{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "data = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "moyenne : 14.113000000000001\n", "écart-type : 4.334094455301447\n", "minimum : 2.8\n", "médiane : 14.5\n", "maximum : 23.4\n" ] } ], "source": [ "import numpy\n", "\n", "moy = (\"moyenne\", numpy.average(data))\n", "std = (\"écart-type\", numpy.std(data, ddof=1))\n", "mini = (\"minimum\", min(data))\n", "med = (\"médiane\", numpy.median(data))\n", "maxi = (\"maximum\", max(data))\n", "\n", "for x in [moy, std, mini, med, maxi] :\n", " print(x[0], \":\", x[1])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztfXt8HFeZ5bl6WA/LsuQ4lu3YTuz4RWxjxw4BEmACIQ8CBMJkWZ4TQthkA7M7w2sIhNnAMOywBNhhZhgWmIQ3IRkgCYQNBAKMIYRkbdmObFmWbEuWrXdbkqWW1JJaffePr6/u7ep6dldXlUv3/H769UPVVbdOVZ069d3vfpdxzqGhoaGhEV+Uhd0ADQ0NDY3SQgu9hoaGRsyhhV5DQ0Mj5tBCr6GhoRFzaKHX0NDQiDm00GtoaGjEHI5Czxhbyxj7LWPsKGPsCGPsr7Lff4ox1sMYO5j9u6n0zdXQ0NDQ8ArmlEfPGFsFYBXnvJkxtgTAfgBvBvBWAEnO+RdK30wNDQ0NjUJR4bQA57wPQF/2/Thj7CiAi0rdMA0NDQ0Nf+Do6HMWZuwSAHsBbAfwIQDvATAGYB+AD3POR0x+cyeAOwGgtrZ2z6ZNmyC2WVZWhnQ6jcrKSszMzKC6uhqTk5Oora3Ne02lUli0aBFmZ2dRUVGBTCYj1o9MJoOKigrMzMygqqoKqVQKNTU1eeuYmppCdXU1ZmZmUFFRgbm5OZSVUfQqk8mgvLwc6XQaixYtclzH9PQ0Fi1ahHQ6jbKyMr1Pep/0Pul9Ktk+HThwIME5v9C1WBt12K3QM8bqAPwHgM9yzn/CGGsCkADAAXwGFN55r906duzYwVtaWgpta6xw4sQJXHrppWE3IxLQXEhoLiQ0FxKMsf2c8ysK/b2rrBvGWCWAHwP4Puf8JwDAOR/gnM9xzjMAvgHgSqf1VFQ4RooWDJYtWxZ2EyIDzYWE5kJCc+Ef3GTdMAAPADjKOf+S8v0qZbFbABx2Wpd4lNIAJicnw25CZKC5kNBcSGgu/IMbi301gHcDaGGMHcx+9wkAb2eM7QKFbroA3FWSFsYUIu6noblQobmQ0Fz4BzdZN38AwEz+9X+9boweDjQAoLKyMuwmRAaaCwnNhYTmwj8EesvUoRuJZDIZdhMiA82FhOZCQnPhHwIVet0ZK7F8+fKwmxAZaC4kNBcSmgv/EKjQz8zMBLm5SOPMmTNhNyEy0FxIaC4kNBf+IVChr6qqCnJzkcbGjRvDbkJkoLmQ0FxIaC78Q6BCn0qlgtxcpHHkyJGwmxAZaC4kNBcSmgv/4KkEQrG44oor+L59+wLbnoaGhkYcEMjIWL+gB0BI7N+/P+wmRAaaCwnNhYTmwj9oR6+hoaHhAv/+78BNNwGLFwe/be3oz1NotyKhuZDQXEhEiYu2NuCtbwUefTTslhSGQIW+trY2yM1FGnv27Am7CZGB5kJCcyERJS5OnqTX8fFw21EoAhX6qampIDcXaehyzRKaCwnNhUSUuOjqotfzNXEwUKGvrq4OcnORxubNm8NuQmSguZDQXEhEiQsh9OerV9UjY0NCd3d32E2IDDQXEpoLiShxoYXeA3StG4mmpqawmxAZaC4kNBcSUeJCC70HzM3NBbm5SGN0dDTsJkQGmgsJzYVElLjQMXovG9MTCcxD91dIaC4kNBcSUeFichIYGqL32tFraGhonGeYnATe8Q7ArlDmqVPyvRZ6F9ATj0joAm8SmgsJzYVEEFwcPgw89BDwu99ZLyPCNoAWelcoLy8PcnORRkNDQ9hNiAw0FxKaC4kguDh3jl7tugOE0F90kY7Ru0I6nQ5yc5HGwMBA2E2IDDQXEpoLiSC4EEIvXs3Q1QUsWgSsX68dvSssWrQoyM1FGuvWrQu7CZGB5kJCcyERBBduHP2pU8C6dVTMTAu9C+j4o0R7e3vYTYgMNBcSmguJILhwG7q55BKgulqHblyhpqYmyM1FGjt27Ai7CZGB5kIiSlzMzQEf+xjQ2RnO9oPgwovQ19RoR+8KukyxRJRKsIYNzYVElLhoaQE+/3ngiSfC2X4QXDgJ/dQUMDCghd4TdJliiSiVYA0bmguJKHFx6BC9hiVuQXDhJPQih14LvQdoRy8RJecWNjQXEkFwMTwMNDQA//Ef9suFLfRRcPRC6C++WMfoXUM7eokoObewobmQCIKL7m4SuCNH7JcTQh+WP4uCoxc59KqjD3D2Vd+gJx4JCYfEVaShuVAQBBdjY/Rq1wHJefiOPgguVKE3E/CuLqCyEli1ioQ+kwFmZ0veLN+hJx4JCdu2bQu7CZGB5kIiCC7cCH1fH3D2LL0Py9EHwYUQ+nTa/IbW1UU59OXlFLoBSh++ef554M476Rj4hUCFfnp6OsjNRRrHjx8PuwmRgeZCIgguhNDbjQZVzXRYjj4oLkRlFrMbX1cXxecBcvRA6fk4dgz4xjeAiQn/1qlHxoaENWvWhN2EyEBzIREEF24cvRD6devCc/RBcHHuHCA2Y8bHqVMUnweCE3rxxOBnAETXugkJiUQi7CZEBpoLiSC4cCv0l1wCrFwZnqMvNRfT0/QnHLuRj1SKwida6L1uTE88Mo+6urqwmxAZRI2L06fD63ALggu3oZudO4Ha2vAcfam5EPtvJfRiyloh9EHF6MX6/SwkEKjy8vMxL6lEmD0fu+5LhChxMT4ObNkCfPvb4Ww/CC6cHP3UFMWJX/zi8AYJPfss0N/v39SjR47kd24KoRe104x8qKmVQPCOvqrKv3Vqix0S9CQsElHiorubLuT+/nC2HwQXTo7+yBFKIxSOPmihf+op4Oqrga9+1b9xNzffDHzyk7nfOTl6IfRBd8amUkBFBf35BUehZ4ytZYz9ljF2lDF2hDH2V9nvlzHGfsUY68i+NjpuTIdu5qEHj0lEiQsxpVxY4YoguHBy9KIjdudOErcguTh9mqb24xwYHfUneYNzOq7G6QKdhP70aaCsDFi9mj4HFbqZmvI3Pg+4c/RpAB/mnL8IwMsAfIAxdhmAewA8zTnfBODp7Gf7FenO2HkMDw+H3YTIIEpcCDEIqwMyCC6EwKVS1BlpxKFDQF0dsGFDsI5+Zgb4T/+JXpuagKEhf8JYY2O0zsHB3O8FDytWUJjE+ITT30//E846SEcfuNBzzvs4583Z9+MAjgK4CMCbAIhI5rcBvNlpXZWVlYW3NGZYLWyCRqS4OH2aXsMS+iC4EI4eMA/fHDoE7NhBbjZIR/+RjwDPPQc8+CCweTOQSvnTGzk0lPsqIPZ96VKq/WN09P39lHUkEGuhV8EYuwTA5QCeA9DEOe8D6GYAYIXFb+5kjO1jjO3r7e1FIpFAX18fenp6MDIyghMnTmBqagqtra3IZDJobm4GIAsaNTc3I5PJoLW1FVNTUzhx4gRGRkbQ09ODvr4+JBIJdHV1IZlMoq2tDel0en7otFiHeG1pacH09DQ6OjowNjaG7u5uDA4OYnBwEN3d3RgbG0NHRwemp6fR0tJiuo5Dhw4hnU6jra0NyWQSXV1dBe3TyZMnY7dPhR6nZ599tuT71Np6CuvWzeHhh8/a7pMaugnj3Ovo6Cj5cRob42CMEiNeeKE7Z5+GhhI4cCCDyy6bRVtbG6qrM5iczJT83Hv44S788z8Dd9xxDtdck0BNTQp9fSlfzr32dlLwwUGOo0flcVKFvro6hdHR3H3q6ZnD0qVT8/s0PNwDAOjqGijp9ZRKAYylcvapaHDOXf0BqAOwH8Bbsp9HDf8fcVrHnj17uAZhbm4u7CZEBkFwcewY5wDn999vv9wNN9Byt95a8iaZIgguVq7kfNUq2s/nnsv9X1cXff/Vr9Lnv/s7+jw7W9o2/fCHtJ0jR+jzbbdxvnZtxpd1P/YYrRvgfHRUfv+pT8l9e+lLOb/++tzfrVnD+XveIz8nErT8l7/sS7MsccstnO/YkfsdgH3cpVab/bly9IyxSgA/BvB9zvlPsl8PMMZWZf+/CsCg1e8FdJliiYMHD4bdhMggCC7czCQEhB+jD4KLsTGZUmgM3agdsUB4g4QaG4GzZ/3JQFJDNmqc/tw5mge2oiI/dJPJ0IQjCyZ0wxhjAB4AcJRz/iXlXz8FcFv2/W0AHndaV5SyK8LG7t27w25CZBAEF+IijrrQl5qLdJrCUla548eO0etll9GruGRL7dHMhH5ystyXgWuquKuiPzZGYRsgX+hHRmjQnCr0om2xFHoAVwN4N4DXMMYOZv9uAvA5ANcxxjoAXJf9bAvt6CX0ZBsSQXAhLmK70aDj4/L/YZ2qpeZifJxe166lVyMfAwPkXOvr6XNQLlasX2yvMZus7XRjdgNV3NX3585ZC70YR6EKfVkZZeecj+mVjin5nPM/AGAW/77Wy8a0o5fQk21IRGGCCQDo6ZHv4zp9nsi4sXL0g4OUUsiyV3yYjh4gZ33hhcWte3CQBHp6Oj90YxR6zmnfzYRetC8IR1/sPhuhpxIMCaKXXSMYLtyEbkRq5erV4Qg956XnQgj96tXkUI18DA2R0AsE7ejNhL5YDA0BW7fK9wKq0C9dSrn24oZjJfRBlIQIPb2yWGhHL7Fr166wmxAZBMGFG6EX8flNm4IP3XBOtWV+9Sv/uHj96yk3XYUQ+qVL6c8YuhGOXiBIR19VJZ8k/BT6wUEKVS1Zku/oRYiqoUF+B2ihLwqp83Vm3RKgra0t7CZEBkFw4SZ0I4R+48bgHf2xY8Dhw8Af/zjmvLBL7N8PHDiQ+50Q+vp680FCRqEPMtNErdbot6O/8EL6s4vRA5KP/n4SW3EjEAhignAjF35ATzwSEtavXx92EyKDILhw6+hXrKCLPmih/81v6HVubokv68tkSNSMo0FVoV+6NJcPzkno1fhwUI7e2AHpl9BzLsNRK1bYx+iBXKFfuVI+YQhoR+8CUSpHGzZ6e3vDbkIOvv514OTJcLYdBBfiAk4mKcXQDGfO0GxDYth/kFW1hdAPDs74sr7hYRJ749wdauimoSE3dCNqwoTl6AsR+u9+N/+pRcW5c5QmaXT0s7O0T05Cb4QWeheo8LPu5nmOZcuWhd2EeSQSwF13Ad/5TjjbD4ILVdCsUixVoQfMC36VApkM8Lvf0fupKX/qQQnnmkjk3rDEvpuFbsRvwojRT03lhiuqqoCaGm4r9Ok08L73AZ/9rPUyQtiFoxef1fIHgDehL2XohvMYCH2U6o6HjShlIIlBMmE1KQguVEGzCt+cPk2ddkLcggrftLQAZ8/Sdv3IGwekaM/O5rt2xmhEqDF0Yyb0YY4Gra/P2Ar98eP0BGI39EDsk+roOS9c6EudXinMxXkt9BoSUarNL/pCwxL6ILg4d06GA8wc/cQEhQlURx+U0IuwzQ03AGNj/nBhNUhobIyyT8rK8kM3UXL0ANDQYC/0R47Qa1dXfohKwOjoxY3PTuhnZ2l9foRuPvhB4C//0v3ypZgvFghY6JmxZ2MBI0olm8N29EFwMToqp4Qzc81isJQq9EHx8ZvfUErn9u3A+DiDHw++dsP+1ZTCsTFgbi73N1Fx9A0N9jH61lb53srVi30Xjh6g/TQKfXU1UFlJ54bgwQ+hf/JJ4Oc/d798LIQ+aqGb5mZ/0rcKQTKZDGfDJhCOfmIinO2Xmou5ORI0q5mEAJlaGbSjT6eBvXuB17yGhI1zNl+moBi4EXohcmJ7aphDQAz7DyKP3ujo6+pmHR29uCnt22e+jDF0AxAfaqc0QOEs8YQjcuhXrcpfn5f0ykyGnja6u93395RiYnBgAXfGptPAK18JfPnL4Wx/+fLl4WzYBGE7ej+5+OMf87MwhJC5FfogY/TNzSQ6r361FB27ejxuMTgoUwPtHD0g+Rgaou+MWdBBZJqY1XdZsaLSUeivvJKehuwc/ZIltG5xUzBz9IDsnLYaLAV446K/nwQ+kwE6O939JhaOfmbGn9QxP9DXR8IWlqM/Y5zAsgTgHPj85+Ukx2aYnZVplWEJvZ9cvP/9wMc+lvudEDK70I1owkUXBRu6EfH5a67JF95iMDhIUwEC7oXeOFhKoLY2GEdvFLeKinHL63N2lgzKtm3AFVfYO3rh5FVHH4TQq+Le0eHuN7EQ+qqqqiA3Z4tTp+g1LHHbuHFjybcxNESi99BD1sucOCHzyuPARX+/vFAFhJCtXUsu10roly+nCznI0M1vfkOx+aYm/4V+3Tqa+9UpdCNEzzhYSiAoR28MV6xfvxTj4+bjHo4fJ7EXQn/6NFXeNEKt3WMXowfyhb6pKX99NTW0XdGvYQdV6I8fd14eyK/54xcWbAkEIfRhVSk8IlIGSggxz7TdU4sI26xaFZ7Q+8XF3Bxd2MYLXlzUjY35KYUCp09T2AYILnQzPQ384Q8UtgH8D92sWEE3r/PV0adS/TntUyFOmW3bAFHw0yx8I8ofANTXUF8vHX1NDXXACqhC39hIyxsh2uhGysSTdF3dAnP0NX73MBSBsIV+p5jCp4RwI/SiI/byy8MTer+4UEeDqo5LCEVDg3l9F0AOlgKCc/TNzbSNa66R7QP8c/Rm9V0KEfqgRoMa5WH79osAmJ+/ra30dLZ1K527jJmHb4z7JAZNqQXNBFShNwvbAN7Ojc5OWs+LXuTe0cdC6KM0SChsoQ9isg23jn7lynAdvV9ciAyLTEbuO1C40Jeaj7Nn6VVMAuKX0M/M0DpWrMgV+kyGOqbNQjdzc3SDDMPRc27eGXv2LKmj2fl75Aiwfj21rb4e2LIlX+hFnRs1HHXhhTJ0o4ZtgNII/fr11Fm8oBx9lMoUd3fTa1wnmACk2KmiZ0RbG7miIB7PreAXF2rIRn2vxmPNhD6VIpELOnRjnFXJr9CNOkhIFXqRxWoU+tFRuulwHo6jFzkaRnF7yUuo78ZK6Ldtk5/NOmRHRym+bxR64ejNhD6VopCLldB7Cd0Iod+40X2KZSzSK7Wjl4iSo9+yJVyh99vRG98LYTcr5AXkDpYCwps+r7ISqK6eK9rRmwk957mVKwGaFLuuLneQUBiO3siDQG8vBeKN5+/sLNDeni/0fX2AWh9P5UFAVLA0E3rx+cyZ4h19Ok39PpdcQo7ebYqldvQ+gvPwhT5IR28l9IkELSOEfmbGurJjKVEKR28U+sWLSdjMHL1IrRQhFHGRBT19HgA0NpYXLfSqaF94IW1nYiK3oJmAmHzETuhL7eitxO0VryAlN56/HR0y40bgiivoVXX1ZgPALryQzvvRUXNHL1Cs0J8+TeEw4egBd3H6WAj9VFiqasDZs/IiDqtJLS0tJd+Gk9CLjlgRugHC4cMvLlRxN4ZuxEVslnUjphAUjl6MBg3a0dP7VNGhG6PQA+ajQQF544uio+/pOQwg//xVM24Edu2i46Y+HFo5+nSaQimlFHqRcSNi9IC7OH0s0iur/W69CTIZ4Npr7etLCDff2BheuGLz5s0l34YQ+rExc6cuUiuFowdKz0dvL7B5M3DTTcAXvkCZJxs3+sPF4CDlPpeX5zt6cREb67sA+UIPEB9hCP2KFYt8d/RArtCrjl6EssxEUSAsR79jxyZUV+cLvZpxI7B4MXDZZbmOXq1zIyDeT04WJvRuY/QiTLN+PbBsGa17wTj6IEbGJpM0COUPf7BeRnTEbt0anqPvFo0oIcwyT1S0tZFzvfji4IS+vZ2czYEDwEc/SjnQH/qQP0V2BgboAr3wwlxHrz6mi4t5TJmxr7ub8s3VyGJQg4SA3Iu6snLKF6FftIgE3UnoxRPO4CA5YrOpAbw6+rvvBm65xf3yVh2Q3d3daGw0d/QbNuQvf8UVwHPPUVgHMA/dqDeyUjr6zk7iUwzSc5t5I7jwezK+2NW6ESfzmM3Um8LRhyn0TWbD7nyGeoGYhW+OHaMTsLw82EmgAeDRR6kTdMMGoKfHn+nzhKNvasqfMk519EDuja+7W8bnBcQsU6WESClUi7quWLHIl9DNihW0XjeOXgj98uUkTkbU1NATodv+m9/9zt5oGWEVrmhqarIUejVsI/DmN1NY9he/oM9DQ7Sv6sAnVfRLLfRr18oBWRs3unf0xnPCDwQq9HNuxg0XCVHAyu5iOXWKHvXWrKEDFuSUcQKjfs0wYYPhYXkym6VYitRKIDihFylmVVXA6tVUW2ZoyJ/zYmDAfG5QY+hGfCdw+jSVC1ARROjGbDRoTU3KF0dvHPbvFLqxGiwFeOu/SaeprEYi4T5N1CpcMTo6mif0MzP5GTcCN91EN/kHHqDPZiUd3Ah9eTlwwQXmbfUSulGnQt60iXTHKahRionBgYCFPogJJtwK/cUXBz9lnIog+iuGh4FLL6X3Rlc0M0PFzLZsoc9BO3qx+8uWAWNj5b6sW3X0TqEbo6M3Cn1Y9V0aGspw7lxx5kMV7bo6uqmqQr9EeYASoRtxkzSDlwFknZ0ydHLihLv2WnXGVldX5wl9RwfdTMyEvrIS+Iu/AJ54ggY9qXVuBOyEvraWMrNWrCCxN4MXRy+K6AHk6N2kWJZiGkEghjNMCaF3Ct2oQh+RZCBfkcnQBWIl9CdPUoekEPrFi+k1KEevCv3oaPGn4cQEtd3o6MW0cVaOXsw2ZCb0YcyqtHQpx8yMvWP8+78HfvpT6/+rQi/CN0LoFy/OFbGGBhLOri5/HL3I5ALcC71dB6RR6A8epNcdO8zX9d730nn9ve/lj4oFKPYtBN4o9IzRd1ZhG8CdZqRSlNNvdPSAc5w+FkIfxMQjbh39unXhCn2pC7wJV2gl9OKCDMvRi7jpsmXAyEjxAUnh4IXQT05K8U+nrYVeZNyEEboxE/ra2pmc9hlx4ADwt38L3HOPtes3hixUoTer7wKQMPnh6EUmF1C8o0+lUnlC/9xzdLMyc/QAhSKvuorCN1bhKPGdUegB4sOu+8yNZog+QFXo3ebSx0Loy62eh3yEk9BPTFCHjerow0ixbFB7forE3Fx+2VQRkxdCb4zRC4ETJ6MQ+lLPMmUWupmaKnM9a48VhIMXoRuAxF8dFQtIYRPnh0h+KjZ089nPAu98p7c2mwn9ypXVOe0z4n/+T3o9ehR44YX8/09M0HpVgbMTelXs/HL04mZbrKNvaGhAY2NuOuxzz1F2jZ2UvPe91I7+fvOyy+I7IxcAPS199KPW666ooG3bna9qaqXABRfQuefk6M1q/viBQIU+HcCwSyehFxd22KGbAbPi2QXiXe8C3v3u3O+EsK9cSReq0dH39dFJKzqdwuiMBWQ6X7ETwKi542YzCQmBr6/PrUkvzodis26efBJ4/HFvsXUz95bJEBFmjv7oUeDHPwbuuouOndk8A2YDn9w4euNvVHh19Fu2kMHwKvTGm97AwMD8hO6jo3TuHDxIs0rZ4a1vlaFIr47+bW+jaR3t4GQCzISeMXeZN7Fw9Iv8Tg41gZpeaXbRiceqsIV+ndFCFoFDh2jgkQoh9MuWifBI7v/7+8n5iv7xMEM3ansLhbhvqo5+cDC3ciVA+7tkSa7QV1Tkx2W9OvqTJ8lN9/W5/42Zo9+0ieymmdD/wz/Q8p/5DHD99ST0xmhoKYXeDR+q0Bc72ca6devmhX5khM7zmRngpS+1X9+SJST2gL2jNxN6N3Aj9FVV+XPOusmlj4XQBzHxiHD0c3PmoiWEft268Ib9P/YY8Pjj/g2YGhiQhbkEVKFvbMwX0r6+3BMxSEdfXk7iKtqnttcKv/2teahCQB0cIwTLLHQD5Na7EROOGEMBXmL0k5NS4Nvb3f0GMBf6kZEuAPlPpCdPAj/4Abn5Cy8E3v52ukn98Y+5y1kJfTJJ/7ML3ZiJIuD+3BgephvK1q3kXs+c8Vax0Shw7e3tOUL/3HP03knoARq0VVFBteCN2LGDrv9CBdVpgvDOTjKSxiTDjRudUyxjkV4ZxMQjQugB8/DNqVN0AqxeHbyjT6WA972PRg0+8sgmX9Y5O0sXWDKZm2lkFHozR6+62MpK4iXomYTchG7SaeDP/xz44AetlxkYINGqqjKfMk51rqrQm6VWAt4cvTonb7FCf+WVVA7C6Og//3m6GX3kI/T5TW+i3xrDN1ZCL9pZSkevltS49FJ6onZTsXFqis4943jKHTt25An96tW5pSqs8JKX0PWwe3f+/z7wAff14c3gdG50deWmVgqsX09PYEZTpiIWjj6IMsWq0JulWHZ3SwcXpNB3dQGveAVlA9TVAadO2eR/eoA6MEidY1sIZ2OjeejG6OiBcKaMc+Po//hHeaFbdfOIHHqA1r90qTtHbyf0MzPu5gYVk6sDxQt9ZyfF4FSh7+8HvvlN4PbbSegACk/cfDPwyCMybx2wrtgIEHeFCL1bR68WyRNJAG7i9Fbitn///hyhf/555/i8CitfWVZWXIkBo9AfOECjcj/7WeDZZ/MHSwm4MTWxEPogyhS7cfQXX0zvgxL6kRFyGMePU/7zNdcAc3MmXf4FQO3TVZ3C8DCJQWVlvqNPp0kQjHHpIIR+ejp3SLoboRcF6iYmAKtCl2ZTxjk5+rk5ujmaCb2XsJ4Q+pUrixf6q67ajYqK3HP3+efppnPbbbnLvv3tNAL16afld4ODdNzV9aqibxT66moSvaqq3IFUKrw4+spKcrNehd5MlPfs2TMv9CdOkAt3E7YpNYxC//jj9PfJT1Jq59mz9kJvd66HJvSMsQcZY4OMscPKd59ijPUwxg5m/25ys7GgHX1UhL6jgy7IBx4A3vhGEt6BAX+G46pCrzr64WF5Yhlj9GIiiig4+iVLgPJybnvyP/GELNVgjEkLDAzk5j+LejejoyRk6jbVKePSaWtHD7gX+ro64OUv9yb0Zhd1c/P+vJr5IswgxjwI3Hgj7csPfiC/M8sdtxsNCtA6RG0cM3hx9Js2UQjmwguJEzcdslYphaqjf+opeo2C0Btj9KdP05PW0BDw7/8OfOxjwDvekf87N0IfZnrltwDcaPL9/+ac78r+/V83GwvK0YsL3ij0s7PkesWFHVQevTgp1EE7k5MmU8wXADtHrwr95KTsBBIdh2EIvdHRMwY0NjLLk//kSSpLe9dddDFZCb2Zoxehm6VLc0VMCKlVaiXg7dw4eZKKs23ZQs7TbRaxmaPfs2dPXs3848dl9pSKqirg1lsp5VLc5J2E3ix3fOlS67AN4M3Ri5uRSCdXtCUjAAAgAElEQVQs1tHX1NB+PvMMrVNMMBImjI7+9Gk6h5Yvp+Pxuc+Zn1ORdvSc870Aikx+IwQx8cjYmOysMcboe3qoMyRoR28c9k+FpHhealwhEEJfW5sv9MINGWODQujDCN2YnciLF6csT34RtnnjG+mx2Ezo02l6XLYK3RjHpoma9KIT1Y/QzYYNVGdflBNwwuwshY6MAnfo0KG86Q47OuTISiM+/nF6Onv/++nVTOgbGmRHp5nQq5NjmEFMxKKeG8kkjR0QKcyzsyTqao14t7n0Vi720KFDAOg8Tqep3rxVeClImAm9mw5icT1GUuht8JeMsReyoZ1Gq4UYY3cyxvYxxvaNjo4ikUigr68PPT09GBkZwYkTJzA1NYXW1lZkMhk0ZxPCxTyizc3NyGQyaG1txdTUFE6cOIGRkRH87GeD+MlPziKRSKCrqwvJZBJtbW0YH+dYsoSuksOHT+es67e/pWBqRUUPxsbGMDREli6RSKK7uxtjY2Po6OjA9PT0/KxH4rfi9dChQ0in02hra0MymURXV5fjPh05Qmd7Z+dRAMDExBlwzvD88205+9TT04O+vr68fUqn0/MnvbE9R44kUFvLsW7dNLq6ZtHd3Y3BwUEMDaVRXT2JsbExTE+Tsv/pT+3Z167sfrfk7BMwgfHxOVf75PY4GfdpcjINzidz9mnJkjSGh+W6WlpaMD09jY6ODjz2WBqXXjqLJUsGsWPHOLq6gGPHxnOOUyJBgtPUJNfBeT/OnuU4dWoC9fW5+8TYKDgHnnmGrrjJyba8fRICPDFhv0+dnV04eZKjoWEYGzaQle/oyD9O6j6NjY2hvZ3Ozbm58Zxzb+PGjaioSGJ0VP62tXUamzaZn3v19Ql89KNj+NnPgG99K4n+/jQaG9M5x4lquFCP7eDg8bzj9PWvj+DTn+61PfdqaoBTpwbn9+n736dqkY8+OouOjg60tCQxOwusWjWGwcFBdHd3Y82aaZw8mcHkpP31NDWVATCVdz01NjZiZGQEixfTo+iWLSNFnXturifjcRLXk9insbExzM6OYWqKo6WlJTst6RzWrnXWiJGRPtTUZNDbmzK9ntJpefM37lPR4Jw7/gG4BMBh5XMTgHLQjeKzAB50s55t27Zxv3DttZxffnn+942NnN99N+cA5//jf+T+7/vfp+9bW+V3ixZx/rGP+dYsUzzyCG338GH6/OCD9PnkyeLX/c53cr5+Pec33ZTLR1MT53feSe+ffJK298wz9Pkzn6HPqVTuum66ifM9e4pvkx1e9SrOr7nG+N246XbHx+n4fPjD9PlPf6J2/+hHucsdOpT//Ve+Qt+tX8/5a1+bu7zg/+abOV+61Lydv/hFLmdW6Ouj5f7lXzgfHKT3//iP9r/hnPP+flr2K1/J/f7o0aP8LW/hXFwqU1OcM8b5ffdZr2t2lo7bihWcl5dz/olP5C+zYwdtb+9e57aZYfVqzu+4Q37++MdpfVu30vZ/+lP6/OyzcpmvfY2+O3XKft2vehXnf/Zn+d8fPXqUc875VVfRer72tcLa7jfuuIP44Jzz4WFq2xe/6O63a9Zwfvvt5v8bH6d13X9//v8A7OMuNNbqryBHzzkf4JzPcc4zAL4BwFXSk58jY4eG6HE9t10Uo1+6lB7xjKEbs+nSgihHaxwQog7rLhaiE3LNGhmn5Tw3Rm8WumlszI2VA+GFblavrjJ9nP31r6lf4Q1voM+XX05tNoZv1FGxAuJ9V1d+6EZ0SL7wgnnYBnAfoxcZNxs2UIy2ocFdh6zVIKE1a9bkdMZ2dtLxtAutVFQA//ZvdD3MzZnH2+3qu7iB8Trp6aGQTlsbJRkYi+QBMvOm0GH/a7LxEHG9RKEjFsjlQtSMMovJm2HZMuvQTammEQQKDN0wxtRuvFsAHLZaVoWftW4SiXzCpqcplrdkiZzdXsXQEOXPNyqBpiCFXgirWU30QiGEnibwIA4mJihmqnbGAlLo+/vzO2IB70L/la9QnR0vMHbGAkB19ZTpyf/EE3Qcr76aPi9aRGmqbkaDivecm8foAboJWAm92xi9KvSMUZzejdBbVWxMJBI5Qi8ybqxi9AK7dsliXKUQeuO50dtLOe1XXw3cdx9Nyr1iRe61JdrsFKe36oxNJBIA6DyurbWuWBk0Yin0jLGHADwLYAtj7Axj7A4An2eMtTDGXgDwagA2YxaVjfk08QjnJPTJZO5gEZFauWQJndBmQn/BBblDk8N09MUW8gJyhR4gt66OilW3J77v6zOvue1V6B99NH/AjhPM3NuKFeU4dy43WyWToY7YG2+U07EB1CG7f39ueptaoliuU763mzLOydG7EXrGZAd/sUJfV1eHpUvpZp1OS6G3c/QC990H3H8/xc6NKIWjv+gimuB9YAB4+OHcjliAnjIrK52F3qoztq6uDgCNBv7e9/JHzoYFkV7Jub9Cb1Xzxw+4ybp5O+d8Fee8knO+hnP+AOf83ZzzHZzzF3POb+acuyrlxH2as29iQqYKqmIphL6+3trRL1+e+10QQm+WdQMU7+jn5uiGJ0I3AIVvjEIvtufk6Bcv9ib0bW0k8m6GuQuYOfolS0jhVT5aW6mdr3td7rJXXUXbzPZ7AZCTYauCroZxrBw9YH2BegndXHSRPLabN1PaptM5ZSX0s7OzOaWUjx+Xo5udUF1NomiWK3/JJXQj99PRr14NvOxllFII5Of5l5dTRo8bR28mbrNZB/HiF3ubbLzUUGemO33avCieFczqTglELnQTNrJPdABySVOnSlu61DxGbyzcFMRMQsYDaBTeQpFIkPNVHX1Pj1yvEIeKCrrAR0bIhZiVPwDkxezmfjw+LtM51ckmnGB2US9dSnUGVD5EXHf79txlX/5yelXDN+pk2HKdcpi7ndD7EbrZsEF+3rw5t/1WsBL6TCaTYwQ6Oty5eSe8//00VF99OvIC1RBNTNBNSJxzoqqmWY67mxRLs/EEQDATFRUC9WlPDJZyO9WGWTkSgdgIvV+hGyuhdwrdJBLmQh9E6Eat2LhkCVBWxot29GrIws7RA9JJnDtH7bEK3XDuruKgGp5Qp49zwvR0/onc1ETqox5LtZy0ihUrKParCr1xVCxAom9Vd1x1tX6EblShF6LsFL6xuqhra2vn2yscvVN83g1qauRNqBCojl7c4EXdHVGp8n3vy/+dGDRlZx6sHH0QAywLgWjr1BQ9vbkN2wB0TaZS5ueVVV1+PxCo0Pf0+BO6cSP0VqGbsIRePZGpJnrGN6FvaqL9FYOmrIR+ZITCIYC1owfczTIlXDxj3h29MXRTVkYHSj2WXV0UShITo6i46irgD3+QwuM0ZZzR0VdUyIE3xWTdpFLEdyFCb+Xoh4eH59vb309C4oejLxbqddLbS6/C0QN0rpn5uEsvpSdr9Zo1wqozdrjYSQpKBNHWVEqOinULu9GxsXH0qZQ/vSlqWqWd0Kuhm7k5WtYo9EHMDWombsuWsaJDN6rQM0YXnpXQi0dGq1GxgLea9G1tdGFfeaV7oefc3L1t3kwdJ0ahv+QS8/or73wnnQNvfjOtr9C5QcvKpCs1orKSnsKcytECuUK/ZAndRAsV+tWrV88L/YEDxJkfjr5YmDl6VeitIJaxmlAtnaY/M3FbbXVwQoZqAs6c0UKfh9lZf2JubkM3U1MyI+TsWbpownD0ZuGKmpppXx09IHPph4fpxqKKiHD0VnVuAG9Cf+wYdbS9+MXuQzfpNB0D401vfJziNGZCb4brrwcefBD41a9oJiGz0A0gvzObnrehgUTeKmbNmPO5oaZWqti82d3coIBZmeLO+RvTvn30GjVHbwzd2EE8OZmVDAfswxWdXnr5A4Roa3c3JYVooTeAc/9i9IyRI7Nz9IAM34jBUlEI3QA0CbQfjl7NNlEdvTFLQ8To3YRu3Ar91q2UaZFI5A9eM4PVifySl5CSGWP0VkIPAO95D/Cv/wr87Gd0I/USuhH/Mwq0EcUIfaGOfuvWrfPtFUIfNUff20vXmJu6M6I/RK0qq8IupXCrMV8zIhBtFcfYL6EPNb3ST6TT/sToz54lwhoanIVeOImoCT1jo744ehG2AcjR9/SQ8BqFXg3dVFWZhzPcCn0mQyf5li0ypc5N+MY4MbjA4cMHsXSpPJbnzlFbjR2xRtx9N/DFL9J7s5vCxo10fM3i/P/n/9CITjs4ZWSdPEmcGW8ymzfT+eY0wQSQf14cPHhwfgLzM2foBm3W/qBRU0NPZKICrNuoihB6J0dvJm4HDx703tAAIG7O4qlNO3oDMhmLgtcekUhQPrxx8MHYGB0EkU4IRNfRX3JJY9GOXp1VCSBHn06T6Jo5+ulpEqdVq8xj326F/vRp4mzrVjlIxo3QW53Iu3fvzjmWIuPGztELfOhDwNGjFK834vbbKR9/8eL8/23c6OyUnfpvTp6k8JWRS+Hw7apYWrm33bt3z09gLtoZBajppr297uLzgHPoxurJBiAuogjRVr8dfWyEXnTGFQsroR8flyeWl9CN29zxQmHWGTsz0++boxcQF197u7nQAyR8ZmEbwPuUcVu2kBhXVhYn9Pv37885lkIg3Qg9QDcbszxmMdtRoXATujEL/wiurcQNoPVWVeVnqogKiCJ8E4X4PJCbbipGxbpBMY5+vzoqLkJQhV6do9gNFi+m89JO6M/79ErAfNYnr0gk6HG2EKE3Pgaro9xKBTNHv2XLSkxN5W+XczqBvvpV4D//Z+DrX7der1HoRS793Jy10B8/bj2Kz63Qq5NAV1SQGLnpkLUK3ezZs6cooS8V7EI36bS10Du5WMB6kNCePXsAyPM3ao5+YkKOinUDwYVVjN5O3AQXUYO4lkUdequZuczAmHUZBGNNLD9xXgr92bPS0RtLIBiFXo3RNzbmZ1kEMfmIWdbN+DjVwldd/blzFN/dsoVGMj7+OBWqSibz15nJ5KcVGvOaVYjP6bQ/jl5MPwdQe4tx9M3NzXmhm5qa/HIVQcMudPPggyR6r3lN/v+cXCxgLfSi1npUHf3p0xSnd+voy8uJR6fQjZmjF1xEDYILzr2FbQSsyiCkUjKt12+cd0IvCpo5hW7MYvRmj1hBCL2Zo9++ney3KvRHjpDj/pu/oY6e3/2OLpDvfCd/nSMjJNrG0rziJLFy9IA/jn7LFulktmyhdjsVN7Ny9Lt27cpz9FY59EHCKnSTTFIBsauvppmvjHAj9FajQXft2gVACn3UHL0o7eAlxb2+vrD0SsFF1KC2tRCht3P0pYjPAyEIvVNcemhIhlnMkExS7qrq6EVJDKfQjZnQe5kyrlCYHcBkkorHq08kohLeu95FF/hLX0plef/5n/P7EMxqsJeXS7duJ/R+OHo1823rVrrpOKU9Wzn6tra2+WPJuX0OfZCwEvovfpHSVO+/3/xm5BSuAKwdfVs2BibO36g5eiH0bh09QEJfSHplm5faGgFCbWuhQm+WiFGqicGBCDr6P/9zErnHHjP/v8jXFjF6zuU6VaGvqqI/NXQTJUe/dSsptHrjM5Y8ZQz4b/+NhPXXv879vZnQA/ICtArdANZCL9poJ/Tj4xSjVSsVuk2xNFbxFFi/fj0aG6lvYXw8OkJvVrZZCPytt8oCa2a/KysrLHSzfv16ALT/a9e6q1oZBIyO3ovQm00CJGDXGSu4iBqqquQNXjt6C9g5+mSSilXNzFBZ0nvuya1RDshRscLRA5K0sbHcglVqYbOwhd4YrpieJqU2Cn1dXW6O+1vfSrHwf/qn3N9bCb3okDUKhMjNBqxDN2VlzrnjIqXMTOidDJhVZ1Nvb+98e0+douMZBaE3c/Sf+hTdsP7hH6x/x5h9uAKwFvrebCGZe+8FmpvDD18JqI6eMfdleYHCQzeCi6iBMSnIWugtYOfo//QncnUPPwzceSfwv/4XTSM3NyeXsRN61dEDsrBZJmNeuRIIz9GvW0d3JGPoZu3a3Iu7qgq46y6ahEMt9+rV0ZeVybivlaMHnCcfEWKuhm4aG+lm5OTordzbsmXL5tt74AC9Og2WCgJGoT92jKbsu/tu59j5kiWFhW6WZYmorg6/M1qF6uhXrPBW7rjQ0M2yqDzOmEAcu0KFfnw8v0/LqribH4iUo9+7lwTp1a8GvvY14NOfBn75y9zh5KrQqzMnzc2RQJkJ/ego/d9O6EtZk94s62bRIioRaXT0ZifOf/2vFH//ylfkdwMD9J3xWhCOXo3JCzQ25pbvNYOT0B87RsdIzAcqsHWrs6O36oydnJyc3w+RaBEVR6+OsfjlL+k8ElP22cHJ0Vu5t8lST45QIMR1kkx6C9sAhTv6qHIBFO/ogfw4fWwcfXm5vaPfuxfYvVuKtZhdSBV6Y4weIKEXKYiq0IsTzGqwFODd0XsdWJXJUCgqv+54GaqqzB29EatXU0z4wQfljW5ggATbOODm1ltpliEzR7xsGXFgNyWb0yxTbW2UO24UazcpllaOvqysLJJCL+rzi9nM2tvpnBI3UzsUGrrxa84Gv6G21WtRSbsYvZ2jjyoXAPGxeLF5HSUnWI2OjY3Ql5VZC/30NPDcc8ArXym/M6vtnUjIMIRKmFrnRkA4ej+F/jOfoZuRW1h1QFZWVqKxUTr66WkSbyuHcO+9lLf94Q/TZ6uKjevXU2eh2TWyYoWzA3Hj6I1TxgHuiptZOfrKysqc0E11tf1TR1AwnhsdHTTOwU3cvNDQTWWhU0CVGOocIH47esbkbGAqosoFQMfOGGZ1i9gLfXm59axK+/bRjr7qVfI7MShHLfkqCnaVl+eGboIQes4pp/3AAffTAFp1QCaTSTQ0SKEXpV+thHj7duqc/s53gKeeyq9z4wZf+hI9FdjBSug7O6liZEsLsHNn/v/dTKFn5eiTyeT8sUwm6WkkCp2QxrBee7v7WZoKdfRJs9FxEUAxjr6+nuLRZqPPRUqh2fGOKhcAaUmhM3ZZCX1s0ivLy5mlo//97+n1Fa/I/d5Y8vXsWVnGoLKShN1O6J1CN17y6NvbZYfokSPOywPW4rZ8+XI0NMgbhpvZ5O+9l5zzXXdRLWyvrnfLFqofb4fa2twZpmZmgA98gH778MNUROyee/J/J46JXR+M1U1v+fLlqK6WxyIKYRsg99xIpSgjqNRCvzxKPbAKysrkcfPq6O1KQti52KhyAQDf+x7wjW8U9lvVoKqIjaMvK7OePm/vXuCyy/IzDTZtyg/dqMuIVCVxEhnTK8fGyP0CxTv6J56Q790KvVXo5syZMzmhGzdCX11NWR9dXdahm2JhdPSPPkp13//iL8itf+EL5nXI3QwSmp6mm7MxrHTmDA0eE04nKkKvnhti3lO3Qu8mdGN2UQsuogjBRyGhG8Ba6K0yTaLMxerVhYcXYx+6qawsM3X0c3PAM8/khm0ENm+mGuriojET+pERa0fPOYUdliwxLxbkReh//nNg2zbqhGltdV4esHb0Gzdu9OzoAXriuftueh+E0ItQzD/9k/0F7qaQl9WJvDGbqxhloRdmw4ujHx+Xo7ZVpNN0zpsJ3Mao1DwwgXjCKSR0A5jf+OzCFVHmohgsXUqhKjOhj0V6JedpU6F/4QUSCLUjVkBcWCJOLwqaCQhHbyX0ALkxq1Ki5eXkMp2EfnSUwks330xPHsWGbo4cOZLj6MUkE2a104343OdoINX117trgxcYhb6ri24oamecGZxmEgLI0ZvdbI9kyRSPtFERerUkhBB6tyUJ6uvJZJhNtG5Xg/2I2xMrBBTq6J1CN1biFmUuikF5ef6kSUCMHH11dQXOnctPUdy7l17thL69XRY0U0sN2wm9EB87oQecR4MC1AGaTgOvf70/Qr9z5875zljOvc0mX19P8XKneHshMAp9Z6c74XUTurE6kXdme3eFo4/CYCkg39E3NeWGBu1gx4ed0O806+mOCGpr6UbtdRyTXejGztFHmYtiYVbvJjZCPzc3g0wmv+zu738va3sYceml9JjT3p5b0EzAjaM/c8ZZ6J0c/RNP0LZe9jIK3/T3mw9jNsKqA3L//v3z9V2SSW9CX0qYCb2bkiOVlbSPTo7eboKJqIduvGRZOImbun4VUZ1sA6D2rl7tPSPK7mnPTtyizEWxMJZB4Nz6+vADgQp9TQ0ly6odspyTozeLz9NvgHXr6EJTR8UKiNrO4+OyVouAWjOmGKGfmwOefBK46SZ67Nq2jb534+qtHP2ePXvmB1uMjkZL6Gdn6W9ujrJ73NaWcjMa1Cx0IyaYuPhiugBK0fdQCNT0ylIIvdlFHdXJNgAqnWE2hsIJdqEbq+wjINpcFAuj0JdyGkEg8MnBKQVFjdN3d1P6o1UlQECmWKqjYgWWLSNR6uujE0p1G+pjdjFC//zzdJN5wxvosxeht8q62b9//7zQ9/bSvkVF6AHi48wZCle5FXqnTBMr9yac20c+Ahw8aD7YKwwILgYGKHPLi9DbhW7shv1H2cU+8ADw3e96/51T1o129DET+tpasnOq0IsMKrvHdSH0Ih/eGLoBqNPQGD916+idJoF+4gly8jfcQJ/XraMqk24yb+wcveh8bGmh1ygJ/eSkrC/vl9BbdcYK5yZGG0YFQogPHaLXIEI3UXaxF1xQWKG1xYvJgFnd9LSjj5nQC0evhm6E0NvVD9m8mW4OomiWmdCfOpWf3+1X6OaJJyitUThwxtx3yFodwJaWlvn1RVXoxdytfoZuzE7kFkFAxBCG0EeVi2LAmHW9G7vO2DhyIWCcNKmUE4MDIcXoVUcvhv7bpWyJC+zZZ+nVTOhPn84XeuEkgMKF/tgxSv9885tzv/cq9EYnu3nz5nlH/8IL9Bo1oe/spDDKunXufluoo99c6FjyEkNcdK2tdB4ZK3baodCsm6hyUSysTICdo48rF0D+pEmxcvSZDJUBVB19Tw8daLsqcOJ4P/NMbl11QAr97Gy+0JeVSWdVaHrlQw/RRf7Wt+Z+v20bxW7tingB1gewu7s7z9G7qYpYahiFfs0a97XHC43Rd3d3e29oABDD/mdnKbRodpOyQqGOPqpcFAsrobdz9HHlAsgvgxAroa+qovq4xhj9mjX2KVvr1pHY9PaSsKuddWpOr9nQfBG+KcTRcw784AdUH984GtBth6zVAWxqappv29mzNJzai5CUCkah95LqWGjopikqaTYmEGLs1VxWVVFFRisXC5x/XBQDKxNg1xkbVy6A/DIIsRL6TGYOixblh26cRtpVVMjHZmNnUCmFvrmZRuS+4x35/3Mr9FaleUdHR1FeLp1fFMI2QL7Qe5m2s9DQzajTjPEhQvBRyCTdVjMr2Tn6KHNRDMxMgMgdtwrdxJULIF/o7VJu/UDARc3KckrzAu6EHpCOyij0NTWSHDOhr6+XkwRYwUrof/ADepJ4y1vy/7d2LW3PjaOvrKSsHRXV2UaL8E1UhF7wNDJCT1BehX5iInfqRxVW7q26VGe3DyjU0QP2HZDqulVEmYtiYCb0Ti42rlwAEXT0jLEHGWODjLHDynfLGGO/Yox1ZF9NJq4zh6gRD1CPc0+Pu9i0uNDUHHoBQZqVo3dKCTMT+rk54Ic/pEFSZtPyicwbpxRLq0FCAmLdURF64WCPHiXH5UXoxdOJVRlxK0cfZRQj9HZxaXXdCwFmT3ulzjSJMiIn9AC+BeBGw3f3AHiac74JwNPZz47IZDI5jj6RoI6uYhw9IMXSrA7JrbcC732v/bpFHr1ag+f3vydH+/a3W/9u2zZ3jt7s4KWyRzZqjl4IvbiBeXX0gHX4xomLKKJYobcL3ZxvXBQDs5ueU7girlwApGNLl9IkRkAE0is553sBGKu6vAnAt7Pvvw3AkHxojvLy8hxH7yaHXsBO6O0c/e23A5/6lP26a2py5wYFKGyzeDHwxjda/+6yy2jEpCjNYAYrcWvIKnxUhV7cwPwSehGPNXP0DYVMvBkQamupU9VtiqkKq9BNKkXrNBsBHGUuioG46almyknc4soFQKHcG2+k0ueZTDQcvRmaOOd9AJB9tSzBzxi7kzG2jzG2r7+/H9XV0zh7dhY9PT04doye8S+4IIXW1lZkMhk0Z2eHFsOfm5ubkclkANDM0+XlCYyMjKCnpwd9fX1IJBKorqbcyGSyF+l0GoeyI1zEOsRrS0sLpqen0dHRgbGxMXR3d2NwcBDpNCnTwMAYOjo6MD4+jYcfTuOWW4CjR3PXcejQIaTTabS1tWHDBrIkzz47ir6+PvT09GBkZAQnTpzA1NQUWltbkUpxMJbK26f+/n60trZiyZI0AGDp0rGcferq6kIymURbW1tB+zQ4OIju7m6MjdE+TU9Pzw9AMa5D3ae5OTomx49zVFZycJ6/T1bHafFiGv0xOJjCiRMnco5Tb28iez5M5+2TcV1+71MymURXVxcSiYTlcbLap/p6josvTmFmZipvn5yOU309MDSUytunc+emUV2dMd2nnp6eku9TJpNBa2srpqa871OhxymZ7EMmAzzzzIH5dQhHX1k5Z7pP7e3tkd6nYo/TddfNoL8f2Lcvg/Z2SiU9duyQ6T4VDc654x+ASwAcVj6PGv4/4mY9u3fv5nfcwfnq1ZxzzvlXv8o5wPmZM9wVfvELzkdH87+//XZaz49/7G49Roh29PTQ51//mj7/7Gf2v2tupuUee8x6mbe8hfPt2/O/T6VSnHPO//qvaR1dXYW1vRSorKQ2bdzo7Xd799LvfvWr/P+NjtL/vvSl/P8JLqKItjbODxwo7Ld33sl5U1P+9//lv3C+cqX5b6LMRTEQ11hvr/xu3z767vHHzX8TVy4EhoY4Z4zz++7j/ItfJC7OnTNfFsA+7kJjrf4KdfQDjLFVAJB9HXTzo1QqlRe6KS8HVq50t9EbbsgtayBgF7pxA+MsUyJsceWV9r8TfQJW8+AC1qGb9uxMFhs3Ugez11l7SgkRvvEStgHsQzdWaaaA5CKK2LIF2LWrsN9apZvaVWyMMhfFwGwAmVPoJqa1YJ4AABM2SURBVK5cCCxfTsUcf/7z6KZX/hTAbdn3twF43M2Pampq0NBAKXizs5Rxs3JlfuqhV/gt9G1tFDu3y70H7Ec/Clhl3ezYsQMATfR9/Lj70adBoFih9zpISHARN9TX03iEdDr3ezuhjysXZueGk7jFlQsVb3gDsG8fjVlhrHQ64Ca98iEAzwLYwhg7wxi7A8DnAFzHGOsAcF32syMmJyfnHfnYmPsceif4LfTHjgFbtzpPsOBW6O1K81ZU2Jd/CAOFCr3dBBN2jj6u5Wit+FiIpXnNuHBy9HHlQsXrX0+vjz9O54TXSV3cosJpAc65VYLhtV43VltbOy/0585R6OZFL/K6lnxcdx3wtrdRGKQQmDn6665z/p3dMHeBVMo8Dz/KJVhLEbqxc/RR5qIYqHyo58BCnGzDzBQ5Ofq4cqFixw7KuDt92vsUjV4Q6MjYycnJnFmV/HL0l15KxccKHYyjCv34OOXPu51Jx6m+i9P0eVFEoUJfVUVPKF6FPspcFAOrJz47oY8rF2ahG6eUwrhyoYIxOaFRKQcCBzzxSG3OPK5jY9Gq2CjmBgUodOMGhRbyirJbKVToGbPmwy50E2UuikEhQh93LryEbuLKhRGxE/qpqal5Ry9GXvrh6IuF6ujF5CZ+OXqrzliRxxtF1NbSYLFCZhOyq1IImJ/MUeaiGFiFsuyEPq5cFBK6iSsXRrz61bk1u0oBxxi9n6iurp539CKFMUpCPzlJM1WVl7ufZKJQR79NlL+MIDZsoHo1hXQMWQm9naOPMhfFwM7RW13UceVChPW8pFfGlQsjampoYqORkdJtI1BHPz09nSf0UQjdGB39+vXu4/2FCv3x48e9NzQgfOlLwC9/Wdhv7WYSAs4/LoqBldDbzaoUVy5EWE81AU6OPq5cmOFb36LMm1IhUKFftGjR/Ml/9Ci9RsnRT01RaqXbsA1QuNCvicIdzgIVFYV3bBfi6KPMRTEoJHQTVy6A/GvFruYPEG8ujFi0iP5KhYAnB0+jogKoq6ODvGxZNEqUijZMTFBnrNuOWIBG6loJfTpN5Y7NhD5hVwntPEYhMfo4cwF464yNKxdAvtDbhbCAeHMRNAKfeASQA4Si4OYBcrAVFSTyqZR3R29VAkG4WLOTua6uzntDzwMUErqJKxcVFdSxrfKRTtOfldDHlQsgv5qn3cAxIN5cBI1AhZ5na5SKOH1UhB6gC0/Uhvbi6OvrqbyxEHUVQtzMwhWzs7PeG3keoJDQTVy5APL5cIpLx5kLY4zerq8CiDcXQSNQoRcQQh+lEFxtLcXnAe+OHvDuYqn0cvwghE2tOw4sTC4A87g0YC1wC4mLoSH7siVx5iJo6NBNFmLyETfFzFQUKvS1YlRSzFBfTzxOTOR+Lxy9WYdTXLkAzOPSgLXQx5kLNXQzOwvs3Qu84hXWy8eZi6AReGcsEN3QDeCumJkKO6G3i9EPi8kiYwarTBMxcMyM27hyAViHbqyEPs5cqKGbZ5+lsRrXX2+9fJy5CBqBCn1ltgancPRRCt2IC89L2AYo3NGvjlIBeh9hJ/RWcem4cgF4d/Rx52JigjLRnnqKBia+5jXWy8eZi6ARqNDPZCdljbqj9wI3Qm/WAdnZ2eltQ+cJrPiwmi8WiC8XgLXQW9304syFagKeegp42cvMJxISiDMXQSNQoa/Ont3Ll9Mj/EJ29Fu93lHOExTi6OPKBZAfunHqjI0zF+Ja6eykyTZuuMF++ThzETQCL1MMAO99L/Dkk6Wtv+wVQQv9wYMHvW3oPIGV0Ns5+rhyAXgP3cSdCwB49FHqsLeLzwPx5iJoBF6mGKBJGJzu5kGjpsZbMTOBQoV+9+7d3jZ0nsCuvouVo48rF0D+OAsnoY8zF8IE/OhHpAFXXGG/fJy5CBqhOPooYvt24JWv9F7jpaYmvyqfgF3WTVwnVSjE0ceVCyCfDyehjzMXap2r177Wea7oOHMRNEJx9FHE3/4t8Nvfev+dqMpnVgZhoU+fp8LO0ceVCyD/CWchT58nuACcwzZAvLkIGtrR+wCn+i5mTra5ubm0jQoJtbVUjdCL0MeVCyBf6J06Y+PMhToK1o3Qx5mLoKEdvQ8opJDXrl27StuokMBYfvEqwD50E1cuAO+hmzhzIW56W7cC69Y5Lx9nLoJGoEKfEsoXMxQi9G1izsIYwqywmZ2jjzMXVqEbK6GPMxdLlgCVle4TMeLMRdAIdCrBRaWsrB8i6uuBgYH87+1CN+u9zrx9HsFYpRCwd/Rx5wLIFXq7yTbizEVlJfD008COHe6WjzMXQSNQRx/XsqNWjl6Im1l9l97e3tI3LCSYhW7sHH2cuTATersa7HHmAqDMNlECxQlx5yJIBCr0FRWBPkAEBrvQjZWLXRal0WI+wyp0s1C5AGji5z/9CTh40L4Ge5y58ArNhX8IVOjjWl/aTuit3FtcM5AAc6Gfnl6YXCxeTE90H/848PKXU2nea6+1Xj7OXHiF5sI/xNNiB4z6enokn52lOKSAndCXWQVpYwCzG99C5aKsDPjwh+nGd+21wDXX2M93EGcuvEJz4R8CFXrmpdD7eQQRhx0fz63fYyduleodIWYwOvpMhm6CVqGbOHMBAPff737ZuHPhBZoL/6BDNz7ArjSvldAnk8nSNipEGKcTtCsFAcSbC6/QXEhoLvyD7oz1AaKmtpdwxfLly0vbqBBRXw+k0zK91G5icCDeXHiF5kJCc+EfQpl4JG4Qjt5Y78Yu0+TMmTOlbVSIMI4GtRs4BsSbC6/QXEhoLvxDoEJf5bU05HmCQkrzbty4sbSNChFehT7OXHiF5kJCc+EfdAkEH1CI0B85cqS0jQoRRj6cQjdx5sIrNBcSmgv/EKjQ19iNFDmPUYjQ79y5s7SNChFeHX2cufAKzYWE5sI/FCX0jLEuxlgLY+wgY2yf0/JxHQBRSNZNnCdVMAq9k6OPMxdeobmQ0Fz4Bz/SYF7NOU+4WTCuZYrF6EczR28lbnGeVMGqBvtCnGzDKzQXEpoL/6AnHvEBYpYpL6GbOLsV7egLh+ZCQnPhH4oVeg7gKcbYfsbYnWYLMMbuZIztY4ztO3fuHBKJBPr6+tDT04ORkRGcOHECU1NTaG1tRSaTmZ9VRhzk5uZmZDIZtLa2YmpqCidOnMDIyAh6enrQ19eHRCKBrq4uJJNJtLW1IZ1O49ChQznrEK8tLS2Ynp5GR0cHxsbG0N3djcHBQQwODqK7uxtjY2Po6OjA9PQ0WlpaTNdx6NAhpNNptLW1IZlMoqurC4lEAosXz6G/fyJnn6amMqiq4qb7dPnll0d+nwo9ThUVVHR9YGASPT096O0dBgAMD/ea7pNAlPcpqOO0ffv22O1Tocdp5cqVsdunQo9T0eCcF/wHYHX2dQWAQwBeZbf8ZZddxuOKbds4f8tb5OdMhnPGOP/kJ82Xf+GFF4JpWAiYm+Mc4Py+++jzI4/Q58OHzZePMxdeobmQ0FxIANjHi9Dqohw957w3+zoI4FEAV9otX21XiPs8hzF0MztLJQCsdnnz5s3BNCwElJUBdXXAMBl5x9BNnLnwCs2FhObCPxQs9IyxxYyxJeI9gOsBHLb7TVxHxgJUBkEVeqf6Lt3d3aVvVIh4+cuBRx6hqp5OnbFx58ILNBcSmgv/UIyjbwLwB8bYIQDPA/g55/wXdj+Ia60bgBy9WgLBbhpBAGhqaip9o0LEJz5B0ys++KCzo487F16guZDQXPiHgoWec36Sc74z+7eNc/5Zp9/Mzc0VurnIwxi6cXKxo6OjpW9UiPizPwOuugr4/Odl9s1C5cILNBcSmgv/EGh6ZZwnEvAq9HHurwAo5fTee4HubuCb36TvrBx93LnwAs2FhObCP8RXeQNGfT0wMQGIhxYnoV8IeN3rgMsvB9rbSfj1PBIaGuFATzziE9RZpgDnzti4FnhTIVw9QDxYTTC2ELhwC82FhObCPwQq9OXl5UFuLlBYDfu3Clc0NDSUvlERwC23AC96kTUPwMLhwg00FxKaC/8QqNCn0+kgNxcovNZ3GRgYKH2jIoCyMorRf+5z1sssFC7cQHMhobnwD4HmOy5atCjIzQUKr0K/bt260jcqInjpS+nPCguJCydoLiQ0F/5BTzziE7wKfXt7e+kbdZ5AcyGhuZDQXPgHPfGIT/Aq9Dt27Ch9o84TaC4kNBcSmgv/oMsU+wSr6fMWYplir9BcSGguJDQX/iFQoY/rxCMA1boB3Gfd6EkVJDQXEpoLCc2Ff9CO3ifU1dGrqHfjFLrRbkVCcyGhuZDQXPgH7eh9QlkZzazkVui1W5HQXEhoLiQ0F/4hUKH3ZaaUCGP5cuBf/oVK9D72mP2wf+PsSgsZmgsJzYWE5sI/BCr0cS9S9OijwD330PsDB4BVq6yH/W/bti24hkUcmgsJzYWE5sI/BCr00yIVJabYuRP4+78Hnn2WZleyMyTHjx8PrmERh+ZCQnMhobnwD3pkbIkg0i2tsGbNmmAach5AcyGhuZDQXPgHXesmJCQSibCbEBloLiQ0FxKaC/+gJx4JCXUiH1NDc6FAcyGhufAPgSov5zzIzUUas7OzYTchMtBcSGguJDQX/kFb7JAQ50lYvEJzIaG5kNBc+AcdugkJcR485hWaCwnNhYTmwj/oztiQMDw8HHYTIgPNhYTmQkJz4R8CFfpKPTv0PFavXh12EyIDzYWE5kJCc+EfAhX6mZmZIDcXaXR2dobdhMhAcyGhuZDQXPgHFmQmzBVXXMH37dsX2PaijEwmo/ssstBcSGguJDQXEoyx/ZzzKwr9vS5THBIOHjwYdhMiA82FhOZCQnPhH7Sj19DQ0Ig4tKM/T6EnVZDQXEhoLiQ0F/5BO3oNDQ2NiEM7+vMUzc3NYTchMtBcSGguJDQX/kE7+pCgMwokNBcSmgsJzYXEeeXoU2IiVQ20tbWF3YTIQHMhobmQ0Fz4h0CFfiFNPOKE9evXh92EyEBzIaG5kNBc+IdAhV6XHZXo7e0NuwmRgeZCQnMhobnwD4EKfUVFoDMXRhrLli0LuwmRgeZCQnMhobnwD0UJPWPsRsbYMcbYccbYPU7L6/rSEjoDSUJzIaG5kNBc+IeChZ4xVg7gKwBeB+AyAG9njF3mV8PiDp1NIKG5kNBcSGgu/EMxTF4J4Djn/CTnfAbADwG8ye4HjLEiNhcv6JLNEpoLCc2FhObCPxQTNL8IwGnl8xkALzUuxBi7E8Cd2Y/TjLHDRWwzTlgOQE9zT9BcSGguJDQXEluK+XExQm9mz/NGX3HOvw7g6wDAGNtXTNJ/nKC5kNBcSGguJDQXEoyxokaaFhO6OQNgrfJ5DQCdD6WhoaERMRQj9P8PwCbG2HrG2CIAbwPwU3+apaGhoaHhFwoO3XDO04yxvwTwSwDlAB7knB9x+NnXC91eDKG5kNBcSGguJDQXEkVxEWhRMw0NDQ2N4KETVTU0NDRiDi30GhoaGjFHIELvtVRCnMAYW8sY+y1j7Chj7Ahj7K+y3y9jjP2KMdaRfW0Mu61BgTFWzhg7wBh7Ivt5QXLBGGtgjP2IMdaWPT9evoC5+GD2+jjMGHuIMVa9ULhgjD3IGBtUxxjZ7Ttj7ONZLT3GGLvBzTZKLvS6VALSAD7MOX8RgJcB+EB2/+8B8DTnfBOAp7OfFwr+CsBR5fNC5eLLAH7BOd8KYCeIkwXHBWPsIgD/HcAVnPPtoOSOt2HhcPEtADcavjPd96x2vA3Atuxv/jWrsbYIwtF7LpUQJ3DO+zjnzdn346CL+SIQB9/OLvZtAG8Op4XBgjG2BsDrAfyb8vWC44IxVg/gVQAeAADO+QznfBQLkIssKgDUMMYqANSCxuQsCC4453sBDBu+ttr3NwH4Ied8mnPeCeA4SGNtEYTQm5VKuCiA7UYOjLFLAFwO4DkATZzzPoBuBgBWhNeyQPGPAP4GgFrKdCFysQHAEIBvZsNY/8YYW4wFyAXnvAfAFwB0A+gDcI5z/hQWIBcKrPa9ID0NQuhdlUqIOxhjdQB+DOCvOedjYbcnDDDG3gBgkHO+P+y2RAAVAHYD+Crn/HIAE4hvaMIW2fjzmwCsB7AawGLG2LvCbVVkUZCeBiH0C75UAmOsEiTy3+ec/yT79QBjbFX2/6sADIbVvgBxNYCbGWNdoBDeaxhj38PC5OIMgDOc8+eyn38EEv6FyMVrAXRyzoc457MAfgLgKixMLgSs9r0gPQ1C6Bd0qQRGtZkfAHCUc/4l5V8/BXBb9v1tAB4Pum1Bg3P+cc75Gs75JaDz4Dec83dhYXLRD+A0Y0xUJbwWQCsWIBegkM3LGGO12evlWlBf1kLkQsBq338K4G2MsSrG2HoAmwA877g2znnJ/wDcBKAdwAkA9waxzaj8AXgF6NHqBQAHs383AbgA1JvekX1dFnZbA+blGgBPZN8vSC4A7AKwL3tuPAagcQFz8WkAbQAOA/gugKqFwgWAh0B9E7Mgx36H3b4DuDerpccAvM7NNnQJBA0NDY2YQ4+M1dDQ0Ig5tNBraGhoxBxa6DU0NDRiDi30GhoaGjGHFnoNDQ2NmEMLvYaGhkbMoYVeQ0NDI+b4/35zkV8n4Gh1AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.grid(linestyle=\":\")\n", "plt.plot(data, color=\"blue\")\n", "plt.xlim(0, 100)\n", "plt.ylim(0, 25)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHQRJREFUeJzt3X9s2+d9J/D3h7Ed+sfkH2NtS+dasmOpmDrv5DRuBrgwqgRVvbqAJyMHe4ELAzYQGa2hJBh6DQ4Yrv8MK3a3H3/cMKzDiuaAa4ehW5eiKLIrjA0+YIUxm7DKWGVEM2Z4klkRmmlwjCnaPD73h0hPii09z0cS9fAR3y9AoKXIfD7ftx9+9AnF75dijAEREYUv4rsAIiJaHWzoRETrBBs6EdE6wYZORLROsKETEa0TbOhEROsEGzoR0TrBhk5EtE6woRMRrRMb1nKxWCxmenp61nJJIqLg3bhxY8YY8wnb961pQ+/p6cH169fXcslVlU6n8dxzz/kuo+UxJztm5IY5zRGRD12+j0+5KOzatct3CUFgTnbMyA1z0mFDV3jw4IHvEoLAnOyYkRvmpMOGrhCJMC4XzMmOGblhTjpMS2Hjxo2+SwgCc7JjRm6Ykw4bukKpVPJdQhCYkx0zcsOcdNjQFWKxmO8SgsCc7JiRG+akw4auMDk56buEIDAnO2bkhjnpsKErHDp0yHcJQWBOdszIDXPSYUNXuHXrlu8SgsCc7JiRG+akI2v5JtEvvPCCCflMUaJm2Lu3B9PTTicCrqo9e7rxy19m1nxd0hORG8aYF2zfxwld4caNG75LCAJzspuf0VwzN2v+4eOHiBb3kg4ndCLPRARzTXbNV8ZaPv5p+TihNwGnBTfMyY4ZuWFOOpzQiTzjhE42nNCbIJFI+C4hCMzJjhm5YU46bOgKfX19vksIAnOyY0ZumJMOG7pCNpv1XUIQmJMdM3LDnHTY0BX27Nnju4QgMCc7ZuSGOemwoSvcv3/fdwlBYE52zMgNc9JhQ1eIRqO+SwgCc7JjRm6Ykw4bOhHROsGGrjA7O+u7hCAwJztm5IY56bChK+zYscN3CUFgTnbMyA1z0mFDV5ienvZdQhCYkx0zcsOcdKwNXUQ+KSL/KCK/EJFbIvJ6/eu7ROSnIpKq3+5sfrl+7d+/33cJQWBOdszIDXPScZnQqwB+1xjzawB+E8DXRKQfwFsArhhjegFcqX++rk1MTPguIQjMyY4ZuWFOOuqLc4nIOwD+R/3j88aYnIh0AvgnY8ynlvq7vDgX0ZN4cS6yacrFuUSkB8ARANcA7DHG5ACgfrtbX2ZYeClPN8zJjhm5YU46zg1dRLYB+FsAbxhjioq/95qIXBeR67lcDjMzM8jlcpiamkKhUEA6nUa5XMb4+DhqtRri8TiAf/+HjMfjqNVqGB8fR7lcRjqdRqFQwNTUFBr3l8lkUCqVkEwmUa1WMTY2tuA+GreJRAKVSgWpVArFYhHZbBb5fB75fB7ZbBbFYhGpVAqVSuXxVd7m38dnPvMZjI2NoVqtIplMolQqIZPJBH1MAFb9mPr7+4M7pq6ug3j99dchInjzzTchInj99dfxzDPP4Ctf+Qo+8YlP4Mtf/jL6+vrwuc99Dp/97Gfx6U9/Gl/84hfR1dWFs2fPYvPmzbh06dKC+2jcXrx4Edu3b8fp06fR09ODr3/96zhy5AiOHDmCwcFBdHcXMTycQkdHBRcuzB3TG2/cWHA7MjKGaLSKM2eS6OwsYWgog/7+GRw9msOxY1Po7S3g5Mk0YrEyzp0bRyRSw+hofMF9jI7GEYnUcO7cOGKxWMv/Ox08eLDtH0/lchmunJ5yEZGNAH4M4B+MMX9c/9r7aLOnXBpNnZYWYk5r/bTHG2/cwJ/+aSMjPuWymBD3UjO4PuVibegyt9PfBnDPGPPGvK//NwD/aoz5loi8BWCXMeY/L3VfoTd0Wr/8PY8NsKGTzWo+h34MwFcAvCQiN+sfXwLwLQBfEJEUgC/UP1/XGv+bRktjTnYjI8zIBfeSDt+CTqFarWLDhg2+y2h5Iea01hN6NFrF7GwjI07oiwlxLzUD34KuCW7fvu27hCAwJ7tTp5iRC+4lHTZ0hX379vkuIQjMye7qVWbkgntJhw1dYWZmxncJQWBOdocPMyMX3Es6bOgK27Zt811CEJiT3eQkM3LBvaTDhq7w6NEj3yUEgTnZbd3KjFxwL+mwoSvUajXfJQSBOdlt2sSMXHAv6bChK2zZssV3CUFgTnb5PDNywb2kw4aucO/ePd8lBIE52fX1MSMX3Es6bOgKXV1dvksIAnOyu3aNGbngXtJhQ1e4c+eO7xKCwJzsTpxgRi64l3R46r9CrVZDJMKfgTYh5rTWp/5HIjXUao2MeOr/YkLcS83AU/+b4ObNm75LCAJzsrt8mRm54F7S4YROBF4+l1obJ/Qm4NthuWFOdo13EKKlcS/pcEInAid0am2c0Jug8b5/tDTmZNd4r09aGveSDid0Bf7G3U2IOfFVLq0pxL3UDJzQmyCZTPouIQjMye7VV5mRC+4lHTZ0hQMHDvguIQjMye7dd5mRC+4lHTZ0hbt37/ouIQjMye7FF5mRC+4lHTZ0hV27dvkuIQjMyW5ighm54F7SYUNXePDgge8SgsCc7HbvZkYuuJd02NAV+Nt2N8zJ7uFDZuSCe0mHaSls3LjRdwlBYE52H33EjFxwL+mwoSuUSiXfJQSBOdnt28eMXHAv6bChK8RiMd8lBIE52SUSzMgF95IOG7rC5OSk7xKCwJzsjh9nRi64l3TY0BUOHTrku4QgMCe7d95hRi64l3TY0BVu3brlu4QgMCe78+eZkQvuJR1enIsIvHwutTZenKsJeLF9N8zJjm9w4YZ7SYcTOhE4oVNr44TeBJwW3Kwkp717eyAia/6x1jihu+FjTocTOrUUf5MyJ3RqXZzQmyCRSPguIQjMye7CBWbkgntJhw1doa+vz3cJQWBOdj/4ATNywb2kw4aukM1mfZcQBOZk9/LLzMgF95IOG7rCnj17fJcQBOZkF48zIxfcSzrWhi4i3xGRvIi8N+9r3xSRKRG5Wf/4UnPLbA3379/3XUIQmJPdwYPMyAX3ko7LhP5dACee8vU/McYM1D9+srpltaZoNOq7hCAwJ7tCgRm54F7SsTZ0Y8xVAPfWoBYiIlqBlTyHfllEfl5/SmbnqlXUwmZnZ32XEATmZLdzJzNywb2ks9yG/ucAngMwACAH4I8W+0YReU1ErovI9Vwuh5mZGeRyOUxNTaFQKCCdTqNcLmN8fBy1Wg3xeBzAv58hFo/HUavVMD4+jnK5jHQ6jUKhgKmpKTTuL5PJoFQqIZlMolqtYmxsbMF9NG4TiQQqlQpSqRSKxSKy2Szy+Tzy+Tyy2SyKxSJSqRQqlcrj17/Ov48dO3ZgbGwM1WoVyWQSpVIJmUwm6GMCsOrHFI1GV3RMFy4k0NFRwfBwCt3dRQwOZjEwkMfAQB6Dg1l0dxcxPJxCR0fl8eu5G2deNm5HRsYQjVZx5kwSnZ0lDA1l0N8/g6NHczh2bAq9vQWcPJlGLFbGuXPjiEQiGB2NL7iP0dE4IpEazp0bRyxWxsmTafT2FnDs2BSOHs2hv38GQ0MZdHaWcOZMEtFoFSMjY0+t5+PH9Ku/Wp53TINNOqaa5ZhiLb/3IpFI2z+eyuUyXDmdKSoiPQB+bIz5dc1/+7jQzxRNpVLo7e31XUbLW0lO7XKm6PBwCj/8YSMjnim6GD7m5jT1TFER6Zz36TCA9xb73vVk//79vksIAnOyu3KFGbngXtJxedni9wH8DMCnRGRSRC4C+EMRSYjIzwEMAnizyXW2hImJCd8lBIE52b3yCjNywb2kw4tzUUtpl6dcWmPt1n/Khebw4lxNwEt5umFOdrx8rhvuJR1O6NRSOKGv7bqc0MPACb0JOC24YU52nNDdcC/pcEKnlsIJfW3X5YQeBk7oTdA4GYGWxpzsGicg0dK4l3Q4oStUq1Vs2LDBdxktbyU5tcuEHo1WMTvbyIgT+mL4mJvDCb0Jbt++7buEIDAnu1OnmJEL7iUdNnSFffv2+S4hCMzJ7upVZuSCe0mHDV1hZmbGdwlBYE52hw8zIxfcSzps6Arbtm3zXUIQmJPd5CQzcsG9pMOGrvDo0SPfJQSBOdlt3cqMXHAv6bChK9RqNd8lBIE52W3axIxccC/psKErbNmyxXcJQWBOdvk8M3LBvaTDhq5w7x7fWtUFc7Lr62NGLriXdNjQFbq6unyXEATmZHftGjNywb2kw4aucOfOHd8lBIE52Z04wYxccC/p8NR/hVqthkiEPwNtVpJTu5z6H4nUUKs1MuKp/4vhY24OT/1vgps3b/ouIQjMye7yZWbkgntJhxM6tZR2mdBbY+3Wn9BpDif0JuDF9t0wJzu+wYUb7iUdTujUUjihr+26nNDDwAm9CeLxuO8SgsCc7EZHmZEL7iUdTugK/I27G77KxY6vcnHDx9wcTuhNkEwmfZcQBOZk9+qrzMgF95IOG7rCgQMHfJcQBOZk9+67zMgF95IOG7rC3bt3fZcQBOZk9+KLzMgF95IOG7rCrl27fJcQBOZkNzHBjFxwL+mwoSs8ePDAdwlBYE52u3czIxfcSzps6Ar8bbsb5mT38CEzcsG9pMO0FDZu3Oi7hCAwJ7uPPmJGLriXdNjQFUqlku8SgsCc7PbtY0YuuJd02NAVYrGY7xKCwJzsEglm5IJ7SYcNXWFyctJ3CUFgTnbHjzMjF9xLOmzoCocOHfJdQhCYk9077zAjF9xLOmzoCrdu3fJdQhCYk93588zIBfeSDi/ORS2lXS7O1Rprt/7FuWgOL87VBLzYvhvmZMc3uHDDvaTDCZ1aCif0tV2XE3oYVm1CF5HviEheRN6b97VdIvJTEUnVb3eutOAQcFpww5zsOKG74V7SsU7oInIcQAnA/zTG/Hr9a38I4J4x5lsi8haAncaYb9gW44RONpzQ13ZdTuhhWLUJ3RhzFcC9j335FIC3639+G8BvqysMUCKR8F1CEJiT3YULzMgF95LOcn8puscYkwOA+u3u1SupdfX19fkuIQjMye4HP2BGLriXdJr+KhcReU1ErovI9Vwuh5mZGeRyOUxNTaFQKCCdTqNcLmN8fBy1Wu3xm8I2njuLx+Oo1WoYHx9HuVxGOp1GoVDA1NQUGveXyWRQKpWQTCZRrVYxNja24D4at4lEApVKBalUCsViEdlsFvl8Hvl8HtlsFsViEalUCpVK5fFkMP8+stksxsbGUK1WkUwmUSqVkMlkgj4mAKt+TOl0ekXHdOFCAh0dFQwPp9DdXcTgYBYDA3kMDOQxOJhFd3cRw8MpdHRUHk+6jeekG7cjI2OIRqs4cyaJzs4ShoYy6O+fwdGjORw7NoXe3gJOnkwjFivj3LlxRCKRx2/c3LiP0dE4IpEazp0bRyxWxsmTafT2FnDs2BSOHs2hv38GQ0MZdHaWcOZMEtFoFSMjY0+t5+PH9NprP593TINNOqaa5ZhiLb/33n///bZ/PJXLZbhyepWLiPQA+PG859DfB/B5Y0xORDoB/JMx5lO2+wn9OfRisYiOjg7fZbS8leTULs+hd3cX8eGHjYz4HPpi+Jib0+zXof8IwPn6n88DeGeZ9xOU+/fv+y4hCMzJ7uBBZuSCe0nH5WWL3wfwMwCfEpFJEbkI4FsAviAiKQBfqH++7kWjUd8lBIE52RUKzMgF95LOBts3GGN+Z5H/9PIq10JERCvAU/8VZmdnfZcQBOZkt3MnM3LBvaTDhq6wY8cO3yUEgTnZffABM3LBvaTDhq4wPT3tu4QgMCe7559nRi64l3TY0BX279/vu4QgMCe7K1eYkQvuJR02dIWJiQnfJayJvXt7ICLL/vjqV7+67L/bLl55pRX20rMr+ndeycfevT1OFbbLY2618PK59AR/J/cAPk+y4TGv7dqtflJTK+EbXDQBL+XphpeGtWNGbviY0+GETk/ghN4ua3NCDwUn9CbgtOCG06cdM3LDx5wOJ3R6Aif0dlmbE3ooOKE3QeOSm7S0xiVkaXHMyA0fczqc0BWq1So2bLBe/iZ4K53Qo9EqZmeXm1N7TKsLM2qPY/742i69p10eczac0Jvg9u3bvksIwqlTzMmGGbnhY06HP/oU9u3b57uEIFy9ypxsmNGzTieSdXZ2IpfLrdqqe/Z045e/zKza/bUaTugKMzMzvksIwuHDzMmGGVUw93TP0h+HD/+z0/e5fkxPf7g2h+cJG7rCtm3bfJcQhMlJ5mTDjNwwJx02dIVHjx75LiEIW7cyJxtm5IY56bChK9RqNd8lBGHTJuZkw4zcMCcdNnSFLVu2+C4hCPk8c7JhRm6Ykw4busK9e/d8lxCEvj7mZMOM3DAnHTZ0ha6uLt8lBOHaNeZkw4zcMCcdNnSFO3fu+C4hCCdOMCcbZuSGOenw1H+FWq2GSGT9/wxc6an/kUgNtdpyc2qP0+AXZtQex7yctVe2l56+bogXBeOp/01w8+ZN3yUE4fJl5mTDjNwwJx1O6PQEXj63XdZuz2PmhE4AeLF9V3zzBjtm5IY56XBCpydwQm+XtdvzmDmhEwAgHo/7LiEIo6PMyYYZuWFOOpzQFfgqFzd8lYsdX+XCV7locEJvgmQy6buEILz6KnOyYUZumJMOG7rCgQMHfJcQhHffZU42zMgNc9JhQ1e4e/eu7xKC8OKLzMmGGblhTjps6Aq7du3yXUIQJiaYkw0zcsOcdNjQFR48eOC7hCDs3s2cbJiRG+akw4au0A6vcFkNDx8yJxtm5IY56TAthY0bN/ouIQgffcScbJiRG+akw4auUCqVfJcQhH37mJMNM3LDnHTY0BVisZjvEoKQSDAnG2bkhjnprKihi0hGRBIiclNEwj0F1NHk5KTvEoJw/DhzsmFGbpiTzopO/ReRDIAXjDEzLt8f+qn/1WoVGzZs8F1G06301P9otIrZ2eXm1B6nwS/MqD2OeTlrr2wvPX1dnvpPAIBbt275LiEI588zJxtm5IY56ax0Qr8DoIC5H7V/YYz59lLfH/qE3i54+dx2Wbs9j5kT+uKOGWOeB/BbAL4mIsefUshrInJdRK7ncjnMzMwgl8thamoKhUIB6XQa5XIZ4+PjqNVqjy9R23gziXg8jlqthvHxcZTLZaTTaRQKBUxNTaFxf5lMBqVSCclkEtVqFWNjYwvuo3GbSCRQqVSQSqVQLBaRzWaRz+eRz+eRzWZRLBaRSqVQqVSQSCSeuI8bN25gbGwM1WoVyWQSpVIJmUymacf0G79xFGfPnsXmzZtx6dIliAjefPPNBbcXL17E9u3bcfr0afT09OCll17CkSNHcOTIEbz00kvo6enB6dOnsX37dly8ePGp93Hp0iVs3rwZZ8+eRVdXF4aGhtDfP4OjR3M4dmwKvb0FnDyZRixWxrlz44hEao8va9p4A4LR0TgikRrOnRvHN75xDSdPptHbW8CxY1M4ejSH/v4ZDA1l0NlZwpkzSUSjVYyMjC24j8bthQsJdHRUMDycQnd3EYODWQwM5DEwkMfgYBbd3UUMD6fQ0VHBhQuJp97HyMgYotEqzpxJorOzhKGhjOWYIkseUyxWXtVj+oM/uDrvmAabdExL/zvFYjGP/05vOB3T7/3ez5THZPt3OtPUHgGgKT3C1apdPldEvgmgZIz574t9Dyd0HX+TcntObjzmdlibE/piC2wVkV9p/BnAEID3lnt/IeBb0Lnh24bZMSM3zEln2RO6iBwE8MP6pxsAfM8Y8/tL/R1O6Dqc0NthXZ9rt+cxc0J/CmPMB8aY/1j/+LStma8HjefMaGmN50tpcczIDXPS4VvQKVQqFTz77LNrtl6oE3pHRwXF4nJzCvOYtRZm1B7HvJy1V7aXnr4uJ3QCAGSzWd8lBOHll5mTDTNyw5x02NAV9uzZ47uEIMTjzMmGGblhTjps6Ar379/3XUIQDh5kTjbMyA1z0gmmoe/d2wMR8fKxd28PACAajfoNIRCFAnOyYUZuVj+nZ733kWYK5kpT09MfwtcvcKanxcu6RLTaKljPfSSYCb0VzM7O+i4hCDt3MicbZuSGOemwoSvs2LHDdwlB+OAD5mTDjNwwJx02dIXp6WnfJQTh+eeZkw0zcsOcdNjQFfbv3++7hCBcucKcbJiRG+akw4auMDEx4buEILzyCnOyYUZumJNOMKf++37TBR+nC4d66n+Ya/OY22PtMPsIT/1vAl4+1w0veWrHjNwwJx1O6G6rc0Jf92vzmNtj7TD7CCf0VfXsgrdsW6uPUHGqsmNGbpiTDid0t9U9rd1u6/pcm8fcHmtzQqe6xpvl0tKYkx0zcsOcdDihu60OwCAarWJ2di0vfxPmFLOynMI8Zq2FGbXHMS9n7dV/zHFCp7pTp277LiEIzMmOGblhTjps6ApXr+7zXUIQmJMdM3LDnHTY0BUOH57xXUIQmJMdM3LDnHTY0BUmJ7f5LiEIzMmOGblhTjps6Apbtz7yXUIQmJMdM3LDnHTY0BU2bar5LiEIzMmOGblhTjps6Ar5/BbfJQSBOdkxIzfMSYcNXaGv757vEoLAnOyYkRvmpMOGrnDtWpfvEoLAnOyYkRvmpMOGrnDixB3fJQSBOdkxIzfMSYen/rutDsAgEqmhVlvLn4FhnhK+spzCPGathRm1xzEvZ+3Vf8zx1H+qu3z5pu8SgsCc7JiRG+akwwndbXVPa7fbuj7X5jG3x9qc0KmOF9t3w5zsmJEb5qTDCd1tdU9rt9u6PtfmMbfH2pzQqW50NO67hCAwJztm5IY56XBCd1sdfJWLO77KxY6vcuGrXFR/kxP66nv11aTvEoLAnOyYkRvmpMOGrvDuuwd8lxAE5mTHjNwwJx02dIUXX7zru4QgMCc7ZuSGOemsqKGLyAkReV9EbovIW6tVVKuamNjlu4QgMCc7ZuSGOeksu6GLyDMA/gzAbwHoB/A7ItK/WoW1ot27H/guIQjMyY4ZuWFOOiuZ0D8L4LYx5gNjzEMAfw3g1OqU1ZoePuQzVC6Ykx0zcsOcdFaS1n8A8H/nfT5Z/9q69dFHG32XEATmZMeM3DAnnQ0r+LvylK898SJLEXkNwGv1T0si8v7qLrlWBOPjiAFY47ch93XMy1935TmFd8xaT2a0/o95OWs35zHn75jnzqdZlm6Xb1pJQ58E8Ml5n+8D8MSvpI0x3wbw7RWs0zJE5LrLi/vbHXOyY0ZumJPOSp5y+RcAvSJyQEQ2ATgL4EerUxYREWkte0I3xlRF5DKAfwDwDIDvGGNurVplRESkspKnXGCM+QmAn6xSLSFYF08drQHmZMeM3DAnhTW9OBcRETUPX+RJRLROsKE7EJGMiCRE5KaILO/6v+uQiHxHRPIi8t68r+0SkZ+KSKp+u9Nnja1gkZy+KSJT9T11U0S+5LPGViAinxSRfxSRX4jILRF5vf517ilHbOjuBo0xA3wJ1QLfBXDiY197C8AVY0wvgCv1z9vdd/FkTgDwJ/U9NVD/fVS7qwL4XWPMrwH4TQBfq19OhHvKERs6LZsx5iqAex/78ikAb9f//DaA317TolrQIjnRxxhjcsaYeP3P/wbgF5g7+5x7yhEbuhsD4H+LyI36ma+0uD3GmBww9wAFsNtzPa3ssoj8vP6UDJ9GmEdEegAcAXAN3FPO2NDdHDPGPI+5K0t+TUSO+y6IgvfnAJ4DMAAgB+CP/JbTOkRkG4C/BfCGMabou56QsKE7MMbcrd/mAfwQc1eapKebFpFOAKjf5j3X05KMMdPGmP9njKkB+EtwTwEARGQj5pr5/zLG/F39y9xTjtjQLURkq4j8SuPPAIYAvLf032prPwJwvv7n8wDe8VhLy2o0qLphcE9B5q5c9VcAfmGM+eN5/4l7yhFPLLIQkYOYm8qBuTNrv2eM+X2PJbUMEfk+gM8DiAGYBvBfAfw9gL8BsB9AFsB/Msa09S8EF8np85h7usUAyAAYaTxP3K5E5HMA/g+ABIBa/cv/BXPPo3NPOWBDJyJaJ/iUCxHROsGGTkS0TrChExGtE2zoRETrBBs6EdE6wYZORLROsKETEa0TbOhEROvE/weMv4cUI/VRYQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.grid(linestyle=\":\")\n", "plt.hist(data, color=\"blue\", edgecolor=\"black\")\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }