calcule de la moyenne

parent 33c57848
{ {
"cells": [], "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Calculer la moyenne et l'écart-type, le min, la médiane et le max des données suivantes :\n",
"\n",
"14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"# Données\n",
"donnees = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calcul de la moyenne\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"moyenne = np.mean(donnees)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calcul de l'écart-type"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ecart_type = np.std(donnees, ddof=1) # Utilisation de ddof=1 pour une estimation corrigée\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calcul du minimum"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"minimum = np.min(donnees)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calcul de la médiane"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"median = np.median(donnees)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Calcul du maximum"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"maximum = np.max(donnees)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Affichage des résultats\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Moyenne : 14.113000000000001\n",
"Écart-type : 4.334094455301447\n",
"Minimum : 2.8\n",
"Médiane : 14.5\n",
"Maximum : 23.4\n"
]
}
],
"source": [
"print(\"Moyenne :\", moyenne)\n",
"print(\"Écart-type :\", ecart_type)\n",
"print(\"Minimum :\", minimum)\n",
"print(\"Médiane :\", median)\n",
"print(\"Maximum :\", maximum)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
...@@ -16,10 +159,9 @@ ...@@ -16,10 +159,9 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.3" "version": "3.6.4"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment