diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5b58a3ae26346460dd39e62a39c55243d7..4933e016e5d0241312815f3bee24f6b3e7bfad67 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -364,7 +364,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4, diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..07ebe3fec90d438c27e88c4f1237b253117f4ce4 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -1,5 +1,3800 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Autour du SARS-CoV-2 (Covid-19)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import isoweek" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "#Import des données" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data=pd.read_csv(\"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "#Affichage global des données" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...10/19/2010/20/2010/21/2010/22/2010/23/2010/24/2010/25/2010/26/2010/27/2010/28/20
0NaNAfghanistan33.93911067.709953000000...40287403574051040626406874076840833409374103241145
1NaNAlbania41.15330020.168300000000...17350176511794818250185561885819157194451972920040
2NaNAlgeria28.0339001.659600000000...54616548295508155357556305588056143564195670657026
3NaNAndorra42.5063001.521800000000...3623362338113811403840384038432544104517
4NaNAngola-11.20270017.873900000000...78298049833885828829902693819644987110074
5NaNAntigua and Barbuda17.060800-61.796400000000...119119122122122124124124124124
6NaNArgentina-38.416100-63.616700000000...1002662101899910373251053650106936810813361090589110230111166091130533
7NaNArmenia40.06910045.038200000000...65460666946853070836733107552377837788108041082651
8Australian Capital TerritoryAustralia-35.473500149.012400000000...113113114114114114114114114114
9New South WalesAustralia-33.868800151.209300000034...4347435743634370437543824386439844064411
10Northern TerritoryAustralia-12.463400130.845600000000...33333333333333333337
11QueenslandAustralia-27.469800153.025100000000...1164116511651167116711671167116711691169
12South AustraliaAustralia-34.928500138.600700000000...484484485485487487491494494495
13TasmaniaAustralia-42.882100147.327200000000...230230230230230230230230230230
14VictoriaAustralia-37.813600144.963100000011...20320203232032920330203362034320342203412034220344
15Western AustraliaAustralia-31.950500115.860500000000...714738739747753757762762765765
16NaNAustria47.51620014.550100000000...65927674516940971844744157802980811832678610289496
17NaNAzerbaijan40.14310047.576900000000...45295458794659347418482214901349959504865114952137
18NaNBahamas25.025885-78.035889000000...5773592360516135626862686410641065026549
19NaNBahrain26.02750050.550000000000...78224785337890779211795747997580255805338076581022
20NaNBangladesh23.68500090.356300000000...390206391586393131394827396413397507398815400251401586403079
21NaNBarbados13.193900-59.543200000000...222222222224226227227233233234
22NaNBelarus53.70980027.953400000000...88290889098964290380911679197892823937079460995545
23NaNBelgium50.8333004.469936000000...230480240159253386270132287700305409321031321031333718368337
24NaNBelize17.189900-88.497600000000...2833288629372995305031063145314532003261
25NaNBenin9.3077002.315800000000...2496249625572557255725572557255725572643
26NaNBhutan27.51420090.433600000000...330331332336336340342342345346
27NaNBolivia-16.290200-63.588700000000...139890140037140228140445140612140779140853140952141124141321
28NaNBosnia and Herzegovina43.91590017.679100000000...34661353893631537314384933975840893415964315144737
29NaNBotswana-22.32850024.684900000000...5609560956095923592359235923628362836283
..................................................................
238NaNThailand15.870032100.992541235788...3700370937193727373137363736374637593763
239NaNTimor-Leste-8.874217125.727539000000...29292929292929303030
240NaNTogo8.6195000.824800000000...2071210421202139216221872200220422292238
241NaNTrinidad and Tobago10.691800-61.222500000000...5298533353925446548755035511553555685594
242NaNTunisia33.8869179.537499000000...42727444504589245892472144879948799523995239954278
243NaNTurkey38.96370035.243300000000...349519351413353426355528357693359784361801363999366208368513
244NaNUS40.000000-100.000000112255...8214041827438083371288408803849253485762378637028870381187774328856413
245NaNUganda1.37333332.290275000000...10691107881093311041111631129711443115571162111767
246NaNUkraine48.37940031.165600000000...312287317967324942332262340042347317353723359348366233374023
247NaNUnited Arab Emirates23.42407653.847818000000...116517117594119132120710122273123764125123126234127624129024
248AnguillaUnited Kingdom18.220600-63.068600000000...3333333333
249BermudaUnited Kingdom32.307800-64.750500000000...185188188188190190190193194194
250British Virgin IslandsUnited Kingdom18.420700-64.640000000000...71717171717171717171
251Cayman IslandsUnited Kingdom19.313300-81.254600000000...235235235236239239239239239239
252Channel IslandsUnited Kingdom49.372300-2.364400000000...767768775784795795795796822833
253Falkland Islands (Malvinas)United Kingdom-51.796300-59.523600000000...13131313131313131313
254GibraltarUnited Kingdom36.140800-5.353600000000...577608621630641660667670679682
255Isle of ManUnited Kingdom54.236100-4.548100000000...348348348348348348348351352352
256MontserratUnited Kingdom16.742498-62.187366000000...13131313131313131313
257Turks and Caicos IslandsUnited Kingdom21.694000-71.797900000000...698698698698699701701701703703
258NaNUnited Kingdom55.378100-3.436000000000...741212762542789229810467830998854010873800894690917575942275
259NaNUruguay-32.522800-55.765800000000...2560262326632701275928072851287229162981
260NaNUzbekistan41.37749164.585262000000...63523638316401064439647246492365307656676588166141
261NaNVenezuela6.423800-66.589700000000...86636876448803588416887188914289565900479040090876
262NaNVietnam14.058324108.277199022222...1140114111441148114811601168116911721173
263NaNWest Bank and Gaza31.95220035.233200000000...47616481294862849134495794998950442509525152851948
264NaNWestern Sahara24.215500-12.885800000000...10101010101010101010
265NaNYemen15.55272748.516388000000...2056205720572057206020602060206020602061
266NaNZambia-13.13389727.849332000000...15897159821600016035160951611716117162001624316285
267NaNZimbabwe-19.01543829.154857000000...8159818782158242825782698276830383158320
\n", + "

268 rows × 285 columns

\n", + "
" + ], + "text/plain": [ + " Province/State Country/Region Lat \\\n", + "0 NaN Afghanistan 33.939110 \n", + "1 NaN Albania 41.153300 \n", + "2 NaN Algeria 28.033900 \n", + "3 NaN Andorra 42.506300 \n", + "4 NaN Angola -11.202700 \n", + "5 NaN Antigua and Barbuda 17.060800 \n", + "6 NaN Argentina -38.416100 \n", + "7 NaN Armenia 40.069100 \n", + "8 Australian Capital Territory Australia -35.473500 \n", + "9 New South Wales Australia -33.868800 \n", + "10 Northern Territory Australia -12.463400 \n", + "11 Queensland Australia -27.469800 \n", + "12 South Australia Australia -34.928500 \n", + "13 Tasmania Australia -42.882100 \n", + "14 Victoria Australia -37.813600 \n", + "15 Western Australia Australia -31.950500 \n", + "16 NaN Austria 47.516200 \n", + "17 NaN Azerbaijan 40.143100 \n", + "18 NaN Bahamas 25.025885 \n", + "19 NaN Bahrain 26.027500 \n", + "20 NaN Bangladesh 23.685000 \n", + "21 NaN Barbados 13.193900 \n", + "22 NaN Belarus 53.709800 \n", + "23 NaN Belgium 50.833300 \n", + "24 NaN Belize 17.189900 \n", + "25 NaN Benin 9.307700 \n", + "26 NaN Bhutan 27.514200 \n", + "27 NaN Bolivia -16.290200 \n", + "28 NaN Bosnia and Herzegovina 43.915900 \n", + "29 NaN Botswana -22.328500 \n", + ".. ... ... ... \n", + "238 NaN Thailand 15.870032 \n", + "239 NaN Timor-Leste -8.874217 \n", + "240 NaN Togo 8.619500 \n", + "241 NaN Trinidad and Tobago 10.691800 \n", + "242 NaN Tunisia 33.886917 \n", + "243 NaN Turkey 38.963700 \n", + "244 NaN US 40.000000 \n", + "245 NaN Uganda 1.373333 \n", + "246 NaN Ukraine 48.379400 \n", + "247 NaN United Arab Emirates 23.424076 \n", + "248 Anguilla United Kingdom 18.220600 \n", + "249 Bermuda United Kingdom 32.307800 \n", + "250 British Virgin Islands United Kingdom 18.420700 \n", + "251 Cayman Islands United Kingdom 19.313300 \n", + "252 Channel Islands United Kingdom 49.372300 \n", + "253 Falkland Islands (Malvinas) United Kingdom -51.796300 \n", + "254 Gibraltar United Kingdom 36.140800 \n", + "255 Isle of Man United Kingdom 54.236100 \n", + "256 Montserrat United Kingdom 16.742498 \n", + "257 Turks and Caicos Islands United Kingdom 21.694000 \n", + "258 NaN United Kingdom 55.378100 \n", + "259 NaN Uruguay -32.522800 \n", + "260 NaN Uzbekistan 41.377491 \n", + "261 NaN Venezuela 6.423800 \n", + "262 NaN Vietnam 14.058324 \n", + "263 NaN West Bank and Gaza 31.952200 \n", + "264 NaN Western Sahara 24.215500 \n", + "265 NaN Yemen 15.552727 \n", + "266 NaN Zambia -13.133897 \n", + "267 NaN Zimbabwe -19.015438 \n", + "\n", + " Long 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 \\\n", + "0 67.709953 0 0 0 0 0 0 \n", + "1 20.168300 0 0 0 0 0 0 \n", + "2 1.659600 0 0 0 0 0 0 \n", + "3 1.521800 0 0 0 0 0 0 \n", + "4 17.873900 0 0 0 0 0 0 \n", + "5 -61.796400 0 0 0 0 0 0 \n", + "6 -63.616700 0 0 0 0 0 0 \n", + "7 45.038200 0 0 0 0 0 0 \n", + "8 149.012400 0 0 0 0 0 0 \n", + "9 151.209300 0 0 0 0 3 4 \n", + "10 130.845600 0 0 0 0 0 0 \n", + "11 153.025100 0 0 0 0 0 0 \n", + "12 138.600700 0 0 0 0 0 0 \n", + "13 147.327200 0 0 0 0 0 0 \n", + "14 144.963100 0 0 0 0 1 1 \n", + "15 115.860500 0 0 0 0 0 0 \n", + "16 14.550100 0 0 0 0 0 0 \n", + "17 47.576900 0 0 0 0 0 0 \n", + "18 -78.035889 0 0 0 0 0 0 \n", + "19 50.550000 0 0 0 0 0 0 \n", + "20 90.356300 0 0 0 0 0 0 \n", + "21 -59.543200 0 0 0 0 0 0 \n", + "22 27.953400 0 0 0 0 0 0 \n", + "23 4.469936 0 0 0 0 0 0 \n", + "24 -88.497600 0 0 0 0 0 0 \n", + "25 2.315800 0 0 0 0 0 0 \n", + "26 90.433600 0 0 0 0 0 0 \n", + "27 -63.588700 0 0 0 0 0 0 \n", + "28 17.679100 0 0 0 0 0 0 \n", + "29 24.684900 0 0 0 0 0 0 \n", + ".. ... ... ... ... ... ... ... \n", + "238 100.992541 2 3 5 7 8 8 \n", + "239 125.727539 0 0 0 0 0 0 \n", + "240 0.824800 0 0 0 0 0 0 \n", + "241 -61.222500 0 0 0 0 0 0 \n", + "242 9.537499 0 0 0 0 0 0 \n", + "243 35.243300 0 0 0 0 0 0 \n", + "244 -100.000000 1 1 2 2 5 5 \n", + "245 32.290275 0 0 0 0 0 0 \n", + "246 31.165600 0 0 0 0 0 0 \n", + "247 53.847818 0 0 0 0 0 0 \n", + "248 -63.068600 0 0 0 0 0 0 \n", + "249 -64.750500 0 0 0 0 0 0 \n", + "250 -64.640000 0 0 0 0 0 0 \n", + "251 -81.254600 0 0 0 0 0 0 \n", + "252 -2.364400 0 0 0 0 0 0 \n", + "253 -59.523600 0 0 0 0 0 0 \n", + "254 -5.353600 0 0 0 0 0 0 \n", + "255 -4.548100 0 0 0 0 0 0 \n", + "256 -62.187366 0 0 0 0 0 0 \n", + "257 -71.797900 0 0 0 0 0 0 \n", + "258 -3.436000 0 0 0 0 0 0 \n", + "259 -55.765800 0 0 0 0 0 0 \n", + "260 64.585262 0 0 0 0 0 0 \n", + "261 -66.589700 0 0 0 0 0 0 \n", + "262 108.277199 0 2 2 2 2 2 \n", + "263 35.233200 0 0 0 0 0 0 \n", + "264 -12.885800 0 0 0 0 0 0 \n", + "265 48.516388 0 0 0 0 0 0 \n", + "266 27.849332 0 0 0 0 0 0 \n", + "267 29.154857 0 0 0 0 0 0 \n", + "\n", + " ... 10/19/20 10/20/20 10/21/20 10/22/20 10/23/20 10/24/20 \\\n", + "0 ... 40287 40357 40510 40626 40687 40768 \n", + "1 ... 17350 17651 17948 18250 18556 18858 \n", + "2 ... 54616 54829 55081 55357 55630 55880 \n", + "3 ... 3623 3623 3811 3811 4038 4038 \n", + "4 ... 7829 8049 8338 8582 8829 9026 \n", + "5 ... 119 119 122 122 122 124 \n", + "6 ... 1002662 1018999 1037325 1053650 1069368 1081336 \n", + "7 ... 65460 66694 68530 70836 73310 75523 \n", + "8 ... 113 113 114 114 114 114 \n", + "9 ... 4347 4357 4363 4370 4375 4382 \n", + "10 ... 33 33 33 33 33 33 \n", + "11 ... 1164 1165 1165 1167 1167 1167 \n", + "12 ... 484 484 485 485 487 487 \n", + "13 ... 230 230 230 230 230 230 \n", + "14 ... 20320 20323 20329 20330 20336 20343 \n", + "15 ... 714 738 739 747 753 757 \n", + "16 ... 65927 67451 69409 71844 74415 78029 \n", + "17 ... 45295 45879 46593 47418 48221 49013 \n", + "18 ... 5773 5923 6051 6135 6268 6268 \n", + "19 ... 78224 78533 78907 79211 79574 79975 \n", + "20 ... 390206 391586 393131 394827 396413 397507 \n", + "21 ... 222 222 222 224 226 227 \n", + "22 ... 88290 88909 89642 90380 91167 91978 \n", + "23 ... 230480 240159 253386 270132 287700 305409 \n", + "24 ... 2833 2886 2937 2995 3050 3106 \n", + "25 ... 2496 2496 2557 2557 2557 2557 \n", + "26 ... 330 331 332 336 336 340 \n", + "27 ... 139890 140037 140228 140445 140612 140779 \n", + "28 ... 34661 35389 36315 37314 38493 39758 \n", + "29 ... 5609 5609 5609 5923 5923 5923 \n", + ".. ... ... ... ... ... ... ... \n", + "238 ... 3700 3709 3719 3727 3731 3736 \n", + "239 ... 29 29 29 29 29 29 \n", + "240 ... 2071 2104 2120 2139 2162 2187 \n", + "241 ... 5298 5333 5392 5446 5487 5503 \n", + "242 ... 42727 44450 45892 45892 47214 48799 \n", + "243 ... 349519 351413 353426 355528 357693 359784 \n", + "244 ... 8214041 8274380 8337128 8408803 8492534 8576237 \n", + "245 ... 10691 10788 10933 11041 11163 11297 \n", + "246 ... 312287 317967 324942 332262 340042 347317 \n", + "247 ... 116517 117594 119132 120710 122273 123764 \n", + "248 ... 3 3 3 3 3 3 \n", + "249 ... 185 188 188 188 190 190 \n", + "250 ... 71 71 71 71 71 71 \n", + "251 ... 235 235 235 236 239 239 \n", + "252 ... 767 768 775 784 795 795 \n", + "253 ... 13 13 13 13 13 13 \n", + "254 ... 577 608 621 630 641 660 \n", + "255 ... 348 348 348 348 348 348 \n", + "256 ... 13 13 13 13 13 13 \n", + "257 ... 698 698 698 698 699 701 \n", + "258 ... 741212 762542 789229 810467 830998 854010 \n", + "259 ... 2560 2623 2663 2701 2759 2807 \n", + "260 ... 63523 63831 64010 64439 64724 64923 \n", + "261 ... 86636 87644 88035 88416 88718 89142 \n", + "262 ... 1140 1141 1144 1148 1148 1160 \n", + "263 ... 47616 48129 48628 49134 49579 49989 \n", + "264 ... 10 10 10 10 10 10 \n", + "265 ... 2056 2057 2057 2057 2060 2060 \n", + "266 ... 15897 15982 16000 16035 16095 16117 \n", + "267 ... 8159 8187 8215 8242 8257 8269 \n", + "\n", + " 10/25/20 10/26/20 10/27/20 10/28/20 \n", + "0 40833 40937 41032 41145 \n", + "1 19157 19445 19729 20040 \n", + "2 56143 56419 56706 57026 \n", + "3 4038 4325 4410 4517 \n", + "4 9381 9644 9871 10074 \n", + "5 124 124 124 124 \n", + "6 1090589 1102301 1116609 1130533 \n", + "7 77837 78810 80410 82651 \n", + "8 114 114 114 114 \n", + "9 4386 4398 4406 4411 \n", + "10 33 33 33 37 \n", + "11 1167 1167 1169 1169 \n", + "12 491 494 494 495 \n", + "13 230 230 230 230 \n", + "14 20342 20341 20342 20344 \n", + "15 762 762 765 765 \n", + "16 80811 83267 86102 89496 \n", + "17 49959 50486 51149 52137 \n", + "18 6410 6410 6502 6549 \n", + "19 80255 80533 80765 81022 \n", + "20 398815 400251 401586 403079 \n", + "21 227 233 233 234 \n", + "22 92823 93707 94609 95545 \n", + "23 321031 321031 333718 368337 \n", + "24 3145 3145 3200 3261 \n", + "25 2557 2557 2557 2643 \n", + "26 342 342 345 346 \n", + "27 140853 140952 141124 141321 \n", + "28 40893 41596 43151 44737 \n", + "29 5923 6283 6283 6283 \n", + ".. ... ... ... ... \n", + "238 3736 3746 3759 3763 \n", + "239 29 30 30 30 \n", + "240 2200 2204 2229 2238 \n", + "241 5511 5535 5568 5594 \n", + "242 48799 52399 52399 54278 \n", + "243 361801 363999 366208 368513 \n", + "244 8637028 8703811 8777432 8856413 \n", + "245 11443 11557 11621 11767 \n", + "246 353723 359348 366233 374023 \n", + "247 125123 126234 127624 129024 \n", + "248 3 3 3 3 \n", + "249 190 193 194 194 \n", + "250 71 71 71 71 \n", + "251 239 239 239 239 \n", + "252 795 796 822 833 \n", + "253 13 13 13 13 \n", + "254 667 670 679 682 \n", + "255 348 351 352 352 \n", + "256 13 13 13 13 \n", + "257 701 701 703 703 \n", + "258 873800 894690 917575 942275 \n", + "259 2851 2872 2916 2981 \n", + "260 65307 65667 65881 66141 \n", + "261 89565 90047 90400 90876 \n", + "262 1168 1169 1172 1173 \n", + "263 50442 50952 51528 51948 \n", + "264 10 10 10 10 \n", + "265 2060 2060 2060 2061 \n", + "266 16117 16200 16243 16285 \n", + "267 8276 8303 8315 8320 \n", + "\n", + "[268 rows x 285 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "#Creation d'un dictionnaire pour la selection des données (fusion)\n", + "#Il ne sera pas utilisé car une autre technique a été choisie\n", + "#La liste des pays à afficher permet de contrôler" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "dict = {'Province': ['', 'Anhui', 'Beijing', 'Chongqing', 'Fujian', 'Gansu', 'Guangdong', 'Guangxi', 'Guizhou', 'Hainan', 'Hebei', 'Heilongjiang', 'Henan', 'Hubei', 'Hunan', 'Mongolia', 'Jiangsu', 'Jiangxi', 'Jilin', 'Liaoning', 'Macau', 'Ningxia', 'Qinghai', 'Shaanxi', 'Shandong', 'Shanghai', 'Shanxi', 'Sichuan', 'Tianjin', 'Tibet', 'Xinjiang', 'Yunnan', 'Zhejiang', 'Hong Kong', '', '', '', '', '', '', '', '', '', ''], \n", + " 'State,Country': ['Belgium', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'China', 'Hong-Kong', 'France', 'Germany', 'Iran', 'Italy', 'Korea, South', 'Netherlands','Portugal','Spain','United Kingdom','US']}" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.DataFrame(dict)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "#Affichage de la sélection du dictionnaire (sert juste pour contrôler les pays demandés)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Province State,Country\n", + "0 Belgium\n", + "1 Anhui China\n", + "2 Beijing China\n", + "3 Chongqing China\n", + "4 Fujian China\n", + "5 Gansu China\n", + "6 Guangdong China\n", + "7 Guangxi China\n", + "8 Guizhou China\n", + "9 Hainan China\n", + "10 Hebei China\n", + "11 Heilongjiang China\n", + "12 Henan China\n", + "13 Hubei China\n", + "14 Hunan China\n", + "15 Mongolia China\n", + "16 Jiangsu China\n", + "17 Jiangxi China\n", + "18 Jilin China\n", + "19 Liaoning China\n", + "20 Macau China\n", + "21 Ningxia China\n", + "22 Qinghai China\n", + "23 Shaanxi China\n", + "24 Shandong China\n", + "25 Shanghai China\n", + "26 Shanxi China\n", + "27 Sichuan China\n", + "28 Tianjin China\n", + "29 Tibet China\n", + "30 Xinjiang China\n", + "31 Yunnan China\n", + "32 Zhejiang China\n", + "33 Hong Kong Hong-Kong\n", + "34 France\n", + "35 Germany\n", + "36 Iran\n", + "37 Italy\n", + "38 Korea, South\n", + "39 Netherlands\n", + "40 Portugal\n", + "41 Spain\n", + "42 United Kingdom\n", + "43 US\n" + ] + } + ], + "source": [ + "print(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "#Affichage des données filtrées relatives aux pays demandés" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Province/StateCountry/RegionLatLong1/22/201/23/201/24/201/25/201/26/201/27/20...10/19/2010/20/2010/21/2010/22/2010/23/2010/24/2010/25/2010/26/2010/27/2010/28/20
23NaNBelgium50.8333004.469936000000...230480240159253386270132287700305409321031321031333718368337
56AnhuiChina31.825700117.2264001915396070...991991991991991991991991991991
57BeijingChina40.182400116.414200142236416880...938938938938940940940941941942
58ChongqingChina30.057200107.87400069275775110...587587587589589589589589589589
59FujianChina26.078900117.9874001510183559...418419420427429429430431431432
60GansuChina35.751800104.2861000224714...170170170170170170170170170170
61GuangdongChina23.341700113.42440026325378111151...1889189218951895190419071908190919111914
62GuangxiChina23.829800108.7881002523233646...260260260260260260260260260260
63GuizhouChina26.815400106.874800133457...147147147147147147147147147147
64HainanChina19.195900109.745300458192233...171171171171171171171171171171
65HebeiChina39.549000116.13060011281318...368368368368368368369371372372
66HeilongjiangChina47.862000127.76150002491521...948948948948948948948949949949
67HenanChina37.895700114.9042005593283128...1281128312831283128312831283128312841284
68Hong KongChina22.300000114.200000022588...5256526152695280528452895295530353085310
69HubeiChina30.975600112.27070044444454976110581423...68139681396813968139681396813968139681396813968139
70HunanChina27.610400111.70880049244369100...1019101910191019101910191019101910191019
71Inner MongoliaChina44.093500113.9448000017711...275275275275275275277278279287
72JiangsuChina32.971100119.455000159183347...670670670670670670670670670672
73JiangxiChina27.614000115.7221002718183672...935935935935935935935935935935
74JilinChina43.666100126.192300013446...157157157157157157157157157157
75LiaoningChina41.295600122.608500234172127...280280280280280283283283283283
76MacauChina22.166700113.550000122256...46464646464646464646
77NingxiaChina37.269200106.165500112347...75757575757575757575
78QinghaiChina35.74520095.995600000116...18181818181818181818
79ShaanxiChina35.191700108.870100035152235...438438438438444445444447453454
80ShandongChina36.342700118.1498002615274675...845845845845845845845846846846
81ShanghaiChina31.202000121.44910091620334053...1095109711051114112311281139114211491155
82ShanxiChina37.577700112.2922001116913...209209209209209211212212212212
83SichuanChina30.617100102.7103005815284469...728731733733733733734736737737
84TianjinChina39.305400117.323000448101423...256256256256259260260260261263
85TibetChina31.69270088.092400000000...1111111111
86XinjiangChina41.11290085.240100022345...902902902902902902902902924947
87YunnanChina24.974000101.487000125111626...211211211211211211211211211211
88ZhejiangChina29.183200120.09340010274362104128...1283128312831283128312831283128312831283
126NaNFrance46.2276002.213700002333...9186799391479654511007026104884210488421048842117275412060141240862
130NaNGermany51.16569110.451526000001...377068385591397922403874426110434798437698450258463419486972
145NaNIran32.42790853.688046000000...534631539670545286550757556891562705568896574856581824588648
149NaNItaly41.87194012.567380000000...423578434449449648465726484869504509525782542789564778589766
155NaNKorea, South35.907757127.766922112234...25333254242554325698257752583625955260432614626271
190Sint MaartenNetherlands18.042500-63.054800000000...756756769769776780784789792805
205NaNPoland51.91940019.145100000000...183248192539202579214686228318241946253688263929280229299049
227NaNSouth Sudan6.87700031.307000000000...2847284728702872287628782883288328902890
243NaNTurkey38.96370035.243300000000...349519351413353426355528357693359784361801363999366208368513
257Turks and Caicos IslandsUnited Kingdom21.694000-71.797900000000...698698698698699701701701703703
\n", + "

44 rows × 285 columns

\n", + "
" + ], + "text/plain": [ + " Province/State Country/Region Lat Long 1/22/20 \\\n", + "23 NaN Belgium 50.833300 4.469936 0 \n", + "56 Anhui China 31.825700 117.226400 1 \n", + "57 Beijing China 40.182400 116.414200 14 \n", + "58 Chongqing China 30.057200 107.874000 6 \n", + "59 Fujian China 26.078900 117.987400 1 \n", + "60 Gansu China 35.751800 104.286100 0 \n", + "61 Guangdong China 23.341700 113.424400 26 \n", + "62 Guangxi China 23.829800 108.788100 2 \n", + "63 Guizhou China 26.815400 106.874800 1 \n", + "64 Hainan China 19.195900 109.745300 4 \n", + "65 Hebei China 39.549000 116.130600 1 \n", + "66 Heilongjiang China 47.862000 127.761500 0 \n", + "67 Henan China 37.895700 114.904200 5 \n", + "68 Hong Kong China 22.300000 114.200000 0 \n", + "69 Hubei China 30.975600 112.270700 444 \n", + "70 Hunan China 27.610400 111.708800 4 \n", + "71 Inner Mongolia China 44.093500 113.944800 0 \n", + "72 Jiangsu China 32.971100 119.455000 1 \n", + "73 Jiangxi China 27.614000 115.722100 2 \n", + "74 Jilin China 43.666100 126.192300 0 \n", + "75 Liaoning China 41.295600 122.608500 2 \n", + "76 Macau China 22.166700 113.550000 1 \n", + "77 Ningxia China 37.269200 106.165500 1 \n", + "78 Qinghai China 35.745200 95.995600 0 \n", + "79 Shaanxi China 35.191700 108.870100 0 \n", + "80 Shandong China 36.342700 118.149800 2 \n", + "81 Shanghai China 31.202000 121.449100 9 \n", + "82 Shanxi China 37.577700 112.292200 1 \n", + "83 Sichuan China 30.617100 102.710300 5 \n", + "84 Tianjin China 39.305400 117.323000 4 \n", + "85 Tibet China 31.692700 88.092400 0 \n", + "86 Xinjiang China 41.112900 85.240100 0 \n", + "87 Yunnan China 24.974000 101.487000 1 \n", + "88 Zhejiang China 29.183200 120.093400 10 \n", + "126 NaN France 46.227600 2.213700 0 \n", + "130 NaN Germany 51.165691 10.451526 0 \n", + "145 NaN Iran 32.427908 53.688046 0 \n", + "149 NaN Italy 41.871940 12.567380 0 \n", + "155 NaN Korea, South 35.907757 127.766922 1 \n", + "190 Sint Maarten Netherlands 18.042500 -63.054800 0 \n", + "205 NaN Poland 51.919400 19.145100 0 \n", + "227 NaN South Sudan 6.877000 31.307000 0 \n", + "243 NaN Turkey 38.963700 35.243300 0 \n", + "257 Turks and Caicos Islands United Kingdom 21.694000 -71.797900 0 \n", + "\n", + " 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 ... 10/19/20 \\\n", + "23 0 0 0 0 0 ... 230480 \n", + "56 9 15 39 60 70 ... 991 \n", + "57 22 36 41 68 80 ... 938 \n", + "58 9 27 57 75 110 ... 587 \n", + "59 5 10 18 35 59 ... 418 \n", + "60 2 2 4 7 14 ... 170 \n", + "61 32 53 78 111 151 ... 1889 \n", + "62 5 23 23 36 46 ... 260 \n", + "63 3 3 4 5 7 ... 147 \n", + "64 5 8 19 22 33 ... 171 \n", + "65 1 2 8 13 18 ... 368 \n", + "66 2 4 9 15 21 ... 948 \n", + "67 5 9 32 83 128 ... 1281 \n", + "68 2 2 5 8 8 ... 5256 \n", + "69 444 549 761 1058 1423 ... 68139 \n", + "70 9 24 43 69 100 ... 1019 \n", + "71 0 1 7 7 11 ... 275 \n", + "72 5 9 18 33 47 ... 670 \n", + "73 7 18 18 36 72 ... 935 \n", + "74 1 3 4 4 6 ... 157 \n", + "75 3 4 17 21 27 ... 280 \n", + "76 2 2 2 5 6 ... 46 \n", + "77 1 2 3 4 7 ... 75 \n", + "78 0 0 1 1 6 ... 18 \n", + "79 3 5 15 22 35 ... 438 \n", + "80 6 15 27 46 75 ... 845 \n", + "81 16 20 33 40 53 ... 1095 \n", + "82 1 1 6 9 13 ... 209 \n", + "83 8 15 28 44 69 ... 728 \n", + "84 4 8 10 14 23 ... 256 \n", + "85 0 0 0 0 0 ... 1 \n", + "86 2 2 3 4 5 ... 902 \n", + "87 2 5 11 16 26 ... 211 \n", + "88 27 43 62 104 128 ... 1283 \n", + "126 0 2 3 3 3 ... 918679 \n", + "130 0 0 0 0 1 ... 377068 \n", + "145 0 0 0 0 0 ... 534631 \n", + "149 0 0 0 0 0 ... 423578 \n", + "155 1 2 2 3 4 ... 25333 \n", + "190 0 0 0 0 0 ... 756 \n", + "205 0 0 0 0 0 ... 183248 \n", + "227 0 0 0 0 0 ... 2847 \n", + "243 0 0 0 0 0 ... 349519 \n", + "257 0 0 0 0 0 ... 698 \n", + "\n", + " 10/20/20 10/21/20 10/22/20 10/23/20 10/24/20 10/25/20 10/26/20 \\\n", + "23 240159 253386 270132 287700 305409 321031 321031 \n", + "56 991 991 991 991 991 991 991 \n", + "57 938 938 938 940 940 940 941 \n", + "58 587 587 589 589 589 589 589 \n", + "59 419 420 427 429 429 430 431 \n", + "60 170 170 170 170 170 170 170 \n", + "61 1892 1895 1895 1904 1907 1908 1909 \n", + "62 260 260 260 260 260 260 260 \n", + "63 147 147 147 147 147 147 147 \n", + "64 171 171 171 171 171 171 171 \n", + "65 368 368 368 368 368 369 371 \n", + "66 948 948 948 948 948 948 949 \n", + "67 1283 1283 1283 1283 1283 1283 1283 \n", + "68 5261 5269 5280 5284 5289 5295 5303 \n", + "69 68139 68139 68139 68139 68139 68139 68139 \n", + "70 1019 1019 1019 1019 1019 1019 1019 \n", + "71 275 275 275 275 275 277 278 \n", + "72 670 670 670 670 670 670 670 \n", + "73 935 935 935 935 935 935 935 \n", + "74 157 157 157 157 157 157 157 \n", + "75 280 280 280 280 283 283 283 \n", + "76 46 46 46 46 46 46 46 \n", + "77 75 75 75 75 75 75 75 \n", + "78 18 18 18 18 18 18 18 \n", + "79 438 438 438 444 445 444 447 \n", + "80 845 845 845 845 845 845 846 \n", + "81 1097 1105 1114 1123 1128 1139 1142 \n", + "82 209 209 209 209 211 212 212 \n", + "83 731 733 733 733 733 734 736 \n", + "84 256 256 256 259 260 260 260 \n", + "85 1 1 1 1 1 1 1 \n", + "86 902 902 902 902 902 902 902 \n", + "87 211 211 211 211 211 211 211 \n", + "88 1283 1283 1283 1283 1283 1283 1283 \n", + "126 939147 965451 1007026 1048842 1048842 1048842 1172754 \n", + "130 385591 397922 403874 426110 434798 437698 450258 \n", + "145 539670 545286 550757 556891 562705 568896 574856 \n", + "149 434449 449648 465726 484869 504509 525782 542789 \n", + "155 25424 25543 25698 25775 25836 25955 26043 \n", + "190 756 769 769 776 780 784 789 \n", + "205 192539 202579 214686 228318 241946 253688 263929 \n", + "227 2847 2870 2872 2876 2878 2883 2883 \n", + "243 351413 353426 355528 357693 359784 361801 363999 \n", + "257 698 698 698 699 701 701 701 \n", + "\n", + " 10/27/20 10/28/20 \n", + "23 333718 368337 \n", + "56 991 991 \n", + "57 941 942 \n", + "58 589 589 \n", + "59 431 432 \n", + "60 170 170 \n", + "61 1911 1914 \n", + "62 260 260 \n", + "63 147 147 \n", + "64 171 171 \n", + "65 372 372 \n", + "66 949 949 \n", + "67 1284 1284 \n", + "68 5308 5310 \n", + "69 68139 68139 \n", + "70 1019 1019 \n", + "71 279 287 \n", + "72 670 672 \n", + "73 935 935 \n", + "74 157 157 \n", + "75 283 283 \n", + "76 46 46 \n", + "77 75 75 \n", + "78 18 18 \n", + "79 453 454 \n", + "80 846 846 \n", + "81 1149 1155 \n", + "82 212 212 \n", + "83 737 737 \n", + "84 261 263 \n", + "85 1 1 \n", + "86 924 947 \n", + "87 211 211 \n", + "88 1283 1283 \n", + "126 1206014 1240862 \n", + "130 463419 486972 \n", + "145 581824 588648 \n", + "149 564778 589766 \n", + "155 26146 26271 \n", + "190 792 805 \n", + "205 280229 299049 \n", + "227 2890 2890 \n", + "243 366208 368513 \n", + "257 703 703 \n", + "\n", + "[44 rows x 285 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.loc[ [23,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,126,130,145,149,155,190,205,227,243,257] , : ]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "#On affecte la variable selection aux données à afficher" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "selection = data.loc[ [23,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,126,130,145,149,155,190,205,227,243,257] , : ]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m Graphique plot de la sélection\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ], + "source": [ + "Graphique plot de la sélection" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAABCuCAYAAAB2jWcRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8VdW5+P/P2mfOPM+EzAkJQ5gR0GqRqVatrdR5uHrrT29tbW2/1fbq1dtqW21re1tv22utFa111iqtoggFBBkSIBCGAAECCZnn5Mz77PX745zEMCOJJMB6v155cbL2Wjt7R/FxrWfvZwkpJYqiKIoyWNpwX4CiKIpyflABRVEURRkSKqAoiqIoQ0IFFEVRFGVIqICiKIqiDAkVUBRFUZQhoQKKoiiKMiRUQFEURVGGhAooiqIoypAwD/cFnE0JCQkyKytruC9DURTlnLJp06ZWKWXiqfpdUAElKyuL8vLy4b4MRVGUc4oQ4uDp9FNLXoqiKMqQUAFFURRFGRIqoCiKoihD4oLKoSiKcn7z+/3U1dXh8XiG+1LOSXa7nYyMDCwWyxmNVwFFUZTzRl1dHZGRkWRlZSGEGO7LOadIKWlra6Ouro7s7OwzOoda8lIU5bzh8XiIj49XweQMCCGIj48f1OxOBRRFOUNqt9ORSQWTMzfY350KKIpyhn605kf88OMfDvdlKMqIoQKKopwBv+FnxaEV7OvcN9yXoowwERERp9135cqVfPLJJ5/j1ZxdKqAoyhnY1bYLl+7CrbuH+1KUc9j5FlDUU16KcgbKGssAcOmuYb4S5UT+e8kOdtZ3D+k5i9OieOTKks88bsmSJTz22GP4fD7i4+N56aWXcLvd/PGPf8RkMvHXv/6V3/3ud1x88cVDer1n2ylnKEKI54QQzUKI7QPafiGEqBJCbBNCvC2EiBlw7IdCiGohxG4hxPwB7ZOFEJWhY78VoeyPEMImhHg11L5BCJE1YMxtQoi9oa/bBrRnh/ruDY21Dv5XoSinr6wpGFDUDEU5HbNnz2b9+vVs2bKF66+/nieffJKsrCzuvvtuvvvd71JRUXHOBxM4vRnK88DTwAsD2pYBP5RS6kKIJ4AfAg8IIYqB64ESIA34SAhRIKUMAH8A7gLWA+8BC4D3gTuBDillnhDieuAJ4DohRBzwCDAFkMAmIcS7UsqOUJ9fSylfEUL8MXSOPwzmF6Eop8tv+NnStAUAt1/NUEaqM5lJfF7q6uq47rrraGhowOfznfF7HiPdKWcoUsrVQPtRbR9KKfXQt+uBjNDnq4FXpJReKeUBoBqYJoRIBaKklOtk8FnLF4CvDBizOPT5DWBOaPYyH1gmpWwPBZFlwILQsS+G+hIa23cuRfnc9eVPCgIaugzgN/zDfUnKCPetb32Le++9l8rKSv7v//7vvH2TfyiS8ncQnGkApAO1A47VhdrSQ5+Pbj9iTChIdQHxJzlXPNA5IKANPNcxhBB3CSHKhRDlLS0tn/nmFOVoffmTi3s6ALXspZxaV1cX6enB/0wtXry4vz0yMpKenp7huqwhN6iAIoT4T0AHXuprOk43eZL2MxlzsnMde0DKZ6SUU6SUUxITT7k/jKKcUllTGXn2RNL0AABuvwooyqdcLhcZGRn9X0899RSPPvooixYt4uKLLyYhIaG/75VXXsnbb79NaWkpH3/88TBe9dA446e8QknyLwNz5KevDNcBowZ0ywDqQ+0Zx2kfOKZOCGEGogkusdUBlx41ZiXQCsQIIcyhWcrAcynK56ovf3KVKRaHYQBqhqIcyQj9e3G0q6+++pi2goICtm3b9nlf0llzRjMUIcQC4AHgKinlwKzku8D1oSe3soF8YKOUsgHoEULMCOVAbgXeGTCm7wmua4EVoQD1ATBPCBErhIgF5gEfhI79K9SX0Ni+cynK56ovfzK1vYGw0P9HqYCiKEGn89jwy8A6oFAIUSeEuJPgU1+RwDIhREXoSSuklDuA14CdwFLgm6EnvADuAZ4lmKjfx6d5lz8D8UKIauB+4MHQudqBnwBloa8fh9ogGMzuD42JD51DUT53ffmTya2HADsAbr9zGK9IUUaOUy55SSlvOE7zCf8DLqV8HHj8OO3lwNjjtHuARSc413PAc8dp3w9MO/FVK8rno6yxjDxbAvHGIXb484Am3N6u4b4sRRkRVOkVRTlNfsPP5ubNTDHM+Gxx7NMzAXB7Oof5yhRlZFClVxTlNO1s24lbdzO1u5e9YRPxeR0AuNQMRVEANUNRlNPWnz/paGC5pxB/IAxALXkpSogKKIpymsoby8mzxRNvGLzVmYshIgFw+c6fF9OUwfss5evPNyqgKMpp6M+f6BpuRwo1MoWijDQAnB4VUBQFVA5FUU5Lf/6ks4OdtklE2i0UZqRibZL0eHuH+/KU43n/QWisHNpzpoyDhT//zMMOHjzIHXfcQUtLC4mJifzlL38hMzOT22+/naioKMrLy2lsbOTJJ5/k2muvxTAM7r33XlatWkV2djaGYXDHHXdw7bXXnvqHDSM1Q1GU09CXP5nS1cr7znxm5sZjDYvEIQ1cPvUeinJy9957L7feeivbtm3jpptu4tvf/nb/sYaGBtasWcM//vEPHnzwQQDeeustampqqKys5Nlnn2XdunXDdemfiZqhKMppKG8sJ88aR5xxiPdc+dyTl4BVdOCQEqeq5TUyncFM4vOybt063nrrLQBuueUWfvCDH/Qf+8pXvoKmaRQXF9PU1ATAmjVrWLRoEZqmkZKSwmWXXTYs1/1ZqRmKopxCX/5kqg49YaOoJ4GZeQlYwyNwGBJ3QAUU5bMJ7S8IgM1m6//cVxbx0/KI5xYVUBTlFPrzJ621bDWPJzXaTk5CODZ7BA5p4A54h/sSlRFu5syZvPLKKwC89NJLzJ49+6T9Z8+ezZtvvolhGDQ1NbFy5cqzcJWDp5a8FOUU+t8/6engCZnPrOIEhBCEhYXhMMCjAooyQF/5+j73338/v/3tb7njjjv4xS9+0Z+UP5mvfe1rLF++nLFjx1JQUMD06dOJjo7+vC990FRAUZRTKGssI88aS5xxiOWeQh7KC+5n4bCasEpBp1Q7NiqfOlH5+hUrVhzT9vzzzx/xfW9v8IlBTdP45S9/SUREBG1tbUybNo1x48YN+bUONRVQFOUk/IafLc1b+IpupT0sl1ZPNDPz4gEIt5qxGAKPCijK5+DLX/4ynZ2d+Hw+Hn74YVJSUob7kk5JBRRFOYkdrTtC+ZNGyrRLKUiOICkyWLbeYTVhNkx4+ndoUJShc67kTQZSSXlFOYnypnIAJjt7eKcrj1l5n27fGmY1YZIaXo6/xKEoFxoVUBTlJMoay8izRBNrSNb4C5k9IKBYTBpmacYjVEBRFFABRVFOqC9/MtUXoCm8EKcWyfSc+CP6mKQFXYBu6MN0lYoycqiAoign8Gn+pJZPjBImjoohwvZp2vH9qo/RjOD3al95RVEBRVFOqC9/MsXl5J2uPGYOWO4C+NHhHgJYABVQlE/dcccdJCUlMXbskTuer1u3jm984xssW7aMyZMnM27cOCZPntz/OLHL5eKKK66gqKiIkpKS/rpefRoaGpg3bx4VFRVcdNFFlJSUMH78eF599dX+PgcOHGD69Onk5+dz3XXX4fP5Pv8bHkAFFEU5gbLGMvLNUURLjTLjyPzJxoNbadDSQFoBFVCUT91+++0sXbr0mPalS5eyYMECEhISWLJkCZWVlSxevJhbbrmlv8/3v/99qqqq2LJlC2vXruX9998/Yvz8+fMJCwvjhRdeYMeOHSxdupTvfOc7dHYGt6F+4IEH+O53v8vevXuJjY3lz3/+8+d/wwOox4YV5Tj68ifXeKE2rBgC4ZSOiuk//nbNVmA8BsFHiFVAGXme2PgEVe1VQ3rOorgiHpj2wEn7XHLJJdTU1BzTvnz5cu6///4j3ngvKSnB4/Hg9XoJCwvrLwJptVqZNGkSdXV1/X2XLl3KI488QkFBQX9bWloaSUlJtLS0EB0dzYoVK/jb3/4GwG233cajjz7KPffcM5hb/kzUDEVRjqM/f9JWyypfEdOz47CaP/3rssEfDCQGwcJ+bp/aE0U5sdbWViwWyzHlU958800mTpx4RIFIgM7OTpYsWcKcOXMACAQC7N69m+Li4iP6bdy4EZ/PR25uLm1tbcTExGA2B+cJGRkZHD58+HO8q2OpGYqiHEf/+yduD896Crh8wHJXU3cre7RsTFLHT2hfeU/HsFyncmKnmkmcTR9++CHz5s07om3Hjh088MADfPjhh0e067rODTfcwLe//W1ycnIA2LBhA9OnTz+iX0NDA7fccguLFy9G07TjVigeWNX4bDjlDEUI8ZwQolkIsX1AW5wQYpkQYm/oz9gBx34ohKgWQuwWQswf0D5ZCFEZOvZbEbpTIYRNCPFqqH2DECJrwJjbQj9jrxDitgHt2aG+e0NjrYP/VSjKpzY2bCTfHEkUZrYYeczO/zSgvL5rFbqwUGxU49PCAXB7uobrUpVzwPvvv8+CBQv6v6+rq+Oaa67hhRdeIDc394i+d911F/n5+XznO9854fju7m6uuOIKHnvsMWbMmAFAQkICnZ2d6Lre/zPS0tI+z9s6xukseT0PLDiq7UFguZQyH1ge+h4hRDFwPVASGvN7IYQpNOYPwF1Afuir75x3Ah1Syjzg18AToXPFAY8A04FpwCMDAtcTwK9DP78jdA5FGRL+gJ+Klgqmur3ss48lMiKCwuTI/uOrepyESSeTfU700AzF5e0crstVRjgpJdu2baO0tBQILmddccUV/OxnP2PWrFlH9H3ooYfo6uriN7/5zRHty5cv71/+8vl8XHPNNdx6660sWrSov48Qgssuu4w33ngDgMWLF3P11Vd/nrd2jFMGFCnlaqD9qOargcWhz4uBrwxof0VK6ZVSHgCqgWlCiFQgSkq5TgbnZS8cNabvXG8Ac0Kzl/nAMillu5SyA1gGLAgd+2Ko79E/X1EGbUdbKH/SfpiPPIXMzE3oXzrw6362apmMNQ4Q3u7HZ+oLKN3DecnKCHLDDTdw0UUXsXv3bjIyMnjyySeZOHFi/79DTz/9NNXV1fzkJz+htLSU0tJSmpubqaur4/HHH2fnzp1MmjSJ0tJSnn32WVpaWrDb7URFRQHw2muvsXr1ap5//vn+8RUVFQA88cQTPPXUU+Tl5dHW1sadd57d/9c+0xxKspSyAUBK2SCESAq1pwPrB/SrC7X5Q5+Pbu8bUxs6ly6E6ALiB7YfNSYe6JRS6sc51zGEEHcRnBmRmZn52e5SuSD173/i8fJ7dyHXD8ifLN29lm4Rw0XUYfdouE3Bv+S9HhVQlKCXX375iO8fe+yxI5arHnroIR566KHjjj1eHuSvf/3rEfmXm2++mZtvvvm443Nycti4ceOZXPaQGOqk/PEyQPIk7Wcy5mTnOvaAlM8AzwBMmTLl3NxXUzmryhrLyDdFEC7sbJM5/G5A/uS9phoE4/hyby7r/TvxmIJLYb2enuG6XGWEO1HwOF0nCh4j0Zk+NtwUWsYi9GdzqL0OGDWgXwZQH2rPOE77EWOEEGYgmuAS24nO1QrEhPoefS5FGZT+/InLzS7rWEYlRJMe4+g/vlnGkmscJKHKRKTXgscchkVKetVjw4pyxgHlXaDvqavbgHcGtF8fenIrm2DyfWNoeaxHCDEjlAO59agxfee6FlgRyrN8AMwTQsSGkvHzgA9Cx/4V6nv0z1eUQenPn3Q28oGzgJm5nxaD3Nmwh4PaaCbLLgKdXmLNYTgtDhyGgcvnHMarVpSR4XQeG34ZWAcUCiHqhBB3Aj8H5goh9gJzQ98jpdwBvAbsBJYC35Syf/ehe4BnCSbq9wF9NQX+DMQLIaqB+wk9MSalbAd+ApSFvn4cagN4ALg/NCY+dA5FGbSB+ZNV/uIjyq28Xh08Ns+XDAISM5JxmsNwSIlLvSmvKKfOoUgpbzjBoTkn6P848Phx2suBscdp9wCLjm4PHXsOeO447fsJPkqsKEOqrLGMAi0chxbBLjK5aMAMZb1XEK+1MnFfMuZRJpoqV+MsHEumS+LWPcN41YoyMqjSK4oSEsyfbGGqq5cK0zjGpscSExZ8Z7bL3c0OLYcJgTqMehemnDA6D9TgNVtwSANPwDvMV68ow08FFEUJCeZPPEztamWps+CI7X7f3LkKn7BzsR6s4VXv2Y9h+LFYAtgN8BgqoChBZ1q+HmDBggVMmDCBkpIS7r77bgKBQP8xVb5eUc4hA/MnHweKmZX7aUBZ0dGGVXqZ15CDOcHB7h1r8RtebJoPixR4pH+4LlsZYQZTvv61115j69atbN++nZaWFl5//fUjxqvy9YpyjtjYuJECzYHJFEutKYMpWcFKP4FAgAotnTGB/dj2jcIyLZHaV7cRaY7HrnmxGBoeqbYAHmkaf/pTvLuGtny9bUwRKT/60Un7nGn5epvN1v82vK7r+Hy+I4o7qvL1inKO8Af8VDRXMLW3hzLGMjUrDrslWIZu9YFyWkUi0wNeCEha5GGMQICAloojFFC8BE7xE5QL2WcpXz9//nySkpKIjIzk2muDb0eo8vWKcg7Z3rYdT8DD1J4OlrqOzJ+8W1cFTOBL7aPQwi1U7VmFPSIWXSbjwI9JmlRAGYFONZM4mz5L+foPPvgAj8fDTTfdxIoVK5g7d+75U75eUS4EA/Mn64wj3z8p1yPINA4xarcDa0E0B7dtxhFdRAALDsOHZpjxCFXVRzmxz1K+HsBut3PVVVfxzjvvHHf8uVy+XlHOe2WNZRQIO4YpiS5bGiVpwaWJg+2HqdaymBRoRXoDdFpa0f0+3L2ZCMzYA340acYvIGCoWYpyrNMtX9/b20tDQwMQzKG89957FBUVAedR+XpFOd/15U+m9HbxSaCYmbmJmLTgUsFrVWuQwsRlzhiERWP3wfVYHZFIkUp0dx32QACBBVD7yitBZ1q+3ul0ctVVVzF+/HgmTJhAUlISd9999wVRvl5Rzht9+ZNpvd0s8RQxa0B14TUuP5FaFzN3pWLNjWTfvzYSHjsWvD7iug5i9yeBDL786NbdRFgjhus2lBFiMOXry8rKjmn74IMPLtjy9YpyzhmYP/mRUcx9ofyJ2++hUstikr4P0Z1Db0EPfo8btyuTzNZNWP0+7HoAKYNP6KgZinI8qny9olxAyhrLKMCGx5SOOSadrPjgLozv7FyFS0Qw06uBgOqGTZhtDhAZJB7eQGRmOnZ/gIBQAUVRQAUU5QL36fsnXazyj2FWXnz/WveHrQ2YpM78g6OwZEayp2It4TGFODQ/sbQRN20yDp+BQXC/FLfaBli5wKmAolzQ+t8/cfaw0jfmiPdPKkii0NhPdJ0Jb5wPT28PXs9oEho3ETV3Dvb4KOw+A78IBhSXp2O4bkNRRgQVUJQLWlljGQKY4vGy3hjDzFD9rrKDW6nX0pgc2onxQNs2TBYrUmSSWL+RqIULsceEYfVIdBFcInN7OofrNhRlRFABRbmgBfMnFjpNWSSnpJMYGcyHvF2zDYB5zYmYEx3s2rqK8NgC7CJAvNZO+PTp2OOicLglfi0YUFxqyUu5wKmAolywfAEfFc1bmNLdyQpv0RHLXRv8VlKMBsbsiUFPkTg7O4LLXU2biZo3F2E2Y4uNwOY28GrBR4V7PV3DdSvKCDKY8vV9rrrqqmPGq/L1ijKCbW/djifgZarbxcf6p+VWmrpb2a3lUOpvAANqe3ajmcygZZHUsJGohcF3CkxRUVhdAq8pGFB6VEBRGFz5eoC33nqLiIhj32dS5esVZQTry59M8vj5HmP4XXYcAK/vWoUucrmk244WaWH79hWEx+ahBSDe3EnY1KkA/M/SHzLKWYjHHAlAr6dnuG5FOY6PX9tDa23vkJ4zYVQEF3+94KR9BlO+vre3l6eeeopnnnmGr3/960eMV+XrFWUEK2sqo0CaadZyyc9MI9wW/P+r1T1OwqSTS3emIdPNdLc04/ONJqFpE9Hz5iJMJjp7WnnD2IDmM/Ca7JilxOVzDvMdKSPV6Zavf/jhh/ne975HWFjYEf1U+XpFGcF8AR9bmyv4Wk8nH3lm9+dP/LqfrVomJfoBrJ7RNHprEEIDkUNiw5+I+tF/AvDSsidwmkwYgQC6xUSY38Dpdw3nLSlHOdVM4mw6nfL1FRUVVFdX8+tf//qYGY4qX68oI9in+RM364yS/vzJB3vW0iVimO7yIawa26tWEBabjU3TSLB04pg8GYB1LcFEqm7o+M0mHFLi1lVAUY7vdMrXr1u3jk2bNpGVlcXs2bPZs2cPl1566XHHq/L1ijKC9OVPSr06u8xjmDAqBoD3GmsQ0mD+vjREhp3W+kPo/iwSGjcRvWAeQtPYfWALlTYvDsNAN3wEzBoOQ+LWPcN7U8qIdLrl6++55x7q6+upqalhzZo1FBQUsHLlSuACKV8vhPiuEGKHEGK7EOJlIYRdCBEnhFgmhNgb+jN2QP8fCiGqhRC7hRDzB7RPFkJUho79VoTmaUIImxDi1VD7BiFE1oAxt4V+xl4hxG2DuQ/lwlPWVEaBYaJOFjAhJw2LKfhXYZOMJdeoIbUlnFZC689aLklNm4hauBCAVz/+BYYQFLkT0KUPYZI4pMRjeIfrdpQR5EzL15/IBVG+XgiRDnwbKJZSuoUQrwHXA8XAcinlz4UQDwIPAg8IIYpDx0uANOAjIUSBlDIA/AG4C1gPvAcsAN4H7gQ6pJR5QojrgSeA64QQccAjwBRAApuEEO9KKVXtC+WU+vIn1/Z0ssI7qT9/UtVYzUFtNItc5aAlsmPfx4RFZ2LWLCTYu3GUTgCgzFtJnhR4THn4pQebFsBmgNc4u8/8KyPTYMrX98nKymL79u3AuVW+frBLXmbAIYQwA2FAPXA1sDh0fDHwldDnq4FXpJReKeUBoBqYJoRIBaKklOtkMKv0wlFj+s71BjAnNHuZDyyTUraHgsgygkFIUU6pP3/i8fDJgPzJ63s3ADCnIQpTmoP6ml0EjGziGzcTMz+43LVs/avUWCFOjMNrjsGveQkTPqxS4DH8w3lbygj10EMPcf3115/x+JtvvpkHH3xwCK/o83PGAUVKeRj4JXAIaAC6pJQfAslSyoZQnwYgKTQkHagdcIq6UFt66PPR7UeMkVLqQBcQf5JzHUMIcZcQolwIUd7S0nJmN6ucV/ryJ+O8ktqwYgqSgy+RfeIVxMk2JlYn02EO/rsiRWi560vB5a73tv8Zs5SsTb4RbPHoJp0w/FgMDS/6cN2SoowIZxxQQrmRq4FsgktY4UKIk+0Ec7zn1+RJ2s90zJGNUj4jpZwipZySmJh4kstTLhRlTWUUBjSqjUJm5KcghKDL3c1OLYcJvkOY0Nhdtx57ZBo2zUFSWC/2cePweF1s0g5T4gmjJyqd3Agdr9mLw9AxSw0Pak955cI2mCWvy4EDUsoWKaUfeAuYCTSFlrEI/dmXbaoDRg0Yn0Fwiawu9Pno9iPGhJbVooH2k5xLUU7KF/BR0bSFKb2drBpQrv7NnavwCjszOzS0BBv7925CymwSmrYQs3AeQghe/ejXdJg0dNtsvhBjJ5w9eKw+HLqOyTDhVQFFucANJqAcAmYIIcJCeY05wC7gXaDvqavbgHdCn98Frg89uZUN5AMbQ8tiPUKIGaHz3HrUmL5zXQusCOVZPgDmCSFiQzOleaE2RTmpytZKvIaPqR4vnxgl/QFlRUcbVunl8l2p9IYHqwZLLY+k5k1ELggud62uW0J0wGBt+rXMtW4jyu7GZfVg1wNo0oxXHHeSrCgXjDN+yktKuUEI8QawGdCBLcAzQATwmhDiToJBZ1Go/47Qk2A7Q/2/GXrCC+Ae4HnAQfDprvdD7X8GXhRCVBOcmVwfOle7EOInQFmo34+llO1nei/KhaMvfzLGa8IVV0JajINAIECFls6YwD4ifaPY1vQJtvBELCKcpAgX9pJi6pprqLD2UupNoj0skpzOP+G3atTb/Nj9AXRpxid8BIwAJs003LepKMNiUE95SSkfkVIWSSnHSilvCT3B1SalnCOlzA/92T6g/+NSylwpZaGU8v0B7eWhc+RKKe8NzUKQUnqklIuklHlSymlSyv0DxjwXas+TUv5lMPehXDjKG8sp1GGXXsRF+ckAfHxgE60ikSm9LkSEmarda5HkkNBcQczC+QgheHn5z/BpgkORX+KKaC+6Zz8mjwnd4sbulQgsAHgC6uXGC91gytdfeumlFBYWHvf9FFW+XlFGkP79T5zdfKx/mj95t24XAPP2xuOJ8SANA7Q8kpo395eq39CznlE+SWXyF5kd+CdCRNBTn0jA6sXuM0BaAXDr7uG5OWXEGGz5+pdeeomKigoqKipISko6YrwqX68oI8TA/MkvZAnfyYkHoEyPYJSoJbc9gT2+CiyOWCxaDCnRHmyFhZTtWM5um8FUTz5joxxEdrxCb+9EhNuMbgtg84DU7AC4/e7gwq0y7P71/DM0H9x/6o6fQdLoHC67/a6T9hlM+fqTUeXrFWUE6cuf5Htt2FJLiA6zcLD9MNVaFhPdjcFikLtWIrQcElsq+p/uemvj7xBSsjnxOuY79iGlj6qqRLSAA8Nqxu4xMAj+x8ClCkQqx3G65esB/u3f/o3S0lJ+8pOf9FcQVuXrFWWEKW8so0CXbPMVMTM/uJTwWtUapCjkksN2/PEB/Lu9WB15JDW/S9TCn6LrfsoD1YwJWFgXN4YJzv8GmYXbFUeB1c7miE3Y20EPC81Q1K6NI8apZhJn0+mUr4fgcld6ejo9PT187Wtf48UXX+TWW29V5esVZSQJ5k8qmOrsYe2AcitrXT4iZRezD4yizrkXsy0Si5ZASpwfW34+76z+E40WgUmbwhejA5hcWzl4cDRZkWnEeBNBs2HthYAWXOdyeVQ5OeVYp1O+HiA9PVjwIzIykhtvvLG/LpcqX68oI0hf/mSax8smUcKk0bG4/R4qtWzG+WowayYqd69AM+WQ0LKVmAVzAVhe/SoOw2B9xg18gVUI4aCuLpWCriTs/mhMwobFGcAvgjvsub2dw3mbygh0uuXrdV2ntbUVAL/fzz/+8Y/+J8UuiPL1inKu6MufjPaGkZT14gHPAAAgAElEQVRVgt1iYsmuVThFBDPadQLxApenK/Qy42aiFi6ks6eVzZZWxnhjiIxKJLPzz/T0jCHcGku6N5aY3FSEsCF0g0AoKd/jVgHlQnem5eu9Xi/z589n/PjxlJaWkp6ezje+8Y0Lo3y9opxLyhvLKPQH2OIbw8y8YE23D1saMIl45lel0eSowWRxYDUlkZoQwJaTw7Nv/T+cmkaL/YssDG8Er5u9e5IpJh1bWgTWohi0ShsBqaOHlrx63SqHcqEbTPn6TZs2HdN2LpWvVwFFOe/1vX/ydZeTdUYJt4XyJ5tJoiCwn3hfKh8efhPNnENCy3ZiFwb/8q5rWUGi2WDL6Kv4huf3SJmB05lAnjuRiDlpdHW1oGl2/IYXQwsHoNfTPWz3qYxMp9r75FROFDxGIrXkpZz3trVsw2v4merxssM6geK0KDYdqqReS2NSTycyRqOjtzH4MmNL8GXGvm1+R/tGMTHaQpRrNYcOjSYnPINwezi2sXEse/EvmEwWfHgJmEMzFG/PMN+togwfFVCU815ZUzB/kuKJJjuvCJMmePPAFgDmVEfTSj2ayYrFnEpaksQ6enT/Nr9V8V9ljmkTYOVwXQYFHYmET0mmbPEbuPwNWExWvHgwNCtmKXH5nMN6r4oynFRAUc575Q1lFPp0tgwoV7/RbyPZaGR8exq7atZgsmaT0LKT2C8Fl7vKvJXkeQWNydMp7n6G3t5CIi0JpAViCZ+RypY1K/EabuzCikdzYpg1HIbE5VcvNioXLhVQlPOaN+Bla0sFU90u1hklzMpNoKWnlSoth1J3HYQJGjr29S93RS5Y0L/Nb5gcy5yILqxGK/uq0yjyp2IviOPglk24/fUEpIlITPjMPqTQcEhD1fJSLmgqoCjntcqWyv78yYHIyYyOD+PVnavQhYVZhzU6rW0IzYzFlEF6moY1I6N/m99NqTcx0/8OhpGMszeZPGcSETNSWf3yG4CGYYsgUhfoFh/SpBFmSFVtWLmgqYCinNf68icxngRK8vMQQrC6x4lDuphzcDR7Dm/EZB1NQlsVsQvm9m/zW+xxEJmQwSjXO9TVjibHlkF4TCROUzcdzhqslmTaI52EeSBg9WAVEruUeALe4b5lZZgNpny9z+fjrrvuoqCggKKiIt58883+Y6p8vaIMs/KGjRT6/FT4ipmVn4Bf97NVy6TEtw+bycbB5kqElkdSyxaiFi7o3+bXaZnJPOsuNDTq60dT2JlI+IxUlv/vXwCdrVm1uBwewlygWzyEyQA2Q+A2VEC50A2mfP3jjz9OUlISe/bsYefOnXzhC184YrwqX68owySYP9nK191u1hnF/DQ3ng/3rqNLxDC1bTe9Yd1IARZTJhkZG7Gkpga3+bUYbB51Hbc4H6G3J59IUzLJWiyWMZEcbq7CoiWyqWAz/99OO2bPGHSbnzBDx5CCHukf7ttWQjqX7MNXP7RP3VnTwom5MvekfQZTvv65556jqqoKAE3TSEhI6O+rytcryjDqy59M8XjpSJxOQoSN9xr3I6TB/H2p7GupwGQdRXz7XmIXzu3f5jfXm8jEGEFMYD8HDmRQ6E4lfHwSq/64GCldNCY6mS/DyLK1gMeC3+on3B/AYgg8Uh/u21ZGoNMpX983y3j44YeZNGkSixYtoqmpCVDl6xVl2JU1lSEkhLlSmDBlNACbjFhyZA0ZnkQ2NmwC+2ySWsuJnP8Uf17+X/g0QW3kl7jC+AjDiKe3O508bxKOacns/vsmNBHFP0oref1wA4etMQTazPgTBVF+A7M04ROBYb5rpc+pZhJn0+mUr9d1nbq6OmbNmsVTTz3FU089xfe//31efPFFVb5eUYZbef0Ginx+KvQSZuUnUNVYTY02mondLXjCPfgNHxbTaDIyLViSk/u3+T2UPodi19+oq8si15RORHoslcs/RDfa8UVamGGJJNuw857/UqTHhN9mw+aVmKUJL8f+pVaU0ylfHx8fT1hYGNdccw0AixYtYvPmzccdr8rXK8pZ5A14qWjZylSPmzJKmJYVx+t7NwBw6cFwDnbtwGxNI6HjAHEL5/Zv8xuv53F5+GGs6NTXZ1HYm0zEjFQ2rVwB2Pj7xEpuq9/Ha2Iejf5MAv4Aus2B3SPRDDNeoQKKcqTTLV8vhODKK69k5cqVQDDn0rfEpcrXK8ow2tayDZ/UmeT240+fTrjNzCdeQZxsY2rTKPbUbQBTHkmtFUTNm9e/zW9l8vVM8/yVnp5sYkQaSbY4mrprcPnrMNljSY+yMd1r8Juey2kNT8HQfWiaHbtbIjDj08CQxnDfvjKMzrR8PQTLzz/66KOMHz+eF198kV/96leqfL2iDLfyxnKEBIs7jSlTMunx9LJTy+Ei906M8CxcgR7s5ixGZe2G2BjKA9UU6RYOF+SS6dnEjoOXUeJMIeKiFN7+29OAxvLiXdzVVMd75jm0hsdDRhT+3VVomg2r20BEWQEnHt1DmCVsuH8FyjAZTPn60aNHs3r16iPa/vrXv14Y5euFEDHAs8BYQAJ3ALuBV4EsoAb4upSyI9T/h8CdQAD4tpTyg1D7ZOB5wAG8B9wnpZRCCBvwAjAZaAOuk1LWhMbcBvT9U3lMSrl4MPeinF/KGtZR5PNRoU9iVl48b+z4F14xihkNAQ67qjFZkknsqCVu0dz+bX5jjMlcqq1DGtE4u0aToycTGKXR3nsAizkJd1oj8/f3MsczD39JBNNGxaAbLkyaDZtTAlYAXLpLBRSlnypff/r+B1gqpSwCJgC7gAeB5VLKfGB56HuEEMXA9UAJsAD4vRDCFDrPH4C7gPzQV184vxPokFLmAb8GngidKw54BJgOTAMeEULEDvJelPNE8P2TSqZ6PGwxjWd8RgwrOtqwSi/za0azu249wpRHYttWIufN7d/md8uoG5nkeoHDh7PJlWlEFiSy4rnnAT/bMuu4uaON9daLqbWnccWENMbZdXzChVnYMLl0DGwAqp6XcsE644AihIgCLgH+DCCl9EkpO4Grgb7ZwmLgK6HPVwOvSCm9UsoDQDUwTQiRCkRJKdfJ4HNvLxw1pu9cbwBzRHAhcj6wTErZHpr9LOPTIKRc4PryJ6VuHVvWDDQkFSKNIv8+wkw2On3NmM05jM6x02sx2GxppcATzYRYgxg6aajPpsidimNSArWNuzBrCewY08y1HW38vHs+/qwIvpURh7vpp0izD5tmQ+oB+mYobp+qOKxcmAaz5JUDtAB/EUJMADYB9wHJUsoGACllgxAiKdQ/HVg/YHxdqM0f+nx0e9+Y2tC5dCFEFxA/sP04Y44ghLiL4OyHzMzMM7pR5dzSlz/Blcn0gjQ+PrCJFi2JL7fvo0kPYDLHk9BVT+x1l/PSsidwahrtjjlc7n+T3p5MYoxMkmIS+GTJG0jppDE+wKJeF3utk9lp5DC3NJWutU8zKnwfhy2jCcOGDy+GCC15eTuG7F5a3a00OZvwBDx4dS/egBev4aU0sZSU8JQh+zmKMhQGE1DMwCTgW1LKDUKI/yG0vHUCx3vDRp6k/UzHHNko5TPAMwBTpkxRz3ReAMrqPwnlT8bylbwE/rBrNTCB+QeS2XN4OZjzSKrfRtTcf2Pdqz8n0WxQk/NlSvy3sOfQbEqcKYTPS6Xq/8rRRCTLJu/kn4eb+bbr3/HnR3BfeiwNh18nWjg5aAsQqQv8uJF9S17uoQkob+99mx+v/zG6cezb93NHz+WpS58akp+jKENlMAGlDqiTUm4Iff8GwYDSJIRIDc1OUoHmAf1HDRifAdSH2jOO0z5wTJ0QwgxEA+2h9kuPGrNyEPeinCe8AS9bW7dzvcdDlb2UvKQIyivDGUUtOa4ENrtrsUbMJDO/keqOA1TavIx3ZVBkr0JzOnB25ZCjJVO9rxy/0Yo/Ipb5ukGPqYAN5mIunZBK9ye/wRbRQ29LJq5wjRSvxCdcGFowoPS6Owd1DwEjwFObnuKFnS9wkcfPjaYEbBNvwT5qGjaTjZ9t+BlNzqah+HUpypA64xyKlLIRqBVCFIaa5gA7gXeB20JttwHvhD6/C1wvhLAJIbIJJt83hpbHeoQQM0L5kVuPGtN3rmuBFaE8ywfAPCFEbCgZPy/Uplzg+vIn49wGMfnTOdRRT7WWzYTeetpFI8IUSUJXM/ELLu/f5rc64WtMdb9A/eEs8vxpRI1PYePKDwErSybu5LaWBp7sXYA/M4JvpUfisryNqyuZ3j1pdEdbCXcZeDUXUtgB6B5EQOnx9XDvint5YecL3Njj4j8bYXJzExct+QET33+EYreL9Mh02jxtQ/QbU4bamZav7+np6X+vpLS0lISEBL7zne/0j78Qytd/C3hJCLENKAV+CvwcmCuE2AvMDX2PlHIH8BrBoLMU+KaUsq/w0T0EHz+uBvYB74fa/wzECyGqgfsJLalJKduBnwBloa8fh9qUC1x5YzmaBN2VxUX5KbxetQZDmLik1s7ehnKEOY+k9koiL59DmbeSXK/All5MJjU0NORS6Euj29GF01eHZo1lXFiASFJZpk1hZmkKrvW/wmpz0bE5C19vEj57NGaXCd3sRYZyKL3urjO69truWm5+72bW13/Cw23dXNsaxlc9/8WU7idZlvldZNMOeHYOcTXraXergDJSnWn5+sjISCoqKvq/Ro8ezVe/+tUjxp/X5eullBXAlOMcmnOC/o8Djx+nvZzguyxHt3uARUe3h449Bzz3Wa5XOf+VHV5Dkc9LhT6OO/Pi+WuZj0iti1n1mfyj9x1M4V8hq6CDFTvfp8YKY90ljDPep7c3g1h/NknpySx95yUAVhXv4cHmen7luh1/ZiT3pkbgbvsnvvZ0OmuTsEVmEzAfxHBb0a1e6Asons8eUMoay/juyu+C7uOPDS1EelL4uvEgTReNxlTr4ht7pnL3RV/mgdiVxFX8Hnd0OC6/et/lZN5//30aGxuH9JwpKSksXLjwpH0GU76+z969e2lububiiy/ub1Pl6xXlLPIGvGxt28FUj5fa6CnEhAkqtWzGeQ7gMXdjaFYSutuJ/9Ll/dv8bk+/ian+JdTVZlHkTsFUEE5rz37MpkSsqU4K9CjekbOZND4Z/8YnsFg9tJdnICwXEVXbgLRbMVxmdKuOCOVQnN7PtgfH63te564P7yJeWPjbwQOEedK5Xv8R3VOSeTTiv0gq6sWcFcEf1zXx350LiY/JBqDdoybl54rTKV8/0Msvv8x1113XX65Fla9XlLMsmD8JMMYNPYVTWLJrNU6RxPQmD/uatyDMuaQ0bccy60Y2vfNDitxhyHgfDpeBsyOPHFsaq5e+DvjYOaqR21sa+F/P13BnRHFvip1A94d4WjLpakgn1dNMYksVhm0MhlfiizIQmhWzlDh9vad1vbqh84uyX/C3qr8xOzKHJ7Z/zD5ZyK36/6NnShI/sD2JZ/sovlX8Sx4t/CWJVgvPf1LDI6OsEBEMKBmRGaf+QReoU80kzqbTKV8/0CuvvMKLL77Y/70qX68oZ1lZw0Y0KfG6cpmZn8SHLfWYpM78A6Op66nCZM4lsyiS19f/iQ6Thts6k+neV2hoyCLPm0H4xCQO1ldi0uI4UNzIbI+ZlwOXMXZ8EnLzzzFbfLSXp6FZZ5Bd/RZleZ3YTDoB3YvPbiCEhsOQOP2nnqF0ebv4j4/+g79V/Y3b4ifz9LaV7GYsN+k/oHNyCveF/YbA1kLGNs1FawjnDvm/1GY5GD8hiUPtweS/yqOcO06nfH2frVu3ous6kydPPuF4Vb5eUT5nwfyJj636WGbkxLOFRPL1/YRJ8EidhJ4eEr50eXCb34BBTdY1jJVbaGzIo0hPY3vlKgzZS0usm1vamlnsu5zutDi+mWJBRP6LnqZsuptGk96yi7K8FnbmuUmUTgKGC5/dgsCMQxqnDCg1XTXc/N7NlDWV8eOUy/h++dtsME3hFv/9dE1K4T8ifo9p2ygubrsEf1sNvQdmMUPfyJds29mYbMZuD74r3N5bf9Kfo4wMp1u+vs/LL7/MDTfccESbKl+vKGeRN+BlW/supnq8tCVdRHVLFYe1dCZ2tHGgvRLNnEty5w66S3KosPaS7UlklqUctzOJOHceSQXpVOxYixARrJq8lyudfp7zz6NwXCLmip+imXTaNiZjtk9lVN37vH2pjTHZM0n0OfEJJ367A3NA4JASz0lqea2rX8eN791Il7eLZ1Pmcc26xaw2XcQd3vvompTKv0c9R/i2WC5uuZxdzR+zx21Q6Mrm4MGxLPI+TpHD4LAM7jPe1n3obP16lc9gMOXrIViefmBAUeXrFeUs68ufFLhNMGEibx7YCIxn7qE4ars2YLLOJGvMXl5Z9xt8muBw1JdYoL/N4bpsxnlTafLV4g+04AuL5VpnJ+/4L6U1NZn/TDZh8q+lpyGPnrZ88lrWs3RCB5dP+DdmLP899TGX0Gx2Ia0OHAGBXZN4xLHP/kspeWX3Kzyx8Qmyo7N5OryE9DW/Y4X5Eu723EXPpCRujnqJuO0WZrbMpb69gs5ADqNaqhDhYXQdHs+ozH3c53iKN63TCDcM2nuH9gkmZWgMpnw9wP79+4/4/oMPPrgwytcrykjRlz9xufKZlZ/IwwdsJItGirriqdK7SfF5SPj6HDYceoBRQuItGEuS/3ka2xaQFZ3BP9e+AFj4aNJuXurq5Wu+hWSXJBC24zG0WIPWjUk4bBOIb/8Zn9yYxO0bKimmk8ZuK7rNjYlwwv06VrPAI48MKH7Dz883/JzX9rzGpRlf4OeBaMLX/I4PLXP4pusOeicl8tXov5O5w8OUpoW4u+vY549kdOMStuW1kuGOYqy/kL17x1NcvBojYg5xgQAtrubj/zKUEUWVr1eUc0xZ3WqKfD62y/FkxgWo0nKY0FvLoe4qhDmblM6d7E6S7LYZxOl5zDKW0NQ4mjxPJjJN0OutRVhimGXqYL3/Ig4ljeKuZANLzEa66wpwdRWTdWA5r89w8sW0K/ha5xJMugO9x4rXLrFqNsI9BlZD4CPQf12dnk7uXnY3r+15jTvH3slvvOGEf/I0/7Au5D9cd+CcmMj82GUU7mpkfPNcHC4PW3paya3bzuZLdhOVaEJ3ayS7LPS05uD3Z+Eye4gLGLQOUc0wRRkqKqAo5zxvwMu2jt1M9Xhxpc/inb1r0IWFWQ0ah7p2YLbkklUSw1tb/w8hJXtSvs50uZrGxnwKyeDjNX8HJJ8U7ee2jnb+1/dlMkoSiN4dfAe3ZWMC4eY8LN61HL50DLM++Tu9OHg9cTZ6l05PlBmHdGB3BzBLrT+g7O/cz43v3ciW5i38dNZjfKe+BtPGP/J329Xc57wFV2kCs+LWMqVqD2NaF5DicfBJ+2bSuzQ+Ll1Nh3E1axOuxuZvpbZ3J0V6Bju2FyPsbuICAdp83cP4W1eUY6mAopzz+vIn2W4rhYVjWdndg0O6+EJdBq3eRmKdfuLmX0p5oJpCj4W8eDeGM4K4nkJi8xNo6KzCpCWQnNjMIf8EquJy+fdEP47YLXTXFuFxTiCn+p+8eImPyb4iZga280biFzEl9OBz9uCKdhBmWLC6JRbDhE8YrDm8hpveuwmn38lz857lyu0fwKa/8IZjEd/ruQ73hHgmx1dw6Z7N5HZ9iXxXAmtblhPmz+dA9GukRWVSOWEc0Ym9uKMqqfW6KfKn4exNJMYWICxgpiOgNvJSRhYVUJRzXl/+xOksZHpOLNu0TIq91XQ4DyPMmaR1VbFC7KHRIkCbzEz97xyuz2WMP42t21cCPvZktHB7Rxu/815JSnEcSfsfwzA0mjbEEWUk0WXbhO2SS7hp18vsEqMZVbSBotwSTLYODGsk0W6wugKYpIlOk8E3l3+TjMgMXln4IqUfPw0VL/G3sJt5oOsaPBNiKU7YzcJ9q8n0fJmxnWmsb/0QnzYZR+dfcJTo/CnzXr7evZSi7gDO5G7MgVg6nYfINZKJ1Duw6VZ60AkYgVP9ehTlrFEBRTnnldWuZIzPx25TKbW92+kUsUxtdXGoczsmSx5ZY+P46OCbhBkGdaOvpsDYi6tlDFkpmeyoXY9JxNFeWIPmyaY8Ziy3J3lwxFbSU1OM7p1CXvU7vPRFjdJqL+m08nFOHmkpC4gNzMJk70RY7IS5JZpbxyzNBARcNuoyFs99ltT3fgjb3+SFiDt4uPMKfBNiyE6s5as175MauIrSxjS2daymRRSTVfMaOy5t4XXrD7g1/hXSd1xG2gFBU2wJMc4ODvTuZJwvk+hAD6aAHUNAl+/MClEqyudBBRTlnObRPWzt2MNUtxeZdTFLmw4gpMH8mhQa3QeJcxmEfXEamy2t5LujmWpdR0tzJgXuLA53VWPIHtpivMHZie9K4opiyTj0UwIBC01lscR5rOxO3sXoiXO5vfldllpnUJBZTXLkPfzjo00Ewj2YTAJrLwSkl8m9kdzbGuCpWT8l7M1vQNU/eC7ybh5tu5zA+CiSE1u5oe5tEuRVTKlJo6ZnO9X+KPIPbeC9L+yhxbuIguJqkrcV0dp4GK3BweHIEroclTTrGnZdkuDXkEYkAG3qbfkR50zL10PwkeNx48Yxfvx4FixYQGtra/+xC6F8vaIMq20t2/BjkOEOY2zRGDYbMeQEarB1ujFMqaR27+Ut56rgNr9hX2S2/IjmhgKKrKPYsOsjhAhny6QqslwJrAifyi2JvUTE7qJnfzG6PoOcA++wZG4kX9xcQQCN9mIn2Vn3sfTVtbh1E76ISCJEAOkyoQsPYUY4X+3pRXvlBuTeD3km+ts81noJYkIU0Uk93F7/MjH6l5i+L41Wz2G29DST3uni4/yV5Gq5VJaOZcq+BiIPmbF1HKRF7MKIMuNL3odNy+RAdyWxPRq6DL7kpsqvjDxnWr5e13Xuu+8+/vWvf7Ft2zbGjx/P008/fcT487p8vaIMt7KG9WhS0uMqJDfGyQFXFl9tX8+hrlo0Sy454zr4S8c/STQbGDnjCHMuJa5rDMQG8AQa0B1x3NDbyh+8txI1Npbcxv9CD7fSUBZPclcva/NrKEyaxxXNf+H52AWMSe2hbVcR+13LiA448EfEkuRxE/CY8WluPMJKIl3IA6v5Y8z3+EXTJCzjI9GSfNzR/AIR3nnMrB2Nx9fDho5NROlj6eDXZIzW+G3qN7nP/Scy982nqbWW1slrsLZlM8HXijshgewDnRwwakhyp+MRsQC0957darLnkj17fkJP764hPWdkxBgKCh4+aZ8zLV/fV+DR6XQSHx9Pd3c3eXl5/X1V+XpF+ZyV1a5ijM/HQfsU1jRvAeCyunAOu/YT6xZ4p2RTafOS5s1gtvwn9fW5FOkZrKv8ADCztnQ3F/X+/+y9eZxcZZX//761V3V3dXf1vi/pvdNr9pUsJGEPm4AsgqKCgKAyIggjjuO4jP5mHBVRBxGBcQBBkC2BpLN3ujudtdd0el+ra6+ufbv3/v5Iw6BfxzAgJsR6v171urdO3fPcU/d5verU85z7fK6BV/VruDFzjqSUQTxDtSCvIH/6ddo35/OZnrcYJZuMmi4Kc77Gjva9pIg6DNYZYupkUjxRxFiIsCKAS5lETFbwmOlB/tXSjL4+ETFL4HOOX6P3rGOduwoCMQ46WkC1ggzzE0yu9vNf2q9za8ZvSevZwKR1hsncNxkRrqe/aAEF0wqsqmaCih5CQiYE9IQEEwDOucmzePXjvF/ej3y9Wq3m8ccfp66ujtzcXPr6+t6VTonL18eJ8xETioXocg9xUzBMoGwtbeEpUhUOKswGJoVkqnyj/M5vQVIITKVv5UbpMYas15ObmcmB4ZMIqjQ2cZRfh69CX59Gtf1honod5iMZFNineKPZSn14CVV08POCzazNL2H/yxOE5CgpsxaqL1hJu3sPSo+CIAFCmjAv6S/jd3NrGJ/OJqUhAXeWhnvmfoHWuoyL9IsRrH4OOt/Cp1zNwoFnee5SG1LgRsqWDZJ2IpfYtA0hdIz0DBPH601k20A4lcipxlzyMnejimwEn5eg0YhSlrHHRyj/K2caSfwteT/y9dFolMcff5xjx45RWlrKF7/4Rb773e/yyCOPxOXr48T5qHmnfpIVNFJVmk+vopR6/xjT7n6U6gWUNJg4FOtlQVigICPInD2bsmAp3YOtgMThqjEu8Qo8r97AtRkOjMmjeE4tRCEsJ8W5jfH1tXxlcht7VI1Ulw8jO66gzzVMrl/Fwk0rSSsqQCGriHolgko/Eb2EpFIyLmeT0ZCII8vAHb5foZmsZ2vRBhSnAnS59mKVaykf38OLKweojFTT1biQVRP95E3kIrq8xBpP8XT+7WwdsVDi1xAOmNEkR1DmRMnweCEkENJqSRUlrF7L2e6GOO+D9yNf/47A44IFCxAEgeuuu46DBw/+Wf+4fH2cOH9lOmfaUMgynkAVlkgvYUHHilmJ6cAQqUEVU6UqxjSgl2pZK7+F1VxJVUIh/fY2lIoMKlLG+H1oM0JFJg2eHxAJGzAfzaZ4ppcXVnpZN+FFQ4zxKhVF+V9i+65WEiUtanmWBctWceDJWZICOqKBOUI6kYhWID/XQ3hZOtNZiXw28BTaoXKuXbIVDjgZ9XYzHE0i22WjK6eFOpOan5d+gc/EniF7cCNTDgej1dvZof4C16p3o+5LIXtEgU8/Tp1oIaYuQhXsQY4piWhVmEQRe7wof87zfuXr8/Ly6Ovrw2azAbBjxw6qq6uBuHx9nDgfOe+sP7EmLeNQwIFajrBmLAOvpCLPP8Er0h5Ussxs/iXkBG2YnHVY58aAMMO5dq73RHhavYUrMx2kGCfw9NeiERYhh3cSXNzM57wHeTFpHTVFRrrf1uKVgxitFrZ84R62f/tVYtoMVL4UZJWbUKJAVKcgWQgip2i5Lfwshv5crr/wesTXprGFpugKWjGKGeB7lkBzhKd0D/GpzN+i61mFdXYEn3o/Gl0T2ZWzLDhShWidwO8Zx5YNpWaZEcVSpky9iGhy4v4AACAASURBVDEZQS1hEqW4/Mo5yAeVr8/NzeXRRx9l7dq11NfXc/z4cb7+9a/H5evjxPmoCcVCdM2N8MlgGMrXcEyYoyoyhNtpRqleQFF9lMOqGaqCBnINR5gdKaNRLqB98iUUQiqUtLF/9gJCFbksCTxEWJmE+UQB1dPtPLNB5o5TJ5jBRGLtIEbh+7xp7iAnpKVydT2HX9uHX1mHNjgF/gRiCWH8KWoklYK1Y9NUFf4IYbCYG668Cem5KQIRD52+YygVayka/leevTaA5P0UpcvHSO9LwDgVwz9nJXWJk6fLbuXuE9PMTXtwNu5FdFfgzChBPWyitzqb0nwXsjlMiiKMXlQwIgbOdlfE+RM+jHz9nXfeyZ133vlHtmefffZjI18fH6HE+VjyTv0kI5iKPiWKTZHJIucc04FBkkNaujIt7z7md6W8n9DsQgwqmbBow50c5RavnycUl3JplpXUxCk8fTUYqMGqO4CxoJI1sTH+kLOEiuKtvL2tH52sRhOZIa+2kemebHShcepSH0OOqgkblYQTk5A1CejN+UROlPCJq29B+YYN0R+mY24XEeU6qk8+xa+32Kn0NtDVWMdGcxtF4w04XQFmm/fwrPHLfNJ9BN+wgDnnVXab7mK8LAe9MoOYy09yyhwJKVqiER8ZcgCdqGGO6Nnuijhn4JFHHuGGG274wP4333wzDz744F8xoo+OeEKJ87Gkc7r1dP0kWMtgbBiAjWMmHNEw+cFp3tQeJlmUkAqqiNmNlAfLOTK2H0EwMLawi2H/EhwlRayO/JCQPxlzTzELxvbwxuYkHh49QIeimurKUaY763CIHkyOOTbc/ln2/bgTWaFmcfqPMCQGEMMaQkkmNAoDWkFPUcDIpf6FJLUFES0hDrneZo5VlI7t4M2GflZrdPyi7E7u4AmMA1uYtI1hznwbs3Alq3M6STmaRzB8AEvWKpZndpOoyqPCEsYnj1DLNKFQFUHJS3o4hlLUEhZkAtH4KCXOucGHTiiCICgFQTgmCMLr8+9NgiDsEARhcH6b+p5jHxIEYUgQhAFBELa8x75IEITu+c9+LMxPNgqCoBUE4fl5e4cgCMXv8bl1/hyDgiDc+mG/R5yPF++sP/GkreQYCRSIk+imHQiqUrKr9BzT+SkJZbBatQfrbCUluiyswT6iOj03BV38kivYnGUhNcHMXE8NybESenMOU6lIJkv201ORQnbqF2gbPklmWM+CxQvoeG4PQW056cKLqJPUfFW8C4JhUCWjlVXoYnokSSRLlUm4z0WXey8WuZpM1wTThrdJKg/zn4avc3Pmb6GniZh5CkXoFNlZBsZrc2jqLCZiGSdUGyZWoafu0EIqJmJopgJ4Ux2UWaIc0y1BVvpJCShASgTAGXKe5d6IE+c0f40Ryn3Ae5ejPgi0yLJcDrTMv0cQhBrgBqAWuAj4mSAIynmfx4HPA+Xzr3cmHG8HXLIslwH/Dnx/vi0T8CiwDFgKPPrexBXn/CYUC9HlGWVRMIKquIkhRQkN3pnT011hPR2mQSIKAUfyJqpCg6TZGhmcPgaoOFHbS8Rby1hxJRvkfyPoM2E5WU7J5FscuDCXR2wHedmwhobyFPa97kOBgM4/hTG3CIelEn2wl0tyXucLobvoLa1CI7hRoiM5HCUxoiQmn75lc8TbxThGEmN6UizPcHBDlJO+2ymqmST3VJT8mTSic2GiTV08lfN5rh524h7z4azbz/7yy9nQlYXN7EAx5cahncaSl4Z+Jo3etFKUGjeJPhViXH4lzjnGh0oogiDkA5cCT7zHvBX4zfz+b4Ar32N/TpblsCzLo8AQsFQQhBzAKMtym3x6Zc7Tf+LzTlsvAhvnRy9bgB2yLDtlWXYBO/ifJBTnPOeE7QRRJFKC6TgU00iCklXTGixhF/mhWban9JMfkcnMjGCbLaZaWcApdysKVSpbFWZ+IW9lQ7YZk36WuRPVpIdM7Kvo53KHGw+JKOosBMcvYSbqJMsVZs3NN3L8v60opDAX5vyIR6K3MVRWTnqhDzQWjEEt6XMBkgIxZgNTDHuOM4ATBZVU9v+cJ64IUu5cTHdjHZfZ3yZvfC0TDhtjFdvZr/gc12r2E+0zYM9+nZa8O7l60oFz1Icr/w+4k0cwF2qJJJQi25VkmazEdF4IGIgKp1ddO71TZ7lH4sQ5zYcdofwIeACQ3mPLkmXZDDC/zZy35wHv1YmYmrflze//qf2PfGRZjgFzQNpfaOv/QRCEzwuCcFgQhMPv3N8d5+NN59R+FLKML7SQU5oQSbKHilMisqqE5BKJk3qZtFgZ6xR7iZgbCMxZkeQoPWVjZHoK6S6oZ7PixwQ8GdiGq8mZfZOTK4q4JXiKFzNWUpl7EftOjJMe1VNQk0nHs22Edfnka3/NMU0Vr5gupKjEwgO6x/EnBNF6jKg9UbQ+EU8kzDGfnXBsBTW9v+bJDVY2xRL5Rfnn+YLy5wj9m7DMDhBUdZKkqya10kVeRzHBUDuDeReySdWPfFKDR7+T1oJPMVhZhDKpkIyQlkBwimphgpA+DP4Eoor5hDI3cZZ7JE6c03zghCIIwmWAVZblI+/X5c/Y5L9g/6A+f2yU5V/KsrxYluXFGRkZ7yvQOOc2nZN7qYlECGevpkdVzMLgMFb/CMkRPQfSehBkGUfWOgxOifJAJd32fSgV6SxKHeaJ2FZWZ1tI15lxH68k26PgzeYp7jf30y2UUFk/w9GdGUjIGDwzqA3pzIXrSQgdpCmrj28It6NYqOUfNE+zPPteRjIzEL1JhAIB5KCIUqlGbbiAkvG3aC/tpiwrwuOJX+fGrBeQ+sowmn2oPR5Sq8y8UX4RG44mEJyZxF0jkV0YIOtIAYFgJ/2lK1lpnCBLzqZ8UqZwLEAgYYIye4i5RAOEBCLq01NeVk98hHIu8WHk659//nnq6+upra3lgQce+CP/812+fhVwhSAIY8BzwAZBEJ4FLPPTWMxvrfPHTwEF7/HPB2bm7fl/xv5HPoIgqIBkwPkX2opznhOMBen2jtMYjGJNzcIvJLHMGmE6aCY/bGd79jSVITWNKQPYZyvJEDX4ozYms500uFM5kLuMyzT/gd+Vg3NsIYnubXgrs1gcc9JWWoA+eB0jPjs5XpnmKy5meLcaTcTBpbk/5+7QXdjqcrlT+zjNaffw4n8dYTojByEoE9R4iMQiKKNHKB57k7D4JieXRTnqu4P8ajMLxiyUTldjnwtibmzhOcN93OjqxTsUw13byqmKpTQfKsVvHWS6xkhmUZTs/RkU9rvB6sAfnMWZESVlNhmnMRc5IhLR6EmQJCye2bPdLXHewweVr3c4HHz1q1+lpaWF3t5eLBYLLS0tf+R/3srXy7L8EPAQgCAI64B/kGX5ZkEQfgDcCnxvfvuHeZdXgd8KgvBvQC6ni++HZFkWBUHwCoKwHOgAPgX85D0+twJtwLXALlmWZUEQ3gK+855C/OZ3YvkoCMaCuENuchJzPqpTxHmfnF5/IpMUyOS4zo1SzmHZKS0nVPkoc8yYNQpSw80sDh8hZr2dPksnCiGFlKIDPGu7hWV5VjK0s0y1rqXQ4ePVNV6+YxnjNc0KmqtSaHnDS4qoI7dYxfEXBohoaqnX/hNPCRfTWdzExaa3uLZoI2881YVfEYUEDVLQRyhLRo4F8aeaKRob5ec3wlL7Cp5bVMdDnu+jG76eMesg9vT9BIQtrMg5juqtXBwZL3Og9FZu6gszNzmDq34Ee8UqVu9KwJr6CiG5hJhRJKJV40lbAANGgtUiYiSIqDktv2IL2M984f4O+cfBKXp8wb9qmwsT9fxzef5fPOaDytePjIxQUVHBOzMpGzdu5MUXX3xXcuXvVb7+e8AmQRAGgU3z75FluRd4AegDtgN3y7L8zgOxv8Dpwv4QMAxsm7f/CkgTBGEI+Arzd4zJsuwE/hnonH99a972V0eWZe5puYd7dt1DWAx/FKeI83+gc2IPClkmJDYykGCiPDZCwDFJUiSB/Vl9GCSJWH4FHksOZVIOM4FuPEkiG71atmVdwJX6n+Bz5OOZaiQsvkVeigqdpCawMMBY5yJCcgyj20Y0YsCvrCM5ug1taozHk66huNTMFzNc7H82gE3hIy+YTIk4i6B2Eko14tdF6K9N5L47FFzuS+aXFZ/jbs1P8fetI2IeQRmeJD9HwWBNCTXtuQRD7XSXXMzlc1bmhsJ4KnfRUXUJ61oTsajf4HD9lThLCnHmlxLOKEatyibmcxPUGYnE/CiUMqmihCP+GOBznvcjX19WVsbJkycZGxsjFovx/IvPcXLkJLIs/33J18uyvAfYM7/vADb+L8f9C/Avf8Z+GFj4Z+wh4BN/ap//7EngyQ8a8/tFEARurb2Vu1vu5oedP+Th5Q9/1KeM8xfonNxHTSSCN30xM8o8LnC0Mx2cpChi4j8L3JQHU1isayc204TNPoQg6PHUHOUP9stoqnGQpTYzcWQ9JbOTPL9B4Mm5fp5O3UydsZw3rW7y/GoqL1hCzzYDutg4FxX9jq3Sv6CoN/A1w5NM79vCiDRJfiAZyV5Ihn2MQKIfpdJE0OglLVTL9+b28WDKQ3wi6yXknhwKLYnMej1Emo/wX+mPcOepIQLjbizNGmpS5lDuy8CV8wd2Vn6Gm4+7sYT20Ln0cq48KuJRqwkngjYKMXUUHyMImmbCsot0tHhFBeOi/2x3yznJmUYSf0vej3x9amoqjz/+ONdffz0KhYKqpkomxifxhdx0H+uPy9efL6zNX8utNbfy3MBztIy3nNkhzkdCMBak2z9JfVDkVFICAKtH1QRII5I2hl+pJGBYTa7LxoJANac8rcQ0Bi4LRvl9+iauTfopXmsRAXMD04m7uBQXY+RR0ujgwL4EEiUtmdlKBt5wIyk0LE7/EQ/HPs1obRl3G35BpuMKjlinyIgmoLDnsPjov5PgzGE6M4HEsIFwkp4j2Uv5vPExcirtNEwPUjy9jDGnhfHytzjMrVyl6STUo2Kupo25BSUUdOTg0u6kpfxT3DBmwzHdSVvjeq7sjzEr78QmzqAwW5CsNrTTHrypNrLlALLKR1Y0gi6mxsPftvAa5//O+5GvB7j88svp6OjgrZY3KCorpqi0CJffHpevP9+4r/k+atNq+ceD/8iML17/Pxu8Uz8xBLKZTlGRJc1iHHORGEtiT8EAGTGJjDwlLnMlWk+QqBRjorqbdv9mKvPdZKtmcBwup2Sml/2r9FwfMLOzqIrgxHo8UhST203QqSCorSCNF+jVl/JG/nouy3yTzQkXsOvwGAZZg8ZewsKun/OrC13ovWpmsnNIchrQKBJZqB8js9bHp4JPw+AWZs09hJVdpOtLMFQGSWvNZi7tTQ5XXMmqw5m4fJ10VF7I5X4z/r5R2hfVccWkjCW4m6PL1+Eqy2KsVMlEXgBzig1bjok8bwRR5yHVL6GWtPgECVESz3wB45wV3q98PYDVevoeptGZIZ578jluuvFqgnIkLl9/vqFWqvnB2h8gyRJf2/c1YlLsbIf0d0fn2E4UsoxIE0P6Eup9k8wEx8gLz7GzIEJuOJ9VUhtplqUMuFpRqExcpHDwTOqlXJ/yM7yzpcQstXTntvGVwCgtqmaayhI5PCySE9SSu7AYl60efaCXppw2/ll/Gwsqprk7TWLHay4kZIz2QmpPPM2v19swlARR2W1otDEEtwpDUMVy+yDfE+/H1bcc46wLlS9MSvUYr5RczrpDGgL+To5XXsJlozLuqRH6a7NZkuBBdcjHkUWpbHJrsdsP0LliPZd1aqkd1JATSYeUUry5mYQSS0mzy4QMURI9SpASkASYi9dRzhk+qHw9wH333UdNTQ1XX/pJ7v7iZykvrcTqcKLWqOPy9ecN3S+C307B8jv5xvJv8LX9X+Nnx3/Gvc33nu3I/q44NHWAmkiEyeRKYoKaFdMSTkmPPmUASaEgkLYCefYI+SETrREzE2V+1N415NcFyFHMMHZ4C4Xmwxy/TEeNK8JLjWoGD5aik9WkJUWZatWjUEVYm/sT7pW+RKwhmQeTXqLzlQbcgpcCdx5F/XvYsXCYrKIAj+ZezI9VRynzNSCGRVJ9MXzuJgZthSxyLmDUM4yzYQcd2i9zi/MkwaEoY4uMrBD9BE6qMdfMkJpfQdp2FcfqvCyJleKdOETHurVccUTA7NmBQmdAOZtJiT2JcLIBe4oehSPCXKqafL8BWZ8EOHEE7Jh0prPdRXH4cPL1//3f/43Da2E2bCdJ1CMIalp3t7Jy7f/UT85l+fp4QjkTsgz9r0H/q5BeziVll9BubueJ7idYlrOMZTnLztxGnA9NMBakOzDNJ4IyezNM6OUA5f1hxmLJ7KwaYkFYQV3BJGJHE1POEygV6Sw3neAHsbu51/RTvDPlCJYK9lf+im96p3jeuI48uZDBIBTOBfCLiYT1hRQLP+a3ys2cqG7goaRfEGxrYEr2UuA3kT48zoipFXNzhH8vuJINs2vZmr+H9JkLCOhHUftjmIJQJS/iuPUgztTDRFlHc84peCMFZ/Vb6PKWod+dhKv0bWYr17Fsu4rB8hMs0Dchnuhm/4aVXH0cZnw7OFC/mXStnYSgiNFiJd2qp9CdRiQQxlWcjTyuQ8xMAsDpmQRTxRmuYpyzwf+WPP433CEnKmSUaFFH4RPXXob0Z9dyn3vEp7zOhCDw3cz7mdKXwoufBscwDy59kOLkYh7c/yCOuDDf34QT1uPEkNEFchhLy6EmPIzdN0522ENbHiRINVTNDVHirWHS140100XQvZjkQok8YQpbZyWZ1r3oF0hERBPZ9X7au5LJDOtJyU3CF11CQvAghnQnv8y6mity3mChZSFdLi/Z4SR0kwJS+A/s3ijyQ9NSNk+tZXRYg1lXg9apxJqpwqMJM+Udpm3iRdRhO4X5YfqqKinfn4onZTuDVespb8vEnbaNztpLWbFby3T+AQxp9WiPnWLXuiau6YYZzw5a67dwkehnyYyRCosGKb2Q8SJwixb8ylnChkwIicQUpxOKY278LPdQnL8GMTFKSJDQSUq0IQk5FkElqYkIEImFznZ4ZySeUM6AJEn8vtfNDa57CIoCPHcjBknkB2t/gCfs4ZHWR5Bk6cwNxflQdI7tQCnLRIRG5jQmFtm92GICruSu08Ps3Ap8M6VEXRYQEskrPMaT+mu4Of0XeKcq0Vny2NE0wv3eKV7PbcLS34AgqzCpfdj7S9BEnKzJe4Z/UN9FedUUtyqgtTdMiqRHY84ke/opfrM1xo90hVzru5LJcQ2pmQEOBTYR8g1iyckgnKxFTBqj0JtEqKmN35ju4JqTLvzu4xyv38T6E0k4FLvYU/cJLumMMmvciS9/NRkd07Ssr+baPpj2vM3+xou4PBhC0alAGhrCE5wkZ8xDWiwLa4EWd2qIqCYRMRJCVJ5OKLPuyb90+eJ8TLB7T6seCIKeiDJCVKtAEHQAOLyWsxna+yKeUM6AQqHgtU81YDXm85nQ3Uj2QXj5TipTyvnqkq9yYPoAz/Q9c7bDPO/pmGqlJhzhpLEMQZZY1C+hixl5o3qCqqCe5bou0iwrGPZ04E+USfNUQpGWQmEC2+Fq9J6drEif45hQQ0WeihGngRyPiH/GQFSbRmXSY3xLuBVPYyYPJu2jdVcCShQk2gqoOPkEP7kqxA+VSXxJeRsnhxLIyPLySfcQs6lZBExdpChUaBXpeMoV9G5poU+6kSvV3QR7/Aw0prHRpsQxe5y9CzdzzZAHi7STmcoNlO23s2NtIdcMCMx4drC/6WKumosgHQnjLH2LjvoUrKUFjOSJaGfNZIZS8KQbSRAEIuIcsjoBpSxjnovfeXg+4It60cgyGkkNKh3amBJtTIVGlvHHzv31RvGEcgZkWWZm6B6+sfw52hX1/DO3wMnXYe/3ub7yejYWbuRHR35Ej73nbId63hKMBekNmKkOCXSlF1IijiFazGSE5+jLUiKrm0m2REjzagiKUZSVnTylvpZPZf0Sz3g1xplkWpbZuNo/x2C1iSPHikmL6lHrooRUy0iObOOUMYeWyjXcn/oMYzuL8Qsx0h25VHU9x2OX2HlYLfPvxi/Q1p9CSmaAG12TXBqsY4l+hqmUYirNEianhh7tZly2T6KokDDuS8VRcYwCg4lQr5P2xlIumZvD7jjAYP1GGvZ4eGt1GleNqZhxn04m11hjRI85mao6xGDTeqqNeqpOyeQHTViKE1A4rCjUueSHA4QFB6jUpIoSVr/1zBfy74g/t8jvXCccDRIWTicTZSiGKhwlSgQhGkUjqQgLMjHx3H7kczyhnAFBECgquoNcDnDXyg5+Hd7Ey6r1sPd7CCdf559W/hMZhgy+uver+CK+sx3ueckJy3Figow2mM9MWhGNcxbMkTC25BMkixIZBXrk6UVMug4jqQ2UBzKZK0qjWJ7AdriWkLyTT2un+X3CGhJ9uYSjelJjbvyWJWiDE9Tm7OS7ptu4Mv9NTEfyMYsx8rzplPTs57erhrnZGOKNzHt5ozuTxPQwN7tHWB9cwN6Z33H1hII2LkI1IyF6vaxUTyAsC7GqTYnH+DaO8sWYDuk5Ve2mSSsTHOihq3kNK/aG2LFEx5VTGmYdO9i/6BKum4kR6pmkv2EGX1UNl7RmYDqUyETSBCHvBIUWLbMFRkxzSrJsMURNEA0CqaKIM37b8LtIssSgexBb4OP1uAqbxwycnu4Ka2UiWgWCUkNEKyBwetrL6Tu3/zjEE8r7QKlYSG7uQzSrn+aKpbM86LuVXnUF8st3kuye5vtrv4/Zb+Zbbd/6WP4zOtfpHN2GUpYJCAtBIbB0REIVS+TVWjMloQyaQ33ku6qwBCfxlnfzvHAtt+T8Cs9oDelTAt1LXJSGtBhqYvSMZ5PrEwjOpiMrdTSm/5T7NfdSVGvhMmuAPreS3FAyGQMztC5opznfz3juXfz6eAH61Cg3+wbZGCznoHkbCWIjfscs+nQFPo5jSQmS1K5i2RsmfNZe+prWsLDdxGxhB/q8XAztMxxa3sj6gzFaGkUutRmYdezkwJJLuG40gmdggPYlCkwFmTTvy8M53oUt9fdocssJZOczY3CSbxUwONyo7DLBhDCZsShJogKPGP8z8w6esIeoGMUWtBGO/e31984kX3/o0KF31480NDTw8ssvI8syASnI0LEetqzdzJoV6/inhx5FiETQxJSoZTXOWSvXbL3uvJWv/7tAlmVeeuklXnvVRnb2F9hq/C5VCwU+7b0Pt6SF5z5JU2IRdzfezbaxbbwy9MrZDvm8o33qIDXhCMeSq0mVHJgGbaSF5xjPUBAzNiPN5OB3DqFUmqhTyowVFLJAGsV6eCFTxl3cJ03z+8zlTJ4sJ0U0QHiOiL6JNPkFXtRdwHRDEV9R7KOzP5X0aAJJw2DWvgINQYxZt/H9Y1Vok0VuCp1ks7+MdvN2jNFyWqqeIuxz8wm7j9F0LZ5cE87UE/gdR+hflMYFA4nYE1qYrlpMcYuX1mX5bDoCe2o8bJkzMms/nUw+MRDBOXGM3asLaTAkkLc3G7N/F+YmB29W3EPuUS9pY1aSNFlY9C5cSWEiQR+eZCUZgSgGUYU3Lr/yLs6wE7VSjYCA2W/+m//JO5N8/cKFCzl8+DDHjx9n+/bt3HHHHXj8LqICPPrAv/DD736bA/tbGBofZeeBVmJCFGU4SnvLQVZsWIlOrzv/5Ov/XhAEga1bt/Lkk0/y1nYFGy+8hnvk+3nE8xifmbyX34nfRvXiZ/jMJ5+nw9zBdzq+Q0NGA6UppWc79POCYCxIX8jC1qCSp4prWRY4hSUSIJR6nPyITGWBjbRTqxnzvY290ElP9GpuKfgN3sE6sqd9DKxx4gwXk50mcrw/lWL/HP7QBvSRXgwF4zxbeivfMD1N/54CdLKGxGkTGvdP6b0izNa0K/lM1xLUiTI3xvq4yFdGh/ktjJESXml4Fn+mzA7lAa4Yy6C7dj2bAjYslYsYL5ZoCqixe9s4unIjF+70sr9ZzaZ+DQeLLKwL5GK1tnBw6cVc0xXB6jnIgXXLudwpEusyMJv1O3qzLsNYFub20VF6SiyojXkYJ82kGbPxqaO4ddO4UtKp8ihQp2rxCHElbICoGEWKSmTLAj/cO0fP7DRa1SRK4a/zU1eTa+TRy2v/4jFnkq83GAzv2kKhEIIgYPdZsNtt+HwBGlYsQykruOHqa3n7jW1sWr+eiEZk366DfO6BO8jMNWFKOv0g3L8H+frzjsQ5FdetupxwOMK+vXmYUi/g4fKvcjK1moein4aR3Sh3fYvvrPkOBrWBr+77KqGPwT3jHwdOzB4lJoAmlE/ImMgicxAxouUPC21kxEopsTswuGJIJFGbauFoYQ0V4hD2IzX05u7nzrCdI+VFdA9VkBdQE7bnopBjNGQ/yUMp93BtyTaktkzCkgKTLZvc0ad4/TI/Nyev5jO9F6LSww30cKmnjMPmnSSHC3mh+bfE0gUmzQ+i0JZiDw3TTIzUcRuNPRpWuxOJDkyxf/EFXNgaprPcypqpNDozp1gu5+CYbaFt6UVcdSyCObyb9nXLuGZMRfSwG3fpK+yovYNmk5dVO03EOgSS08sp6vdAUhoBvxWdN8CcCaKGDASPFoWkJ6yAQDRwtrvrrOOP+REQSImG0cXCKAQFETHC//JA178Zfypf39HRQW1tLXV1dTz++ONElRLuGQt5WdloIxJyLExWTgYzNguSFEUZkRkZHqO8shRPyPVuu+elfP35jCzLeHdPohqZ49otl/HCgVfpPNRIU7OLr9d/n0c7HqBWmuC2tp+SmV3Ht1d9m7ta7uKHh3/II8v/bytk4/y/dA6/gVKWcSkWoiZKRY+XUNiDNRUKjRUoh3RMuo/gMbmZCF7GTQW/xTtQR8bMLAkXWNgjLUc5l4wuYkRyWYgallMk/JTv6W8hq87F0n4vp0IZFLqzKOn5Pb+63M79iVVcfepaFBq4VtXNVucC873l7AAAIABJREFUjphbSA7l8Jvlz2M0qDluf5iEJRra7Z/FIH+dDX1ldKfZMQrTGMcVHFzUwGX9fvqz+2ny1tOdMEiDugzX9B4OLbuIyzoiTGt2MbRqJVsPa3BYj2BukBiqvJ7P9trxDZmw0EKsYZq8AxfRsTKBdIcflSmLaNRHKCELhSoB2QvICYAbV8iJQW040yU9b/FGvARjQQplIyi1fGNdGkGlilFBIk2fRnZC9lmL7U/l65ctW0Zvby/9/f3cfMtN/OcrT6CQ1EiCTFgjoJI1oFKjRIFCoab9SAeL6hvQSQpCQgxZlpmdnY3L13/cEAQB001VqPMS0b81x1XLL8Zmm6O3Zz2lRpm7F/83347dRLtiIfKr97JGSOC22tt4fuB5do7vPNvhf+xpm26nJhyhNX0ZVZEh3B4PE2knqAypadKMkGEtwRMNkVvYx56CZVTHBnAeruVoWTsXB0RCZSrGLYWkebxEFBeTEGxjJC2J7rpa7vDs45Qtg3x/KgVd7Ty9cYQvGzO4bvyzoBS4UtfD1a4FHDHvJiWUwZMrXyRVZ6DT+0/kLA7yJd9jfDH5CY4k3MeE0Ik1r4mZ8sW8sWITG+0i46ojFMhNjMh9VBoW4J3eTefSTVzcGmUqYS+2RctYu9/AVPQN9i+tQ1NQwuW7BPxd47iKnuNY4wo6q2+ip9bC0l4D6U4Rnd1Ggl/GGDSSHhWRokEQEoH4avnXhl9DlmVMsSgzUSOzZGCIhkhVanEEHWd11uBP5effobq6Go1OzfDJQfJyizGbLWgiIESizI5PkZGVjhyLsHfXPtZceAFKWYMowLRlIi5f/3FElmUOvPQMXcJ+1HkJGFsCXL50M5OTLsZGt7LE2MdlzUe4M3APZjkZ+fmbuLf8ehamLeQbB78Rl7r/EARjQfojNkqDGkazy2hyuAiGFWxfaEenqCFxKgGPc4BwgsCEfxPXFf4O70A9qbYBNuZaeDltNdOjxeQE9YRdhWijc5Tmvs6/FX6KLxmfp7+vgKxIIhm9M7zW3MFnMvTcNnsvUVnJpYm9XOco4bh5DynBFH6x5vdkKVNpjfwz9YvGud3yIro9K8jbU8+VhXs4Wp7P6lMRGlsnubnbgcPbRkLiKuye4xSmVeGb3svRZZvZsi/CqcxDCGWLWbhDw6zpNQ4svZJL/BIF2w3MyK9wckmIzvpbWK0JcN1ePWWJJRwtsRJKzwSVFr9Owuh0k2sPEpHciPPyK1bX2NntsLOILMu8MPACagQ0sgI3idhiOkLKJDJDPpSC4qwU6N+J7b3y9aOjo+/+6I+OjjA8NMqCvHwKktNITDDQ3n2UiFbF86+8zJaLL0bUatjXeoANy9egQEc0EuX6626Iy9d/XFFrdXTtfYvO4Nuo8xJI3xvl4kUbGBx0Y7Vcx9a0lyir9fLZ4JeIeB2oX7ydf131L3Gp+w/JcfNhYgJowwXIehWNJ4MkR7z4jTJpecmkzqxgyj9GQtkxtuVeQH2sD8/hCroXHiMnlI4hOUrMl4VstSLqyihO+iUPGe/mqgU78B3OJFFMIGVYoDv7dS4shn+wfxlvTM+WlD5utBXRZd5PciCBn617lTwxjz3Kb7KxoY2rR9oR9lcjZTWgzl1M1e4icip0mBUddDYY6TO1Ec1ZT2T2GBn5tQQm9tK9+EI27gxypHSQfFMjafvc9FWcYqZ6E9ceCuPr7memcg9ty6+hMDWNT7SqoT0Bi6UTTauHZbYiZjU2ogqRxLASty6C3h4jqHSB4vQIZcYxdlb762xyxHKE4blhEiQRm2xE0ihBrWA0mooSBVmyQCAaYC780a/XOZN8/YEDB2hoaKCxsZGtV27lkX99hHRTDmENfO973+VrX/kaa5atprSgiM2r1jA3bUWn1aFLMaANS+x6ZTuH2g7H5es/jgiCQIJpDSWLggx0vky0LsjK3CvIPRjgwqVr2Hl8P4sWfZI7cn/AN33f4yuTd/DY5I8pOPAfPLriUR7Y90Bc6v4DcmjwVZSyzKyqgXxxEmF6jsGMbsqDydR6Z1DZC5E0egLhRVxR8iqenkY0vhN8MtnK3pwN2CbKyJsLEtBcTEp4O69mLSOhIURVlw9HOJu86WR80V+S0xDmx+6vMRtJZUP6AJ8yF9A924oxoOYnG96kKFDBntQvcX3RSzR2i0ROZGMoqyd51yMYPSJDNetZsSeHN1YsZfOOIKr0VZhnj6GpqCUyso++5gtZ0+KhtdnNKncFc2OdtK1oZl04E+2bYWYLtnOk9grqdHnccAJ8s4lMqXcTrZxiVLcFleAnx7Wd6v5qJouVRJHRygaCYQ/BhDBK5emEMun+2xZgzyVeGHiBJEGFTpJxykmotDKSoCQmysySRnbEikuXwGxglkRNIirFR/fTdyb5+ltuuYVbbrkFgGFbPzFENDEtiqhIfX0NO/a+jQwIkkRUqWLnwX2sWbsKlaggopK55pqr2XLd5ZQkFWHQJv7Ruc62fH18hHIGZFnGPmLHPFJCQf11jPYcZe/s71Dl6Ck+pGVN7TKOHIkixq7j4fKH2WNazk9jV8CRp7jYPsPV5VfzRPcTtJvbz/ZX+djRNtNJTTjCnsx1NHimmQtJ7KqxoTQsJHGyhkl3N5T08ErmJTTHegl0FmNp7GZcbkTyJ5AWSCY0V4wuNI069yQ7a1dzo2U/s+4McuzpGKafxbbWwzbfXQwGclmTOchnzLn0zrZj9MNPL3yLPG8TB7Lu447CJ1l0xID/WCLKnFTKfvctsmwijnQFzYd3U3RgD5e0Kdm1GI5qehAqa5FGDjDQtJHluywcWBlmzXgO1sAeTqxewmUDaqJ9nRxePIetbiNXjqjJelvDtO9NpmoP0rLsIrqar6Eix0Jdsoi2cinD63OYS08kIQxyNIgryYM3WYFKoSNBkrD5z33xwI8Ce9DOjvEdbPV4CKIlplaTKjhIx4KkU2ITEwgrEsiJhBAlEWvgb7va/JFHHuGGG274f+wxMfKusrAQjRBVg0pWo4so0EWVaGQN2rDEjVdcw5fuuZeYCtSiAgXnrlhkPKG8D0r3/huljn3YJvPJrrye6ZF+Wqb+C1WOnopjiSwpb6S9TY1WsZl/rPsm/6G5gV1yE9KbD/C1rAsoSS7hof0PxaXu/w8EogEGYg6Kg1ocmRk0jfsxRDwoE2QWpIcwzuQRRoNCWciFpTvw9DYSlju4TuHDXJiIy1aC0uxAUOdTkvZrHs27i3t0zzM2Xky+10RW/6t0bLYwEbiFTl8ly7JH+fxMFv2z7ST4wzy2qYUM11oOF3+aL6f/lMrWUtxDBrTKMZb8/lm8ifDU7ZvpvOo2/r8vXkXnUi/C0ItccszAMqkGYfgAIw0baNwzxuELNKw9qqMrYwCpYC0r37YzmNZG7wWLWWnPp2KbyEzoNXqbzLSsu4pIRQ03BM1cvSuFzP1VKA7kk/K6TGHLKbLH+ggrRFDp8aQl4ElJxhAVMIkS7ojrjNf1fOTlwZeJyTGum3Pjk/UotTIJREkUIiSp/cgaJWMxEzpJxoQSV8hFMBo822FjnZuXWkGPqFajjkrEhCghtUhEcVrHK6xREFaJiHIUdVQmqpTQRgS0skxIPveWJsQTyhkQBIHtl2eTOfEKVaMv4rbmYCq8HvvMOG8N/xpVto763jTqS2rYvy+VLG0NX2x+nPukexiVM9G++Fl+0Hw/nrCHh1sfjkvdv09OmA8RE0AZKSRJ7Sez38OpjF7yw3kUzkg4nf2Ecsd5NXUrS6NdRA5lo63rZ3fiamwzJWTPSUS1G0mVX+JHpuu4tHwvru5sckPJ5HQd4s3NQ+ijF7PNs4TGnAnumknjpLkTXSDAzzfvxei4lFNVW/kH3U/I39OA25lC9uwOlh88QU+Vhjdv+SS3TK5h7YlsPj9Qi6H8U/zh+ps5VnSEU6odTNZtoPJgH0NrUmlqc7GvGRbaK1APtdK+IYkFLGHR2z6mI9vZv1zBibWbqE5I49ZjUareLiTcIeAdOc5U7A+4Cp+mb7GVjk315IuLkSQJORZESzqiIZOMcIwkEbziua9G+9dGlER+d+oFlkYkLNFqoko1KQoXoaAWvz+BNNmOWicTVaixYCIzEkR1Fgv07yUg+tHIMtqoCkUsiqhWokKNVlShRoNaVqMJi6glFQqFhqhGQCVCVCmiPkefkfKBE4ogCAWCIOwWBKFfEIReQRDum7ebBEHYIQjC4Pw29T0+DwmCMCQIwoAgCFveY18kCEL3/Gc/FuarV4IgaAVBeH7e3iEIQvF7fG6dP8egIAi3ftDvcSZkWUaTl8D9N4soom3Udf+coCeTpMzr8bitbDv5nygztSweyKEqv4J9e4toSFJzaeNOPhv5CoFgkLI3H+GB5i/ROt3K071Pf1Shnle0nzpdPxnTrqA2OILbH2NfjRWNaQEpk0twRLwYUpQsLWvH29OEI7GVlaIOMVnG4MkmMFeAITjIaBaEGzXkdwUwhkxk9szy5srDlCkW8Yz7Imrzprlv2sig+TDqoJunNh1A47gBa91yvhz9Jak763FHUqk4/CTlIza2b8jDvvp2tvYuoNPZx7a0Z9kT3knkqJkr9wjUBFeSot9E4ZHjuBtKyOk+xWhzHss6LHQWWUjMXsHSvXMMRzvYvSGVWP0KLrIks+ntBFS7FVinDjKrfwpHw2uML3HTXbWV12seoCg5hwt3hTmeM0VMFNGgJdkZQCfpSHWJJIgqfPz9rZY/MH0As3+W610OfhG5CIVKRi+FEWQdoCYaSSADM5JeiU1KIiboyIrFCMaCuMJnb0QXigTeVRYWhSgo1AjRGDGiRIQIUSFKRCkS06qIKGIghlFHZCSl4o+mvexzs2ftO/w5PswIJQbcL8tyNbAcuFsQhBrgQaBFluVyoGX+PfOf3QDUAhcBPxMEQTnf1uPA54Hy+dc7FazbAZcsy2XAvwPfn2/LBDwKLAOWAo++N3H9NRGA20+1882Qk2/eCGbTAE2d/4oUTEaT9AmCYR+v9/0MZYaGFSMFlGSVsG9fDRdnDJNbY+PeyN0w28Un+nZxYeFG/uPof8Sl7t8H7ebDVIejtGetpHHWjToyh0mrYKHSjWR1EkmZY3vCtayKHkM6ZKS8YohdOYuwTNWiMXtQKzPJyHqFZ2q2ctVMG1FPDhnDcLDsdZqSiviR8yYW5Fr4ypSBYfNxhLCN317YTsjxOaTGIu5yvIRmZzUeUWbJjsfQxMI8c/NyKtNuI38ombdVb7B3vZvkxVVYL87m0KUy21ac4rj+AKOxYyjyKvG4xzDoF6Ix9+Kty6WuS2RAGOLExjRK9Uu49KCW9Df9WGZbmMl4hlOLhzm4ZDGvLr6fw7U3EqjJYWnmIPcMuEjcp+FE2RALp9JIjGkIqaP41BHyPGGUcwo0oga/Qjzb3fY35/mB58mQFSwIprArcTF6RZBISIchpsUo6YlENKglJSalC0mrZExMJ1kUSRAUWP3Ws3YHptVzejmBAj1KWYUoiMhqNSrUqGUtGlGJJgpCLIompkBWaYhoFAhijJgSNFEFalkmKJ5b6ggfOKHIsmyWZfno/L4X6AfygK3Ab+YP+w1w5fz+VuA5WZbDsiyPAkPAUkEQcgCjLMtt8ukx6NN/4vNOWy8CG+dHL1uAHbIsO2VZdgE7+J8k9NdFEHih/AeU6hr5lWWSp65W01o9TdPBb6ONahDU1xCTJV7r/gnKdDVrJ0rJSS3iYOsiPlfwGqNF+fwweh2K3t/zTWXuu1L33oj3Iwn3fCAQDXBKdFEY1BNIS6K8x8+pzJMkSwvInihk2juGNs9GZXkv3q4mzFl7SRBLiYUMZM+piarXkqF6mm/lfZ7Pa17CPl1EljmJcd1vqStI4buOL1CQ6+RrM2rGZrsQI2Z+v+EILveXyG4W+PRoK9L+EmTfFGt3/46pPIGXbruCrc4tOKc87Cz8L5wXZHP7cAp5e/w0vu1iw14/mw4baZyso3oilzFjkAIzzOZGyLGaGFW7CNZl0jxWQ92OMezWnXQtOEjr6gxa1l/G/8/ee8fHUZ37/+8p21e7aqvee7Xce7cBY2NKgAAhpBEgJISES0gCpBIC+SY3/eZe0hNK6BCajTG4V1m2JduyumT1stJqtX132u8Pm3tz80vhJpSE8H699qV9nZkz85w52nlmzvOczzkzexMZmfls1IPc0hHg6t0W5m8rImV/OcHT45ypaKbYUkpb7gxRjwVLAsyCGac3ghpVkAwbQdFA0/91nMpQcIh9w/u43D/NbxIXYCoxYdYVJN2GSRCRDZEkwUYkYsNFGKslQVwy4yWF7EQc3dAYj7z9gW3DMIgZcaw6WOKgigYmFVATZ99QJIWEyUCTJURDQjELGJqCOa6DZELUdDRBw2xIxEUDTfvHmZbwpsRQzg1FzQEOA5mGYYzCWacDZJzbLRf4w3VKh86V5Z77/sfl/6uOYRgqMAOk/YVj/SnbbhQEoUkQhCav9/++PoJhGOwaVFg1/Ala7Vfzu4EeTq828buVPmYf+CauRBxdeB+GycJzzT9CSpVZO1JBir2Ao03LuLv8RzycuoEXtMUk7bifbxdf+Z7U/V+hZfgAqgCGWkSZ0Ud8KsbBqlHSMzxYBzJIWFT22q5gpXIM46jM0vxhOvKy0b3lhP3ZOKNH2ZLTwIryJgJtOeT501B8j5JVp3Of93bSssLcOWIwMHKKmNrP1lUtDIbuYs7sIS4/NUD0WB6eoSYWHW/kwAIXpzd8hE1tdTT6j/DyosNUFVWyaoeNwxntOOwiVidIySpamkI8XUVzmHHEw+gmO1FBwGbOoOqEl6np4+yaNc2h8ypQGlZRTx0bziRxzUGdxS+7cL/iIn4wRritk8nhIwyHX2WUJ5msO0ikZA5Cey8Vg0nIgSAJAeJCgkgiRFz3I2JDFwRm4v53uvveNp7qfAoRgw1BnScta9nseRFNNeHQLYQSfoLKNBZNxipaiEbseJhAsImM627ATJpu4I/533QNtL8mX79r7w4uXnM5m9deweoLN7Dtpa0oZhFBsvDtb32PRfOWUlFajY6GLgmIioaMzJDfy1VXX0Pr6XYuvvh9nL/iEi5ddRm/+O3P/vsc//Ty9YIgOIGngc8ahhH4S7v+iTLjL5T/rXX+d6Fh/MwwjPmGYcz3eDx/wbw/T7jOTXpDBp+b3Mi94hf58aiX9CqVf780THXzv+MJj6IZlyHZXPz++A+RkiXWj1dipoC21uV8bda3uMtyI+1GPrUvf51PVVzNy2de5tnuZ/8me97t7G9/Dskw6LatosE3gR73kS3bqfHH8fo6kYp7yCofIny8gcninZwxL2ZmrBDHeAyr4UbPOcpwQyYZpxRyQuk4ul4kvnSaH3u/iC1T5ctjCUZG2wjQw65l7bQrX+fCmkOsP6Qz055G3Ykt5I338+Sl1aSV3Ux5exqvJD1FywUiV80UkTg9wUy+l5TBIGo8BS3mJhGxo4RklICC3xTG43cRFf3E9ABdNSaceVVUTy5n5ZEklr48imvnANNdx5iIP8WI/bcM5j3Nmfr9dC/opXVBnJY5uRypX8uOmps4VnMRs/ZZ6JydTV/GBBbZjaLqmFTwuaOErIFzel4wOXPmne28t4mEluDZzqdYFY6yPb6KRHES86dPIeomDENFNXRUQyOiBXGoFiSsaHEr6eIEulViQEsjXVUwCQIj4ZE39eHur8nXZxWm8cSrj7P91e08+tvf8Pk774ZIDF1PsPaCtby05XkAJFVHR0NERJEM9mzfyZrVqzHbLfzgh99nz44d/OLxB/jynV99d8jXC4Jg4qwzecQwjGfOFY8LgpBtGMboueGs15O+h4D8P6ieB4ycK8/7E+V/WGdIEAQZcAO+c+Wr/6jOrr+nLX8OQRC42B2gMc+C4vDwWus8jgXv4Unzf7DDPc7Xr0nlC08/gDn7/Qx7LkFO2sJzx3/AxQ2f5vypGrYkq3j74nx67gPcePh2nlfu5trGJzlcMZ/7D9/PbM/s96Tu/4jG8eNUxxUOZi3gwlN76fZ0YTdVkNJXS79xmhOWTWxOvEawtYzlDVEOJ5tJ70wjxixynQ9wT9XHuG54C5ZABWknjtKxrpeXJr+A4rFwz/gM46Od+MQOjs0boEX6Jh8qeJqKXflMTRgsP/w43lSFZ69Zx+bhJfSOj3K4bi95+QVcfMBKU2knxcMSAbMdv1hDuzuBZLJjQcKmCdg0A3fUhs0bwRAkPIOjBJJGOeROJZqRhiq7iVpKSMgSJpOOXYxiF2M4xChWXcGiKjg0jSxtGrM2iVUxSDlWTbfzEHPb5jCZkYNfmkI3YiC50expBJlAeH22vLeHiqx573APvvW82v8qvsQMVwRDfF7awAXZ2xhrqaE+RyaiBEB04Tz8DUy+E4iCRBoiqqAhiBrJgoymiWgolKARFwRUyYxJNP31E2fVw4Xf+ou7/CX5+ttuu40xZRinAXJMJa4oCIKAbjJhQWbRrDlo5yLLgmjCrGhosoCkauzcs4fP3nYrlUUlqCLoqBRkZJHqSWV8YvwfQr7+b3Yo52IZvwTaDMP43h9seh74MPCtc3+f+4Py3wmC8D0gh7PB90bDMDRBEIKCICzm7JDZh4Af/9GxDgJXADsMwzAEQdgG3PcHgfjzgTv/1rb8NfInvsm96iAPeu7n8LxUpG4zywfu5lepD/FV7QBfvS6bTzz9KCWRSXqLNmNybeW55h+xedYtXOCvY4uu4bFEWT/7VW5u+gyP+O7jHm8h15hsfG7P5/jdxt9hla1vlfn/VESUCF3GDOuiTpJcIWy9Cs3zh1jsyiUxMgkF3cgVWUSOzCJWsYXDaYuIDdWiT3tIVnfzX5WXcI35RYyeMrJOTXB8xWGO+m5hKjWVr/t8+MZ6GDOdpq3ey1HHPdyc/BhZrxQTHZ9kdctOTlaZ6VrzQS7ozOMguzi12sLF/hrGjg8ykZvAPZbAL+Xji4AsxvEYYYSIH1PMwJYwY5HMiKKEYQOnkoUrJJI3IyIMiQi6iGBEEYw4giEiGCAggmBCFywggC4IgIgOGAIYGEyF2xlbNx/h1Ali8WTSjVR8gCZouEIy4ylJiOdkPfomev/Xk9a7lcfbf0e+qjEdqme0OJebpn+HffpyNF1BF8xYExFkXQVkdENFEAQkQ0LVwSSp6JIZRZOxoSMBCT2BJEqIb9FMitfl6zUxjibAyaZ2Pv/ZOxkaGuYn3/8esqCjSDqyICOeSxRISBqCSULQdQRFp7unh9qyShRZQFZ1DEHgxNF2EgmF1AzXP718/TLgOuCkIAjN58ru4qwjeUIQhOuBAeBKAMMwWgVBeAI4zdkMsU8ZhvF6BPFm4DeADdh67gNnHdZDgiB0c/bN5Opzx/IJgvAN4Mi5/e4xDMP3d7TlL9LbfSFm6zPc4r6ResdHebB6IzaXievabuBT1iIe8D/C7VdlccHWbVR3+GmvvAZT0nZeOPEfbKr9JBcEzjqVKmsTA7XTfKP1Or7e81vuXfBBPjm55z2p+z+geXAvqgCqXkZDZIBwbJxMyUP1UBpj0Sl6XEu5QGnC3+OhvD6F5rgT94QBionO/Ai1ZV2ox/PJ6xc5VvsC/ZHr6Eku4ssz4wSH++m3nqCnKsKxtLv4rPg4jpeLcfa1UzR8km1rc8jOuYqqUwbbcp9CqCvlikNumgu7KYjoRMx2omopEYeEjSnCHgcNRgQUE4bFhKaKKLqJ0SQLielRssfMOIUMhDSJYLrBmNvEhEkmrusYWgIxEUFWw5jVAI6EH7sSxKyEkbU4oqYiqhq6IjBRNot5LQLHqirw+GUmtAmscRlZg7gYR7CkYTqXMjzsf/crDndOd3LM28LtMwF+Y9zIurzdTJ+oYqGaS8hIIGJBN8ZJzLkZVU4hIZtAn8FlTkcRdCJSCNkeY0TJxhkNkyeO0Ws24bK4yUvK++sG/A28Ll8/E/MhigYLGxayc+erdLd38pnbP8fatWsxWUQ0CeRzTs2mSBi6ii4aHGluYe7s2WjS2bcVTZaYGB3jtlvu4Js/+QbhxAwOIe3/d963W77+b3YohmHs40/HMgDW/Zk63wS++SfKm4C6P1Ee45xD+hPbfgX86o3a+/dQNJPDvu6VWJIzWV3zJOXiTn5W9HV6kzz8qnUTh0N5/ET4Cfeeb2LsyGFWngxwsu7jSE4TL7X+JxurbuL8cD1bu1Quqj3AA4UbeXxgNVcdeZiPLrmWX3c8zqLsRZxXeN7b0Zx/aPacfvZs/MSxkhUDfnoyu7E7S5FPp2BknCRSlkOssQ5nxTOczFyOo7uUuFJNWuovaZyziZWt3eSOp9CZ/Atm5A0cts7hztAwicEhup3HGCiRaM/9BLf5X4BDxZSd2IfACI9ds5C1/rX09fZxcH4fK6Uqwo1eRjOiOKc0xixZzGgSLgKYDDe5ngT9ISenRRumcAJrMIIjZsKsgakkhTG3g/wpAV+ZQLtLwTXaSU5vhOyAB4ueidmajGxPQrBpiO4YiaQIUy6FSbuO12RnCjfTqot43MoqrYdAVxtV/QX4jRGSU/Iwol7iCEgIuKIyMZuMZBh4Q/9Y8xLeCp5ofwKzAaWBdI7m1fMV//fxTF9J99RBMrkIa2wabwpoImT5pkFIIyG6CCamcJs9qLoNNaaSYp1mWkkmqDlJ1yJ44zMkW5Jxmp1/3Yj/I1u3buUzn72VuKhj0yUMQ0MwoLKiErvNRmt3B3NrZ6FhoEtnx7yiZg1RkJF0gVd372LN6lVn64kSQb+f6z78Ub5wx7+xaO5s4oJGQVraf8vXy7L8nnz9PyrRnj4uCc4hc2IJhw5eiMMn86XE9Vyc1oR3QRonchawKXAPN/tTSG4I8fiSdma3/AAzixHt9Wxp/yl2SeC86CzaTi3kluyn+G76lRzTy7ip8Rnq3KV89cBX35O6B5omT1AdV2nPriH3RJye0iFqdJHJ6SGGsorZoDQRHO5FcNSjjhehTqWSzFZ+XHs164Ypj+QSAAAgAElEQVRbyJ7MZSryKGpaA1vN67ldGYaBIU4nH6avyM1I6eXcOrwPfV82Cxu3MJ0yxrZrL2Xl6GoOaFs5fv40m4cKORMbwZKIwrSDWCybmCyRomk4ShQEa4TBqJ2lY0VUdqdTMVJESaiKLKpx2wrRXFHyRkfRk9NoTjKR09lGzUAp9tI5NF9Yzt6VMq1l+xmVf4d3Yh/B5jFi+0VMu9yUbE9l7TYr1+6S+XSTwL91xag+6KS30sSwZRwlxUPSwAjBFCdxLY4uCqRPBXBGJFI0nUDi3Z3lFVEivNjzezaEQjyhbmJF4SFCZ6oojCfRG/Ei6xozjjjZhkq+pjCeCnJiCpNuYAh2AokpHLoFVAd2NYbFlmCMNJI1MAOj4dE3Xc3idfn6nKIMdGDozASGoiEaAmdGB+np6SU/NwdDFEA3UIWzQ172uIQ5qmGocfbt3ceK5csRdYgqcT7+8U9w5eXv4+KLLkIyzKgCBKP+9+Tr/xnwOsvYMb6HQr/ExvAyhk6to7t1KVfEHuCL8v0I9VZGa0u4LHwXGYHFbM6c4r82DlNz6jvYtRoE23xe7vwFSYLI2lgDJ1uW84Xyn3Or7VZCqoWv9XRh6Dqf3/N5FF15p5v7jhFRInQTICuaRIU8SDg4jttcQE53IVHHON6iTBKNleRXnGAsOQ33mBNbQuGl0hI2mXfjGi1FG9hKvDyV33E1nzYGsPQOczLtIL15RSSqFnFDazvqIQvLG5+maY7IxKqbqD2ZzZb8F0melcPspigjrgmSZmQmrHkMiCaQohjZCk5riOCwiYXBErJ6DZpyTpFISyVapDNeP83++SGenysyPT5CXqSW4YIYNaebKEjUcWhZCi3GBHV7j7D2mIVKqYHBpZt4df16jiyzMTxnH6Hs3+E1thL2thM7M8b4oJcz/X6CwXaszlLElCKsk9P0FUTJHY4DBoZhEFHDpM9EcWkQ0d/d8isv9r5IWIuzLiDwUuZKVgQbqZ6Zy6nJXdjk+RhGFItZZ1JPxaen/YFTmUTWJXTBTEjxk6TbUOJO0plCt0mM6OlkKQoJLfF3a+79Ofn6qBZGNgyaDx5n7QUXsm7DRj7+sRu57/5vkp6cCsB9936LhXOXEI1GqVuygG/9+IdMT4ewWawkuVwgCLz4/AscamzkiSefZv0FG9m47lLaT7bjD0++4/L1wr/SXIj58+cbTU1N/+d6J6+5iqFQIb1Z1aTpvcxKWUCPxc9JezvlFUcwpXn5jfwFDvvLcJ/0szmynY84H+J+OZWPPGdntOAT+MzTEDvAeSUfwSsk2O88TFb9KV5o2sBjxj1sKajnK/IUN9Tf8C8rdb+/8wU+cfAuVvoaSEqZi3p8G8bCQhpeddFeOkJdURD/jgg0ZCCMz4KxUjTPC3QuyqXkWDKZp1oZWdDLfypf5EbzAFkdExzN2ENfxmwyq5JYd1DDdHyMwpEDbLuwirn6ZvqmWzm6LMLG/nRanX1kDSmopmwmRAMTKprZRoHFx1DMQbWYT3honMHSKfLHq7H3d2OyDKJrZuJqMrrhRDS50Evs7KyTKG05TolST1NtiKxTrWTF59K50ERPQqBuaCcpgwUkW6swimfoLFY4KhcijUNdoBGXdAolGEKZNmFkZpM/Vk9ciDJelIzitmLpbUfUk5FlgYTJoNCbxLb6VwhJEs/f2PzXL/Y/IYZhcOWzmxEmu5jXv5KmJVWsafUyb7iSQ/5+6s+0Yv32TdTkFzAoZiIg4NKDZIlehkQTnmlQzBmoxLCIEibZTlAOgF1lPJpOoTpGwBQnJEmUJZdhlsxvit333nsvRUWFzNkwF4cuYVbtiIaAJujIuoAmgqiflVURBBFN0JEUBUEX0GSBZ556lpHxMT51yyeRVc4lbxgIwtnEDsPQiVjC6EC5p/bvtretrY3q6ur/VSYIwlHDMOb/tbrvOZQ3wOf+cwPzXxygashFd+37GbMaVFggK7mK/eZOtIwTlFc2sU9ezkPaxxDbQlSPtPJ954/4rkPgvC0WNNdHGU8yYcR2sr7wg4xKcY65D6JVePE15fEd+ad8qWopz8eH+el5P2VJzpK34Ar8Y3Pvs9fz1MxhPOqtXNM+yc7cJ7hQWMtE8zjH1ldw3iEfKRk76LKtxNpVh1s8wCNrlrC6Y5T81jjDddv5mfIVPmAfoahtgiPZO+nwrGZ2WZCGnU7yjpxEEzvYtXkdi8/M5qBrK6bafAqOJ4h4NGKKRjSSTEw2sGsq7qwwk3472aZkknp0ugrOUDBdj32gh/4sjQdWX0uma5KZsBPrdJy6mRNkJZpIHRskd2gVyqxkduSbWNh4Ao+7nv1lIUpPNJMRWsDUPI09znRKRo+QNzKMwzsHR3I+Qp6fM8UBWpJy6JsqpnxyADKgqPs4hiOZ/AGJJGcmx4uCpA2EMNBBtuGajHKkvpEzFoUdHz/5TnflW0LzRDPXbb2OO71+viX8iE/kPUJNy/vpGtyJK1xIc+6DXHXtjzAVzAOHiCFI6BEdpxohVxpnWJRI94kkLBlohLFLVnRZJm6aIWSxEQtbKGGIXrOE05xEgavgTbN90NtDQIjh0pxIKiAIiJoOooiOgaiDJhkIuo5JFUEUQRBBVzEEAdEQMNDRJREDAzDQBUAQEXWDuClOSFIochbgsCb9Xbb+PQ7lvSGvN8CVIT/9G8J877IgzuFfML/1NUbiKTSON7FwxkPl6Pk0N26m3tvBveJtZNdHaK6ZwzWRb3Cd30PrpiA+fkHB5CSC7Xxe63+ELNVMXWAB1jNJROpUfqVewN0dBym2pHLXvruYjE6+081+22n2t1IVVwllpqGNjmO1lyJ1JjFTGGK9foKofojOjDm4hguwRKd5qGEFK4c6yRlw0F/1Ig8m7uR9ScMUtXs5nPcqp7I3sbJgkpotSVTu3sN4Rh9tF32Yqo4CXqjcQ21KNdLoFHFhCnXaii+eBGIQc2Yc0a4QDidRO+hhPNpJzO2k8oSdUa2Xuz9wBR0b5/Erp8HDoXIe8GrcGe5noT2EM7eQ5sVX07jIh29sKxe+HMJUVsnW/BgNh8ZJS13C3iUJjLYjXLJjihqphMZlmzi4IImhjMeY6G4l64UkLnlZ5rah0yxJ62HD6RBaehnZk1YGPJOExgepHraRcJhRdNC1GP6kKCbDQlB69z4gPtH6IA5dJzEzl4LSYeTearTpIRJiNUbsWeYXBJgxktBtMlnCKDkMYrLrhMwOBrRscnWdqVQdc2ICUXAQ0aLIGkhKEi41iGEVmdBT8WgqwUTwTZVHihPDbBiYFM5OwTZ0EESMc2lNAgJmRcBsmNHMMposETfraBYThiSRMAuoZhOa9HoelICoCwi6DghIhgWAqcA7m5TxnkN5A9zm/iyqdxNfkIMcuCLKwyv6KTv1XUp6+zgSihIY7+HCmcWETl6Gv62MuxN3sTnvFUYXF/NR6W7SvMtwLfHTkvUk5UNtYN/EjsHHyItbKZlcQs3UFC+WzOe4Ws19ve0E4zN8ad+X/qWk7iNKhG4hREYsmfrYKL1pHRRZM5kMjNBbPAfjYA72fCfWsRIS01m0l0yyxNxCZn8BA2mP8Jx6B+vcXqpbJzlc8Aoncq7ikpR+8l5IY9bBF9m/RMJU+SmU/l6OrRpk2WAyU9oktrCTSVM2AdHAbBJIs2hIUzpVIwVogTFmkkXK21MY0gb4+gcuZfT8Bh5WJL58uIbSPWbExmkyu0WqzuSzpH02a47M4trmdMocaTQufx9Nc3qJte/i/MMSU/PyOGwfZ/GBGM6CJexbrBI8c4gLXgiwLigyVLuBVxatZ7C+mRHrI/hPDWPdnsn05CmKumYYd8UQM8uYyelAHx0lZSJEXImCYBBOtiIaNmKiQCTx7oujTMemeXngNTaHwjzkuITz4vuo8dfTFhykZPg4p1ZOcsp/CQnZTIY0jhq1oURtZBsj2KwxIlYbZ7RssjUDX7KOJe5FFJyE1AA2XUaPJ+ERvfjNLiyqBYthMBoaeVN+g+FYkLgAZt3E64mx4uuHPaf7ocsSqkUibtLRRANVULCGDYRYFEXSMDibao6mIhhn31EQQDQEwEBWwWwYJIR3Ngb7nkN5A3xmpouJWUl8yPNd7N7zuT4lwO+vi7Gj+gjzjv0nppEg+73dFE/BrKGLaGu8mDXePdztuAfLEivfzriePVM3sKosyLaGV6ju3YVgu4hdw09RGLXjGV3BBu0IX/N8CFfMyaenwuwf+deSuj/S9TKaIBCjitquEBNFfsq60gjkjrGWdnTrHsaTihFH07G4thGusZDdUYJXe4ydphtpSI8y56SXQ4XbaMm/juukbrJ/b6W87RleuLyOIv1KDltexVmZSvpgiIDgJeK34lfsIOh4UhIIapxMfxnWmQBeV4Li3hQG1THuv2YD0XX1PDQqc8f+OnKaTYz5e9k9sZ3nxg+xdaqTvd5uTg63MTBwgonuFjKOuriuJYXCpBwOrNpMS3ULjsNHWNqVQ/uKVHpD3axoMiFULWHvkihTY7uZ83uV6wZ8GMUVbJl9M50NNvz1z3OqvpBh9zQZQRuV7RIt+esYzRxmMFdHEkQMA0ySG5HX5VfefXNRft/5NAo6pf4chFINV3cNU1OtJCm57K8+xPxoLj/PvByHHEGIidgVJ3bFRSziIl2fJMU8Q8xuo8/IIUMXmE7WsMQnEYQkwsoMTt2GEbOSYplhWPCQqWoouvqmjBRMBs4upCUbNsA4e9MVzt16DcAw0AwFQ1VA1xFUFWtMIuQUSTgtWKMgqhqSIWDSZRD+Z7aHIQiAgAGYDBNxwSCuvHPLGLznUN4A4dYoG3fncNfkGbx1ydyU/h2yvGvYVBDgwQ+F6Ep9gfktzzIyGaV3vINVU7XoJ66GtjTu0e9gfn0rL9SczzcCX+EKNzy/+jCVPc8iWzeyZ/Q5yiNOHAPruCp5K7fYb+WK6WlWKCZ+eOwHnPS+O8fD/5idp8/qd/UnL8bRNoHFVUpoMExX+WyMAylE8ytJ7ivDEhvihUWLqGl1Eh/bTmPqReR5ZJY2T3Co+GVOlXyYj8/0kvtUAEdoG4cuv5TigRJenXec+mge0dA01piNCTmDmBjDmR5Dt+g4AzmkzESZsITJHkumX/Xx/Q+sxbSyjodPW/jkgTqS+6F9pomt47s4GhRIGtdYER/hfSVxLrwsl22rX+EHl+xgZvFWum1b8HYfJ/2oiw+1JJGXXMqetes4nb+Pgp3N1AaqObDcTLivlbUnUgnPWU7jwiiTvu0UPG/mxpYpirMNjlZfSZVkxW7JxWsaJxA9Qa4zRl/hXDKNXMxWM4IukDyjIJ1zKJ3Dp9/h3nxz0Q2dJ1sfZF40xkvCJWzQ9lA+XUJ/QkIOv8DCHIWvmm9lafUxTKqKNeEmpsSIKmGcihU1nIJDiZAhT6DYLfQZ2aTpIv5kBUt8CkNwEFFmcKhOLHEV0WYQ0FNw6zqTES9x7W+/QRuGQVxQsOogasY5B3JuGwYCIKtgUc7GSWTVwKyZCdkNXDEZe0gi7BAxGRYERFQZVEk/V/vcUc6Ngr0+7OX1v72z4/+Q9xzKG2Ay/SCD3m4mO8Os2ZXG3eOjTFSncXva/ZROL2dOXZBfXTVBPPEbytuaODY5jmPCz5zBzQw1buIq75N8Iuen9C6u4ibjPlbruezYcJK8gYewmM9n79hLVIfcSF3ncUHhDj4v3sT9I72kGTJ37PnXkLo/OXOayriGI0mmP7WN2ZFM/El9LBXPIKUdREvko3ld7JzlYsXwGPbubo4XVWLyZLDm+DiNJa/QVX4tN/ScofSp04znnMa/4Eb0sSEmFoQoGFbwiWMEg1YCmgmsAg6riC2QRNaojp8IaZMO+tUwP71qCelzq3mw0c2HG2tgKsSRyd1s9bYy5pOpmprgsoYgGx74BHMf+w+0W6/i45EfccYe5qqRfL7v+CltnisJz29mIPVZJvqaSGl0ct0JGxkZdexav5iO5F3M3t5Njm0OryxQcBzrYFVPNiOLVnBkQRBvaAvOrXY2v2Im6UgA0T8FmUX0lCQx55SVIhFS+6YxTFYEQSehhZHPCUR2jra9w7355nJw+ACDiWlWBUz0F2eQ01NL/9RJCrwTjC4d4JHIJ3DOVtg89QqSYieuxLDEY1jjChFNxaToSLFUpJhAjjSM4ZQ5Qw5uzUTAncCS8KFjI6GGsSguUgw/PrMblyohAGOhv311x+ngJIoAsmH+H1lb4ewwFXA2+C7J6JKIZAiIgpmwVcWVMKEIMyhyEGdUImJS0GUJA5BUDUkXzknzvB5TMZAVAdkwSLyDSwO/51DeANG5c9lxXiajRXsZDJ9ivGOapTtd3Dk8xUSlh6+l3EtNeBEZS4I8uqGNtNGfYe3p5dR4P7PHcjGf+AjpbfANy12kLo7xmbS7cQbXceb8TpyTP8chrWLf+CvUhVIxd6wkr7KPB9VL+PeRfsZCI3z94Nff1VL3kUSYHilKWjyVhnEfE0VRHG0OOuvKEQ6aGM+dg/VMAaGMJsqck3hOG7SWx5n21LHx+DiNpa8xWnkZH2wapWjrXvavknE7r+W46yjZzgyk8RlkxYFXyMAQFDyWGDZ00odt6GoMZ8jEgKLy2/fPp6Siit8cyuF9JyqZDPSxY2I3e31epLEI611TXHbLHFb8/odk33Yr5vx8uqY6+PBzV6AoIS4bLuZnZbfxyapfoqyQ+U7pd3gl43Z8s0cZz3mc0cHDJB+084EWG8nZc3htfQ39wg6W7/BiKazltYpJCvcMsXI0n65lq2mZN82k9AjttWE0p5uS0wqB3DLi/SqlJy2cSR/GEgyg6gaK2YRNO+tQRqb63uEefXN5vPkBUjWN9sgFXCjtJcubSiSeyomyHRiRlTTX13ND4tc4Tl6OpqmYEzH87gg+dwRTYhpNBTURwxZ3oUfsZBsjyA6Nfikbh24l6EpgScygGCZQE0jRJNJMPkaFDDyqRkgJv+GHusHBQdasWUN1dTW1tbX88EffRwBMmoWmo0e5/fNfZGrax+Xvv5qyyhq+ePfdqOLZwLohycTkBL/43gM89uzD/OA3T7Bi3WZWbFjDB6/4IAP93Wez+gSRx55+hmXLV7NsxSqeePIpXo/NWAyJmGigvkNrpPxdasP/KpS+bKI2U2K6oob9VR6SBzpI9M5g6aijYdjFsswAh6tyeDb6NS4f3oFywV5entrDBfuPMpF8PvGom9mxDZyc7uZTlf/FgbqFPJB2HSvbSrlkxQNEm39KsvFhDkzsZomxkqOdNXRUjlHdXsvNvl7+g20syV7C5RWXv9OX4i3hwOnn0ASBqFhN7nEfoYUVTKk9zBFtkNNByvCFiIkuumfnsHi/k56CnZxOv5prjw1woHQXsbL1XPaqn/SuLey7ZAUZA3aa5/eQN2TGp48TiboxBBV3EkQiBimjaUQ9fuSozKBmYdfl5Vx1RuCWw0XE1QgdoWP0xw3sYYFSpqnYWEDKJXcgp/zPoqCarnF45AB3vHYrVjXGecPV/KryBu6w/RClqY7zUw9yeeYzNC9o4NHQDcT7JS43P02y8TihrnpSJqq5OsPKmcpFbC9y0dD1CktPL2BqXiGn473Ub7fgKCykaWkWlW3gjQ8ybp9iRd9cvPb9uMfKGK2fRXYggjo8gU2QsUVtAPjDE3/uUv/TMRYeY/dkCx8IxHmpsIFPd03R4+/HGmmiosbOnRnX8Tnnj7Ac3khgZBRRqyboimAynEiGgeIOkYj7SIrZiSJh1c0kdBMe6yQzdhdD0UyyVC8hVwRnQCBmdmDXBPSoGdmmooRdWKUQo6ERHCYHkij9RXtlWea73/0uc+fOZSYwQ8OcBpauWkxKcQM7d+1hzepVWC0W7rjjc3S0tdPe2QGALoFmxLGrVnbs3cH3fvNL8prbueX5rSgeG48/8DPuu++7/OzH32cqEOS7P/g+W156HlEQ2bDxIs5fv57kZDeiYcEgyrhviFxP0dvQQ3/U/rf9jP+EHJqVoHL4RWw7y9jozMYoLuLomgSTPpXarp24euupGEtjYXqQ4zUFPB//EpeGdzBy8QF6Bp5l7bEcuvLWkR9yYkQ+Rk3eDqrL7+c/XZ+it+UbfL7227QN/YwS7wc5OHmQRcJijP4YDxWv4ktnxjhkU/hW4/3MzphNaXLpO3053nR2tb+AbBgEkmoZsb7G7IE6DtaZmXvUh7+2gaQmC6+tzGV9s8RIyvPsS/84Hznez77Sg9iKlrD6aR+qtpvBlVeSCHdCrp2UkQhGwo5PcCBbDCRdIHskhdHkMfRonCHdRdNlhVzX5uazjXlMxoZpDB3CG7eQH/Cxrj6J3Ks2Ya2r+2+BvWAiyIHhA+zpeYG9Y4eZ1mLkKirLhufwcM0H+DfpP0g+sglhdJQk2ypiSQ6Kkju4NfvnRCoEdghrOT58LedLO6gUnsPfnUfq7tlcmWmjr2YJr5TamdO2k7n+5XQvB2HgBJUveRjNDyBkFNKTlEv2bhGpKkAk0MjcqU2YhhWGbTK6oOMMqjh0nYj27hkiferELzEw0IPzWZfZiHO0FH06wfT8bn5puY+PFj5M0pFFqIN+kodbSFiXo5MCFvhJ6wN0+89gQkHDQNQEQIZzkwINUUUXBVTdhElXQNAQNRFdEJEEEV3USCBjMeLEBTCJJmZ5ZvGFhV/4s/ZmZ2eTnZ0NQEQJUFJRwuToNBTDvv37uemG67Hb7SxeuJCB3j5AOJvlpcWxGTZ8oTHimk6FLY2yuYsRDBVbCGqXLuXpZ55Ht1jZs3MLK1esIM2dDKLEyhXL2blrF5dddikmVUKUDBJG9O3poD/iPYfyBljQITNSt5HdNS6KvUcp6x+gtnU29sx0vDX17J/tpqDnEDlnsigYL+SW1BCttaW8oK9ic9prtF98hEDHCDltsxgunEdVZCV9U+N8oep7PL9oA3d0fIcvKD+iI+mX1HZcyWGOsoC5CPJJvur5MN+c+DEfMpv43K7befSix951UvetwQ7KdZ0si8FYqU7WcT9V2RAqCuLumE9XyRArhpPxaS+xLfPjXN/Sz56y4+RlzmHug/30lo2QxjV0ZPSRP2ZhJj5BWHcBcdwWAWckhRlpHCMUZSAlnfaNuXzkdDZ5h1MYCHfwWmwYOaBS7oyw7vJq3BfchGg7+7Q/EBhg95nt7O55kaOBHlQM3JrG8miMipCNjvA6nmo4j89oPyf7yKWMjY1ioYLRiI4+00vGmEDK8EbCSWbO8xznouzttC0t5rdTX6PQPMzyxOP4BiXSXlvIZZl2+moXs12FuScP49GW0bUacjuSENqnSK1Jw2fZz6tpH6bQ2sXC5gRdJWPYjXRULYEQj+LWIC68c2PobyaKrvBk1zMsj8TY7VnDTR1RBgJBZgpeplX7KLPqW8lvyULu0zGNNtOz5iRpghOzDKagiCkhYsJAFWXQAUlBNxQkTcQQBURdBkPHJCZQRDOyLqBLKqImoKMj6hImSUUxzMhGAkVX/k9r0Hf1ddB2so0Fs+Yz5fNhkmVcLhdwLjYvnPumKlixERfC7Gw8yurFy9FjcTRHAFkAPezg979+lBXnr0eMRxmcGic356z2lwBkZ2UzNjYO54bFrbpIXNQwDB1BeHujGu85lDeAkqIR1iZYcqIFT7yUrlnVdEsiVSN7yd4vs0GahV7aQOP5BsZYNxUdUbJ2VnJTWoiu2hr2sIqNhTs4Vd6IubmNQNsK7PnFJIev4/yCHTRUtvCt1H/jfW3P09vwGGXHN3BEOMU8oxat6Ajftnyc+yZ+xicl+M6Rb/PlJV95py/Jm0YkHqLPlGBRMJ3KPj/BvHK6y0NUnvCh5NahqO0kpaWjtTbyYuXH+FhLH69WdjPLVkXFw8c4sSKDlKl6vIWTZHp14oqJiGjGaVUQNBtCOIBtSuVUfiaD67P5aEcJtkadnlAXbdE+csIzrF6STc77L8JcUICqqxydOM6epufZNbSLM+fEFksTCa6JKLhDufRF5rHLsYCH0/PJqRnn5pmHKWy5hL5JH6V9fQjWF6kf1wg4ypnwzKJHsKH5B8gcTcV1pg6bW6M861lC1TH2iJcznpLJhunHSBrfg+e1pVyUmUNfw0Jei0WpP3WU0wUVmJIjzGrJZqQsQX32abx6KjMDO4nlrUUeHsWkSoQcOg5NJC6+vcu+vlXs6NmCz0hQFMgjOb8T41g6luhxxLJyhmdnc03nMexduejjh5lY0cG+5M+y0jCQgwIJc4gbq65FjluRJDO6Tccvy9jjMSQhAFEJWXcjmkR0E+j2EBOGB0ckgk2YwhxyoppMmMwWZuxxLNEEfnMEi2TFMIy/Kgvv909z8/W38pVv3EmS08kzzz7HqpUr/mCPszd/wTAwCzZiQhTBYmPfy7u56vLNiI4gM0YGCcHE7q0/5/iJ47xw97OEnRakhEpcOJfddc6J/KE9kmFGI864b4SstLdGjv/P8Z5DeQOMyUNkT2QxlpNO0kQUIR5j/sAYHrWO5kXJ+JQIdQNHmdVWgDOtguGFMzTrUapam0nZXcVHkmMM1Mxin2kV62pfo914mewmDz7fenKDC7BNhbmr5rs8uOgqXMfLcC/8EZmNiziGTIMwn0T5YQ5Nbuaj/lf4deeTLM5Z8pZK3X/tGzegRXW+cd9bv3zorhNPoAkCilROMHSSnFNlWOrsTNoTpDfbaFmVxawDozxetYmPnOpne80Iy2MFeHbvpHfFGiLSBC63ijYdJqg7MFsMJEPF4tdwhh0czc9kqjqbmzurCB8ZozPSTsIfpjpTZsU1y0hasZyAGmL7wE52v/Rl9k2dIGioyIbBgliM9WEzarCKYyzmgdTZ6MUWytO6WSYfoTjyNJZhO8WdF9DjC1PTuYtHl/UxVGtiRNMoGzrJnL5TLOy1Yolk402fxYAqkPBNkzlYQpY7m8y0aQK5z9FZUszWiatZOryTQt+jpL26iA2eEvxVC5jbJdNdlcZ0z0H2ZF3JNe1+4u+GVGQAACAASURBVOYQR4vmsagVgg43k/gxC0nYdBmf/M4EZN9sHj76E3IUlWP2TVzdLhHweYnXd/NI6de4eeJFXK1VxCb2EVnSz67sG/lAZwCjTj3rWHU7CBCyilhiQUwhM6myiGqTmBEycVv9xAwftrAdQ7dh0t1k2CaZdrhRIx6SnF5MYReakMAZE5k0u0hVI3iJMxP3k2xN+bN2K4rCJZddzKYrLuKijZsxFNi5axc33nA9AmclVEQdBN1AEGSiYgKzbEEKiBw70cR3vn03I1I2NmuU47u28f9+/GteeurXSOY4rpCFtOICzuzad3bOCiKjo6MsWbL4v88va2YEKU5MC70d3fS/eM+hvAGiSS48A3FypHQGM4bIHpIZy8nEPjaDOxQjd2iUVGE+R5clY4SHqD7WxapYPZQ1cHgepPQcJPdgBlc57EzWzuOodQ0rF20nFH4M0/FyhMBK8mcu5cOlOzixMI2fdn6LTy68j6SWACcnTcwWFrK/+gh1Q5XUWc/w5T13UXNZDbnO3LekvYeyDpKVcL0lx/5jdrW9iGwYYCtltDJAbHiUnHY/LmkZzbNmmH9Y4smKCq7pGOOVWZOcP5iGMrab6bILCCT7SZ6RCWgQx4RVVkj1C5gSTprzZXKr8/lUTwmjTX00Ro7jiUdYtqaMzMsvZFCa4emu37P76ftojoygCZCqaayKxMkIeZiIzGNv0hK2pudTWDFEg+0En4r+imRfDL0tF8d0JR5lEWIwwIAvTPHA4/zi4hmuFyZx9+aSI43TadVpmmPhF8t0RuJ91PX10tALDeM5BJJqGYu6iU/pZJ6pY5U7nXnZJxksVXml/MN4sqaY5XsM66EyBvMiVBxbSG+xwGL7SZKHyxFFF+alA4Q6jjKR7CERVDALJsy6hZD0z69Y3TvdQ3N8lCsCFoLp04SP25nO3sYzKbdzvfgsqc2zCXp3EVkwzfGCq3jfwSgjwgFyrGtxxiBqOTtXwxlSEMx2wm4ROR7GHJJJkyVidgcxzYUpaQotHkeIuTDpSaRYIoQdMjORLJIdY8hhNwIyKVKEIOnYDC9joVGSzK4/GaA3DIPrr7+ekvIirv/Eh5DjIoZh0NbWRl1t7VkxR1E8uwqjKKMKOlbRhBDUaOs/QnFZJVOOLNIEH6cPd3HXZ+7id0/+EiOvGjUaAM3PxoWr+M43v0XEF0ITNHbv3cudd/5PXEfQDSw6JATtDb1NvZm851DeALokEDYHcBl2FFc2vsAwxQMmhgpFHGPjxD05+Kd9ZPlj2EYnsTrmsLchGffUSep2JUhOaqB3ZYy2UAflLQkupYqZmiWcTFuD1fkKyvhvsJxeSEpgLsu9KiWzHuUnqXfzfuMhkrv20e6VWMxcXqm1csPwKHflR/jcq7fy4MWPvbF1sP8PfO62qxhpAMfbJIPeGeul1DAon9FIiRQRzIkTVJJhoJ85Yzm8XBDlkt4QOxpmuPiYxGDqaeT0WcjOSazeGCHDgsNkkOq3IOgibTlWKt3F3NjnoXdwkGP+w1QXu5l3w3pa00I80vEkO7f8mGE9AkBlPMEVERExVEoby3kyfQ7JZUEa3CfZGHsVjy+A1J1Pkr+ClFg9cjRKOBHFpxp0aQE80+OYlWc4udnPrREX96p3cSS7ASkcpybYy5xAF5eJXdRIXcx4fDTlW/mFpZ+Ib5S6PoO6ATdOrY7RNJnYZBLlHUlUpIj482donLeB4eJsaoRJ/BOHaCrcwEfbRM4E/CBEWNGRw2tVYXJ1D6b4OJqhYzKsBMQQmqYiSf+8P++HDvw/ZMNgwljH+rZkpsMnOFV2Hufl7SNn52x8k7uYnA/+zPNYvT1CS1k/+ebZSIpydtVDXQBBwBAhLoE5GsWMjYgLxEQEc0DCahIJ2VJA0BD0aYjYEXU7Lt0gaovgi+WQah9FiroxxyxYHAnkhJWoKcF4aJicPyEeuX//fh566CHKa8q5bM2VCIbAxgs3nHUmoohuGIi6wPxlKwiEgqgJhe0vb+PJR3/O87tPsuqCVaQrAayKm3vuuZdwKMxNH/ksuqCRlZ/HT3/1IK70Ke745GdZf8lmBAP+7TOfISU5+b+nucDZeS8xMcHk9Die1Ky3rd/+ef/j3kaS/BK6K5lwOEjKlI3pVBuB0Dgp0QyG8jPJ7p1BcnnQooMI7nSmEz6KfTFkL+hZFbyWL1PQ18mcsSyM0mz2Z/goPjHIhnA10YpV7K+WkTK2IQ60kN18HiW+1dxatYUtc5aSIk9TP7iF3vGNrBMrea7czO3eJ7hH7OQnR77H/8fencdJVd75Hv88Z6m9el/obnYaaBoEAYkLKMZl0EgikhgZMzHbvSYzmhjNaG5yjeMrOpOYGSfJmNFx5mpmTGImiVHEuKHiaCJGFhUFGhoEGpql6aaX6trP8tw/qrvFBUKkWP29Xy9edJ06p/qcp0/Vr57nnPM9Xz/9wGecfBCh6jhaKXrNIz9sksr0si3gMitZhbm9haQKEkzuI9ozhe6JQVYldjJ3Vx0vTevn48/vY0dTnFS4nkjaJ+mYKGVT5tnYGUVrXZiZwYlcsR12vLWPHXovky9sZN3EMP+1/UleXvNT0son4GtmZXPMSZbRnzmV5fG5/Kq6hMkTW2hy32J29+tEtjcQ75lANDMSMjkSjkuPC/2ZTir6uynp38G4zHa6ont4q9Fn9tg0G/ou45Oxi6k4LctfR+6jkxq26LEsyVzAfyY+hdHnUNG3j5ld6zmNTUwxWjHH7eDNKf2spRO122bytjDWriYSXeNwOmq4MGShylwye21axoQ419lM/64KKvetwdIGSWsK1XNiVC1vY199CflsGlOH8ZViy55Wxjc0H/G/4ZGQcTM8ufePzEl7qMoS+l9NsW/iLqxJI5j0hyY69y1jy8wa6qzRjH1xG6+cVc2MN8p4a0y+ELioXTACaKXIWy7BnIFjmjhoVD5P0AmQjxvknAzhhIEZCJAIVeGrNIbTjZ0uJeKFMCN97HPrqGQPOlNCTAXoCtuUel305Pspd9KE7cg71n3OnDls29NK0sxT6kYxXcWPfnwX5547l8JliAplmLy4ajnxnImn+8jbEZKhKCtuvYN7//nfCGWDZP0MD/3XbzC0j2tqQoaJayuyoQzdzjD+8q/m8ZlPX0EypgnmQeNh6MHr5xW2HwAzT8pJUI0UlOOKsix8J0M2GMDJdBNPKfKxOCrTS5VfSUe9Sd2ePURqGtinexjdE2JPSZZgIEx3oJMJnWHIxekeWcWmuMP4N9qoYSKbTnegfSNzNwzHbzyPl6cr3K6niWz4I1VdF3Flo8cbp3bxePyLzN92L+07P85fmCN4tv7TLEz8mvtbfs5HGuZw1vDZRdvWdLjQM9lnKW748gL++d7FRXvtd3tqxc/xlMIwRtMz3qDEiRPta2DDCJfQzo00ZyewZnKS855voWtkM4bKEupzSHkmIQviWYttFSHmGJOZ2J6mu38H3pgQmTnt/Db/Ki3Or9DroNp1OScN4eQItqmzeaVqCjsntDPZaGVR91LK9w4j1jKOQHomTsalz9X0pPvR/QlK+9spd7aTL9lDX5XH7nEOydI8I8I5Jpll5NKT+Ov+T9PROJxLRi1lxraNdOycSF0wRWN0FdHYUoJlHp3VMXaYNWzVY7kv+Uk6+yswe3M09W7htEwLU4MbiUzbQnv4RdqSKwjsDBPa00i4fQz76l5l49iL+ezKAP372tgzew2uoRmxvIZpa8bxQlMv5YkspmFh68IH3Eurl56wBWXxqntJGZpA9lRO32qzt+wJXp70ST7zSpa9nc/y5qwmZnWXszf1Bv7kJip27aInalPTnkMbJsr38ZRGozF9D6UttGXjO3ksbDzDw/cg4Bh4UZusnyPab6CCYfrDEbB6MTM2AS9GVSTJvmAtFezFzZZQYZokjHJMetiZ2M64ionvGVJyjDwBDYZbyNi67rprUSjQoJRBxtbE0ga+1UuvXU04kKE66/DYAw+T8xwcVxPwMiRCOTwTStM2jlGC9j1iXgwrlKQ7VEMZ3USTEdIRsDw1cIB+YF08TdAC1zi6w59SUA5B2sxQ32/jlsXZE3Uo35vBCShU1sDL9RDNQyochHQvFcRpq09St9ent74co7sHSxnkgoqM0c3YfRZ+oITtFQESib00dURwxoVoDe9g1gqFXT+PFbM9xnc8TnnLMKZ1zKVh+hp+M+PLfGztf2FsO5e5Zg1vllzI2NAL/O2zX2XJFUupClcVZVtzVuEaBk8pIiOK85oHsqxlCVZIU+qNYvhbXaRK97LX9Rn+VhLfnsjW8SkmvbGePWNHo6wEqYxByDCp8A12ReNMM5sYub0Pz9vEpsaNPFTbyl7LgwxMyuW5JBkjl5/MuujZvFoDp4zaxGm9bczfmya4uQErPYlMzieTypDt30Gofw+o7bjx3TiVOfrqHeySPFWhOKO94Wx26nkjN4xNTgNv5etJEsEvsamYnuF6/170quHUJz7OeV4DqUyOvr4UfSpNXyCLaaapopv66EbmRf+IFUuSGB1ld7iat/Ronu6fzd6+Ksp6e5mp1zOtej3eiI10hV5nk/cxLurspXNvkL2Tn6At/VdYODDjN1Svr2DcmHpUpp89bhcBr3C6c8uWV4/o3+5I+sW6nzPWd8mXNpFauZ3nz/kEV7Qm2NP5Mm+ePo3Z60zeGLub8YkaepMZyrNxemvClG1vR2mNwsADQGPqwmmzSgPKx3Q1+ZCNlXNwLYXhaSxfo4MmWcMhlgQdLiUd8wnlu7H6S6gO5+gOVVKiuyFbQigGtmvRa3l0p/ZSGasdWvfOfXvIKYj5haFotd9AlFIGeRuiSY980CUVrqTczRLoD5H3XBzPQZEkGXYIWT5VHviYZONZUp5DLB0k5ytsz6Ym4NEXjmEqh0hakQkrTF8PHPQvnPlla5uk4dDT20V52ZF9Lw+SgnIISrt7MXpDlHRFKK+IsruhjF57H+W7NZVmnN1lilhPCs8wcZw0oQT0hRR2Xx+WitAdTVLTFyITMgl25OkrCWDk9jE8Y5GIGyRDNpG+HKFwFa01fTS9uZeSko/x2tl5xrT/ktpnZ3H1xE6emXke1cEWxm0YydhJoynv2s5/DtvBNYuv4peLfodRhHPOc+rti+Ky4SN7PcNO1cHYnKK6vYPehgDVbcMpsbP0RcaQrUhR276T7LCx+NkcuZym1FPsK6/glL5RDN/UxZbok/x22jq64oqQ7zM943FaTz171RnsqBpDSVU7zcl9nNmxDXt1LaRGk0/X4fftw+p/g5S9g1S8HcozBIc7ZEsi+F4tydw0Nvsj2KQb2JKuI+1G0BELXWbihy2ImMTCaRoi+5is1tO8eTd1u+cyxR3O9p7XeSG1jKAZIWKVELFKGGWVEgvUErHHo5M2/Ua2UGhUmrhKMiK6h7Nj6wjG+ugfGaIzWs5KNZlNiU/QlazkwtiLhJeG2Bl/lC32p3h22vm4vsm5a+KcOu4XVL32l6yb0IPZ5RJ0Cj2UjDr6Z/gUw6tbX6DNynFBdz0f2WqyenKaS1K9dLW/xqaPzGTG6r3sHF9JNGXSE4NkBMoSPZSkoiTDFkPx8AOx82ooPwt8w0TjY3kmrqUJuAa5gMb2THzfK+RQ2QY5HCJpcCJlOFaWYMan0o2SiJYQIomdipOLlRD2u9mb7aI0XIFlFgpIyusDAywvCO8qJp6lCKYz9EVjhCyD6jS4jonr5fCMFLmoQwxNzA/T58bpsCJoQxFxMlTQh4pnyHo5Ipkwvh+mzLXIRnz6TJOSdI5c0MD0GSoqph8AwyGR66EcKSjHjdK6SeyeZrDdipJxNYFMDxW9+8BN4XUnGL2rGl1eyc5yhZPtojoZoK80gJdM45hZQknYp11CvZpc0MZRigpPkQh4hHWEcM8eTOJ0hpP4uRq8ACSjGWq2t1PqzGPlnBxj3nqS85+4gF2zR/P7uGLO6h2oaWeyqLuD/6rawT8+93d884LbDntbM2aKgK/JG4qcfeQOzPclu9gW9DgtVYUTU5jpDP1VMdJelJDRR3xflrxVQjqZJuYa6PJqxu2to3TTJn46/n42TkkzzPOYkgqiuiayOzKDRIViXKyDGbsU9poU9JfjJRQquZtUYA1OrA27PIWqD9ERrKYvP5ot/gw26eFsCdSTNSP4cQsdsYiGM5RHepkQ2U0V3ZQ6CUqyKaKZLOGUi98VglwppcmRTExPZnfvGzybfhkCEwkZZ5AAenwPncuis93g70TrNNpPE1SasGkRMcPUWCVErGpC1lh0IIRjm6RNj6l2N9n4K+joXso3T6YrsZoNk8/mrRnjudn5Hr4N/3nGVfS89hXOL/05E9KXsCu4By9b+HbaEdzGX//LxQQIEzXLGFPXzOyZFzJx+OTj+mD9T57/LmHlo4Oz6HRfoaZiKuk3XqdryiwqtrWRLY2ge/sgaGM4CWq6I+ysKWHsvjy9ZTbK17i2geUUYhM928ZxPSwHHMvEMxwsz4dAAMfPE3BsHBNsT+EBHhrLM9CWj69dgjmLXMzCzCeIJ2JkY1E0KWLpKMlQDJ8UO3u3MapyPFpr8solpEG5A9l7g2GQhoGZT5GMxynPgc5YeG6OvJ3ECrkEdICcX8EOK4YR1EStNDW6E0P7ZINh9rjV4EAZCVQ0geNlUNkotheiPAg98RAlyTSObRWGvjQYLthm4d4qR8vxu2cdRxIdr1Kx2aYyH8HyYoTMUqxgI0YUnFEOnRUmbcEwaXzMdADf6aJ8l09ppgS/soJdFS7RRAovECafzxDIuPT4eWzfxlcmuYAijAlaE+/txInE0P09ZCqqcXZ3U9rvEfbP4JVpfTSu2MiFVafz1AUR5rz4Fv1TL+Hs5EP8sv0Rztw0l3PGX3BY25o0c4zOm7SGfPLGkYvwuH/JHXhKEdIjwFM4OkpWK8pyHWRtRVY5WDkIRWsYu6OEFfplvjttCeO0T32mmoq+WSRKR1FV1sf4nYpAWwCjO0UmnSFnbSQfa8Mr80nXVdKrR7PDm0FrYAFbIw3ko2FC4RxlkX4qQ93U2F1M9NooyaaJZrLEkhDsKcHKVhDMlhNhJEHfxPY0puuhnDy+myXvpenOb+eP3l5K86WM6+5mX/gxtlX3EnA1oZwi5AQJelECbhjLj2DrCIYOo7BAmWRNh4TVR97qxzHAMTUYPkHLJmyUEzaq6e/vYtXUYUSm+fzVW69Qt/MKXEPzuZFLWT+zgiUbvsyn1j2Mrq3D7fUZXwutoTxuuP3tBu9fyb/8z39haE2pp4n7BhHPIuQHCOggth/G9sME/AhVkWGcOfWjfOTU84iEo0dsH3i3nv4O3lAdnJYKM329Zu30qYx8dT25ulMx070oO0af6WF7DuW9Bv011fg9XVSnKtgTzRJODVzjoRX+wB2sTE/jmQrf91EeKGXhGD5W3sezLDzPwfYtHEtjOxrXVpiuxjU0pguupVGeh+WFSYd9gsk8OhwhS4aIG0aRpt/Mk0j3kEj04lgQ9Ar3oldKDdwEyyCrPELBKGX94Hk5vEAKMwhax+k045i2R9RIU+t1oVwDlQtheaWFbTBcwlYPfsAnGwqx2xlOiCx2pA/XT2FmYpQ7QVKxEIF0Bt+wQRVOYQ5oi7Th0dvXTVlpxRH/G57QBUUpdRHwY8AE/p/W+vtH4vf0TT6d9kiQPj+I4fgEcnlCbh9BZx/RbA/xnf2MShkE0kGsfJQgldiBEoxyRW+VIheP01kWJZDaQ+XeJBWJME55Jf2BDPgGtuOQ8ZL4vkHYsAt3aLMClPZn6YtqogmL3aVJantC+MGxrCnfy3kvOWyePZJhK9+iavI8atyl3PLiDTxct4yK2Afv3nZZPuOzMcrdBDl15Hoo67tXYsU01b3lBDIe/QGLWGYP2YBNKpkkGqmhvNfnqZpn2DTTJeKOYpr/cSoDUU7ZlyfcFiGf2IOjNpOL72ZfSZC9Y0ex05rIpvAZdESqiESzlAUTVAe6qVE9nJFr4eLUWiqSJpFEOWamjEA+iOVVotxSlJPFd3LkPZec9sj5Gfr9DPs04CssbWB5YHsa2/OxPBeDBLmyl1gxoZeKyjzVuXLiuXFowFUeSeXTrzx85aNVH1r1DPzs4ykffA/D9TFcH9MpjPEbriaXh7QbxPBsNs6YxKSqKGOWNdDfm2ZrrhOtoLJzIme3hRnb/DKPnXkxC19Zz87SLDO2nsUsDJyIQTbkkLcz5I00rpHGVRnyKkvOyJM1HHYH8vSaSXLG/sOlb/Jg6zPQCiWeT9xTRH2LkG8T9EPYOoTlhwh4YUJ+lDHDJvHxC/6SutoRh7VP/P1vvkbOVIT0DN4c08+IN3pwoyNws72YWQ+lCqfcBnWEVNxAJVN4VhBHJ7Edn5gOFyLdDQPLKXQMfNNAGxpfe4VoFUOhfF2ILfE8tBo4ldfT+KZRmDZ4fYlSKA2G5+NaYHmAGcD1cgQJkSOLSQmW7qUjtQvLMAeShQMUsl4Upg/ZkCKesfHcLE4gjRcI02/VYtgeEbLUuL2Y2SDKC6H8AL7v42lNXucHVwMzH8Q2TAKGImb34wRckmacnBOgxEzge92EE3F0OILnZVGYA8NeQbSRJpGVgnJQSikT+FfgQqAdWKmUWqK1LvrdhYYtX8vwTCm2imAZYUwziGHF0HYpKuyiI3kydT7JqGJvyGSfFSKFQrkOhtuPne+gpK+bkl5NOGVhOQbRHoiWl7C7KkSfnSbcs5fKfYUYcttzcXSeTC5D2A6hbY3tKhw3QzIeoKrLp6vShL27sCtHE9u2m+mjZ/B02Rr++mfz+e+vvPyBLma65f/+LxITDEJ+nHIvSdo8cgFznXY3Y3IGdjJLxgwRzveS9F3CTgzT2sOWus2YDeMZZX+cKXs9Yts9ss4WUrFOWssr2DF2Mrujk0hGTqU8kKTW6Kfe7+fUZJ7z+zYR2LMLIx0sDD24PtotwXMj5D0X13FIev0orw9De6BcfOXgqxw5M0PeTpOx0uRDadxACj+QxQ9qsH10ALAV2jKwlEHQjZJzJrE7fAYvVo6irCJBTWgfNnksHCxcTO1j+h6G9jH9wj9D+xiextQa0wPTA9tXWJ7C9BS2C7gGtqOYvTmCu6qfhLOGRGQT2YpOcBU9vQ3EuhopbxvO50b38j9nVhJ/ZS11ZSPIxkJg5ginPEpzEZQqwVMehm/gKkB7KH9glN8AL2iSC7vkAlnyZgbXyOCoNI7KkjdyZA2HLjtNn5kmZbzrWJ27irue+hlR36fEU0Q9k7BvE/SDA8UnTMAPE3BDBN0wZ047n4sv+vQ79lHf83jTX88ERzNmi4WvMmSiJXg6h6E0vhUo3PpW+aS1g5ErRLUnYhblKZO+oIvjWSgNPj5YBlopfOWjPK9wy11l4A/ejMoHbZp4SoNXuPhPa79wfxHtF07vHTy8rdTbd1ZUGkObuMrH9gwcXMJWiH4zR1559OzYw/+65mY6OzsxDIOrrvwrrr7qM2SDHsvf3MhvfvXfLPzEx/jed+8gn3cI2DZ/939u5uwzzkLpLBqPH977Exoaaujs7uIX//0wlmlSWV7Jv3zvHxnZMAqdN/jtI0v455/8GNBc942vcslfXolpuYSdBEEvTiZQyCQzXI1palx1dOJ41Il6nw2l1JnArVrreQOPvwWgtf7egZY57bTT9KpVq/7s3/Wt/7iZfhuU74PvY3gueA7oHMrLYTlZAvksgWyWgONh5wwsx8bKG5hOANMLYekothlBWUFUBHIlBn0xi32hIFnTxdUJ7FQ3Jd05SvsDhKw4fZUx+q0U0Z4MnmWS9XIY2idgBfF8D9O0MLRC4eIaJh11G/ifkn1MS4cJ+iEMbWFgoLSJZ+RIG0kifgxLhwrJdEqj8fFUDheXLjvBtiBc0D2FvaFN7AhkmJSpx8dDKxeFgeUPBlMahVMhB/jKwcPBVy4+PgEdHng7agxtY2DiqGzhMSavxPYwK1XFqLaJaHz8rEti2B68+BhGd5cR37mPjtg+dg6rp6dkJIZt0+CnaUjlqOhRWH1BVFaBk8dxcjhempyfwjdy+FYO387gmVn8YAbHzuEGcrgBCydg49gBXDMIKohWQTRBPEJoFcAzwvgqhGcFcU0T17BwTRPPMvBNMJVP0HAI4BJULmUkqc5lqUi52NkwOhfDyMfAtTAcC+WahQ8zT4OvwfML/1wX7Tp4noOrczg6g6OTeCoDdg7fzOIHcrh2nlSJQX9JLQ61JK1Keu0YBj6lbpqYuw/b66C0p4uS7gpSVSPJOwmUofDRhc9CX4NWWIaJ7Rso08IJWLi2xtcOhpMnkFeEPAPfDpAJGrjksHMaH8DX+FrjD+RHmZZJPuKRDTg41kDvR2VwjAx5I0tOOaRMj4Sp6TPf/0SRoF8Yeov5JhHPwsDkjUiWuYlxjNhZi4tJ4Rwn8FH4nodpGphWAE87WJ4iE1GEMgZ5I40Ox4gmFbM//ilGjB5RqJKKQnHwCz0bjEIPRSsffI3hgzZMtNKgfczBHozWhYsi0YUr2wfurbj/V7SBWQbfRqQDSbIGpHcl6G7fx5RTp5Lr6eWCTyzg3x+4n1PHNfKD7/8zzRMmMXJEPdVV5dTWVbJ+0wb+8rNXs/K1P6Cx8ZXNFZ/8ND/6j//HxtaNTJ0xg2gozH//9H5WvPQH7rn3X+jr7uSSj32SpUt+g6FtLvjEZSxb8hTlleU4QY+MMghm02AG8dw8TihP1vCIJkOMHN34Jz/vWlpamDRp0jumKaVWa61P+1PLnrA9FKAB2LHf43bg9HfPpJS6GrgaYOTI917ZeiiGr9xNOBfCUCZgYGCCEUARBGWCYaAwBw6+KcBAmRoCGhX2wfRRlo82fZyAJm8aZG2Fa/pEvQxB7eEqhRuKkq8y2Bd3sLPdBJLdVOWCBFQQ145ASSl5I4nqdwkYEbJ+lkzfPgLhKIFAiLpdk5hurqI1nMIjTdZ4+y1gaU21C3utLN67ei+W1kR8TblrlwkFFQAAIABJREFUcG7fOLy1XZSdWsfG0FaWx/cAhQ8AV/GeZd/R1loT0hpTQ9JMvO/zCvCVotLVVKXHkOjdTXzUaCwji23PpKrPJpZIoVSY8mQ5obYucuE95IM++TBsDwXZWhlGVQdRKojSAQwCKEowKMfWmpDvEvFcAq6P7YHl+tiOj+FoVNYAX6EdA+0rcBX+wDn8Whc+WNAOWmdB+/jaB+2jtYdWhcc+PhqvUGg1aOWRAFBJoAuUxrPzeHYON+iSD7jkohonECQfjOAEohgqgqFCmDqCSQxDlxHyPOJ5n2jOI5rzCGTByBvoLhO114DBDzWVQ2sf39doYvg6iKOG4akc9PQQMF1QYGoT0zPRhoG2LPK2hW9SOKMpq7HzGq00nrbwlSJjg0seN+PiZDN4tgHKxtCFD3VlaLTn47ouZlZRbgVRKopn+hiej6VNPEPjeT4uDtrRGEETL6LIhdyBobfM28VHZckbefpNh34zx4i8orajjlQ+jWEFCr04w8I1FJapMJSB5+cxtInGxfBMvFCAeN7G6smT015hyEsBSpP9yT14m98q7Hya/QpC4djG21+l9dvPDxSSd1x2PvizBrNxHNFrvgIM7C8otNaE3BimlaWsvJYR5XX4hklJvJwJY8fRtW0b2TEjeP7l3/PZa68mXlqKAThomqbOJJfPY+YMggGb/r4kOucwMVbBxBlnFn5/1mfu1Bk8/tBDRHWAJ19cwdy5c4nXj8DFYPa5c3n8j8+z4LL5mI5L2C0ERDqWgalMtA6gyWKEDn4vl2I4kQvK+32yvae7pbX+d+DfodBD+SC/qLvGQmkXjc/g56mm8M1EDRz80lqhtEKpwthpYYZCcSl80zIwfBOVpVCAHIXhGQRNg7BlYiibcKQEI2Bjhg2UUpiAMgwMCjES1Uqj1DBUdeGXKwrfwvzBlVLQSDM7t+2kL93FK5ue5ZRRpxOKxEj7GeZMu4CXXn2KaLiksF7aJ5+Hla3Pcu74TzCsoY7du7az6Lr/TTaTY/P3P8Np485h184tXDD3Ezz55G9oPOUUfGVgKI02dOFNrgx0xmHn9lYaG07lzbbnGDvqNPK5FF4uS0lNLdrQOJ1Jsr5BOB7gIzPOI1gVRI/Xb7fn4JtUe/gotE/hYGphEGPor+v7HoU3NBh+IbPJdz0GfioMTbguTt4lm82Tsx3SwULPwPd9HN/H0C6+Vviuh1IeWim0pwe+cjqFb6W+AWiUKnxDVxhojIFvrvbA39lj8ANqaJ9TCq1MUD7aLHzZCGtFOAfkBgZTtEZpH0UKSA1crwCOhgQ+/QBBMEIAHsovfMgVBhQKt3/1VWGIRlsDn4bKwscq7HaDwzT7f2wOnko7dKPWwkqbA/9rwNQGFgGCQXtwY4ZeQqHAf+e1FWgwPGPgJAMwtcZWJigLggrwIGOgswE0UbyBnoPve3i+SzbVT29/B6XxGpx8jnw4RTAQKvxK0yp8iGsP5StcVfi7e8pHGQocH58USYCgQik9cBAcBnaGt+1fQAbOghpqgqF7vDOU3vv2hPf+XFhcvWNZPB/bC2Aoo9A6rsuWnTt4c/16ps88jd59CWzToiocgfzbZ1099rvHmTx5Mtg2Oe3x7O//h7PmnEnWzLP/Sv7nr37O3I/OJac92nftZtiwYai8h43H8NoaunbuopAJauFb4KMLoyhKoTM+pWYU2w5wpJ3IBaUd2P8o4HBg15H4Rd+5/d4j8bLHxIIrv3jI8z79yJZ3PP7MV/622KsjRFG1tLRQ1zCq8OAfDjj6fcQlk0n++tKF3HXXXUxsmsKDDz7Ixz/+Ceoa3h4lWbduHd//wT+xdOnSoemvrFzNF77wBeoa3v5o+/nPf07Lho38273/TjAYJF5SRiCXG1omXlJGJBKhfnC7j6ET+Z7yK4HxSqkxSqkAsAhYcozXSQjxIec4Dp/85Cf5zGc+w8KFCwF48sknueiii4bmaW9v57LLLuOBBx5g3Li378K6YsUKPvKRjww9fvbZZ/n7v/97lixZQjAYBGD48OHs2LHjHa9VX19/pDfrkJywBUVr7QLXAk8DLcCvtdbrju1aCSE+zAbj6ydNmsQNN9wwNO2NN97g1FNPBaC3t5dLLrmE733ve8ye/XYO37p162hqasI0C8c6XnvtNb785S+zZMkSampqhuabN28eS5cupaenh56eHpYuXcq8efOO4lYe2Ik85IXW+gngiWO9HkIIAW/H159yyilDBWThwoVMnz596DTpn/zkJ2zevJnbbruN224rpFssXbr0Pb2YG2+8kWQyyeWXXw4UTipasmQJFRUVfOc732HWrFkA3HLLLVRUHPlrTA7FCXva8AfxQU8bFkKcGN7vlNdj7fbbb6exsZFFixYddL4LL7yQBx54gLq6uqO0Zu/vw3rasBBCHPduvvnmQ5rvmWeeOcJrcuSdsMdQhBBCHF+koAghhCiKD9WQ1+rVq7uUUm3Hej2KoAroOtYrcYxJG0gbwLva4JlnnjnF87wjf//q44jneZZpFu+e3Xv27LGam5vffNfkQ7rI5UNVULTW1cd6HYpBKbXqUA6QncykDaQN4L1tsGbNmm1Tpkz5UBXZtWvXTpoyZUpLsV7P87yqD7pfyZCXEEKIopCCIoQQRbJ582b79NNPnzB27NjJjY2Nk2+77bahKxKfffbZ6KJFi0Y9//zzkaampuampqbmiRMnNj/wwANl+7/Gt771rWH33HNPxa233lo7bty4yRMmTGg+88wzJ7S2tg6Fcd11112Vo0aNmjJq1KgpjzzyyHEz0iQF5cT078d6BY4D0gbSBnCctYFt29x5553tW7ZsWbdy5cqW++67r2b16tUhgMcff7z0oosu6jvttNOyb7755voNGzasX7p06aavf/3roxzn7cDIZcuWlVx66aWJmTNnpl9//fWW1tbW9QsWLOi5/vrrhwN0dHSYd9xxR/2KFStaVq1a1XLvvfcanZ2dRz5K+BAcN5VNHLqBBOUPNWkDaQM4eBs890DLiO6dyUgxf19FQyx9/lWTdhzo+VGjRjmjRo1yAMrLy/1x48Zltm/fHpg5c2b2xRdfjN98880d8XjcH5w/k8mo/W801t3dbTiOY9TX17v19fVD9+CeM2dO8le/+lUlwOLFi0vPOeecRG1trQdwzjnn9D788MOlX/7yl7uLua0fhPRQhBDiCNi4cWNg/fr1kblz5yZ3795tWZalKysrPYBly5ZFGxsbJ8+YMWPyD3/4wzbbLtwu4LHHHis555xz3nMzoXvvvbf6ggsu6APYuXOnPXz48KFbMDY0NOR37txpH6XNOijpoQghTkoH60kcaX19fcbChQvHff/7399RUVHh/9u//VvZeeedN1QozjvvvNTmzZvXvfrqq6HPfe5zYz71qU/1RSIR/dRTT5V+6UtfesdZanfffXfFmjVrIvfee+9GgPeLy/ogt/w+EqSHcgJQSm1TSr2plHpdKbVqYFqFUuoZpdSmgf/Lj/V6FpNS6n6l1F6l1Nr9ph1wm5VS31JKbVZKbVRKHR/Rq4fpAG1wq1Jq58C+8LpS6mP7PXdStYFSaoRS6nmlVItSap1S6rqB6QfcD/r7+0vfeOONKW+88caUnp6ekmOx3rlcTl1yySXjLr/88u7Pfe5zvQBPPfVU6fz58/vePe+MGTOykUjEW7VqVRjgtddei5577rmpwecfeuih8n/8x38c9eMf/9jcvHlz865du2qGDx/ubNu2rez111+funbt2uYtW7bUVFVVDXUO2tvbhx2rNpCCcuL4qNb61P3OD/8/wHNa6/HAcwOPTyb/CVz0rmnvu81KqWYK98OZPLDM3Uqp4+Ig5WH6T97bBgA/HNgXTh1I3D5Z28AFvqG1ngScAVwzsJ0H3A+y2Wx0ypQp68aPH9+6Y8eOkUc7/Nb3fRYtWjRqwoQJ2VtvvbVjcFpLS0v4zDPPzABs2LAhMHgQvrW1NbB169bQ+PHj86tWrQo1NjZmLatQG1566aXw9ddfP/xXv/rV1nPPPXfdpEmTWrq6umrmzZuXe+mll4KWZe2tra3d+Mc//tH/9Kc/vQcglUqFent7K45VG8iQ14nrUuDcgZ//C/gf4JvHamWKTWv9olJq9LsmH2ibLwX+W2udA7YqpTYDHwFePhrreqQcoA0O5KRrA631bmD3wM/9SqkWoIGD7AehUChlGIYOh8P5QCCQ6+/vj5aUlKTe++pHxjPPPBNbvHhx5fjx4zNNTU3NAPPnz++ZMmVK2jAK39+fe+652Pz58+ssy9KGYeg777xze11dnXvPPfdU/sVf/MVQL+bGG28ckU6njauuuqoeqK+vr8/fc889mdLSUvOaa67pv/jii2uVUlU33XTTrsED9D09PWVlZWXdx6oNpKCcGDSwVCmlgXsHzmypHXjDobXerZSqOegrnBwOtM0NwB/3m699YNrJ6lql1FXAKgrf4Hs4ydtgoLBOB17hIPvB/hEktm3n8/l8ADhqBWXevHlJrfXq/afddNNNdfPmzRsqFNdcc033Nddc854zsp599tmSX/7yl9sGHy9fvrx1/+ez2Wxg48aNE+PxePKzn/1s7JJLLokYhuFHIpG44zi9tm17juMEotFocnCZo90GUlBODLO11rsG3jjPKKU2HOsVOs683xHJk/VGP/cAt1HYvtuAO4EvchK3gVIqBvwW+LrWOnGQA9DHZRv84Ac/2H0o8y1fvnzTgZ5zXdfYvHnzuIaGhh2WZfm1tbV7hw8fvgtgx44dDdu3bx8xbty4bQdY/Ki1gRxDOQForXcN/L8XeITCUEaHUqoOYOD/vcduDY+aA21zOzBiv/mGA7uO8rodFVrrDq21p7X2gf+gsC/ASdoGSimbQjH5hdb64YHJB9wPPM8b+pLsOE4gEAg4nOB831ebN28eV1FR0V1VVdULEAgEXKUUSilqamo60+l0FN7RIwGOfhtIQTnOKaWiSqn44M/AXwBrgSXA5wZm+xzw6LFZw6PqQNu8BFiklAoqpcYA44EVx2D9jrjBD9IBl1HYF+AkbIOBK/7uA1q01v+831MH3A+y2WzU932VyWQCuVwuFI/Hj9pw15GgtWbLli2jQqFQtr6+vmNwei6XG7rupLu7uywUCmUAysvLe3t7eyuOVRvIkNfxrxZ4ZKCbbwEPaq2fUkqtBH6tlPoSsB24/BiuY9EppX5J4cBrlVKqHfg74Pu8zzZrrdcppX4NrKdwZtA1WmvvmKx4ER2gDc5VSp1KYRhjG/BlOGnbYDbwWeBNpdTrA9O+zUH2gz/84Q+ptWvXTgYYMWJE2/FyfcYHlUgkYr29vZXBYDCzdu3aZoD6+vqd3d3dFZlMJgwQCATyo0ePbgOIRqPZsrKy7mPVBh+qe8oLIU5ua9as2TZt2rQPVXx9sa1Zs6Zq2rRpoz/IsjLkJYQQoiikoAghRJEcSnz94ONNmzYFIpHI9FtuuaV2/9f4c+Pr77rrrsqjs3V/mhQUIYQokkOJrx+c99prrx0xd+7c98Sx/Lnx9XfccUe9xNcLIcQR9PQ9PxrRtaOtqPH1VSNGpef99dcPK74e4Gc/+1nZ6NGjc9Fo1N9/+Q8YX5+Q+HohhDiJHSi+PpFIGHfeeeewH/zgB++5Tkji64UQ4jh0sJ7EkXaw+Pq//du/rb/22ms7SktL/Xcvd6LH10tBEUKIIjpQfP2NN964B2D16tXRxx9/vPzv/u7vhicSCdMwDEKhkP/tb3+7cyC+vm3wtRYvXhz/p3/6p7rf//73G8PhsAYYPny488ILL8QH59m5c2dg7ty5/e9ej2NBCooQQhTJocTXr169euPg/DfccEN9LBbzvv3tb3e+X3z9V7/61VFPPPHEpoaGhqHQywULFvR997vfbRg8EP/CCy+U/PCHP2w/qht6AFJQhBCiSA4lvv5AlixZUvo+8fXm5ZdfPg6gvr4+v2zZss21tbXejTfeuGvmzJmTAPaPrz/W5Ep5IcRJ43i8Uv6mm26qa2xszF599dU9B5vvrLPOGv/LX/5y2+BZYsfK4VwpLz0UIYQ4gooRX3+ikNOGhRBCFIUUFCGEEEUhBUUIIURRSEERQghRFFJQhBBCFIUUFCGEKJJDia/fuHFjIBQKzWhqampuampqvvLKK0fu/xoncny9nDYshBBFMhhfP2fOnHRPT48xffr05o997GOJmTNnZvePrx8xYkRuw4YN69/vNZYtW1byyCOPbFm9enX4G9/4Rks8HvfvuOOO6uuvv374448/vmUwvn716tXrDcNg+vTpzYsWLeqtrq4+5hc3SkERQpyUuh9qHeHsSRU1vt4eFk1XfGrCYcXXd3V1HfDeJRJfL4QQ4j0OFF8P0N7eHpg0aVLzrFmzJj711FOxwWUkvl4IIY5DB+tJHGkHi68fOXKks3Xr1jeGDRvm/f73v49cfvnljevXr19bUVHhn+jx9dJDEUKIIjpQfP38+fP7AMLhsB42bJgHcPbZZ6dHjhyZW7t2bQhgIL4+Nfhag/H1TzzxxOb94+vb29uHDtDv3LkzUF9ff0zzvwZJQRFCiCI5lPj6Xbt2Wa5bSKNfv359YNu2bcGJEyfmDhRf/+ijj25+d3z9Cy+8UNLZ2Wl2dnaaL7zwQsmCBQvec2/6Y0GGvIQQokgOJb5+6dKlsdtvv73BNE1tmqb+0Y9+1FZbW+v967/+a5XE1wshxHFC4usPn8TXCyHEcUri64UQQog/kxQUIYQQRSEFRQghRFFIQRFCCFEUUlCEEEIUhRQUIYQokkOJrwd45ZVXwqeeempTY2Pj5AkTJjSn0+mh7JQTOb5eCooQQhTJYHz9li1b1q1cubLlvvvuq1m9enUIYDC+3nEcPvvZz46555572jZv3rzuxRdf3BgIBIYuCFy2bFnJpZdempg5c2b69ddfb2ltbV2/YMGCnuuvv344wGB8/YoVK1pWrVrVcscdd9R3dnYeMMH4aJLrUIQQJ6XFixeP2Lt3b1Hj62tqatILFiw4rPj6hx9+uHTSpEmZwSiWwVwvkPh6IYQQ7+NA8fUbN24MKqWYM2fO+Obm5kk333xz7eAyEl8vhBDHoYP1JI60g8XXu66rVq5cGVu1alVLLBbzzz777AmzZs1KX3rppf0SXy+EEGLIn4qvHz58eP6MM87or6urc+PxuH/hhRf2rVq1KgISXy+EEGLAocTXX3bZZYmWlpZwf3+/4TgOL730Unzy5MlZia8XQggx5FDi66urq71rr722Y/r06ZOUUpx//vl9ixYt6rvllltqJb5eCCGOExJff/gkvl4IIY5TEl8vhBBC/JmkoAghhCgKKShCCCGKQgqKEEKIopCCIoQQoiikoAghRJEcSnz9PffcU9HU1NQ8+M8wjJnLly8PD853IsfXy3UoQoiTxrG+DqWtrc3esWOHPWfOnHRPT48xffr05t/+9rebZ86cmb3++uvrp02blv785z/fOzj/ihUrwgsXLmxsb29/c3Da6aefPuGRRx7Zsnr16vC5556bisfj/h133FH94osvxh9//PEtHR0d5syZM5tXr1693jAMpk+f3vzaa6+tr66uLsrFjXIdihBCvMv6lm+OSCVbixpfH41NSDdPuuOw4uv3n/+BBx6ouOyyy4Zi50/0+HopKEIIcQQcKL5+/3keffTR8ocffnjz4GOJrxdCiOPQwXoSR9rB4usHLVu2LBoOh/1Zs2ZlB6dJfL0QQoghfyq+ftAvfvGLioULF75jmEri64UQQgCHFl8P4Hkev/vd78qvuuqqoYIi8fVCCCGGHEp8PcCTTz4ZHzZsWL65uXnoWMiSJUtKJb5eCCGOE8f6tOH3I/H1QgghikLi64UQQog/kxQUIYQQRSEFRQghRFFIQRFCCFEUUlCEEEIUhRQUIYQokkOJr8/lcmrhwoWjJ0yY0Dx27NjJ3/rWt4bt/xoncny9FBQhhCgS27a5884727ds2bJu5cqVLffdd1/N6tWrQwCPP/546UUXXdT305/+tDyfzxutra3r16xZ0/LAAw9Ub9y4cahYLFu2rOTSSy9NzJw5M/3666+3tLa2rl+wYEHP9ddfPxygo6PDvOOOO+pXrFjRsmrVqpY77rijvrOz0zxW27w/uQ5FCHFS+nrL9hEbUtmixtc3RUPpH00aeVjx9Q899FBpOp02HMchlUop27Z1WVmZByd+fL30UIQQ4gg4UHz95z//+Z5IJOLX1NRMGzNmzNRrr712z2BxkPh6IYQ4Dh2sJ3GkHSy+/oUXXogYhqH37NnzRldXlzl79uymj33sY4nm5ua8xNcLIYQY8qfi63/2s59Vzps3ry8YDOqGhgZ31qxZyeXLl0dB4uuFEEIMOJT4+pEjR+aff/75Et/3SSQSxquvvho95ZRTshJfL4QQYsihxNffdNNNexctWjR6woQJk7XWXHnllV2nn3565pZbbqmV+HohhDhOSHz94ZP4eiGEOE5JfL0QQgjxZ5KCIoQQoiikoAghhCgKKShCCCGKQgqKEEKIopCCIoQQRXIo8fXZbFZ96lOfGj1hwoTmiRMnNv/ud7+L7/8aEl8vhBDikOLrf/jDH1YBtLa2rl+2bFnrN7/5zeGe9/Z1iRJfL4QQx5kbH1ozonVPf1Hj6ycMi6f/8VPTDiu+/utf/3rDYFBkQ0ODW1JS4r344ouRj370o2mJrxdCCPEeB4qvnzZtWvqxxx4rcxyHDRs2BNauXRtpa2sLgMTXCyHEcelgPYkj7WDx9dddd11XS0tL+JRTTmluaGjIzZgxIzkYCCnx9UIIIYb8qfh627a57777dmzYsGH9c88991YikbAmTZqUBYmvF0IIMeBQ4uv7+/uNRCJhADzyyCMlpmnqmTNnSny9EEKItx1KfP2uXbusefPmTTAMQw8bNsx58MEHtwIsWbKkVOLrhRDiOCHx9YdP4uuFEOI4JfH1QgghxJ9JCooQQoiikIIihBCiKKSgCCGEKAopKEIIIYpCCooQQhTJocTX79mzxzz99NMnRCKR6VddddXI/Zf//e9/H5kwYULzyJEjp3z+858f4fv+0HNtbW327Nmzxy9fvjx86qmnNjU2Nk6eMGFC83/8x3+UD86zYcOGwNSpU5tGjRo15ZJLLhmbzWaPaiaLFBQhhCiSQ4mvj0Qi+rvf/e6uW2+9tf3dy//N3/zNqLvvvrtt27Zta7ds2RJ66KGHSgafW7x4cckFF1yQiMVi/s9+9rOtmzdvXrd06dJN3/72t0d0dXWZADfccMPwa6+9tqOtrW1taWmp++Mf/7jq6G29XIcihDhZLb5mBHvXFzW+nprmNAv+9bDi60tKSvx58+YlN27cGNx/2ba2NjuZTBoXXHBBCuAzn/nMvsWLF5d/+tOfTgAsXbq09Lvf/e6uqVOn5gaXGT16tFNRUeHu3r3bqqio8F5++eX4o48+ugXgi1/84r5bb721/pvf/GZnUdvgIKSHIoQQR8CB4usPNH9bW5tdV1c3dJX8qFGj8rt377YBXNflrbfeCs2cOTO7/zLPP/98xHEc1dzcnOvo6LDi8bhn24Uk+9GjR+c7OjoCHEXSQxFCnJwO0pM40g4WX38gB4ulf/7556MzZsxI7f9cW1ub/YUvfGHsfffdt9U0zQMtf1SztaSHIoQQRfSn4usPZPTo0c5gjwSgra0tMGzYMAfgd7/7XelFF100tHx3d7dx8cUXN95yyy07zz///BTAsGHD3P7+ftNxCp2cbdu2BWpqao5qLpgUFCGEKJJDia8/kFGjRjnRaNR/7rnnor7v84tf/KLy0ksv7QV48cUXS+bPn58AyGaz6pJLLmlctGjRvi9+8YtDgZOGYXDGGWf0//SnPy0HuP/++yvnz5/fe+S29r1kyEsIIYrkUOLrARoaGk5JJpOm4zjq6aefLnviiSdaZ86cmb377rvbvvSlL43JZrPqox/9aOLyyy/v27VrlxUMBv2Kigof4P777y9fuXJlrKenx3rwwQerBqZtPeusszJ33nln+xVXXDHu9ttvb5g8eXL6uuuuO6rJyxJfL4Q4aZzI8fUHcvfdd1e0t7cH/uEf/mFPsdft/RxOfL0UFCHESeN4LCgnmsMpKHIMRQghRFFIQRFCCFEUUlCEEEIUhRQUIYQQRSEFRQghRFFIQRFCiCI53Pj6r371qw3Dhg2bGolEpr/7tSW+XgghPkQON75+wYIFva+88krL+722xNcLIcQx8p2XvjNic8/mosbXN5Y3pm+bfdsRia8HGMzlej8SXy+EEB9Sf258/cFIfL0QQhxDB+tJHGkfJL7+YCS+XgghPoQ+aHz9wUh8vRBCfMgcTnz9wZwo8fVSUIQQokgG4+v/8Ic/xJuampqbmpqab7rpprr3i6//zne+M+Khhx6qrK2tnTp4JthXvvKV4bW1tVOz2axRW1s79YYbbqg/UHz9gw8+WDX4O5YvXx4GuPPOO9vvuuuuYSNHjpzS09NjSXy9EEJ8QMdj2rDE1wshxAnoeCwoJxqJrxdCCHHMSUERQghRFFJQhBBCFIUUFCGEEEUhBUUIIURRSEERQogiOZz4+v7+fuPcc89tHDNmzOTGxsbJf/M3f9Ow/2tLfL0QQnyIHG58/Te+8Y2OrVu3rlu7du36V155JfbrX/+6ZPA5ia8XQohjZNe3/++I3KZNRY2vD44fn67/h78/IvH18Xjc//jHP94PEAqF9NSpU9M7duwYSguW+HohhPiQOpz4+q6uLvOZZ54pu/jiixMg8fVCCHFMHawncaQdTny94zgsXLhw7NVXX93R3NycB4mvF0KID6XDja+/8sorR48dOzZ7yy237B2cJvH1QgjxIXO48fVf+9rX6hOJhHnfffe9o3d1osTXSzikEOKkcazDIZ9++unYRRddNHH8+PGZwbj6+fPn92zdujX429/+dtvgfA0NDackk0nTcRwVj8e9J554orWsrMxrbGycOmbMmGwgENBv+ITEAAAgAElEQVQAV1999d5Fixb1Lly4cOwf//jHViikD3/ta18b3djYOHQ85f7779961llnZdavXx+44oorxvX19ZmTJ09OP/zww1vD4fCf9SEvacNCCMGxLyjvR+LrhRDiBHQ8FpQTjcTXCyGEOOakoAghhCgKKShCCCGKQgqKEEKIopCCIoQQoiikoAghRJEcTnw9wNlnnz1+4sSJzY2NjZOvvPLKka7rDj0n8fVCCPEhcrjx9Y8++uhbGzduXN/a2rpu37599v333z9ULCS+XgghjpHnHmgZ0b0zWdT4+oqGWPr8qyYdkfh6gIqKCh/AcRzlOI5S6u0OhsTXCyHEh9QHja+fM2fO+Orq6mnRaNT7whe+0AMSXy+EEMfUwXoSR9rhxNf/4Q9/2JROp9Vll1029rHHHiu57LLLEhJfL4QQH0KHG18PEIlE9Pz583sfeeSRMpD4eiGE+NA5nPj6vr4+o62tzYbCTbaeeuqp0qampgycOPH1MuQlhBBF8swzz8QWL15cOX78+ExTU1MzFOLrp0yZkh6Ms4d3xtc//fTTZU888URrTU2Ne8kllzTm83nl+76aPXt24sYbb+zctWuXFQwG/cED9vfff3/5ypUrYz09PdaDDz5YNTBt61lnnZW5884726+44opxt99+e8PkyZPT11133VENypS0YSHESeN4TBuW+Hrx/9m7+7Co63z/428GkHsUlPt7HYZhhnSVo7UmdqMns9hAj+ZNZXZzWo+rmbbkpefkz6s8e6kt2clr7dLUVbqiq81N1PRoXVjerIXpZokIIwqIgIBK3DjcDAy/P2w4rKuIzJdmpnk+ros//A7zXdk/el0f8PsEgAOyx0FxNOTrAQA2x6AAABTBoAAAFMGgAAAUwaAAABTBoACAQqzN11s8/PDD6vj4eH33a+TrAcCJWJuvFxHZvn37IB8fn3+KSJKvBwAbOfDeO1FXyssUzdcPiYoxTvqPV/otX19fX6969913QzZt2lQ2c+bMYd1fI18PAE6qL/n6JUuWRCxatKja19fX3P06+XoAsKGeThL9rS/5+mPHjnmVlJR4bNmypbyoqOgfhoB8PQA4ob7m648cOeKbn5/vHRERcc/48eO1paWlHmPGjEkQIV8PAE7Hmnz90qVLa2tqan6oqKg4ffjw4cLY2NjW48ePF4mQrwcAp2NNvv7mn49YkK8HABuwx9ow+XoAcED2OCiOhnw9AMDmGBQAgCIYFACAIhgUAIAiGBQAgCIYFABQiLX5+jFjxiTExsYmabVanVar1VVUVHQ9K0i+HgCciBL5+qysrAuFhYUFhYWFBREREe2W6+TrAcBGru0wRJkuX1c0X+8e6mMMnKbpt3x9T8jXA4CT6ku+XkTkxRdfjNVqtbqMjIwws/lGxZ58PQDYUE8nif7Wl3y9iMjHH398IS4uzlRXV6dKTU0dtmHDhsELFiy4Sr4eAJxQX/P1IiJxcXFd3y6bMWPGtePHj/uIkK8HAKdjTb7eZDJJVVWVm8iNUdq3b9/ApKSkZhHy9QDgdKzJ18fHx7dNnDgx3mQyuZjNZpeUlJSGJUuW1JKvBwAbsMfaMPl6AHBA9jgojoZ8PQDA5hgUAIAiGBQAgCIYFACAIhgUAIAiGBQAUIi1+fqWlhaXWbNmxcTGxibFxcXpt23bNsjyGvl6AHAi1ubrly1bFhYUFGQqLS3NLy4uPjNp0qQmy2vk6wHARnJycqJqamoUzdcHBwcb09PT+y1f/9FHHw0xGAz5IiKurq4SFhbW9ftQyNcDgJO623x9t1NGuE6nS5w8efLQ8vJyNxHy9QBgUz2dJPpbX/L1JpPJpbq62n3cuHFNmzdvvrRy5cqQhQsXRuXk5JSQrwcAJ9TXfH1ISEi7p6en+ZlnnvlRROTpp5++lp+f7y1Cvh4AnI41+XqVSiUTJkyo37t3r5+IyL59+/zj4+MdKl9PHBLAL4at45AHDhzwffTRRxPi4+ObLbn61NTUupKSEo+//vWvpZbP656v9/Pz69i3b58hOTm5xWAwDJg9e3ZcQ0OD6+DBg9uzsrJKfXx8zFOnTh36zTffGERu1IdffvnlWLVa3fXzFEu+vqCgYMCMGTOG1dfXu+r1euOnn35a4uXldVf/kac2DABi+0G5FfL1AOCA7HFQHA35egCAzTEoAABFMCgAAEUwKAAARTAoAABFMCgAoBBr8vV1dXUqrVars3wEBASMeP7556Msr5OvBwAnYk2+PiAgwFxYWFhg+QgPD2+bPn1617Mr5OsBwEYKzi6Nut5kUDRf7+OrMeoS1/Rbvt7i9OnTHlevXnXv/vtQyNcDgJO623x9d9u3bw984oknrlnyLeTrAcCGejpJ9Le+5Ou727lzZ+C2bdtKLH8mXw8ATqiv+XqLr7/+2qujo8MlJSXFaLlGvh4AnIw1+XqLDz74IHDKlCnXul9zlHw93/ICAIV88cUXvjk5OYPj4+ObtVqtTuRGvj4pKclo+XmIyD/m6w8cODDIkq8XEdm9e3fgnj17zlk+t7Ky0s3Dw8McGBhoFhHZunVrwLfffutbV1fnlp2dPeSnayVjx45tzszMvDRjxoxhq1atitDr9cZFixb9rKFMasMAfjHssTZMvh4AHJA9DoqjIV8PALA5BgUAoAgGBQCgCAYFAKAIBgUAoAgGBQAUYk2+XkRk48aNgRqNRqfRaHQpKSnxVVVVXc8Kkq8HACdiTb7eZDLJsmXLog4dOmQwGAwFer2++a233uoaJPL1AGAjr5y9GFV4vUXRfL3Wx9P4TmJ0v+TrzWazS2dnpzQ2NqpCQkKkoaFBpVaru+rCjpCvZ1AAoB/cbb7ew8Oj8+233744atQovZeXV0dMTExrVlbWRRHy9QBgUz2dJPpbX/L1ra2tLps2bQrKy8srSExMbJ07d2708uXLw9auXVtFvh4AnFBf8/XffPONl4iIXq9vValUMmvWrGt5eXk+IuTrAcDpWJOvj4mJMRUXF3tWVla6iYjs37/fX6PRtIiQrwcAp2Ntvj4jI6Nq3LhxCW5ubp2RkZFt2dnZJeTrAcAG7LE2TL4eAByQPQ6KoyFfDwCwOQYFAKAIBgUAoAgGBQCgCAYFAKAIBgUAFGJtvv79998P0Gg0OrVarZ83b15k99fI1wOAE7EmX3/58mXXFStWRH711VeG4uLiMzU1NW67du3ys7xOvh4AbCRjx/dRhsuNiubrNaF+xremjeiXfH1RUZFHXFxca3h4eLuIyIQJExo++eSTgLS0tEYRx8jXc0IBgH5wt/l6nU7Xev78ec+ioqIBJpNJdu/eHVBZWTlAhHw9ANhUTyeJ/taXfH1QUFDHunXryqZPnz5UpVLJ6NGjm0pLSz1ERMjXA4AT6mu+XkRk9uzZ9T/88EPhqVOnChMSElqGDRvWKkK+HgCcjjX5ehGRiooKNxGR2tpa182bNwfPnz+/VoR8PQA4HWvz9fPmzYsqKCjwFhFZunRp5fDhw1vJ1wOADdhjbZh8PQA4IHscFEdDvh4AYHMMCgBAEQwKAEARDAoAQBEMCgBAEQwKACikN/n6nTt3+uv1+kSNRqPT6/WJu3fv7ioKHzlyxFuj0eiio6OT5s6dG2U2m7vuTb4eAJxIb/L1wcHBpr179xYbDIaCbdu2lbz44otxlvfPnz8/ZsOGDWWlpaX5Fy5c8NyxY4e/5TXy9QBgKzm/i5KaAkXz9RKsM0r6n6zK13cvDicnJ7e0tbWpmpubXWpqatyamppUEydOvC4i8tRTT13NyckJePLJJxtEyNcDgNPqTb5++/btATqdzujl5dVZVlbmHhYW1hVzjImJaauqqnIXIV8PALbVw0miv/UmX3/ixAnPFStWROzfv/+ciNwuPy8i5OsBwCn1Jl9//vx592nTpqm3bNlSotfrW0VufPvKciIRESkrKxsQGhpqEiFfDwBOpzf5+itXrrg+9thj8StXrrz0yCOPdJ06YmJiTD4+Pubc3Fwfs9ksH3744eC0tLQfRRwnX8+gAIBCLPn6o0eP+mm1Wp1Wq9W99tprYd3z9WvXrg2+ePGix+rVq8Mtn2P5PSgbNmwomzdvXmxMTExSbGxs6/Tp0+tvl6/Pzs4eYnn/sWPHvEREMjMzL61fvz40Ojo6qa6uzo18PQD0kT3WhsnXA4ADssdBcTTk6wEANsegAAAUwaAAABTBoAAAFMGgAAAUwaAAgEKszdcvXLgwIjQ0dLi3t/fIm+9Nvh4AnIi1+fr09PQf8/Lyzt7q3uTrAcBGXv/b61HFdcWK5uvVAWrjm/e/2S/5ei8vr05Ll+tWyNcDgJO623x9T/ciXw8ANtTTSaK/9SVf3xPy9QDghPqar+8J+XoAcDLW5Ot7Qr4eAJyMtfn6efPmRYaEhAxvaWlRhYSEDF+yZEk4+XoAsAF7rA2TrwcAB2SPg+JoyNcDAGyOQQEAKIJBAQAogkEBACiCQQEAKIJBAQCFWJOvb2xsVD344IPquLg4vVqt1s+fPz+i+73J1wOAE7E2X//qq69Wl5SUnMnPzy/Iy8vz/ctf/uJveY18PQDYSOXy/4xqPXdO0Xy9R3y8MfwP/90v+Xo/Pz/zb37zm0YREU9Pz87hw4cby8vLu2rB5OsBwElZk6+/cuWK6xdffDFo8uTJDSLk6wHApno6SfQ3a/L1JpNJpk6dOvSll16q1ul0bSLk6wHAKVmbr589e3bs0KFDW1asWFFjuUa+HgCcjLX5+pdffjm8oaHBdcuWLf9wunKUfD1xSAC/GLaOQx44cMD30UcfTYiPj2+25OpTU1PrSkpKPP7617+WityoD69fvz40Jiam62SSm5traGlpcVGr1cPj4uJaBgwY0Cki8tJLL9XMnDnzx6lTpw795ptvDCI36sMvv/xyrFqt7vp5ytatW0vGjh3bXFBQMGDGjBnD6uvrXfV6vfHTTz8tudOvF74ZtWEAENsPyq2QrwcAB2SPg+JoyNcDAGyOQQEAKIJBAQAogkEBACiCQQEAKIJBAQCFWJOvFxFJSUmJT0hI0KnVav3s2bOj29vbu+5Nvh4AnIi1+fpdu3adLyoqKjAYDGeuXr3qvnXr1q6xIF8PADaSm3U26lpFk6L5+sAIX+OEOYn9kq/38vLqDAwMNIuImEwmF5PJ5OLi8n8HDPL1AOCk+pqvHzduXHxQUNAIHx+fjueee65OhHw9ANhUTyeJ/mZNvv7o0aPnjEajy5QpU4bu2bPHf8qUKQ3k6wHACVmbrxcR8fb27kxNTf1x586dg0TI1wOA07EmX19fX68qKytzF7nxS7b2798/UKvVNos4Tr6eb3kBgEK++OIL35ycnMHx8fHNWq1WJ3IjX5+UlGS05OzXrl0bfPHiRY/Vq1eHr169OlzkRr7ebDbL448/rm5ra3Mxm80u999/f0NGRkZtZWWlm4eHh9nyA/utW7cGfPvtt751dXVu2dnZQ366VjJ27NjmzMzMSzNmzBi2atWqCL1eb1y0aNHPGsqkNgzgF8Mea8Pk6wHAAdnjoDga8vUAAJtjUAAAimBQAACKYFAAAIpgUAAAimBQAEAh1ubrLR5++GF1fHy8vvs18vUA4ESszdeLiGzfvn2Qj49Px833Jl8PADZy4L13oq6Ulymarx8SFWOc9B+v9Fu+vr6+XvXuu++GbNq0qWzmzJnDut+bfD0AOKm+5OuXLFkSsWjRompfX19z988jXw8ANtTTSaK/9SVff+zYMa+SkhKPLVu2lBcVFf3DEJCvBwAn1Nd8/ZEjR3zz8/O9IyIi7hk/fry2tLTUY8yYMQki5OsBwOlYk69funRpbU1NzQ8VFRWnDx8+XBgbG9t6/PjxIhHHydczKACgEEu+/ujRo35arVan1Wp1r732Wtjt8vWWz6moqLjtjx9ul6/Pzs4eYnn/sWPHvEREMjMzL61fvz40Ojo6qa6uzo18PQD0kT3WhsnXA4ADssdBcTTk6wEANsegAAAUwaAAABTBoAAAFMGgAAAUwaAAgEKszdePGTMmITY2NulWz6eQrwcAJ6JEvj4rK+tCYWFhQWFhYUFERES75Tr5egCwkWs7DFGmy9cVzde7h/oYA6dp+i1f39P/Nvl6AHBSfcnXi4i8+OKLsVqtVpeRkRFmNt+o2JOvBwAb6ukk0d/6kq8XEfn4448vxMXFmerq6lSpqanDNmzYMHjBggVXydcDgBPqa75eRCQuLq7r22UzZsy4dvz4cR8R8vUA4HSsydebTCapqqpyE7kxSvv27RuYlJTULEK+HgCcjjX5+ubmZtXEiRPjf/rnxLqwsDDTkiVLasnXA4AN2GNtmHw9ADggexwUR0O+HgBgcwwKAEARDAoAQBEMCgBAEQwKAEARDAoAKMTafH1LS4vLrFmzYmJjY5Pi4uL027ZtG2R5jXw9ADgRa/P1y5YtCwsKCjKVlpbmFxcXn5k0aVKT5TXy9QBgIzk5OVE1NTWK5uuDg4ON6enp/Zav/+ijj4YYDIZ8ERFXV1cJCwvr+n0o5OsBwEndbb6+2ykjXKfTJU6ePHloeXm5mwj5egCwqZ5OEv2tL/l6k8nkUl1d7T5u3LimzZs3X1q5cmXIwoULo3JyckrI1wOAE+prvj4kJKTd09PT/Mwzz/woIvL0009fy8/P9xYhXw8ATseafL1KpZIJEybU7927109EZN++ff7x8fEOla8nDgngF8PWccgDBw74Pvroownx8fHNllx9ampqXUlJicdf//rXUpEb9eH169eHxsTEdP1wPTc31xAREdFuMBgGzJ49O66hocF18ODB7VlZWaU+Pj7mqVOnDv3mm28MIjfqwy+//HKsWq3u+nnK1q1bS8aOHdtcUFAwYMaMGcPq6+td9Xq98dNPPy250++qvxm1YQAQ2w/KrZCvBwAHZI+D4mjI1wMAbI5BAQAogkEBACiCQQEAKIJBAQAogkEBAIVYk6+vq6tTabVaneUjICBgxPPPPx9leT/5egBwItbk6wMCAsyFhYUFlo/w8PC26dOndz27Qr4eAGyk4OzSqOtNBkXz9T6+GqMucU2/5est10+fPu1x9epV9+6/D4V8PQA4qbvN1990PfCJJ564Zsm3kK8HABvq6STR3/qSr+9u586dgdu2bSux/Jl8PQA4ob7m6y2+/vprr46ODpeUlBSj5Rr5egBwMtbk6y0++OCDwClTplzrfs1R8vUMCgAo5IsvvvDNyckZfPToUT/LP/997bXXwpKSkoyWn4esXbs2+OLFix6rV68Ot3xORUVF148fdu/eHThnzpyuQamsrHTz8PAwBwYGmkVEtm7dGvDtt9/6ZmdnD7G8/9ixY14iIpmZmZfWr18fGh0dnVRXV+e2aNGinzWUSW0YwC+GPdaGydcDgAOyx0FxNOTrAQA2x6AAABTBoAAAFMGgAAAUwaAAABTBoACAQqzJ14uIbNy4MVCj0eg0Go0uJSUlvqqqquv5FPL1AOBErMnXm0wmWbZsWdShQ4cMBoOhQK/XN7/11ltdg0S+HgBs5JWzF6MKr7comq/X+nga30mM7pd8vUqlks7OTmlsbFSFhIRIQ0ODSq1Wd9WFHSFfz6AAQD/oS77+7bffvjhq1Ci9l5dXR0xMTGtWVtZFEfL1AGBTPZ0k+ltf8vWtra0umzZtCsrLyytITExsnTt3bvTy5cvD1q5dW0W+HgCcUF/z9d98842XiIher29VqVQya9asa3l5eT4i5OsBwOlYk6+PiYkxFRcXe1ZWVrqJiOzfv99fo9G0iDhOvp5veQGAQiz5+vj4+GatVqsTEUlNTa27Xb5+9erV4SIiubm5htjYWFNGRkbVuHHjEtzc3DojIyPbsrOzS26Xr6+rq3PLzs4e8tO1krFjxzZnZmZemjFjxrBVq1ZF6PV6I/l6AOgje6wNk68HAAdkj4PiaMjXAwBsjkEBACiCQQEAKIJBAQAogkEBACiCQQEAhVibr3///fcDNBqNTq1W6+fNmxfZ/d7k6wHAiViTr798+bLrihUrIr/66itDcXHxmZqaGrddu3Z1jQ35egCwkYwd30cZLjcqmq/XhPoZ35o2ol/y9UVFRR5xcXGt4eHh7SIiEyZMaPjkk08C0tLSGkUcI1/PCQUA+sHd5ut1Ol3r+fPnPYuKigaYTCbZvXt3QGVl5QAR8vUAYFM9nST6W1/y9UFBQR3r1q0rmz59+lCVSiWjR49uKi0t9RARIV8PAE6or/l6EZHZs2fX//DDD4WnTp0qTEhIaBk2bFirCPl6AHA61uTrRUQqKircRERqa2tdN2/eHDx//vxaEcfJ1zMoAKAQS77+6NGjflqtVqfVanWvvfZa2O3y9ZbPsQzJvHnzooYNG6a/7777tEuWLKkaPnx46+3y9dnZ2UMs7z927JiXiEhmZual9evXh0ZHRyfV1dW5ka8HgD6yx9ow+XoAcED2OCiOhnw9AMDmGBQAgCIYFACAIhgUAIAiGBQAgCIYFABQiNFodLnnnnsSExISdGq1Wr948eJwy2uWfP3ly5dd7733Xo23t/fIOXPmRN98j2XLloW+9957gStXrgwZNmyYXqPR6H79619rDAZDV5dr/fr1g2NiYpJiYmKS1q9fP/jn+vruhEEBAIV4enp2Hj16tKioqKjgzJkzBbm5uf65ubk+Iv+Xr/f29u584403KleuXHnpVvc4ePCgf1paWkNycrLx1KlTZw0GQ0F6enrd4sWLI0VEqqurXdesWRN+/PjxsydOnDi7Zs2a8NraWtef8+u8HeKQAH6Zcn4XJTUFiubrJVhnlPQ/3TY6qVKpZODAgWYRkba2Npf29nYXF5cbv+PKkq/39/c3T5o0qamoqMjj5vdfu3ZNZTKZVOHh4e3h4eGNluvjxo1r+vjjjweLiOTk5AwcP358Q0hISIeIyPjx4xs+/fTTgb/97W+vKfq19gEnFABQUHt7u2i1Wl1ISMiIBx54oOHhhx++frt8/c327NnjP378+Iabr2/cuDFo4sSJ9SIiFRUV7pGRkW2W1yIiItoqKirclf9K7h4nFAC/TD2cJPqTm5ubFBYWFly5csX18ccfH/btt996njx50vvmfP2t7N+/f+ALL7zwD0/6b9iwIfD777/33rhxY5GI3C5Tr9jf3xqcUACgHwwZMqRj3LhxjXv27Bl4c77+dr777jufBx98sKtAnJOT4/fHP/4xbN++fcVeXl6dIiKRkZGmS5cudf2AvqKiYkB4ePjPmqm/HQYFABRSWVnpZvn97k1NTS5fffWVv1arbemer7+dEydOeKrV6hY3txvfOPrb3/7mtXDhwphdu3YVR0REtFs+Lz09vf7QoUP+tbW1rrW1ta6HDh3yT09Pv+NY/Rz4lhcAKKS8vNx97ty5cR0dHdLZ2emSlpZ2LTIy0tQ9Xy8iEhERcU9TU5OryWRyOXDgwKB9+/YZdu/ePfCRRx7pGoaMjIwoo9HoOn369GEiIuHh4W0HDx4sDgkJ6cjIyKhMTk5OFBF57bXXKi0/oLc1asMAfjHssTbc23z92LFj4z/66KPSmJgYm377ypraMCcUAOhHa9eurerN5x07duxcf/9d+hs/QwEAKIJBAQAogkEBACiCQQEAKIJBAQAogkEBAIX0Jl+/c+dOf71en6jRaHR6vT5x9+7dft3vQb4eANCrfH1wcLBp7969xQaDoWDbtm0lL774Ylz3e5CvBwA78/rfXo8qritWNF+vDlAb37z/Tavy9d2Lw8nJyS1tbW2q5uZmFy8vr07y9QCALneTr9++fXuATqczWsKP5OsBwA71dJLoT73N1584ccJzxYoVEfv37+96Qp58PQDgn/SUrz9//rz7tGnT1Fu2bCnR6/Wtluvk6wEAItK7fP2VK1dcH3vssfiVK1deeuSRR7rGg3w9AKBLb/L1a9euDb548aLH6tWrw1evXh0uIpKbm0u+HgDsCfl665GvBwA7Rb4eAIC7xKAAABTBoAAAFMGgAAAUwaAAABTBoACAQnqTr//yyy+9tVqtTqvV6hISEnRZWVmDut/DkfP1PIcC4BfD1s+hmM1maWxsVA0cONDc2trqMnr06IR169aVT5gw4frixYvDR4wYYfy3f/u3Bk9PT7O7u7uUlZW5jxw5UlddXf29u/uNvuO9996r2blz54WTJ096Pfjgg9f9/PzMa9asCTp8+LDf3r17L1RXV7smJyfrTp48WaBSqWTkyJG67777riAoKEiRhxt5DgUAblK5/D+jWs+dUzRf7xEfbwz/w39bla/38/MzWz6/ubnZpXvYkXw9AKBLb/L1Bw8e9FGr1fpRo0bp161bV2Y5nZCvBwA71NNJoj/1Jl//8MMPXy8uLj7z97//3fPZZ5+NmzZtWr23t3cn+XoAwD/pKV9vMWrUqBZvb++OEydOeImQrwcA/KQ3+frCwsIBJtON//4bDIYBJSUlnvHx8W3k6wEAXXqTr8/NzfVNTU0Nc3Nz61SpVJ2ZmZkXw8LC2t97773B5OsBwE7Y+p8N3wr5egCAIsjXAwBwlxgUAIAiGBQAgCIYFACAIhgUAIAiGBQAUEhv8vWWP587d26At7f3yBUrVoR0v4cj5+sZFABQiKenZ+fRo0eLioqKCs6cOVOQm5vrn5ub6yMisnfv3oGPPvpo14OLCxYsiHrggQf+6Qn3gwcP+qelpTUkJycbT506ddZgMBSkp6fXLV68OFJEpLq62nXNmjXhx48fP3vixImza9asCa+trXX9+b7K2+M5FAC/SLlZZ6OuVTQpmq8PjPA1TpiTaFW+XkTkgw8+GBQbG9vq4+Nj7v5+8vUAgC53ytc3NDSoMjMzQ9euXVt583vJ1wOAHerpJNGf7pSv//3vfx++YMGCastJpjtHz9czKADQD7rn63/44QfvjIyMyyIiJ0+e9Nm7d2/A//t//y+yoaHBVaVSiaenp3n58uW1P+Xryyz3sOTrjxw5UtQ9X3/o0CE/y+dUVP5zRpEAACAASURBVFQMeOCBBxr/+W/w8+NbXgCgkN7k60+ePFlUUVFxuqKi4vS///u/1yxatKhq+fLlteTrAQBdepOvv53du3cPJF8PAHaCfL31yNcDgJ0iXw8AwF1iUAAAimBQAACKYFAAAIpgUAAAimBQAEAhvcnXFxUVDfD09Byl1Wp1Wq1WN3v27Oju93DkfD3/bBgAFGLJ1w8cONDc2trqMnr06ITc3Nz6CRMmXO+er4+KimotLCwsuNU9Dh486L9z584LJ0+e9Hr11VfP+vn5mdesWRO0ePHiyL17916w5OtPnjxZoFKpZOTIkbqZM2f+GBQUZPOHGxkUAL9IB957J+pKeZmi+fohUTHGSf/xilX5ekua5VbI1wMAutwpXy8icunSpQGJiYm60aNHJ+zfv9/X8l7y9QBgh3o6SfSnO+Xro6OjTSUlJT+EhoZ2HDlyxHv69OnqgoKC/MDAQLOj5+s5oQBAP+ier9+/f//A1NTUehERLy+vztDQ0A4RkZSUFGN0dHRrfn6+p4jIT/n665Z7WPL1+/btK+6er7906VLXD+grKioGhIeH27T/ZcGgAIBCepOvr6ysdGtvv1GjLygoGFBaWuqRkJDQSr4eANClN/n6zz//3HfVqlURrq6una6urp3vvPNOWUhISMef/vSnIeTrAcBOkK+3Hvl6ALBT5OsBALhLDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAopDf5ehGRvLw8r1/96ldatVqt12g0OqPR2NVOceR8PYMCAAqx5OuLiooKzpw5U5Cbm+ufm5vrIyJiydebTCZ55pln4t57772y4uLiM4cPHy4aMGBA1wOBBw8e9E9LS2tITk42njp16qzBYChIT0+vW7x4caSIiCVff/z48bMnTpw4u2bNmvDa2trbFox/TjyHAuAX6doOQ5Tp8nVF8/XuoT7GwGkaq/L1n3766cDExMRmS4rF0vUSIV8PAOjmTvn6oqIiDxcXFxk3bly8TqdL/K//+q8Qy3vJ1wOAHerpJNGf7pSvb29vd/n22299T5w4cdbX19eckpKiGT16tDEtLa2RfD0A4J/cLl8fGRnZdt999zWGhYW1+/n5mf/1X/+1/sSJE94i5OsBAD/pTb5+ypQpDWfPnvVqbGxUmUwm+dvf/uan1+tbyNcDALr0Jl8fFBTUsWDBguqRI0cmuri4yIQJE+pnzpxZv2LFihDy9QBgJ8jXW498PQDYKfL1AADcJQYFAKAIBgUAoAgGBQCgCAYFAKAIBgUAFNKbfP17770XqNVqdZYPlUqVfOzYMS/L5zlyvp7nUAD8Ytj6ORSz2SyNjY2qgQMHmltbW11Gjx6dsG7duvIJEyZcX7x4cfiIESOMc+fO/dHy+cePH/eaOnWq+tKlS6ct1+69917Nzp07L5w8edLrwQcfvO7n52des2ZN0OHDh/327t17obq62jU5OVl38uTJApVKJSNHjtR99913BUFBQYo83MhzKABwk5ycnKiamhpF8/XBwcHG9PR0q/L13T8/KysrcMqUKV3ZefL1AIAud8rXd//cXbt2BcyZM+eq5c/k6wHADvV0kuhPd8rXWxw8eNDHy8vLPHr06BbLNfL1AIB/crt8vcWHH34YOHXq1H/4NhX5egCAiPQuXy8i0tHRIZ999lnAnDlzugaFfD0AoEtv8vUiIv/7v//rFxoa2qbT6bp+FrJ79+6B5OsBwE7Y+p8N3wr5egCAIsjXAwBwlxgUAIAiGBQAgCIYFACAIhgUAIAiGBQAUEhv8vWtra0uU6dOjdVoNLqhQ4fqly1bFtr9Ho6cr2dQAEAhnp6enUePHi0qKioqOHPmTEFubq5/bm6uj4jI3r17Bz766KP1f/7znwPa2tpUBoOh4Pvvvz+blZUVVFRU1DUWBw8e9E9LS2tITk42njp16qzBYChIT0+vW7x4caSISHV1teuaNWvCjx8/fvbEiRNn16xZE15bW+tqq6+5O55DAfCLVHB2adT1JoOi+XofX41Rl7jGqnz9jh07BhqNRpXJZJLr16+7uLu7dw4aNKhDhHw9AKCbO+Xr586dW+ft7W0ODg4eERcXN3zBggWXLeNAvh4A7FBPJ4n+dKd8/aFDh7xVKlXn5cuXf7hy5Yrr/fffr33ssccadDpdG/l6AMA/uV2+/oMPPhg8adKkeg8Pj86IiIj20aNHNx07dsxHhHw9AOAnvcnXR0dHt3355Zf+ZrNZGhoaVH//+9997rnnnhby9QCALr3J17/22ms1M2fOjNVoNPrOzk6ZPXv2lXvvvbd5xYoVIeTrAcBOkK+3Hvl6ALBT5OsBALhLDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAopDf5+paWFpdp06bFajQaXUJCgu6zzz7z634P8vUAgF7l69etWzdERMRgMBQcPHjQsHTp0siOjv97LpF8PQDYmVfOXowqvN6iaL5e6+NpfCcx2qp8/SuvvBJhCUVGRES0+/v7dxw+fNj7oYceMpKvBwB0uVO+fsSIEcY9e/YMMplMUlhYOCA/P9+7rKxsgAj5egCwSz2dJPrTnfL1ixYtunL27Fmve+65RxcREdE6atSoJksQknw9AOCf3C5f7+7uLlu2bCkvLCwsyM3NPd/Q0OCWmJjYIkK+HgDwk97k6xsbG1UNDQ0qEZGdO3f6u7q6diYnJ5OvBwD8n97k6ysrK90mTZqkUalUnaGhoabs7OwSEZHdu3cPJF8PAHaCfL31yNcDgJ0iXw8AwF1iUAAAimBQAACKYFAAAIpgUAAAimBQAEAhvcnXX7582fXee+/VeHt7j5wzZ0509/cfOXLEW6PR6KKjo5Pmzp0bZTabu14rKytzv//+++OPHTvm9atf/UqrVqv1Go1G9/777wdYPqewsHDA8OHDtTExMUmPP/740JaWlp+1ycKgAIBCepOv9/b27nzjjTcqV65ceenm98+fPz9mw4YNZaWlpfkXLlzw3LFjh7/ltZycHP+JEyc2+Pr6mj/44IOS4uLiM59//vm55cuXR1mezl+yZEnkggULqsvKyvIHDhzY/j//8z9Dfr6vnudQAPxCZez4PspwuVHRfL0m1M/41rQRVuXr/f39zZMmTWoqKiry6P7esrIy96amJtXEiROvi4g89dRTV3NycgKefPLJBhGRzz//fOAbb7xROXz48FbLe2JjY02BgYHtVVVVboGBgR1ff/21365duy6IiDz//PNXV65cGb506dJaJf8/6AknFABQ0J3y9bd7X1lZmXtYWFjXU/IxMTFtVVVV7pZ7nj9/3jM5Obml+3u+/PJLb5PJ5KLT6Vqrq6vd/Pz8Otzdb5TsY2Nj26qrqwfIz4gTCoBfpJ5OEv3pTvn62+kpS//ll1/6jBo16nr318rKytyfe+65oVu2bClxdXW93ft/1rYWJxQA6Ae3y9ffTmxsrMlyIhERKSsrGxAaGmoSEfnss88GPvroo13vv3btmmry5MnqFStWVEyYMOG6iEhoaGh7Y2Ojq8l045BTWlo6IDg4+GftgjEoAKCQ3uTrbycmJsbk4+Njzs3N9TGbzfLhhx8OTktL+1FE5PDhw/6pqakNIiItLS0ujz/+uHrmzJlXn3/++a7gpEqlkvvuu6/xz3/+c4CIyNatWwenpqb+2H9f7T/jW14AoJDe5OtFRCIiIu5pampyNZlMLgcOHBi0b98+Q3JycsuGDRvKXnjhhbiWlhaXhx56qGH69On1lZWVbh4eHubAwECziMjWrVsDvv32W9+6ujq37OzsIT9dKxk7dmxzZmbmpRkzZgxbtWpVhF6vNy5atOhnLS+Trwfwi+HI+frb2bBhQ+ClS5cG/OEPf7is9N/tVqzJ1zMoAH4x7HFQHI01g8LPUAAAimBQAACKYFAAAIpgUAAAimBQAACKYFAAQCHW5usXLlwYERoaOtzb23vkzfcmXw8ATsTafH16evqPeXl5Z291b/L1AGArOb+LkpoCRfP1EqwzSvqf+iVfLyJi6XLdCvl6AHAyfc3X3+me5OsBwFZ6OEn0p77m63tCvh4AnNjd5ut7Qr4eAJyMNfn6njhKvp5BAQCFlJeXu6ekpCRoNBrdyJEjdQ899FDD7fL1r7/+etSOHTsGh4SEDD958qSniMi8efMiQ0JChre0tKhCQkKGL1myJPx2+frs7OwhWq1Wp9VqdceOHfMSEcnMzLy0fv360Ojo6KS6ujo38vUA0Ef2WBsmXw8ADsgeB8XRkK8HANgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKsSZf39jYqHrwwQfVcXFxerVarZ8/f35E93uTrwcAJ2Jtvv7VV1+tLikpOZOfn1+Ql5fn+5e//MXf8hr5egCwkdf/9npUcV2xovl6dYDa+Ob9b/ZLvt7Pz8/8m9/8plHkxjANHz7cWF5e3lULJl8PAE5GiXz9lStXXL/44otBkydPbrDck3w9ANhITyeJ/mRtvt5kMsnUqVOHvvTSS9U6na5NhHw9ADi1vubrZ8+eHTt06NCWFStW1Fiuka8HACdjbb7+5ZdfDm9oaHDdsmXLP5yuHCVfz7e8AEAh5eXl7nPnzo3r6OiQzs5Ol7S0tGu3y9c3NTW5mkwmlwMHDgzat2+fYdCgQR3r168Pi4uLa9Hr9ToRkZdeeqlm5syZP94qX19XV+eWnZ095KdrJWPHjm3OzMy8NGPGjGGrVq2K0Ov1RvL1ANBH9lgbJl8PAA7IHgfF0ZCvBwDYHIMCAFAEgwIAUASDAgBQBIMCAFAEgwIACrEmXy8ikpKSEm957+zZs6Pb29u7XiNfDwBOxNp8/a5du84XFRUVGAyGM1evXnXfunVr11iQrwcAG6lc/p9RrefOKZqv94iPN4b/4b/7JV8vImJ5Gt5kMrmYTKau94qQrwcAp2Ntvn7cuHHxQUFBI3x8fDqee+65Oss9ydcDgI30dJLoT9bm648ePXrOaDS6TJkyZeiePXv8p0yZ0kC+HgCcWF/z9SIi3t7enampqT/u3LlzkAj5egBwOtbk6+vr61VlZWXuIjd+ydb+/fsHarXaZhHy9QDgdKzJ1wcHB7c//vjj6ra2Nhez2exy//33N2RkZNRWVla6ka8HgJ+ZPdaGydcDgAOyx0FxNOTrAQA2x6AAABTBoAAAFMGgAAAUwaAAABTBoACAQqzN11s8/PDD6vj4eH33a+TrAcCJWJuvFxHZvn37IB8fn3+KSJKvBwAbyc06G3WtoknRfH1ghK9xwpzEfsvX19fXq959992QTZs2lc2cOXNY99fI1wOAk7EmX79kyZKIRYsWVfv6+ppvvif5egCwkZ5OEv2pr/n6Y8eOeZWUlHhs2bKlvKio6B+GgHw9ADixu83XHzlyxDc/P987IiLinvHjx2tLS0s9xowZkyBCvh4AnI41+fqlS5fW1tTU/FBRUXH68OHDhbGxsa3Hjx8vEiFfDwBOx5p8/c0/H7EgXw8ANmCPtWHy9QDggOxxUBwN+XoAgM0xKAAARTAoAABFMCgAAEUwKAAARTAoAKAQa/P1Y8aMSYiNjU3SarU6rVarq6io6HpWkHw9ADgRJfL1WVlZFwoLCwsKCwsLIiIi2i3XydcDgI0ceO+dqCvlZYrm64dExRgn/ccr/Zav7wn5egBwMtbk60VEXnzxxVitVqvLyMgIM5vNXfckXw8ANtLTSaI/9TVfLyLy8ccfX4iLizPV1dWpUlNTh23YsGHwggULrpKvBwAndrf5ehGRuLg4k4hIQECAecaMGdeOHz/uI0K+HgCcjjX5epPJJFVVVW4iIq2trS779u0bmJSU1CxCvh4AnI41+fr4+Pi2iRMnxptMJhez2eySkpLSsGTJklry9QBgA/ZYGyZfDwAOyB4HxdGQrwcA2ByDAgBQBIMCAFAEgwIAUASDAgBQBIMCAAqxNl/f0tLiMmvWrJjY2NikuLg4/bZt2wZZXiNfDwBOxNp8/bJly8KCgoJMpaWl+cXFxWcmTZrUZHmNfD0A2Mi1HYYo0+Xriubr3UN9jIHTNP2Wr//oo4+GGAyGfBERV1dXCQsL6/p9KOTrAcDJ9DVf3+2UEa7T6RInT548tLy83M1yT/L1AGAjPZ0k+lNf8/Umk8mlurrafdy4cU2bN2++tHLlypCFCxdG5eTklJCvBwAndrf5+pCQkHZPT0/zM88886OIyNNPP30tPz/fW4R8PQA4HWvy9SqVSiZMmFC/d+9ePxGRffv2+cfHx5OvBwBnZE2+Pjk5ueXtt9++NHv27Ljf//73roMHD27PysoqJV8PADZgj7Vh8vUA4IDscVAcDfl6AIDNMSgAAEUwKAAARTAoAABFMCgAAEUwKACgEGvy9XV1dSqtVquzfAQEBIx4/vnnoyyvk68HACdiTb4+ICDAXFhYWGD5CA8Pb5s+fXrXsyvk6wHARnJycqJqamoUzdcHBwcb09PT+y1fb3H69GmPq1evunf/fSjk6wHAyfQ1X9/d9u3bA5944olrllwL+XoAsKGeThL9qa/5+u527twZuG3bthLLn8nXA4ATu9t8vcXXX3/t1dHR4ZKSkmK0XCNfDwBOxpp8vcUHH3wQOGXKlGvdr5GvBwAnY22+XkRk9+7dgXv27Dln+Vzy9QBgA/ZYGyZfDwAOyB4HxdGQrwcA2ByDAgBQBIMCAFAEgwIAUASDAgBQBIMCAAqxJl8vIrJx48ZAjUaj02g0upSUlPiqqqquZwXJ1wOAE7EmX28ymWTZsmVRhw4dMhgMhgK9Xt/81ltvBVteJ18PADZScHZp1PUmg6L5eh9fjVGXuKZf8vVms9mls7NTGhsbVSEhIdLQ0KBSq9VddWFHyNczKACgoPb2dklKStJdvHjR49lnn63pbb7ew8Oj8+233744atQovZeXV0dMTExrVlbWRcs9ydcDgI30dJLoT33N17e2trps2rQpKC8vryAxMbF17ty50cuXLw9bu3ZtFfl6AHBid5uv/+abb7xERPR6fatKpZJZs2Zdy8vL8xEhXw8ATseafH1MTIypuLjYs7Ky0k1EZP/+/f4ajaZFhHw9ADgda/P1GRkZVePGjUtwc3PrjIyMbMvOzi4hXw8ANmCPtWHy9QDggOxxUBwN+XoAgM0xKAAARTAoAABFMCgAAEUwKAAARTAoAKAQa/P177//foBGo9Gp1Wr9vHnzIru/Rr4eAJyINfn6y5cvu65YsSLyq6++MhQXF5+pqalx27Vrl5/ldfL1AGAjr5y9GFV4vUXRfL3Wx9P4TmJ0v+Tri4qKPOLi4lrDw8PbRUQmTJjQ8MknnwSkpaU1ijhGvp4TCgAoqL29XbRarS4kJGTEAw880NDbfL1Op2s9f/68Z1FR0QCTySS7d+8OqKysHGC5J/l6ALCRnk4S/amv+fqgoKCOdevWlU2fPn2oSqWS0aNHN5WWlnqIiJCvBwAndrf5ehGR2bNn1//www+Fp06dKkxISGgZNmxYqwj5egBwOtbk60VEKioq3EREamtrXTdv3hw8f/78WhHy9QDgdKzN18+bNy+qoKDAW0Rk6dKllcOHD28lXw8ANmCPtWHy9QDggOxxUBwN+XoAgM0xKAAARTAoAABFMCgAAEUwKAAARTAoAKCQ3uTrd+7c6a/X6xM1Go1Or9cn7t69u6sofOTIEW+NRqOLjo5Omjt3bpTZbO66N/l6AHAivcnXBwcHm/bu3VtsMBgKtm3bVvLiiy/GWd4/f/78mA0bNpSVlpbmX7hwwXPHjh3+ltfI1wOAjWTs+D7KcLlR0Xy9JtTP+Na0EVbl67sXh5OTk1va2tpUzc3NLjU1NW5NTU2qiRMnXhcReeqpp67m5OQEPPnkkw0i5OsBwOncTb5++/btATqdzujl5dVZVlbmHhYW1hVzjImJaauqqnK33JN8PQDYSE8nif7U23z9iRMnPFesWBGxf//+cyJyu/y8iJCvBwCn1lO+/vz58+7Tpk1Tb9mypUSv17eK3Pj2leVEIiJSVlY2IDQ01CRCvh4AnE5v8vVXrlxxfeyxx+JXrlx56ZFHHuk6dcTExJh8fHzMubm5PmazWT788MPBaWlpP4o4Tr6eQQEAhZSXl7unpKQkaDQa3ciRI3UPPfRQw835+rVr1wZfvHjRY/Xq1eFarVan1Wp1lt+DsmHDhrJ58+bFxsTEJMXGxrZOnz69/nb5+uzs7CGW9x87dsxLRCQzM/PS+vXrQ6Ojo5Pq6urcyNcDQB/ZY22YfD0AOCB7HBRHQ74eAGBzDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAoxNp8/cKFCyNCQ0OHe3t7j7z53uTrAcCJWJuvT09P/zEvL+/sre5Nvh4AbCXnd1FSU6Bovl6CdUZJ/1O/5Ou9vLw6LV2uWyFfDwBOpq/5+jvdk3w9ANhKDyeJ/tTXfH1PyNcDgBO723x9T8jXA4CTsSZf3xPy9QDgZKzN18+bNy8yJCRkeEtLiyokJGT4kiVLwsnXA4AN2GNtmHw9ADggexwUR0O+HgBgcwwKAEARDAoAQBEMCgBAEQwKAEARDAoAKMSafH1jY6PqwQcfVMfFxenVarV+/vz5Ed3vTb4eAJyItfn6V199tbqkpORMfn5+QV5enu9f/vIXf8tr5OsBwEZe/9vrUcV1xYrm69UBauOb97/ZL/l6Pz8/829+85tGkRvDNHz4cGN5eXlXLZh8PQA4GSXy9VeuXHH94osvBk2ePLnBck/y9QBgIz2dJPqTtfl6k8kkU6dOHfrSSy9V63S6NhHy9QDg1Pqar589e3bs0KFDW1asWFFjuUa+HgCcjLX5+pdffjm8oaHBdcuWLf9wuiJfDwBOxpp8/fnz593Xr18fdu7cOU+9Xq/TarW6t99+ewj5egCwAXusDZOvBwAHZI+D4mjI1wMAbI5BAQAogkEBACiCQQEAKIJBAQAogkEBAIVYk68XEUlJSYm3vHf27NnR7e3tXfcmXw8ATsTafP2uXbvOFxUVFRgMhjNXr15137p1a9dYkK8HABupXP6fUa3nzimar/eIjzeG/+G/+yVf7+Xl1Wl5Gt5kMrmYTKau94qQrwcAp2Ntvn7cuHHxQUFBI3x8fDqee+65Oss9ydcDgI30dJLoT9bm648ePXrOaDS6TJkyZeiePXv8p0yZ0kC+HgCcWF/z9SIi3t7enampqT/u3LlzkAj5egBwOtbk6+vr61VlZWXuIjd+ydb+/fsHarXaZhHy9QDgdKzJ1zc0NKgef/xxtUaj0SUmJuqHDBliysjIqCVfDwA2YI+1YfL1AOCA7HFQHA35egCAzTEoAABFMCgAAEUwKAAARTAoAABFMCgAoBBr8/UWDz/8sDo+Pl7f/Rr5egBwItbm60VEtm/fPsjHx6fj5nuTrwcAG8nNOht1raJJ0Xx9YISvccKcxH7L19fX16vefffdkE2bNpXNnDlzWPd7k68HACdjTb5+yZIlEYsWLar29fU133xP8vUAYCM9nST6U1/z9ceOHfMqKSnx2LJlS3lRUdE/DAH5egBwYnebrz9y5Ihvfn6+d0RExD3jx4/XlpaWeowZMyZBhHw9ADgda/L1S5cura2pqfmhoqLi9OHDhwtjY2Nbjx8/XiRCvh4AnI41+frb3ZN8PQDYgD3WhsnXA4ADssdBcTTk6wEANsegAAAUwaAAABTBoAAAFMGgAAAUwaAAgEKszdePGTMmITY2NulWz6eQrwcAJ6JEvj4rK+tCYWFhQWFhYUFERES75Tr5egCwkQPvvRN1pbxM0Xz9kKgY46T/eKXf8vU9/W+TrwcAJ2NNvl5E5MUXX4zVarW6jIyMMLPZ3HVP8vUAYCM9nST6U1/z9SIiH3/88YW4uDhTXV2dKjU1ddiGDRsGL1iw4Cr5egBwYnebrxcRiYuLM4mIBAQEmGfMmHHt+PHjPiLk6wHA6ViTrzeZTFJVVeUmItLa2uqyb9++gUlJSc0i5OsBwOlYk69vbm5WTZw4Mf6nf06sCwsLMy1ZsqSWfD0A2IA91obJ1wOAA7LHQXE05OsBADbHoAAAFMGgAAAUwaAAABTBoAAAFMGgAIBCrM3Xt7S0uMyaNSsmNjY2KS4uTr9t27ZBltfI1wOAE7E2X79s2bKwoKAgU2lpaX5xcfGZSZMmNVleI18PADZybYchynT5uqL5evdQH2PgNE2/5es/+uijIQaDIV9ExNXVVcLCwrp+Hwr5egBwMn3N13c7ZYTrdLrEyZMnDy0vL3ez3JN8PQDYSE8nif7U13y9yWRyqa6udh83blzT5s2bL61cuTJk4cKFUTk5OSXk6wHAid1tvj4kJKTd09PT/Mwzz/woIvL0009fy8/P9xYhXw8ATseafL1KpZIJEybU7927109EZN++ff7x8fHk6wHAGVmTrxcRefvtty+98cYb4RqNRvfRRx8Nfvfddy+RrwcAG7DH2jD5egBwQPY4KI6GfD0AwOYYFACAIhgUAIAiGBQAgCIYFACAIhgUAFCINfn6uro6leW5Eq1WqwsICBjx/PPPR1neT74eAJyINfn6gIAAc2FhYYHlIzw8vG369Oldz66QrwcAG8nJyYmqqalRNF8fHBxsTE9P77d8veX66dOnPa5evere/fehkK8HACfT13z9TdcDn3jiiWuWXAv5egCwoZ5OEv2pr/n67nbu3Bm4bdu2EsufydcDgBO723y9xddff+3V0dHhkpKSYrRcI18PAE7Gmny9xQcffBA4ZcqUa92vka8HACdjbb5eRGT37t2Bc+bM6RoU8vUAYAP2WBsmXw8ADsgeB8XRkK8HANgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKsSZfLyKycePGQI1Go9NoNLqUlJT4qqqqrudTyNcDgBOxJl9vMplk2bJlUYcOHTIYDIYCvV7f/NZbbwVb7k2+HgBspODs0qjrTQZF8/U+vhqjLnFNv+TrVSqVdHZ2SmNjoyokJEQaGhpUarW6qy7sGH9MmwAAIABJREFUCPl6BgUAFNTe3i5JSUm6ixcvejz77LM1d5Ovf/vtty+OGjVK7+Xl1RETE9OalZV10XJP8vUAYCM9nST6U1/z9a2trS6bNm0KysvLK0hMTGydO3du9PLly8PWrl1bRb4eAJzY3ebrv/nmGy8REb1e36pSqWTWrFnX8vLyfETI1wOA07EmXx8TE2MqLi72rKysdBMR2b9/v79Go2kRIV8PAE7Hmnx9bGysKSMjo2rcuHEJGo1Gd/r0ae8333yzinw9ANiAPdaGydcDgAOyx0FxNOTrAQA2x6AAABTBoAAAFMGgAAAUwaAAABTBoACAQqzN17///vsBGo1Gp1ar9fPmzYvsfm/y9QDgRKzJ11++fNl1xYoVkV999ZWhuLj4TE1NjduuXbu6xoZ8PQDYyCtnL0YVXm9RNF+v9fE0vpMY3S/5+qKiIo+4uLjW8PDwdhGRCRMmNHzyyScBaWlpjSKOka/nhAIACmpvbxetVqsLCQkZ8cADDzT0Nl+v0+laz58/71lUVDTAZDLJ7t27AyorKwdY7km+HgBspKeTRH/qa74+KCioY926dWXTp08fqlKpZPTo0U2lpaUeIiLk6wHAid1tvl5EZPbs2fU//PBD4alTpwoTEhJahg0b1ipCvh4AnI41+XoRkYqKCjcRkdraWtfNmzcHz58/v1aEfD0AOB1r8vUiIvPmzYsaNmyY/r777tMuWbKkavjw4a3k6wHABuyxNky+HgAckD0OiqMhXw8AsDkGBQCgCAYFAKAIBgUAoAgGBQCgCAYFABTSm3z9l19+6W15fiQhIUGXlZU1yPI5R44c8dZoNLro6OikuXPnRpnN5q57k68HACfSm3z9v/zLv7ScPn26oLCwsODzzz8/98orr8RYcinz58+P2bBhQ1lpaWn+hQsXPHfs2OFvuTf5egCwkYwd30cZLjcqmq/XhPoZ35o2wqp8vZ+fX9exo7m5uev1srIy96amJtXEiROvi4g89dRTV3NycgKefPLJBhHy9QDgdHqTrz948KCPWq3Wjxo1Sr9u3boyd3d3KSsrcw8LC+uKOcbExLRVVVW5W+5Jvh4AbKSnk0R/6k2+/uGHH75eXFx85u9//7vns88+Gzdt2rT62+TnRYR8PQA4tZ7y9RajRo1q8fb27jhx4oRXbGysyXIiEREpKysbEBoaahIhXw8ATqc3+frCwsIBlv/oGwyGASUlJZ7x8fFtMTExJh8fH3Nubq6P2WyWDz/8cHBaWtqPIo6Tr+dbXgCgkPLycve5c+fGdXR0SGdnp0taWtq1m/P1ubm5vqmpqWFubm6dKpWqMzMz82JYWFi7iMiGDRvKXnjhhbiWlhaXhx56qGH69On1t8vX19XVuWVnZw/56VrJ2LFjmzMzMy/NmDFj2KpVqyL0er2RfD0A9JE91obJ1wOAA7LHQXE05OsBADbHoAAAFMGgAAAUwaAAABTBoAAAFMGgAIBCrM3XL1y4MCI0NHS4t7f3yJvvTb4eAJyItfn69PT0H/Py8s7e6t7k6wHAVnJ+FyU1BYrm6yVYZ5T0P/VLvl5ExNLluhXy9QDgZPqar7/TPcnXA4Ct9HCS6E99zdd7e3vfNltCvh4AnNjd5ut7uhf5egBwMtbk63u6r6Pk6xkUAFBIeXm5e0pKSoJGo9GNHDlS99BDDzXcKl+fmJio12q1uvT09GHd8/Xz5s2LDAkJGd7S0qIKCQkZvmTJkvDb5euzs7OHWP758bFjx7xERDIzMy+tX78+NDo6Oqmurs6NfD0A9JE91obJ1wOAA7LHQXE05OsBADbHoAAAFMGgAAAUwaAAABTBoAAAFMGgAIDC2tvbJTExUffQQw+pLdcs+frLly+73nvvvRpvb++Rc+bMib75vcuWLQt97733AleuXBkybNgwvUaj0f3617/WGAyGri7X+vXrB8fExCTFxMQkrV+/fvDP9XXdCYMCAApbtWpViFqtbu5+zZKv9/b27nzjjTcqV65ceelW7z148KB/WlpaQ3JysvHUqVNnDQZDQXp6et3ixYsjRUSqq6td16xZE378+PGzJ06cOLtmzZrw2tpa15/j67oT4pAAfpFe/9vrUcV1xYrm69UBauOb97/ZY3Ty/Pnz7gcOHBi4bNmyqnXr1oVYrlvy9f7+/uZJkyY1FRUVedz83mvXrqlMJpMqPDy8PTw8vNFyfdy4cU0ff/zxYBGRnJycgePHj28ICQnpEBEZP358w6effjrwt7/97TXlvtK+4YQCAAr63e9+F7V27dpLltSKiMjN+frb2bNnj//48eMbbr6+cePGoIkTJ9aLiFRUVLhHRkZ2tb8iIiLaKioqeu7f/0w4oQD4RbrTSaI/fPTRRwOHDBnSnpKSYvzss8/8LNd37drl3z1ffzv79+8f+MILL/zDk/4bNmwI/P777703btxYJCK3y9Qr8Le3HoMCAAo5evSo7xdffDEoIiJiYGtrq+r69euqtLS0OBcXF8nIyLhji+u7777zefDBB8ssf87JyfH74x//GHbkyJEiLy+vThGRyMhI06FDh7rGqqKiYsADDzzQeKv7/dz4lhcAKORPf/pTRXV19Q8VFRWnt23bduH/s3fvwVHX9/7H39kkkDskkOuSG2yWzS4XIcULglqhIkJLQkFirBStxx/lQBEUGTg1ZaynI2jEyojjBYVQcWyZJkRJgR5CA4oFg1WJuSyBsJILSYCYC0uSTTa/P3C3kUoSdr9xN+7zMcPM4bv7TUn/OK9+knyfufXWW1tycnIqe+brr6eoqMhPo9G0+fhc/d/5H330kf+KFSvi9+zZU6FWqztt70tNTW0qLCwMaWho8G5oaPAuLCwMSU1N/Y/fteIKnFAAYAB9+OGHAT3z9SIiarV6fGtrq7fFYvHav3//8Pz8fGNeXt6we+65xz4Ma9asiTWbzd4LFy4cIyISExPTUVBQUBEZGdm1Zs2ampSUlGQRkaeeeqrG9g16V6M2DOAHwx1rw/3N10+dOjXp3XffPRsfH/+9/pbFazlTG+aEAgADaNOmTbX9ed/Ro0dPDfS/ZaDxPRQAgCIYFACAIhgUAIAiGBQAgCIYFACAIhgUAFBYb/n6nJycEIPBkKzVavUGgyE5Ly8vuOe95OsBAHa95esjIiIse/furTAajSXbt2+vfPTRRxN7vo98PQC4mZr1/xPbfuqUovn6oUlJ5pg//K9T+fqexeGUlJS2jo4O1ZUrV7z8/f27ydcDAOxuJF+/Y8eOUL1eb7aFH8nXA4Ab6uskMRBuJF9fVFTkl5mZqd63b5/9CXny9QAAEel/vv706dO+CxYs0Gzbtq3SYDC0266TrwcAiEj/8vUXLlzwvu+++5I2bNhQdc8991y23Uu+HgDQq2vz9Zs2bYr46quvhj733HMxzz33XIyIyMGDB8nXA4A7IV/vPPL1AOCmyNcDAHCDGBQAgCIYFACAIhgUAIAiGBQAgCIYFABQWG/5+kOHDgXodDq9TqfTjx07Vp+dnT28573k6wEAdr3l63/0ox+1nTx5sqSsrKzkwIEDpx5//PF4i+Xfj56QrwcAN3MwuzT2UnWrovn6MHWQecbiZKfy9cHBwVbbtStXrnj1DDuSrwcA2PUnX19QUBCo0WgMkydPNmzevNnk63u1Pk++HgDcUF8niYHQ33z93XfffbmiouLLTz/91O+Xv/xl4oIFC5oCAgK6ydcDAESk//l6m8mTJ7cFBAR0FRUV+d9xxx1m8vUAABHpX76+rKxsiO2b8EajcUhlZaVfUlJSB/l6AECvrs3XHzx4MGju3LnRPj4+3SqVqjsrK+ur6OjozldffXUE+XoAcBPk651Hvh4A3BT5egAAbhCDAgBQBIMCAFAEgwIAUASDAgBQBIMCAArrLV9v+/upU6eGBAQETMrMzIzseS/5egCAXW/5etvfly9fHnvnnXf+xxPu5OsBwM3sf/Wl2AvnTIrm60fGxptn/fpxp/L1IiI7d+4cnpCQ0B4YGGjteS/5egCAXV/5+ubmZlVWVlbUpk2baq69l3w9ALihvk4SA6E/+fonn3wyZvny5XXDhg2zXns/+XoAgIj0L19/4sSJwL1794b+7ne/G9Xc3OytUqnEz8/Pun79+obBnq8nDgngB8Od4pAffPBBcFZWVuTBgwcrkpOT9aWlpSU9vwwmIrJ69eqYoKCgrmeeeaauqKjIb8OGDTEffPDBGZGr+fr09PQx+fn5p8aPH99uu6eurs578uTJ+s8++6xEROSmm27Sf/rppyVKFYeJQwKAm7o2X389eXl5w8jXA4CbcKcTig35egCAIsjXAwBwgxgUAIAiGBQAgCIYFACAIhgUAIAiGBQAUFhv+fry8vIhfn5+k3U6nV6n0+kzMjLiet47mPP1/NgwACjMlq9vbW21Z+V75utjY2Pby8rKSr7r3oKCgpCcnJwzJ06c8H/iiSdKg4ODrRs3bgxftWrVqL17956x5etPnDhRolKpZNKkSfr09PSvw8PDXf5wI4MC4Afp0m5jrOX8ZUXz9b5RgeawBVqn8vUXLly47u8uIV8PALDrK18vIlJVVTUkOTlZP2XKlLH79u0Lsr2PfD0AuKG+ThIDoT/5+ri4OEtlZeUXUVFRXUeOHAlYuHChpqSkpDgsLMxKvh4AICL9y9f7+/t3+/v7d4mITJ8+3RwXF9deXFzsd8cdd5gHe76eL3kBgEJeeeWV6rq6ui+qq6tPbt++/cytt97akpOTU1laWup/2223XRERqamp8ens7BQRkZKSkiFnz54dOnbs2PaioiI/jUbT5uNz9X/nf/TRR/4rVqyI37NnT4Vare60/WekpqY2FRYWhjQ0NHg3NDR4FxYWhqSmpv7H76Z3BU4oADCArs3XHzhwIOjZZ59Ve3t7d3t7e3e/9NJLpsjIyK5XXnllJPl6AHAT5OudR74eANwU+XoAAG4QgwIAUASDAgBQBIMCAFAEgwIAUASDAgAK6y1fLyJy7Ngx/5tuukmn0WgMWq1Wbzab7e2UwZyvZ1AAQGG2fH3Pa7Z8vcVikYceeijx1VdfNVVUVHx5+PDh8iFDhtgfCCwoKAiZN29ec0pKivmzzz4rNRqNJampqY2rVq0aJSJiy9cfP368tKioqHTjxo0xDQ0N1y0Yf594DgXAD1Jubm5sfX29ovn6iIgIc2pqqlP5+r/+9a/DkpOTr9hSLFFRUfan3MnXAwDs+srXl5eXD/Xy8pJp06Yl6fX65N/+9rf20SFfDwBuqK+TxEDoT76+s7PT65NPPgkqKioqDQoKsk6fPl07ZcoU87x581rI1wMARKR/+fpRo0Z13HrrrS3R0dGdIiI/+clPmoqKigLmzZvXQr4eACAi/cvXp6WlNZeWlvq3tLSoLBaLfPTRR8EGg6GNfD0AoFfX5uvDw8O7li9fXjdp0qRkLy8vmTFjRlN6enpTZmZmJPl6AHAT5OudR74eANwU+XoAAG4QgwIAUASDAgBQBIMCAFAEgwIAUASDAgAK6y1f/+qrr4bpdDq97Y9KpUo5evSov+195OsBAHa95et//etfXyorKyspKysryc7OroyJiemYOnWq/b3k6wHAzZSUro293GpUNF8fGKQ165M3OpWv7/ne7OzssLS0NHt2nnw9AMCur3x9z/fu2bMndPHixRdtfydfDwBuqK+TxEDoT77epqCgINDf3986ZcqUNts18vUAABHpX77e5p133gmbP3/+t75MRb4eACAi/cvXi4h0dXXJBx98ELp48WL7oJCvBwD06tp8vYjI3/72t+CoqKgOvV5v/15IXl7eMPL1AOAmyNc7j3w9ALgp8vUAANwgBgUAoAgGBQCgCAYFAKAIBgUAoAgGBQAU1lu+vr293Wv+/PkJWq1WP3r0aMO6deuiet5Lvh4AYNdbvv7tt98O7ejoUBmNxpLPP/+8NDs7O7y8vNw+FuTrAcDNPF76VWzZ5TZF8/W6QD/zS8lxTuXrd+/ePcxsNqssFotcvnzZy9fXt3v48OFdIuTrAQA99JWvX7JkSWNAQIA1IiJiYmJi4oTly5eft40D+XoAcEN9nSQGQn/y9YWFhQEqlar7/PnzX1y4cMH79ttv1913333Ner2+g3w9AEBE+pev37lz54hZs2Y1DR06tFutVndOmTKl9ejRo4F6vb6DfD0AQET6l6+Pi4vrOHToUIjVapXm5mbVp59+Gjh+/Pg28vUAgF5dm69/6qmn6tPT0xO0Wq2hu7tbMjIyLtxyyy1XMjMzI8nXA4CbIF/vPPL1AOCmyNcDAHCDGBQAgCIYFACAIhgUAIAiGBQAgCIYFABQWG/5+ra2Nq8FCxYkaLVa/dixY/U9Ey0i5OsBAD30lq/fvHnzSBERo9FYUlBQYFy7du2orq5/P5dIvh4A3Mya3Z/HGs+3KJqv10YFm59fMNGpfP3jjz+utoUi1Wp1Z0hISNfhw4cDfvzjH5vJ1wMA7PrK10+cONH8/vvvD7dYLFJWVjakuLg4wGQyDREhXw8Abqmvk8RA6E++fuXKlRdKS0v9x48fr1er1e2TJ09utQUhydcDAESkf/l6X19f2bZtm33sJk2apEtOTm4TESFfDwAQkf7l61taWlTNzc0qEZGcnJwQb2/v7pSUFPL1AIDeXZuvr6mp8Zk1a5ZWpVJ1R0VFWXbt2lUpIpKXlzeMfD0AuAny9c4jXw8Abop8PQAAN4hBAQAogkEBACiCQQEAKIJBAQAogkEBAIX1lq8/f/689y233KINCAiYtHjx4rie9x05ciRAq9Xq4+Lixi1ZsiTWarXaXzOZTL6333570tGjR/1vuukmnUajMWi1Wv0bb7wRantPWVnZkAkTJuji4+PHzZkzZ3RbW9v32mRhUABAYb3l6wMCArqfeeaZmg0bNlRde9+yZcvit27dajp79mzxmTNn/Hbv3h1iey03Nzdk5syZzUFBQdadO3dWVlRUfHngwIFT69evj71w4YK3iMjq1atHLV++vM5kMhUPGzas849//OPIgf9s/43nUAD8MOX+d6zUlyiar5cIvVlSX3EqXx8SEmKdNWtWa3l5+dCe95lMJt/W1lbVzJkzL4uIPPjggxdzc3ND77///mYRkQMHDgx75plnaiZMmNBuuychIcESFhbWWVtb6xMWFtb18ccfB+/Zs+eMiMgjjzxyccOGDTFr165tUPK/gt5wQgEABfWVr7/efSaTyTc6Otr+lHx8fHxHbW2tr8jVL6GdPn3aLyUlpa3nPYcOHQqwWCxeer2+va6uzic4OLjL1/dqyT4hIaGjrq5uiHyPOKEA+GHq4yQxEPqTr7+e3rL0hw4dCpw8efLlnq+ZTCbfhx9+ePS2bdsqvb29r3f/99rWYlAAQCH9yddfT0JCgsV2IhERMZlMQ6KioiwiIh988MGwe++91x6OvHTpkmr27NmazMzM6hkzZlwWEYmKiupsaWnxtlgs4uvrK2fPnh0SERHxvXbB+JIXACikP/n664mPj7cEBgZaDx48GGi1WuWdd94ZMW/evK9FRA4fPhwyd+7cZhGRtrY2rzlz5mjS09MvPvLII/bgpEqlkltvvbXl7bffDhUReeutt0bMnTv364H8fK/FoADAALo2Xy8iolarxz/99NOxu3fvHhEZGTnhxIkTfiIiW7duNS1dujQhPj5+XEJCQvvChQubampqfIYOHWoNCwuzioi89dZboZ988knQrl27Rup0Or1Op9MfPXrUX0QkKyurasuWLVFxcXHjGhsbfVauXPm9lpfJ1wP4wRjM+frr2bp1a1hVVdWQP/zhD71+yUwpzuTrGRQAPxjuOCiDjTODwpe8AACKYFAAAIpgUAAAimBQAACKYFAAAIpgUABAYY7m61esWKGOioqaEBAQMOnaj0m+HgA8kKP5+tTU1K+PHTtW+l0fk3w9ALjI0x89HVvRWKFovl4TqjH//vbfD0i+XkTE1uX6LuTrAcDDOJqv7w35egBwob5OEgPBmXx9b8jXA4CHcSZf3xvy9QDgYZzJ1/eGfD0A4Iby9UuXLh0VGRk5oa2tTRUZGTlh9erVMeTrAcAF3LE2TL4eAAYhdxyUwYZ8PQDA5RgUAIAiGBQAgCIYFACAIhgUAIAiGBQAUJgj+fqWlhbVXXfdpUlMTDRoNBrDsmXL1D0/Jvl6APBAjubrn3jiibrKysovi4uLS44dOxb05z//OcT2Gvl6AHCRmvX/E9t+6pSi+fqhSUnmmD/874Dk64ODg60//elPW0RE/Pz8uidMmGA+d+6cvRZMvh4APIwS+foLFy54//3vfx8+e/bsZhHy9QDgUn2dJAaCEvl6i8Ui8+fPH/3YY4/V6fX6DhHy9QDgcZTI12dkZCSMHj26LTMzs952jXw9AHgYZ/P1v/nNb2Kam5u9t23b9q3T1WDJ13NCAYABdL18fWtrq7fFYvHav3//8Pz8fOPw4cO7tmzZEp2YmNhmMBj0IiKPPfZYfXp6+tffla9vbGz02bVr18hvrlVOnTr1SlZWVtWiRYvGPPvss2qDwWAmXw8ADnLH2jD5egAYhNxxUAYb8vUAAJdjUAAAimBQAACKYFAAAIpgUAAAimBQAEBhjuTrRUSmT5+eNHbsWL1GozFkZGTEdXZ22l8jXw8AHsjRfP2ePXtOl5eXlxiNxi8vXrzo+9Zbb9nHgnw9ALjIwezS2EvVrYrm68PUQeYZi5MHJF8vImJ7Gt5isXhZLBYvL69/HzDI1wOAh3E2Xz9t2rSk8PDwiYGBgV0PP/xwowj5egBwqb5OEgNBiXz9hx9+eMpsNnulpaWNfv/990PS0tKaydcDgIdRIl8vIhIQENA9d+7cr3NycoanpaU1k68HAA/jTL6+qalJZTKZfEWu/pKtffv2DdPpdFdEyNcDAKT/+fqIiIjOOXPmaDo6OrysVqvX7bff3rxmzZqGmpoaH/L1APA9c8faMPl6ABiE3HFQBhvy9QAAl2NQAACKYFAAAIpgUAAAimBQAACKYFAAQGGO5utt7r77bk1SUpKh5zXy9QDggRzN14uI7NixY3hgYOB/RCTJ1wOAi+x/9aXYC+dMiubrR8bGm2f9+vEBy9c3NTWpXn755cjXX3/dlJ6ePqbna+TrAcDDOJOvX716tXrlypV1QUFB1p7XydcDgAv1dZIYCM7k648ePepfWVk5dNu2befKy8u/NQTk6wHAwziTrz9y5EhQcXFxgFqtHt/Z2el16dIln5tvvnns8ePHy8nXA4CHcSZfv3bt2ob6+vovqqurTx4+fLgsISGh/fjx4+Uigydfz6AAwAC6Xr7+6aefjt29e/eIyMjICSdOnPC73v3Xy9fv2rVrpE6n0+t0Ov3Ro0f9RUSysrKqtmzZEhUXFzeusbHRh3w9ADjIHWvD5OsBYBByx0EZbMjXAwBcjkEBACiCQQEAKIJBAQAogkEBACiCQQEAhTmar7/55pvHJiQkjLM9X1JdXW2vmZCvBwAP5Ey+Pjs7+0xZWVlJWVlZiVqt7rRdJ18PAC5yabcx1nL+sqL5et+oQHPYAu2A5et7Q74eADyMM/l6EZFHH300QafT6desWRNttV6t2JOvBwAX6uskMRCcydeLiLz33ntnEhMTLY2Njaq5c+eO2bp164jly5dfJF8PAB7GmXy9iEhiYqJFRCQ0NNS6aNGiS8ePHw8UkYvk6wHAwziTr7dYLFJbW+sjItLe3u6Vn58/bNy4cVdEBk++nhMKAAyg6+XrW1tbvS0Wi9f+/fuH5+fnG5OSkjpmzpyZZLFYvKxWq9f06dObV69e3XC9fH1jY6PPrl27Rn5zrXLq1KlXsrKyqhYtWjTm2WefVRsMBjP5egBwkDvWhsnXA8Ag5I6DMtiQrwcAuByDAgBQBIMCAFAEgwIAUASDAgBQBIMCAApzNF/f1tbm9cADD8QnJCSMS0xMNGzfvn247TXy9QDggRzN169bty46PDzccvbs2eKKioovZ82a1Wp7jXw9ALhIbm5ubH19vaL5+oiICHNqauqA5evffffdkUajsVhExNvbW6Kjo+2/D4V8PQB4GEfz9T1OGTF6vT559uzZo8+dO+cjQr4eAFyqr5PEQHAmX2+xWLzq6up8p02b1vrmm29WbdiwIXLFihWxubm5leTrAcDDOJOvj4yM7PTz87M+9NBDX4uI/OIXv7j0pz/9aaSICPl6APAwzuTrVSqVzJgxo2nv3r3BIiL5+fkhSUlJ5OsBAFf1N1+fkpLS9uKLL1ZlZGQkPvnkk94jRozozM7OPku+HgBcwB1rw+TrAWAQcsdBGWzI1wMAXI5BAQAogkEBACiCQQEAKIJBAQAogkEBAIU5kq9vbGxU6XQ6ve1PaGjoxEceeSTW9jr5egDwQI7k60NDQ61lZWUltj8xMTEdCxcutD+7Qr4eAFykpHRt7OVWo6L5+sAgrVmfvHHA8vU2J0+eHHrx4kXfnr8PhXw9AHgYR/P1Pe3YsSPsZz/72SXbxyBfDwAu1NdJYiA4k6/vKScnJ2z79u2Vtr+TrwcAD+NMvt7m448/9u/q6vKaPn262XaNfD0AeBhn8vU2O3fuDEtLS7vU89pgydczKAAwgK6Xr3/66adjd+/ePSIyMnLCiRMn/Gyv5eXlhS1evNg+KNfL1+/atWuk7UeMjx496i8ikpWVVbVly5aouLi4cY2NjT7k6wHAQe5YGyZfDwCDkDsOymBDvh4A4HIMCgBAEQwKAEARDAoAQBEMCgBAEQwKACjMkXy9iMhrr70WptVq9VqtVj99+vSk2tpae82EfD0AeCBH8vUWi0XWrVsXW1hYaDQajSUGg+HK888/H2F7nXw9ALjI46VfxZZdblM0X68L9DO/lBw3IPl6q9Xq1d3dLS0tLarIyEhpbm5WaTQae114MOTrGRQAUJAtX9/U1ORtu9affP3QoUO7X3zxxa8mT55s8Pf374qPj2/Pzs7+SoR8PQC4VF8niYFBljcjAAAgAElEQVTgTL6+vb3d6/XXXw8/duxYSXJycvuSJUvi1q9fH71p06Za8vUA4GGcydf/85//9BcRMRgM7SIiDzzwwKXnnnsuSoR8PQB4HGfy9fHx8ZaKigq/mpoaHxGRffv2hWi12jaRwZOv54QCAAPoevn61tZWb4vF4rV///7h+fn5xpSUlLY1a9bUTps2bayPj0/3qFGjOnbt2lV5vXx9Y2Ojz65du0Z+c61y6tSpV7KysqoWLVo05tlnn1UbDAYz+XoAcJA71obJ1wPAIOSOgzLYkK8HALgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKczRf/8Ybb4RqtVq9RqMxLF26dFTP18jXA4AHciRff/78ee/MzMxR//jHP4wVFRVf1tfX++zZs8feAyNfDwAusmb357HG8y2K5uu1UcHm5xdMHJB8fXl5+dDExMT2mJiYThGRGTNmNP/lL38JnTdvXovI4MjXc0IBAAXZ8vU9Uyv9ydfr9fr206dP+5WXlw+xWCySl5cXWlNTM0SEfD0AuFRfJ4mB4Ey+Pjw8vGvz5s2mhQsXjlapVDJlypTWs2fPDhURIV8PAB7GmXy9iEhGRkZTRkZGk4jICy+8MNLb++rv6CJfDwAexpl8vYhIdXW1j4hIQ0OD95tvvhmxbNmyBhHy9QAAubF8/dKlS2NLSkoCRETWrl1bM2HChHby9QDgAu5YGyZfDwCDkDsOymBDvh4A4HIMCgBAEQwKAEARDAoAQBEMCgBAEQwKACist3x9Tk5OiMFgSNZqtXqDwZCcl5dnT7QcOXIkQKvV6uPi4sYtWbIk1mq12j8m+XoA8EC95esjIiIse/furTAajSXbt2+vfPTRRxNt71m2bFn81q1bTWfPni0+c+aM3+7du0Nsr5GvBwBXyf3vWKkvUTRfLxF6s6S+4lS+vmdxOCUlpa2jo0N15coVr/r6ep/W1lbVzJkzL4uIPPjggxdzc3ND77///mYR8vUA4HFuJF+/Y8eOUL1eb/b39+82mUy+0dHR9phjfHx8R21tra8I+XoAcK0+ThID4Uby9UVFRX6ZmZnqffv2nRKR6+XnRYR8PQB4nP7m60+fPu27YMECzbZt2yoNBkO7yNUvX9lOJCIiJpNpSFRUlEWEfD0AeJz+5OsvXLjgfd999yVt2LCh6p577rGfOuLj4y2BgYHWgwcPBlqtVnnnnXdGzJs372uRwZOvZ1AAYABdm6/ftGlTxFdffTX0ueeei9HpdHqdTqe3/R6UrVu3mpYuXZoQHx8/LiEhoX3hwoVN18vX79q1a6Tt/qNHj/qLiGRlZVVt2bIlKi4ublxjY6MP+XoAcJA71obJ1wPAIOSOgzLYkK8HALgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKczRfv2LFCnVUVNSEgICASdd+TPL1AOCBHM3Xp6amfn3s2LHS7/qY5OsBwEWe/ujp2IrGCkXz9ZpQjfn3t/9+QPL1/v7+3bYu13chXw8AHsbRfH1vH5N8PQC4UF8niYHgTL6+N+TrAcDDOJOv7w35egDwMM7k63tDvh4AcEP5+qVLl46KjIyc0NbWpoqMjJywevXqGPL1AOAC7lgbJl8PAIOQOw7KYEO+HgDgcgwKAEARDAoAQBEMCgBAEQwKAEARDAoAKMyRfH1LS4vqrrvu0iQmJho0Go1h2bJl6p4fk3w9AHggR/P1TzzxRF1lZeWXxcXFJceOHQv685//HGJ7jXw9ALhIzfr/iW0/dUrRfP3QpCRzzB/+d0Dy9cHBwdaf/vSnLSIifn5+3RMmTDCfO3fOXgsmXw8AHkaJfP2FCxe8//73vw+fPXt2swj5egBwqb5OEgNBiXy9xWKR+fPnj37sscfq9Hp9hwj5egDwOErk6zMyMhJGjx7dlpmZWW+7Rr4eADyMs/n63/zmNzHNzc3e27Zt+9bpinw9AKDf+frTp0/7btmyJfrUqVN+BoNBr9Pp9C+++OJI8vUA4ALuWBsmXw8Ag5A7DspgQ74eAOByDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAozJF8vYjI9OnTk8aOHavXaDSGjIyMuM7OTvvHJF8PAB7I0Xz9nj17TpeXl5cYjcYvL1686PvWW2/Zx4J8PQC4yMHs0thL1a2K5uvD1EHmGYuTByRf7+/v3217Gt5isXhZLBYvL69/HzDI1wOAh3E2Xz9t2rSk8PDwiYGBgV0PP/xwowj5egBwqb5OEgNBiXz9hx9+eMpsNnulpaWNfv/990PS0tKaydcDgIdRIl8vIhIQENA9d+7cr3NycoanpaU1k68HAA/jTL6+qalJZTKZfEWu/pKtffv2DdPpdFdEyNcDAKT/+frm5mbVnDlzNFqtVp+cnGwYOXKkZc2aNQ3k6wHABdyxNky+HgAGIXcclMGGfD0AwOUYFACAIhgUAIAiGBQAgCIYFACAIhgUAFCYo/l6m7vvvluTlJRk6HmNfD0AeCBH8/UiIjt27BgeGBjYJdcgXw8ALrL/1ZdiL5wzKZqvHxkbb57168cHLF/f1NSkevnllyNff/11U3p6+pieH5d8PQB4GGfy9atXr1avXLmyLigoyNrzfeTrAcCF+jpJDARn8vVHjx71r6ysHLpt27Zz5eXl3xoC8vUA4GGcydcfOXIkqLi4OECtVo/v7Oz0unTpks/NN9889vjx4+Xk6wHAwziTr1+7dm1DfX39F9XV1ScPHz5clpCQ0H78+PFyEfL1AADpf77+eveTrwcAF3DH2jD5egAYhNxxUAYb8vUAAJdjUAAAimBQAACKYFAAAIpgUAAAimBQAEBhjubrb7755rEJCQnjvuv5FPL1AOCBnMnXZ2dnnykrKyspKysrUavVnbbr5OsBwEUu7TbGWs5fVjRf7xsVaA5boB2wfH1vH5d8PQB4GGfy9SIijz76aIJOp9OvWbMm2mq9WrEnXw8ALtTXSWIgOJOvFxF57733ziQmJloaGxtVc+fOHbN169YRy5cvv0i+HgA8jDP5ehGRxMREi4hIaGioddGiRZeOHz8eKCIXydcDgIdxJl9vsViktrbWR0Skvb3dKz8/f9i4ceOuiJCvBwBI//P1V65cUc2cOTPpmx8n1kdHR1tWr17dQL4eAFzAHWvD5OsBYBByx0EZbMjXAwBcjkEBACiCQQEAKIJBAQAogkEBACiCQQEAhTmar29ra/N64IEH4hMSEsYlJiYatm/fPtz2Gvl6APBAjubr161bFx0eHm45e/ZscUVFxZezZs1qtb1Gvh4AXCQ3Nze2vr5e0Xx9RESEOTU1dcDy9e++++5Io9FYLCLi7e0t0dHR9t+HQr4eADyMo/n6HqeMGL1enzx79uzR586d8xEhXw8ALtXXSWIgOJOvt1gsXnV1db7Tpk1rffPNN6s2bNgQuWLFitjc3NxK8vUA4GGcyddHRkZ2+vn5WR966KGvRUR+8YtfXPrTn/40UkSEfD0AeBhn8vUqlUpmzJjRtHfv3mARkfz8/JCkpCTy9QCAq/qbrxcRefHFF6ueeeaZGK1Wq3/33XdHvPzyy1Xk6wHABdyxNky+HgAGIXcclMGGfD0AwOUYFACAIhgUAIAiGBQAgCIYFACAIhgUAFCYI/n6xsZGle25Ep1Opw8NDZ34yCOPxNruJ18PAB7IkXx9aGiotaysrMT2JyYmpmPhwoX2Z1fI1wOAi5SUro293GpUNF8fGKQ165M3Dli+3nb95MmTQy9evOjb8/ehkK8HAA/jaL7+muthP/vZzy7ZPgb5egBwob5OEgPBmXx9Tzk5OWHbt2+vtP2dfD0AeBhn8vU2H3/8sX9XV5fX9OnTzbZr5OsBwMM4k6+32blzZ1haWtqlntfI1wMAbihfLyKSl5cXtnjxYvugkK8HABdwx9ow+XoAGITccVAGG/L1AACXY1AAAIpgUAAAimBQAACKYFAAAIpgUABAYY7k60VEXnvttTCtVqvXarX66dOnJ9XW1tqfTyFfDwAeyJF8vcVikXXr1sUWFhYajUZjicFguPL8889H2O4nXw8ALvJ46VexZZfbFM3X6wL9zC8lxw1Ivl6lUkl3d7e0tLSoIiMjpbm5WaXRaOx14cGQr2dQAEBBtnx9U1OTt+1af/P1L7744leTJ082+Pv7d8XHx7dnZ2d/JUK+HgBcqq+TxEBwJl/f3t7u9frrr4cfO3asJDk5uX3JkiVx69evj960aVMt+XoA8DDO5Ov/+c9/+ouI2P7+wAMPXHruueeiRMjXA4DHcSZfHx8fb6moqPCrqanxERHZt29fiFarbRMhXw8AkP7n6xMSEixr1qypnTZt2litVqs/efJkwO9///ta8vUA4ALuWBsmXw8Ag5A7DspgQ74eAOByDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAozNF8/RtvvBGq1Wr1Go3GsHTp0lE9Pyb5egDwQI7k68+fP++dmZk56h//+IexoqLiy/r6ep89e/bYx4Z8PQC4yJrdn8caz7comq/XRgWbn18wcUDy9eXl5UMTExPbY2JiOkVEZsyY0fyXv/wldN68eS0igyNfzwkFABRky9fbUisi/cvX6/X69tOnT/uVl5cPsVgskpeXF1pTUzNEhHw9ALhUXyeJgeBMvj48PLxr8+bNpoULF45WqVQyZcqU1rNnzw4VESFfDwAexpl8vYhIRkZGU0ZGRpOIyAsvvDDS2/vq7+giXw8AHsaZfL2ISHV1tY+ISENDg/ebb74ZsWzZsgYR8vUAAOl/vl5EZOnSpbFjxowx3HrrrbrVq1fXTpgwoZ18PQC4gDvWhsnXA8Ag5I6DMtiQrwcAuByDAgBQBIMCAFAEgwIAUASDAgBQBIMCAArrLV9/6NChANvzI2PHjtVnZ2cPt73nyJEjAVqtVh8XFzduyZIlsVar1f4xydcDgAfqLV//ox/9qO3kyZMlZWVlJQcOHDj1+OOPx1ssVwspy5Yti9+6davp7NmzxWfOnPHbvXt3iO1+8vUA4Cq5/x0r9SWK5uslQm+W1FecytcHBwfbjx1Xrlzx8vK6eogwmUy+ra2tqpkzZ14WEXnwwQcv5ubmht5///3NIuTrAcDj9CdfX1BQEKjRaAyTJ082bN682eTr6ysmk8k3OjraHnOMj4/vqK2t9RUhXw8ArtXHSWIg9Ddff/fdd1+uqKj48tNPP/X75S9/mbhgwYKm6+TnRYR8PQB4nP7m620mT57cFhAQ0FVUVOSfkJBgsZ1IRERMJtOQqKgoiwj5egDwOP3J15eVlQ2xfRPeaDQOqays9EtKSuqIj4+3BAYGWg8ePBhotVrlnXfeGTFv3ryvRcjXAwDkP/P1Bw8eDEpOTjbodDp9amrqmKysrK+io6M7RUS2bt1qWrp0aUJ8fPy4hISE9oULFzaRrwcAF3DH2jD5egAYhNxxUAYb8vUAAJdjUAAAimBQAACKYFAAAIpgUAAAimBQAEBBarV6vFar1et0Ov24ceOSbddt+frz589733LLLdqAgIBJixcvjrv2/nXr1kW9+uqrYRs2bIgcM2aMQavV6m+77Tat0Wi0d7m2bNkyIj4+flx8fPy4LVu2jPi+Pre+MCgAoLDCwkJjWVlZSXFxcantmi1fHxAQ0P3MM8/UbNiwoeq77i0oKAiZN29ec0pKivmzzz4rNRqNJampqY2rVq0aJSJSV1fnvXHjxpjjx4+XFhUVlW7cuDGmoaHB+/v63HpDywvAD9LTHz0dW9FYoWi+XhOqMf/+9t87FJ205etDQkKss2bNai0vLx967XsuXbqkslgsqpiYmM6YmJgW2/Vp06a1vvfeeyNERHJzc4fdcccdzZGRkV0iInfccUfzX//612H/7//9v0uOfl5K4YQCAAqbMWNGksFgSH7hhRdGivxnvv563n///ZA77rij+drrr732WvjMmTObRESqq6t9R40a1WF7Ta1Wd1RXV/tee48rcEIB8IPk6EnCWR999FFZQkKCpbq62ufuu+/WGgyGNpPJNKRnvv569u3bN+xXv/rVt57037p1a9jnn38e8Nprr5WLyPUy9Yr9+53BCQUAFJSQkGAREVGr1Z1z5sz5+uOPPw7ct2/fsLlz5zb1de+//vWvwLvuusv+e09yc3ODX3jhhej8/PwKf3//bhGRUaNGWaqqquzfoK+urh4SExPzvWbqr4dBAQCFNDc3qxobG1W2//vQoUMh48aNu9IzX389RUVFfhqNps3H5+oXjj766CP/FStWxO/Zs6dCrVZ32t6XmpraVFhYGNLQ0ODd0NDgXVhYGJKamtrnWH0f+JIXACikqqrKJy0tTSMi0tXV5fXzn//8YlRUVGfPfL3I1R8tbm1t9bZYLF779+8fnp+fb8zLyxt2zz332IdhzZo1sWaz2XvhwoVjRERiYmI6CgoKKiIjI7vWrFlTk5KSkiwi8tRTT9XYvkHvatSGAfxguGNtuL/5+qlTpya9++67Z+Pj41365StnasOcUABgAG3atKm2P+87evToqYH+tww0vocCAFAEgwIAUASDAgBQBIMCAFAEgwIAUASDAgAK6itfn5OTE2IwGJK1Wq3eYDAk5+XlBfe8fzDn6/mxYQBQWGFhoTE6Orqz5zVbvj4iIsKyd+/eioSEBMsnn3ziN2fOHG19ff0XtvcVFBSE5OTknDlx4oT/E088URocHGzduHFj+KpVq0bt3bv3jC1ff+LEiRKVSiWTJk3Sp6enfx0eHu7yhxsZFAA/SDXr/ye2/dQpRfP1Q5OSzDF/+F+n8vU9i8MpKSltHR0dqitXrnj5+/t3k68HAHxLf/P1O3bsCNXr9WZb+JF8PQC4IUdPEs7qb76+qKjILzMzU71v3z77E/Lk6wEAdv3J158+fdp3wYIFmm3btlUaDIZ223Xy9QAAEelfvv7ChQve9913X9KGDRuq7rnnHvt4kK8HANj1J1+/adOmiK+++mroc889F/Pcc8/FiIgcPHiQfD0AuBPy9c4jXw8Abop8PQAAN4hBAQAogkEBACiCQQEAKIJBAQAogkEBAAX1la8/dOhQgE6n0+t0Ov3YsWP12dnZw3veP5jz9TyHAuAHwx2eQ1Gr1eOLiopKr83Xr1q1KmbixInmn//8581+fn5WX19fMZlMvpMmTdLX1dV97ut7te94yy23aG35+rvuuuuyLV9/+PDhYFu+PiUlRd8zX/+vf/2rRKl8Pc+hAMA1DmaXxl6qblU0Xx+mDjLPWJzsVL4+ODjYart25coVr55hR/L1AIBv6StfX1BQEKjRaAyTJ082bN682WQ7nZCvBwA35OhJwln9ydfffffdlysqKr789NNP/X75y18mLliwoCkgIKCbfD0AwK4/+XqbyZMntwUEBHQVFRX5i5CvBwB8oz/5+rKysiEWy9X//280GodUVlb6JSUldZCvBwDY9Sdff/DgwaC5c+dG+/j4dKtUqu6srKyvoqOjO1999dUR5OsBwE24w48NX4t8PQBAEeTrAQC4QQwKAEARDAoAQBEMCgBAEQwKAEARDAoAKKivfL3t76dOnRoSEBAwKTMzM7Ln/YM5X8+gAIDCCgsLjWVlZSXFxcWltmt79+4ddu+999ofXFy+fHnsnXfe+R9PuBcUFITMmzevOSUlxfzZZ5+VGo3GktTU1MZVq1aNEhGpq6vz3rhxY8zx48dLi4qKSjdu3BjT0NDg/f18Zr3jORQAP0j7X30p9sI5k6L5+pGx8eZZv37cqXy9iMjOnTuHJyQktAcGBlp7vod8PQDgW3rL1zc3N6uysrKiNm3aVHPtfeTrAcANOXqScFZf+fonn3wyZvny5XXDhg2zXnvvYM/XMygAoKDvytd/8cUXAWvWrDkvInLixInAvXv3hv7ud78b1dzc7K1SqcTPz8+6fv36hm/y9Sbbx7Ll648cOVLeM19fWFgYbHtPdXX1kDvvvLPl2n+HK/AlLwBQSH/y9SdOnCivrq4+WV1dffK//uu/6leuXFm7fv36BvL1AAC7/uTrrycvL28Y+XoAcBPk651Hvh4A3BT5egAAbhCDAgBQBIMCAFAEgwIAUASDAgBQBIMCAArqK19fXl4+xM/Pb7JOp9PrdDp9RkZGXM/7B3O+nh8bBgCFFRYWGqOjozt7XuuZr4+NjW0vKysr+a57CwoKQnJycs6cOHHC/4knnigNDg62bty4MXzVqlWj9u7de8aWrz9x4kSJSqWSSZMm6dPT078ODw93+cONDAqAH6RLu42xlvOXFc3X+0YFmsMWaJ3K11+4cOG6v7uEfD0A4Ft6y9eLiFRVVQ1JTk7WT5kyZey+ffuCbPeRrwcAN+ToScJZfeXr4+LiLJWVlV9ERUV1HTlyJGDhwoWakpKS4rCwMOtgz9dzQgEABX1Xvn7fvn3D5s6d2yQi4u/v3x0VFdUlIjJ9+nRzXFxce3FxsZ+IyDf5+su2j2XL1+fn51f0zNdXVVXZv0FfXV09JCYmxqX9LxsGBQAU0p98fU1NjU9n59Xv15eUlAw5e/bs0LFjx7aTrwcA2PUnX3/gwIGgZ599Vu3t7d3t7e3d/dJLL5kiIyO7XnnllZHk6wHATZCvdx75egBwU+TrAQC4QQwKAEARDAoAQBEMCgBAEQwKAEARDAoAKKivfL2IyLFjx/xvuukmnUajMWi1Wr3ZbLa3U8jXAwDsesvXWywWeeihhxJ37NhRedttt105f/6895AhQ+wPBJKvBwA3k5ubG1tfX69ovj4iIsKcmprqVL7+r3/967Dk5OQrthSLreslQr4eAHCN3vL15eXlQ728vGTatGlJer0++be//W2k7T7y9QDghhw9STirr3x9Z2en1yeffBJUVFRUGhQUZJ0+fbp2ypQp5nnz5rWQrwcA2PWVrx81alTHrbfe2hIdHd0ZHBxs/clPftJUVFQUIEK+HgDwjf7k69PS0ppLS0v9W1paVBaLRT766KNgg8HQRr4eAGDXn3x9eHh41/Lly+smTZqU7OXlJTNmzGhKT09vyszMjCRfDwBugny988jXA4CbIl8PAMANYlAAAIpgUAAAimBQAACKYFAAAIrgp7wAQEFqtXp8YGBgl0qlEh8fn+7i4uJSkav5+jfffHPknXfe2fLHP/4xyvZ+o9Ho/+GHH5ZMnTr1isjVfH1cXFxHXV2d786dO0d6e3t3jxgxonPHjh1ntVpth8jVfP0LL7wQLSLy5JNP1q5YseKiKz7Xa/EcCoAfDHd4DkWtVo8vKioqvTZfv2rVqpiJEyealyxZ8rXt2vHjx/3nz5+vqaqqOmm7dsstt2ht+fq77rrrsi1ff/jw4WBbvj4lJUXfM1//r3/9q0SpfD3PoQDANUpK18ZebjUqmq8PDNKa9ckbncrX97yWnZ0dlpaWZs/Ok68HAHxLb/n6nu/bs2dP6OLFi+1friJfDwBuyNGThLP6ytfbFBQUBPr7+1unTJnSZrtGvh4AYNdXvt7mnXfeCZs/f/63vkxFvh4AICL9y9eLiHR1dckHH3wQunjxYvugkK8HANj1J18vIvK3v/0tOCoqqkOv19u/F5KXlzeMfD0AuAl3+LHha5GvBwAognw9AAA3iEEBACiCQQEAKIJBAQAogkEBACiCQQEABanV6vFarVav0+n048aNS7Zd/7//+7/A9PT0+Pb2dq/58+cnaLVa/ejRow3r1q2L6nn/unXrol599dWwDRs2RI4ZM8ag1Wr1t912m9ZoNNqfjt+yZcuI+Pj4cfHx8eO2bNky4vv8/HrDoACAwgoLC41lZWUltt+FIiKyd+/eYffee2/T22+/HdrR0aEyGo0ln3/+eWl2dnZ4eXm5fSwKCgpC5s2b15ySkmL+7LPPSo1GY0lqamrjqlWrRomI1NXVeW/cuDHm+PHjpUVFRaUbN26MaWho8HbF53ktnkMB8IP0eOlXsWWX2xTN1+sC/cwvJcc5la/fvXv3MLPZrLJYLHL58mUvX1/f7uHDh3eJkK8HAFyjt3z9kiVLGgMCAqwRERETExMTJyxfvvy8bRzI1wOAG3L0JOGsvvL1hYWFASqVqvv8+fNfXLhwwfv222/X3Xfffc16vb6DfD0AwK6vfP3OnTtHzJo1q2no0KHdarW6c8qUKa1Hjx4NFCFfDwD4Rn/y9XFxcR2HDh0KsVqt0tzcrPr0008Dx48f30a+HgBg1598/VNPPVWfnp6eoNVqDd3d3ZKRkXHhlltuuZKZmRlJvh4A3AT5eueRrwcAN0W+HgCAG8SgAAAUwaAAABTBoAAAFMGgAAAUwaAAgIL6yte3tbV5LViwIEGr1erHjh2r/+CDD4J73k++HgBg11u+fvPmzSNFRIxGY0lBQYFx7dq1o7q6/v1cIvl6AHAza3Z/Hms836Jovl4bFWx+fsFEp/L1jz/+uNoWilSr1Z0hISFdhw8fDvjxj39sJl8PAPiW3vL1EydONL///vvDLRaLlJWVDSkuLg4wmUxDRMjXA4BbcvQk4ay+8vUrV668UFpa6j9+/Hi9Wq1unzx5cqstCEm+HgBg11e+3tfXV7Zt23aurKys5ODBg6ebm5t9kpOT20TI1wMAvtGffH1LS4uqublZJSKSk5MT4u3t3Z2SkkK+HgDwb/3J19fU1PjMmjVLq1KpuqOioiy7du2qFBHJy8sbRr4eANwE+Xrnka8HADdFvh4AgBvEoAAAFMGgAAAUwaAAABTBoAAAFMGgAICC+srXnz9/3vuWW27RBgQETFq8eHFcz3uPHDkSoNVq9XFxceOWLFkSa7Va7a+ZTCbf22+/Peno0aP+N910k06j0Ri0Wq3+jTfeCLW9p6ysbMiECRN08fHx4+bMmTO6ra3te22yMCgAoLDe8vUBAQHdzzzzTM2GDRuqrr1v2bJl8Vu3bjWdPXu2+MyZM367d+8Osb2Wm5sbMnPmzOagoCDrzp07KysqKr48cODAqfXr18deuHDBW0Rk9erVo5YvX15nMpmKh1q7gJoAACAASURBVA0b1vnHP/5x5PfzGV/FcygAfphy/ztW6ksUzddLhN4sqa84la8PCQmxzpo1q7W8vHxoz9dNJpNva2uraubMmZdFRB588MGLubm5offff3+ziMiBAweGPfPMMzUTJkxot92TkJBgCQsL66ytrfUJCwvr+vjjj4P37NlzRkTkkUceubhhw4aYtWvXNjj+Cd8YTigAoLDe8vXXu8dkMvlGR0fbn5KPj4/vqK2t9RUR6ezslNOnT/ulpKS09bzn0KFDARaLxUuv17fX1dX5BAcHd/n6Xi3ZJyQkdNTV1Q2R7xEnFAA/TA6eJJzVV77+enrL0h86dChw8uTJl3u+ZjKZfB9++OHR27Ztq/T29r7e/d9rW4sTCgAoqK98fW/32U4kIiImk2lIVFSURUTkgw8+GHbvvffa77906ZJq9uzZmszMzOoZM2ZcFhGJiorqbGlp8bZYrh5yzp49OyQiIuJ77YIxKACgkP7k668nPj7eEhgYaD148GCg1WqVd955Z8S8efO+FhE5fPhwyNy5c5tFRNra2rzmzJmjSU9Pv/jII4/Yg5MqlUpuvfXWlrfffjtUROStt94aMXfu3K8H7rP9T3zJCwAU0p98vcjVHy1ubW31tlgsXvv37x+en59vTElJadu6davpV7/6VWJbW5vXj3/84+aFCxc21dTU+AwdOtQaFhZmFRF56623Qj/55JOgxsZGn127do385lrl1KlTr2RlZVUtWrRozLPPPqs2GAzmlStXfq/lZfL1AH4wBnO+/nq2bt0aVlVVNeQPf/jDeaX/bd/FmXw9gwLgB8MdB2WwcWZQ+B4KAEARDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAoyJl8/YoVK9RRUVETAgICJl37ccnXA4AHcjRfn5qa+vWxY8dKr70uQr4eAFzm6Y+ejq1orFA0X68J1Zh/f/vvByRfLyJi63J9F/L1AOCBHMnX94Z8PQC4kKMnCWc5mq/vDfl6APBAjubre0O+HgA8jDP5+t4Mlnw9gwIACqmqqvK59dZbdWPHjtVPnjw5+Z577vn6evn6p59+Onb37t0jIiMjJ5w4ccJPRGTp0qWjIiMjJ7S1takiIyMnrF69OuZ6+fpdu3aN1Ol0ep1Opz969Ki/iEhWVlbVli1bouLi4sY1Njb6kK8HAAe5Y22YfD0ADELuOCiDDfl6AIDLMSgAAEUwKAAARTAoAABFMCgAAEUwKACgIEfz9S0tLaq77rpLk5iYaNBoNIZly5ape35c8vUA4IEczdc/8cQTdZWVlV8WFxeXHDt2LOjPf/5ziO018vUA4CI16/8ntv3UKUXz9UOTkswxf/jfAcnXBwcHW3/605+2iIj4+fl1T5gwwXzu3Dl7LZh8PQB4IGfz9RcuXPD++9//Pnz27NnNIuTrAcClHD1JOMvZfL3FYpH58+ePfuyxx+r0en2HCPl6APBIzubrMzIyEkaPHt2WmZlZb7tGvh4APIyz+frf/OY3Mc3Nzd7btm371ulqsOTr+ZIXACikqqrKJy0tTSMi0tXV5fXzn//84vXy9a2trd4Wi8Vr//79w/Pz843Dhw/v2rJlS3RiYmKbwWDQi4g89thj9enp6V9/V76+sbHRZ9euXSO/uVY5derUK1lZWVWLFi0a8+yzz6oNBoOZfD0AOMgda8Pk6wFgEHLHQRlsyNcDAFyOQQEAKIJBAQAogkEBACiCQQEAKIJBAQAFOZqvFxGZPn160tixY/UajcaQkZER19nZaX+NfD0AeCBH8/V79uw5XV5eXmI0Gr+8ePGi71tvvWUfC/L1AOAiB7NLYy9Vtyqarw9TB5lnLE4ekHy9iIjtaXiLxeJlsVi8vLz+fcAgXw8AHsiZfP20adOSwsPDJwYGBnY9/PDDjSLk6wHApRw9STjL2Xz9hx9+eMpsNnulpaWNfv/990PS0tKaydcDgAdyNl8vIhIQENA9d+7cr3NycoaLkK8HAI/jTL6+qalJZTKZfEWu/pKtffv2DdPpdFdEyNcDgMdxJl8fERHROWfOHE1HR4eX1Wr1uv3225vXrFnTUFNT40O+HgC+Z+5YGyZfDwCDkDsOymBDvh4A4HIMCgBAEQwKAEARDAoAQBEMCgBAEQwKACjImXy9zd13361JSkoy9LxGvh4APJCj+XoRkR07dgwPDAz8j4gk+XoAcJH9r74Ue+GcSdF8/cjYePOsXz8+YPn6pqYm1csvvxz5+uuvm9LT08f0fI18PQB4IEfz9atXr1avXLmyLigoyNrzOvl6AHAhR08SznI0X3/06FH/ysrKodu2bTtXXl7+rSEgXw8AHsjRfP2RI0eCiouLA9Rq9fg77rhDd/bs2aE333zzWBHy9QDgcZzJ169du7ahvr7+i+rq6pOHDx8uS0hIaD9+/Hi5CPl6APA4zuTrr/3+iA35egBwAXesDZOvB4BByB0HZbAhXw8AcDkGBQCgCAYFAKAIBgUAoAgGBQCgCAYFABTkTL7+5ptvHpuQkDBOp9PpdTqdvrq62v6sIPl6APBAzuTrs7Ozz5SVlZWUlZWVqNXqTtt18vUA4CKXdhtjLecvK5qv940KNIct0A5Yvr435OsBwAM5mq8XEXn00UcTdDqdfs2aNdFW69WKPfl6AHAhR08SznI0Xy8i8t57751JTEy0NDY2qubOnTtm69atI5YvX36RfD0AeCBH8/UiIomJiRYRkdDQUOuiRYsuHT9+PFCEfD0AeBxn8vUWi0Vqa2t9RETa29u98vPzh40bN+6KCPl6APA4zuTrk5KSOmbOnJlksVi8rFar1/Tp05tXr17dQL4eAFzAHWvD5OsBYBByx0EZbMjXAwBcjkEBACiCQQEAKIJBAQAogkEBACiCQQEABTmTr29ra/N64IEH4hMSEsYlJiYatm/fPtz2Gvl6APBAjubr161bFx0eHm45e/ZscUVFxZezZs1qtb1Gvh4AXCQ3Nze2vr5e0Xx9RESEOTU1dcDy9e++++5Io9FYLCLi7e0t0dHR9t+HQr4eADyQI/n6HqeMGL1enzx79uzR586d8xEhXw8ALuXoScJZjubrLRaLV11dne+0adNa33zzzaoNGzZErlixIjY3N7eSfD0AeCBH8/WRkZGdfn5+1oceeuhrEZFf/OIXl4qLiwNEyNcDgMdxJl+vUqlkxowZTXv37g0WEcnPzw9JSkoiXw8AnsiZfH1KSkrbiy++WJWRkZH45JNPeo8YMaIzOzv7LPl6AHABd6wNk68HgEHIHQdlsCFfDwBwOQYFAKAIBgUAoAgGBQCgCAYFAKAIBgUAFORovr6xsVGl0+n0tj+hoaETH3nkkVjb6+TrAcADOZKvDw0NtZaVlZXY/sTExHQsXLjQ/uwK+XoAcJGS0rWxl1uNiubrA4O0Zn3yxgHL19ucPHly6MWLF317/j4U8vUA4IEcydf3tGPHjrCf/exnl2y5FvL1AOBCjp4knOVovr6nnJycsO3bt1fa/k6+HgA8kKP5epuPP/7Yv6ury2v69Olm2zXy9QDgYZzJ19vs3LkzLC0t7VLPa+TrAcDDOJuvFxHJy8sLe//990/Z3ku+HgBcwB1rw+TrAWAQcsdBGWzI1wMAXI5BAQAogkEBACiCQQEAKIJBAQAogkEBAAU5mq8XEXnttdfCtFqtXqvV6qdPn55UW1trf1aQfD0AeCBH8vUWi0XWrVsXW1hYaDQajSUGg+HK888/H2F7nXw9ALjI46VfxZZdblM0X68L9DO/lBw3IPl6q9Xq1d3dLS0tLarIyEhpbm5WaTQae114MOTrGRQAUNiMGTOSvLy85OGHH2548sknL/QnXz906NDuF1988avJkycb/P39u+Lj49uzs7O/EiFfDwAu5ehJwlmO5uvb29u9Xn/99fBjx46VJCcnty9ZsiRu/fr10Zs2baolXw8AHsjRfP0///lPfxERg8HQrlKp5IEHHrh07NixQBHy9QDgcZzJ18fHx1sqKir8ampqfERE9u3bF6LVattEyNcDgMdxNl+/Zs2a2mnTpo318fHpHjVqVMeuXbsqydcDgAu4Y22YfD0ADELuOCiDDfl6AIDLMSgAAEUwKAAARTAoAABFMCgAAEUwKACgIGfy9W+88UaoVqvVazQaw9KlS0f1fI18PQB4IEfy9efPn/fOzMwc9Y9//MNYUVHxZX19vc+ePXuCba+TrwcAF1mz+/NY4/kWRfP12qhg8/MLJg5Ivr68vHxoYmJie0xMTKeIyIwZM5r/8pe/hM6bN69FZHDk6zmhAIDCZsyYkWQwGJJfeOGFkSIi/cnX6/X69tOnT/uVl5cPsVgskpeXF1pTUzNEhHw9ALiUoycJZzmarw8PD+/avHmzaeHChf+fvbuPirrO+z/+ZgCF4UZBuRcGFAaYMUxYqy21Ui/txl2xlTTazG5O63rplhTr0Wt1Pda1J23VNs/i6cZW6WRXu54VaeVH7mqhZYuL5Q0NMKIwyo3cKIk43AwMvz9qWHIFifnSDM3zcU5/NDPf78r+0et8wO+T8SqVSqZMmdJSWVk5UkSEfD0AuKDB5utFRNLT06+cOnWq9MSJE6Xx8fFtEyZMaBchXw8ALseefL2ISHV1tYeISENDg/tbb70VvGzZsgYR8vUA4HLszdcvXbo00mAwqEVEVq1aVZOUlNROvh4AHMAZa8Pk6wFgGHLGQRluyNcDAByOQQEAKIJBAQAogkEBACiCQQEAKIJBAQAF3Sxfv3fvXn+9Xp+o1Wp1er0+MTc3t6cofOTIEbVWq9VFRUVNXLJkSaTVau25L/l6AHBB/eXrg4ODLfv37y83Go2GnTt3Vjz99NMxts8sW7ZMk5WVZaqsrCw+d+6c1549e/xt75GvBwBHyfnvSKk3KJqvl2CdWVL/aFe+vndxOCUlpa2jo0PV2trqVl9f79HS0qKaNWvWNRGRRx999FJOTk7Aww8/3CxCvh4AXNJA8/W7du0K0Ol0Zm9v726TyeQZFhbWE3PUaDQdtbW1niLk6wHAsQZ5krDXQPP1RUVFXuvWrYvIz88/IyJ95edFhHw9ALikgeTrz54967lgwYLYHTt2VOj1+nbbdbYTiYiIyWQaERoaahEhXw8ALmcg+frGxkb3Bx54IG79+vVVs2fP7jl1aDQai4+Pj/XgwYM+VqtV3n333THz5s37SmT45OsZFABQSFVVlccdd9yREB8fr0tOTk6cPXv2V9fn6zdt2hR8/vz5kS+//HJ4QkKCLiEhQWf7PShZWVmmpUuXRms0monR0dHtaWlpV/rK1+/evXus7fqjR496i4hs3ry5atu2baFRUVETm5qaPMjXA8AgOWNtmHw9AAxDzjgoww35egCAwzEoAABFMCgAAEUwKAAARTAoAABFMCgAoCB78vUrVqyICA0NTVKr1ZOvvy/5egBwQYPN16empn5VWFhYcqN7kq8HAAdZ++nayPKmckXz9bEBseYX73pxSPL13t7e3bYu142QrwcAFzSYfH1/9yNfDwAONNiThL0Gm6/vD/l6AHBBg83X94d8PQC4GHvy9f0hXw8ALsbefP3SpUvHhYSEJLW1talCQkKSMjIywsnXA4ADOGNtmHw9AAxDzjgoww35egCAwzEoAABFMCgAAEUwKAAARTAoAABFMCgAoKDB5uuvXr2quueee2JjYmL0sbGx+mXLlkX0vi/5egBwQYPN1z///PN1FRUVXxYXFxsKCwt9//znP/vb3iNfDwAOUrPmfyLbz5xRNF8/Mi7OHP67/x2SfL2fn5/1Jz/5yVURES8vr+6kpCTzhQsXemrB5OsBwAXZm69vbGx0//vf/z76/vvvbxYhXw8ADjXYk4S97M3XWywWeeihh8Y/88wzdTqdrkOEfD0AuCR78/Xp6enR48ePb1u3bl297TXy9QDgYuzN1//qV78Kb25udt+xY8e3Tlfk6wHAxdiTrz979qzntm3bws6cOeOl1+t1CQkJui1btowlXw8ADuCMtWHy9QAwDDnjoAw35OsBAA7HoAAAFMGgAAAUwaAAABTBoAAAFMGgAICCBpuvFxGZNm1aXHx8vC42Nlafnp4e1dnZ2XNf8vUA4IIGm6/ft2/f2bKyMoPRaPzy0qVLnm+//XbPWJCvBwAHOZhdEnm5ukXRfH1ghK955uLEIcnXe3t7d9uehrdYLG4Wi8XNze3fBwzy9QDgguzJ10+dOjUuKChoko+PT9cTTzzRJEK+HgAcarAnCXvZm6//5JNPzpjNZrf58+eP/+CDD/znz5/fTL4eAFyQvfl6ERG1Wt09d+7cr/bu3TtahHw9ALgce/L1V65cUZlMJk+Rr3/JVn5+/qiEhIRWEfL1AOBy7MnXNzc3qx588MFYrVarS0xM1I8dO9aSmZnZQL4eABzAGWvD5OsBYBhyxkEZbsjXAwAcjkEBACiCQQEAKIJBAQAogkEBACiCQQEABdmTr7eZMWNGbFxcnL73a+TrAcAFDTZfLyKya9eu0T4+Pl3X35N8PQA4yIfbX41svGBSNF8/NlJjnvPL54YsX3/lyhXVa6+9FvLGG2+YFi1aNKH39eTrAcAFDTZfn5GREfHss8/W+fr6Wnt/jnw9ADjQYE8S9hpsvv7o0aPeFRUVI3fs2HGhrKzsW0NAvh4AXNBg8/VHjhzxLS4uVkdERNwyffr0hMrKypG33XZbvAj5egBwOfbk61etWtVQX19/qrq6+vThw4dLo6Oj248dO1YmQr4eAFyOPfn6vu5Jvh4AHMAZa8Pk6wFgGHLGQRluyNcDAByOQQEAKIJBAQAogkEBACiCQQEAKIJBAQAF2ZOvv+222+Kjo6Mn3uj5FPL1AOCC7MnXZ2dnnystLTWUlpYaIiIiOm2vk68HAAe5vMcYabl4TdF8vWeojzlwgXbI8vX9XU++HgBc0GDz9SIiTz/9dHRCQoIuMzMzzGr9umJPvh4AHGiwJwl7DTZfLyLy/vvvn4uJibE0NTWp5s6dOyErK2vM8uXLL5GvBwAXNNh8vYhITEyMRUQkICDAunDhwsvHjh3zESFfDwAux558vcVikdraWg8Rkfb2dre8vLxREydObBUhXw8ALseefH1ra6tq1qxZcd/8dWJdWFiYJSMjo4F8PQA4gDPWhsnXA8Aw5IyDMtyQrwcAOByDAgBQBIMCAFAEgwIAUASDAgBQBIMCAAqyJ1/f1tbm9sgjj2iio6MnxsTE6Hfu3Dna9h75egBwQYPN169evTosKCjIUllZWVxeXv7lnDlzWmzvka8HAAfJycmJrK+vVzRfHxwcbE5NTR2yfP1777031mg0FouIuLu7S1hYWM/vQyFfDwAuaDD5+l6njHCdTpd4//33j79w4YKHCPl6AHCowZ4k7DXYfL3FYnGrq6vznDp1astbb71VtX79+pAVK1ZE5uTkVJCvBwAXNNh8fUhISKeXl5f1scce+0pE5Oc///nl4uJitQj5egBwOfbk61UqlcycOfPK/v37/URE8vLy/OPi4sjXA4ArsidfLyKyZcuWqg0bNoRrtVrde++9N+a1116rIl8PAA7gjLVh8vUAMAw546AMN+TrAQAOx6AAABTBoAAAFMGgAAAUwaAAABTBoACAggabr29qalLZnitJSEjQBQQETHryyScjbdeTrwcAFzSYfH1AQIC1tLTUYPsnPDy8Iy0trefZFfL1AOAghpJVkddajIrm6318tWZd4sYhy9fbXj99+vTIS5cuefb+fSjk6wHABQ0mX3/d64E//elPL9tyLeTrAcCBBnuSsNdg8/W97d27N3Dnzp0Vtn8nXw8ALmiw+Xqbzz77zLurq8tt2rRpZttr5OsBwMXYk6+3eeeddwLnz59/ufdr5OsBwMXYm68XEcnNzQ1cvHhxz6CQrwcAB3DG2jD5egAYhpxxUIYb8vUAAIdjUAAAimBQAACKYFAAAIpgUAAAimBQAEBBg83Xi4i8/vrrgVqtVqfVanXTpk2Lq62t7Xk+hXw9ALigweTrLRaLrF69OrKgoMBoNBoNer2+9ZVXXgm2XU++HgAc5LmS85Gl19oUzdcn+HiZX02MGpJ8vUqlku7ubrl69aoqJCREmpubVbGxsT114eGQr2dQAEBhM2fOjHNzc5Mnnnii4YUXXmgcaL5+y5Yt55OTk/Xe3t5dGo2mPTs7+7wI+XoAcKjBniTsNdh8fXt7u9sbb7wRVFhYaEhMTGxfsmRJ1Jo1a8I2bdpUS74eAFzQYPP1//znP71FRPR6fbtKpZJHHnnkcmFhoY8I+XoAcDn25Os1Go2lvLzcq6amxkNEJD8/31+r1baJkK8HAJdjT74+OjrakpmZWTt16tR4rVarO336tPrFF1+sJV8PAA7gjLVh8vUAMAw546AMN+TrAQAOx6AAABTBoAAAFMGgAAAUwaAAABTBoACAguzJ17/55psBWq1WFxsbq1+6dOm43vclXw8ALmgw+fqLFy+6r1u3btzHH39sLC8v/7K+vt5j3759PWNDvh4AHCRzz8lI48WriubrtaF+5lcWTBqSfH1ZWdnImJiY9vDw8E4RkZkzZzb/5S9/CZg3b95VkeGRr+eEAgAKmzlzZpxer0/8/e9/P1ZEZCD5ep1O13727FmvsrKyERaLRXJzcwNqampGiJCvBwCHGuxJwl6DzdcHBQV1bd261ZSWljZepVLJlClTWiorK0eKiJCvBwAXNNh8vYhIenr6lVOnTpWeOHGiND4+vm3ChAntIuTrAcDl2JOvFxGprq72EBFpaGhwf+utt4KXLVvWIEK+HgBcjj35ehGRpUuXRk6YMEF/xx13JGRkZNQmJSW1k68HAAdwxtow+XoAGIaccVCGG/L1AACHY1AAAIpgUAAAimBQAACKYFAAAIpgUABAQTfL13/00Udq2/Mj8fHxuuzs7NG2zxw5ckSt1Wp1UVFRE5csWRJptVp77ku+HgBcUH/5+h/96Edtp0+fNpSWlhoOHDhw5rnnntPYcinLli3TZGVlmSorK4vPnTvntWfPHn/b9eTrAcBRcv47UuoNiubrJVhnltQ/2pWv9/Pz6zl2tLa2urm5fX2IMJlMni0tLapZs2ZdExF59NFHL+Xk5AQ8/PDDzSLk6wHAJd0sX3/o0CGf2NhYfXJysn7r1q0mT09PMZlMnmFhYT0xR41G01FbW+spQr4eABxrkCcJew0kXz9jxoxr5eXlX37++edejz/+eMyCBQuu9JGfFxHy9QDgkgaSr7dJTk5uU6vVXUVFRd7R0dEW24lERMRkMo0IDQ21iJCvBwCXM5B8fWlp6Qjbf/SNRuOIiooKr7i4uA6NRmPx8fGxHjx40Mdqtcq77747Zt68eV+JDJ98Pd/yAgCFVFVVecyfPz9WRKSrq8vtZz/72aXr8/UHDx70nTt3bpiHh0e3SqXq3rx58/mwsLBOEZGsrCzTU089FdPW1uZ27733NqelpV3pK1/f1NTksXv37rHfvFZx5513tm7evLlq4cKFE1566aUIvV5vJl8PAIPkjLVh8vUAMAw546AMN+TrAQAOx6AAABTBoAAAFMGgAAAUwaAAABTBoACAguzJ169YsSIiNDQ0Sa1WT77+vuTrAcAFDTZfn5qa+lVhYWHJje5Jvh4AHGTtp2sjy5vKFc3XxwbEml+868UhydeLiNi6XDdCvh4AXNBg8vX9IV8PAA402JOEvQabr1er1X1mS8jXA4ALGmy+vr97kq8HABdjT76+v/sOl3w9gwIACqmqqvK44447EuLj43XJycmJs2fP/upG+frExER9QkKCLjU1dULvfP3SpUvHhYSEJLW1talCQkKSMjIywvvK1+/evXus7a8fHz161FtEZPPmzVXbtm0LjYqKmtjU1ORBvh4ABskZa8Pk6wFgGHLGQRluyNcDAByOQQEAKIJBAQAogkEBACiCQQEAKIJBAQAFNTY2ut93333jY2Ji9OPHj9f/4x//8BH5d77+4sWL7rfffrtWrVZPXrx4cdT1169evTp0+/btgevXrw+ZMGGCXqvV6n784x9rjUZjT5dr27ZtYzQazUSNRjNx27ZtY77Pr68/DAoAKOiZZ56JnD17dnNFRcWXBoPBcOutt7aJ/Dtfr1aruzds2FCzfv36qhtdf+jQIf958+Y1p6SkmE+cOFFiNBoNqampTStXrhwnIlJXV+e+cePG8GPHjpUUFRWVbNy4MbyhocH9+/wa+0IcEsAPUs2a/4lsP3NG0Xz9yLg4c/jv/rfP6OTly5dVhYWFfnv27KkUEfHy8ur28vLqEvl3vt7f3986Z86clrKyspE3ut5isajCw8M7w8PDr9penzp1asv7778/RkQkJydn1PTp05tDQkK6RESmT5/e/Ne//nXUL37xi8tKfq2DwQkFABRSWlo6MjAwsDMtLS06MTFRt3DhQk1zc7Pq+nx9Xz744AP/6dOnN1//+uuvvx40a9asKyIi1dXVnuPGjetpf0VERHRUV1f337//nnBCAfCD1N9JYqh0dna6lZSUqP/whz+cnzFjxrUnnngicu3ataGJiYltvfP1fcnPzx/11FNPfetJ/6ysrMCTJ0+qX3/99TIR6StTr9jXYA9OKACgkOjo6I6QkJCOGTNmXBMRWbhwYdPJkyfVfeXrr/fFF1/43HPPPT2/9yQnJ8fv97//fVheXl65t7d3t4jIuHHjLFVVVT0/oK+urh4RHh7+vWbq+8KgAIBCoqKiOkNDQztOnjw5UkTkwIED/vHx8W298/V9KSoq8oqNjW3z8Pj6G0effvqp94oVKzT79u0rj4iI6LR9LjU19UpBQYF/Q0ODe0NDg3tBQYF/amrqTcfq+8C3vABAQdu2bTv/6KOPju/o6HCLiopqX7t2bW1jY6OHLV8vIhIREXFLS0uLu8Vicfvwww9H5+XlGXNzc0fNnj27ZxgyMzMjzWaze1pa2gQRkfDw8I5Dhw6Vh4SEdGVmZtakpKQkioj8+te/9gb0mgAAIABJREFUrrH9gN7RqA0D+MFwxtrwQPP1d955Z9x7771XqdFoHPrtK3tqw5xQAGAIbdq0qXYgnzt69OiZof6zDDV+hgIAUASDAgBQBIMCAFAEgwIAUASDAgBQBIMCAAq6Wb5+7969/nq9PlGr1er0en1ibm6uX+/rydcDAETk5vn64OBgy/79+8uNRqNh586dFU8//XRM7+vJ1wOAkzmYXRJ5ubpF0Xx9YISveebiRLvy9b2LwykpKW0dHR2q1tZWN29v727y9QAAEfnu+fpdu3YF6HQ6sy38SL4eAJxQfyeJofJd8vVFRUVe69ati8jPz+95Qp58PQBARAaerz979qznggULYnfs2FGh1+vbba+TrwcAiMjA8vWNjY3uDzzwQNz69eurZs+e3TMe5OsBAN9ys3z9pk2bgs+fPz/y5ZdfDn/55ZfDRUQOHjxIvh4AnAn5evuRrwcAJ0W+HgCA74hBAQAogkEBACiCQQEAKIJBAQAogkEBAAXdLF//0UcfqRMSEnQJCQm6+Ph4XXZ29uje1w/nfD3PoQD4wXCG51Aeeuih6KlTp7ZkZGQ0trW1ubW0tKjGjh3btXLlyvBJkyaZf/aznzV7eXlZPT09xWQyeU6ePFlXV1d30tPz677j7bffrt27d++548ePe99zzz3X/Pz8rBs3bgw6fPiw3/79+8/V1dW5p6Sk6I4fP25QqVQyefJk3RdffGEICgpS5OFGnkMBgOt8uP3VyMYLJkXz9WMjNeY5v3zOrny9n5+f1fb51tZWt95hR/L1AAARGXi+/tChQz6xsbH65ORk/datW0220wn5egBwQv2dJIbKQPP1M2bMuFZeXv7l559/7vX444/HLFiw4Ipare4mXw8AEJGB5+ttkpOT29RqdVdRUZG3CPl6AMA3BpKvLy0tHWGxfP3ff6PROKKiosIrLi6ug3w9AOBbbpavP3jwoO/cuXPDPDw8ulUqVffmzZvPh4WFdW7fvn0M+XoAcBLO8NeGr0e+HgCgCPL1AAB8RwwKAEARDAoAQBEMCgBAEQwKAEARDAoAKOhm+Xrb586cOTNCrVZPXrduXUjv64dzvp5BAQAFPfPMM5GzZ89urqio+NJgMBhuvfXWNhGR/fv3j7rvvvt6Hlxcvnx55N133/0fT7gfOnTIf968ec0pKSnmEydOlBiNRkNqamrTypUrx4mI1NXVuW/cuDH82LFjJUVFRSUbN24Mb2hocP/+vsK+8RwKgB+ky3uMkZaL1xTN13uG+pgDF2jtyteLiLzzzjujo6Oj2318fKzXX0++HgAwoHx9c3OzavPmzaGbNm2quf568vUA4IT6O0kMlYHk61944YXw5cuX140aNcp6/fXDPV/PoACAQm6Ur3/55ZdDTSbTyMzMzIsiIsePH/fZv39/wG9/+9txzc3N7iqVSry8vKxr1qxp+CZfb7Ldz5avP3LkSFnvfH1BQYGf7TPV1dUj7r777qvX/1kcgUEBAIX0ztdPmjSp3Zav//jjj/1t+frjx4+X2T6fkZER7uvr27VmzZqGvvL1eXl5Z67P12/YsCHC9oP4goIC/61bt1Z9z1/qDTEoAKCgm+Xr+5KbmzuKfD0AOAny9fYjXw8ATop8PQAA3xGDAgBQBIMCAFAEgwIAUASDAgBQBIMCAAq6Wb6+rKxshJeXV3JCQoIuISFBl56eHtX7+uGcr+evDQOAgmz5+vz8/HNtbW1uLS0tKpFv5+sjIyPbS0tLDTe6/tChQ/579+49d/z4ce/nn3++xM/Pz7px48aglStXjtu/f/85W77++PHjBpVKJZMnT9YtWrToq6CgIIc/3MigAPhBysnJiayvr1c0Xx8cHGxOTU21K1/f2NjY5+8uIV8PABCRgeXrRUSqqqpGJCYm6qZMmRKfn5/va7uefD0AOKH+ThJDZSD5+qioKEtFRcWp0NDQriNHjqjT0tJiDQZDcWBgoHW45+s5oQCAQm6Urz958qQ6Pz9/1Ny5c6+IiHh7e3eHhoZ2iYhMmzbNHBUV1V5cXOwlIvJNvv6a7X62fH1eXl5573x9VVVVzw/oq6urR4SHhzu0/2XDoACAQnrn60VEbPn6kpISb1u+vqamxqOz8+savcFgGFFZWTkyPj6+va98/b59+8qvz9cXFBT4NzQ0uDc0NLgXFBT4p6am/sfvpncEvuUFAAq6Wb7+wIEDvi+99FKEu7t7t7u7e/err75qCgkJ6frjH/84lnw9ADgJ8vX2I18PAE6KfD0AAN8RgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKulm+XkSksLDQ+9Zbb02IjY3Va7Vandls7mmnDOd8PYMCAAqy5esrKiq+NBgMhltvvbVN5N/5eovFIo899ljM9u3bTeXl5V8ePny4bMSIET0PBB46dMh/3rx5zSkpKeYTJ06UGI1GQ2pqatPKlSvHiYjY8vXHjh0rKSoqKtm4cWN4Q0NDnwXj7xPPoQD4QTKUrIq81mJUNF/v46s16xI32pWv/+tf/zoqMTGx1ZZisXW9bNeTrwcADChfX1ZWNtLNzU2mTp0ap9PpEn/zm9+E2K4nXw8ATqi/k8RQGUi+vrOz0+1f//qXb1FRUYmvr6912rRp2ilTppjnzZt3lXw9AEBEBpavHzduXMcdd9xxNSwsrNPPz8/6X//1X1eKiorUIuTrAQDfGEi+fv78+c0lJSXeV69eVVksFvn000/99Hp9G/l6AMC33CxfHxQU1LV8+fK6yZMnJ7q5ucnMmTOvLFq06Mq6detCyNcDgJMgX28/8vUA4KTI1wMA8B0xKAAARTAoAABFMCgAAEUwKAAARTAoAKCgm+Xrt2/fHpiQkKCz/aNSqVKOHj3qbbuefD0AQERunq//5S9/ebm0tNRQWlpqyM7OrggPD++48847W23Xk68HACfzXMn5yNJrbYrm6xN8vMyvJkbZla/v/fns7OzA+fPnX+59Pfl6AMCA8vW9P79v376AxYsXX7L9O/l6AHBC/Z0khspA8vU2hw4d8vH29rZOmTKlzfYa+XoAgIgMLF9v8+677wY+9NBD3/o2Ffl6AICIDCxfLyLS1dUlf/vb3wIWL17cMyjk6wEA33KzfL2IyP/7f//PLzQ0tEOn0/X8LCQ3N3cU+XoAcBLk6+1Hvh4AnBT5egAAviMGBQCgCAYFAKAIBgUAoAgGBQCgCAYFABR0s3x9e3u720MPPRSt1Wp148eP169evTq09/Xk6wEAInLzfP2f/vSngI6ODpXRaDScPHmyJDs7O6isrKxnLMjXA4CTydxzMtJ48aqi+XptqJ/5lQWT7MrX79mzZ5TZbFZZLBa5du2am6enZ/fo0aO7bNeTrwcADChfv2TJkia1Wm0NDg6eFBMTk7R8+fKLtnEgXw8ATqi/k8RQGUi+vqCgQK1SqbovXrx4qrGx0f2uu+5KeOCBB5p1Ol0H+XoAgIgMLF//zjvvjJkzZ86VkSNHdkdERHROmTKl5ejRoz4i5OsBAN8YSL4+Kiqq46OPPvK3Wq3S3Nys+vzzz31uueWWNvL1AIBvuVm+/te//nX9okWLorVarb67u1vS09Mbb7/99tZ169aFkK8HACdBvt5+5OsBwEmRrwcA4DtiUAAAimBQAACKYFAAAIpgUAAAimBQAEBBN8vXt7W1uS1YsCBaq9Xq4uPjdX/729/8el9Pvh4AICI3z9dv3bp1rIiI0Wg0HDp0yLhq1apxXV3/fi6RfD0AOJuc/46UeoOi+XoJ1pkl9Y925eufe+65CFsoMiIiotPf37/r8OHD6nvvvddMvh4AICIDy9dPmjTJ/MEHH4y2WCxSWlo6ori4WG0ymUaIkK8HAOfUz0liqAwkX//ss882lpSUeN9yyy26iIiI9uTk5BZbEJJ8PQBARAaWr/f09JQdO3ZcKC0tNRw8ePBsc3OzR2JiYpsI+XoAwDcGkq+/evWqqrm5WSUisnfvXn93d/fulJQU8vUAgG+7Wb6+pqbGY86cOVqVStUdGhpq2b17d4WISG5u7ijy9QDgJMjX2498PQA4KfL1AAB8RwwKAEARDAoAQBEMCgBAEQwKAEARDAoAKOhm+fqLFy+633777Vq1Wj158eLFUb2vPXLkiFqr1eqioqImLlmyJNJqtfa8ZzKZPO+66664o0ePet96660JsbGxeq1Wq3vzzTcDbJ8pLS0dkZSUlKDRaCY++OCD49va2r7XJguDAgAKulm+Xq1Wd2/YsKFm/fr1Vddfu2zZMk1WVpapsrKy+Ny5c1579uzxt72Xk5PjP2vWrGZfX1/rO++8U1FeXv7lgQMHzqxZsyaysbHRXUQkIyNj3PLly+tMJlPxqFGjOv/whz+M/f6+cp5DAfADtfbTtZHlTeWK5utjA2LNL971ol35en9/f+ucOXNaysrKRva+1mQyeba0tKhmzZp1TUTk0UcfvZSTkxPw8MMPN4uIHDhwYNSGDRtqkpKS2m3XREdHWwIDAztra2s9AgMDuz777DO/ffv2nRMRefLJJy+tX78+fNWqVQ1K/n/QH04oAKCQgeTr+7rWZDJ5hoWF9Twlr9FoOmpraz1FRDo7O+Xs2bNeKSkpbb2v+eijj9QWi8VNp9O119XVefj5+XV5en5dso+Oju6oq6sbId8jTigAfpD6O0kMlYHk6/vSX5b+o48+8klOTr7W+z2TyeT5xBNPjN+xY0eFu7t7X9d/r20tTigAoJCB5Ov7udZiO5GIiJhMphGhoaEWEZG//e1vo+67776e6y9fvqy6//77Y9etW1c9c+bMayIioaGhnVevXnW3WL4+5FRWVo4IDg7+XrtgDAoAKGQg+fq+aDQai4+Pj/XgwYM+VqtV3n333THz5s37SkTk8OHD/nPnzm0WEWlra3N78MEHYxctWnTpySef7AlOqlQqueOOO67+6U9/ChARefvtt8fMnTv3q6H7av8T3/ICAAXdLF8vIhIREXFLS0uLu8Vicfvwww9H5+XlGVNSUtqysrJMTz31VExbW5vbvffe25yWlnalpqbGY+TIkdbAwECriMjbb78d8K9//cu3qanJY/fu3WO/ea3izjvvbN28eXPVwoULJ7z00ksRer3e/Oyzz36v5WXy9QB+MIZzvr4vWVlZgVVVVSN+97vfXVT6z3Yj9uTrGRQAPxjOOCjDjT2Dws9QAACKYFAAAIpgUAAAimBQAACKYFAAAIpgUABAQfbk61esWBERGhqapFarJ19/X/L1AOBi7MnXp6amflVYWFhyo/uSrwcAB6lZ8z+R7WfOKJqvHxkXZw7/3f8OSb5eRMTW5boR8vUA4ELsydf3h3w9ADhQfyeJoWJPvr4/5OsBwMXYk6/vD/l6AHAx9uTr+zNc8vUMCgAoyJav12q1ulOnTnmnp6dfnjhxovn6fP3atWsj9+zZMyYkJCTp+PHjXiIiS5cuHRcSEpLU1tamCgkJScrIyAjvK1+/e/fusQkJCbqEhATd0aNHvUVENm/eXLVt27bQqKioiU1NTR7k6wFgkJyxNky+HgCGIWcclOGGfD0AwOEYFACAIhgUAIAiGBQAgCIYFACAIhgUAFDQYPP1V69eVd1zzz2xMTEx+tjYWP2yZcsiet+XfD0AuBh78vXPP/98XUVFxZfFxcWGwsJC3z//+c/+tvfI1wOAgxzMLom8XN2iaL4+MMLXPHNx4pDk6/38/Kw/+clPrtquS0pKMl+4cKGnFky+HgBciFL5+sbGRve///3vo++///5mEfL1AOBQ/Z0khooS+XqLxSIPPfTQ+GeeeaZOp9N1iJCvBwCXo0S+Pj09PXr8+PFt69atq7e9Rr4eAFyMvfn6X/3qV+HNzc3uO3bs+Nbparjk6/mWFwAoyJav7+jocIuKimpfu3ZtbWNjo8f1+fqWlhZ3i8Xi9uGHH47Oy8szjh49umvbtm1hMTExbXq9Xici8swzz9QvWrToqxvl65uamjx279499pvXKu68887WzZs3Vy1cuHDCSy+9FKHX683k6wFgkJyxNky+HgCGIWcclOGGfD0AwOEYFACAIhgUAIAiGBQAgCIYFACAIhgUAFDQYPP1IiLTpk2Li4+P18XGxurT09OjOjs7e94jXw8ALsaefP2+ffvOlpWVGYxG45eXLl3yfPvtt3vGgnw9ADjIh9tfjWy8YFI0Xz82UmOe88vnhiRfLyJiexreYrG4WSwWNze3fx8wyNcDgAtRIl8/derUuKCgoEk+Pj5dTzzxRJMI+XoAcKj+ThJDRYl8/SeffHLGbDa7zZ8/f/wHH3zgP3/+/Gby9QDgYpTI14uIqNXq7rlz5361d+/e0SLk6wHA5diTr79y5YrKZDJ5inz9S7by8/NHJSQktIqQrwcAlzTYfH1wcHDngw8+GNvR0eFmtVrd7rrrrubMzMyGmpoaD/L1APA9c8baMPl6ABiGnHFQhhvy9QAAh2NQAACKYFAAAIpgUAAAimBQAACKYFAAQEH25OttZsyYERsXF6fv/Rr5egBwMfbk60VEdu3aNdrHx+c/IpLk6wHAQS7vMUZaLl5TNF/vGepjDlygHbJ8/ZUrV1SvvfZayBtvvGFatGjRhN7vka8HABdib74+IyMj4tlnn63z9fW19n6dfD0AOFB/J4mhYk++/ujRo94VFRUjd+zYcaGsrOxbQ0C+HgBcjD35+iNHjvgWFxerIyIibpk+fXpCZWXlyNtuuy1ehHw9ALgce/L1q1ataqivrz9VXV19+vDhw6XR0dHtx44dKxMhXw8ALmmw+frrfz5iQ74eABzAGWvD5OsBYBhyxkEZbsjXAwAcjkEBACiCQQEAKIJBAQAogkEBACiCQQEABdmTr7/tttvio6OjJyYkJOgSEhJ01dXVPc8Kkq8HABdjb74+Ozv7XGlpqaG0tNQQERHRaXudfD0AOEhOTk5kfX29ovn64OBgc2pq6pDl6/tDvh4AXIi9+XoRkaeffjo6ISFBl5mZGWa1fl2xJ18PAA7U30liqNiTrxcRef/998/FxMRYmpqaVHPnzp2QlZU1Zvny5ZfI1wOAi7EnXy8iEhMTYxERCQgIsC5cuPDysWPHfETI1wOAy7EnX2+xWKS2ttZDRKS9vd0tLy9v1MSJE1tFyNcDgEsabL4+Li6uY9asWXEWi8XNarW6TZs2rTkjI6OBfD0AOIAz1obJ1wPAMOSMgzLckK8HADgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKsidf39bW5vbII49ooqOjJ8bExOh37tw52vYe+XoAcDH25OtXr14dFhQUZKmsrCwuLy//cs6cOS2298jXA4CDGEpWRV5rMSqar/fx1Zp1iRuHLF//3nvvjTUajcUiIu7u7hIWFtbz+1DI1wOAC7EnX9/rlBGu0+kS77///vEXLlzwECFfDwAO1d9JYqjYk6+3WCxudXV1nlOnTm156623qtavXx+yYsWKyJycnAry9QDgYuzJ14eEhHR6eXlZH3vssa9ERH7+859fLi4uVouQrwcAl2NPvl6lUsnMmTOv7N+/309EJC8vzz8uLo58PQC4qsHm61NSUtq2bNlSlZ6eHvPCCy+4jxkzpjM7O7uSfD0AOIAz1obJ1wPAMOSMgzLckK8HADgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKGmy+vqmpSZWQkKCz/RMQEDDpySefjLS9T74eAFzMYPP1AQEB1tLSUoPtn/Dw8I60tLSeZ1fI1wOAgzxXcj6y9Fqbovn6BB8v86uJUUOWr7c5ffr0yEuXLnn2/n0o5OsBwIXYk6/vbdeuXYE//elPL9tyLeTrAcCB+jtJDBV78vW97d27N3Dnzp0Vtn8nXw8ALsaefL3NZ5995t3V1eU2bdo0s+018vUA4GLsydfbvPPOO4Hz58+/3Ps18vUA4ILsydeLiOTm5gZ+8MEHZ2yfJV8PAA7gjLVh8vUAMAw546AMN+TrAQAOx6AAABTBoAAAFMGgAAAUwaAAABTBoACAggabrxcRef311wO1Wq1Oq9Xqpk2bFldbW9vzrCD5egBwMYPN11ssFlm9enVkQUGB0Wg0GvR6fesrr7wSbHuffD0AOEjmnpORxotXFc3Xa0P9zK8smDQk+Xqr1erW3d0tV69eVYWEhEhzc7MqNja2py48HPL1DAoAKKR3vt5gMKiTkpKuvfnmmxeuXbumulm+fuTIkd1btmw5n5ycrPf29u7SaDTt2dnZ50XI1wOAQ/V3khgq9uTr29vb3d54442gwsJCQ2JiYvuSJUui1qxZE7Zp06Za8vUA4GLsydf/85//9BYR0ev17SqVSh555JHLhYWFPiLk6wHA5diTr9doNJby8nKvmpoaDxGR/Px8f61W2yZCvh4AXJI9+frMzMzaqVOnxnt4eHSPGzeuY/fu3RXk6wHAAZyxNky+HgCGIWcclOGGfD0AwOEYFACAIhgUAIAiGBQAgCIYFACAIhgUAFCQPfn6N998M0Cr1epiY2P1S5cuHdf7PfL1AOBiBpuvv3jxovu6devGffzxx8by8vIv6+vrPfbt2+dne598PQA4Ss5/R0q9QdF8vQTrzJL6xyHJ15eVlY2MiYlpDw8P7xQRmTlzZvNf/vKXgHnz5l0VGR75ek4oAKCQ3vn6xMRE3cKFCzXNzc2q2tpaj5vl63U6XfvZs2e9ysrKRlgsFsnNzQ2oqakZIUK+HgAcq5+TxFCxJ18fFBTUtXXrVlNaWtp4lUolU6ZMaamsrBwpIkK+HgBcjD35ehGR9PT0K6dOnSo9ceJEaXx8fNuECRPaRcjXA4DLsSdfLyJSXV3tISLS0NDg/tZbbwUvW7asQYR8PQC4JHvy9UuXLo00GL7+iwSrVq2qSUpKaidfDwAO4Iy1YfL1ADAMOeOgDDfk6wEADsegAAAUwaAAABTBoAAAFMGgAAAUwaAAgIJulq/fu3evv16vT9RqtTq9Xp+Ym5vbUxQ+cuSIWqvV6qKioiYuWbIk0mq19tyXfD0AuJib5euDg4Mt+/fvLzcajYadO3dWPP300zG2a5ctW6bJysoyVVZWFp87d85rz549/rb3yNcDgIOs/XRtZHlTuaL5+tiAWPOLd71oV76+d3E4JSWlraOjQ9Xa2upWX1/v0dLSopo1a9Y1EZFHH330Uk5OTsDDDz/cLEK+HgBcynfN1+/atStAp9OZvb29u00mk2dYWFhPzFGj0XTU1tZ6ipCvBwCH6u8kMVS+S76+qKjIa926dRH5+flnRKSv/LyIkK8HAJcz0Hz92bNnPRcsWBC7Y8eOCr1e3/7NtRbbiURExGQyjQgNDbWIkK8HAJczkHx9Y2Oj+wMPPBC3fv36qtmzZ/ecOjQajcXHx8d68OBBH6vVKu++++6YefPmfSUyfPL1DAoAKMiWr9dqtbpTp055p6enX544caLZlq/ftGlT8Pnz50e+/PLL4QkJCbqEhASd7fegZGVlmZYuXRqt0WgmRkdHt6elpV3pK1+/e/fusbbrjx496i0isnnz5qpt27aFRkVFTWxqavIgXw8Ag+SMtWHy9QAwDDnjoAw35OsBAA7HoAAAFMGgAAAUwaAAABTBoAAAFMGgAICC7MnXr1ixIiI0NDRJrVZPvv6+5OsBwMXYk69PTU39qrCwsORG9yVfDwAOUrPmfyLbz5xRNF8/Mi7OHP67/x2SfL23t3e3rct1I+TrAcCF2JOv7+++5OsBwIH6O0kMFXvy9f0hXw8ALsaefH1/yNcDgIuxJ1/fH/L1AOCC7MnXL126dFxISEhSW1ubKiQkJCkjIyOcfD0AOIAz1obJ1wPAMOSMgzLckK8HADgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKGmy+/urVq6p77rknNiYmRh8bG6tftmxZRO/7kq8HABdjT77++eefr6uoqPiyuLjYUFhY6PvnP//Z3/Ye+XoAcJCD2SWRl6tbFM3XB0b4mmcuThySfL2fn5/1Jz/5yVXbdUlJSeYLFy701ILJ1wOAC1EqX9/Y2Oj+97//ffT999/fLEK+HgAcqr+TxFBRIl9vsVjkoYceGv/MM8/U6XS6DhHy9QDgcpTI16enp0ePHz++bd26dfW218jXA4CLsTdf/6tf/Sq8ubnZfceOHd86XZGvBwAXNNh8/dmzZz23bdsWdubMGS+9Xq9LSEjQbdmyZSz5egBwAGesDZOvB4BhyBkHZbghXw8AcDgGBQCgCAYFAKAIBgUAoAgGBQCgCAYFABQ02Hy9iMi0adPi4uPjdbGxsfr09PSozs7OnvuSrwcAF2NPvn7fvn1ny8rKDEaj8ctLly55vv322z1jQb4eABzkw+2vRjZeMCmarx8bqTHP+eVzQ5Kv9/b27rY9DW+xWNwsFoubm9u/Dxjk6wHAhSiRr586dWpcUFDQJB8fn64nnniiSYR8PQA4VH8niaGiRL7+k08+OWM2m93mz58//oMPPvCfP39+M/l6AHAxSuTrRUTUanX33Llzv9q7d+9oEfL1AOBy7MnXX7lyRWUymTxFvv4lW/n5+aMSEhJaRcjXA4BLGmy+vrm5WfXggw/GarVaXWJion7s2LGWzMzMBvL1AOAAzlgbJl8PAMOQMw7KcEO+HgDgcAwKAEARDAoAQBEMCgBAEQwKAEARDAoAKMiefL3NjBkzYuPi4vS9XyNfDwAuxp58vYjIrl27Rvv4+HRdf1/y9QDgIJf3GCMtF68pmq/3DPUxBy7QDlm+/sqVK6rXXnst5I033jAtWrRoQu97k68HABdib74+IyMj4tlnn63z9fW19v4c+XoAcKD+ThJDxZ58/dGjR70rKipG7tix40JZWdm3hoB8PQC4GHvy9UeOHPEtLi5WR0RE3DJ9+vSEysrKkbfddlu8CPl6AHA59uTrV61a1VBfX3+qurr69OHDh0ujo6Pbjx07ViZCvh4AXNJg8/V93Y98PQA4gDPWhsnXA8Aw5IyDMtyQrwcAOBzphEYaAAAgAElEQVSDAgBQBIMCAFAEgwIAUASDAgBQBIMCAAqyJ19/2223xUdHR0+80fMp5OsBwMXYm6/Pzs4+V1paaigtLTVERER02l4nXw8ADpKTkxNZX1+vaL4+ODjYnJqaOmT5+v7+t8nXA4ALsTdfLyLy9NNPRyckJOgyMzPDrNavK/bk6wHAgfo7SQwVe/L1IiLvv//+uZiYGEtTU5Nq7ty5E7KyssYsX778Evl6AHAx9uTrRURiYmIsIiIBAQHWhQsXXj527JiPCPl6AHA59uTrLRaL1NbWeoiItLe3u+Xl5Y2aOHFiqwj5egBwSYPN17e2tqpmzZoV981fJ9aFhYVZMjIyGsjXA4ADOGNtmHw9AAxDzjgoww35egCAwzEoAABFMCgAAEUwKAAARTAoAABFMCgAoCB78vVtbW1ujzzyiCY6OnpiTEyMfufOnaNt75GvBwAXY0++fvXq1WFBQUGWysrK4vLy8i/nzJnTYntvOOTreQ4FwA9G7+dQDCWrIq+1GBXN1/v4as26xI395utvueUW/YULF07bnoy3SUlJiT9w4EB57+Kw1WqVwMDAW2tra096e3t3h4aGJhmNxmJ/f3/r9fd+8MEHx2/YsKHm+uJwfHy8bs+ePWf1en37mDFjJtXX15/09PSUf/zjHz7r168P/+STT85cf6/+8BwKADgBe/L1vU4Z4TqdLvH+++8ff+HCBQ8R8vUA4FD9nSSGij35eovF4lZXV+c5derUlrfeeqtq/fr1IStWrIjMycmpIF8PAC7Gnnx9SEhIp5eXl/Wxxx77SkTk5z//+eXi4mK1CPl6AHA59uTrVSqVzJw588r+/fv9RETy8vL84+LiyNcDgKsabL5eRGTLli1VGzZsCNdqtbr33ntvzGuvvVZFvh4AHMAZa8Pk6wFgGHLGQRlu+GvDAACHY1AAAIpgUAAAimBQAACKYFAAAIpgUABAQYPN1zc1Nalsz5UkJCToAgICJj355JORtvuSrwcAFzPYfH1AQIC1tLTUYPsnPDy8Iy0trefZleGQrycOCeAH6bmS85Gl19oUzdcn+HiZX02M6jdfX1hY6Ldnz55KEREvL69uLy+vLhGRw4cP+/3mN7+p610cTklJaevo6FC1tra6eXt79zwUePr06ZGXLl3y7P37UA4cODBqw4YNNUlJSe2216Kjoy2BgYGdtbW1HoGBgV2fffaZ3759+86JiDz55JOX1q9fH75q1aoGJf8/6A8nFABQiD35+uteD/zpT3962ZZrIV8PAA7U30liqNiTr+9t7969gTt37qyw/Tv5egBwMfbk620+++wz766uLrdp06aZba+RrwcAF2NPvt7mnXfeCZw/f/7l3q+RrwcAF2RPvl5EJDc3N3Dx4sU9g0K+HgAcwBlrw+TrAWAYcsZBGW7I1wMAHI5BAQAogkEBACiCQQEAKIJBAQAogkEBAAUNNl8vIvL6668HarVanVar1U2bNi2utra25/kU8vUA4GIGm6+3WCyyevXqyIKCAqPRaDTo9frWV155Jdh2X/L1AOAgmXtORhovXlU0X68N9TO/smDSkOTrVSqVdHd3y9WrV1UhISHS3Nysio2N7akLD4d8PYMCAArpna83GAzqpKSka2+++eaFa9euqQaSr9+yZcv55ORkvbe3d5dGo2nPzs4+L0K+HgAcqr+TxFCxJ1/f3t7u9sYbbwQVFhYaEhMT25csWRK1Zs2asE2bNtWSrwcAF2NPvv6f//ynt4iIXq9vV6lU8sgjj1wuLCz0ESFfDwAux558vUajsZSXl3vV1NR4iIjk5+f7a7XaNhHy9QDgkgabr4+OjrZkZmbWTp06NV6r1epOnz6tfvHFF2vJ1wOAAzhjbZh8PQAMQ844KMMN+XoAgMMxKAAARTAoAABFMCgAAEUwKAAARTAoAKAge/L1b775ZoBWq9XFxsbqly5dOq73fcnXA4CLGWy+/uLFi+7r1q0b9/HHHxvLy8u/rK+v99i3b1/P2JCvBwBHyfnvSKk3KJqvl2CdWVL/OCT5+rKyspExMTHt4eHhnSIiM2fObP7LX/4SMG/evKsiwyNfzwkFABTSO1+fmJioW7hwoaa5uVlVW1vrcbN8vU6naz979qxXWVnZCIvFIrm5uQE1NTUjRMjXA4Bj9XOSGCr25OuDgoK6tm7dakpLSxuvUqlkypQpLZWVlSNFRMjXA4CLsSdfLyKSnp5+5dSpU6UnTpwojY+Pb5swYUK7CPl6AHA59uTrRUSqq6s9REQaGhrc33rrreBly5Y1iJCvBwCXNNh8vYjI0qVLIydMmKC/4447EjIyMmqTkpLaydcDgAM4Y22YfD0ADEPOOCjDDfl6AIDDMSgAAEUwKAAARTAoAABFMCgAAEUwKACgoJvl6z/66CO17fmR+Ph4XXZ29mjbtUeOHFFrtVpdVFTUxCVLlkRardae+5KvBwAXc7N8/Y9+9KO206dPG0pLSw0HDhw489xzz2lsuZRly5ZpsrKyTJWVlcXnzp3z2rNnj7/tvuTrAcBB1n66NrK8qVzRfH1sQKz5xbtetCtf7+fn13PsaG1tdXNz+/oQYTKZPFtaWlSzZs26JiLy6KOPXsrJyQl4+OGHm0XI1wOASxlovv7QoUM+sbGx+uTkZP3WrVtNnp6eYjKZPMPCwnpijhqNpqO2ttZThHw9ADhUfyeJoTLQfP2MGTOulZeXf/n55597Pf744zELFiy40kd+XkTI1wOAyxlovt4mOTm5Ta1WdxUVFXlHR0dbbCcSERGTyTQiNDTUIkK+HgBczkDy9aWlpSNs/9E3Go0jKioqvOLi4jo0Go3Fx8fHevDgQR+r1SrvvvvumHnz5n0lMnzy9XzLCwAUZMvXd3R0uEVFRbWvXbu2trGx0cOWrz948KDv3Llzwzw8PLpVKlX35s2bz4eFhXWKiGRlZZmeeuqpmLa2Nrd77723OS0t7Upf+fqmpiaP3bt3j/3mtYo777yzdfPmzVULFy6c8NJLL0Xo9Xoz+XoAGCRnrA2TrweAYcgZB2W4IV8PAHA4BgUAoAgGBQCgCAYFAKAIBgUAoAgGBQAUcvLkyZG2NH1CQoLO19d38oYNG4JF/p2vv3jxovvtt9+uVavVkxcvXhx1/T1Wr14dun379sD169eHTJgwQa/VanU//vGPtUajsafLtW3btjEajWaiRqOZuG3btjHf59fYHwYFABQyadKk9tLSUkNpaamhuLjY4OXlZV20aNFXIv/O16vV6u4NGzbUrF+/vupG9zh06JD/vHnzmlNSUswnTpwoMRqNhtTU1KaVK1eOExGpq6tz37hxY/ixY8dKioqKSjZu3Bje0NDg/n1+nX3hSXkAP0g1a/4nsv3MGUXz9SPj4szhv/vfAUUnc3Nz/aOiotq1Wm2HyL/z9f7+/tY5c+a0lJWVjbz+msuXL6ssFosqPDy8Mzw8/Krt9alTp7a8//77Y0REcnJyRk2fPr05JCSkS0Rk+vTpzX/9619H/eIXv7iszFc5eJxQAGAIvPfee4ELFiy4JCJyfb6+Lx988IH/9OnTm69//fXXXw+aNWvWFRGR6upqz3HjxnXY3ouIiOiorq72vP4aR+CEAuAHaaAniaHQ1tbm9o9//GPUli1bqkRE9u3b5987X9+X/Pz8UU899dS3nvTPysoKPHnypPr1118vE5G+MvUK/cntwwkFABS2Z8+eUTqdzhwZGdkp8vVQ3Chff70vvvjC55577un5vSc5OTl+v//978Py8vLKvb29u0VExo0bZ6mqqur5AX11dfWI8PDw7zVT3xcGBQAU9n//93+BDz/88GUREavVKr3z9X0pKiryio2NbfPw+PobR59++qn3ihUrNPv27SuPiIjotH0uNTX1SkFBgX9DQ4N7Q0ODe0FBgX9qaupNx+r7wLe8AEBBV69eVX3yySf+u3btMomIfPLJJ+qJEyeabfl6EZGIiIhbWlpa3C0Wi9uHH344Oi8vz5ibmztq9uzZPcOQmZkZaTab3dPS0iaIiISHh3ccOnSoPCQkpCszM7MmJSUlUUTk17/+dY3tB/SORm0YwA+GM9aGB5qvv/POO+Pee++9So1G49BvX9lTG+aEAgBDaNOmTbUD+dzRo0fPDPWfZajxMxQAgCIYFACAIhgUAIAiGBQAgCIYFACAIhgUAFDIQPL1e/fu9dfr9YlarVan1+sTc3Nz/XrfYzjn63kOBcAPhjM9h9LZ2SmhoaGTjh49WqLVajtWrlwZPmnSJHNcXFx7REREZ3R0tOVf//qX14MPPqitr68/Zbvu9ttv1+7du/fc8ePHve+5555rfn5+1o0bNwYdPnzYb//+/efq6urcU1JSdMePHzeoVCqZPHmy7osvvjAEBQUp8nAjz6EAwHUOZpdEXq5uUTRfHxjha565ONGufH3v4nBKSkpbR0eHqrW11c3b27ubfD0A4D8MJF+/a9euAJ1OZ7aFH8nXA4ATGuhJYigMJF9fVFTktW7duoj8/PyeJ+TJ1wMAvuVm+fqzZ896LliwIHbHjh0Ver2+3fY6+XoAwLf0l69vbGx0f+CBB+LWr19fNXv27J7xIF8PAPiWm+XrN23aFHz+/PmRL7/8cvjLL78cLiJy8OBB8vUA4Eyc6a8N25CvBwAognw9AADfEYMCAFAEgwIAUASDAgBQBIMCAFAEgwIAChlIvv6jjz5S296Pj4/XZWdnj+59D/L1AOAEnOk5lL7y9T/72c+avby8rJ6enmIymTwnT56sq6urO+np+XXfkXw9ADiZD7e/Gtl4waRovn5spMY855fP2ZWv9/Pzs9o+09ra6tY77Ei+HgDwH/rL1x86dMgnNjZWn5ycrN+6davJdjohXw8ATmigJ4mhcLN8/YwZM66Vl5d/+fnnn3s9/vjjMQsWLLiiVqu7ydcDAL7lZvl6m+Tk5Da1Wt1VVFTkLUK+HgBwnf7y9aWlpSMslq//+280GkdUVFR4xcXFdZCvBwB8y83y9QcPHvSdO3dumIeHR7dKperevHnz+bCwsM7t27ePIV8PAE7Cmf7asA35egCAIsjXAwDwHTEoAABFMCgAAEUwKAAARTAoAABFMCgAoJCB5Ottnz1z5swItVo9ed26dSG97zGc8/UMCgAoZNKkSe2lpaWG0tJSQ3FxscHLy8u6aNGir0RE9u/fP+q+++7reXBx+fLlkXffffd/POF+6NAh/3nz5jWnpKSYT5w4UWI0Gg2pqalNK1euHCciUldX575x48bwY8eOlRQVFZVs3LgxvKGhwf37+yr7xnMoAH6QLu8xRlouXlM0X+8Z6mMOXKC1K18vIvLOO++Mjo6Obvfx8bH2voZ8PQDgP/SVr29ublZt3rw5dNOmTTXXX0O+HgCc0EBPEkOhv3z9Cy+8EL58+fK6UaNGWa+/brjn6xkUAFDYjfL1mZmZF0VEjh8/7rN///6A3/72t+Oam5vdVSqVeHl5WdesWdPwTb7eZLuPLV9/5MiRst75+oKCAj/bZ6qrq0fcfffdV6//MzgCgwIACusvX3/8+PEy2+cyMjLCfX19u9asWdPQV74+Ly/vzPX5+g0bNkTYfhBfUFDgv3Xr1qrv9QvsA4MCAAq6Wb6+L7m5uaPI1wOAkyBfbz/y9QDgpMjXAwDwHTEoAABFMCgAAEUwKAAARTAoAABFMCgAoJCB5OvLyspGeHl5Jds+k56eHtX7HsM5X89fGwYAhdjy9SIinZ2dEhoaOulG+frIyMiez13v0KFD/nv37j13/Phx7+eff77Ez8/PunHjxqCVK1eO279//zlbvv748eMGlUolkydP1i1atOiroKAghz/cyKAA+EHKycmJrK+vVzRfHxwcbE5NTbUrX9/Y2Njn7y4hXw8A+A995etFRKqqqkYkJibqpkyZEp+fn+9ru4Z8PQA4oYGeJIZCf/n6qKgoS0VFxanQ0NCuI0eOqNPS0mINBkNxYGCgdbjn6zmhAIDCbpSvnzt37hUREW9v7+7Q0NAuEZFp06aZo6Ki2ouLi71ERL7J11+z3ceWr8/Lyyvvna+vqqrq+QF9dXX1iPDwcIf2v2wYFABQWH/5+pqaGo/Ozq9r9AaDYURlZeXI+Pj49r7y9fv27Su/Pl9fUFDg39DQ4N7Q0OBeUFDgn5qa+h+/m94R+JYXACjoZvn6AwcO+L700ksR7u7u3e7u7t2vvvqqKSQkpOuPf/zjWPL1AOAkyNfbj3w9ADgp8vUAAHxHDArw/9m7+6io67z/428GEBhuFFRuBQYdBpghLFkrTds23cy0Fb00jcq1rk4X62oWLevJa+XnVV17WnfpzrN0utFVPNGp5Uo0ZdWOumpRmLptIneiMCqgiCI3jsDA8PvDhiU3EJkvzkzzfJyzfzQz3++J/aPX+QwzTwAogkEBACiCQQEAKIJBAQAogkEBAIUMJF8vIlJUVORz++23x2u1WoNOp9ObTKaedgr5egDAgPL1ZrNZnnjiiZhNmzZVTZo06eq5c+fchw0b1vOFQPL1AOBgSkpXRl5prVA0X+/rpzPpE/5gU77+k08+GZ6QkHDVmmKxdr1EyNcDAH5AX/n68vJyLzc3N5kyZUqsXq9P+N3vfhdivYZ8PQA4oIGeJIZCf/n6zs5Ot6+//trv8OHDpX5+fpapU6fqJk6caJozZ04L+XoAwPf0l68fM2ZMx913390SFhbW6e/vb/n5z3/edPjwYbUI+XoAwHX6y9fPnTu3ubS01KelpUVlNpvliy++8DcYDG3k6wEA33OjfP3o0aO7li1bdv6OO+5IcHNzk2nTpjUtWrSoKTMzM4R8PQA4CPL1tiNfDwAOinw9AAA3iUEBACiCQQEAKIJBAQAogkEBACiCQQEAhQwkX//2228H9X6NSqVKLiws9LHew5nz9XwPBcCPhiN9D8Wary8sLCzV6XQdzz//fPj48eNNS5YsuWx9zaFDh3zmzZunPXv27DHrY3fddZfOmq+/7777rljz9QcOHPC35uuTk5P1vfP1//jHP0qUytfzPRQAuM5zpacjy660KZqvj/f1Nr2REGVTvr73a3JycoLmzp3bk5139nw9gwIAQ6CvfH3v12zdujXwk08+qbT+M/l6AHBAAz1JDIX+8vVWe/fu9fXx8bFMnDixzfoY+XoAwPf0l6+3+uCDD4LmzZv3vbepyNcDAL6nv3y9iEhXV5ds3749cPHixT2DQr4eAPA9N8rXi4j87W9/8w8NDe3Q6/U9vwvZtm3bcPL1AOAgHOljw1bk6wEAiiBfDwDATWJQAACKYFAAAIpgUAAAimBQAACKYFAAQCEDyde3t7e7zZs3T6PT6fRjx441vPjii6G970G+HgAcgCN9D6WvfH1bW5tq+/btI7Zv336qpaVFFR8fb9i7d295XFxchwj5egBwOBl5/4ysONeiaL5eF+pv+uP88Tbl6/Py8oabTCaV2WyWK1euuHl6enaPGDGiS8T58/W85QUAQ6CvfP2SJUsa1Wq1JTg4eHxMTEzSsmXLzlnHgXw9ADiggZ4khkJ/+fr9+/erVSpV97lz575taGhwv+eee+IfeuihZr1e30G+HgDwPf3l6zdv3jxyxowZTV5eXt0RERGdEydObC0sLPQVIV8PALhOf/n6qKiojn379gVYLBZpbm5WHT161Pe2225rI18PAPieG+Xrf/vb39YvWrRIo9PpDN3d3ZKamtpw1113Xc3MzAwhXw8ADsKRPjZsRb4eAKAI8vUAANwkBgUAoAgGBQCgCAYFAKAIBgUAoAgGBQAUMpB8fVtbm9v8+fM1Op1OHxcXp9++fbt/73uQrwcAB+BI30PpK19fV1fneeTIEd+8vLzqmpoajwceeCD222+/LXV3dxcR8vUA4Hjyfx0p9SWK5uslWG+SlD/blK9/7rnnIqyhyIiIiM6AgICuAwcOqH/2s5+ZyNcDAP5NX/n68ePHmz799NMRZrNZysrKhhUXF6uNRuMwEfL1AOCYBniSGAr95etXrFjRUFpa6nPbbbfpIyIi2idMmNBqDUKSrwcAfE9/+XpPT09Zv379mbKyspI9e/acbG5u9khISGgTIV8PALhOf/n6lpYWVXNzs0pEZMuWLQHu7u7dycnJ5OsBAN93o3x9bW2tx4wZM3Qqlao7NDTUnJubWyUism3btuHk6wHAQTjSx4atyNcDABRBvh4AgJvEoAAAFMGgAAAUwaAAABTBoAAAFMGgAIBCBpKvP3funPtdd92lU6vVdyxevDiq9/UHDx5U63Q6fVRUVOKSJUsiLRZLz3NGo9HznnvuiS0sLPS5/fbb47VarUGn0+nfe++9QOtrysrKhiUlJcVHR0cnzpo1a2xbW9stbbIwKACgkPHjx7eXlZWVlJWVlRQXF5d4e3tbFi1adFlEZMeOHcMffPDBJrVa3f3SSy/Vrlmz5uz11y9dujQ6OzvbWF1dXXzq1CnvvLy8AOtz+fn5AdOnT2/28/OzbN68uaqysvL47t27T6xatSqyoaHBXUQkPT19zLJly84bjcbi4cOHd7755pujbt1Pz/dQAPxIrf5idWRlY6Wi+XptoNb08j0v25SvDwgIsMyYMaO1vLzcq/frjUajZ2trq2r69OlXREQee+yxi/n5+YGPPPJIs4jI7t27h7/00ku1SUlJ7dZrNBqNOSgoqLOurs4jKCio68svv/TfunXrKRGRp5566uKaNWvCV65ceUGpn/9GOKEAwBDoK1/f1+uNRqNnWFhYz7fko6OjO+rq6jxFrv2xrpMnT3onJye39b5m3759arPZ7KbX69vPnz/v4e/v3+Xpea1kr9FoOs6fPz9MbiFOKAB+lAZ6khgK/eXr+9Jfln7fvn2+EyZMuNL7OaPR6Pnkk0+OXb9+fZW7u3tf19/SthYnFABQWH/5+r5oNBqz9UQiImI0GoeFhoaaRUS2b98+/MEHH+y5/tKlS6qZM2dqMzMza6ZNm3ZFRCQ0NLSzpaXF3Wy+dsiprq4eFhwcfEu7YAwKACisv3x9X6Kjo82+vr6WPXv2+FosFvnggw9Gzpkz57KIyIEDBwJmz57dLHLt9DNr1iztokWLLj711FM9wUmVSiV33313y1/+8pdAEZENGzaMnD179uWh+yn/HYMCAAqy5usff/zxyyL/nq8XEYmIiLht9erVkXl5eSNDQkKSjhw54i0ikp2dbUxLS9NER0cnajSa9gULFjTV1tZ6eHl5WYKCgiwiIhs2bAj8+uuv/XJzc0dZP55cWFjoIyKSlZV1dt26daFRUVGJjY2NHitWrLil5WXy9QB+NJw5X9+X7OzsoLNnzw77/e9/f07pf7cfYku+nkEB8KPhiIPibGwZFN7yAgAogkEBACiCQQEAKIJBAQAogkEBACiCQQEAhdiar1++fHlEaGhoklqtvuP6e5OvBwAXYmu+PiUl5XJRUVHpD92bfD0A2Entqv+ObD9xQtF8vVdsrCn89/87JPl6ERFrl+uHkK8HABd1s/n6/pCvBwA7GuhJYigMJl/fH/L1AOCiBpOv7w/5egBwUYPJ1/eHfD0AuCBb8vVpaWljQkJCktra2lQhISFJ6enp4eTrAcAOHLE2TL4eAJyQIw6KsyFfDwCwOwYFAKAIBgUAoAgGBQCgCAYFAKAIBgUAFGJLvr6lpUV13333aWNiYgxardawdOnSiN73Jl8PAC7E1nz9Cy+8cL6qqup4cXFxSVFRkd/HH38cYH2OfD0A2MmenNLISzWtiubrgyL8TNMWJwxJvt7f39/y8MMPt4iIeHt7dyclJZnOnDnTUwsmXw8ALsqWfH1DQ4P7Z599NmLmzJnNIuTrAcCuBnqSGAq25OvNZrPMmzdv7DPPPHNer9d3iJCvBwCXZUu+PjU1VTN27Ni2zMzMeutj5OsBwEUNNl//7LPPhjc3N7uvX7/+e6crZ8nX85YXACjImq/ftGmTUaTvfH1ra6u72Wx227Vr14iCgoKKESNGdK1bty4sJiamzWAw6EVEnnnmmfpFixZd/qF8fWNjo0dubu6o7x6rmjx58tWsrKyzCxcuHPfKK69EGAwGE/l6ABgkR6wNk68HACfkiIPibMjXAwDsjkEBACiCQQEAKIJBAQAogkEBACiCQQEAhdiSrxcRmTp1amxcXJxeq9UaUlNTozo7O3ueI18PAC7E1nz91q1bT5aXl5dUVFQcv3jxoueGDRt6xoJ8PQDYya6334hsOGNUNF8/KjLaNONXzw1Jvl5ExPpteLPZ7GY2m93c3P51wCBfDwAuarD5+ilTpsSOHj16vK+vb9eTTz7ZKEK+HgDsaqAniaFgS77+888/P2Eymdzmzp079tNPPw2YO3duM/l6AHBRtuTrRUTUanX37NmzL2/ZsmWECPl6AHBZg8nXNzU1qYxGo6fItT+ytXPnzuHx8fFXRcjXA4BLGmy+Pjg4uHPWrFnajo4ON4vF4nbPPfc0Z2RkXKitrfUgXw8At5gj1obJ1wOAE3LEQXE25OsBAHbHoAAAFMGgAAAUwaAAABTBoAAAFMGgAIBCbM3XW91///3a2NhYQ+/HyNcDgAuxNV8vIrJp06YRvr6+/xaRJF8PAHZyKa8i0nzuiqL5es9QX1PQfN2Q5eubmppUb731Vsi7775rXLRo0bjez5GvBwAXNZh8fXp6esSKFSvO+/n5WXo/Tr4eAOxooCeJoTCYfH1hYaFPVVWV1/r168+Ul5d/bwjI1wOAixpMvv7gwYN+xcXF6oiIiNvuvffe+Orqaq8777wzToR8PQC4rMHk61euXHmhvr7+25qammMHDhwo02g07YcOHSoXcZ58PYMCAAqy5usff/zxyyJ95+tXr14dmZeXNzIkJCTpyJEj3n3dr698fW5u7ijrx5MLCwt9RESysrLOrlu3LjQqKiqxsbHRg3w9AAySI9aGydcDgBNyxEFxNuTrAQB2x6AAABTBoAAAFMGgAAAUwaAAABTBoACAQmzN185ewZkAACAASURBVN95551xGo0m0Xp9TU1NTx6LfD0AuBAl8vU5OTmnrPeIiIjotD5Ovh4A7CQ/Pz+yvr5e0Xx9cHCwKSUlZcjy9f0hXw8ALmow+XoRkaeffloTHx+vz8jICLNYrlXsydcDgB0N9CQxFAaTrxcR+eijj07FxMSYGxsbVbNnzx6XnZ09ctmyZRfJ1wOAixpMvl5EJCYmxiwiEhgYaFm4cOGlQ4cO+YqQrwcAlzWYfL3ZbJa6ujoPEZH29na3goKC4YmJiVdFnCdfz1teAKAga75+06ZNRpG+8/Wtra3uZrPZbdeuXSMKCgoqYmNjO6ZPnx5rNpvdLBaL29SpU5vT09Mv9JWvb2xs9MjNzR313WNVkydPvpqVlXV24cKF41555ZUIg8FgIl8PAIPkiLVh8vUA4IQccVCcDfl6AIDdMSgAAEUwKAAARTAoAABFMCgAAEUwKACgEFvz9W1tbW6PPvpotEajSYyJiTFs3LhxhPU58vUA4EJszde/+OKLYaNHjzZXV1cXV1ZWHp8xY0ar9Tny9QBgJyWlKyOvtFYomq/39dOZ9Al/GLJ8/YcffjiqoqKiWETE3d1dwsLCev4eCvl6AHBRN5uv73XKCNfr9QkzZ84ce+bMGQ8R8vUAYFcDPUkMhcHk681ms9v58+c9p0yZ0vr++++fXbNmTcjy5csj8/Pzq8jXA4CLGky+PiQkpNPb29vyxBNPXBYRefzxxy8VFxerRcjXA4DLGky+XqVSybRp05p27NjhLyJSUFAQEBsb61T5euKQAH40HCEO2dLSooqMjEw6efLksZEjR3YdOHBA/eabbwb/3//9X7X1Nb3z9f7+/l0FBQUVycnJbRUVFcNSU1Njmpub3UeOHNmZk5NT7evra5k3b97Yr776qkLkWn342Wef1Wi12p7fp1jz9SUlJcMWLlw4rqmpyd1gMJg++eSTKh8fn5v6jzy1YQAQxxiU65GvBwAn5IiD4mzI1wMA7I5BAQAogkEBACiCQQEAKIJBAQAogkEBAIXYkq9vbGxU9b42MDBw/FNPPRVpfZ58PQC4EFvy9YGBgRbrtWVlZSXh4eEdCxYs6PnuCvl6ALCT50pPR5ZdaVM0Xx/v6216IyFqyPL1VseOHfO6ePGiZ++/h0K+HgBc1M3m63vbtGlT0C9+8YtLKtW1/0STrwcAOxroSWIoDCZf39uWLVuCNm7cWGX9Z/L1AOCiBpOvt/ryyy99urq63KZOnWqyPka+HgBc1GDy9VabN28Omjt37qXejzlLvp5BAQAFtbS0qD7//POAxx9//LKIyOeff65OTEw0WX8fInItX7969erIvLy8kSEhIUlHjhzxtj63bdu2oMWLF/cMSm1trYeXl5clKCjIIiKyYcOGwK+//tovNzd3lPUjxoWFhT4iIllZWWfXrVsXGhUVldjY2OixYsWKWxrKpDYM4EfDEWvD5OsBwAk54qA4G/L1AAC7Y1AAAIpgUAAAimBQAACKYFAAAIpgUABAIbbk60VE3nnnnSCdTqfX6XT6qVOnxtbV1fXkscjXA4ALsSVfbzab5cUXX4zcv39/RUVFRYnBYLj6xz/+Mdj6PPl6ALCTjLx/Rlaca1E0X68L9Tf9cf74IcnXWywWt+7ubmlpaVGFhIRIc3OzSqvV9tSFnSFfz6AAwBC42Xy9l5dX92uvvXZ6woQJBh8fn67o6Oj2nJyc0yLk6wHArgZ6khgKg8nXt7e3u7377ruji4qKShISEtqXLFkStWrVqrC1a9fWka8HABc1mHz9V1995SMiYjAY2lUqlTz66KOXioqKfEXI1wOAyxpMvj46OtpcWVnpXVtb6yEisnPnzgCdTtcm4jz5et7yAgAFWfP1mzZtMor0na9vbW11N5vNbrt27RpRUFBQkZyc3JaRkVE3ZcqUOA8Pj+4xY8Z05ObmVvWVr29sbPTIzc0d9d1jVZMnT76alZV1duHCheNeeeWVCIPBYCJfDwCD5Ii1YfL1AOCEHHFQnA35egCA3TEoAABFMCgAAEUwKAAARTAoAABFMCgAoBBb8/XvvfdeoE6n02u1WkNaWtqY3s+RrwcAF2JLvv7cuXPumZmZY/7+979XVFZWHq+vr/fYunWrv/V58vUAYC/5v46U+hJF8/USrDdJyp+HJF9fXl7uFRMT0x4eHt4pIjJt2rTmv/71r4Fz5sxpEXGOfD0nFAAYAjebr9fr9e0nT570Li8vH2Y2m2Xbtm2BtbW1w0TI1wOAfQ3wJDEUBpOvHz16dNfrr79uXLBgwViVSiUTJ05sra6u9hIRIV8PAC5qMPl6EZHU1NSmb7/9tuybb74pi4uLaxs3bly7CPl6AHBZg8nXi4jU1NR4iIhcuHDB/f333w9eunTpBRHy9QDgkmzJ16elpUWWlFz7IMHKlStrk5KS2snXA4AdOGJtmHw9ADghRxwUZ0O+HgBgdwwKAEARDAoAQBEMCgBAEQwKAEARDAoAKGQg+fotW7YEGAyGBJ1OpzcYDAnbtm3rKQofPHhQrdPp9FFRUYlLliyJtFgsPfcmXw8ALmQg+frg4GDzjh07KisqKko2btxY9fTTT8dYr1+6dGl0dna2sbq6uvjUqVPeeXl5AdbnyNcDgJ2s/mJ1ZGVjpaL5em2g1vTyPS/blK/vXRxOTk5u6+joUF29etWtvr7eo7W1VTV9+vQrIiKPPfbYxfz8/MBHHnmkWYR8PQC4rIHk6zdt2hSo1+tNPj4+3Uaj0TMsLKwn5hgdHd1RV1fnKUK+HgDsaqAniaEwkHz94cOHvTMzMyN27tx5QkT6ys+LCPl6AHBZN8rXnzx50nP+/Pna9evXVxkMhnaRa29fWU8kIiJGo3FYaGioWYR8PQC4rP7y9Q0NDe4PPfRQ7Jo1a84+8MADPaeO6Ohos6+vr2XPnj2+FotFPvjgg5Fz5sy5LOI8+XoGBQAUZM3XP/7445dF/j1fv3bt2uDTp097vfrqq+HWjxdb/w5Kdna2MS0tTRMdHZ2o0WjaFyxY0NRXvj43N3eU9frCwkIfEZGsrKyz69atC42KikpsbGz0IF8PAIPkiLVh8vUA4IQccVCcDfl6AIDdMSgAAEUwKAAARTAoAABFMCgAAEUwKACgEFvz9cuXL48IDQ1NUqvVd1x/b/L1AOBCbM3Xp6SkXC4qKir9oXuTrwcAO6ld9d+R7SdOKJqv94qNNYX//n+HJF/v4+PTbe1y/RDy9QDgom42X9/fvcjXA4AdDfQkMRQGk6/vD/l6AHBRg8nX94d8PQC4qMHk6/tDvh4AXJAt+fq0tLQxISEhSW1tbaqQkJCk9PT0cPL1AGAHjlgbJl8PAE7IEQfF2ZCvBwDYHYMCAFAEgwIAUASDAgBQBIMCAFAEgwIACrElX9/S0qK67777tDExMQatVmtYunRpRO97k68HABdia77+hRdeOF9VVXW8uLi4pKioyO/jjz8OsD5Hvh4A7GRPTmnkpZpWRfP1QRF+pmmLE4YkX+/v7295+OGHW0REvL29u5OSkkxnzpzpqQWTrwcAF2VLvr6hocH9s88+GzFz5sxmEfL1AGBXAz1JDAVb8vVms1nmzZs39plnnjmv1+s7RMjXA4DLsiVfn5qaqhk7dmxbZmZmvfUx8vUA4KIGm69/9tlnw5ubm93Xr1//vdMV+XoAcEGDzdefPHnSc926dWEnTpzwNhgM+vj4eP1rr702inw9ANiBI9aGydcDgBNyxEFxNuTrAQB2x6AAABTBoAAAFMGgAAAUwaAAABTBoACAQmzJ14uITJ06NTYuLk6v1WoNqampUZ2dnT33Jl8PAC7E1nz91q1bT5aXl5dUVFQcv3jxoueGDRt6xoJ8PQDYya6334hsOGNUNF8/KjLaNONXzw1Jvt7Hx6fb+m14s9nsZjab3dzc/nXAIF8PAC5qsPn6KVOmxI4ePXq8r69v15NPPtkoQr4eAOxqoCeJoWBLvv7zzz8/YTKZ3ObOnTv2008/DZg7d24z+XoAcFG25OtFRNRqdffs2bMvb9myZYQI+XoAcFmDydc3NTWpjEajp8i1P7K1c+fO4fHx8VdFyNcDgEsabL6+ublZNWvWLK1Op9MnJCQYRo0aZc7IyLhAvh4A7MARa8Pk6wHACTnioDgb8vUAALtjUAAAimBQAACKYFAAAIpgUAAAimBQAEAhtubrre6//35tbGysofdj5OsBwIXYmq8XEdm0adMIX1/fruvvTb4eAOzkUl5FpPncFUXz9Z6hvqag+bohy9c3NTWp3nrrrZB3333XuGjRonG970e+HgBc1GDy9enp6RErVqw47+fnZ+n9OvL1AGBHAz1JDIXB5OsLCwt9qqqqvNavX3+mvLz8e0NAvh4AXNRg8vUHDx70Ky4uVkdERNx27733xldXV3vdeeedcSLk6wHAZQ0mX79y5coL9fX139bU1Bw7cOBAmUajaT906FC5CPl6AHBJg83X93U/8vUAYAeOWBsmXw8ATsgRB8XZkK8HANgdgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKsTVff+edd8ZpNJrEH/p+Cvl6AHAhSuTrc3JyTlnvERER0Wl9nHw9ANhJfn5+ZH19vaL5+uDgYFNKSsqQ5ev7ux/5egBwUYPJ14uIPP3005r4+Hh9RkZGmMVyrWJPvh4A7GigJ4mhMJh8vYjIRx99dComJsbc2Niomj179rjs7OyRy5Ytu0i+HgBc1GDy9SIiMTExZhGRwMBAy8KFCy8dOnTIV4R8PQC4rMHk681ms9TV1XmIiLS3t7sVFBQMT0xMvCpCvh4AXNJg8/VXr15VTZ8+Pfa7jxPrw8LCzOnp6RfI1wOAHThibZh8PQA4IUccFGdDvh4AYHcMCgBAEQwKAEARDAoAQBEMCgBAEQwKACjE1nx9W1ub26OPPhqt0WgSY2JiDBs3bhxhfc4Z8vV8bBjAj4YjfWy4s7NTQkNDxxcWFpbqdLqO559/Pnz8+PGm2NjY9oiIiE6NRmP++uuvvWfNmqWrr6//VkTk+eefD+/q6pK33nqrtqurS+rr6z3CwsI6RUTefPPNkZcuXfL4j//4j8tubm5y2223tVdXV3tOnDgxobS09PioUaO6HnroobEpKSmNzzzzTGNqamrU+PHjr95sbdiWjw0ThwTwo1RSujLySmuFovl6Xz+dSZ/whyHL13/44YejKioqikVE3N3dxTomIuTrAcBl3Wy+vtcfyQrX6/UJM2fOHHvmzBkPEfL1AGBXAz1JDIXB5OvNZrPb+fPnPadMmdL6/vvvn12zZk3I8uXLI/Pz86vI1wOAixpMvj4kJKTT29vb8sQTT1wWEXn88ccvFRcXq0XI1wOAyxpMvl6lUsm0adOaduzY4S8iUlBQEBAbG0u+HgBc1WDz9SIir7322tmXXnopXKfT6T/88MORb7311lny9QBgB470sWEr8vUA4IQccVCcDfl6AIDdMSgAAEUwKAAARTAoAABFMCgAAEUwKACgEFvy9Y2Njare1wYGBo5/6qmnIq33Jl8PALeQI31seDD5+t4MBkPCn/70pzMzZ85sFSFfDwB281zp6ciyK22K5uvjfb1NbyREDVm+3vr4sWPHvC5evOg5Y8aMVutj5OsBwEXdbL7+useDfvGLX1yy5lrI1wOAHQ30JDEUBpOv723Lli1BGzdurLL+M/l6AHBRg8nXW3355Zc+XV1dblOnTjVZHyNfDwAuajD5eqvNmzcHzZ0791Lvx8jXA4ALsiVfLyKybdu2oMWLF/cMCvl6ALADR/rYsBX5egBwQo44KM6GfD0AwO4YFACAIhgUAIAiGBQAgCIYFACAIhgUAFCILfl6EZF33nknSKfT6XU6nX7q1KmxdXV1Pd9PIV8PALeQI31s+Gbz9WazWUJCQsYfP378eFhYWGdaWtoYtVptee2112pFyNcDgN1k5P0zsuJci6L5el2ov+mP88cPSb5epVJJd3e3tLS0qEJCQqS5uVml1Wp76sLOkK9nUABgCAwmX//aa6+dnjBhgsHHx6crOjq6PScn57QI+XoAsKuBniSGwmDy9e3t7W7vvvvu6KKiopKEhIT2JUuWRK1atSps7dq1deTrAcBFDSZf/9VXX/mIiBgMhnaVSiWPPvropaKiIl8R8vUA4LIGk6+Pjo42V1ZWetfW1nqIiOzcuTNAp9O1iZCvBwCXNNh8vUajMWdkZNRNmTIlTqfT6Y8dO6Z++eWX68jXA4AdONLHhq3I1wOAE3LEQXE25OsBAHbHoAAAFMGgAAAUwaAAABTBoAAAFMGgAIBCbM3Xv/fee4E6nU6v1WoNaWlpY3rf2xny9QwKAChk/Pjx7WVlZSVlZWUlxcXFJd7e3pZFixZdFhHZsWPH8AcffLApODjYvGPHjsqKioqSjRs3Vj399NMxIiLnzp1zz8zMHPP3v/+9orKy8nh9fb3H1q1be8YmPz8/YPr06c1+fn6WzZs3V1VWVh7fvXv3iVWrVkU2NDS4i4ikp6ePWbZs2Xmj0Vg8fPjwzjfffHPUrfz5iUMC+HHK/3Wk1Jcomq+XYL1JUv48JPn68vJyr5iYmPbw8PBOEZFp06Y1//Wvfw2cM2dOi4hz5Os5oQDAELjZfL1er28/efKkd3l5+TCz2Szbtm0LrK2tHSZCvh4A7GuAJ4mhMJh8/ejRo7tef/1144IFC8aqVCqZOHFia3V1tZeICPl6AHBRg8nXi4ikpqY2ffvtt2XffPNNWVxcXNu4cePaRcjXA4DLGky+XkSkpqbGQ0TkwoUL7u+//37w0qVLL4iQrwcAlzTYfL2ISFpaWuS4ceMMd999d3x6enpdUlJSO/l6ALADR6wNk68HACfkiIPibMjXAwDsjkEBACiCQQEAKIJBAQAogkEBACiCQQEAhQwkX79v3z619fm4uDh9Tk7OCOv1Bw8eVOt0On1UVFTikiVLIi0WS8+9ydcDgAsZSL7+Jz/5SduxY8dKysrKSnbv3n3iueeei7bmUpYuXRqdnZ1trK6uLj516pR3Xl5egPXe5OsBwE5Wf7E6srKxUtF8vTZQa3r5npdtytf7+/v3HDuuXr3q5uZ27RBhNBo9W1tbVdOnT78iIvLYY49dzM/PD3zkkUeaRcjXA4DL6i9fv3fvXl+tVmuYMGGC4fXXXzd6enqK0Wj0DAsL64k5RkdHd9TV1XmKkK8HALsa6EliKNwoX3///fdfqaysPH706FHvX/7ylzHz589v6iM/LyLk6wHAZd0oX281YcKENrVa3XX48GEfjUZjtp5IRESMRuOw0NBQswj5egBwWf3l68vKyoZZ/6NfUVExrKqqyjs2NrYjOjra7Ovra9mzZ4+vxWKRDz74YOScOXMui5CvBwCXdKN8/Z49e/wSEhIM8fHx+pSUlHFZWVmnw8LCOkVEsrOzjWlpaZro6OhEjUbTvmDBgiby9QBgB45YGyZfDwBOyBEHxdmQrwcA2B2DAgBQBIMCAFAEgwIAUASDAgBQBIMCAAqxNV+/fPnyiNDQ0CS1Wn3H9fcmXw8ALsTWfH1KSsrloqKi0h+6N/l6ALCT2lX/Hdl+4oSi+Xqv2FhT+O//d0jy9SIi1i7XDyFfDwAu6mbz9f0hXw8AdjTQk8RQGEy+Xq1W95ktIV8PAC5qMPn6/u5Hvh4AXNRg8vX93Y98PQC4IFvy9WlpaWNCQkKS2traVCEhIUnp6enh5OsBwA4csTZMvh4AnJAjDoqzIV8PALA7BgUAoAgGBQCgCAYFAKAIBgUAoAgGBQAU9D//8z/BWq3WEBsba3j44YdjTCaTm8i/8vXnzp1zv+uuu3RqtfqOxYsXR11//Ysvvhj69ttvB61ZsyZk3LhxBp1Op580aZKuoqKip8u1bt26kdHR0YnR0dGJ69atG3krf77+MCgAoJCqqirPd999N+Sbb74pOXHixPGuri63999/P0jkX/l6tVrd/dJLL9WuWbPm7A/dY+/evQFz5sxpTk5ONn3zzTelFRUVJSkpKY3PP//8GBGR8+fPu//hD38IP3ToUOnhw4dL//CHP4RfuHDB/Vb+nH0hDgngR2lPTmnkpZpWRfP1QRF+pmmLE/qNTnZ1dblduXJF5eXl1XX16lXVmDFjzCL/ytcHBARYZsyY0VpeXu51/bWXLl1Smc1mVXh4eGd4eHiL9fEpU6a0fvTRRyNFRPLz84ffe++9zSEhIV0iIvfee2/zJ598Mvy//uu/Lin5sw4GJxQAUEhMTIz517/+9bmYmJik4ODg8f7+/l3z5s1rvj5f35dPP/004N57722+/vF33nln9PTp05tERGpqajzHjBnT0/6KiIjoqKmp6b9/f4twQgHwo3Sjk8RQuHDhgvuOHTtGVFZWHhs5cmTXrFmzxmZnZwepVCrpna/vy86dO4f/53/+5/e+6Z+dnR30z3/+U/3OO++Ui0hfmXrFfgZbcEIBAIV8+umnAVFRUe3h4eGdXl5e3SkpKZcLCwv9+srXX+8f//iH73333dfzd0/y8/P9//SnP4UVFBRU+vj4dIuIjBkzxnz27NmeX9DX1NQMCw8Pv6WZ+r4wKACgEI1G03H06FG/lpYWlcVikb179/onJCS09c7X9+Xw4cPeWq22zcPj2htHX3zxhc/y5cujt27dWhkREdFpfV1KSkrT/v37Ay5cuOB+4cIF9/379wekpKTccKxuBd7yAgCF3H///VcefvjhxqSkpAQPDw8xGAymSZMmXTl69Kjamq8XEYmIiLittbXV3Ww2u+3atWtEQUFBxbZt24Y/8MADPcOQkZERaTKZ3BcsWDBORCQ8PLxj7969lSEhIV0ZGRm1ycnJCSIiv/3tb2utv6C3N2rDAH40HLE2PNB8/eTJk2M//PDD6ujoaLu+fWVLbZgTCgAMobVr19YN5HWFhYUnhvrfZajxOxQAgCIYFACAIhgUAIAiGBQAgCIYFACAIhgUAFDQjfL1W7ZsCTAYDAk6nU5vMBgStm3b5t/7evL1AIAB5euDg4PNO3bsqKyoqCjZuHFj1dNPPx3T+x7k6wHAwex6+43IhjNGRfP1oyKjTTN+9ZxN+frexeHk5OS2jo4O1dWrV918fHy6ydcDAETk5vP1mzZtCtTr9SZr+JF8PQA4oBudJIbCzeTrDx8+7J2ZmRmxc+fOnm/Ik68HAIjIwPP1J0+e9Jw/f752/fr1VQaDod36OPl6AICIDCxf39DQ4P7QQw/Frlmz5uwDDzzQMx7k6wEAPQaSr1+7dm3w6dOnvV599dXwV199NVxEZM+ePeTrAcCRkK+3Hfl6AHBQ5OsBALhJDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAo6Eb5+n379qnj4+P18fHx+ri4OH1OTs6I3teTrwcADChf/5Of/KTt2LFjJWVlZSW7d+8+8dxzz0Wbzf/66gn5egBwMJfyKiLN564omq/3DPU1Bc3X2ZSv9/f3t1hfe/XqVbfeYUfy9QAAERl4vn7v3r2+Wq3WMGHCBMPrr79u9PS8Vp8nXw8ADuhGJ4mhMNB8/f3333+lsrLy+NGjR71/+ctfxsyfP79JrVZ3k68HAIjIwPP1VhMmTGhTq9Vdhw8f9hEhXw8A+M5A8vVlZWXDrL+Er6ioGFZVVeUdGxvbQb4eANBjIPn6PXv2+M2ePTvMw8OjW6VSdWdlZZ0OCwvrfPvtt0eSrwcAB0G+3nbk6wHAQZGvBwDgJjEoAABFMCgAAEUwKAAARTAoAABFMCgAoKAb5eutrztx4sQwtVp9R2ZmZkjv68nXAwAGlK+3vnbZsmWRP/3pT//tG+7k6wHAweTn50fW19crmq8PDg42paSk2JSvFxHZvHnzCI1G0+7r62vpfS35egCAiAwsX9/c3KzKysoKXbt2be3115OvBwAHdKOTxFAYSL7+N7/5TfiyZcvODx8+3HL99c6er2dQAEAhvfP1IiLWfH1ra6t7RkbGORGRI0eO+O7YsSPw//2//zemubnZXaVSibe3t2XVqlUXvsvXG633s+brDx48WN47X79//35/62tqamqG/fSnP225/t/FHhgUAFBI73y9r6+vZe/evf7JycmmnJycUdZ8/ZEjR8qtr09PTw/38/PrWrVq1YW+8vUFBQUnrs/Xv/TSSxHWX8Tv378/4PXXXz97i3/UH8SgAIBCBpKv78u2bduGk68HAAdBvt525OsBwEGRrwcA4CYxKAAARTAoAABFMCgAAEUwKAAARTAoAKCgG+Xry8vLh3l7e0+Ij4/Xx8fH61NTU6N6X0++HgAw4Hx9ZGRke1lZWUlZWVlJbm7u6d73IF8PAA6mpHRl5JXWCkXz9b5+OpM+4Q825esbGhr6/I8/+XoAgIgMLF8vInL27NlhCQkJ+okTJ8bt3LnTz3o9+XoAcEA3OkkMhYHk66OiosxVVVXfhoaGdh08eFC9YMECbUlJSXFQUJDF2fP1nFAAQCG98/VeXl7d1nz9zp07h8+ePbtJRMTHx6c7NDS0S0Rk6tSppqioqPbi4mJvEZHv8vVXrPez5usLCgoqe+frz5492/ML+pqammHh4eF27X9ZMSgAoJDe+XqLxSJ79+71T0hIaCstLfWx5utra2s9Ojuv1ehLSkqGVVdXe8XFxbX3la/funVr5fX5+v379wdcuHDB/cKFC+779+8PSElJ+be/TW8PvOUFAAoZSL5+9+7dfq+88kqEu7t7t7u7e/cbb7xhDAkJ6frzn/88inw9ADgI8vW2I18PAA6KfD0AADeJQQEAKIJBAQAogkEBACiCQQEAKIJBAQAF3ShfLyJSVFTkc/vtt8drtVqDTqfTW18jQr4eACADy9ebzWZ54oknYt5++21jZWXl8QMHDpQPGzas5wuB5OsBwME8V3o6suxKm6L5+nhfb9MbCVE25es/+eST4QkJCVetKRZr10uEfD0A4DsDydeXl5d7ubm5yZQpU2L1en3C7373uxDr9eTr4qLrSgAAIABJREFUAcAB3egkMRQGkq/v7Ox0+/rrr/0OHz5c6ufnZ5k6dapu4sSJpjlz5rSQrwcAiMjA8vVjxozpuPvuu1vCwsI6/f39LT//+c+bDh8+rBYhXw8A+M5A8vVz585tLi0t9WlpaVGZzWb54osv/A0GQxv5egBAj4Hk60ePHt21bNmy83fccUeCm5ubTJs2rWnRokVNmZmZIeTrAcBBkK+3Hfl6AHBQ5OsBALhJDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAo6Eb5+rfffjsoPj5eb/2fSqVKLiws9LFeT74eADCgfP2vfvWrS2VlZSVlZWUlOTk5VeHh4R2TJ0++ar0H+XoAcDAZef+MrDjXomi+Xhfqb/rj/PE25et7vzYnJydo7ty5Pdl58vUAABEZWL6+9+u3bt0auHjx4ovWfyZfDwAO6EYniaEwkHy91d69e319fHwsEydObLM+Rr4eACAiA8vXW33wwQdB8+bN+97bVOTrAQAiMrB8vYhIV1eXbN++PXDx4sU9g0K+HgDQYyD5ehGRv/3tb/6hoaEder2+53ch27ZtG06+HgAcBPl625GvBwAHRb4eAICbxKAAABTBoAAAFMGgAAAUwaAAABTBoACAgm6Ur29vb3ebN2+eRqfT6ceOHWt48cUXQ3tfT74eADCgfP1f/vKXwI6ODlVFRUXJP//5z9KcnJzR5eXlPWNBvh4AHE3+ryOlvkTRfL0E602S8meb8vV5eXnDTSaTymw2y5UrV9w8PT27R4wY0SVCvh4A8J2B5OuXLFnSqFarLcHBweNjYmKSli1bds46DuTrAcAR3eAkMRQGkq/fv3+/WqVSdZ87d+7bhoYG93vuuSf+oYceatbr9R3k6wEAIjKwfP3mzZtHzpgxo8nLy6s7IiKic+LEia2FhYW+IuTrAQDfGUi+PioqqmPfvn0BFotFmpubVUePHvW97bbb2sjXAwB6DCRf/9vf/rZ+0aJFGp1OZ+ju7pbU1NSGu+6662pmZmYI+XoAcBDk621Hvh4AHBT5egAAbhKDAgBQBIMCAFAEgwIAUASDAgBQBIMCAAq6Ub6+ra3Nbf78+RqdTqePi4vTb9++3b/39eTrAQADyte//vrro0REKioqSvbu3VuxcuXKMV1d//peIvl6AHAwq79YHVnZWKlovl4bqDW9fM/LNuXrn3vuuQhrKDIiIqIzICCg68CBA+qf/exnJvL1AAARGVi+fvz48aZPP/10hNlslrKysmHFxcVqo9E4TIR8PQA4pBudJIbCQPL1K1asaCgtLfW57bbb9BEREe0TJkxotQYhnT1fz6AAgEJ65+tFRKz5+tbWVveMjIxzIiKenp6yfv36nrG744474hMSEtpEevL1Rutz1nz9wYMHy3vn6/fv39/zi/yampphP/3pT3veHrMn3vICAIUMJF/f0tKiam5uVomIbNmyJcDd3b07OTmZfD0A4F8Gkq+vra31mDFjhk6lUnWHhoaac3Nzq0REtm3bNpx8PQA4CPL1tiNfDwAOinw9AAA3iUEBACiCQQEAKIJBAQAogkEBACiCQQEABd0oX3/u3Dn3u+66S6dWq+9YvHhxVO9rDx48qNbpdPqoqKjEJUuWRFoslp7njEaj5z333BNbWFjoc/vtt8drtVqDTqfTv/fee4HW15SVlQ1LSkqKj46OTpw1a9bYtra2W9pkYVAAQCEDyder1erul156qXbNmjVnr79+6dKl0dnZ2cbq6uriU6dOeefl5QVYn8vPzw+YPn16s5+fn2Xz5s1VlZWVx3fv3n1i1apVkQ0NDe4iIunp6WOWLVt23mg0Fg8fPrzzzTffHHXrfnq+hwLgR6p21X9Htp84oWi+3is21hT++/+1KV8fEBBgmTFjRmt5eblX7+uMRqNna2uravr06VdERB577LGL+fn5gY888kiziMju3buHv/TSS7VJSUnt1ms0Go05KCios66uziMoKKjryy+/9N+6despEZGnnnrq4po1a8JXrlx5Qcn/D/rDCQUAFDKQfH1f1xqNRs+wsLCeb8lHR0d31NXVeYqIdHZ2ysmTJ72Tk5Pbel+zb98+tdlsdtPr9e3nz5/38Pf37/L0vFay12g0HefPnx8mtxAnFAA/Sjc6SQyFgeTr+9Jfln7fvn2+EyZMuNL7OaPR6Pnkk0+OXb9+fZW7u3tf19/SthaDAgAKGUi+vi8ajcZsPZGIiBiNxmGhoaFmEZHt27cPf/DBB3vCkZcuXVLNnDlTm5mZWTNt2rQrIiKhoaGdLS0t7mazWTw9PaW6unpYcHDwLe2C8ZYXAChkIPn6vkRHR5t9fX0te/bs8bVYLPLBBx+MnDNnzmURkQMHDgTMnj27WUSkra3NbdasWdpFixZdfOqpp3qCkyqVSu6+++6Wv/zlL4EiIhs2bBg5e/bsy0P5816PQQEAhfTO18fFxRksFovbpEmTriQmJpqs+XoRkYiIiNtWr14dmZeXNzIkJCTpyJEj3iIi2dnZxrS0NE10dHSiRqNpX7BgQVNtba2Hl5eXJSgoyCIismHDhsCvv/7aLzc3d1R8fLw+Pj5eX1hY6CMikpWVdXbdunWhUVFRiY2NjR4rVqy4peVl8vUAfjScOV/fl+zs7KCzZ88O+/3vf9/vW2ZKsSVfz6AA+NFwxEFxNrYMCm95AQAUwaAAABTBoAAAFMGgAAAUwaAAABTBoACAgmzJ1y9fvjwiNDQ0Sa1W33H9fcnXA4ALsTVfn5KScrmoqKj0h+5Nvh4A7GRPTmnkpZpWRfP1QRF+pmmLE4YkXy8iYu1y/RDy9QDgQmzJ1/eHfD0A2NGNThJDwZZ8fX/I1wOAi7ElX98f8vUA4GJsydf3h3w9ALgYW/P1aWlpY0JCQpLa2tpUISEhSenp6eHk6wHADhyxNky+HgCckCMOirMhXw8AsDsGBQCgCAYFAKAIBgUAoAgGBQCgCAYFABQ02Hx9S0uL6r777tPGxMQYtFqtYenSpRG970u+HgBciK35+hdeeOF8VVXV8eLi4pKioiK/jz/+OMD6HPl6ALCTXW+/Edlwxqhovn5UZLRpxq+eG5J8vb+/v+Xhhx9uERHx9vbuTkpKMp05c6anFky+HgBciFL5+oaGBvfPPvtsxMyZM5tFyNcDgF3d6CQxFJTI15vNZpk3b97YZ5555rxer+8QIV8PAC5HiXx9amqqZuzYsW2ZmZn11sfI1wOAi7E1X//ss8+GNzc3u69fv/57pytnyddzQgEAhfTO13t4eIjBYDBNmjTpytGjR9XX5+tbW1vdzWaz265du0YUFBRUjBgxomvdunVhMTExbQaDQS8i8swzz9QvWrTo8g/l6xsbGz1yc3NHffdY1eTJk69mZWWdXbhw4bhXXnklwmAwmMjXA8AgOWJtmHw9ADghRxwUZ0O+HgBgdwwKAEARDAoAQBEMCgBAEQwKAEARDAoAKGiw+XoRkalTp8bGxcXptVqtITU1Naqzs7PnOfL1AOBCbM3Xb9269WR5eXlJRUXF8YsXL3pu2LChZyzI1wOAnVzKq4g0n7uiaL7eM9TXFDRfNyT5ehER67fhzWazm9lsdnNz+9cBg3w9ALgQJfL1U6ZMiR09evR4X1/frieffLJRhHw9ANjVjU4SQ0GJfP3nn39+wmQyuc2dO3fsp59+GjB37txmZ8nXc0IBAIX0ztd7eXl1W/P1O3fuHD579uymG9/hGrVa3T179uzLW7ZsGSFy8/l6ESFfDwDOzJZ8fVNTk8poNHqKXPsjWzt37hweHx9/VYR8PQC4HFvy9cHBwZ2zZs3SdnR0uFksFrd77rmnOSMj40Jtba0H+XoAuMUcsTZMvh4AnJAjDoqzIV8PALA7BgUAoAgGBQCgCAYFAKAIBgUAoAgGBQAUZEu+3ur+++/XxsbGGno/Rr4eAFyIrfl6EZFNmzaN8PX1/beIJPl6ALCT/Pz8yPr6ekXz9cHBwaaUlJQhy9c3NTWp3nrrrZB3333XuGjRonG9nyNfDwAuxNZ8fXp6esSKFSvO+/n5WXo/Tr4eAOzoRieJoWBLvr6wsNCnqqrKa/369WfKy8u/NwTOkq9nUABAIb3z9SIi1nx9a2ure0ZGRr8troMHD/oVFxerIyIibuvs7HS7dOmSx5133hl36NCh8pvN13t6epKvBwBnZku+fuXKlRfq6+u/rampOXbgwIEyjUbTfujQoXIR58nXMygAoJDe+fq4uDiDxWJxmzRp0pXExETT9fn61atXR+bl5Y0MCQlJOnLkiHdf9+wrX5+bmzsqPj5eHx8fry8sLPQREcnKyjq7bt260KioqMTGxkYP8vUAMEiOWBsmXw8ATsgRB8XZkK8HANgdgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKsiVff+edd8ZpNJpE6/dLampqemom5OsBwIUoka/Pyck5VVZWVlJWVlYSERHRaX2cfD0A2ElJ6crIK60Viubrff10Jn3CH4YsX98f8vUA4EJszdeLiDz99NOa+Ph4fUZGRpjFcq1iT74eAOzoRieJoWBLvl5E5KOPPjoVExNjbmxsVM2ePXtcdnb2yGXLll0kXw8ALsaWfL3ItROOiEhgYKBl4cKFlw4dOuQrIhfJ1wOAi7ElX282m6Wurs5DRKS9vd2toKBgeGJi4lUR58nXc0IBAIX0ztd7eHiIwWAwTZo06crRo0fV1+frW1tb3c1ms9uuXbtGFBQUVMTGxnZMnz491mw2u1ksFrepU6c2p6enX+grX9/Y2OiRm5s76rvHqiZPnnw1Kyvr7MKFC8e98sorEQaDwUS+HgAGyRFrw+TrAcAJOeKgOBvy9QAAu2NQAACKYFAAAIpgUAAAimBQAACKYFAAQEG25Ovb2trcHn300WiNRpMYExNj2Lhx4wjrc+TrAcCF2Jqvf/HFF8NGjx5trq6uLq6srDw+Y8aMVutz5OsBwE6eKz0dWXalTdF8fbyvt+mNhKghy9d/+OGHoyoqKopFRNzd3SUsLKzn76GQrwcAF2JLvr7XKSNcr9cnzJw5c+yZM2c8RMjXA4Bd3egkMRRsydebzWa38+fPe06ZMqX1/fffP7tmzZqQ5cuXR+bn51c5S76eEwoAKKR3vt7Ly6vbmq/fuXPn8NmzZzf1d21ISEint7e35YknnrgsIvL4449fKi4uVouI3Gy+XkTI1wOAM7MlX69SqWTatGlNO3bs8BcRKSgoCIiNjSVfDwCuyJZ8fXJycttrr712NjU1NeY3v/mN+8iRIztzcnKqydcDgB04Ym2YfD0AOCFHHBRnQ74eAGB3DAoAQBEMCgBAEQwKAEARDAoAQBEMCgAoaLD5+sbGRlV8fLze+r/AwMDxTz31VKT1efL1AOBCbMnXBwYGWsrKykqs/wsPD+9YsGBBz3dXyNcDgJ1k5P0zsuJci6L5el2ov+mP88cPWb7e6tixY14XL1707P33UMjXA4ALsSVf39umTZuCfvGLX1yy5lrI1wOAHd3oJDEUbMnX97Zly5agjRs3Vln/2Vny9QwKACikd75eRMSar29tbXXPyMgYUIvryy+/9Onq6nKbOnWqyfrYzebrPT09ydcDgDOzJV9vtXnz5qC5c+de6v2Ys+TrGRQAUEjvfH1cXJzBYrG4TZo06UpiYqLp+nz96tWrI/Py8kaGhIQkHTlyxNv63LZt24IWL17cMyh95etzc3NHWT9iXFhY6CMikpWVdXbdunWhUVFRiY2NjR7k6wFgkByxNky+HgCckCMOirMhXw8AsDsGBQCgCAYFAKAIBgUAoAgGBQCgCAYFABQ02Hy9iMg777wTpNPp9DqdTj916tTYurq6npoJ+XoAcCG25OvNZrO8+OKLkfv376+oqKgoMRgMV//4xz8GW58nXw8A9pL/60ipL1E0Xy/BepOk/HlI8vUWi8Wtu7tbWlpaVCEhIdLc3KzSarU9dWFnyNczKACgkN75ei8vL8vUqVObB5qv9/Ly6n7ttddOT5gwweDj49MVHR3dnpOTc1qEfD0A2NcNThJDwZZ8fXt7u9u77747uqioqCQhIaF9yZIlUatWrQpbu3ZtnbPk6/kdCgAopHe+3svLq9uar9+5c+fw2bNnN/V37VdffeUjImIwGNpVKpU8+uijl4qKinxFbj5fLyLk6wHAmdmSr4+OjjZXVlZ619bWeoiI7Ny5M0Cn07WJOE++nre8AEAhvfP1Hh4eYjAYTJMmTbpy9OhR9fX5+tbWVnez2ey2a9euEQUFBRXJycltGRkZdVOmTInz8PDoHjNmTEdubm5VX/n6xsZGj9zc3FHfPVY1efLkq1lZWWcXLlw47pVXXokwGAwm8vUAMEiOWBsmXw8ATsgRB8XZkK8HANgdgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKsiVf/9577wXqdDq9Vqs1pKWljen9HPl6AHAhtuTrz507556ZmTnm73//e0VlZeXx+vp6j61bt/pbnydfDwB2svqL1ZGVjZWK5uu1gVrTy/e8PCT5+vLycq+YmJj28PDwThGRadOmNf/1r38NnDNnTouIc+TrOaEAgEJ65+uDg4PH+/v7dw00X6/X69tPnjzpXV5ePsxsNsu2bdsCa2trh4mQrwcAu7rRSWIo2JKvHz16dNfrr79uXLBgwViVSiUTJ05sra6u9hIRcZZ8PYMCAArpna8XEbHm61tbW90zMjJu2OJKTU1tSk1NbRIR+dOf/jTK3d1dRG4+X+/p6Um+HgCcmS35ehGRmpoaD5FrJ533338/eOnSpRdEyNcDgMuxNV+flpYWWVJSohYRWblyZW1SUlI7+XoAsANHrA2TrwcAJ+SIg+JsyNcDAOyOQQEAKIJBAQAogkEBACiCQQEAKIJBAQAF3Shfv2XLlgCDwZCg0+n0BoMhYdu2bT1F4YMHD6p1Op0+KioqccmSJZEWi6XnvuTrAcCFDCRfHxwcbN6xY0dlRUVFycaNG6uefvrpGOv1S5cujc7OzjZWV1cXnzp1yjsvLy/A+hz5egCwk9pV/x3ZfuKEovl6r9hYU/jv/9emfH3v4nBycnJbR0eH6urVq2719fUera2tqunTp18REXnssccu5ufnBz7yyCPNIuTrAcCl3Gy+ftOmTYF6vd7k4+PTbTQaPcPCwnpijtHR0R11dXWeIuTrAcCubnSSGAo3k68/fPiwd2ZmZsTOnTtPiEhf+XkRIV8PAC5noPn6kydPes6fP1+7fv36KoPB0C5y7e0r64lERMRoNA4LDQ01i5CvBwCXM5B8fUNDg/tDDz0Uu2bNmrMPPPBAz6kjOjra7Ovra9mzZ4+vxWKRDz74YOScOXMuizhPvp5BAQCF9M7Xx8XFGSwWi9ukSZOuJCYmmqz5+rVr1wafPn3a69VXXw2Pj4/Xx8fH661/ByU7O9uYlpamiY6OTtRoNO0LFixo6itfn5ubO8p6fWFhoY+ISFZW1tl169aFRkVFJTY2NnqQrweAQXLE2jD5egBwQo44KM6GfD0AwO4YFACAIhgUAIAiGBQAgCIYFACAIhgUAFCQLfn65cuXR4SGhiap1eo7rr8v+XoAcCG25utTUlIuFxUVlf7QvcnXA4Cd7MkpjbxU06povj4ows80bXHCkOTrfXx8uq1drh9Cvh4AXIgt+fr+7ku+HgDs6EYniaFgS76+P+TrAcDF2JKv7w/5egBwMbbk6/tDvh4AXIyt+fq0tLQxISEhSW1tbaqQkJCk9PT0cPL1AGAHjlgbJl8PAE7IEQfF2ZCvBwDYHYMCAFAEgwIAUASDAgBQBIMCAFAEgwIAChpsvr6lpUV13333aWNiYgxardawdOnSiN73JV8PAC7E1nz9Cy+8cL6qqup4cXFxSVFRkd/HH38cYH2OfD0A2Mmut9+IbDhjVDRfPyoy2jTjV88NSb7e39/f8vDDD7eIiHh7e3cnJSWZzpw501MLJl8PAC5EqXx9Q0OD+2effTZi5syZzSLk6wHArm50khgKSuTrzWazzJs3b+wzzzxzXq/Xd4iQrwcAl6NEvj41NVUzduzYtszMzHrrY+TrAcDF2Jqvf/bZZ8Obm5vd169f/73TFfl6AHAxtuTrT5486bnu/7N392FR1/n+x98MILeioDLcCAMyDMMM0a6ubsegbdWTuSKCl6RSuXZzta5H02UP69r55drN6WptUctr7dLUVbqiq81NtM1DdZmpZWJup03iZkQBb0BRQW4cwIHh94cNS54EZL40M83zcV3+4Xfm+908f/g6H3CebNwYfvLkSV+j0WjQ6/WGdevWjSZfDwAO4Iy1YfL1AOCCnHFQXA35egCAwzEoAABFMCgAAEUwKAAARTAoAABFMCgAoKDB5utFRFJTU+MTEhIMWq3WmJ2dHd3Z2dnzXPL1AOBG7M3X79mz51RFRUWpyWT6+sqVK97bt2/vGQvy9QDgIA27TFGWC9cUzdd7hwWYQ+bqhiRf7+fn1237NLzFYvGwWCweHh7/OmCQrwcAN6JEvj4lJSV+zJgxdwYEBHQ98sgjjSLk6wHAofo7SQwFJfL1n3zyyUmz2eyRmZk57t133w3KzMxsdpV8PScUAFBI73y9j49Pty1fX1RUNCItLa0nP99Xvl5ExN/fvzstLe3q7t27R4rcfr5eRMjXA4Arsydf39TUpKqpqfEWufFDtoqKikbo9fo2EfL1AOB27MnXNzc3q2bOnKnV6XSGxMRE4+jRoy25ubmXyNcDgAM4Y22YfD0AuCBnHBRXQ74eAOBwDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAoyJ58vc2UKVO08fHxxt7XyNcDgBuxN18vIrJz586RAQEBXTc/m3w9ADhIYWFhVH19vaL5+tDQUHNGRsaQ5eubmppUr7zyinrLli018+fPj+v9XPL1AOBG7M3X5+TkRC5fvvxiYGCgtff7yNcDgAP1d5IYCvbk648cOeJXVVXls23btrMVFRXfGgJXydczKACgkN75ehERW76+tbXVMzc3t6fF9V35+sOHDweWlJT4R0ZG3tHZ2enR0NDgNWnSpIRjx45V3G6+3tvbm3w9ALgye/L1K1euvFRfX//V+fPnTxw6dKg8Jiam49ixYxUi5OsBwO3Yk6+/1TPJ1wOAAzhjbZh8PQC4IGccFFdDvh4A4HAMCgBAEQwKAEARDAoAQBEMCgBAEQwKACjInnz9pEmTEmJiYpK+6/Mp5OsBwI0oka/Pz88/XV5eXlpeXl4aGRnZabtOvh4AHKS0bGXUtVaTovn6gECd2ZD4xyHL1/f1XPL1AOBG7M3Xi4g8/vjjMXq93pCbmxtutd6o2JOvBwAH6u8kMRTsydeLiLz11lunY2NjLY2Njaq0tLS4TZs2jVq6dOkV8vUA4GbsydeL3DjhiIgEBwdb582b13Ds2LEAEblCvh4A3Iw9+XqLxSJ1dXVeIiIdHR0e+/btG5GUlNQmQr4eANyOPfn6trY21bRp0+K/+efEhvDwcEtOTs4l8vUA4ADOWBsmXw8ALsgZB8XVkK8HADgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKsidf397e7rFgwQJNTExMUmxsrHHHjh0jba+RrwcAN2Jvvn7VqlXhY8aMsVRXV5dUVlZ+PX369Fbba+TrAcBBVpSdiSq/1q5ovl4f4GvekBg9ZPn6N998c7TJZCoREfH09JTw8PCen4dCvh4A3Ig9+fpep4wIg8GQOGPGjHFnz571EiFfDwAO1d9JYijYk6+3WCweFy9e9E5JSWndunXruTVr1qiXLVsWVVhYWOUq+XpOKACgkN75eh8fn25bvr6oqGhEWlpaT37+u/L1arW609fX1/rwww9fFRF56KGHGkpKSvxFRG43Xy8i5OsBwJXZk69XqVQyderUpvfee2+4iMi+ffuC4uPjydcDgDuyJ18vIrJu3bpzzz77bIROpzO8+eabo1555ZVz5OsBwAGcsTZMvh4AXJAzDoqrIV8PAHA4BgUAoAgGBQCgCAYFAKAIBgUAoAgGBQAUNNh8fWNjo8r2uRK9Xm8IDg6+89FHH42yPZd8PQC4EXvy9cHBwdby8vJS26+IiIjrWVlZPZ9dIV8PAA6Su+ufUaYLLYrm63Vhw80vzb1zyPL1tusnTpzwuXLlinfvn4dCvh4A3Ig9+fqbroekp6c32HIt5OsBwIH6O0kMBXvy9b3t3r07ZMeOHVW237tKvp5BAQCF9M7Xi4jY8vWtra2eubm5PS2u78rX23z22Wd+XV1dHqmpqWbbtdvN13t7e5OvBwBXZk++3ub1118PyczMbOh9jXw9ALgZe/P1IiJ79+4NWbhwYc+gkK8HAAdwxtow+XoAcEHOOCiuhnw9AMDhGBQAgCIYFACAIhgUAIAiGBQAgCIYFABQ0GDz9SIimzdvDtHpdAadTmdITU2Nr6ur6/l8Cvl6AHAj9uTrLRaLrFq1KurgwYMmk8lUajQa21566aVQ27PJ1wOAoxT+R5TUlyqar5dQg1ky/jwk+XqVSiXd3d3S0tKiUqvV0tzcrNJqtT11YVfI1zMoAKCQ3vl6Hx8fa2pqavPt5OvXrVt3Zvz48UY/P78ujUbTkZ+ff0aEfD0AOFY/J4mhYE++vqOjw2PLli1jiouLSxMTEzsWLVoU/dRTT4WvXbu2zlXy9XwPBQAU0jtf7+Pj023L1xcVFY1IS0vryc9/V77+6NGjfiIiRqOxQ6VSyYIFCxqKi4sDRG4/Xy8i5OsBwJXZk6/XaDSWyspK39raWi8RkaKioiCdTtcuQr4eANyOPfn6mJgYS25ubl1KSkqCTqcznDhxwv+5556rI18PAA7gjLVh8vUA4IKccVBcDfl6AIDDMSgAAEUwKAAARTAoAABFMCgAAEUwKACgIHvy9a+99lqwTqczaLVa4+LFi8f2fi75egBwI/bk6y9cuOC5evXqsR9//LGpsrLy6/r6eq89e/b0jA35egBwkKeCyqkoAAAgAElEQVQ/fTqqsrFS0Xy9Nlhrfu7u54YkX19RUeETGxvbERER0SkiMnXq1Oa33347ePbs2S0irpGv54QCAArpna8PDQ29c/jw4V0DzdcbDIaOU6dO+VZUVAyzWCyyd+/e4Nra2mEi5OsBwKH6O0kMBXvy9WPGjOlav359TVZW1jiVSiUTJ05sra6u9hERcZV8PYMCAArpna8XEbHl61tbWz1zc3N7Wlzfla8XEcnOzm7Kzs5uEhH505/+NNrT01NEbj9f7+3tTb4eAFyZPfl6EZHz5897idw46WzdujV0yZIll0TI1wOA27EnXy8isnjx4qi4uDjjXXfdpc/JyalLTk7uIF8PAA7gjLVh8vUA4IKccVBcDfl6AIDDMSgAAEUwKAAARTAoAABFMCgAAEUwKACgoP7y9QcOHPC3fX4kISHBkJ+fP9J27+HDh/11Op0hOjo6adGiRVFWq7XnueTrAcCNDCRf/5Of/KT9xIkTpeXl5aUffPDByRUrVmgslhuFlCVLlmg2bdpUU11dXXL69GnfXbt2BdmeTb4eAByk9qn/iuo4eVLRfL1PfLw54oX/titfP3z48J5jR1tbm4eHx41DRE1NjXdra6tq2rRp10REHnzwwSuFhYXBDzzwQLMI+XoAcCsDzdd/9NFHAVqt1jh+/Hjj+vXra7y9vaWmpsY7PDy8J+ao0Wiu19XVeYuQrwcAh+rvJDEUBpqvnzJlyrXKysqvv/jiC99f/vKXsXPnzm26RX5eRMjXA4DbGWi+3mb8+PHt/v7+XcePH/eLiYmx2E4kIiI1NTXDwsLCLCLk6wHA7QwkX19eXj7M9k14k8k0rKqqyjc+Pv66RqOxBAQEWPfv3x9gtVrljTfeGDV79uyrIuTrAcDtDCRfv3///sDExESjXq83ZGRkxOXl5Z0JDw/vFBHZtGlTzeLFi2M0Gk1STExMR1ZWVhP5egBwAGesDZOvBwAX5IyD4mrI1wMAHI5BAQAogkEBACiCQQEAKIJBAQAogkEBAAXZk69ftmxZZFhYWLK/v/+Pb34u+XoAcCP25uszMjKuFhcXl33Xs8nXA4CD7M8vi2o436povj4kMtA8dWHikOTrRURsXa7vQr4eANyIPfn6vpCvBwAH6u8kMRTsydf7+/vfMlviKvl6TigAoJDe+XofH59uW76+qKhoRFpaWtPN7++dr+/rubebrxcR8vUA4Mrsydf39Vzy9QDgZuzN1y9evHisWq1Obm9vV6nV6uScnJwI8vUA4ADOWBsmXw8ALsgZB8XVkK8HADgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKeu6550Lj4+ONWq3W+Oyzz4bartvy9RcuXPD86U9/qvP39//xwoULo2++f9WqVWGvvvpqyJo1a9RxcXFGnU5n+Ld/+zedyWTq6XJt3LhxlEajSdJoNEkbN24c9X392frDoACAQj7//HPf/Pz8MV988UVZWVnZ10VFRSNPnDjhI/KvfL2/v3/3s88+W7tmzZpz3/WMjz76KGj27NnNEyZMMH/55ZdlJpOpNCMjo/E3v/nNWBGRixcvev7xj3+MOHbsWNnx48fL/vjHP0ZcunTJ8/v8c94KcUgAP0jvv7oh6vLZGkXz9aOjNObpv15xy+jkiRMn/MaPH99qS9TffffdLW+99dbIO+6446ItXx8UFGSdPn16a0VFhc/N9zc0NKgsFosqIiKiMyIiosV2PSUlpfWtt94aJSJSWFg44p577mlWq9VdIiL33HNP8zvvvDPiV7/6VYOSf9bB4IQCAAr50Y9+1FZcXDz8woULni0tLaoPP/xwxNmzZ4fdnK+/lXfffTfonnvuab75+ubNm8dMmzatSUTk/Pnz3mPHju1pf0VGRl4/f/583/377wknFAA/SH2dJIbK+PHj25cvX35hypQpOn9/f6vBYDB7eXnJnj17gnrn62+lqKhoxGOPPfatT/pv2rQp5J///Kf/5s2bK0TkVpl6xf4M9uCEAgAK+s1vfnO5tLS07Pjx4xUhISFd8fHx7bfK19/sf//3fwPuvffenp97UlhYOPxPf/pT+L59+yr9/Py6RUTGjh1rOXfuXM836M+fPz8sIiLie83U3wqDAgAKOn/+vJeIyMmTJ4e99957Ix977LGG3vn6Wzl+/LivVqtt9/K68YWjTz/91G/ZsmWaPXv2VEZGRnba3peRkdF08ODBoEuXLnleunTJ8+DBg0EZGRn9jtX3gS95AYCC0tPT465everl5eXVvWHDhjNlZWU+vfP1IiKRkZF3tLa2elosFo/3339/5L59+0x79+4dcd999/UMQ25ubpTZbPbMysqKExGJiIi4/tFHH1Wq1equ3Nzc2gkTJiSKiPzud7+rtX2D3tGoDQP4wXDG2vBA8/WTJ0+Of/PNN6s1Go1Dv3xlT22YEwoADKG1a9fWDeR9R44cOTnU/y1Dje+hAAAUwaAAABTBoAAAFMGgAAAUwaAAABTBoACAgvrL1+/evTvIaDQm6nQ6g9FoTNy7d+/w3veTrwcADChfHxoaannvvfcqTSZT6Y4dO6oef/zx2N7PIF8PAE6mYZcpynLhmqL5eu+wAHPIXJ1d+frexeEJEya0X79+XdXW1ubh5+fXTb4eACAit5+v37lzZ7DBYDDbwo/k6wHACfV1khgqt5OvP378uO/q1asji4qKej4hT74eANBjIPn6U6dOec+dO1e7bdu2KqPR2GG7Tr4eANCjv3z95cuXPX/xi1/Er1mz5tx9993XMx7k6wEA39Jfvn7t2rWhZ86c8XnxxRcjXnzxxQgRkf3795OvBwBnQr7efuTrAcBJka8HAOA2MSgAAEUwKAAARTAoAABFMCgAAEUwKACgoP7y9QcOHPDX6/UGvV5vSEhIMOTn54/sfT/5egDAgPL1P/nJT9pPnDhRWl5eXvrBBx+cXLFihcZi+ddHT8jXA4CTKSwsjKqvr1c0Xx8aGmrOyMiwK19ve01EpK2tzaN32JF8PQBARAaer//oo48CtFqtcfz48cb169fXeHvfqM+TrwcAJ9TXSWKoDDRfP2XKlGuVlZVff/HFF76//OUvY+fOndvk7+/fTb4eANBjIPl6m/Hjx7f7+/t3HT9+3E+EfD0AoJf+8vXl5eXDbN+EN5lMw6qqqnzj4+Ovk68HAHxLf/n6/fv3B6alpYV7eXl1q1Sq7ry8vDPh4eGdr7766ijy9QDgJMjX2498PQA4KfL1AADcJgYFAKAIBgUAoAgGBQCgCAYFAKAIBgUAFNRfvt72+5MnTw7z9/f/8erVq9W97ydfDwAYUL7e9t6lS5dG/exnP/s/n3AnXw8ATqa0bGXUtVaTovn6gECd2ZD4R7vy9SIir7/++siYmJiOgIAAa+/7ydcDAERkYPn65uZmVV5eXtjatWtrb76ffD0AOKG+ThJDZSD5+v/8z/+MWLp06cURI0ZYb76ffD0AoEd/+fp//OMfAX/4wx/GRkZG3vHaa6+Fvvzyy+EvvPDCGBHXz9dzQgEABZ0/f94rMjKy05avP3bsWPlf/vKXMbZ8/T/+8Y8K23tzcnIiAgMDu5566qlLt8rX79u37+TN+fpnn3020vaN+IMHDwatX7/+3Pf8x/xODAoAKKi/fP2t7N27dwT5egBwEuTr7Ue+HgCcFPl6AABuE4MCAFAEgwIAUASDAgBQBIMCAFAEgwIACuovX19RUTHM19d3vF6vN+j1ekN2dnZ07/vJ1wMABpyvj4qK6igvLy8tLy8vLSgoONP7GeTrAcDJrCg7E1V+rV3RfL0+wNe8ITHarnz95cuXb/mXP/l6AICIDCxfLyJy7ty5YYmJiYaJEycmFBUVBdruJ18PAE6or5PEUBlIvj46OtpSVVX1VVhYWNfhw4f9s7KytKWlpSUhISFW8vUAgB795ev9/Py6w8LCukREUlNTzdHR0R0lJSW+Iq6fr2dQAEBB58+f9xIRseXrH3vssYaysjI/W76+trbWq7PzRo2+tLR0WHV1tU9CQkLHrfL1e/bsqbw5X3/w4MGgS5cueV66dMnz4MGDQRkZGf/nZ9M7Al/yAgAF9Zev/+CDDwKff/75SE9Pz25PT8/uDRs21KjV6q4///nPo8nXA4CTIF9vP/L1AOCkyNcDAHCbGBQAgCIYFACAIhgUAIAiGBQAgCIYFABQUH/5ehGR4uJivx/96Ed6rVZr1Ol0BrPZ3NNOIV8PABhQvt5iscjDDz8c++qrr9ZUVlZ+fejQoYphw4b1fCCQfD0AOJncXf+MMl1oUTRfrwsbbn5p7p125evfeeedEYmJiW22FIut6yVCvh4A8I2B5OsrKip8PDw8JCUlJd5gMCT+v//3/9S2+8nXA4AT6uskMVQGkq/v7Oz0+PzzzwOPHz9eFhgYaE1NTdVNnDjRPHv27Bby9QCAHv3l68eOHXv9rrvuagkPD+8cPny49d///d+bjh8/7i9Cvh4A0Et/+frMzMzmsrIyv5aWFpXFYpFPP/10uNFobCdfDwD4lv7y9WPGjOlaunTpxR//+MeJHh4eMnXq1Kb58+c3rV69Wk2+HgCcBPl6+5GvBwAnRb4eAIDbxKAAABTBoAAAFMGgAAAUwaAAABTBoACAgvrL17/66qsher3eYPulUqkmHDlyxM/2PvL1AIAB5et//etfN5SXl5eWl5eX5ufnV0VERFyfPHlym+0Z5OsBwNkU/keU1Jcqmq+XUINZMv5sV76+9/vz8/NDMjMze7Lz5OsBACIysHx97/fv2bMneOHChVdsvydfDwDOqI+TxFAZSL7e5qOPPgrw8/OzTpw4sd12jXw9AKBHf/l6mzfeeCNkzpw53/oyFfl6AECP/vL1IiJdXV3y97//PXjhwoU9g0K+HgDwLf3l60VE/ud//md4WFjYdYPB0PO9kL17944gXw8AToJ8vf3I1wOAkyJfDwDAbWJQAACKYFAAAIpgUAAAimBQAACKYFAAQEH95es7Ojo85syZE6PT6Qzjxo0zrlq1Kqz3/eTrAQADytf/5S9/Cb5+/brKZDKV/vOf/yzLz88fU1FR0TMW5OsBwMk8/enTUZWNlYrm67XBWvNzdz9nV75+165dI8xms8pisci1a9c8vL29u0eOHNklQr4eAPCNgeTrFy1a1Ojv728NDQ29MzY2Nnnp0qUXbONAvh4AnFBfJ4mhMpB8/cGDB/1VKlX3hQsXvrp8+bLn3Xffrf/FL37RbDAYrpOvBwD06C9f//rrr4+aPn16k4+PT3dkZGTnxIkTW48cORIgQr4eANBLf/n66Ojo6wcOHAiyWq3S3Nys+uKLLwLuuOOOdvL1AIBv6S9f/7vf/a5+/vz5MTqdztjd3S3Z2dmXf/rTn7atXr1aTb4eAJwE+Xr7ka8HACdFvh4AgNvEoAAAFMGgAAAUwaAAABTBoAAAFMGgAICC+svXt7e3e8ydOzdGp9MZEhISDH//+9+H976ffD0AYED5+vXr148WETGZTKUfffSRaeXKlWO7uv71uUTy9QDgZGqf+q+ojpMnFc3X+8THmyNe+G+78vUrVqyItIUiIyMjO4OCgroOHTrk//Of/9xMvh4AICIDy9ffeeed5nfffXekxWKR8vLyYSUlJf41NTXDRMjXA4BT6uskMVQGkq9fvnz55bKyMr877rjDEBkZ2TF+/PhWWxCSfD0AoEd/+Xpvb2/Ztm3b2fLy8tL9+/efam5u9kpMTGwXIV8PAOilv3x9S0uLqrm5WSUisnv37iBPT8/uCRMmkK8HAHxbf/n62tpar+nTp+tUKlV3WFiYpaCgoEpEZO/evSPI1wOAkyBfbz/y9QDgpMjXAwBwmxgUAIAiGBQAgCIYFACAIhgUAIAiGBQAUFB/+foLFy54/vSnP9X5+/v/eOHChdG97z18+LC/TqczREdHJy1atCjKarX2vFZTU+N99913xx85csTvRz/6kV6r1Rp1Op3htddeC7a9p7y8fFhycrJeo9EkzZw5c1x7e/v32mRhUABAIQPJ1/v7+3c/++yztWvWrDl38/1LlizRbNq0qaa6urrk9OnTvrt27QqyvVZYWBg0bdq05sDAQOvrr79eVVlZ+fUHH3xw8qmnnoq6fPmyp4hITk7O2KVLl16sqakpGTFiROfLL788+vv70/M5FAA/UPvzy6Iazrcqmq8PiQw0T12YaFe+PigoyDp9+vTWiooKn9731tTUeLe2tqqmTZt2TUTkwQcfvFJYWBj8wAMPNIuIfPDBByOeffbZ2uTk5A7bPTExMZaQkJDOuro6r5CQkK7PPvts+J49e06LiDz66KNX1qxZE7Fy5cpLSv7foC+cUABAIQPJ19/q3pqaGu/w8PCeT8lrNJrrdXV13iIinZ2dcurUKd8JEya0977nwIED/haLxcNgMHRcvHjRa/jw4V3e3jdK9jExMdcvXrw4TL5HnFAA/CD1dZIYKgPJ199KX1n6AwcOBIwfP/5a79dqamq8H3nkkXHbtm2r8vT0vNX932tbixMKACiov3z9rcTExFhsJxIRkZqammFhYWEWEZG///3vI+6///6e+xsaGlQzZszQrl69+vzUqVOviYiEhYV1trS0eFosNw451dXVw0JDQ7/XLhiDAgAK6i9ffysajcYSEBBg3b9/f4DVapU33nhj1OzZs6+KiBw6dCgoLS2tWUSkvb3dY+bMmdr58+dfefTRR3uCkyqVSu66666Wv/zlL8EiItu3bx+VlpZ2dej+pP8XX/ICAAX1l68XEYmMjLyjtbXV02KxeLz//vsj9+3bZ5owYUL7pk2bah577LHY9vZ2j5///OfNWVlZTbW1tV4+Pj7WkJAQq4jI9u3bgz///PPAxsZGr4KCgtHfXKuaPHlyW15e3rl58+bFPf/885FGo9G8fPny77W8TL4ewA+GK+frb2XTpk0h586dG/bCCy9cUPq/7bvYk69nUAD8YDjjoLgaewaF76EAABTBoAAAFMGgAAAUwaAAABTBoAAAFMGgAICC7MnXL1u2LDIsLCzZ39//xzc/l3w9ALgRe/P1GRkZV4uLi8u+69nk6wHAQd5/dUPU5bM1iubrR0dpzNN/vWJI8vUiIrYu13chXw8AbsSefH1fyNcDgAP1dZIYKvbk6/tCvh4A3NBg8/V9IV8PAG5osPn6vrhKvp5BAQAFpaenx8XFxRnT0tK0feXrn3766ahdu3aNUqvVyf/4xz98RUQWL148Vq1WJ7e3t6vUanVyTk5OxK3y9QUFBaP1er1Br9cbjhw54icikpeXd27jxo1h0dHRSY2NjV7k6wFgkJyxNky+HgBckDMOiqshXw8AcDgGBQCgCAYFAKAIBgUAoAgGBQCgCAYFABQ02Hx9S0uL6t5779XGxsYatVqtccmSJZG9n0u+HgDciL35+t/+9rcXq6qqvi4pKSktLi4O/Otf/xpke418PQA4SMMuU5TlwjVF8/XeYQHmkLm6IcnXDx8+3Dpr1qwWERFfX9/u5ORk89mzZ3tqweTrAcCNKJWvv3z5sueHH344csaMGc0i5OsBwKH6OkkMFSXy9RaLRebMmTPuiSeeuGgwGK6LkK8HALdkb74+Ozs7Zty4ce2rV6+ut10jXw8AbsiefP2TTz4Z0dzc7Llt27Zvna5cJV/Pl7wAQEHp6elxV69e9fLy8uruK1/f2trqabFYPN5///2R+/btM40cObJr48aN4bGxse1Go9EgIvLEE0/Uz58//+p35esbGxu9CgoKRn9zrWry5MlteXl55+bNmxf3/PPPRxqNRjP5egAYJGesDZOvBwAX5IyD4mrI1wMAHI5BAQAogkEBACiCQQEAKIJBAQAogkEBAAUNNl8vIpKamhqfkJBg0Gq1xuzs7OjOzs6e18jXA4AbsTdfv2fPnlMVFRWlJpPp6ytXrnhv3769ZyzI1wOAgxQWFkbV19crmq8PDQ01Z2RkDEm+XkTE9ml4i8XiYbFYPDw8/nXAIF8PAG5EiXx9SkpK/JgxY+4MCAjoeuSRRxpFyNcDgEP1dZIYKkrk6z/55JOTZrPZIzMzc9y7774blJmZ2Uy+HgDckL35ehERf3//7rS0tKu7d+8eKUK+HgDc0mDz9U1NTaqamhpvkRs/ZKuoqGiEXq9vEyFfDwBuabD5+tDQ0M6ZM2dqr1+/7mG1Wj3uvvvu5tzc3Eu1tbVe5OsB4HvmjLVh8vUA4IKccVBcDfl6AIDDMSgAAEUwKAAARTAoAABFMCgAAEUwKACgIHvy9TZTpkzRxsfHG3tfI18PAG7E3ny9iMjOnTtHBgQE/J+IJPl6AHCQ0rKVUddaTYrm6wMCdWZD4h+HLF/f1NSkeuWVV9RbtmypmT9/flzv18jXA4AbsTdfn5OTE7l8+fKLgYGB1t7XydcDgAP1dZIYKvbk648cOeJXVVXls23btrMVFRXfGgLy9QDghgabrz98+HBgSUmJf2Rk5B333HOPvrq62mfSpEkJIuTrAcAtDTZfv3Llykv19fVfnT9//sShQ4fKY2JiOo4dO1YhQr4eANzSYPP1N39/xIZ8PQA4gDPWhsnXA4ALcsZBcTXk6wEADsegAAAUwaAAABTBoAAAFMGgAAAUwaAAgILsyddPmjQpISYmJkmv1xv0er3B9iFJEfL1AOBWlMjX5+fnny4vLy8tLy8vjYyM7LRdJ18PAA6youxMVPm1dkXz9foAX/OGxOghy9f3hXw9ALgRe/P1IiKPP/54jF6vN+Tm5oZbrTcq9uTrAcCB+jpJDBV78vUiIm+99dbp2NhYS2NjoyotLS1u06ZNo5YuXXqFfD0AuKHB5utFRGJjYy0iIsHBwdZ58+Y1HDt2LECEfD0AuKXB5ustFovU1dV5iYh0dHR47Nu3b0RSUlKbCPl6AHBLg83Xx8fHX582bVq8xWLxsFqtHqmpqc05OTmXyNcDgAM4Y22YfD0AuCBnHBRXQ74eAOBwDAoAQBEMCgBAEQwKAEARDAoAQBEMCgAoyJ58fXt7u8eCBQs0MTExSbGxscYdO3aMtL1Gvh4A3Ii9+fpVq1aFjxkzxlJdXV1SWVn59fTp01ttr5GvBwAHyd31zyjThRZF8/W6sOHml+beOWT5+jfffHO0yWQqERHx9PSU8PDwnp+HQr4eANyIPfn6XqeMCIPBkDhjxoxxZ8+e9RIhXw8ADtXXSWKo2JOvt1gsHhcvXvROSUlp3bp167k1a9aoly1bFlVYWFhFvh4A3NBg8/VqtbrT19fX+vDDD18VEXnooYcaSkpK/EXI1wOAWxpsvl6lUsnUqVOb3nvvveEiIvv27QuKj493qXw9cUgAPxjOEIecMGFCgi1fv3bt2rPBwcFdL7/8cujf/va3att7eufrhw8f3rVv3z7ThAkT2k0m07Ds7OzY5uZmz1GjRnXm5+dXBwQEWOfMmTPu6NGjJpEb9eEnn3wyRqvV9nw/xZavLy0tHTZv3ry4pqYmT6PRaH7nnXeq/Pz8busveWrDACDOMSg3I18PAC7IGQfF1ZCvBwA4HIMCAFAEgwIAUASDAgBQBIMCAFAEgwIAChpsvr6xsVGl1+sNtl/BwcF3Pvroo1G218nXA4AbsSdfHxwcbC0vLy+1/YqIiLielZXV89kV8vUA4CiF/xEl9aWK5usl1GCWjD8PWb6+13N8rly54t3756GQrwcAN2JPvr63nTt3hqSnpzeoVDf+iiZfDwCO1MdJYqjYk6/vbffu3SE7duyosv2efD0AuKHB5uttPvvsM7+uri6P1NRUs+0a+XoAcEODzdfbvP766yGZmZkNva+5Sr6eL3kBgILS09PjbPn6DRs2nCkrK/NJSkoy274fIvLtfP37778/0pavFxHZu3dvyLvvvnvS9t7a2lovHx8fa0hIiFVEZPv27cGff/55YGNjo1dBQcHob65VTZ48uS0vL+/cvHnz4p5//vlIo9FoXr58+fcayqQ2DOAHwxlrw+TrAcAFOeOguBry9QAAh2NQAACKYFAAAIpgUAAAimBQAACKYFAAQEGDzdeLiGzevDlEp9MZdDqdITU1Nb6urq7ns4Lk6wHAjdiTr7dYLLJq1aqogwcPmkwmU6nRaGx76aWXegaJfD0AOMjTnz4dVdlYqWi+XhusNT9393NDkq+3Wq0e3d3d0tLSolKr1dLc3KzSarU9dWHy9QDgRuzJ1/v4+HSvW7fuzPjx441qtTrZZDL5rVix4rII+XoAcKi+ThJDxZ58fUdHh8eWLVvGFBcXlyYmJnYsWrQo+qmnngpfu3ZtHfl6AHBDg83XHz161E9ExGg0dqhUKlmwYEFDcXFxgAj5egBwS4PN12s0GktlZaVvbW2tl4hIUVFRkE6naxchXw8AbsmefH1ubm5dSkpKgpeXV/fYsWOvFxQUVJGvBwAHcMbaMPl6AHBBzjgoroZ8PQDA4RgUAIAiGBQAgCIYFACAIhgUAIAiGBQAUJA9+frXXnstWKfTGbRarXHx4sVje79Gvh4A3Ig9+foLFy54rl69euzHH39sqqys/Lq+vt5rz549w22vk68HAAepfeq/ojpOnlQ0X+8TH2+OeOG/hyRfX1FR4RMbG9sRERHRKSIyderU5rfffjt49uzZLSLk6wHArdiTrzcYDB2nTp3yraioGGaxWGTv3r3BtbW1w0TI1wOAQ/V1khgq9uTrx4wZ07V+/fqarKyscSqVSiZOnNhaXV3tIyJCvh4A3NBg8/UiItnZ2U1fffVV+ZdfflmekJDQHhcX1yFCvh4A3NJg8/W977106ZLn1q1bQ5csWXJJhHw9ALgle/L1ixcvjiotLfUXEVm5cmVtcnJyB/l6AHAAZ6wNk68HABfkjIPiasjXAwAcjkEBACiCQQEAKIJBAQAogkEBACiCQQEABfWXr9+9e3eQ0WhM1Ol0BqPRmLh3796eovDhw4f9dTqdITo6OmnRokVRVqu157nk6wHAjQwkXx8aGmp57733KlJ0SPAAACAASURBVE0mU+mOHTuqHn/88Vjb/UuWLNFs2rSpprq6uuT06dO+u3btCrK9Rr4eABxkf35ZVMP5VkXz9SGRgeapCxPtytf3Lg5PmDCh/fr166q2tjaP+vp6r9bWVtW0adOuiYg8+OCDVwoLC4MfeOCBZhHy9QDgVm43X79z585gg8Fg9vPz666pqfEODw/viTlqNJrrdXV13iLk6wHAofo6SQyV28nXHz9+3Hf16tWRRUVFJ0XkVvl5ESFfDwBuaSD5+lOnTnnPnTtXu23btiqj0dghcuPLV7YTiYhITU3NsLCwMIsI+XoAcEv95esvX77s+Ytf/CJ+zZo15+67776eU4dGo7EEBARY9+/fH2C1WuWNN94YNXv27KsirpOvZ1AAQEHp6elxcXFxxrS0NO135evXrl0beubMGZ8XX3wxQq/XG/R6vcE2Qps2bapZvHhxjEajSYqJienIyspqulW+vqCgYLTt/iNHjviJiOTl5Z3buHFjWHR0dFJjY6MX+XoAGCRnrA2TrwcAF+SMg+JqyNcDAByOQQEAKIJBAQAogkEBACiCQQEAKIJBAQAF2ZOvX7ZsWWRYWFiyv7//j29+Lvl6AHAj9ubrMzIyrhYXF5d917PJ1wOAg7z/6oaoy2drFM3Xj47SmKf/esWQ5Ov9/Py6bV2u70K+HgDciD35+r6eS74eAByor5PEULEnX98X8vUA4IYGm6/vC/l6AHBDg83X94V8PQC4IXvy9YsXLx6rVquT29vbVWq1OjknJyeCfD0AOIAz1obJ1wOAC3LGQXE15OsBAA7HoAAAFMGgAAAUwaAAABTBoAAAFMGgAICCBpuvb2lpUd17773a2NhYo1arNS5ZsiSy93PJ1wOAG7E3X//b3/72YlVV1dclJSWlxcXFgX/961+DbK+RrwcAB2nYZYqyXLimaL7eOyzAHDJXNyT5+uHDh1tnzZrVIiLi6+vbnZycbD579mxPLZh8PQC4EaXy9ZcvX/b88MMPR86YMaNZhHw9ADhUXyeJoaJEvt5iscicOXPGPfHEExcNBsN1EfL1AOCW7M3XZ2dnx4wbN6599erV9bZr5OsBwA3Zk69/8sknI5qbmz23bdv2rdMV+XoAcEODzdefOnXKe+PGjeEnT570NRqNBr1eb1i3bt1o8vUA4ADOWBsmXw8ALsgZB8XVkK8HADgcgwIAUASDAgBQBIMCAFAEgwIAUASDAgAKGmy+XkQkNTU1PiEhwaDVao3Z2dnRnZ2dPc8lXw8AbsTefP2ePXtOVVRUlJpMpq+vXLnivX379p6xIF8PAA5SWFgYVV9fr2i+PjQ01JyRkTEk+Xo/P79u26fhLRaLh8Vi8fDw+NcBg3w9ALgRJfL1KSkp8WPGjLkzICCg65FHHmkUIV8PAA7V10liqCiRr//kk09Oms1mj8zMzHHvvvtuUGZmZjP5egBwQ/bm60VE/P39u9PS0q7u3r17pAj5egBwS4PN1zc1Nalqamq8RW78kK2ioqIRer2+TYR8PQC4pcHm65ubm1UzZ87U6nQ6Q2JionH06NGW3NzcS+TrAcABnLE2TL4eAFyQMw6KqyFfDwBwOAYFAKAIBgUAoAgGBQCgCAYFAKAIBgUAFGRPvt5mypQp2vj4eGPva+TrAcCN2JuvFxHZuXPnyICAgK6bn02+HgAcpLRsZdS1VpOi+fqAQJ3ZkPjHIcvXNzU1qV555RX1li1baubPnx/X+9nk6wHAjdibr8/JyYlcvnz5xcDAQGvv95GvBwAH6uskMVTsydcfOXLEr6qqymfbtm1nKyoqvjUE5OsBwA0NNl9/+PDhwJKSEv/IyMg77rnnHn11dbXPpEmTEkTI1wOAWxpsvn7lypWX6uvrvzp//vyJQ4cOlcfExHQcO3asQoR8PQC4pcHm62/1PPL1AOAAzlgbJl8PAC7IGQfF1ZCvBwA4HIMCAFAEgwIAUASDAgBQBIMCAFAEgwIACrInXz9p0qSEmJiYpO/6fAr5egBwI0rk6/Pz80+Xl5eXlpeXl0ZGRnbarpOvBwAHWVF2Jqr8Wrui+Xp9gK95Q2L0kOXr+/rfJl8PAG7E3ny9iMjjjz8eo9frDbm5ueFW642KPfl6AHCgvk4SQ8WefL2IyFtvvXU6NjbW0tjYqEpLS4vbtGnTqKVLl14hXw8Abmiw+XoRkdjYWIuISHBwsHXevHkNx44dCxAhXw8Abmmw+XqLxSJ1dXVeIiIdHR0e+/btG5GUlNQmQr4eANzSYPP1bW1tqmnTpsV/88+JDeHh4ZacnJxL5OsBwAGcsTZMvh4AXJAzDoqrIV8PAHA4BgUAoAgGBQCgCAYFAKAIBgUAoAgGBQAUZE++vr293WPBggWamJiYpNjYWOOOHTtG2l4jXw8AbsTefP2qVavCx4wZY6muri6prKz8evr06a2218jXA4CD5O76Z5TpQoui+Xpd2HDzS3PvHLJ8/ZtvvjnaZDKViIh4enpKeHh4z89DIV8PAG7Ennx9r1NGhMFgSJwxY8a4s2fPeomQrwcAh+rrJDFU7MnXWywWj4sXL3qnpKS0bt269dyaNWvUy5YtiyosLKwiXw8Abmiw+Xq1Wt3p6+trffjhh6+KiDz00EMNJSUl/iLk6wHALQ02X69SqWTq1KlN77333nARkX379gXFx8e7VL6eOCSAHwxniENOmDAh4erVq15eXl7da9euPRscHNz18ssvh/7tb3+rFrlRH964cWOYRqPp+eb6/v37TZGRkZ0mk2lYdnZ2bHNzs+eoUaM68/PzqwMCAqxz5swZd/ToUZPIjfrwk08+GaPVanu+n7J9+/aqyZMnt5WWlg6bN29eXFNTk6fRaDS/8847Vf39rPqbURsGAHGOQbkZ+XoAcEHOOCiuhnw9AMDhGBQAgCIYFACAIhgUAIAiGBQAgCIYFABQ0GDz9Y2NjSq9Xm+w/QoODr7z0UcfjbLdT74eANyIPfn64OBga3l5eantV0RExPWsrKyez66QrwcARyn8jyipL1U0Xy+hBrNk/HnI8vW9nuNz5coV794/D4V8PQC4EXvy9TddD0lPT29QqW78FU2+HgAcqY+TxFCxJ1/f2+7du0N27NhRZfs9+XoAcEODzdfbfPbZZ35dXV0eqampZts18vUA4IYGm6+3ef3110MyMzMbel9zlXw9gwIACkpPT4+Li4szpqWlaTds2HCmrKzMJykpyWz7fsjatWtDz5w54/Piiy9G2P6JsG2ERET27t0bsnDhwp5Bqa2t9fLx8bGGhIRYRUS2b98e/PnnnwcWFBSMtt1/5MgRPxGRvLy8cxs3bgyLjo5Oamxs9Fq+fPn3GsqkNgzgB8MZa8Pk6wHABTnjoLga8vUAAIdjUAAAimBQAACKYFAAAIpgUAAAimBQAEBBg83Xi4hs3rw5RKfTGXQ6nSE1NTW+rq6u5/Mp5OsBwI3Yk6+3WCyyatWqqIMHD5pMJlOp0Whse+mll3oGiXw9ADjI058+HVXZWKlovl4brDU/d/dzQ5KvV6lU0t3dLS0tLSq1Wi3Nzc0qrVbbUxcmXw8AbsSefL2Pj0/3unXrzowfP96oVquTTSaT34oVKy6LkK8HAIfq6yQxVOzJ13d0dHhs2bJlTHFxcWliYmLHokWLop966qnwtWvX1pGvBwA3NNh8/dGjR/1ERIxGY4dKpZIFCxY0FBcXB4iQrwcAtzTYfL1Go7FUVlb61tbWeomIFBUVBel0unYR18nX8yUvAFBQenp63NWrV728vLy6+8vXv/jiixEiIvv37zfFxMRYcnNz61JSUhK8vLy6x44de72goKDqVvn6xsZGr4KCgtHfXKuaPHlyW15e3rl58+bFPf/885FGo9FMvh4ABskZa8Pk6wHABTnjoLga8vUAAIdjUAAAimBQAACKYFAAAIpgUAAAimBQAEBB9uTrX3vttWCdTmfQarXGxYsXj+39XPL1AOBG7MnXX7hwwXP16tVjP/74Y1NlZeXX9fX1Xnv27OkZG/L1AOAgtU/9V1THyZOK5ut94uPNES/895Dk6ysqKnxiY2M7IiIiOkVEpk6d2vz2228Hz549u0WEfD0AuBV78vUGg6Hj1KlTvhUVFcMsFovs3bs3uLa2dpgI+XoAcKi+ThJDxZ58/ZgxY7rWr19fk5WVNU6lUsnEiRNbq6urfUREyNcDgBsabL5eRCQ7O7vpq6++Kv/yyy/LExIS2uPi4jpEyNcDgFsabL6+972XLl3y3Lp1a+iSJUsuibhOvp5BAQAFpaenx8XFxRnT0tK0/eXr9Xq9Qa/XG2xDsnjx4qi4uDjjXXfdpc/JyalLTk7uuFW+vqCgYLTt/iNHjviJiOTl5Z3buHFjWHR0dFJjY6MX+XoAGCRnrA2TrwcAF+SMg+JqyNcDAByOQQEAKIJBAQAogkEBACiCQQEAKIJBAQAF9ZevP3DggL/t8yMJCQmG/Pz8kbb3HD582F+n0xmio6OTFi1aFGW1WnueS74eANzIQPL1P/nJT9pPnDhRWl5eXvrBBx+cXLFihcaWS1myZIlm06ZNNdXV1SWnT5/23bVrV5Dt2eTrAcBB9ueXRTWcb1U0Xx8SGWieujDRrny97TURkba2Ng8PjxuHiJqaGu/W1lbVtGnTromIPPjgg1cKCwuDH3jggWYR8vUA4FYGmq//6KOPArRarXH8+PHG9evX13h7e0tNTY13eHh4T8xRo9Fcr6ur8xYhXw8ADtXXSWKoDDRfP2XKlGuVlZVff/HFF76//OUvY+fOndt0i/y8iJCvBwC3NJB8vc348ePb/f39u44fP+4XExNjsZ1IRERqamqGhYWFWUTI1wOAW+ovX19eXj7M9pe+yWQaVlVV5RsfH39do9FYAgICrPv37w+wWq3yxhtvjJo9e/ZVEdfJ1/MlLwBQUHp6etzVq1e9vLy8ur8rX79///7AtLS0cC8vr26VStWdl5d3Jjw8vFNEZNOmTTWPPfZYbHt7u8fPf/7z5qysrKZb5esbGxu9CgoKRn9zrWry5MlteXl55+bNmxf3/PPPRxqNRjP5egAYJGesDZOvBwAX5IyD4mrI1wMAHI5BAQAogkEBACiCQQEAKIJBAQAogkEBAAVlZWXFhISE3BkfH2+0Xbt48aLn5MmT4zUaTdLkyZPjL1265Nn7HqPRmNje3u6xbNmyyLCwsGR/f/8f3/xc8vUA4GYeffTRy3v37j3Z+9of/vCH8Hvvvbelpqam5N57721ZvXp1mO21ioqKYWq12uLr69udkZFxtbi4uOy7nku+HgAc5P1XN0RdPlujaL5+dJTGPP3XK/qMTs6YMaO1oqLiW5XfoqKikQcPHqwQEfnVr3515Wc/+1mCiJwXESksLBxx3333NYmI2Lpc34V8PQBArly54qXRaCwiIhqNxtLQ0NDz/8x/8MEHQenp6f8nHNkb+XoAcKD+ThLOoL293ePChQvDDAbD9b7eR74eACAiIqNGjeqsqanxFrkxBCEhIZ0iIu+//37gpEmTWvu7n3w9AEBERKZPn3518+bNo0RENm/ePOr++++/KiKyb9++ETNnzuzzy10irpOvZ1AAQEGzZs2KTUlJ0VdVVfmo1erk9evXj37mmWfqDhw4EKTRaJIOHDgQ9Mwzz9SJiHz66afD77///hbbvYsXLx6rVquT29vbVWq1OjknJyfiVvn6goKC0Xq93qDX6w1HjhzxExHJy8s7t3HjxrDo6OikxsZGL/L1ADBIrlQbPnXqlPcjjzwSc+jQoZN9vc+V8vV8Ux4AHCAuLs7S35iIiCxZsqTh+/jvUQJf8gIAKIJBAQAogkEBACiCQQEAKIJBAQAogkEBAAUNNl/f0NCguvfee7WxsbFGrVZrXLJkSWTv95CvBwA3M9h8vbe3t/z2t7+9WFVV9XVJSUlpcXFx4F//+tcg2/vI1wOAgzTsMkVZLlxTNF/vHRZgDpmrG5J8/fDhw62zZs1qERHx9fXtTk5ONp89e7bnOeTrAQC3na+/fPmy54cffjhyxowZzSLk6wHAofo7STiD78rXWywWmTNnzrgnnnjiou06+XoAgIjcXr4+Ozs7Zty4ce2rV6+ut10jXw8AEJGB5+uffPLJiObmZs9t27Z963RFvh4A3NBg8/WnTp3y3rhxY/jJkyd9jUajQa/XG9atWzeafD0AOAD5evuRrwcAF0O+HgCAW2BQAACKYFAAAIpgUAAAimBQAACKYFAAQEGDzde3t7d7pKamxickJBi0Wq0xOzs7urOzs+c95OsBwM0MNl/v6+vbvWfPnlMVFRWlJpPp6ytXrnhv3769ZyzI1wOAgxQWFkbV19crmq8PDQ01Z2RkDEm+XkTE9ml4i8XiYbFYPDw8/nXAIF8PALitfH1KSkr8mDFj7gwICOh65JFHGkXI1wOAQ/V3knAG35Wv/+STT06azWaPzMzMce+++25QZmZmM/l6AICI3F6+XkTE39+/Oy0t7eru3btHipCvBwB8YyD5+qamJpVtdCwWixQVFY3Q6/VtIuTrAcAtDTZf39zcrJo5c6ZWp9MZEhMTjaNHj7bk5uZeIl8PAA5Avt5+5OsBwMWQrwcA4BYYFACAIhgUAIAiGBQAgCIYFACAIhgUAFCQPfl62++nTJmi7X2/CPl6AHA79uTrRUR27tw5MiAgoOvm55KvBwAHKS1bGXWt1aRovj4gUGc2JP5xyPL1TU1NqldeeUW9ZcuWmvnz58f1fgb5egDAgPP1OTk5kcuXL78YGBho7X0/+XoAcKD+ThLOoHe+/siRI35VVVU+27ZtO3vzCYd8PQBARAaWrz98+HBgSUmJf2Rk5B333HOPvrq62mfSpEkJIuTrAQDfGEi+fuXKlZfq6+u/On/+/IlDhw6Vx8TEdBw7dqxChHw9ALilwebrb4V8PQA4APl6+5GvBwAXQ74eAIBbYFAAAIpgUAAAimBQAACKYFAAAIpgUABAQfbk6ydNmpQQExOTZPt8yfnz53v+JS75egBwM/bm6/Pz80+Xl5eXlpeXl0ZGRnba3ke+HgAcZEXZmajya+2K5uv1Ab7mDYnRQ5av7wv5egDAgPP1IiKPP/54jF6vN+Tm5oZbrTcq9uTrAcCB+jtJOIPe+XoRkbfeeut0bGyspbGxUZWWlha3adOmUUuXLr1Cvh4AICIDy9eLiMTGxlpERIKDg63z5s1rOHbsWIAI+XoAwDcGkq+3WCxSV1fnJSLS0dHhsW/fvhFJSUltIuTrAcAtDTZf39bWppo2bVq8TqczGI1GQ3h4uCUnJ+cS+XoAcADy9fYjXw8ALoZ8PQAAt8CgAAAUwaAAABTBoAAAFMGgAAAUwaAAgILsyde3t7d7LFiwQBMTE5MUGxtr3LFjx0jbe8jXA4CbsSdfv2rVqvAxY8ZYqqurSyorK7+ePn16T5aFfD0AOEjurn9GmS60KJqv14UNN780984hy9e/+eabo00mU4mIiKenp4SHh/f8PBTy9QCAAeXre50yIgwGQ+KMGTPGnT171kuEfD0AOFR/Jwln0DtfX1dX53Xx4kXvlJSU1q1bt55bs2aNetmyZVGFhYVV5OsBACIysHy9Wq3u9PX1tT788MNXRUQeeuihhpKSEn8R8vUAgG8MJF+vUqlk6tSpTe+9997wb14Lio+Pd6l8PbVhAD8YzlAbnjVrVuzRo0eHNzY2eo0aNarz97//fe2CBQsaMzMz42pra4dFRERcLywsPKVWq7uSkpISjx49Wh4YGNgtImIymYZlZ2fHNjc3e44aNaozPz+/OiAgwDpnzpxxR48eNYncqA8/+eSTMVqttuf7Kdu3b6+aPHlyW2lp6bB58+bFNTU1eRqNRvM777xT5efnd1t/ydtTG2ZQAPxgOMOgDBT5egCAIsjXAwBwCwwKAEARDAoAQBEMCgBAEQwKAEARDAoAKGiw+forV6546vV6g+1XcHDwnY8++miU7T3k6wHAzQw2Xz9q1Kiu8vLyUtuviIiI61lZWT2fhCdfDwCOUvgfUVJfqmi+XkINZsn485Dl621OnDjhc+XKFe/ePw+FfD0AYED5+t7v37lzZ0h6enqDSnXjr2jy9QDgSP2cJJxB73x97+u7d+8O2bFjR5Xt9+TrAQAiMrB8vc1nn33m19XV5ZGammq2XSNfDwAQkYHl621ef/31kMzMzG/1u1wlX8+gAICCZs2aFZuSkqKvqqryUavVyevXrx/9zDPP1B04cCBIo9EkHThwIOiZZ56pExH59NNPh99///0tve/fu3dvyMKFC3sGpba21svHx8caEhJiFRHZvn178Oeffx5YUFAw2vZPjI8cOeInIpKXl3du48aNYdHR0UmNjY1ey5cv/17Ly+TrAfxgkK+3H/l6AHAx5OsBALgFBgUAoAgGBQCgCAYFAKAIBgUAoAgGBQAUNNh8fXt7u8fmzZtDdDqdQafTGVJTU+Pr6up6/iUu+XoAcDODzdd7enp2r1q1KurgwYMmk8lUajQa21566aVQ2/vI1wOAgzz96dNRlY2ViubrtcFa83N3Pzck+Xqr1erR3d0tLS0tKrVaLc3NzSqtVttTF3aFfD2DAgBDrL98/caNG8/6+Ph0r1u37sz48eONfn5+XRqNpiM/P/+MCPl6AHCo/k4SzqB3vr6jo8Njy5YtY4qLi0sTExM7Fi1aFP3UU0+Fr127to58PQBARAaWrz969KifiIjRaOxQqVSyYMGChuLi4gAR8vUAgG8MJF+v0WgslZWVvrW1tV4iIkVFRUE6na5dxHXy9XzJCwAUNGvWrNijR48Ob2xs9FKr1cm///3va5955pm6zMzMOI1GMzoiIuJ6YWHhKZEb+fq8vLzzIje+wZ6bm1uXkpKS4OXl1T127NjrBQUFVbfK1zc2NnoVFBSM/uZa1eTJk9vy8vLOzZs3L+7555+PNBqNZvL1ADBI5OvtR74eAFwM+XoAAG6BQQEAKIJBAQAogkEBACiCQQEAKIJBAQAF2ZOvf+2114J1Op1Bq9UaFy9ePLb3e8jXA4CbGWy+/urVq6rVq1eP/fjjj02VlZVf19fXe+3Zs2e47X3k6wHAQWqf+q+ojpMnFc3X+8THmyNe+O8hyddXVFT4xMbGdkRERHSKiEydOrX57bffDp49e3aLiGvk6zmhAMAQ6y9fn56e3mQwGDpOnTrlW1FRMcxiscjevXuDa2trh4mQrwcAh+rvJOEMeufrRUTWr19fk5WVNU6lUsnEiRNbq6urfUREyNcDAERkYPl6EZHs7Oymr776qvzLL78sT0hIaI+Li+sQIV8PAPjGQPL1IiLnz5/3EhG5dOmS59atW0OXLFlyScR18vUMCgAoaNasWbEpKSn6qqoqH7Vanbx+/frRzzzzTN2BAweCNBpN0oEDB4KeeeaZOpEb+fr777+/xXbv4sWLo+Li4ox33XWXPicnpy45ObnjVvn6goKC0Xq93qDX6w1HjhzxExHJy8s7t3HjxrDo6OikxsZGL/L1ADBI5OvtR74eAFwM+XoAAG6BQQEAKIJBAQAogkEBACiCQQEAKIJBAQAF2ZOvX7ZsWWRYWFiyv7//j3u/3tbW5jFz5sxx0dHRScnJyfqb45OpqanxVVVV3unp6bExMTFJ8fHxxqysrJiOjg4PERGr1SqLFi2Kio6OTtLpdIZPPvlE0WimDYMCAAoabL7e19e3OyMj42pxcXHZzc98+eWXR48YMaLzzJkzJUuXLr2Yk5PT87NSWltbPa5eveoVGxtrefDBBxtOnz5dUlFR8XV7e7vHhg0b/n97dx8U1WHvf/zLsjwpiPK0LAoHkOKCDNxGbLRxTMY4vda4Vamlg3Fu4iQ4mjSNLsbovalKO78614vamiHiYEJyTZOhYQxOEg0lCSaOlbZjJoyCuLLBJwSRuIoC8nz/8HcoSUXQPcesy/v1F5zDgps//JyzuO+EiYi89957wV9//bX/mTNnTuzatevsc889F6PHc+d9KAA80qf/ezL6SsMNTa/EQyYGtj/+H0m65OtFRNQu13d9+OGH4zdv3nxRRGT58uXOl19+Oaavr08MBoMcOHAg6JFHHrkuIvLLX/5yIOOSnp7eduHCBV8Rkf37949/8sknvzEYDPL444+3tba2Gs+ePeujFpC1wh0KAOhsJPn6Oz3+0qVLvnFxcV0iIj4+PhIYGNh76dIlo8itHtj8+fO/9fjOzk6v4uLiULUT1tjY6BMbG9ulnjebzV1qrFJL3KEA8EjD3Um4g+/m64dypzT9P/7xj8CCgoILg8899dRTMTNmzLgxb968G3d4vCt/9NviDgUAdDbSfP1QIiMju+rr631FRLq7u+XGjRveERERvTU1Nb5ms7nL399/YDFycnLMLS0txsLCwoFBjYqK6j5z5szAy3CNjY2+MTExmqftGRQA0NlI8/VDeeKJJ66+8cYboSIiRUVFE2bOnHndYDDI/v37g3/yk5+0ql+3ffv2sM8++yy4tLT0a2/vf/5Dsp/97GdX//SnP4X29fXJp59+OjYoKKhX69+fiDAoAKApF/P1k0wmU+rNmzcNJpMp1WazRYmIvPjiiy1Op9MYExOT8uqrr0bm5eVdEBEpLy8PXrhw4cAgrVu3TmlpaTGmp6cnWSyW5LVr15pFRDIzM68pitKpKErKqlWrlPz8/LN6PHfy9QA8hifm64fS0dHhNX36dMuJEyf+5Z8Zu8KVfD13KADwPRhpvn4oAQEB/VqPiasYFACAJhgUAIAmGBQAgCYYFACAJhgUAIAmGBQA0JAe+fqDBw8GJicnJxmNxmlFRUUTvvszydcDgAfSI18fHx/fVVRUdMZqtX7z3XPk6wFAZ2W7/hDdcv6splfiYdFK+7+vWn3f8/VTpkzpEhExGP71HoB8PQCMIq7m6++EfD0A6Gy4Owl3MNJ8/Z2QrweAUcTVfP1QyNcDwCjjar5+KOTrAcCD6ZGv//zzz8eYTKbUAwcOTFiz/l+OwgAAGflJREFUZo2SkJAwVYR8PQDohny968jXA8ADhnw9AABDYFAAAJpgUAAAmmBQAACaYFAAAJpgUABAQ3rk6zdv3myaPHny1MTExOSZM2cm2u32b8UnydcDgAfSI18/bdq09q+++uqk3W6vWbRokXPNmjWT1HPk6wFAZ1dK7NHdTW2aXon7RI5tD1mSeN/z9VardeDd9LNmzbpRXFwcqn5Ovh4ARhEt8/W7d+8Onzt37sDXk68HAJ0NdyfhDu42X//aa6+FVFVVjdm9e/cp9Zg75esZFADQmZqvVxSl+17z9aWlpUF5eXnmw4cPnwoICOgXuXO+vqyszKEeI18PAB7C1Xz9kSNHAl544QVl//79dRMnTuxRj5OvBwAPpke+/qWXXopub2/3/sUvfjHZYrEkz5kzJ0GEfD0A6IZ8vevI1wPAA4Z8PQAAQ2BQAACaYFAAAJpgUAAAmmBQAACaYFAAQEN65Ou3bt0anpiYmGyxWJKnTZs25dixY/6Dz5OvBwAPpEe+/tlnn/3GbrfX1NbW1thstqbVq1dHq+fI1wOAzkpLS6Obm5s1vRKPiIhoX7Ro0X3P14eEhPSpH9+4ccN7cNiRfD0AjCJa5Ou3bNkSHh0dnbJp06ZJ+fn559Tj5OsBQGfD3Um4g7vJ12/YsOHyhg0bLhcUFIRs2rTJvG/fvjMi7pWv5w4FAHSm5utFRO41X6/Kzs6+Ul5ePl7kzvn6wsLCgUElXw8AHsLVfP3x48f91I+Li4uDFUXpFHG/fD0veQGAhqxWa1xlZWWQ0+k0mkym1PXr11/Mzc1tXLx48WRFUcKioqK6SktLHSK38vXbtm1rUB+7cuXKSe+//36Imq9/8sknW7Zv335x+/btEYcPHx5nNBr7g4ODe9588816kVv5+l27dg38PmXdunWK2WzuTE9PTxIRWbBggTMvL68xMzPz2kcffRSsKEpKQEBA3549e87o8dzJ1wPwGOTrXUe+HgAeMOTrAQAYAoMCANAEgwIA0ASDAgDQBIMCANAEgwIAGtIjX68qKiqa4OXlNe2LL774VvSSfD0AeCA98vUiIk6n05Cfnx+Rmpr6rSIx+XoA0FnNyZej227YNb0SHxuY2J6c9N/3PV8vIpKTkzMxJyenaceOHZGDj5OvB4BRxNV8/ZEjRwIaGhp8s7Ky/uXryNcDgM6Gu5NwByPJ1/f29sqaNWti9u7dW3+78+6Ur2dQAEBnar5eUZTuu83XX7161fv06dP+c+bMmSIi0tLS4rNkyZKEkpKSurCwsJ6h8vVlZWUO9Rj5egDwEK7k60NDQ3udTmdVQ0PD8YaGhuNpaWltJSUldbNnz253t3w9gwIAGrJarXGzZs2y1NfX+5lMptQdO3aE5ebmNlZUVIxTFCWloqJiXG5ubqPIrXz9vHnzrquPXbly5SSTyZSq5uttNlvUnX5WeXl58MKFCwcGad26dUpLS4sxPT09yWKxJK9du9YsIpKZmXlNUZRORVFSVq1apeTn55/V47mTrwfgMcjXu458PQA8YMjXAwAwBAYFAKAJBgUAoAkGBQCgCQYFAKAJBgUANKRHvn7nzp2hEyZMSLNYLMkWiyV5+/btYYPPk68HAA+kV77earU6a2tra2pra2tsNtvAe23I1wOAzlafPBdd23ZT0ytxy1j/9j8kxXwv+fqhkK8HgFHE1Xy9iMjBgwfHJyYmJs+bNy++rq5uID1Pvh4AdDbcnYQ7GEm+XkQkMzPzanZ29pWAgID+rVu3hi9btiyusrLSLuJe+XruUABAZ2q+XkTkbvP1IiKRkZG9AQEB/SIiNpvtcnV19RgRkZqaGt+h8vWFhYUDg0q+HgA8hCv5epFbI6R+/M4774yPj4+/KSLibvl6XvICAA1Zrda4ysrKIKfTaTSZTKnr16+/mJub27h48eLJiqKERUVFdZWWljpEbuXrt23b1qA+duXKlZPef//9EDVf/+STT7Zs37794tatWyPKysrGe3t7948fP77nzTffPCNyK1+/a9euc+rj161bp5jN5s709PQkEZEFCxY48/LyGjMzM6999NFHwYqipAQEBPTt2bPnjB7PnXw9AI9Bvt515OsB4AFDvh4AgCEwKAAATTAoAABNMCgAAE0wKAAATTAoAKAhPfL1IiJ79uyZMHny5KkJCQlTrVZr3OBz5OsBwAPpka8/fvy437Zt28yVlZW1dXV11QUFBQNZFfL1AKCzl0qqou1N1zW9Ek+MDGr/nyVp9z1fn5+fH56dnd0cHh7eKyIyceLEHvUc+XoAGEVczdfX1dX52e12/4ceesiSlpZmKSkpGaeeI18PADob7k7CHYw0X9/b2+vlcDj8jh49eqq+vt7n0UcftTz22GPVYWFhve6Ur2dQAEBnar5eUZTue8nXm83mrhkzZrT5+fn1WyyWrvj4+JvV1dV+4eHhPUPl68vKyhzqMfL1AOAhXM3XZ2RkXD106FCQiEhjY6Oxvr7ef8qUKZ3ulq9nUABAQ1arNW7WrFmW+vp6P5PJlLpjx46w3NzcxoqKinGKoqRUVFSMy83NbRS5la+fN2/edfWxK1eunGQymVLVfL3NZosSEcnIyGgNCQnpmTx58tRHH3008be//e35yMjI3vLy8uCFCxcODNK6deuUlpYWY3p6epLFYkleu3atWUQkMzPzmqIonYqipKxatUrJz88/q8dzJ18PwGOQr3cd+XoAeMCQrwcAYAgMCgBAEwwKAEATDAoAQBMMCgBAEwwKAGhIj3z9M888E22xWJItFktybGxsSlBQ0L8NPk++HgA8kB75+tdff/18bW1tTW1tbU12dnaz+k57EfL1AKC/0uejpblG2yvxiOR2WZR/3/P1g5WUlIRs3Ljxovo5+XoAGEVczder7Ha774ULF3ytVutAv4t8PQDobZg7CXcw0ny96q233gqZP3++02j851/d7pSv5w4FAHSm5utFRO4lX6/at29fyLJly66on9fU1PgOla8vLCwcGFTy9QDgIVzN14uIVFVV+bW2tnoP/j0L+XoA8GB65OtFRN56663QhQsXXjEY/vnXNvl6ANAJ+XrXka8HgAcM+XoAAIbAoAAANMGgAAA0waAAADTBoAAANMGgAICG9MjXnz592vfhhx9OTEpKSk5MTEwuLi4OHnyefD0AeCA98vUbN240Z2RkOE+ePFnz7rvvfm2z2Qby8+TrAUBnvznym+g6Z52mV+IJExLaf/fI7+57vt7Ly0taW1u9RUScTqd3RETEQDaFfD0AjCKu5uu3bNly8b333gsxmUypGRkZP9i5c+c59Rz5egDQ2XB3Eu5gpPn6oqKikKysrG9yc3MvffLJJ2OffvrpOLvdXu3t7e1W+XoGBQB0pubrFUXpvpd8/dtvvx328ccf20VE5s6d29bZ2WloamoyXrt2zTBUvr6srMyhHiNfDwAewtV8fVRUVNeBAwfGiYh8+eWX/l1dXV5ms7mHfD0AeDA98vU7duw4/+abb4ZPmTIleenSpfEFBQVnDAYD+XoA0Av5eteRrweABwz5egAAhsCgAAA0waAAADTBoAAANMGgAAA0waAAgIb0yNfb7XbfmTNnJiYmJib/6Ec/muJwOL7V4SJfDwAeSI98/Ysvvjhp6dKl39jt9ppXXnnlYk5OziT1HPl6ANDZxf/8r+jO06c1vRL3+8EP2qN+///ue77+9OnTAfPnzz8vIrJgwYLrS5cuTVDPka8HgFHE1Xx9UlJS+zvvvDNBRGTv3r3j29raDE1NTd4i5OsBQHfD3Um4g5Hm61999dULK1asiElKSgqbMWPG9YiIiG4fn1t7QL4eAEYRV/P1sbGx3X/5y18cIiLXrl0zHDhwYEJoaGhvTU2NL/l6ABhFXM3XNzY2Gnt7e0VE5JVXXjFnZWW1iIiQrwcAD6ZHvv7jjz8Oio+PT4mNjU1pbm42btmypVFEyNcDgF7I17uOfD0APGDI1wMAMAQGBQCgCQYFAKAJBgUAoAkGBQCgCQYFADR0r/n6K1euGB577LGEuLi4qQkJCVOfe+65ier5jo4OryeeeCI+JiYmJTU11fLd+CT5egDwQPear/fx8ZGcnJxL9fX11SdOnKj529/+FvjnP/95nIjIH//4x7Dg4OCec+fOnfjVr351yWazka8HgPvl0/89GX2l4YamV+IhEwPbH/+PJF3y9UFBQX1Wq/W6iIi/v39/ampq+/nz531FRD788MPxmzdvvigisnz5cufLL78c09fXJwaDgXw9AIwmd5uvb2lp8S4vLx//05/+tFVE5NKlS75xcXFdIiI+Pj4SGBjYe+nSJaMI+XoA0N1wdxLu4Hb5+u7ubsnIyIhfsWLFJfX4EPn5fhH3ytdzhwIAOlPz9SIiw+Xrly5dGhsfH39z48aNzeqxyMjIrvr6el+RW4Nz48YN74iIiDvm6wsLCwcGlXw9AHiIkebrf/3rX0e1trZ6v/7669+6u3riiSeuvvHGG6EiIkVFRRNmzpx53WAwuF2+ntowAI/hDrVhq9UaV1lZGeR0Oo2hoaE969evv5iVleVcvHjx5IsXL/pGRUV1lZaWOkwmU29KSkpSZWVlbWBgYL/D4fBJSEhIjYuLu+nr69svIrJixYpmm83W0t7e7vXzn/88rrq6ekxwcHBvcXGxIzk5uWvOnDkJu3btOjdlypQuERGj0TjNbDZ3jh07tk9EZMGCBc68vLzGvr4+eeqpp2IOHTo0LiAgoG/Pnj1nZs+e3X67P78rtWF+hwIAGvrggw/qb3f86NGj9sGfOxwOn5CQkJ7AwMB+kVv14f7+/mO3e+yYMWP6Dx48+PXgYx0dHV7Nzc0+6piIiPT09Nz28QaDQfbu3Xvubp/L3eIlLwD4HpCvBwBgCAwKAEATDAoAQBMMCgBAEwwKAEATDAoAaEiPfP3BgwcDk5OTk4xG47SioqIJ3/2Z5OsBwAPpka+Pj4/vKioqOmO1Wr/57s8jXw8AOivb9YfolvNnNb0SD4tW2v991er7nq9X37xoMPzrPQD5egAYRVzN198J+XoA0NlwdxLuYKT5+jshXw8Ao4ir+fqhkK8HgFHG1Xz9UMjXA4BOPDVf//nnn4/JzMxMaG1t9fbz8+sPCwvrrqurq3a3fD2DAsBjuMOgjJTD4fBZvnx57L0Whzs6OrymT59u0bo47Mqg8JIXAHwPyNcDADAEBgUAoAkGBQCgCQYFAKAJBgUAoAkGBQA0pEe+fvPmzabJkydPTUxMTJ45c2ai3W7/VnySfD0AeCA98vXTpk1r/+qrr07a7faaRYsWOdesWTNJfTz5egDQ2ZUSe3R3U5umV+I+kWPbQ5Yk3vd8vXpcRGTWrFk3iouLQ9XPydcDwCiiZb5+9+7d4XPnzh34evL1AKCz4e4k3MHd5utfe+21kKqqqjG7d+8+pR5zp3w9gwIAOlPz9YqidN9rvr60tDQoLy/PfPjw4VMBAQH9InfO15eVlTnUY+TrAcBDuJqvP3LkSMALL7yg7N+/v27ixIk96nHy9QCgE3eoDeuRr//xj3+ceOrUqYDw8PBuEZGoqKiuzz77rM7d8vW85AUAGvrggw/qb3f86NGj9sGfOxwOn5CQkJ7AwMB+kVv14f7+/mO3e+xf//pX+3ePdXR0eDU3N/uoYyIi0tPTc9vHGwwG2bt377m7eR73gpe8AOB7QL4eAIAhMCgAAE0wKAAATTAoAABNMCgAAE0wKACgIT3y9Vu3bg1PTExMtlgsydOmTZty7Ngx/8GPJ18PAB5Ij3z9s88++43dbq+pra2tsdlsTatXr45WH0++HgB0VlpaGt3c3KzplXhERET7okWL7nu+PiQkpE/9Xjdu3PAeHHYkXw8Ao4gW+fotW7aER0dHp2zatGlSfn7+wLveydcDgM6Gu5NwB3eTr9+wYcPlDRs2XC4oKAjZtGmTed++fWdE3Ctfzx0KAOhMzdeLiNxrvl6VnZ19pby8fLzInfP1hYWFA4NKvh4APISr+frjx4/7qR8XFxcHK4rSKUK+HgB046n5+uXLl0cfPnx4nNFo7A8ODu7Jz88/l56eftPd8vUMCgCP4Q6DMlIOh8Nn+fLlsfdaHO7o6PCaPn26RevisCuDwkteAPA9IF8PAMAQGBQAgCYYFACAJhgUAIAmGBQAgCYYFADQkB75elVRUdEELy+vaV988cW3opfk6wHAA+mRrxcRcTqdhvz8/IjU1NS2wd+bfD0A6Kzm5MvRbTfsml6Jjw1MbE9O+u/7nq8XEcnJyZmYk5PTtGPHjsjB35t8PQCMIq7m648cORLQ0NDgm5WVdU2+g3w9AOhsuDsJdzCSfH1vb6+sWbMmZu/evfW3+x7ulK9nUABAZ2q+XlGU7rvN11+9etX79OnT/nPmzJkiItLS0uKzZMmShJKSkrqwsLCeofL1ZWVlDvUY+XoA8BCu5OtDQ0N7nU5nVUNDw/GGhobjaWlpbSUlJXWzZ89ud7d8PYMCABqyWq1xs2bNstTX1/uZTKbUHTt2hOXm5jZWVFSMUxQlpaKiYlxubm6jiMiRI0eC5s2bd13kVn341VdfNZ8+fdp/6tSpyRaLJXn79u1hd/pZ5eXlwQsXLhwYpHXr1iktLS3G9PT0JIvFkrx27VqziEhmZuY1RVE6FUVJWbVqlZKfn39Wj+fOS14AoKEPPvjgtr/rOHr0qH3w5w6HwyckJKQnMDCwX+RWfbi/v//YcN//73//+ymRW/n65uZmH/X/hSIi0tPTc9vHGwwG2bt377nbndMSdygA8D0gXw8AwBAYFACAJhgUAIAmGBQAgCYYFACAJhgUANCQHvn6nTt3hk6YMCHNYrHc9v0p5OsBwAPpla+3Wq3O2tramtra2hqbzdaiHidfDwA6W33yXHRt201Nr8QtY/3b/5AU873k64dCvh4ARhFX8/UiIgcPHhyfmJiYPG/evPi6urqB9Dz5egDQ2XB3Eu5gJPl6EZHMzMyr2dnZVwICAvq3bt0avmzZsrjKykq7iHvl67lDAQCdqfl6EZG7zdeLiERGRvYGBAT0i4jYbLbL1dXVY0REampqfIfK1xcWFg4MKvl6APAQruTrRW6NkPrxO++8Mz4+Pv6miIi75eu9bncrBAAPoqqqqjNpaWktw3+lfqxWa1xlZWWQ0+k0hoaG9qxfv/5iVlaWc/HixZMvXrzoGxUV1VVaWuowmUy9KSkpSZWVlbWBgYH9DofDJyEhITUuLu6mr69vv4jIihUrmm02W8vzzz8/saysbLy3t3f/+PHjewoKCs798Ic/vDlnzpyEXbt2nVOLw0ajcZrZbO4cO3Zsn4jIggULnHl5eY19fX3y1FNPxRw6dGhcQEBA3549e87Mnj27/XZ//qqqqrC0tLTYe3nuDAoAj+EOgzJSDofDZ/ny5bH3Whzu6Ojwmj59ukXr4rArg8JLXgDwPSBfDwDAEBgUAIAmGBQAgCYYFACAJhgUAIAmGBQA0JAe+XoRkT179kyYPHny1ISEhKlWqzVu8Dny9QDggfTI1x8/ftxv27Zt5srKytq6urrqgoKCgXfSk68HAJ29VFIVbW+6rumVeGJkUPv/LEm77/n6/Pz88Ozs7Obw8PBeEZGJEyf2qN+bfD0AjCKu5uvr6ur87Ha7/0MPPWRJS0uzlJSUDPyPt8jXA4DOhruTcAcjzdf39vZ6ORwOv6NHj56qr6/3efTRRy2PPfZYdVhYWK875esZFADQmZqvVxSl+17y9WazuWvGjBltfn5+/RaLpSs+Pv5mdXW1X3h4eM9Q+fqysjKHeox8PQB4CFfz9RkZGVcPHToUJCLS2NhorK+v958yZUon+XoA0Ik71Ib1yNf39fXJihUrJlVUVAR7e3v3r127tnHFihVO8vUAoBN3GJSRIl8PANAE+XoAAIbAoAAANMGgAAA0waAAADTBoAAANMGgAICG9MjXP/PMM9EWiyXZYrEkx8bGpgQFBf3b4MeTrwcAD6RHvv71118/X1tbW1NbW1uTnZ3drL7TXoR8PQDor/T5aGmu0fZKPCK5XRbl3/d8/WAlJSUhGzduvKh+Tr4eAEYRV/P1Krvd7nvhwgVfq9U6cJx8PQDobZg7CXcw0ny96q233gqZP3++02j851/d7pSv5w4FAHSm5utFRO4lX6/at29fyLJly66on9fU1PgOla8vLCwcGFTy9QDgIVzN14uIVFVV+bW2tno//vjjbeox8vUAoBN3qA3rka8XEbHZbFE3b970eu211xrUn0W+HgB04g6DMlLk6wEAmiBfDwDAEBgUAIAmGBQAgCYYFACAJhgUAIAmGBQA0JAe+frTp0/7Pvzww4lJSUnJiYmJycXFxcGDH0++HgA8kB75+o0bN5ozMjKcJ0+erHn33Xe/ttlsA/l58vUAoLPfHPlNdJ2zTtMr8YQJCe2/e+R39z1f7+XlJa2trd4iIk6n0zsiImIgm0K+HgBGEVfz9Vu2bLn43nvvhZhMptSMjIwf7Ny585z6teTrAUBnw91JuIOR5uuLiopCsrKyvsnNzb30ySefjH366afj7HZ7tbe3t1vl6xkUANCZmq9XFKX7XvL1b7/9dtjHH39sFxGZO3duW2dnp6Gpqcl47do1w1D5+rKyMod6jHw9AHgIV/P1UVFRXQcOHBgnIvLll1/6d3V1eZnN5h7y9QCgE3eoDeuRrz927Jh/dnZ2bFtbm8HLy0t+//vfX8jIyGglXw8AOnGHQRkp8vUAAE2QrwcAYAgMCgBP0tfX16f9v4cdJf7/f7u+e308gwLAk5y4fPlyMKNy9/r6+rwuX74cLCIn7vV78D4UAB6jp6fn2aampj1NTU0pwgXz3eoTkRM9PT3P3us34F95AQA0wYIDADTBoAAANMGgAAA0waAAADTBoAAANPF/qI3N4VJXzRcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "selection.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "#On limite à 3 colonnes pour un graphe plus lisible" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "selection = data.loc[ [23,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,126,130,145,149,155,190,205,227,243,257] , ['Province/State','Country/Region','10/20/20'] ]" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "#Affichage de la nouvelle sélection épurée" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Province/StateCountry/Region10/20/20
23NaNBelgium240159
56AnhuiChina991
57BeijingChina938
58ChongqingChina587
59FujianChina419
60GansuChina170
61GuangdongChina1892
62GuangxiChina260
63GuizhouChina147
64HainanChina171
65HebeiChina368
66HeilongjiangChina948
67HenanChina1283
68Hong KongChina5261
69HubeiChina68139
70HunanChina1019
71Inner MongoliaChina275
72JiangsuChina670
73JiangxiChina935
74JilinChina157
75LiaoningChina280
76MacauChina46
77NingxiaChina75
78QinghaiChina18
79ShaanxiChina438
80ShandongChina845
81ShanghaiChina1097
82ShanxiChina209
83SichuanChina731
84TianjinChina256
85TibetChina1
86XinjiangChina902
87YunnanChina211
88ZhejiangChina1283
126NaNFrance939147
130NaNGermany385591
145NaNIran539670
149NaNItaly434449
155NaNKorea, South25424
190Sint MaartenNetherlands756
205NaNPoland192539
227NaNSouth Sudan2847
243NaNTurkey351413
257Turks and Caicos IslandsUnited Kingdom698
\n", + "
" + ], + "text/plain": [ + " Province/State Country/Region 10/20/20\n", + "23 NaN Belgium 240159\n", + "56 Anhui China 991\n", + "57 Beijing China 938\n", + "58 Chongqing China 587\n", + "59 Fujian China 419\n", + "60 Gansu China 170\n", + "61 Guangdong China 1892\n", + "62 Guangxi China 260\n", + "63 Guizhou China 147\n", + "64 Hainan China 171\n", + "65 Hebei China 368\n", + "66 Heilongjiang China 948\n", + "67 Henan China 1283\n", + "68 Hong Kong China 5261\n", + "69 Hubei China 68139\n", + "70 Hunan China 1019\n", + "71 Inner Mongolia China 275\n", + "72 Jiangsu China 670\n", + "73 Jiangxi China 935\n", + "74 Jilin China 157\n", + "75 Liaoning China 280\n", + "76 Macau China 46\n", + "77 Ningxia China 75\n", + "78 Qinghai China 18\n", + "79 Shaanxi China 438\n", + "80 Shandong China 845\n", + "81 Shanghai China 1097\n", + "82 Shanxi China 209\n", + "83 Sichuan China 731\n", + "84 Tianjin China 256\n", + "85 Tibet China 1\n", + "86 Xinjiang China 902\n", + "87 Yunnan China 211\n", + "88 Zhejiang China 1283\n", + "126 NaN France 939147\n", + "130 NaN Germany 385591\n", + "145 NaN Iran 539670\n", + "149 NaN Italy 434449\n", + "155 NaN Korea, South 25424\n", + "190 Sint Maarten Netherlands 756\n", + "205 NaN Poland 192539\n", + "227 NaN South Sudan 2847\n", + "243 NaN Turkey 351413\n", + "257 Turks and Caicos Islands United Kingdom 698" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "selection" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "#Graphe version histogramme" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[]],\n", + " dtype=object)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF21JREFUeJzt3X+U5XV93/HnS6CijAIKma6LuioIGpYfZUI8eqIzgkqkPYpRq7UEgukaFdTIiaH+xGAS0oimIeakWBGsqxsapWvxR4PUEan2mF0LLgQQgS0BcVdcfg2uKPDuH9/v1HGYZe7emcud/c7zcc49M9/f7+97777mO5/7vXdSVUiSdn2PGXYBkqTFYaBLUkcY6JLUEQa6JHWEgS5JHWGgS1JHGOiS1BEGuiR1hIGuJS/JqUk2JLk/yQWzlh2T5LokP0nytSRPn2P77yV5dpI/SHJ1knuT3JzkD2att6rdx0/afR47x77OS7ImyfFJrkhyV5IfJvl4kifMWO+xSc5Pck+7/J2L2BJpTga6dgU/AD4EnD9zZpL9gM8D7wOeBGwA/nbWOs8CHlNV3wMC/DawL3AccGqS181Y/bPA/wGeDLwH+Lsk+8+q5TjgS8DebU1PAZ4DHAD8+Yz1zgQOAp4OTADvSnLczp+61Lv41n/tKpJ8CDigqk5up9cAJ1fV89vpvYA7gCOr6rp23tuAA6vqbXPs7y9p/g+cluTZwCZgv6q6t13+DWBtVf1NO30Y8OmqOmyOfb0K+GBVrW6nbwN+p6r+vp0+Czioql43e1tpsXiFrl3ZrwJXTU9U1X3Aje38aS8Hvjh7wyQBfgO4Zsa+bpoO89ZVveyr9cLpfSXZl+bK/aoZy2fvS1p0uw+7AGkBRoAfzZp3N/AEgCSPB34N+Poc255Jc0HzyRn7unuOfa2cMX088O7ZO0ryEuAk4Ndn7Gt6+4fVJQ2Kga5d2RTwxFnznghMX2UfA3yzqn46c4Ukp9KMpf9GVd3fy76S7AMcAnxz1r6eB3wGeHU7Tj+9r+ntfzrj+5lX/9Kic8hFu7JrgMOnJ9ox9Gfxi2GUhw2RJDkFOAM4pqpunbWvZ868U6Xd9/S+XgZcVlUPztjXkcAXgFOq6rLp+VV1J3D7zNpm7UsaCANdS16S3ZPsCewG7JZkzyS7AxcDhyb5rXb5+4HvTr8gCvwmzR0p0/t5A/AnwEuq6qaZx2ivrq8EPtDu/wTgMOBz7SrHz9rXocBXgNOq6r/PUfangPcm2TfJIcC/Ay5YUCOk+VSVDx9L+kEz3l2zHme2y44FrgO2A5PAqnb+ocDVs/ZzM/BzmiGR6cffzFi+qt3HduB64Nh2fmiuuH9lxrqfBB6ata9rZix/LM1tlvcAW4B3DruPPrr/8LZFdVKSd9HcgviuRdjX0cBfVdXRC69MGhxfFFVXbQbmGgrp1wcWcV/SQHiFLkkd4YuiktQRBrokdcSjOoa+33771apVq/ra9r777mOvvfZa3IJ2MfbAHoA9WI7nv3HjxjuqavYHxT3Moxroq1atYsOGDX1tOzk5yfj4+OIWtIuxB/YA7MFyPP8k/7eX9RxykaSOMNAlqSMMdEnqCANdkjrCQJekjjDQJakjDHRJ6ggDXZI6Ypf5tMVNt93NyWfs6O/zDtbms48fynElaWd4hS5JHWGgS1JHGOiS1BEGuiR1hIEuSR1hoEtSRxjoktQR8wZ6kj2TfDvJVUmuSfLBdv6ZSW5LcmX7ePngy5Uk7Ugvbyy6H3hxVU0l2QO4IsmX22UfraoPD648SVKv5g30qipgqp3co33UIIuSJO28NHk9z0rJbsBG4EDgY1X1h0nOBE4G7gE2AKdX1Z1zbLsGWAMwOjp61Lp16/oqdOu2u9myva9NF2z1yr2Hc+BZpqamGBkZGXYZQ2UP7MFyPP+JiYmNVTU233o9Bfr/XznZB7gYOA34EXAHzdX6WcCKqjrlkbYfGxurfv9I9Llr13POpuF89MxS+SyX5fjHcWezB/ZgOZ5/kp4Cfafucqmqu4BJ4Liq2lJVD1bVQ8DHgaP7qlSStCh6uctl//bKnCSPA44FrkuyYsZqJwBXD6ZESVIvehnDWAFc2I6jPwa4qKouSfJfkhxBM+SyGXjT4MqUJM2nl7tcvgscOcf8EwdSkSSpL75TVJI6wkCXpI4w0CWpIwx0SeoIA12SOsJAl6SOMNAlqSMMdEnqCANdkjrCQJekjjDQJakjDHRJ6ggDXZI6wkCXpI4w0CWpIwx0SeoIA12SOsJAl6SOMNAlqSPmDfQkeyb5dpKrklyT5IPt/CcluTTJDe3XfQdfriRpR3q5Qr8feHFVHQ4cARyX5HnAGcBlVXUQcFk7LUkaknkDvRpT7eQe7aOAVwAXtvMvBF45kAolST1JVc2/UrIbsBE4EPhYVf1hkruqap8Z69xZVQ8bdkmyBlgDMDo6etS6dev6KnTrtrvZsr2vTRds9cq9h3PgWaamphgZGRl2GUNlD+zBcjz/iYmJjVU1Nt96u/eys6p6EDgiyT7AxUkO7bWQqjoPOA9gbGysxsfHe930l5y7dj3nbOqp3EW3+Q3jQznubJOTk/Tbv66wB/ZguZ//I9mpu1yq6i5gEjgO2JJkBUD7deuiVydJ6lkvd7ns316Zk+RxwLHAdcAXgJPa1U4C1g+qSEnS/HoZw1gBXNiOoz8GuKiqLknyLeCiJG8EbgFeM8A6JUnzmDfQq+q7wJFzzP8xcMwgipIk7TzfKSpJHWGgS1JHGOiS1BEGuiR1hIEuSR1hoEtSRxjoktQRBrokdYSBLkkdYaBLUkcY6JLUEQa6JHWEgS5JHWGgS1JHGOiS1BEGuiR1hIEuSR1hoEtSRxjoktQR8wZ6kqcm+VqSa5Nck+Tt7fwzk9yW5Mr28fLBlytJ2pF5/0g08ABwelV9J8kTgI1JLm2XfbSqPjy48iRJvZo30KvqduD29vt7k1wLrBx0YZKknZOq6n3lZBVwOXAo8E7gZOAeYAPNVfydc2yzBlgDMDo6etS6dev6KnTrtrvZsr2vTRds9cq9h3PgWaamphgZGRl2GUNlD+zBcjz/iYmJjVU1Nt96PQd6khHg68AfV9Xnk4wCdwAFnAWsqKpTHmkfY2NjtWHDhp6ON9u5a9dzzqZeRogW3+azjx/KcWebnJxkfHx82GUMlT2wB8vx/JP0FOg93eWSZA/gc8Daqvo8QFVtqaoHq+oh4OPA0QspWJK0ML3c5RLgE8C1VfWRGfNXzFjtBODqxS9PktSrXsYwXgCcCGxKcmU7793A65McQTPkshl400AqlCT1pJe7XK4AMseiLy1+OZKkfvlOUUnqCANdkjrCQJekjjDQJakjDHRJ6ggDXZI6wkCXpI4w0CWpIwx0SeoIA12SOsJAl6SOMNAlqSMMdEnqCANdkjrCQJekjjDQJakjDHRJ6ggDXZI6wkCXpI6YN9CTPDXJ15Jcm+SaJG9v5z8pyaVJbmi/7jv4ciVJO9LLFfoDwOlV9RzgecBbkzwXOAO4rKoOAi5rpyVJQzJvoFfV7VX1nfb7e4FrgZXAK4AL29UuBF45qCIlSfNLVfW+crIKuBw4FLilqvaZsezOqnrYsEuSNcAagNHR0aPWrVvXV6Fbt93Nlu19bbpgq1fuPZwDzzI1NcXIyMiwyxgqe2APluP5T0xMbKyqsfnW273XHSYZAT4HvKOq7knS03ZVdR5wHsDY2FiNj4/3eshfcu7a9ZyzqedyF9XmN4wP5bizTU5O0m//usIe2IPlfv6PpKe7XJLsQRPma6vq8+3sLUlWtMtXAFsHU6IkqRe93OUS4BPAtVX1kRmLvgCc1H5/ErB+8cuTJPWqlzGMFwAnApuSXNnOezdwNnBRkjcCtwCvGUyJkqRezBvoVXUFsKMB82MWtxxJUr98p6gkdYSBLkkdYaBLUkcY6JLUEQa6JHWEgS5JHWGgS1JHGOiS1BEGuiR1hIEuSR1hoEtSRxjoktQRBrokdYSBLkkdYaBLUkcY6JLUEQa6JHWEgS5JHWGgS1JHzBvoSc5PsjXJ1TPmnZnktiRXto+XD7ZMSdJ8erlCvwA4bo75H62qI9rHlxa3LEnSzpo30KvqcmDbo1CLJGkBUlXzr5SsAi6pqkPb6TOBk4F7gA3A6VV15w62XQOsARgdHT1q3bp1fRW6ddvdbNne16YLtnrl3sM58CxTU1OMjIwMu4yhsgf2YDme/8TExMaqGptvvX4DfRS4AyjgLGBFVZ0y337GxsZqw4YN8x5vLueuXc85m3bva9uF2nz28UM57myTk5OMj48Pu4yhsgf2YDmef5KeAr2vu1yqaktVPVhVDwEfB47uZz+SpMXTV6AnWTFj8gTg6h2tK0l6dMw7hpHks8A4sF+SW4EPAONJjqAZctkMvGmANUqSejBvoFfV6+eY/YkB1CJJWgDfKSpJHWGgS1JHGOiS1BEGuiR1hIEuSR1hoEtSRxjoktQRBrokdYSBLkkdYaBLUkcY6JLUEQa6JHWEgS5JHWGgS1JHGOiS1BEGuiR1hIEuSR1hoEtSRxjoktQR8wZ6kvOTbE1y9Yx5T0pyaZIb2q/7DrZMSdJ8erlCvwA4bta8M4DLquog4LJ2WpI0RPMGelVdDmybNfsVwIXt9xcCr1zkuiRJOylVNf9KySrgkqo6tJ2+q6r2mbH8zqqac9glyRpgDcDo6OhR69at66vQrdvuZsv2vjZdsNUr9x7OgWeZmppiZGRk2GUMlT2wB8vx/CcmJjZW1dh86+0+6EKq6jzgPICxsbEaHx/vaz/nrl3POZsGXu6cNr9hfCjHnW1ycpJ++9cV9sAeLPfzfyT93uWyJckKgPbr1sUrSZLUj34D/QvASe33JwHrF6ccSVK/erlt8bPAt4CDk9ya5I3A2cBLktwAvKSdliQN0byD0lX1+h0sOmaRa5EkLYDvFJWkjjDQJakjDHRJ6ggDXZI6wkCXpI4w0CWpIwx0SeoIA12SOsJAl6SOMNAlqSMMdEnqCANdkjrCQJekjjDQJakjDHRJ6ggDXZI6wkCXpI4w0CWpIwx0SeqIef+m6CNJshm4F3gQeKCqxhajKEnSzltQoLcmquqORdiPJGkBHHKRpI5IVfW/cXIzcCdQwH+qqvPmWGcNsAZgdHT0qHXr1vV1rK3b7mbL9r5LXZDVK/cezoFnmZqaYmRkZNhlDJU9sAfL8fwnJiY29jKkvdBAf0pV/SDJrwCXAqdV1eU7Wn9sbKw2bNjQ17HOXbueczYtxgjRztt89vFDOe5sk5OTjI+PD7uMobIH9mA5nn+SngJ9QUMuVfWD9utW4GLg6IXsT5LUv74DPcleSZ4w/T3wUuDqxSpMkrRzFjKGMQpcnGR6P5+pqq8sSlWSpJ3Wd6BX1U3A4YtYiyRpAbxtUZI6wkCXpI4w0CWpIwx0SeoIA12SOsJAl6SOMNAlqSMMdEnqCANdkjrCQJekjjDQJakjhvMB4+rJqjO++EvTp69+gJNnzRuEYX7+++xznm1QPVgqn3kvLYRX6JLUEQa6JHWEgS5JHWGgS1JHGOiS1BHe5aKHme9Oky4a5jl7h82jp+v/zl6hS1JHLCjQkxyX5Pok309yxmIVJUnaeX0HepLdgI8Bvwk8F3h9kucuVmGSpJ2zkCv0o4HvV9VNVfUzYB3wisUpS5K0s1JV/W2YvBo4rqp+t50+Efj1qjp11nprgDXt5MHA9X3Wuh9wR5/bdoU9sAdgD5bj+T+9qvafb6WF3OWSOeY97KdDVZ0HnLeA4zQHSzZU1dhC97Mrswf2AOzBcj//R7KQIZdbgafOmD4A+MHCypEk9Wshgf4PwEFJnpHknwGvA76wOGVJknZW30MuVfVAklOB/wHsBpxfVdcsWmUPt+Bhmw6wB/YA7MFyP/8d6vtFUUnS0uI7RSWpIwx0SeqIJR/oSZ6V5PeTnJJkv2HXsytJcnCSLyb5TpJThl3PMLQ9uMQe+DxYDj1Y0oGeZBT4AHAU8CLg/cOtaGlK8vIkn0ny5STPnrHo3wNfAf4l8I4kLx5OhYP3CD14N80L98ezfHvg82CZ9GBJBzrNxwusqqp/C7wHGEny2iHXNDRJXpPk/CTvTbJXO+/xwG8D3wL+FvhQksPaTZ4GfKuqfgD8Z+DFSZ42jNoXyzw9+CbNR1DM7MEBND24neXRA58Hy6QHc1nqgf4Y4Jb2+x8D/5sm5DsryZ5J/lWSv0jywvZD0EjyL4DXAlcCzwHe1i47BtgGfKKqLqB5t+4xSVYCm4DHt7v+DrAXzRN7SeuhB9+h6cHbZ/Xg/Kq6EHiIX/TganbQgyRzvdt5SfB5YA/6sdQD/UFge5I9q2o7sJXmKv0JQ65rwZLsleTYJG9N8vQZi14FvAW4BzgdOLGdfxJwU1X9JfBhmivPFwKPpXk/wfZ2va8Bq2k+muFB4Mnt/B/SBN2+AzupnbSAHvwV8OfASubuwSRwGPP0oJbAPbs+D+zBYlrqgX4rsAfNPxjAz4CfAPsMraKdlGSPJEcleXOSE5NMP6neAfwRzWsDb09yRDv/RcAlVfV+4BKaXw0fC9wETP8guxG4GXg+zYedHTwjnKavXrfS/Ed4Zjt/G00A3j6gU51XkiOT/GmSo9pZ72T+HnyRuXtwE4/cg0N4eA/uZIg9SLJfkpOSfCrNm/IATgXOYpk8D5IckuQtSd6fZHU7+x0sox4M0lIP9O/T/MR9QTt9ILBHVf3T8EraaW8C/prmivE44Iwkh9Ocy2ur6rU0T7A1Sfag+aF1Y7vtFTRXEmM0P9ymn8Q/ATYDz2rXHWlfQAa4luZ1h58Bl9KMKQLcBRwB3DCY09yxJNPPs5fR9OPw9tfgg4HXzNODb7DzPfhH5u7BnQyhBzOGdv41zUdMfxf4RpLn0/Tg1cvkeXAEzRX1oTSB+rtJ/g3NBduy+L8waEs60KtqiubX51cleS9NIH4Llvb457S2xi8DL6mqNwMfovlAs8OAQ6rq1nbV/wYcW1U/pxnnm/5IhluAB2h+NbyFX4z5PUTza+XPq+onwEZ+8WQ9GJhMsk9V/S/g0iRfB/6J5gfLfYM63x2pqoeSPIvmD6H8GfBsmnN8blXd1q7Waw+mfyV/pB4cwhLqQVVVkiOBl1bVq6rqw1V1FXA/sLqPHuySzwOaMH58Vb0F+H1gBfA44IgZF2ld78FA7Qp/JPoCmn/AV9K8Ov1lWBrjn/Npa7xxxqwf0lwZvA34jzPWu7r9dTw0Vw+jSR5bVfcleVy72gZg/ySHV9VVSV5K80IPwDnA+5J8FXgGcFpV3dUue1877/aqunNAp9qLA2mukDcAv0fTi2dML9yJHuy3i/bgZ8AzkxxKEzjfB9bSXFkCy+J58F2aq++30oT7j4FP07weAiyLHgzUkg/0qnoA+Pv2sUtKkjbcfw+4tKq2Jtme5BlVdXO72g9prj4vp/nh9UV+EXppr/I+BZzevij8ZOCTAFV1fZKzaK7+r585JNW+mPyPj86ZPqI1NJ/IuQLYvaruT3JvklVVtbldp8s9eAj4Kc2Y+bU048OPA3ZPcsCM39Y624Oq+naSC4DXA18HjgSOBSrJU2fU29keDNqSD/QuaJ+AB9KMIb+7nf0PNH+P9a+T7ENzhfHkqlqf5HjgT9urlBtorkioqrOTHEvz6+bXq+rGGce4nv7/GtRAJXkOzfDCyTTjpy9K8llgCpgAPtn1HtAE0tOA/1BV/7V9HeUUml/7x4FPL4MeQPN/4I1V9b0kJ9Dchvxj4MXAhcukBwPjpy0O2PTVeZKPAFdVc580SV4GnADcRjPWd3NVva9d9s/bZU8EPl9Vu/SLN214/RnNGOiNwK/SXFFdB7yV5q6FQ+hwDwCSXAR8tarOa19TOI3mRb09aYYXnk2He5DkKTR3s3y2qr6a5Biad27eQnP1/SM6/n9h0Az0R0GS3wL+Avg74Ek0wfYBYH+a8fTvAxctlydrkj8Cdquq9yR5Hs1wzI10vAft8+BlNAH2a8DVy6kHad788yGa0L6MJsy/UVV/slx6MGgG+qMgyZtp3gxxMc0tV99ebk/Y9lfm0AzzHQBsr+bt+MtKkjGa2xe/TTNUsHXIJT2q2iGV36EZI78C+J9VtW24VXWHgS5JHbGk70OXJPXOQJekjjDQJakjDHRJ6ggDXZI6wkCXpI4w0CWpIwx0SeqI/weCk8jr9OIFowAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "selection.hist(xrot=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Il y a 284 colonnes dans le tableau: on prend la dernière valeur pour avoir le cumul du nombre de cas" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "columns = data.columns\n", + "x1 = columns[0] \n", + "y1 = columns[283]" + ] + }, + { + "cell_type": "code", + "execution_count": 124, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADTZJREFUeJzt3X+s3Xddx/Hny3bDGZUBBXLTdnbT6mwiu+K1kCA6XZR2iWlNcGlnGC4sN0sY0fgP/csl4h9saCTLNprr0gwMrhpdoGjZQlAcinPdzHWsQOGmyHpbwjJLpjJj0+7tH/e7m7PDWe/33p32ej97PpKm3x+f7zmfLCfPfvO593yXqkKS1JYfWO0JSJLGz7hLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1yLhLUoOMuyQ1aP1qvfGGDRtqy5Ytq/X2krQmPfHEE89W1RuXGrdqcd+yZQuPP/74ar29JK1JSb7VZ5zLMpLUIOMuSQ0y7pLUIOMuSQ0y7pLUoCXjnuRAkmeSPPUy55PkriRzSZ5M8tbxT1OStBx97tzvB3ac5/xOYGv3Zxr42CufliTplVgy7lX1CHD6PEN2AZ+oBY8ClyeZGNcEJUnLN441943AiYH9+e6YJGmVjOMbqhlxbOT/dTvJNAtLN0xMTDA7OzuGt5fG788fe3px+8btV6ziTKSVGUfc54HNA/ubgFOjBlbVDDADMDU1VZOTk2N4e2n8dh88ubh957SfU60941iWOQTc1P3WzNuB56rq22N4XUnSCi15557kAeBaYEOSeeB24BKAqtoPHAauB+aA54GbL9RkJUn9LBn3qtq7xPkC3j+2GUmSXjG/oSpJDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktSgXnFPsiPJsSRzSfaNOP/aJJ9J8m9Jjia5efxTlST1tWTck6wD7gF2AtuAvUm2DQ17P/CVqroGuBb44ySXjnmukqSe+ty5bwfmqup4VZ0BDgK7hsYU8CNJAvwwcBo4O9aZSpJ66xP3jcCJgf357tigu4GfBk4BXwZ+p6peGMsMJUnLtr7HmIw4VkP77wJmgV8Bfhz4XJIvVtV/vuSFkmlgGmBiYoLZ2dnlz1i6CG646tzitp9TrUV94j4PbB7Y38TCHfqgm4EPV1UBc0m+CVwNPDY4qKpmgBmAqampmpycXOm8pQtq98GTi9t3Tvs51drTZ1nmCLA1yZXdD0n3AIeGxjwNXAeQ5M3ATwHHxzlRSVJ/S965V9XZJLcBDwPrgANVdTTJrd35/cCHgPuTfJmFZZwPVtWzF3DekqTz6LMsQ1UdBg4PHds/sH0K+LXxTk2StFJ+Q1WSGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGtQr7kl2JDmWZC7JvpcZc22S2SRHk/zDeKcpSVqO9UsNSLIOuAf4VWAeOJLkUFV9ZWDM5cC9wI6qejrJmy7UhCVJS+tz574dmKuq41V1BjgI7BoacyPwYFU9DVBVz4x3mpKk5egT943AiYH9+e7YoJ8EXpfkC0meSHLTuCYoSVq+JZdlgIw4ViNe5+eA64DLgH9O8mhVff0lL5RMA9MAExMTzM7OLn/G0kVww1XnFrf9nGot6hP3eWDzwP4m4NSIMc9W1feA7yV5BLgGeEncq2oGmAGYmpqqycnJlc5buqB2Hzy5uH3ntJ9TrT19lmWOAFuTXJnkUmAPcGhozKeBdyZZn+SHgLcBXx3vVCVJfS15515VZ5PcBjwMrAMOVNXRJLd25/dX1VeTPAQ8CbwA3FdVT13IiUuSXl6fZRmq6jBweOjY/qH9jwAfGd/UJEkr5TdUJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGmTcJalBxl2SGtQr7kl2JDmWZC7JvvOM+/kk55K8e3xTlCQt15JxT7IOuAfYCWwD9ibZ9jLj7gAeHvckJUnL0+fOfTswV1XHq+oMcBDYNWLcB4C/Bp4Z4/wkSSvQJ+4bgRMD+/PdsUVJNgK/Aewf39QkSSu1vseYjDhWQ/sfBT5YVeeSUcO7F0qmgWmAiYkJZmdn+85TuqhuuOrc4rafU61FfeI+D2we2N8EnBoaMwUc7MK+Abg+ydmq+tTgoKqaAWYApqamanJycqXzli6o3QdPLm7fOe3nVGtPn7gfAbYmuRI4CewBbhwcUFVXvrid5H7gb4bDLkm6eJaMe1WdTXIbC78Fsw44UFVHk9zanXedXZL+n+lz505VHQYODx0bGfWq+u1XPi1J0ivhN1QlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUHGXZIaZNwlqUG94p5kR5JjSeaS7Btx/reSPNn9+VKSa8Y/VUlSX0vGPck64B5gJ7AN2Jtk29CwbwK/VFVvAT4EzIx7opKk/vrcuW8H5qrqeFWdAQ4CuwYHVNWXquq73e6jwKbxTlOStBzre4zZCJwY2J8H3nae8e8DPjvqRJJpYBpgYmKC2dnZntOULq4brjq3uO3nVGtRn7hnxLEaOTD5ZRbi/gujzlfVDN2SzdTUVE1OTvacpnRx7T54cnH7zmk/p1p7+sR9Htg8sL8JODU8KMlbgPuAnVX1H+OZniRpJfqsuR8Btia5MsmlwB7g0OCAJFcADwLvqaqvj3+akqTlWPLOvarOJrkNeBhYBxyoqqNJbu3O7wd+H3gDcG8SgLNVNXXhpi1JOp8+yzJU1WHg8NCx/QPbtwC3jHdqkqSV8huqktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDTLuktQg4y5JDeoV9yQ7khxLMpdk34jzSXJXd/7JJG8d/1QlSX0tGfck64B7gJ3ANmBvkm1Dw3YCW7s/08DHxjxPSdIy9Llz3w7MVdXxqjoDHAR2DY3ZBXyiFjwKXJ5kYsxzlST11CfuG4ETA/vz3bHljpEkXSTre4zJiGO1gjEkmWZh2Qbgv5Mc6/H+0mrYADwLkDtWeSbSS/1Yn0F94j4PbB7Y3wScWsEYqmoGmOkzMWk1JXm8qqZWex7SSvVZljkCbE1yZZJLgT3AoaExh4Cbut+aeTvwXFV9e8xzlST1tOSde1WdTXIb8DCwDjhQVUeT3Nqd3w8cBq4H5oDngZsv3JQlSUtJ1fctjUuvekmmu2VEaU0y7pLUIB8/IEkNMu5a05IcSPJMkqcGjr0+yeeSfKP7+3VD1zyR5EeT/G2SryU5muTDA+dfk+Qvusdp/EuSLUPXP5RkY5JPdo/leKqbxyXdeR/HoVVn3LXW3Q/sGDq2D/h8VW0FPt/tA9CF+iRwFvijqroa+FngHUl2dsPeB3y3qn4C+BPgjoHrLwNeX1UngU8CVwM/A1wG3NIN83EcWnXGXWtaVT0CnB46vAv4eLf9cWD3wLmdwENV9XxV/X33GmeAf2Xh+xnD1/8VcF2SF7+ody3whe66w90jNwp4bOh6H8ehVWXc1aI3v/g9i+7vNw2c2wE8NDg4yeXAr7Nwlw8Dj9OoqrPAc8AbunM7R1x/CfCegeM+jkOrzrjrVaP7Et6mqjo+cGw98ABw18Dx8z1O4x3APw6duxd4pKq+2ON66aIw7mrRd15cBun+fqY7/k6+P8wzwDeq6qMDxxYfp9HF/7XA6SRXASe6ZRy687cDbwR+b9T1nZGP45AuJOOuFh0C3tttvxf4dLe9A/jsi4OS/CEL4f7d81z/buDvunX1lyzJJLkFeBewt6peGLrex3FoVfklJq1pSR5g4YecG4DvALcDnwL+ErgCeBr4zao6neQI8ItV9T9JNrGwLv414H+7l7u7qu5L8oPAn7HwWzSngT1VdTzJZ4APVNW/d+99FvgW8F/d9Q9W1R90P3y9m4V/TJ4Hbq6qxy/kfwdpmHHXq0IX8z+tqp1LDh59/WuAf/JJkVorjLskNcg1d0lqkHGXpAYZd0lqkHGXpAYZd0lqkHGXpAYZd0lq0P8B7eIfHKL1p5EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.grid(axis='y', alpha=0.75)\n", + "plt.hist(y1, bins=100)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +3811,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo3/exercice_fr.ipynb b/module3/exo3/exercice_fr.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..e5281e8899befeb5c255ee76e030f763eed185e2 100644 --- a/module3/exo3/exercice_fr.ipynb +++ b/module3/exo3/exercice_fr.ipynb @@ -1,5 +1,1794 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Autour du SARS-CoV-2 (Covid-19)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#Autour du SARS-CoV-2 (Covid-19)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# import des différents librairies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import isoweek" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "data=pd.read_csv(\"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv\", skiprows=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Téléchargement et affichage des données relative au SARS-2 (Covid-19)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0Afghanistan33.9391167.70995300.10.20.30.40.5...39290392973934139422394863954839616396933970339799
0NaNAlbania41.15330020.168300000000...13965141171426614410145681473014899150661523115399
1NaNAlgeria28.0339001.659600000000...51847519955213652270523995252052658528045294053072
2NaNAndorra42.5063001.521800000000...2110211021102370237025682568269626962696
3NaNAngola-11.20270017.873900000000...5211537054025530572557255958603162466366
4NaNAntigua and Barbuda17.060800-61.796400000000...106107107107107108111111111111
5NaNArgentina-38.416100-63.616700000000...779689790818798486809728824468840915856369871468883882894206
6NaNArmenia40.06910045.038200000000...51382519255249652677530835375554473550875573656451
7Australian Capital TerritoryAustralia-35.473500149.012400000000...113113113113113113113113113113
8New South WalesAustralia-33.868800151.209300000034...4232423442354246424942614271427342784284
9Northern TerritoryAustralia-12.463400130.845600000000...33333333333333333333
10QueenslandAustralia-27.469800153.025100000000...1160116011601160116011601160116111611161
11South AustraliaAustralia-34.928500138.600700000000...470470471471472472472473473475
12TasmaniaAustralia-42.882100147.327200000000...230230230230230230230230230230
13VictoriaAustralia-37.813600144.963100000011...20197202092022020233202372024720257202692028120295
14Western AustraliaAustralia-31.950500115.860500000000...686686686687687690690692694694
15NaNAustria47.51620014.550100000000...46374474324814648896498195084852057531885442355319
16NaNAzerbaijan40.14310047.576900000000...40453405614069140788409314111341304415194175241982
17NaNBahamas25.025885-78.035889000000...4220433244094452455947134713471350235078
18NaNBahrain26.02750050.550000000000...71803723107266273116734767393274422748607528775614
19NaNBangladesh23.68500090.356300000000...366383367565368690370132371631373151374592375870377073378266
20NaNBarbados13.193900-59.543200000000...193196199200200203203204206208
21NaNBelarus53.70980027.953400000000...79421798527985280696810908150581982824718247183534
22NaNBelgium50.8333004.469936000000...124234127623130235132203134291137868143596148981156931162258
23NaNBelize17.189900-88.497600000000...2080208021312196224323102373242724272531
24NaNBenin9.3077002.315800000000...2357235723572357235724112411241124112411
25NaNBhutan27.51420090.433600000000...283283298299300304304306306309
26NaNBolivia-16.290200-63.588700000000...136219136569136868137107137468137706137969138226138463138574
27NaNBosnia and Herzegovina43.91590017.679100000000...27975279752835428449287102907529528299173034530647
28NaNBotswana-22.32850024.684900000000...3172317231723172317231723219321932193219
29NaNBrazil-14.235000-51.925300000000...4847092490683349152894927235496914150006945028444505588850558885094979
..................................................................
235NaNThailand15.870032100.992541235788...3583358535903600361536223628363436363641
236NaNTimor-Leste-8.874217125.727539000000...28282828282828282828
237NaNTogo8.6195000.824800000000...1818184018541864188118981907192119351940
238NaNTrinidad and Tobago10.691800-61.222500000000...4629471547634767484648874963502150435043
239NaNTunisia33.8869179.537499000000...19721209442223022230222302454226899268993125932556
240NaNTurkey38.96370035.243300000000...321512323014324443326046327557329138330753332382334031335533
241NaNUS40.000000-100.000000112255...7332297738234174178457457402749934175496827605873766329377179327762546
242NaNUganda1.37333332.290275000000...8491866288088965908292609442953897019801
243NaNUkraine48.37940031.165600000000...223376228161232424236329240811245698251243257204263105268065
244NaNUnited Arab Emirates23.42407653.847818000000...96529977609880199733100794101840102929104004105133106229
245AnguillaUnited Kingdom18.220600-63.068600000000...3333333333
246BermudaUnited Kingdom32.307800-64.750500000000...181181181181181181182184184184
247British Virgin IslandsUnited Kingdom18.420700-64.640000000000...71717171717171717171
248Cayman IslandsUnited Kingdom19.313300-81.254600000000...213213213213213213214220221221
249Channel IslandsUnited Kingdom49.372300-2.364400000000...677678678686695698699699699699
250Falkland Islands (Malvinas)United Kingdom-51.796300-59.523600000000...13131313131313131313
251GibraltarUnited Kingdom36.140800-5.353600000000...416428432432437445452468476485
252Isle of ManUnited Kingdom54.236100-4.548100000000...341342342344345345345345345346
253MontserratUnited Kingdom16.742498-62.187366000000...13131313131313131313
254Turks and Caicos IslandsUnited Kingdom21.694000-71.797900000000...695695695695695695695695696696
255NaNUnited Kingdom55.378100-3.436000000000...467146480017502978515571530113544275561815575679590844603716
256NaNUruguay-32.522800-55.765800000000...2097212221452155217722062226225122682294
257NaNUzbekistan41.37749164.585262000000...57454582385861258946593435957960026603426077661098
258NaNVenezuela6.423800-66.589700000000...76820776467843479117797968040481019816968245383137
259NaNVietnam14.058324108.277199022222...1096109610961097109810991100110511071109
260NaNWest Bank and Gaza31.95220035.233200000000...40766410784149841957424324284043256436644394544299
261NaNWestern Sahara24.215500-12.885800000000...10101010101010101010
262NaNYemen15.55272748.516388000000...2040204120412041204720492050205120512052
263NaNZambia-13.13389727.849332000000...14830149741505215089151701522415301153391541515458
264NaNZimbabwe-19.01543829.154857000000...7858788578887898791579197951799480108011
\n", + "

265 rows × 268 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 Afghanistan 33.93911 \\\n", + "0 NaN Albania 41.153300 \n", + "1 NaN Algeria 28.033900 \n", + "2 NaN Andorra 42.506300 \n", + "3 NaN Angola -11.202700 \n", + "4 NaN Antigua and Barbuda 17.060800 \n", + "5 NaN Argentina -38.416100 \n", + "6 NaN Armenia 40.069100 \n", + "7 Australian Capital Territory Australia -35.473500 \n", + "8 New South Wales Australia -33.868800 \n", + "9 Northern Territory Australia -12.463400 \n", + "10 Queensland Australia -27.469800 \n", + "11 South Australia Australia -34.928500 \n", + "12 Tasmania Australia -42.882100 \n", + "13 Victoria Australia -37.813600 \n", + "14 Western Australia Australia -31.950500 \n", + "15 NaN Austria 47.516200 \n", + "16 NaN Azerbaijan 40.143100 \n", + "17 NaN Bahamas 25.025885 \n", + "18 NaN Bahrain 26.027500 \n", + "19 NaN Bangladesh 23.685000 \n", + "20 NaN Barbados 13.193900 \n", + "21 NaN Belarus 53.709800 \n", + "22 NaN Belgium 50.833300 \n", + "23 NaN Belize 17.189900 \n", + "24 NaN Benin 9.307700 \n", + "25 NaN Bhutan 27.514200 \n", + "26 NaN Bolivia -16.290200 \n", + "27 NaN Bosnia and Herzegovina 43.915900 \n", + "28 NaN Botswana -22.328500 \n", + "29 NaN Brazil -14.235000 \n", + ".. ... ... ... \n", + "235 NaN Thailand 15.870032 \n", + "236 NaN Timor-Leste -8.874217 \n", + "237 NaN Togo 8.619500 \n", + "238 NaN Trinidad and Tobago 10.691800 \n", + "239 NaN Tunisia 33.886917 \n", + "240 NaN Turkey 38.963700 \n", + "241 NaN US 40.000000 \n", + "242 NaN Uganda 1.373333 \n", + "243 NaN Ukraine 48.379400 \n", + "244 NaN United Arab Emirates 23.424076 \n", + "245 Anguilla United Kingdom 18.220600 \n", + "246 Bermuda United Kingdom 32.307800 \n", + "247 British Virgin Islands United Kingdom 18.420700 \n", + "248 Cayman Islands United Kingdom 19.313300 \n", + "249 Channel Islands United Kingdom 49.372300 \n", + "250 Falkland Islands (Malvinas) United Kingdom -51.796300 \n", + "251 Gibraltar United Kingdom 36.140800 \n", + "252 Isle of Man United Kingdom 54.236100 \n", + "253 Montserrat United Kingdom 16.742498 \n", + "254 Turks and Caicos Islands United Kingdom 21.694000 \n", + "255 NaN United Kingdom 55.378100 \n", + "256 NaN Uruguay -32.522800 \n", + "257 NaN Uzbekistan 41.377491 \n", + "258 NaN Venezuela 6.423800 \n", + "259 NaN Vietnam 14.058324 \n", + "260 NaN West Bank and Gaza 31.952200 \n", + "261 NaN Western Sahara 24.215500 \n", + "262 NaN Yemen 15.552727 \n", + "263 NaN Zambia -13.133897 \n", + "264 NaN Zimbabwe -19.015438 \n", + "\n", + " 67.709953 0 0.1 0.2 0.3 0.4 0.5 ... 39290 39297 \\\n", + "0 20.168300 0 0 0 0 0 0 ... 13965 14117 \n", + "1 1.659600 0 0 0 0 0 0 ... 51847 51995 \n", + "2 1.521800 0 0 0 0 0 0 ... 2110 2110 \n", + "3 17.873900 0 0 0 0 0 0 ... 5211 5370 \n", + "4 -61.796400 0 0 0 0 0 0 ... 106 107 \n", + "5 -63.616700 0 0 0 0 0 0 ... 779689 790818 \n", + "6 45.038200 0 0 0 0 0 0 ... 51382 51925 \n", + "7 149.012400 0 0 0 0 0 0 ... 113 113 \n", + "8 151.209300 0 0 0 0 3 4 ... 4232 4234 \n", + "9 130.845600 0 0 0 0 0 0 ... 33 33 \n", + "10 153.025100 0 0 0 0 0 0 ... 1160 1160 \n", + "11 138.600700 0 0 0 0 0 0 ... 470 470 \n", + "12 147.327200 0 0 0 0 0 0 ... 230 230 \n", + "13 144.963100 0 0 0 0 1 1 ... 20197 20209 \n", + "14 115.860500 0 0 0 0 0 0 ... 686 686 \n", + "15 14.550100 0 0 0 0 0 0 ... 46374 47432 \n", + "16 47.576900 0 0 0 0 0 0 ... 40453 40561 \n", + "17 -78.035889 0 0 0 0 0 0 ... 4220 4332 \n", + "18 50.550000 0 0 0 0 0 0 ... 71803 72310 \n", + "19 90.356300 0 0 0 0 0 0 ... 366383 367565 \n", + "20 -59.543200 0 0 0 0 0 0 ... 193 196 \n", + "21 27.953400 0 0 0 0 0 0 ... 79421 79852 \n", + "22 4.469936 0 0 0 0 0 0 ... 124234 127623 \n", + "23 -88.497600 0 0 0 0 0 0 ... 2080 2080 \n", + "24 2.315800 0 0 0 0 0 0 ... 2357 2357 \n", + "25 90.433600 0 0 0 0 0 0 ... 283 283 \n", + "26 -63.588700 0 0 0 0 0 0 ... 136219 136569 \n", + "27 17.679100 0 0 0 0 0 0 ... 27975 27975 \n", + "28 24.684900 0 0 0 0 0 0 ... 3172 3172 \n", + "29 -51.925300 0 0 0 0 0 0 ... 4847092 4906833 \n", + ".. ... .. ... ... ... ... ... ... ... ... \n", + "235 100.992541 2 3 5 7 8 8 ... 3583 3585 \n", + "236 125.727539 0 0 0 0 0 0 ... 28 28 \n", + "237 0.824800 0 0 0 0 0 0 ... 1818 1840 \n", + "238 -61.222500 0 0 0 0 0 0 ... 4629 4715 \n", + "239 9.537499 0 0 0 0 0 0 ... 19721 20944 \n", + "240 35.243300 0 0 0 0 0 0 ... 321512 323014 \n", + "241 -100.000000 1 1 2 2 5 5 ... 7332297 7382341 \n", + "242 32.290275 0 0 0 0 0 0 ... 8491 8662 \n", + "243 31.165600 0 0 0 0 0 0 ... 223376 228161 \n", + "244 53.847818 0 0 0 0 0 0 ... 96529 97760 \n", + "245 -63.068600 0 0 0 0 0 0 ... 3 3 \n", + "246 -64.750500 0 0 0 0 0 0 ... 181 181 \n", + "247 -64.640000 0 0 0 0 0 0 ... 71 71 \n", + "248 -81.254600 0 0 0 0 0 0 ... 213 213 \n", + "249 -2.364400 0 0 0 0 0 0 ... 677 678 \n", + "250 -59.523600 0 0 0 0 0 0 ... 13 13 \n", + "251 -5.353600 0 0 0 0 0 0 ... 416 428 \n", + "252 -4.548100 0 0 0 0 0 0 ... 341 342 \n", + "253 -62.187366 0 0 0 0 0 0 ... 13 13 \n", + "254 -71.797900 0 0 0 0 0 0 ... 695 695 \n", + "255 -3.436000 0 0 0 0 0 0 ... 467146 480017 \n", + "256 -55.765800 0 0 0 0 0 0 ... 2097 2122 \n", + "257 64.585262 0 0 0 0 0 0 ... 57454 58238 \n", + "258 -66.589700 0 0 0 0 0 0 ... 76820 77646 \n", + "259 108.277199 0 2 2 2 2 2 ... 1096 1096 \n", + "260 35.233200 0 0 0 0 0 0 ... 40766 41078 \n", + "261 -12.885800 0 0 0 0 0 0 ... 10 10 \n", + "262 48.516388 0 0 0 0 0 0 ... 2040 2041 \n", + "263 27.849332 0 0 0 0 0 0 ... 14830 14974 \n", + "264 29.154857 0 0 0 0 0 0 ... 7858 7885 \n", + "\n", + " 39341 39422 39486 39548 39616 39693 39703 39799 \n", + "0 14266 14410 14568 14730 14899 15066 15231 15399 \n", + "1 52136 52270 52399 52520 52658 52804 52940 53072 \n", + "2 2110 2370 2370 2568 2568 2696 2696 2696 \n", + "3 5402 5530 5725 5725 5958 6031 6246 6366 \n", + "4 107 107 107 108 111 111 111 111 \n", + "5 798486 809728 824468 840915 856369 871468 883882 894206 \n", + "6 52496 52677 53083 53755 54473 55087 55736 56451 \n", + "7 113 113 113 113 113 113 113 113 \n", + "8 4235 4246 4249 4261 4271 4273 4278 4284 \n", + "9 33 33 33 33 33 33 33 33 \n", + "10 1160 1160 1160 1160 1160 1161 1161 1161 \n", + "11 471 471 472 472 472 473 473 475 \n", + "12 230 230 230 230 230 230 230 230 \n", + "13 20220 20233 20237 20247 20257 20269 20281 20295 \n", + "14 686 687 687 690 690 692 694 694 \n", + "15 48146 48896 49819 50848 52057 53188 54423 55319 \n", + "16 40691 40788 40931 41113 41304 41519 41752 41982 \n", + "17 4409 4452 4559 4713 4713 4713 5023 5078 \n", + "18 72662 73116 73476 73932 74422 74860 75287 75614 \n", + "19 368690 370132 371631 373151 374592 375870 377073 378266 \n", + "20 199 200 200 203 203 204 206 208 \n", + "21 79852 80696 81090 81505 81982 82471 82471 83534 \n", + "22 130235 132203 134291 137868 143596 148981 156931 162258 \n", + "23 2131 2196 2243 2310 2373 2427 2427 2531 \n", + "24 2357 2357 2357 2411 2411 2411 2411 2411 \n", + "25 298 299 300 304 304 306 306 309 \n", + "26 136868 137107 137468 137706 137969 138226 138463 138574 \n", + "27 28354 28449 28710 29075 29528 29917 30345 30647 \n", + "28 3172 3172 3172 3172 3219 3219 3219 3219 \n", + "29 4915289 4927235 4969141 5000694 5028444 5055888 5055888 5094979 \n", + ".. ... ... ... ... ... ... ... ... \n", + "235 3590 3600 3615 3622 3628 3634 3636 3641 \n", + "236 28 28 28 28 28 28 28 28 \n", + "237 1854 1864 1881 1898 1907 1921 1935 1940 \n", + "238 4763 4767 4846 4887 4963 5021 5043 5043 \n", + "239 22230 22230 22230 24542 26899 26899 31259 32556 \n", + "240 324443 326046 327557 329138 330753 332382 334031 335533 \n", + "241 7417845 7457402 7499341 7549682 7605873 7663293 7717932 7762546 \n", + "242 8808 8965 9082 9260 9442 9538 9701 9801 \n", + "243 232424 236329 240811 245698 251243 257204 263105 268065 \n", + "244 98801 99733 100794 101840 102929 104004 105133 106229 \n", + "245 3 3 3 3 3 3 3 3 \n", + "246 181 181 181 181 182 184 184 184 \n", + "247 71 71 71 71 71 71 71 71 \n", + "248 213 213 213 213 214 220 221 221 \n", + "249 678 686 695 698 699 699 699 699 \n", + "250 13 13 13 13 13 13 13 13 \n", + "251 432 432 437 445 452 468 476 485 \n", + "252 342 344 345 345 345 345 345 346 \n", + "253 13 13 13 13 13 13 13 13 \n", + "254 695 695 695 695 695 695 696 696 \n", + "255 502978 515571 530113 544275 561815 575679 590844 603716 \n", + "256 2145 2155 2177 2206 2226 2251 2268 2294 \n", + "257 58612 58946 59343 59579 60026 60342 60776 61098 \n", + "258 78434 79117 79796 80404 81019 81696 82453 83137 \n", + "259 1096 1097 1098 1099 1100 1105 1107 1109 \n", + "260 41498 41957 42432 42840 43256 43664 43945 44299 \n", + "261 10 10 10 10 10 10 10 10 \n", + "262 2041 2041 2047 2049 2050 2051 2051 2052 \n", + "263 15052 15089 15170 15224 15301 15339 15415 15458 \n", + "264 7888 7898 7915 7919 7951 7994 8010 8011 \n", + "\n", + "[265 rows x 268 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +1805,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -