8/30/84 6 70 200 1\n", "13 1/24/85 6 53 200 2\n", "20 10/30/85 6 75 200 2\n", "22 1/12/86 6 58 200 1" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = data[data.Malfunction>0]\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Très bien, nous avons une variabilité de température importante mais\n", "la pression est quasiment toujours égale à 200, ce qui devrait\n", "simplifier l'analyse.\n", "\n", "Comment la fréquence d'échecs varie-t-elle avec la température ?\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFYRJREFUeJzt3XuQpXV95/H3Zy7AIBMhsJm4MxBBCFlKAXG4GEx2IokLbgmxiBHcDS5ZMqGE3TK7m8BariHGVEWM2WiJjiOLCqmERFEgu+MiJNUaExCQTIaLgcwiQjMGBFFoHObW3/3jnHlyprun5/TQzzlM9/tV1TXnufa3vz6cj8/l/E6qCkmSABYMuwBJ0kuHoSBJahgKkqSGoSBJahgKkqSGoSBJarQWCkmuSfJkkvt2szxJPppkY5INSU5qqxZJUn/aPFP4DHDmNMvPAo7p/qwGPtFiLZKkPrQWClX1VeB706xyDnBtddwBHJzkFW3VI0nas0VD/N3Lgcd6pke7874zccUkq+mcTbBkyZLXHX744QMp8MUaHx9nwQJv2/SyJ5PZk6nZl8leTE8eeuihp6rqX+xpvWGGQqaYN+WYG1W1FlgLsHLlyrr77rvbrGvWjIyMsGrVqmGX8ZJiTyazJ1OzL5O9mJ4k+XY/6w0zhkeB3v/LvwLYNKRaJEkMNxRuBi7oPoV0GvCDqpp06UiSNDitXT5K8qfAKuCwJKPAbwOLAapqDbAOeDOwEfghcGFbtUiS+tNaKFTV+XtYXsAlbf1+SdLMeWtfktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktRoNRSSnJnkwSQbk1w+xfKXJ/mLJH+f5P4kF7ZZjyRpeq2FQpKFwFXAWcBxwPlJjpuw2iXAA1V1ArAK+HCS/dqqSZI0vTbPFE4BNlbVw1W1FbgeOGfCOgUsTRLgIOB7wPYWa5IkTWNRi/teDjzWMz0KnDphnY8BNwObgKXA26tqfOKOkqwGVgMsW7aMkZGRNuqddWNjY/tMrYNiTyazJ1OzL5MNoidthkKmmFcTpv8NsB54I/Aq4NYkf11Vz+6yUdVaYC3AypUra9WqVbNfbQtGRkbYV2odFHsymT2Zmn2ZbBA9afPy0ShweM/0CjpnBL0uBL5QHRuBbwE/1WJNkqRptBkKdwHHJDmye/P4PDqXino9CpwBkGQZcCzwcIs1SZKm0drlo6ranuRS4BZgIXBNVd2f5OLu8jXA7wKfSXIvnctNl1XVU23VJEmaXpv3FKiqdcC6CfPW9LzeBLypzRokSf3zE82SpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5M8mCSjUku3806q5KsT3J/kq+0WY8kaXqL+lkpyaur6r6Z7DjJQuAq4BeAUeCuJDdX1QM96xwMfBw4s6oeTfJjM/kdkqTZ1e+ZwpokdyZ5V/eNvB+nABur6uGq2gpcD5wzYZ13AF+oqkcBqurJPvctSWpBX2cKVfWGJMcAvwrcneRO4NNVdes0my0HHuuZHgVOnbDOTwKLk4wAS4GPVNW1E3eUZDWwGmDZsmWMjIz0U/bQjY2N7TO1Doo9mcyeTM2+TDaInvQVCgBV9Y9J3gvcDXwUeG2SAO+pqi9MsUmm2s0Uv/91wBnAEuD2JHdU1UMTfvdaYC3AypUra9WqVf2WPVQjIyPsK7UOij2ZzJ5Mzb5MNoie9HtP4XjgQuDfArcCb6mqe5L8S+B2YKpQGAUO75leAWyaYp2nqup54PkkXwVOAB5CkjRw/d5T+BhwD3BCVV1SVfcAVNUm4L272eYu4JgkRybZDzgPuHnCOjcBP5NkUZID6Vxe+uZM/whJ0uzo9/LRm4HNVbUDIMkC4ICq+mFVXTfVBlW1PcmlwC3AQuCaqro/ycXd5Wuq6ptJ/i+wARgHrp7pU06SpNnTbyjcBvw8MNadPhD4MvDT021UVeuAdRPmrZkw/SHgQ33WIUlqUb+Xjw6oqp2BQPf1ge2UJEkaln5D4fkkJ+2cSPI6YHM7JUmShqXfy0fvBj6XZOfTQ68A3t5OSZKkYen3w2t3Jfkp4Fg6nz/4h6ra1mplkqSB6/vDa8DJwCu727w2CVN9+liStO/q98Nr1wGvAtYDO7qzCzAUJGkO6fdMYSVwXFVNHKZCkjSH9Pv00X3Aj7dZiCRp+Po9UzgMeKA7OuqWnTOr6uxWqpIkDUW/oXBFm0VIkl4a+n0k9StJfgI4pqpu6w5et7Dd0iRJg9bXPYUkvwZ8Hvhkd9Zy4Ma2ipIkDUe/N5ovAU4HnoXOF+4Afp+yJM0x/YbClu73LAOQZBGTv0VNkrSP6zcUvpLkPcCSJL8AfA74i/bKkiQNQ7+hcDnwXeBe4NfpfEfC7r5xTZK0j+r36aNx4FPdH0nSHNXv2EffYop7CFV11KxXJEkampmMfbTTAcDbgB+d/XIkScPU1z2Fqnq65+fxqvoj4I0t1yZJGrB+Lx+d1DO5gM6Zw9JWKpIkDU2/l48+3PN6O/AI8MuzXo0kaaj6ffro59ouRJI0fP1ePvov0y2vqj+cnXIkScM0k6ePTgZu7k6/Bfgq8FgbRUmShmMmX7JzUlU9B5DkCuBzVXVRW4VJkgav32EujgC29kxvBV4569VIkoaq3zOF64A7k3yRzieb3wpc21pVkqSh6Pfpo99L8iXgZ7qzLqyqv2uvLEnSMPR7+QjgQODZqvoIMJrkyJZqkiQNSb9fx/nbwGXAf+/OWgz8cVtFSZKGo98zhbcCZwPPA1TVJhzmQpLmnH5DYWtVFd3hs5O8rL2SJEnD0m8o/HmSTwIHJ/k14Db8wh1JmnP6ffroD7rfzfwscCzwvqq6tdXKJEkDt8czhSQLk9xWVbdW1W9W1X/rNxCSnJnkwSQbk1w+zXonJ9mR5JdmUrwkaXbtMRSqagfwwyQvn8mOkywErgLOAo4Dzk9y3G7W+yBwy0z2L0maff1+ovkF4N4kt9J9Agmgqv7zNNucAmysqocBklwPnAM8MGG9/wTcQGfAPUnSEPUbCv+n+zMTy9l1FNVR4NTeFZIsp/O46xuZJhSSrAZWAyxbtoyRkZEZljIcY2Nj+0ytg2JPJrMnU7Mvkw2iJ9OGQpIjqurRqvrsXuw7U8yrCdN/BFxWVTuSqVbvblS1FlgLsHLlylq1atVelDN4IyMj7Cu1Doo9mcyeTM2+TDaInuzpnsKNO18kuWGG+x4FDu+ZXgFsmrDOSuD6JI8AvwR8PMkvzvD3SJJmyZ4uH/X+3/ejZrjvu4BjumMkPQ6cB7yjd4WqasZPSvIZ4H9X1Y1IkoZiT6FQu3m9R1W1PcmldJ4qWghcU1X3J7m4u3zNjCqVJLVuT6FwQpJn6ZwxLOm+pjtdVfUj021cVeuAdRPmTRkGVfUf+qpYktSaaUOhqhYOqhBJ0vDN5PsUJElznKEgSWoYCpKkhqEgSWrMq1B4emwLf//Y93l6bMuwS5GkGXl6bAubt+1o/f1r3oTCTesf5/QP/hX//uqvc/oH/4qb1z8+7JIkqS8737++9d3nW3//mheh8PTYFi67YQMvbBvnuS3beWHbOL91wwbPGCS95PW+f+2oav39a16Ewugzm1m8YNc/dfGCBYw+s3lIFUlSfwb9/jUvQmHFIUvYNj6+y7xt4+OsOGTJkCqSpP4M+v1rXoTCoQftz5XnHs8BixewdP9FHLB4AVeeezyHHrT/sEuTpGn1vn8tTFp//+r3S3b2eWefuJzTjz6M0Wc2s+KQJQaCpH3GzvevO2//Gn9z9htaff+aN6EAncQ1DCTtiw49aH+WLF7Y+nvYvLh8JEnqj6EgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkRquhkOTMJA8m2Zjk8imW/7skG7o/f5vkhDbrkSRNr7VQSLIQuAo4CzgOOD/JcRNW+xbwr6vqeOB3gbVt1SNJ2rM2zxROATZW1cNVtRW4Hjind4Wq+tuqeqY7eQewosV6JEl7sKjFfS8HHuuZHgVOnWb9/wh8aaoFSVYDqwGWLVvGyMjILJXYrrGxsX2m1kGxJ5PZk6nZl8kG0ZM2QyFTzKspV0x+jk4ovGGq5VW1lu6lpZUrV9aqVatmqcR2jYyMsK/UOij2ZDJ7MjX7MtkgetJmKIwCh/dMrwA2TVwpyfHA1cBZVfV0i/VIkvagzXsKdwHHJDkyyX7AecDNvSskOQL4AvArVfVQi7VIkvrQ2plCVW1PcilwC7AQuKaq7k9ycXf5GuB9wKHAx5MAbK+qlW3VJEmaXpuXj6iqdcC6CfPW9Ly+CLiozRrmi6fHtjD6zGZWHLKEQw/av/Xt5jJ7Mnwbn3iOZ364jY1PPMfRy5YOu5x5pdVQ0GDctP5xLrthA4sXLGDb+DhXnns8Z5+4vLXt5jJ7Mnzvu/Ferr3jUf7ra7bzG//zq1zw+iN4/zmvGXZZ84bDXOzjnh7bwmU3bOCFbeM8t2U7L2wb57du2MDTY1ta2W4usyfDt/GJ57j2jkd3mXft7Y+y8YnnhlTR/GMo7ONGn9nM4gW7/s+4eMECRp/Z3Mp2c5k9Gb71j31/RvM1+wyFfdyKQ5awbXx8l3nbxsdZcciSVraby+zJ8J14+MEzmq/ZZyjs4w49aH+uPPd4Dli8gKX7L+KAxQu48tzj93iDdG+3m8vsyfAdvWwpF7z+iF3mXfD6I7zZPEDeaJ4Dzj5xOacffdiMn5jZ2+3mMnsyfO8/5zVccNorufcbd3Dbb5xmIAyYoTBHHHrQ/nv1Bra3281l9mT4jl62lNEDFxsIQ+DlI0lSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkZyZ5MMnGJJdPsTxJPtpdviHJSW3WI0maXmuhkGQhcBVwFnAccH6S4yasdhZwTPdnNfCJtuqRJO1Zm2cKpwAbq+rhqtoKXA+cM2Gdc4Brq+MO4OAkr2ixJknSNBa1uO/lwGM906PAqX2ssxz4Tu9KSVbTOZMAGEvy4OyW2prDgKeGXcRLjD2ZzJ5Mzb5M9mJ68hP9rNRmKGSKebUX61BVa4G1s1HUICW5u6pWDruOlxJ7Mpk9mZp9mWwQPWnz8tEocHjP9Apg016sI0kakDZD4S7gmCRHJtkPOA+4ecI6NwMXdJ9COg34QVV9Z+KOJEmD0drlo6ranuRS4BZgIXBNVd2f5OLu8jXAOuDNwEbgh8CFbdUzJPvcJa8BsCeT2ZOp2ZfJWu9JqiZdwpckzVN+olmS1DAUJEkNQ2EWJXkkyb1J1ie5uzvviiSPd+etT/LmYdc5SEkOTvL5JP+Q5JtJXp/kR5PcmuQfu/8eMuw6B2k3PZm3x0mSY3v+7vVJnk3y7vl8nEzTk9aPE+8pzKIkjwArq+qpnnlXAGNV9QfDqmuYknwW+Ouqurr7FNqBwHuA71XV73fHxDqkqi4baqEDtJuevJt5fJzs1B0e53E6H3S9hHl8nOw0oScX0vJx4pmCWpPkR4CfBf4XQFVtrarv0xne5LPd1T4L/OJwKhy8aXqijjOA/1dV32YeHycT9PakdYbC7Crgy0m+0R2aY6dLu6PAXjOfToGBo4DvAp9O8ndJrk7yMmDZzs+jdP/9sWEWOWC76wnM3+Ok13nAn3Zfz+fjpFdvT6Dl48RQmF2nV9VJdEZ/vSTJz9IZ+fVVwIl0xnT68BDrG7RFwEnAJ6rqtcDzwKQh1OeZ3fVkPh8nAHQvpZ0NfG7YtbxUTNGT1o8TQ2EWVdWm7r9PAl8ETqmqJ6pqR1WNA5+iM3rsfDEKjFbV17vTn6fzhvjEztFwu/8+OaT6hmHKnszz42Sns4B7quqJ7vR8Pk522qUngzhODIVZkuRlSZbufA28CbhvwlDgbwXuG0Z9w1BV/wQ8luTY7qwzgAfoDG/yzu68dwI3DaG8odhdT+bzcdLjfHa9TDJvj5Meu/RkEMeJTx/NkiRH0Tk7gM4lgj+pqt9Lch2dU70CHgF+fT6N75TkROBqYD/gYTpPTywA/hw4AngUeFtVfW9oRQ7YbnryUeb3cXIgnWH0j6qqH3TnHcr8Pk6m6knr7yeGgiSp4eUjSVLDUJAkNQwFSVLDUJAkNQwFSVKjtW9ekwat+wjjX3YnfxzYQWdICeh8kHDrUAqbRpJfBdZ1P78gDZ2PpGpOeimNTptkYVXt2M2yrwGXVtX6GexvUVVtn7UCpR5ePtK8kOSdSe7sjkH/8SQLkixK8v0kH0pyT5Jbkpya5CtJHt45Vn2Si5J8sbv8wSTv7XO/H0hyJ3BKkt9JcleS+5KsScfb6XwQ6c+62++XZDTJwd19n5bktu7rDyT5ZJJb6QymtyjJH3Z/94YkFw2+q5qLDAXNeUleTWdIgJ+uqhPpXDY9r7v45cCXuwMZbgWuoDP0xNuA9/fs5pTuNicB70hyYh/7vaeqTqmq24GPVNXJwGu6y86sqj8D1gNvr6oT+7i89VrgLVX1K8Bq4MmqOgU4mc4AjEfsTX+kXt5T0Hzw83TeOO9OArCEzvABAJur6tbu63uBH1TV9iT3Aq/s2cctVfUMQJIbgTfQ+e9nd/vdyj8PewJwRpLfBA4ADgO+AXxphn/HTVX1Qvf1m4B/laQ3hI6hMxyEtNcMBc0HAa6pqv+xy8xkEZ03753GgS09r3v/+5h48632sN/N1b1h1x3D5mN0RkN9PMkH6ITDVLbzz2fwE9d5fsLf9K6q+kukWeTlI80HtwG/nOQw6DyltBeXWt6UzncrH0jnG8H+Zgb7XUInZJ7qjqR7bs+y54ClPdOPAK/rvu5db6JbgHd1A2jnd/oumeHfJE3imYLmvKq6N8nvALclWQBsAy4GNs1gN18D/oTOF5xct/NpoX72W1VPp/O9zPcB3wa+3rP408DVSTbTuW9xBfCpJP8E3DlNPZ+kM3ro+u6lqyfphJX0ovhIqrQH3Sd7Xl1V7x52LVLbvHwkSWp4piBJanimIElqGAqSpIahIElqGAqSpIahIElq/H/IxmFZztFAcQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n", "import matplotlib.pyplot as plt\n", "\n", "data[\"Frequency\"]=data.Malfunction/data.Count\n", "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "À première vue, ce n'est pas flagrant mais bon, essayons quand même\n", "d'estimer l'impact de la température $t$ sur la probabilité de\n", "dysfonctionnements d'un joint. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimation de l'influence de la température\n", "\n", "Supposons que chacun des 6 joints toriques est endommagé avec la même\n", "probabilité et indépendamment des autres et que cette probabilité ne\n", "dépend que de la température. Si on note $p(t)$ cette probabilité, le\n", "nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n", "température $t$ suit une loi binomiale de paramètre $n=6$ et\n", "$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n", "régression logistique." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 7
Model: GLM Df Residuals: 5
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -2.5250
Date: Wed, 25 Mar 2020 Deviance: 0.22231
Time: 18:06:02 Pearson chi2: 0.236
No. Iterations: 4 Covariance Type: nonrobust
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err z P>|z| [0.025 0.975]
Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953
Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240
" ], "text/plain": [ "\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: Frequency No. Observations: 7\n", "Model: GLM Df Residuals: 5\n", "Model Family: Binomial Df Model: 1\n", "Link Function: logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -2.5250\n", "Date: Wed, 25 Mar 2020 Deviance: 0.22231\n", "Time: 18:06:02 Pearson chi2: 0.236\n", "No. Iterations: 4 Covariance Type: nonrobust\n", "===============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "-------------------------------------------------------------------------------\n", "Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n", "Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n", "===============================================================================\n", "\"\"\"" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import statsmodels.api as sm\n", "\n", "data[\"Success\"]=data.Count-data.Malfunction\n", "data[\"Intercept\"]=1\n", "\n", "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n", "\n", "logmodel.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "L'estimateur le plus probable du paramètre de température est 0.0014\n", "et l'erreur standard de cet estimateur est de 0.122, autrement dit on\n", "ne peut pas distinguer d'impact particulier et il faut prendre nos\n", "estimations avec des pincettes.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Estimation de la probabilité de dysfonctionnant des joints toriques\n", "La température prévue le jour du décollage est de 31°F. Essayons\n", "d'estimer la probabilité de dysfonctionnement des joints toriques à\n", "cette température à partir du modèle que nous venons de construire:\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGzdJREFUeJzt3X+UVOWd5/H3t6tBGhohoGGAJoHM4cA6UX41jUriNkYBc+KvWQ2io4k7LHEnJJPdIxs5J7OaWT1n57S7h0zWiIwyTOLR1nEVNcsG1E3HiauxQRAEhh9riDadBDGj0Noo3f3dP+6t6qrqbrq6qO6qevy8zulD3VvPfe7z7aI+dfupW7fM3RERkbBUFHsAIiJSeAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA9RvuZrbBzI6a2Rt93G9m9rdmdsjMdpnZ3MIPU0REBiKXI/eNwNLT3H8FMD3+WQncf+bDEhGRM9FvuLv7i8AfTtPkauDHHnkFGGtmEws1QBERGbjKAvQxGXg7bbklXvfb7IZmtpLo6J6qqqp5U6ZMyWuHXV1dVFSE8XaBailNodQSSh2gWpIOHDhwzN3P7a9dIcLdelnX6zUN3H09sB6gtrbWt23bltcOm5qaqK+vz2vbUqNaSlMotYRSB6iWJDP7TS7tCvEy2AKkH4LXAK0F6FdERPJUiHB/BrglPmvmQuB9d+8xJSMiIkOn32kZM3sUqAfOMbMW4E5gGIC7rwM2A18GDgEfArcO1mBFRCQ3/Ya7uy/v534HvlmwEYlIWTh16hQtLS2cPHlySPY3ZswY9u3bNyT7Gmy51DJixAhqamoYNmxYXvsoxBuqIvIJ1NLSwujRo5k6dSpmvZ1XUVgnTpxg9OjRg76fodBfLe7Ou+++S0tLC9OmTctrH2GcVyQiQ+7kyZOMHz9+SIL9k8bMGD9+/Bn9VaRwF5G8KdgHz5n+bhXuIiIB0py7iJStRCLB+eefn1retGkTU6dOLd6ASojCXUTKVlVVFTt37uzz/o6ODiorP5kxp2kZEQnKxo0buf7667nyyitZvHgxAA0NDcyfP58LLriAO++8M9X2nnvuYcaMGVx22WUsX76ce++9F4D6+nqSl0c5duxY6q+Bzs5OVq9enerrgQceALovJ3Ddddcxc+ZMbrrpJqKzxKG5uZmLL76YWbNmUVdXx4kTJ1iyZEnGi9LChQvZtWtXQX8Pn8yXNBEpqO8/u4e9rccL2ud5k87mziv/5LRt2tvbmT17NgDTpk3jqaeeAuDll19m165djBs3jq1bt3Lw4EFeffVV3J2rrrqKF198kVGjRtHY2MiOHTvo6Ohg7ty5zJs377T7e+ihhxgzZgzNzc189NFHLFy4MPUCsmPHDvbs2cOkSZNYuHAhL730EnV1dSxbtozHHnuM+fPnc/z4caqqqrjlllvYuHEja9eu5cCBA3z00UdccMEFBfitdVO4i0jZ6mta5vLLL2fcuHEAbN26la1btzJnzhwA2traOHjwICdOnODaa69l5MiRAFx11VX97m/r1q3s2rWLJ554AoD333+fgwcPMnz4cOrq6qipqQFg9uzZHD58mDFjxjBx4kTmz58PwNlnnw3Atddey8KFC2loaGDDhg18/etfP7NfRC8U7iJyxvo7wh5qo0aNSt12d9asWcM3vvGNjDZr167t83TDyspKurq6ADLONXd3fvjDH7JkyZKM9k1NTZx11lmp5UQiQUdHB+7e6z5GjhzJ5ZdfztNPP83jjz9OvlfIPR3NuYtI0JYsWcKGDRtoa2sD4MiRIxw9epRLLrmEp556ivb2dk6cOMGzzz6b2mbq1Kls374dIHWUnuzr/vvv59SpUwAcOHCADz74oM99z5w5k9bWVpqbm4Hok6kdHR0ArFixgm9/+9vMnz8/9VdGIenIXUSCtnjxYvbt28dFF10EQHV1NQ8//DBz585l2bJlzJ49m89+9rN88YtfTG1z++2389WvfpWf/OQnXHrppan1K1as4PDhw8ydOxd359xzz2XTpk197nv48OE89thjfOtb36K9vZ2qqiqef/55AObNm8fZZ5/NrbcO0rUW3b0oP/PmzfN8/fznP89721KjWkpTKLUMZh179+4dtL57c/z48UHt/8477/SGhoZB3UfS8ePH/ciRIz59+nTv7Ozss11vv2Ngm+eQsZqWEREZYo888ggLFizgnnvuGbSvDtS0jIgIcNdddw3Zvm688cYeb/AWmo7cRSRv7r1+XbIUwJn+bhXuIpKXESNG8O677yrgB4HH13MfMWJE3n1oWkZE8lJTU0NLSwvvvPPOkOzv5MmTZxR2pSSXWpLfxJQvhbuI5GXYsGF5f0tQPpqamlKfMi13Q1GLpmVERAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA5RTuZrbUzPab2SEzu6OX+8eY2bNm9rqZ7TGzWws/VBERyVW/4W5mCeA+4ArgPGC5mZ2X1eybwF53nwXUA//NzIYXeKwiIpKjXI7c64BD7v6mu38MNAJXZ7VxYLSZGVAN/AHoKOhIRUQkZ9bfN5eb2XXAUndfES/fDCxw91VpbUYDzwAzgdHAMnf/X730tRJYCTBhwoR5jY2NeQ26ra2N6urqvLYtNaqlNIVSSyh1gGpJWrRo0XZ3r+2vXS5fkG29rMt+RVgC7AQuBf4YeM7M/sndj2ds5L4eWA9QW1vr9fX1Oey+p6amJvLdttSoltIUSi2h1AGqZaBymZZpAaakLdcArVltbgWe9Mgh4NdER/EiIlIEuYR7MzDdzKbFb5LeQDQFk+4t4EsAZjYBmAG8WciBiohI7vqdlnH3DjNbBWwBEsAGd99jZrfF968D/guw0cx2E03jfNfdjw3iuEVE5DRymXPH3TcDm7PWrUu73QosLuzQREQkX/qEqohIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0NmdkcfberNbKeZ7TGzXxR2mCIiMhCV/TUwswRwH3A50AI0m9kz7r43rc1Y4EfAUnd/y8w+PVgDFhGR/uVy5F4HHHL3N939Y6ARuDqrzY3Ak+7+FoC7Hy3sMEVEZCDM3U/fwOw6oiPyFfHyzcACd1+V1mYtMAz4E2A08AN3/3Evfa0EVgJMmDBhXmNjY16Dbmtro7q6Oq9tS41qKU2h1BJKHaBakhYtWrTd3Wv7a9fvtAxgvazLfkWoBOYBXwKqgJfN7BV3P5Cxkft6YD1AbW2t19fX57D7npqamsh321KjWkpTKLWEUgeoloHKJdxbgClpyzVAay9tjrn7B8AHZvYiMAs4gIiIDLlc5tybgelmNs3MhgM3AM9ktXka+KKZVZrZSGABsK+wQxURkVz1e+Tu7h1mtgrYAiSADe6+x8xui+9f5+77zOxnwC6gC3jQ3d8YzIGLiEjfcpmWwd03A5uz1q3LWm4AGgo3NBERyZc+oSoiEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0Nmdsdp2s03s04zu65wQxQRkYHqN9zNLAHcB1wBnAcsN7Pz+mj3N8CWQg9SREQGJpcj9zrgkLu/6e4fA43A1b20+xbwP4GjBRyfiIjkwdz99A2iKZal7r4iXr4ZWODuq9LaTAYeAS4FHgJ+6u5P9NLXSmAlwIQJE+Y1NjbmNei2tjaqq6vz2rbUqJbSFEotodQBqiVp0aJF2929tr92lTn0Zb2sy35FWAt81907zXprHm/kvh5YD1BbW+v19fU57L6npqYm8t221KiW0hRKLaHUAaploHIJ9xZgStpyDdCa1aYWaIyD/Rzgy2bW4e6bCjJKEREZkFzCvRmYbmbTgCPADcCN6Q3cfVrytpltJJqWUbCLiBRJv+Hu7h1mtoroLJgEsMHd95jZbfH96wZ5jCIiMkC5HLnj7puBzVnreg11d//6mQ9LRETOhD6hKiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzOlhEZLJt2HKFhy35a32tn0tgqVi+ZwTVzJhd7WJIjPX6lS+EuRbNpxxHWPLmb9lOdABx5r501T+4GUECUAT1+pU3TMlI0DVv2p4Ihqf1UJw1b9hdpRDIQevxKm8Jdiqb1vfYBrZfSosevtCncpWgmja0a0HopLXr8SpvCXYpm9ZIZVA1LZKyrGpZg9ZIZRRqRDIQev9KmN1SlaJJvuulsi/Kkx6+0KdylqK6ZM1lhUMb0+JUuTcuIiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgPQdqiKSoavL6XSns8txhy6Plru6onVdyXVdTpdHbTq7utt0xcvpbaKf7vVdXaS173ubzi5Sbfa9dYq3X/lNarm7PXGfcT/ueHx/97hJG0e0nN0muW16ne6Zv4vM9k6nkzEeT+/D02qNl5P7rJ8E9fWD+zgq3KVkZD8hkqHicRBET55kG9KehJlP8vQnWXKb04ZH6knXHQxvHDnFse0tWWPKDLfsfWYHTPc2PYOlOxy6t+m+Py18soIlo413B1SX9+yz050PPzzJWS+/EPeT2Wdv++3yYv8v6MfeN3JqVmFQYUZFhZEwi5YrjES8bPG6RIVRYfH6CsMMEvFytH3cT2pdtDy8siJubyTifsBIVGT22b0tGcuf+uh3g/t7IsdwN7OlwA+ABPCgu//XrPtvAr4bL7YB/97dXy/kQAdD8kmf+YSnO0RSr7ZpbdJDp7cnd3/bpx21uDu7ftfB8ddb+36SZh0Z9NwHWUcSWUHQ1d1PakwZYdMzJLt6CZLMcfUMlU532to+ZETzz+Px9AzAjPBLO5JJLpec3fn9F06GQPTETwuF7Cd7HDLpwVIRbxMFUWawGFEflRUVnFVpcX+k2ifDKn2/R3//eyZNPKc76LL67G2/6X2mB1oqsNLWRTWQ6is7BLtDMnus3WNJtkn1k94mDthEhfHKyy/zhYULM+usyBpDfNvMCvt/ocCamo4N+j76DXczSwD3AZcDLUCzmT3j7nvTmv0a+Nfu/i9mdgWwHlgwGAP+xYF3+N4vP6TqtV9kBFnGEVp6qPU4ius+qvJSyZOdO864i+wndnqYdB8xdD+Zsp8MmUcZWdvHbXo7WrG0J+CxinYm/tHYVD+ZT0LSjpjiJ3bqqCrtyCrtiZ1ZU+YTurfwSMT9ZuwjOzxS9VtakKSHV7T9tldf5eKLLszpd5PcPjn2UtLU1ER9/axiD6MgPjWignNHn1XsYZSNXI7c64BD7v4mgJk1AlcDqXB39/+b1v4VoKaQg0xXfVaCCaMqmPDp6h5BlgqKrCd1X0FD9vanOUrp7jvz6Cc9ELqDI3P/GUdyWcG0fds2Llwwv8f22WPv3nd32Gb3XWxRkMwp9jAK4u1RFUwZN7LYwxDJm3k/h69mdh2w1N1XxMs3AwvcfVUf7W8HZibbZ923ElgJMGHChHmNjY15DbqtrY3q6uq8ti01qqU0hVJLKHWAaklatGjRdnev7a9dLkfuvR0S9vqKYGaLgD8HvtDb/e6+nmjKhtraWq/P8+3i6Agxv21LjWopTaHUEkodoFoGKpdwbwGmpC3XAK3ZjczsAuBB4Ap3f7cwwxMRkXzk8iGmZmC6mU0zs+HADcAz6Q3M7DPAk8DN7n6g8MMUEZGB6PfI3d07zGwVsIXoVMgN7r7HzG6L718H/GdgPPCj+I29jlzmhEREZHDkdJ67u28GNmetW5d2ewXQ4w1UkaG2accRGrbsp/W9diaNrWL1khkAPdZdM2fykOx7MPaTi+9t2s2jv3qb73z+FH++ZjPLF0zh7mvOL8pYpDj0CVUJxqYdR1jz5G7aT3UCcOS9dlb/4+tgcKrTU+vWPLkboKDB29u+B2M/ufjept08/MpbqeVO99SyAv6TQxcOk2A0bNmfCtekU12eCvak9lOdNGzZP+j7Hoz95OLRX709oPUSJoW7BKP1vfZBaXsm/RV6P7no7OOzK32tlzAp3CUYk8ZWDUrbM+mv0PvJRaKPTyv3tV7CpHCXYKxeMoOqYYmMdcMqjGGJzFCrGpZIvdE6mPsejP3kYvmCKQNaL2HSG6oSjOQbl8U4W6avfRfjbJnkm6bJOfaEmc6W+QRSuEtQrpkzuddAHYqQ7WvfxXD3Nedz9zXn09TUxP+7qb7Yw5Ei0LSMiEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzC3cyWmtl+MztkZnf0cr+Z2d/G9+8ys7mFH6qIiOSq33A3swRwH3AFcB6w3MzOy2p2BTA9/lkJ3F/gcYqIyADkcuReBxxy9zfd/WOgEbg6q83VwI898gow1swmFnisIiKSo8oc2kwG3k5bbgEW5NBmMvDb9EZmtpLoyB6gzcz2D2i03c4BjuW5balRLaUplFpCqQNUS9Jnc2mUS7hbL+s8jza4+3pgfQ77PP2AzLa5e+2Z9lMKVEtpCqWWUOoA1TJQuUzLtABT0pZrgNY82oiIyBDJJdybgelmNs3MhgM3AM9ktXkGuCU+a+ZC4H13/212RyIiMjT6nZZx9w4zWwVsARLABnffY2a3xfevAzYDXwYOAR8Ctw7ekIECTO2UENVSmkKpJZQ6QLUMiLn3mBoXEZEyp0+oiogESOEuIhKgkg93MxthZq+a2etmtsfMvh+vH2dmz5nZwfjfTxV7rLkws4SZ7TCzn8bL5VrHYTPbbWY7zWxbvK5caxlrZk+Y2T+b2T4zu6gcazGzGfHjkfw5bmbfKdNa/kP8fH/DzB6Nc6Ds6gAws7+M69hjZt+J1w16LSUf7sBHwKXuPguYDSyNz8i5A3jB3acDL8TL5eAvgX1py+VaB8Aid5+ddr5uudbyA+Bn7j4TmEX0+JRdLe6+P348ZgPziE5ueIoyq8XMJgPfBmrd/fNEJ3LcQJnVAWBmnwf+HdEn/WcBXzGz6QxFLe5eNj/ASOA1ok/I7gcmxusnAvuLPb4cxl8TP5CXAj+N15VdHfFYDwPnZK0ru1qAs4FfE59cUM61ZI1/MfBSOdZC9yfexxGd0ffTuJ6yqiMe5/XAg2nLfwX8p6GopRyO3JNTGTuBo8Bz7v4rYILH59LH/366mGPM0VqiB7YrbV051gHRJ5C3mtn2+LISUJ61fA54B/j7eLrsQTMbRXnWku4G4NH4dlnV4u5HgHuBt4guYfK+u2+lzOqIvQFcYmbjzWwk0SnjUxiCWsoi3N2906M/NWuAuvhPnbJiZl8Bjrr79mKPpUAWuvtcoiuCftPMLin2gPJUCcwF7nf3OcAHlMGf+6cTf9jwKuAfiz2WfMTzz1cD04BJwCgz+7Pijio/7r4P+BvgOeBnwOtAx1DsuyzCPcnd3wOagKXA75NXnoz/PVrEoeViIXCVmR0murLmpWb2MOVXBwDu3hr/e5RoXreO8qylBWiJ/xoEeIIo7MuxlqQrgNfc/ffxcrnVchnwa3d/x91PAU8CF1N+dQDg7g+5+1x3vwT4A3CQIail5MPdzM41s7Hx7SqiB/6fiS558LW42deAp4szwty4+xp3r3H3qUR/Mv8fd/8zyqwOADMbZWajk7eJ5kPfoAxrcfffAW+b2Yx41ZeAvZRhLWmW0z0lA+VXy1vAhWY20syM6DHZR/nVAYCZfTr+9zPAnxI9NoNeS8l/QtXMLgD+gegd8wrgcXf/azMbDzwOfIboP8P17v6H4o00d2ZWD9zu7l8pxzrM7HNER+sQTWs84u73lGMtAGY2G3gQGA68SXT5jArKs5aRRG9Gfs7d34/Xld3jEp/yvIxoCmMHsAKopszqADCzfwLGA6eA/+juLwzFY1Ly4S4iIgNX8tMyIiIycAp3EZEAKdxFRAKkcBcRCZDCXUQkQLl8QbbIkIpPE3shXvwjoJPoEgEAde7+cVEGdhpm9m+BzfF58yJFp1MhpaSZ2V1Am7vfWwJjSbh7Zx/3/RJY5e47B9BfpbsPyUfR5ZNH0zJSVszsaxZd33+nmf3IzCrMrNLM3jOzBjN7zcy2mNkCM/uFmb1pZl+Ot11hZk/F9+83s+/l2O/dZvYq0XWNvm9mzfH1uddZZBnR5agfi7cfbmYtaZ+svtDMno9v321mD5jZc0QXK6s0s/8e73uXma0Y+t+qhEjhLmUjvmDctcDF8YXkKoku5QAwBtgaX8zsY+Auoo+tXw/8dVo3dfE2c4EbzWx2Dv2+5u517v4y8AN3nw+cH9+31N0fA3YCyzy6nnp/00ZzgCvd/WZgJdEF5eqA+UQXYftMPr8fkXSac5dychlRAG6LLjlCFdFH7QHa3f25+PZuosvEdpjZbmBqWh9b3P1fAMxsE/AFoudBX/1+TPelFgC+ZGargRHAOcB24H8PsI6n3f1kfHsx8K/MLP3FZDrRR9JF8qZwl3JiwAZ3/6uMlWaVRCGc1EX0DV7J2+n/z7PfZPJ++m33+I2p+Lot/wOY6+5HzOxuopDvTQfdfxlnt/kgq6a/cPcXECkgTctIOXke+KqZnQPRWTV5TGEstug7U0cSXTP8pQH0W0X0YnEsvirmv0m77wQwOm35MNFX3ZHVLtsW4C/iF5Lk96BWDbAmkR505C5lw913x1cLfN7MKoiusncb0DqAbn4JPAL8MfCT5NktufTr7u+a2T8QXd74N8Cv0u7+e+BBM2snmte/C/g7M/sd8OppxvMA0ZUBd8ZTQkeJXnREzohOhZRPjPhMlM+7+3eKPRaRwaZpGRGRAOnIXUQkQDpyFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJ0P8HfLcy7/zjy3oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n", "data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n", "data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n", "plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false, "scrolled": true }, "source": [ "Comme on pouvait s'attendre au vu des données initiales, la\n", "température n'a pas d'impact notable sur la probabilité d'échec des\n", "joints toriques. Elle sera d'environ 0.2, comme dans les essais\n", "précédents où nous il y a eu défaillance d'au moins un joint. Revenons\n", "à l'ensemble des données initiales pour estimer la probabilité de\n", "défaillance d'un joint:\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.06521739130434782\n" ] } ], "source": [ "data = pd.read_csv(\"shuttle.csv\")\n", "print(np.sum(data.Malfunction)/np.sum(data.Count))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe\n", "un joint primaire un joint secondaire sur chacune des trois parties du\n", "lançeur, la probabilité de défaillance des deux joints d'un lançeur\n", "est de $p^2 \\approx 0.00425$. La probabilité de défaillance d'un des\n", "lançeur est donc de $1-(1-p^2)^3 \\approx 1.2%$. Ça serait vraiment\n", "pas de chance... Tout est sous contrôle, le décollage peut donc avoir\n", "lieu demain comme prévu.\n", "\n", "Seulement, le lendemain, la navette Challenger explosera et emportera\n", "avec elle ses sept membres d'équipages. L'opinion publique est\n", "fortement touchée et lors de l'enquête qui suivra, la fiabilité des\n", "joints toriques sera directement mise en cause. Au delà des problèmes\n", "de communication interne à la NASA qui sont pour beaucoup dans ce\n", "fiasco, l'analyse précédente comporte (au moins) un petit\n", "problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette\n", "analyse et de regarder ce jeu de données sous tous les angles afin\n", "d'expliquer ce qui ne va pas." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### réponse \n", "\n", "La régression a été effectué sur le jeu de données complet (pression = 50 et 200 bar).\n", "\n", "### hyp. 1\n", "Il faut retirer la données correspondant à la pression de 50 bars pour voire l'influence de la température.\n", "\n", "ccl = ce n'est pas la pression qui pose problème." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountTemperaturePressureMalfunction
82/03/846572001
94/06/846632001
108/30/846702001
131/24/856532002
2010/30/856752002
221/12/866582001
\n", "
" ], "text/plain": [ " Date Count Temperature Pressure Malfunction\n", "8 2/03/84 6 57 200 1\n", "9 4/06/84 6 63 200 1\n", "10 8/30/84 6 70 200 1\n", "13 1/24/85 6 53 200 2\n", "20 10/30/85 6 75 200 2\n", "22 1/12/86 6 58 200 1" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv(\"shuttle.csv\")\n", "data = data[data.Malfunction>0]\n", "data = data[data.Pressure>50]\n", "data" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFUxJREFUeJzt3X2QZXV95/H3Zx6AQYgQ2EzcGYxgZkkoFxCbwQ0kO5HEBbeEWMQI7iYuWTKhhE25W5vAWm5CNqYqYkxFS3QcWXxgKyFRVMjuuAixWqNBgZDJ8GAgs4jQjBEZUWwc5qm/+8e9fXKnu6fn9tDnXqb7/arqmnse+9vfe7gfzrnn/m6qCkmSAJYMuwBJ0guHoSBJahgKkqSGoSBJahgKkqSGoSBJarQWCkluSPJkkvv3szxJ3pdka5ItSc5oqxZJUn/aPFP4KHDeLMvPB9Z0f9YDH2yxFklSH1oLhar6IvCdWVa5EPh4dXwFOCbJS9qqR5J0YMuG+LtXAY/3TI91531z6opJ1tM5m2DFihWvOuGEEwZS4PM1MTHBkiW+bdPLnkxnT2ZmX6Z7Pj15+OGHn6qqf3ag9YYZCplh3oxjblTVRmAjwMjISN1zzz1t1jVvRkdHWbdu3bDLeEGxJ9PZk5nZl+meT0+SfKOf9YYZw2NA7//yrwa2DakWSRLDDYVbgV/p3oX0auB7VTXt0pEkaXBau3yU5E+BdcDxScaA3wGWA1TVBmAT8DpgK/AD4NK2apEk9ae1UKiqSw6wvIAr2vr9kqS58619SVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVKj1VBIcl6Sh5JsTXL1DMtfnOQvkvxdkgeSXNpmPZKk2bUWCkmWAtcB5wOnAJckOWXKalcAD1bVacA64D1JDmurJknS7No8U1gLbK2qR6pqF3ATcOGUdQo4OkmAo4DvAHtarEmSNItlLe57FfB4z/QYcNaUdd4P3ApsA44G3lRVE1N3lGQ9sB5g5cqVjI6OtlHvvBsfHz9kah0UezKdPZmZfZluED1pMxQyw7yaMv1vgM3Aa4CXA7cn+auqemafjao2AhsBRkZGat26dfNfbQtGR0c5VGodFHsynT2ZmX2ZbhA9afPy0RhwQs/0ajpnBL0uBT5VHVuBrwM/0WJNkqRZtBkKdwNrkpzYffP4YjqXino9BpwLkGQlcDLwSIs1SZJm0drlo6rak+RK4DZgKXBDVT2Q5PLu8g3A7wEfTXIfnctNV1XVU23VJEmaXZvvKVBVm4BNU+Zt6Hm8DXhtmzVIkvrnJ5olSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUaDUUkpyX5KEkW5NcvZ911iXZnOSBJF9osx5J0uyW9bNSkldU1f1z2XGSpcB1wM8DY8DdSW6tqgd71jkG+ABwXlU9luRH5vI7JEnzq98zhQ1J7kry1u4LeT/WAlur6pGq2gXcBFw4ZZ03A5+qqscAqurJPvctSWpBX2cKVXVOkjXArwL3JLkL+EhV3T7LZquAx3umx4CzpqzzL4DlSUaBo4H3VtXHp+4oyXpgPcDKlSsZHR3tp+yhGx8fP2RqHRR7Mp09mZl9mW4QPekrFACq6h+SvAO4B3gf8MokAd5eVZ+aYZPMtJsZfv+rgHOBFcCdSb5SVQ9P+d0bgY0AIyMjtW7dun7LHqrR0VEOlVoHxZ5MZ09mZl+mG0RP+n1P4VTgUuDfArcDr6+qe5P8c+BOYKZQGANO6JleDWybYZ2nqupZ4NkkXwROAx5GkjRw/b6n8H7gXuC0qrqiqu4FqKptwDv2s83dwJokJyY5DLgYuHXKOrcAP51kWZIj6Vxe+tpc/whJ0vzo9/LR64AdVbUXIMkS4Iiq+kFV3TjTBlW1J8mVwG3AUuCGqnogyeXd5Ruq6mtJ/i+wBZgArp/rXU6SpPnTbyjcAfwcMN6dPhL4HPBTs21UVZuATVPmbZgy/W7g3X3WIUlqUb+Xj46oqslAoPv4yHZKkiQNS7+h8GySMyYnkrwK2NFOSZKkYen38tHbgE8kmbx76CXAm9opSZI0LP1+eO3uJD8BnEzn8wd/X1W7W61MkjRwfX94DTgTeFl3m1cmYaZPH0uSDl39fnjtRuDlwGZgb3d2AYaCJC0g/Z4pjACnVNXUYSokSQtIv3cf3Q/8aJuFSJKGr98zheOBB7ujo+6cnFlVF7RSlSRpKPoNhWvaLEKS9MLQ7y2pX0jyY8CaqrqjO3jd0nZLkyQNWl/vKST5NeCTwIe6s1YBn2mrKEnScPT7RvMVwNnAM9D5wh3A71OWpAWm31DY2f2eZQCSLGP6t6hJkg5x/YbCF5K8HViR5OeBTwB/0V5ZkqRh6DcUrga+DdwH/Dqd70jY3zeuSZIOUf3efTQBfLj7I0laoPod++jrzPAeQlWdNO8VSZKGZi5jH006Angj8MPzX44kaZj6ek+hqrb3/DxRVX8MvKbl2iRJA9bv5aMzeiaX0DlzOLqViiRJQ9Pv5aP39DzeAzwK/NK8VyNJGqp+7z762bYLkSQNX7+Xj/7LbMur6o/mpxxJ0jDN5e6jM4Fbu9OvB74IPN5GUZKk4ZjLl+ycUVXfB0hyDfCJqrqsrcIkSYPX7zAXLwV29UzvAl4279VIkoaq3zOFG4G7knyazieb3wB8vLWqJElD0e/dR7+f5LPAT3dnXVpVf9teWZKkYej38hHAkcAzVfVeYCzJiS3VJEkakn6/jvN3gKuA/9adtRz4X20VJUkajn7PFN4AXAA8C1BV23CYC0lacPoNhV1VVXSHz07yovZKkiQNS7+h8OdJPgQck+TXgDvwC3ckacHp9+6jP+x+N/MzwMnAb1fV7a1WJkkauAOeKSRZmuSOqrq9qn6zqv5rv4GQ5LwkDyXZmuTqWdY7M8neJL84l+IlSfPrgKFQVXuBHyR58Vx2nGQpcB1wPnAKcEmSU/az3ruA2+ayf0nS/Ov3E83PAfcluZ3uHUgAVfUbs2yzFthaVY8AJLkJuBB4cMp6/wm4mc6Ae5KkIeo3FP5P92cuVrHvKKpjwFm9KyRZRed219cwSygkWQ+sB1i5ciWjo6NzLGU4xsfHD5laB8WeTGdPZmZfphtET2YNhSQvrarHqupjB7HvzDCvpkz/MXBVVe1NZlq9u1HVRmAjwMjISK1bt+4gyhm80dFRDpVaB8WeTGdPZmZfphtETw70nsJnJh8kuXmO+x4DTuiZXg1sm7LOCHBTkkeBXwQ+kOQX5vh7JEnz5ECXj3r/9/2kOe77bmBNd4ykJ4CLgTf3rlBVzfhJST4K/O+q+gySpKE4UCjUfh4fUFXtSXIlnbuKlgI3VNUDSS7vLt8wp0olSa07UCicluQZOmcMK7qP6U5XVf3QbBtX1SZg05R5M4ZBVf2HviqWJLVm1lCoqqWDKkSSNHxz+T4FSdICZyhIkhqGgiSpYShIkhqLKhS2j+/k7x7/LtvHdw67FEmak+3jO9mxe2/rr1+LJhRu2fwEZ7/r8/z767/K2e/6PLdufmLYJUlSXyZfv77+7Wdbf/1aFKGwfXwnV928hed2T/D9nXt4bvcEv3XzFs8YJL3g9b5+7a1q/fVrUYTC2NM7WL5k3z91+ZIljD29Y0gVSVJ/Bv36tShCYfWxK9g9MbHPvN0TE6w+dsWQKpKk/gz69WtRhMJxRx3OtRedyhHLl3D04cs4YvkSrr3oVI476vBhlyZJs+p9/VqatP761e+X7BzyLjh9FWf/+PGMPb2D1ceuMBAkHTImX7/uuvNLfPmCc1p9/Vo0oQCdxDUMJB2KjjvqcFYsX9r6a9iiuHwkSeqPoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqSGoSBJahgKkqRGq6GQ5LwkDyXZmuTqGZb/uyRbuj9/neS0NuuRJM2utVBIshS4DjgfOAW4JMkpU1b7OvCvq+pU4PeAjW3VI0k6sDbPFNYCW6vqkaraBdwEXNi7QlX9dVU93Z38CrC6xXokSQewrMV9rwIe75keA86aZf3/CHx2pgVJ1gPrAVauXMno6Og8ldiu8fHxQ6bWQbEn09mTmdmX6QbRkzZDITPMqxlXTH6WTiicM9PyqtpI99LSyMhIrVu3bp5KbNfo6CiHSq2DYk+msyczsy/TDaInbYbCGHBCz/RqYNvUlZKcClwPnF9V21usR5J0AG2+p3A3sCbJiUkOAy4Gbu1dIclLgU8Bv1xVD7dYiySpD62dKVTVniRXArcBS4EbquqBJJd3l28Afhs4DvhAEoA9VTXSVk2SpNm1efmIqtoEbJoyb0PP48uAy9qsYbHYPr6Tsad3sPrYFRx31OGtb7eQ2ZPh2z6+kx2797J9fKfPwYC1GgoajFs2P8FVN29h+ZIl7J6Y4NqLTuWC01e1tt1CZk+Gb/I5+I2f3M1/ftfnfQ4GzGEuDnHbx3dy1c1beG73BN/fuYfndk/wWzdvYfv4zla2W8jsyfD1Pgd7q3wOhsBQOMSNPb2D5Uv2fRqXL1nC2NM7WtluIbMnw+dzMHyGwiFu9bEr2D0xsc+83RMTrD52RSvbLWT2ZPh8DobPUDjEHXfU4Vx70akcsXwJRx++jCOWL+Hai0494JtzB7vdQmZPhq/3OVia+BwMgW80LwAXnL6Ks3/8+DnfMXOw2y1k9mT4Jp+Du+78El++4ByfgwEzFBaI4446/KD+4znY7RYyezJ8xx11OCuWL/V5GAIvH0mSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKnRaigkOS/JQ0m2Jrl6huVJ8r7u8i1JzmizHknS7FoLhSRLgeuA84FTgEuSnDJltfOBNd2f9cAH26pHknRgbZ4prAW2VtUjVbULuAm4cMo6FwIfr46vAMckeUmLNUmSZrGsxX2vAh7vmR4DzupjnVXAN3tXSrKezpkEwHiSh+a31NYcDzw17CJeYOzJdPZkZvZluufTkx/rZ6U2QyEzzKuDWIeq2ghsnI+iBinJPVU1Muw6XkjsyXT2ZGb2ZbpB9KTNy0djwAk906uBbQexjiRpQNoMhbuBNUlOTHIYcDFw65R1bgV+pXsX0quB71XVN6fuSJI0GK1dPqqqPUmuBG4DlgI3VNUDSS7vLt8AbAJeB2wFfgBc2lY9Q3LIXfIaAHsynT2ZmX2ZrvWepGraJXxJ0iLlJ5olSQ1DQZLUMBTmUZJHk9yXZHOSe7rzrknyRHfe5iSvG3adg5TkmCSfTPL3Sb6W5F8l+eEktyf5h+6/xw67zkHaT08W7XGS5OSev3tzkmeSvG0xHyez9KT148T3FOZRkkeBkap6qmfeNcB4Vf3hsOoapiQfA/6qqq7v3oV2JPB24DtV9QfdMbGOraqrhlroAO2nJ29jER8nk7rD4zxB54OuV7CIj5NJU3pyKS0fJ54pqDVJfgj4GeB/AlTVrqr6Lp3hTT7WXe1jwC8Mp8LBm6Un6jgX+H9V9Q0W8XEyRW9PWmcozK8CPpfkb7pDc0y6sjsK7A2L6RQYOAn4NvCRJH+b5PokLwJWTn4epfvvjwyzyAHbX09g8R4nvS4G/rT7eDEfJ716ewItHyeGwvw6u6rOoDP66xVJfobOyK8vB06nM6bTe4ZY36AtA84APlhVrwSeBaYNob7I7K8ni/k4AaB7Ke0C4BPDruWFYoaetH6cGArzqKq2df99Evg0sLaqvlVVe6tqAvgwndFjF4sxYKyqvtqd/iSdF8RvTY6G2/33ySHVNwwz9mSRHyeTzgfurapvdacX83EyaZ+eDOI4MRTmSZIXJTl68jHwWuD+KUOBvwG4fxj1DUNV/SPweJKTu7POBR6kM7zJW7rz3gLcMoTyhmJ/PVnMx0mPS9j3MsmiPU567NOTQRwn3n00T5KcROfsADqXCP6kqn4/yY10TvUKeBT49cU0vlOS04HrgcOAR+jcPbEE+HPgpcBjwBur6jtDK3LA9tOT97G4j5Mj6Qyjf1JVfa877zgW93EyU09afz0xFCRJDS8fSZIahoIkqWEoSJIahoIkqWEoSJIarX3zmjRo3VsY/7I7+aPAXjpDSkDng4S7hlLYLJL8KrCp+/kFaei8JVUL0gtpdNokS6tq736WfQm4sqo2z2F/y6pqz7wVKPXw8pEWhSRvSXJXdwz6DyRZkmRZku8meXeSe5PcluSsJF9I8sjkWPVJLkvy6e7yh5K8o8/9vjPJXcDaJL+b5O4k9yfZkI430fkg0p91tz8syViSY7r7fnWSO7qP35nkQ0lupzOY3rIkf9T93VuSXDb4rmohMhS04CV5BZ0hAX6qqk6nc9n04u7iFwOf6w5kuAu4hs7QE28E/kfPbtZ2tzkDeHOS0/vY771Vtbaq7gTeW1VnAv+yu+y8qvozYDPwpqo6vY/LW68EXl9VvwysB56sqrXAmXQGYHzpwfRH6uV7CloMfo7OC+c9SQBW0Bk+AGBHVd3efXwf8L2q2pPkPuBlPfu4raqeBkjyGeAcOv/97G+/u/inYU8Azk3ym8ARwPHA3wCfnePfcUtVPdd9/FrgJ5P0htAaOsNBSAfNUNBiEOCGqvrv+8xMltF58Z40Aezsedz738fUN9/qAPvdUd037Lpj2LyfzmioTyR5J51wmMke/ukMfuo6z075m95aVX+JNI+8fKTF4A7gl5IcD527lA7iUstr0/lu5SPpfCPYl+ew3xV0Quap7ki6F/Us+z5wdM/0o8Cruo9715vqNuCt3QCa/E7fFXP8m6RpPFPQgldV9yX5XeCOJEuA3cDlwLY57OZLwJ/Q+YKTGyfvFupnv1W1PZ3vZb4f+Abw1Z7FHwGuT7KDzvsW1wAfTvKPwF2z1PMhOqOHbu5eunqSTlhJz4u3pEoH0L2z5xVV9bZh1yK1zctHkqSGZwqSpIZnCpKkhqEgSWoYCpKkhqEgSWoYCpKkxv8HZrJuXcQgAlUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data[\"Frequency\"]=data.Malfunction/data.Count\n", "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", "plt.grid(True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### hyp. 2\n", "La fréquence de malfonction doit être calculée sur l'ensemble des données (pas de filtre sur data.malfunction) car on masque tous les test pour lesquelles on n'as pas eu de pb.\n", "\n", "La fréquence doit être calculée comme la somme des malfunction / somme des counts pour une température donnée. " ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
DateCountTemperaturePressureMalfunction
04/12/81666500
111/12/81670501
23/22/82669500
311/11/82668500
44/04/83667500
56/18/82672500
68/30/836731000
711/28/836701000
82/03/846572001
94/06/846632001
108/30/846702001
1110/05/846782000
1211/08/846672000
131/24/856532002
144/12/856672000
154/29/856752000
166/17/856702000
177/29/856812000
188/27/856762000
1910/03/856792000
2010/30/856752002
2111/26/856762000
221/12/866582001
\n", "
" ], "text/plain": [ " Date Count Temperature Pressure Malfunction\n", "0 4/12/81 6 66 50 0\n", "1 11/12/81 6 70 50 1\n", "2 3/22/82 6 69 50 0\n", "3 11/11/82 6 68 50 0\n", "4 4/04/83 6 67 50 0\n", "5 6/18/82 6 72 50 0\n", "6 8/30/83 6 73 100 0\n", "7 11/28/83 6 70 100 0\n", "8 2/03/84 6 57 200 1\n", "9 4/06/84 6 63 200 1\n", "10 8/30/84 6 70 200 1\n", "11 10/05/84 6 78 200 0\n", "12 11/08/84 6 67 200 0\n", "13 1/24/85 6 53 200 2\n", "14 4/12/85 6 67 200 0\n", "15 4/29/85 6 75 200 0\n", "16 6/17/85 6 70 200 0\n", "17 7/29/85 6 81 200 0\n", "18 8/27/85 6 76 200 0\n", "19 10/03/85 6 79 200 0\n", "20 10/30/85 6 75 200 2\n", "21 11/26/85 6 76 200 0\n", "22 1/12/86 6 58 200 1" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = pd.read_csv(\"shuttle.csv\")\n", "data" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "# data = data[data.Pressure == 200]" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "scrolled": true }, "outputs": [], "source": [ "nb_count = []\n", "nb_malfunction = []\n", "\n", "unique_temp = data.Temperature.unique()\n", "for temp in unique_temp:\n", " nb_count.append(data['Count'][data['Temperature'] == temp].sum())\n", " nb_malfunction.append(data['Malfunction'][data['Temperature'] == temp].sum())\n" ] }, { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [], "source": [ "df_data = pd.DataFrame()\n", "df_data['Temperature'] = unique_temp\n", "df_data['Count'] = nb_count\n", "df_data['Malfunction'] = nb_malfunction\n", "df_data['Frequency'] = df_data['Malfunction']/df_data['Count']" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFrJJREFUeJzt3X20XXV95/H35yYBgqFCoU0twYqWYhkHESI4YjvBpwl2CXXAis5Qhw5NWZLpsrPawnR1Wjq1a1XULnV8QGTwqaumKiq0TQdBjdZWC4gxPCiYQYQkViSieDHkgfudP87J7sn15ubcy9333HN4v9a6K2fv87v7fr93n+STvc8+v52qQpIkgLFBFyBJWjgMBUlSw1CQJDUMBUlSw1CQJDUMBUlSo7VQSHJ1kgeS3L6f55Pk7Uk2J9mU5OS2apEk9afNI4X3A6unef5M4Lju1xrg3S3WIknqQ2uhUFWfB743zZCzgQ9Wx5eAw5M8pa16JEkHtniAP/to4P6e5S3ddd+ePDDJGjpHEyxduvSUY445Zl4K7NfExARjY6P59syo9mZfw2dUe5uvvu6+++4Hq+qnDjRukKGQKdZNOedGVV0JXAmwcuXKuuWWW9qsa8Y2bNjAqlWrBl1GK0a1N/saPqPa23z1leRb/YwbZOxuAXr/y78C2DagWiRJDDYUrgN+vXsV0vOAH1TVj506kiTNn9ZOHyX5MLAKOCrJFuCPgSUAVXUFsB54GbAZ+BFwQVu1SJL601ooVNWrD/B8ARe39fMlSTM3em/lS5JmzVCQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSo9VQSLI6yV1JNie5dIrnn5zkb5J8NckdSS5osx5J0vRaC4Uki4B3AmcCJwCvTnLCpGEXA3dW1bOBVcBbkhzUVk2SpOm1eaRwKrC5qu6pql3AOuDsSWMKOCxJgGXA94A9LdYkSZpGqqqdDSfnAqur6sLu8vnAaVW1tmfMYcB1wDOBw4BXVdXfTbGtNcAagOXLl5+ybt26VmqerfHxcZYtWzboMloxqr3Z1/AZ1d7mq68zzjjjy1W18kDjFrdYQ6ZYNzmB/gOwEXgh8AzghiT/UFUP7/NNVVcCVwKsXLmyVq1aNffVPg4bNmxgodU0V0a1N/saPqPa20Lrq83TR1uAY3qWVwDbJo25APh4dWwGvknnqEGSNABthsLNwHFJju2+eXwenVNFve4DXgSQZDlwPHBPizVJkqbR2umjqtqTZC1wPbAIuLqq7khyUff5K4A/Bd6f5DY6p5suqaoH26pJkjS9Nt9ToKrWA+snrbui5/E24KVt1iBJ6p+faJYkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVLDUJAkNQwFSVKj1VBIsjrJXUk2J7l0P2NWJdmY5I4kn2uzHknS9Bb3MyjJs6rq9plsOMki4J3AS4AtwM1JrquqO3vGHA68C1hdVfcl+emZ/AxJ0tzq90jhiiQ3JXld9x/yfpwKbK6qe6pqF7AOOHvSmNcAH6+q+wCq6oE+ty1JakGqqr+ByXHAbwCvBG4C3ldVN0wz/lw6RwAXdpfPB06rqrU9Y94KLAH+DXAY8Laq+uAU21oDrAFYvnz5KevWreuvu3kyPj7OsmXLBl1GK0a1N/saPqPa23z1dcYZZ3y5qlYecGBV9f0FLALOAbYCXwO+DvzH/Yx9JXBVz/L5wP+eNOYdwJeAJwFHAd8AfmG6Gk455ZRaaD772c8OuoTWjGpv9jV8RrW3+eoLuKX6+He+3/cUTgQuAH4FuAF4eVXdmuRngS8CH5/i27YAx/QsrwC2TTHmwap6BHgkyeeBZwN391OXJGlu9fuewjuAW4FnV9XFVXUrQFVtA/5wP99zM3BckmOTHAScB1w3acy1wC8lWZzkUOA0OkcgkqQB6OtIAXgZsKOqHgNIMgYcUlU/qqoPTfUNVbUnyVrgejqnna6uqjuSXNR9/oqq+lqS/wtsAibonG6a0VVOkqS5028o3Ai8GBjvLh8KfAp4/nTfVFXrgfWT1l0xaflNwJv6rEOS1KJ+Tx8dUlV7A4Hu40PbKUmSNCj9hsIjSU7eu5DkFGBHOyVJkgal39NHrwc+mmTv1UNPAV7VTkmSpEHpKxSq6uYkzwSOBwJ8vap2t1qZJGne9XukAPBc4Gnd73lOEmqKTx9LkoZXvx9e+xDwDGAj8Fh3dQGGgiSNkH6PFFYCJ3Q/Ki1JGlH9Xn10O/AzbRYiSRq8fo8UjgLuTHITsHPvyqo6q5WqJEkD0W8oXNZmEZKkhaHfS1I/l+TngOOq6sbu5HWL2i1NkjTf+npPIclvAh8D3tNddTTwybaKkiQNRr9vNF8MnA48DFBV3wC8n7IkjZh+Q2Fnde6zDECSxXQ+pyBJGiH9hsLnkvwBsDTJS4CPAn/TXlmSpEHoNxQuBb4L3Ab8Fp17JOzvjmuSpCHV79VHE8B7u1+SpBHV79xH32SK9xCq6ulzXpEkaWBmMvfRXocArwR+cu7LkSQNUl/vKVTV9p6vrVX1VuCFLdcmSZpn/Z4+OrlncYzOkcNhrVQkSRqYfk8fvaXn8R7gXuDX5rwaSdJA9Xv10RltFyJJGrx+Tx/99+mer6q/mJtyJEmDNJOrj54LXNddfjnweeD+NoqSJA3GTG6yc3JV/RAgyWXAR6vqwrYKkyTNv36nuXgqsKtneRfwtDmvRpI0UP0eKXwIuCnJJ+h8svkVwAdbq0qSNBD9Xn30Z0n+Hvil7qoLquor7ZUlSRqEfk8fARwKPFxVbwO2JDm2pZokSQPS7+04/xi4BPgf3VVLgL9sqyhJ0mD0e6TwCuAs4BGAqtqG01xI0sjpNxR2VVXRnT47yZPaK0mSNCj9hsJHkrwHODzJbwI34g13JGnk9Hv10Zu792Z+GDge+KOquqHVyiRJ8+6ARwpJFiW5sapuqKrfq6rf7TcQkqxOcleSzUkunWbcc5M8luTcmRQvSZpbBwyFqnoM+FGSJ89kw0kWAe8EzgROAF6d5IT9jHsjcP1Mti9Jmnv9fqL5UeC2JDfQvQIJoKp+e5rvORXYXFX3ACRZB5wN3Dlp3H8DrqEz4Z4kaYD6DYW/637NxNHsO4vqFuC03gFJjqZzuesLmSYUkqwB1gAsX76cDRs2zLCUdo2Pjy+4mubKqPZmX8NnVHtbaH1NGwpJnlpV91XVB2ax7UyxriYtvxW4pKoeS6Ya3v2mqiuBKwFWrlxZq1atmkU57dmwYQMLraa5Mqq92dfwGdXeFlpfB3pP4ZN7HyS5Zobb3gIc07O8Atg2acxKYF2Se4FzgXcl+dUZ/hxJ0hw50Omj3v++P32G274ZOK47R9JW4DzgNb0DqqqZPynJ+4G/rapPIkkaiAOFQu3n8QFV1Z4ka+lcVbQIuLqq7khyUff5K2ZUqSSpdQcKhWcneZjOEcPS7mO6y1VVPzHdN1fVemD9pHVThkFV/Ze+KpYktWbaUKiqRfNViCRp8GZyPwVJ0ogzFCRJDUNBktQwFCRJjSdMKGwf38lX7/8+28d3DroUSVqw+p37aKhdu3Erl1yziSVjY+yemODyc07krJOOHnRZkrTgjPyRwvbxnVxyzSYe3T3BD3fu4dHdE/z+NZs8YpCkKYx8KGx5aAdLxvZtc8nYGFse2jGgiiRp4Rr5UFhxxFJ2T0zss273xAQrjlg6oIokaeEa+VA4ctnBXH7OiRyyZIzDDl7MIUvGuPycEzly2cGDLk2SFpwnxBvNZ510NKf//FFseWgHK45YaiBI0n48IUIBOkcMhoEkTW/kTx9JkvpnKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKlhKEiSGoaCJKnRaigkWZ3kriSbk1w6xfP/Kcmm7tc/JXl2m/VIkqbXWigkWQS8EzgTOAF4dZITJg37JvDvq+pE4E+BK9uqR5J0YG0eKZwKbK6qe6pqF7AOOLt3QFX9U1U91F38ErCixXokSQeQqmpnw8m5wOqqurC7fD5wWlWt3c/43wWeuXf8pOfWAGsAli9ffsq6detaqXm2xsfHWbZs2aDLaMWo9mZfw2dUe5uvvs4444wvV9XKA41b3GINmWLdlAmU5AzgvwIvmOr5qrqS7qmllStX1qpVq+aoxLmxYcMGFlpNc2VUe7Ov4TOqvS20vtoMhS3AMT3LK4BtkwclORG4Cjizqra3WI8k6QDafE/hZuC4JMcmOQg4D7iud0CSpwIfB86vqrtbrEWS1IfWjhSqak+StcD1wCLg6qq6I8lF3eevAP4IOBJ4VxKAPf2c85IktaPN00dU1Xpg/aR1V/Q8vhD4sTeWBdvHd7LloR2sOGIpRy47eM7GDpNR7Uszt318Jzt2P8b28Z2+FlrWaihodq7duJVLrtnEkrExdk9McPk5J3LWSUc/7rHDZFT70sztfS389i/u5nfe+BlfCy1zmosFZvv4Ti65ZhOP7p7ghzv38OjuCX7/mk1sH9/5uMYOk1HtSzPX+1p4rMrXwjwwFBaYLQ/tYMnYvrtlydgYWx7a8bjGDpNR7Usz52th/hkKC8yKI5aye2Jin3W7JyZYccTSxzV2mIxqX5o5Xwvzz1BYYI5cdjCXn3MihywZ47CDF3PIkjEuP+fEKd9cm8nYYTKqfWnmel8LixJfC/PAN5oXoLNOOprTf/6ovq68mcnYYTKqfWnm9r4WbvriF/jHs17ga6FlhsICdeSyg/t+8c9k7DAZ1b40c0cuO5ilSxb5epgHnj6SJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQRkTv3cmk2TIUpBFw7catnP7Gz/DN7z7C6W/8DNdt3DrokjSkDAVpyHl3Ms0lQ0Eact6dTHPJUJCGnHcn01wyFKQh593JNJe8yY40Arw7meaKRwrSiPDuZJoLhoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIahoIkqWEoSJIarYZCktVJ7kqyOcmlUzyfJG/vPr8pyclt1iPN1PbxnXz1/u/3dW+Cfse2sc02DVO9bf38hfA7mK/fbWsT4iVZBLwTeAmwBbg5yXVVdWfPsDOB47pfpwHv7v4pDdy1G7dyyTWbWDI2xu6JCS4/50TOOunoxzW2jW22aZjqbevnL4TfwXz+bts8UjgV2FxV91TVLmAdcPakMWcDH6yOLwGHJ3lKizVJfem9m9kPd+6Z9m5m/Y5tY5ttGqZ62/r5C+F3MN+/21RVOxtOzgVWV9WF3eXzgdOqam3PmL8F/ryqvtBd/jRwSVXdMmlba4A13cXjgbtaKXr2jgIeHHQRLRnV3qbtK0uWHrr4iKf8QsbGFu1dVxMTj+156Nt31+4dP5rN2Da2OdO+ZmKe6p2J/fbW1s9fCPtsDnv7uar6qQMNavN+Cpli3eQE6mcMVXUlcOVcFNWGJLdU1cpB19GGUe3NvobPqPa20Ppq8/TRFuCYnuUVwLZZjJEkzZM2Q+Fm4LgkxyY5CDgPuG7SmOuAX+9ehfQ84AdV9e0Wa5IkTaO100dVtSfJWuB6YBFwdVXdkeSi7vNXAOuBlwGbgR8BF7RVT8sW7KmtOTCqvdnX8BnV3hZUX6290SxJGj5+olmS1DAUJEkNQ2EWktyb5LYkG5Pc0l13WZKt3XUbk7xs0HXOVJLDk3wsydeTfC3Jv0vyk0luSPKN7p9HDLrOmdpPX6Owv47vqX9jkoeTvH7Y99k0fY3CPvudJHckuT3Jh5McstD2l+8pzEKSe4GVVfVgz7rLgPGqevOg6nq8knwA+Iequqp7xdihwB8A36uqP+/OX3VEVV0y0EJnaD99vZ4h31+9utPKbKUzTczFDPk+22tSXxcwxPssydHAF4ATqmpHko/QudjmBBbQ/vJIQQAk+Qngl4H/A1BVu6rq+3SmIvlAd9gHgF8dTIWzM01fo+ZFwP+rqm8x5Ptskt6+RsFiYGmSxXT+c7KNBba/DIXZKeBTSb7cnYJjr7Xd2V6vHvQh4Cw8Hfgu8L4kX0lyVZInAcv3fnak++dPD7LIWdhfXzDc+2uy84APdx8P+z7r1dsXDPE+q6qtwJuB+4Bv0/lc1qdYYPvLUJid06vqZDqzvF6c5JfpzPD6DOAkOjv8LQOsbzYWAycD766q5wCPAD823fkQ2l9fw76/Gt1TYmcBHx10LXNpir6Gep91Q+xs4FjgZ4EnJfnPg63qxxkKs1BV27p/PgB8Aji1qr5TVY9V1QTwXjqzxA6TLcCWqvrn7vLH6Pxj+p29M9d2/3xgQPXN1pR9jcD+6nUmcGtVfae7POz7bK99+hqBffZi4JtV9d2q2g18HHg+C2x/GQozlORJSQ7b+xh4KXB79p3y+xXA7YOob7aq6l+A+5Mc3131IuBOOlORvLa77rXAtQMob9b219ew769JXs2+p1iGep/12KevEdhn9wHPS3JoktB5LX6NBba/vPpohpI8nc7RAXROTfxVVf1Zkg/ROawt4F7gt4ZtHqckJwFXAQcB99C52mMM+AjwVDov6ldW1fcGVuQs7KevtzPk+wsgyaHA/cDTq+oH3XVHMvz7bKq+RuHv2J8ArwL2AF8BLgSWsYD2l6EgSWp4+kiS1DAUJEkNQ0GS1DAUJEkNQ0GS1GjtzmvSfOteivnp7uLPAI/RmeICOh8w3DWQwqaR5DeA9d3PU0gD5yWpGkkLadbaJIuq6rH9PPcFYG1VbZzB9hZX1Z45K1Dq4ekjPSEkeW2Sm7rz8L8ryViSxUm+n+RNSW5Ncn2S05J8Lsk9e+frT3Jhkk90n78ryR/2ud03JLkJODXJnyS5uTuP/hXpeBWdD2P9dff7D0qyJcnh3W0/L8mN3cdvSPKeJDfQmdxvcZK/6P7sTUkunP/fqkaRoaCRl+RZdKZFeH5VnUTntOl53aefDHyqO8HhLuAyOtMPvBL4Xz2bObX7PScDr0lyUh/bvbWqTq2qLwJvq6rnAv+2+9zqqvprYCPwqqo6qY/TW88BXl5V5wNrgAeq6lTguXQmZnzqbH4/Ui/fU9ATwYvp/MN5S2fKGZbSmUIBYEdV3dB9fBud6Yz3JLkNeFrPNq6vqocAknwSeAGdvz/72+4u/nU6FIAXJfk94BDgKODLwN/PsI9rq+rR7uOXAr+YpDeEjqMzTYI0a4aCnggCXF1V/3OflZ0bnfT+73wC2NnzuPfvx+Q33+oA291R3TfsuvP4vIPO7Kxbk7yBTjhMZQ//egQ/ecwjk3p6XVV9GmkOefpITwQ3Ar+W5CjoXKU0i1MtL03nXs+H0pkT/x9nsN2ldELmwe4Mu+f0PPdD4LCe5XuBU7qPe8dNdj3wum4A7b2v8dIZ9iT9GI8UNPKq6rbu7JQ3JhkDdgMX0bkVYr++APwVnZu8fGjv1UL9bLeqtqdzn+jbgW8B/9zz9PuAq5LsoPO+xWXAe5P8C3DTNPW8h86smhu7p64eoBNW0uPiJanSAXSv7HlWVb1+0LVIbfP0kSSp4ZGCJKnhkYIkqWEoSJIahoIkqWEoSJIahoIkqfH/AU7iUZYCRoo1AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df_data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n", "plt.grid(True)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Generalized Linear Model Regression Results
Dep. Variable: Frequency No. Observations: 16
Model: GLM Df Residuals: 14
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -2.4880
Date: Wed, 25 Mar 2020 Deviance: 1.1965
Time: 18:42:18 Pearson chi2: 1.82
No. Iterations: 6 Covariance Type: nonrobust
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err z P>|z| [0.025 0.975]
Intercept 6.8667 8.822 0.778 0.436 -10.424 24.157
Temperature -0.1458 0.143 -1.023 0.306 -0.425 0.134
" ], "text/plain": [ "\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: Frequency No. Observations: 16\n", "Model: GLM Df Residuals: 14\n", "Model Family: Binomial Df Model: 1\n", "Link Function: logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -2.4880\n", "Date: Wed, 25 Mar 2020 Deviance: 1.1965\n", "Time: 18:42:18 Pearson chi2: 1.82\n", "No. Iterations: 6 Covariance Type: nonrobust\n", "===============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "-------------------------------------------------------------------------------\n", "Intercept 6.8667 8.822 0.778 0.436 -10.424 24.157\n", "Temperature -0.1458 0.143 -1.023 0.306 -0.425 0.134\n", "===============================================================================\n", "\"\"\"" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import statsmodels.api as sm\n", "\n", "df_data[\"Success\"]=df_data.Count-df_data.Malfunction\n", "df_data[\"Intercept\"]=1\n", "\n", "logmodel=sm.GLM(df_data['Frequency'], df_data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n", "\n", "logmodel.summary()" ] }, { "cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VOXZ//HPNTNZyWYAwyq7IEhYwqJSEFwA665YlRYrPxFtpdrF9enzKF3cim1V6lrr3gouiBsVXEhd0BL2gBhA1rDIDgkkZLt/f8wEAwYyhCSz5Pt+vfLKzJl7zrkuRr9zcubMfcw5h4iIRBdPqAsQEZG6p3AXEYlCCncRkSikcBcRiUIKdxGRKKRwFxGJQjWGu5k9a2ZbzWzpER43M3vUzFaZ2RIz61v3ZYqIyLEIZs/9eWDkUR4/D+gS+BkPPHH8ZYmIyPGoMdydc58AO48y5GLgRef3JZBmZi3rqkARETl2vjpYR2tgQ5X7+YFlmw8faGbj8e/dk5CQkNW2bdtabbCiogKPJzo+LlAv4SlaeomWPkC9VFqxYsV251zzmsbVRbhbNcuqndPAOfc08DRAv3793Lx582q1wezsbIYOHVqr54Yb9RKeoqWXaOkD1EslM1sXzLi6eBvMB6rugrcBNtXBekVEpJbqItzfBq4JnDVzGrDHOfe9QzIiItJwajwsY2avAEOBZmaWD9wDxAA4554EZgA/BFYB+4Gx9VWsiIgEp8Zwd85dXcPjDripzioSkYhQWlpKfn4+xcXFDbK91NRUli9f3iDbqm/B9BIfH0+bNm2IiYmp1Tbq4gNVEWmE8vPzSU5Opn379phVd15F3SooKCA5Obnet9MQaurFOceOHTvIz8+nQ4cOtdpGdJxXJCINrri4mKZNmzZIsDc2ZkbTpk2P668ihbuI1JqCvf4c77+twl1EJArpmLuIRCyv10vPnj0P3p8+fTrt27cPXUFhROEuIhErISGBRYsWHfHxsrIyfL7GGXM6LCMiUeX555/niiuu4MILL2T48OEATJo0if79+5OZmck999xzcOy9995L165dOeecc7j66qt56KGHABg6dCiV06Ns37794F8D5eXl3HbbbQfX9dRTTwHfTScwatQounXrxo9//GP8Z4lDTk4OZ5xxBr169WLAgAEUFBQwYsSIQ96UBg0axJIlS+r036FxvqWJSJ363TvL+GrT3jpdZ/dWKdxzYY+jjikqKqJ3794AdOjQgTfffBOAL774giVLlpCens6sWbNYuXIlc+fOxTnHRRddxCeffEKTJk2YMmUKCxcupKysjL59+5KVlXXU7f3jH/8gNTWVnJwcDhw4wKBBgw6+gSxcuJBly5bRqlUrBg0axOeff86AAQO48sormTp1Kv3792fv3r0kJCRwzTXX8Pzzz/Pwww+zYsUKDhw4QGZmZh38q31H4S4iEetIh2XOPfdc0tPTAZg1axazZs2iT58+ABQWFrJy5UoKCgq49NJLSUxMBOCiiy6qcXuzZs1iyZIlvP766wDs2bOHlStXEhsby4ABA2jTpg0AvXv3Zu3ataSmptKyZUv69+8PQEpKCgCXXnopgwYNYtKkSTz77LNce+21x/cPUY2IDPfKP3dEJDzUtIfd0Jo0aXLwtnOOu+66ixtuuOGQMQ8//PARTzf0+XxUVFQAHHKuuXOOyZMnM2LEiEPGZ2dnExcXd/C+1+ulrKwM51y120hMTOTcc8/lrbfe4tVXX6W2M+QeTcQdc1+6cQ8TvyjmrUUbKS2vCHU5IhLmRowYwbPPPkthYSEAGzduZOvWrQwZMoQ333yToqIiCgoKeOeddw4+p3379syfPx/g4F565bqeeOIJSktLAVixYgX79u074ra7devGpk2byMnJAfzfTC0rKwNg3Lhx3HzzzfTv3//gXxl1KeL23AuKyygpd9wyZREP/vtrrhvckdEDTiIh1hvq0kQkDA0fPpzly5dz+umnA5CUlMTLL79M3759ufLKK+nduzft2rVj8ODBB59z66238qMf/YiXXnqJs8466+DycePGsXbtWvr27YtzjubNmzN9+vQjbjs2NpapU6fyi1/8gqKiIhISEvjwww8ByMrKIiUlhbFj62euRQvVIY7juVjHx7NnQ8vuPPmf1cxds5OmTWK5bnAHfnp6e5rERdb7lS5AEJ6ipZf67GP58uWccsop9bLu6tT33DITJ04kKSmJW2+9td62UamgoICCggKGDh3K119/fcSrMlX3b2xm851z/WraRsQdlgHwmHFWtwxeveF0Xr/xdHq2SeVP7+cx+E+zefqTbygqKQ91iSIiR/Svf/2LgQMHcu+999bbpQMjaze3Gv3ap/P82AEs2rCbP8/K474ZX/PMp2v49bknMyqrDT5vRL5/iUgDmzhxYoNta/To0d/7gLeuRU3y9W6bxkvXDWTq+NNofUICd07L5bxHPiU7b2uoSxOJWjpzrf4c779t1IR7pYEdmzLtZ2fw5E/6UlpewbXP5fD/ns9h9bbCUJcmElXi4+PZsWOHAr4eVM7nHh8fX+t1RPxhmeqYGSNPbclZ3TJ4fs4aHv1oFSMf/pQbzuzITcM6Ex+jM2tEjlebNm3Iz89n27ZtDbK94uLi4wq7cBJML5VXYqqtqAz3SrE+D+OHdOKSPq25f8bXTP54FdMXbeTeS3oy5OTmoS5PJKLFxMTU+ipBtZGdnX3wW6aRriF6ibrDMtU5MTmev17Zm1euP40Yr4drnp3Lb15dzO79JaEuTUSkXjSKcK90eqemzLh5MBOGdWb6oo2c85dP+PCrb0NdlohInWtU4Q4QH+Pl1hFdeXvCIJolxTLuxXnc/vpiCopLQ12aiEidaXThXqlHq1TemjCInw/txOvz8zn/0c9YtGF3qMsSEakTjTbcAeJ8Xm4f2Y2pN5xOeYVj1BNzeCL7GyoqdGqXiES2Rh3ulfq3T2fGzYMZ0aMFD77/Nde9kMOuffqwVUQil8I9IDUxhr+N7sMfLjmVz1ft4PxHP9VhGhGJWAr3KsyMMae14/WfnY7HY/zoyS94dd6GUJclInLMFO7VyGyTxjsTfkD/Didw++tLuPutpbowiIhEFIX7EZzQJJYXxg5g/JCOvPjFOsY+l8OeIp0uKSKRQeF+FD6vh//54SlMGpXJf9fs4NLHP2fdjiNfUktEJFwo3INwRb+2vHzdQHbuK+Gyx+fog1YRCXsK9yBVTiWcGOflqqe/4KPlmrZARMKXwv0YdGyexLSfDeLkjGSuf3GezqQRkbClcD9GzZPjeOX60xjUuRm3v76EZz5dHeqSRES+R+FeC03ifDzz036c37Mlf3xvOQ/NzNPVaEQkrAQV7mY20szyzGyVmd1ZzeOpZvaOmS02s2VmNrbuSw0vcT4vj17dhyv7teVvs1dx34zlCngRCRs1XonJzLzAY8C5QD6QY2ZvO+e+qjLsJuAr59yFZtYcyDOzfzrnonqCFq/HuP+ynsT6PPz90zWUljvuubA7Zhbq0kSkkQvmMnsDgFXOudUAZjYFuBioGu4OSDZ/qiUBO4GyOq41LHk8xu8v7kGsz8M/PluDc46JF/VQwItISFlNhxLMbBQw0jk3LnB/DDDQOTehyphk4G2gG5AMXOmce6+adY0HxgNkZGRkTZkypVZFFxYWkpSUVKvn1hfnHFPySpi5toxz2/kY3S02qIAPx15qS72En2jpA9RLpWHDhs13zvWrcaBz7qg/wBXAM1XujwEmHzZmFPBXwIDOwBog5WjrzcrKcrU1e/bsWj+3PlVUVLiJby917e5419373leuoqKixueEay+1oV7CT7T04Zx6qQTMczXktnMuqMMy+UDbKvfbAJsOGzMWeCCw4VVmtgb/XvzcINYfNcyMuy/oTnmF4+lPVpMU5+Pms7uEuiwRaYSCCfccoIuZdQA2AlcBow8bsx44G/jUzDKArkCjPAHczJh4YQ/2HSjnLx+soEmcj+t+0CHUZYlII1NjuDvnysxsAjAT8ALPOueWmdmNgcefBP4APG9mufgPzdzhnNtej3WHNY/HePDynuwvKeMP735FSryPK/q1rfmJIiJ1JJg9d5xzM4AZhy17ssrtTcDwui0tsvm8Hh6+qjcFz8/jzmm5NE2K5axuGaEuS0QaCX1DtR7F+bw8OSaL7i1T+Pk/FzB/3c5QlyQijYTCvZ4lxfl4bmx/WqYmcN0L81i9rTDUJYlII6BwbwDNkuJ4fmx/vGZc+1wO2wsPhLokEYlyCvcG0q5pE575aT+2FhQz7oV5FJWUh7okEYliCvcG1OekE3jkqj4szt/Nb15bREWFJhoTkfqhcG9gI3q04K7zujEjdwt//XBFqMsRkSilcA+B6wd35Mp+bZn88SrmbGoU86uJSANTuIeAmfGHS07ltI7pPLv0AAvX7wp1SSISZRTuIRLr8/D4j7NIizNueGk+3+4tDnVJIhJFFO4hlN4kllv6xlN4oIwbXppPcanOoBGRuqFwD7G2yR7+fEUvFm3YzT1vLQt1OSISJRTuYeC8ni25aVgnps7bwCtz14e6HBGJAgr3MPHrc7syuEsz7nlrGYs27A51OSIS4RTuYcLrMR69qg/Nk+P42cvz2bkvqq8tLiL1TOEeRk5oEsuTP8liR2EJv5yqb7CKSO0p3MNMzzap3HNRdz5ZsY2/zV4V6nJEJEIp3MPQ6AEncUnvVvz1wxV8vqrRXtBKRI6Dwj0MmRn3XdaTTs2TuGXKIrYVaIpgETk2CvcwlRjr47HRfSkoLuVXOv4uIsdI4R7GurZI5ncX9eCzVdt54j/fhLocEYkgCvcwd2X/tlzUqxV/+WCFrsEqIkFTuIc5M+PeS0+ldVoCN7+yiD1FpaEuSUQigMI9AiTHx/DIVb35dm8xv30zF+d0/F1Ejk7hHiH6nHQCvzr3ZN5dspnX5ueHuhwRCXMK9why45mdOL1jUya+vYx1O/aFuhwRCWMK9wji9Rh//lEvfB7jl1MXUVZeEeqSRCRMKdwjTKu0BO67rCcL1+9m8seankBEqqdwj0AXZLbisj6tmfzxShbo+qsiUg2Fe4T63cU9aJmawG9eXcz+krJQlyMiYUbhHqGS42N46IperN2xj/tmLA91OSISZhTuEez0Tk25blAHXv5yPdl5W0NdjoiEEYV7hLt1RFdOzkjijjeWsGe/vr0qIn4K9wgXH+Plz1f0ZnthCRPfWRbqckQkTCjco0DPNqlMGNaZNxdu5P2lW0JdjoiEgaDC3cxGmlmema0yszuPMGaomS0ys2Vm9p+6LVNqMuGszvRolcJv38xlR6Eu7iHS2NUY7mbmBR4DzgO6A1ebWffDxqQBjwMXOed6AFfUQ61yFDFeD3/5UW8Kisu4+y0dnhFp7ILZcx8ArHLOrXbOlQBTgIsPGzMamOacWw/gnNOpGyHQtUUyt5zThfdyN/Peks2hLkdEQshqmj7WzEYBI51z4wL3xwADnXMTqox5GIgBegDJwCPOuRerWdd4YDxARkZG1pQpU2pVdGFhIUlJSbV6brip617KKxx//LKY7UUV3PuDRFLirM7WXRO9LuEnWvoA9VJp2LBh851z/Woc6Jw76g/+QyzPVLk/Bph82Ji/AV8CTYBmwErg5KOtNysry9XW7Nmza/3ccFMfveRt2eu6/M8M97OX59X5uo9Gr0v4iZY+nFMvlYB5robcds4FdVgmH2hb5X4bYFM1Y953zu1zzm0HPgF6BbFuqQcnZ/gPz8zI3cKMXB2eEWmMggn3HKCLmXUws1jgKuDtw8a8BQw2M5+ZJQIDAX0nPoTGD+nIqa1TuPutpezcVxLqckSkgdUY7s65MmACMBN/YL/qnFtmZjea2Y2BMcuB94ElwFz8h3GW1l/ZUpMYr4dJo3qxp6iU3+vLTSKNji+YQc65GcCMw5Y9edj9ScCkuitNjtcpLVO4aVhnHv5wJRdktuKc7hmhLklEGoi+oRrlfj60M91aJPPb6bnsKdLcMyKNhcI9ysX6PPxpVCbbCg7wwL/1MYhIY6FwbwQy26Rx/eCOvDJ3A3NWbQ91OSLSABTujcSvzj2ZDs2acMe0Jbpyk0gjoHBvJOJjvDxwWU827CziL7NWhLocEalnCvdGZGDHpvx44Ek8+/kaFm/YHepyRKQeKdwbmTvP68aJyfHc8cYSSsoqQl2OiNQThXsjkxwfwx8vOZWvtxTw1H++CXU5IlJPFO6N0DndM7ggsyWTP17Fqq2FoS5HROqBwr2RmnhRDxLjvNw1bQkVFUef9llEIo/CvZFqlhTH/57fnZy1u/jnf9eFuhwRqWMK90bs8r6tGdylGQ++n8em3UWhLkdE6pDCvREzM+67tCflFY6731paeeEVEYkCCvdGrm16Ir8ZfjIfLt/KjNwtoS5HROqIwl249oz2ZLZJ5Z63l7J7vy7sIRINFO6Cz+vhgcsy2bW/lPtmaOZIkWigcBcAurdKYfyQjrw6L5/PNXOkSMRTuMtBt5zdhfZNE/mfN3MpKikPdTkichwU7nJQfIyX+y7rybod+3n4Q80cKRLJFO5yiDM6NeOq/m155rM1LN24J9TliEgtKdzle+467xTSm8Ry++tLKC3XzJEikUjhLt+TmhjD7y/qwVeb9/KPz9aEuhwRqQWFu1Rr5KktGN49g79+sIK12/eFuhwROUYKd6mWmfGHS04l1uvhrmm5mppAJMIo3OWIMlLiueuHp/DF6h1MzdkQ6nJE5Bgo3OWorurfloEd0rl3xnK+3Vsc6nJEJEgKdzkqj8d44PJMSsoquPutpaEuR0SCpHCXGnVo1oRfnnMyM5d9y4zczaEuR0SCoHCXoFw/uAOntk7h7rc0c6RIJFC4S1B8Xg8PXp7J7v2l/OFdzRwpEu4U7hK0Hq1SufHMTryxIJ/svK2hLkdEjkLhLsdkwlmd6dS8Cf8zLZeC4tJQlyMiR6Bwl2MSH+PlT6N6sXlvMQ++/3WoyxGRI1C4yzHLancC/29QB17+cj1ffLMj1OWISDUU7lIrtw7vSrumidw5bYku7CEShoIKdzMbaWZ5ZrbKzO48yrj+ZlZuZqPqrkQJRwmxXh64LJN1O/YzaWZeqMsRkcPUGO5m5gUeA84DugNXm1n3I4x7EJhZ10VKeDq9U1OuOb0dz81ZQ87anaEuR0SqCGbPfQCwyjm32jlXAkwBLq5m3C+ANwCdI9eI3DGyG63TErjttcUcKNfMkSLhwhfEmNZA1SkB84GBVQeYWWvgUuAsoP+RVmRm44HxABkZGWRnZx9juX6FhYW1fm64iYZeftzZ8WBOEVOWOeK82aEup05Ew+sC0dMHqJdjFUy4WzXLDt9Fexi4wzlXblbd8MCTnHsaeBqgX79+bujQoUGWeajs7Gxq+9xwEw29DAU2eZfy8pfr+NmFmQzokB7qko5bNLwuED19gHo5VsEclskH2la53wbYdNiYfsAUM1sLjAIeN7NL6qRCiQh3nteNZgnGra8tZn9JWajLEWn0ggn3HKCLmXUws1jgKuDtqgOccx2cc+2dc+2B14GfO+em13m1EraaxPkY1zOODbv288C/9eUmkVCrMdydc2XABPxnwSwHXnXOLTOzG83sxvouUCJH13QvY8/owItfrOPzVdtDXY5IoxbMMXecczOAGYcte/IIY689/rIkUt0+sivZK7Zy62uLef+XQ0hNiAl1SSKNkr6hKnUqPsbLX37Um60FB/jdO8tCXY5Io6VwlzrXu20aNw3rzLQFG3l/qa7cJBIKCnepF784qzOntk7hrmm5bNWFtUUanMJd6kWM18PDV/Zmf0k5t7+xBOf07VWRhqRwl3rT+cRkfnv+KWTnbePlL9eFuhyRRiWos2VEamvMae34aPlW7p2xnNM7NaXzicmHPD594UYmzcxj0+4iWqUlcNuIrlzSp3WIqhWJHtpzl3plZkwalUlirI+bX1nEgbLv5n6fvnAjd03LZePuIhywcXcRd03LZfrCjaErWCRKKNyl3p2YEs+Dl2fy1ea9PFRl7vdJM/MoKj30Qh9FpeWaH16kDijcpUGc2z2DMae14++fruGTFdsA2LS7qNqxR1ouIsFTuEuD+e35p9DlxCR+/epithUcoFVaQrXjjrRcRIKncJcGEx/jZfLoPhQUl/LrVxfxm+EnkxDjPWRMQoyX20Z0DVGFItFD4S4NqluLFO6+sDufrtzO1oID3H9ZT1qnJWBA67QE7r+sp86WEakDOhVSGtzoASfx+artPDQzj6k3nM7nd54V6pJEoo723KXBmRn3X5ZJy7R4fvGvBezaVxLqkkSijsJdQiI1IYbHRvdle2EJv351ERUVmp5ApC4p3CVkMtuk8b8XnMLsvG08+ck3oS5HJKoo3CWkxpzWjvMzW/LQzDzmfKOrN4nUFYW7hJSZ8eDlmXRo1oSbX1nIlj2aHlikLijcJeSS4nw8NSaLopJyfv7P+ZSUVYS6JJGIp3CXsND5xGT+NKoXC9bv5g/vfhXqckQinsJdwsb5mS25YUhHXvpyHVNz1oe6HJGIpnCXsHL7yG4M7tKM/5u+jAXrd4W6HJGIpXCXsOL1GJOv7kOL1HhufGm+PmAVqSWFu4SdtMRYnr4mi30Hyrj+xXkUlZTX/CQROYTCXcJStxYpPHJVH5Zu2sOtry/WBbZFjpHCXcLWOd0zuGNkN95bspm/frgy1OWIRBTNCilh7YYhHflmayGPfrSSdumJXJ7VJtQliUQEhbuENTPj3kt7snF3EXdOW0KrtARO79Q01GWJhD0dlpGwF+vz8MRPsmjXtAk3vDSPFd8WhLokkbCncJeIkJoQw3PX9icuxstPn53L5j26iLbI0SjcJWK0TU/k+bH9KSgu49pnc9izvzTUJYmELYW7RJQerVJ5ekwWq7cXMu7FHJ0DL3IECneJOGd0bsbDV/Zh3rpd/EyzSIpUS+EuEen8zJbcd2lPsvO28ZvXFlOuy/SJHCKocDezkWaWZ2arzOzOah7/sZktCfzMMbNedV+qyKGuHnASd53XjXcWb+LON5boOqwiVdR4nruZeYHHgHOBfCDHzN52zlWddHsNcKZzbpeZnQc8DQysj4JFqrrhzE4UlZbz8IcrifV5+OMlp2JmoS5LJOSC+RLTAGCVc241gJlNAS4GDoa7c25OlfFfAvoaoTSYW87uwoGyCp7I/gafx5h4UQ8FvDR6VtOETGY2ChjpnBsXuD8GGOicm3CE8bcC3SrHH/bYeGA8QEZGRtaUKVNqVXRhYSFJSUm1em64US91wznH1LwS3l9bxlltffykeyye4wj4aHldoqUPUC+Vhg0bNt8516/Ggc65o/4AVwDPVLk/Bph8hLHDgOVA05rWm5WV5Wpr9uzZtX5uuFEvdaeiosLdN+Mr1+6Od92dbyxx5eUVtV5XqHupK9HSh3PqpRIwz9WQr865oA7L5ANtq9xvA2w6fJCZZQLPAOc553YEsV6ROmVm3DmyG14zHs/+hgOl5fxpVCY+r04Kk8YnmHDPAbqYWQdgI3AVMLrqADM7CZgGjHHOrajzKkWCZGbcNqIrCTFe/vzBCgoPlDF5dB/ifN5QlybSoGrcpXHOlQETgJn4D7m86pxbZmY3mtmNgWF3A02Bx81skZnNq7eKRWpgZvzi7C7cc2F3Zn31LWOfy6GgWFMVSOMS1JS/zrkZwIzDlj1Z5fY44HsfoIo0tOkLNzJpZh6bdhfRKi2B0QNOYkrOevr+4QNKyx2t0xK4bURXLunTut63XV/bCSeNsedIofncJWpMX7iRu6blUlTqn29m4+4iXpu3ATMoLXcHl901LRegTkOoum3Xx3bCSWPsOZLokyaJGpNm5h0MmkqlFY7yw6aeKSotZ9LMvHrfdn1sJ5w0xp4jicJdosam3cHP8b7xGMYez7aPpaZI0xh7jiQKd4kardISjmn8H9/9irLDd+vreNvHWlMkaYw9RxKFu0SNylMgq4rxGDHeQ7+pGu/zMLhzM575bA1jn89h9/6Setl2QoyX20Z0Pe51h6vG2HMkUbhL1LikT2vuv6wnrdMSMKB1WgKTrujFpFG9Dln2wOWZvDRuIA9c1pMvV+/g/Ec/Izd/T51v+/7Lekb1B4uNsedIorNlJKpc0qd1teFS3bKrBpxE1xbJ3PTPBVz+5Bx+d1EPrurfttaTjh1p29GsMfYcKbTnLo1an5NO4N2bBzOwQzp3Tcvl5imL9IUniQoKd2n00pvE8sLYAdw2oiszcjdzweTP+Ga3rs0qkU3hLgJ4PMZNwzozdfxplJU77v1vMX/9YAWldXQ2jUhDU7iLVNGvfTr//uVgTmvp45GPVnL5E3PI21IQ6rJEjpnCXeQwKfExjM+M47HRfcnfVcQFkz9l8kcrtRcvEUXhLnIE52e25INfDWF4jxb8+YMVXDj5Mxas3xXqskSConAXOYqmSf49+KfGZLGnqJTLn5jDb9/MrZMvPonUJ4W7SBBG9GjBB78+k7FndGBKzgaGPpTNy1+uo7zi6NcgFgkVhbtIkJLifNx9YXfeu/kHdM1I5n+nL+X8Rz/l05XbQl2ayPco3EWOUbcWKUwZfxqPje7LvpIyxvxjLtc8O5elG49vCgORuqRwF6kFM+P8zJZ8+Osz+e0PT2Hxht1cMPkzbvrnAlZtDf2pk9MXbmTQAx+Tu3EPgx74mOkLN4a6JGlgmltG5DjE+bxcP6QjVw5oy98/Wc0/PlvDjKWbOb9nS24+uwsnZyQ3eE2HXCGpra6Q1Fhpz12kDqTEx/Cb4V359PZh3HhmJ2Z/vZXhf/2EcS/MY/66nQ1ai66QJKBwF6lTTZPiuGNkNz674yxuObsL89bt5PInvuDyJ+bw3pLNdXZxkKPRFZIEFO4i9eKEJrH86tyTmXPnWdxzYXe2FRzgpn8tYMifZvO3j1eytaC43ratKyQJKNxF6lVirI+xgzow+9ahPD0mi/bNmvDQrBWccf/H/Pyf88nO21rn58rrCkkC+kBVpEF4PcbwHi0Y3qMF32wr5F//Xc+0BfnMyN1Cq9R4LunTmkv7tKZLHXwAW/mhqf8YewGt0xK4bURXfZjayCjcRRpYp+ZJ/N8F3bl9ZFc+/Gorr83fwFOfrObx7G/o0SqFCzJbcUFmS9qtF7idAAAMt0lEQVSmJ9Z6G5VXSMrOzuYXPx5ad8VLxFC4i4RInM/L+ZktOT+zJdsKDvD24k28s3gTD77/NQ++/zWntk5hZGBvv8uJSbW+/J80Tgp3kTDQPDmO637Qget+0IENO/czI3czM5dt4aFZK3ho1grapidwdrcMzuzanNM6NCUh1lvzSqVRU7iLhJm26YnccGYnbjizE1v2FPPx11v5+OtvmZKznufnrCXW52FA+3TO6NyUMzo149RWKfi8OjdCDqVwFwljLVLjGT3wJEYPPIni0nLmrtnJf1Zs47OV2/nT+3lAHklxPrLancCADun0a3cCvdqmER+jPfvGTuEuEiHiY7wMObk5Q05uDsC2ggPM+WY7c9fsZO6anQe/gRrjNU5pmULvtmnEFZbS6tsCOjVPwuvRMfvGROEuEqGaJ8dxce/WXNzbf4rjzn0lLFi3i3nrdrF4w27emJ/PvpJy/p77CQkxXk5pmUz3Vimc0jKFbi2SOTkjmeT4mBB3IfVF4S4SJdKbxHJO9wzO6Z4BQHmFY8p7s4lvdTK5G/fw1ea9vLVwEy9/uf7gc1qmxtP5xCQ6n5hEp+ZJdGzehI7NkjgxOQ6P9vQjmsJdJEp5PUbrZA9Ds9pweVYbAJxz5O8qYsW3BXy9pYBVWwtZubWAV+aup7j0u3lv4mM8tEtvQtv0RE5KT6RtegKt0xJoc0IirdLiSU2I0amZYU7hLtKImBlt0xNpm57I2adkHFxeUeHYsreY1dv2sWbHPtZt38faHfvYsHM/n6/a/r1ZJhNjvbRMjadFajwtUhLISInjxOQ4TkyJp3lyHM2S4miWFEtSnE9vAiGicBcRPB6jVVoCrdIS+EGXZoc85pxj574SNu4uIn9XEZt2F7FpdzGb9xSxZW8xc77ZzraCA5RVM0dOrM9DsyaxpCfFkt4kjvTEGNISY0lLjCEtwX87NSGGlISYwG8fKfExxPk8elM4TkGFu5mNBB4BvMAzzrkHDnvcAo//ENgPXOucW1DHtYpErekLNzJpZh6bdhfRKjAXDFDrZcHOI1Pddi/p0/qIyzPbpFW7nooKx679JXy79wBvL97IlJwN7N5fSqzXQ+sTEkiK87FzXwlrt+9j1/4SCorLaqzNY3BCYiwnpsSTHOejeF8xr29aQJNYH5v3FLFw/W4KDpSRmhDDyB4tOKNzUxJivCTEeomP8RLv8xIf4yE+xktcjIc4n5c4n6fRvHHUGO5m5gUeA84F8oEcM3vbOfdVlWHnAV0CPwOBJwK/RaQGh1w5Cf+Vk257bTEYlJa775a9vhgclFYcfVmwV12qbrt3Tctl3rqdvDF/4/eWH22dHo/RNCmOT1du54U56w4+t/BAGUs37uX+y3oe8tw35ufz2zdzKS777ji/18ABlX8AVDjYvb+UFqnxeDyw94Djq0172V54gL1V3hz2FJUydd4Gps7bUMO/9HdivR5ifYGfw27H+DzEeg2fx387xmPEeD34vIHfHsN38Ld/mddj+DxW5bf/cU/gvsdjeM3wesDr8VC4p7zmIo9TMHvuA4BVzrnVAGY2BbgYqBruFwMvOucc8KWZpZlZS+fc5jqvWCTKVHflpNJqDnFUBn1NyyqvulRTuB/pik2v/HcD5c59b/nxrPPw5/7lgxWHBDtANa1Q7hy795fy3s2Dyc7OZujQoQx64ONDwr3SiclxPHttf4pLyykuraCotJzi0nIOlFUc8rukrIIDZRWUlFVQUu6/77/t/11a7igpq6CsooKionJKyysoK3eUlldQWlF521FeebuigooKKK2owAU5e/MPO8RwbXBDa81cDdWY2ShgpHNuXOD+GGCgc25ClTHvAg845z4L3P8IuMM5N++wdY0HxgfudgVqe92vZsD2Wj433KiX8NRgvcS26JxVH+st2bJqPkfpozbbDazziI62zqrPPdZtV+0l2G2EueP576udc655TYOC2XOv7uDU4e8IwYzBOfc08HQQ2zx6QWbznHP9jnc94UC9hKdo6SVa+gD1cqyCmW0oH2hb5X4bYFMtxoiISAMJJtxzgC5m1sHMYoGrgLcPG/M2cI35nQbs0fF2EZHQqfGwjHOuzMwmADPxnwr5rHNumZndGHj8SWAG/tMgV+E/FXJs/ZUM1MGhnTCiXsJTtPQSLX2AejkmNX6gKiIikUcz/IuIRCGFu4hIFAr7cDezeDOba2aLzWyZmf0usDzdzD4ws5WB3yeEutZgmJnXzBYGvhsQyX2sNbNcM1tkZvMCyyK1lzQze93Mvjaz5WZ2eiT2YmZdA69H5c9eM/tlhPbyq8D/70vN7JVADkRcHwBmdkugj2Vm9svAsnrvJezDHTgAnOWc6wX0BkYGzsi5E/jIOdcF+ChwPxLcAiyvcj9S+wAY5pzrXeV83Ujt5RHgfedcN6AX/tcn4npxzuUFXo/eQBb+kxveJMJ6MbPWwM1AP+fcqfhP5LiKCOsDwMxOBa7H/03/XsAFZtaFhujFORcxP0AisAD/vDV5QMvA8pZAXqjrC6L+NoEX8izg3cCyiOsjUOtaoNlhyyKuFyAFWEPg5IJI7uWw+ocDn0diL0BrYAOQjv+MvncD/URUH4E6r8A/2WLl/f8Dbm+IXiJhz73yUMYiYCvwgXPuv0CGC5xLH/h9YihrDNLD+F/YqpNqRGIf4P8G8iwzmx+YVgIis5eOwDbgucDhsmfMrAmR2UtVVwGvBG5HVC/OuY3AQ8B6YDP+783MIsL6CFgKDDGzpmaWiP+U8bY0QC8REe7OuXLn/1OzDTAg8KdORDGzC4CtzrlImfuiJoOcc33xzwh6k5kNCXVBteQD+gJPOOf6APuIgD/3jybwZcOLgNdCXUttBI4/Xwx0AFoBTczsJ6Gtqnacc8uBB4EPgPeBxUDN8x3XgYgI90rOud1ANjAS+NbMWgIEfm8NYWnBGARcZGZrgSnAWWb2MpHXBwDOuU2B31vxH9cdQGT2kg/kB/4aBHgdf9hHYi+VzgMWOOe+DdyPtF7OAdY457Y550qBacAZRF4fADjn/uGc6+ucGwLsBFbSAL2EfbibWXMzSwvcTsD/wn+Nf8qDnwaG/RR4KzQVBsc5d5dzro1zrj3+P5k/ds79hAjrA8DMmphZcuVt/MdDlxKBvTjntgAbzKxrYNHZ+Kezjrheqria7w7JQOT1sh44zcwSzczwvybLibw+ADCzEwO/TwIuw//a1HsvYf8NVTPLBF7A/4m5B3jVOfd7M2sKvAqchP8/hiuccztDV2nwzGwocKtz7oJI7MPMOuLfWwf/YY1/OefujcReAMysN/AMEAusxj99hofI7CUR/4eRHZ1zewLLIu51CZzyfCX+QxgLgXFAEhHWB4CZfQo0BUqBXzvnPmqI1yTsw11ERI5d2B+WERGRY6dwFxGJQgp3EZEopHAXEYlCCncRkSgUzAWyRRpU4DSxjwJ3WwDl+KcIABjgnCsJSWFHYWb/D5gROG9eJOR0KqSENTObCBQ65x4Kg1q8zrnyIzz2GTDBObfoGNbnc841yFfRpfHRYRmJKGb2U/PP77/IzB43M4+Z+cxst5lNMrMFZjbTzAaa2X/MbLWZ/TDw3HFm9mbg8Twz+98g1/tHM5uLf16j35lZTmB+7ifN70r801FPDTw/1szyq3yz+jQz+zBw+49m9pSZfYB/sjKfmf0lsO0lZjau4f9VJRop3CViBCaMuxQ4IzCRnA//VA4AqcCswGRmJcBE/F9bvwL4fZXVDAg8py8w2sx6B7HeBc65Ac65L4BHnHP9gZ6Bx0Y656YCi4ArnX8+9ZoOG/UBLnTOjQHG459QbgDQH/8kbCfV5t9HpCodc5dIcg7+AJznn3KEBPxftQcocs59ELidi3+a2DIzywXaV1nHTOfcLgAzmw78AP//B0dabwnfTbUAcLaZ3QbEA82A+cC/j7GPt5xzxYHbw4FTzKzqm0kX/F9JF6k1hbtEEgOedc793yELzXz4Q7hSBf4reFXervrf+eEfMrka1lvkAh9MBeZt+RvQ1zm30cz+iD/kq1PGd38ZHz5m32E9/dw59xEidUiHZSSSfAj8yMyagf+smlocwhhu/mumJuKfM/zzY1hvAv43i+2BWTEvr/JYAZBc5f5a/Je647Bxh5sJ/DzwRlJ5HdSEY+xJ5Hu05y4RwzmXG5gt8EMz8+CfZe9GYNMxrOYz4F9AJ+ClyrNbglmvc26Hmb2Af3rjdcB/qzz8HPCMmRXhP64/Efi7mW0B5h6lnqfwzwy4KHBIaCv+Nx2R46JTIaXRCJyJcqpz7pehrkWkvumwjIhIFNKeu4hIFNKeu4hIFFK4i4hEIYW7iEgUUriLiEQhhbuISBT6/046LrjbPZJgAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n", "data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n", "data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n", "plt.scatter(x=df_data[\"Temperature\"],y=df_data[\"Frequency\"])\n", "plt.grid(True)" ] }, { "cell_type": "code", "execution_count": 100, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Probabilité de défaillance d'un joint: 0.9126150661497261\n", "Probabilité de défaillance de deux joints: 0.8328662589634689\n", "Probabilité de défaillance d'un lanceur sur trois: 0.9953313383250852\n" ] } ], "source": [ "proba = logmodel.predict([1, 31])\n", "print(\"Probabilité de défaillance d'un joint: \", str(proba[0]))\n", "print(\"Probabilité de défaillance de deux joints: \", str(proba[0]**2))\n", "proba3 = 1.-(1-proba**2)**3\n", "print(\"Probabilité de défaillance d'un lanceur sur trois: \", str(proba3[0]))" ] } ], "metadata": { "celltoolbar": "Hide code", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }