{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Titre du document" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2+2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Un petit exemple " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "mu, sigma = 100, 15" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "scrolled": true }, "outputs": [], "source": [ "x=np.random.normal(loc=mu, scale=sigma, size= 10000)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEltJREFUeJzt3X+s3fV93/HnqyahJC2KqS/MtZ3ZjZx1gBqneJ63aFMauuGWKqZ/RHK0FktDcoVIl07dD7uV1vYPS2xrmw1pMNGGYtYsltUmxQrQxfO6RZUo7oURjCEuXvHgxh52G3Wlm+TVznt/nA/KiTnX94fte87l83xIR+d73t/P93w/b+HL657v93u+N1WFJKlP3zHuCUiSxscQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXsmnFPYC6rVq2q9evXj3sakrSsPPvss39SVVNzjZv4EFi/fj3T09PjnoYkLStJ/ud8xnk4SJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOjbx3xiW5rJ+9xNj2e/J++8cy36lK8lPApLUMUNAkjpmCEhSxwwBSeqYISBJHZszBJJ8Z5IjSb6a5FiSX2r1G5IcSvJKe145tM2eJCeSHE9yx1D9tiRH27oHkuTqtCVJmo/5fBI4B3ysqj4EbAK2JdkK7AYOV9VG4HB7TZKbgR3ALcA24MEkK9p7PQTsAja2x7Yr2IskaYHmDIEa+Iv28l3tUcB2YF+r7wPuasvbgf1Vda6qXgVOAFuSrAaur6qnq6qAx4a2kSSNwbzOCSRZkeR54AxwqKqeAW6qqtMA7fnGNnwN8PrQ5jOttqYtX1yXJI3JvEKgqi5U1SZgLYPf6m+9xPBRx/nrEvW3v0GyK8l0kumzZ8/OZ4qSpEVY0NVBVfVnwH9lcCz/jXaIh/Z8pg2bAdYNbbYWONXqa0fUR+3n4araXFWbp6amFjJFSdICzOfqoKkk72vL1wE/DHwNOAjsbMN2Ao+35YPAjiTXJtnA4ATwkXbI6M0kW9tVQXcPbSNJGoP53EBuNbCvXeHzHcCBqvpSkqeBA0nuAV4DPgFQVceSHABeAs4D91XVhfZe9wKPAtcBT7WHJGlM5gyBqnoB+PCI+p8Ct8+yzV5g74j6NHCp8wmSpCXkN4YlqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6Np9bSUsaYf3uJ8a275P33zm2feudxU8CktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjo2ZwgkWZfk95K8nORYkk+3+i8m+XqS59vjR4e22ZPkRJLjSe4Yqt+W5Ghb90CSXJ22JEnzMZ97B50Hfraqnkvy3cCzSQ61dZ+pql8eHpzkZmAHcAvwvcB/TvLBqroAPATsAv4AeBLYBjx1ZVqRJC3UnJ8Equp0VT3Xlt8EXgbWXGKT7cD+qjpXVa8CJ4AtSVYD11fV01VVwGPAXZfdgSRp0RZ0TiDJeuDDwDOt9KkkLyR5JMnKVlsDvD602UyrrWnLF9clSWMy7xBI8l3AbwM/U1V/zuDQzgeATcBp4FfeGjpi87pEfdS+diWZTjJ99uzZ+U5RkrRA8wqBJO9iEACfq6ovAFTVG1V1oaq+CfwasKUNnwHWDW2+FjjV6mtH1N+mqh6uqs1VtXlqamoh/UiSFmA+VwcF+CzwclX96lB99dCwHwdebMsHgR1Jrk2yAdgIHKmq08CbSba297wbePwK9SFJWoT5XB30EeAngaNJnm+1nwM+mWQTg0M6J4GfAqiqY0kOAC8xuLLovnZlEMC9wKPAdQyuCvLKIEkaozlDoKp+n9HH85+8xDZ7gb0j6tPArQuZoCTp6vEbw5LUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI7NGQJJ1iX5vSQvJzmW5NOtfkOSQ0leac8rh7bZk+REkuNJ7hiq35bkaFv3QJJcnbYkSfMxn08C54Gfraq/DmwF7ktyM7AbOFxVG4HD7TVt3Q7gFmAb8GCSFe29HgJ2ARvbY9sV7EWStEBzhkBVna6q59rym8DLwBpgO7CvDdsH3NWWtwP7q+pcVb0KnAC2JFkNXF9VT1dVAY8NbSNJGoMFnRNIsh74MPAMcFNVnYZBUAA3tmFrgNeHNptptTVt+eL6qP3sSjKdZPrs2bMLmaIkaQHmHQJJvgv4beBnqurPLzV0RK0uUX97serhqtpcVZunpqbmO0VJ0gLNKwSSvItBAHyuqr7Qym+0Qzy05zOtPgOsG9p8LXCq1deOqEuSxmQ+VwcF+CzwclX96tCqg8DOtrwTeHyoviPJtUk2MDgBfKQdMnozydb2nncPbSNJGoNr5jHmI8BPAkeTPN9qPwfcDxxIcg/wGvAJgKo6luQA8BKDK4vuq6oLbbt7gUeB64Cn2kOSNCZzhkBV/T6jj+cD3D7LNnuBvSPq08CtC5mgJOnq8RvDktQxQ0CSOmYISFLHDAFJ6pghIEkdm88lotKc1u9+YtxTkLQIfhKQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktSxOUMgySNJziR5caj2i0m+nuT59vjRoXV7kpxIcjzJHUP125IcbeseSJIr344kaSHm80ngUWDbiPpnqmpTezwJkORmYAdwS9vmwSQr2viHgF3AxvYY9Z6SpCU0ZwhU1VeAb8zz/bYD+6vqXFW9CpwAtiRZDVxfVU9XVQGPAXctdtKSpCvjcs4JfCrJC+1w0cpWWwO8PjRmptXWtOWL6yMl2ZVkOsn02bNnL2OKkqRLWWwIPAR8ANgEnAZ+pdVHHeevS9RHqqqHq2pzVW2emppa5BQlSXNZVAhU1RtVdaGqvgn8GrClrZoB1g0NXQucavW1I+qSpDFaVAi0Y/xv+XHgrSuHDgI7klybZAODE8BHquo08GaSre2qoLuBxy9j3pKkK+CauQYk+TzwUWBVkhngF4CPJtnE4JDOSeCnAKrqWJIDwEvAeeC+qrrQ3upeBlcaXQc81R6SpDGaMwSq6pMjyp+9xPi9wN4R9Wng1gXNTpJ0VfmNYUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdm/O2EZImz/rdT4xlvyfvv3Ms+9XV4ycBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHVszhBI8kiSM0leHKrdkORQklfa88qhdXuSnEhyPMkdQ/Xbkhxt6x5IkivfjiRpIebzSeBRYNtFtd3A4araCBxur0lyM7ADuKVt82CSFW2bh4BdwMb2uPg9JUlLbM4QqKqvAN+4qLwd2NeW9wF3DdX3V9W5qnoVOAFsSbIauL6qnq6qAh4b2kaSNCaLPSdwU1WdBmjPN7b6GuD1oXEzrbamLV9clySN0ZU+MTzqOH9doj76TZJdSaaTTJ89e/aKTU6S9O0WGwJvtEM8tOczrT4DrBsatxY41eprR9RHqqqHq2pzVW2emppa5BQlSXNZbAgcBHa25Z3A40P1HUmuTbKBwQngI+2Q0ZtJtrargu4e2kaSNCZz/o3hJJ8HPgqsSjID/AJwP3AgyT3Aa8AnAKrqWJIDwEvAeeC+qrrQ3upeBlcaXQc81R6SpDGaMwSq6pOzrLp9lvF7gb0j6tPArQuanSTpqvIbw5LUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWPXjHsCurLW735i3FOQtIz4SUCSOnZZIZDkZJKjSZ5PMt1qNyQ5lOSV9rxyaPyeJCeSHE9yx+VOXpJ0ea7EJ4EfqqpNVbW5vd4NHK6qjcDh9pokNwM7gFuAbcCDSVZcgf1LkhbpahwO2g7sa8v7gLuG6vur6lxVvQqcALZchf1LkubpckOggC8neTbJrla7qapOA7TnG1t9DfD60LYzrSZJGpPLvTroI1V1KsmNwKEkX7vE2Iyo1ciBg0DZBfD+97//MqcoSZrNZX0SqKpT7fkM8EUGh3feSLIaoD2facNngHVDm68FTs3yvg9X1eaq2jw1NXU5U5QkXcKiQyDJe5N891vLwN8HXgQOAjvbsJ3A4235ILAjybVJNgAbgSOL3b8k6fJdzuGgm4AvJnnrff5jVf1ukj8EDiS5B3gN+ARAVR1LcgB4CTgP3FdVFy5r9pKky7LoEKiqPwY+NKL+p8Dts2yzF9i72H1Kkq4svzEsSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6ph/XlLSvI3rz5eevP/Osey3B34SkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHvIHcVTCum2xJ0kL5SUCSOmYISFLHljwEkmxLcjzJiSS7l3r/kqRvWdIQSLIC+HfAjwA3A59McvNSzkGS9C1LfWJ4C3Ciqv4YIMl+YDvw0hLPQ9IyMs6LLd7pf9VsqUNgDfD60OsZ4G9erZ15lY4kXdpSh0BG1Optg5JdwK728i+SHF/gflYBf7LAbSaNPUyOd0If9rBI+ZdX9O2Wsoe/Op9BSx0CM8C6oddrgVMXD6qqh4GHF7uTJNNVtXmx208Ce5gc74Q+7GEyTGIPS3110B8CG5NsSPJuYAdwcInnIElqlvSTQFWdT/Ip4D8BK4BHqurYUs5BkvQtS37biKp6EnjyKu9m0YeSJog9TI53Qh/2MBkmrodUve28rCSpE942QpI69o4IgSQrkvz3JF9qr29IcijJK+155bjnOJck70vyW0m+luTlJH9rufWR5B8nOZbkxSSfT/Kdk95DkkeSnEny4lBt1jkn2dNueXI8yR3jmfW3m6WHf93+Lb2Q5ItJ3je0buJ6gNF9DK37J0kqyaqh2sT1MVsPSX66zfNYkn81VB97D++IEAA+Dbw89Ho3cLiqNgKH2+tJ92+B362q7wc+xKCfZdNHkjXAPwI2V9WtDE7872Dye3gU2HZRbeSc2y1OdgC3tG0ebLdCGbdHeXsPh4Bbq+oHgD8C9sBE9wCj+yDJOuDvAa8N1Sa1j0e5qIckP8Tgzgg/UFW3AL/c6hPRw7IPgSRrgTuBXx8qbwf2teV9wF1LPa+FSHI98HeBzwJU1f+rqj9jmfXB4EKD65JcA7yHwXdAJrqHqvoK8I2LyrPNeTuwv6rOVdWrwAkGt0IZq1E9VNWXq+p8e/kHDL6TAxPaA8z63wLgM8A/49u/WDqRfczSw73A/VV1ro050+oT0cOyDwHg3zD4B/LNodpNVXUaoD3fOI6JLcD3AWeB32iHtX49yXtZRn1U1dcZ/IbzGnAa+N9V9WWWUQ9DZpvzqNuerFniuS3GPwSeasvLqockHwe+XlVfvWjVcurjg8DfSfJMkv+W5G+0+kT0sKxDIMmPAWeq6tlxz+UyXQP8IPBQVX0Y+D9M3mGTS2rHzbcDG4DvBd6b5CfGO6srbl63PZkkSX4eOA987q3SiGET2UOS9wA/D/yLUatH1CayDwY/3yuBrcA/BQ4kCRPSw7IOAeAjwMeTnAT2Ax9L8pvAG0lWA7TnM7O/xUSYAWaq6pn2+rcYhMJy6uOHgVer6mxV/SXwBeBvs7x6eMtsc57XbU8mRZKdwI8B/6C+dS34curhAwx+qfhq+xlfCzyX5K+wvPqYAb5QA0cYHLVYxYT0sKxDoKr2VNXaqlrP4ATLf6mqn2BwK4qdbdhO4PExTXFequp/Aa8n+WutdDuD22svpz5eA7YmeU/7Led2Bie3l1MPb5ltzgeBHUmuTbIB2AgcGcP85pRkG/DPgY9X1f8dWrVseqiqo1V1Y1Wtbz/jM8APtp+XZdMH8DvAxwCSfBB4N4ObyE1GD1X1jngAHwW+1Ja/h8FVHa+05xvGPb95zH8TMA28wOAfzcrl1gfwS8DXgBeB/wBcO+k9AJ9ncA7jLxn8T+aeS82ZweGJ/wEcB35k3PO/RA8nGBxvfr49/v0k9zBbHxetPwmsmuQ+Zvlv8W7gN9vPxXPAxyapB78xLEkdW9aHgyRJl8cQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY/8fw+YJ114M1tIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline \n", "plt.hist(x)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Utilisaton d'autre language " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "%load_ext rpy2.ipython" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%R\n", "plot(cars)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 4 }