Sujet 2, exercice 1

parent 571a21b2
{
"cells": [],
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Sujet 2 : le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import os.path\n",
"import urllib.request"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le but de ce notebook est de revenir sur les travaux de __William Playfair__. Plus précisément, nous nous attarderons sur [ce graphe](https://fr.wikipedia.org/wiki/William_Playfair#/media/File:Chart_Showing_at_One_View_the_Price_of_the_Quarter_of_Wheat,_and_Wages_of_Labour_by_the_Week,_from_1565_to_1821.png). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercice 1: Reproduction des résultats"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A partir du [fichier csv](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv) contenant les données obtenues par numérisation du graphe de Playfair, l'objectif de cette partie est de produire un graphe similaire à celui présenté lors de l'introduction de ce notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Rien ne garantit que l'URL utilisée reste toujours valable. Nous avons fait une copie des données en local, puis nous avons utilisé cette copie pour les calculs."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"f = \"local.csv\"\n",
"url = \"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\"\n",
"\n",
"if not os.path.exists(f):\n",
" urllib.request.urlretrieve(url, f)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv(f, index_col=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Voici une description des données dans ce fichier CSV.\n",
"\n",
"| Nom de colonne | Libellé de colonne |\n",
"|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
"| rownames | Identifiant de ligne |\n",
"| Year | Année de mesure |\n",
"| Wheat | Prix du blé |\n",
"| Wages | Salaire moyen | \n",
"\n",
"__Notes importantes:__\n",
"* Le prix du blé et le salaire moyen est donné en _shillings_.\n",
"* Jusqu'en 1971, la livre sterling était divisée en 20 shillings, et un shilling en 12 pences.\n",
"* Le prix du blé est donné en shillings pour un quart de boisseau de blé. Un quart de boisseau équivaut 15 livres britanniques ou 6,8 kg.\n",
"* Les salaires sont donnés en shillings par semaine."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous allons maintenant recréer le graphe de Playfair. Tout comme sur le graphe d'origine, le prix du blé sera représenté par des barres noires et les salaires par une surface bleue délimitée par une courbe rouge.\n",
"\n",
"__Notes importantes:__\n",
"* Les données dans le fichier csv vont de *1565* à *1821*, chaque ligne représentant un écart de 5 ans avec la précédente hormis la dernière ligne représentant un écart d'un an.\n",
"* Le graphe présentera les résultats depuis *1565* jusqu'à *1830*, afin de ressembler le plus possible au graphe d'origine.\n",
"* Dans le fichier csv ainsi que dans le graphe d'origine, les valeurs du salaire moyen hebdomadaire ne sont pas disponibles pour les années 1815, 1820 et 1821. La ligne de code ``` salaire_non_nuls = df.dropna(subset=['Wages']) ``` est utilisée pour palier à ce problème."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAALICAYAAADyhJW9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XV8leX/x/HXOoBRGxOQBkdtI5SSnuREkdIvOES6BZSQlJBJSIMgCCMFJKVhtIqgxIgBo2vEiBEjlr8/9jvHHdaHwYj38/H4Ptz33HFd93Wuc8Y+9+f+XBYxMTExiIiIiIiIiIiIiIikkmV6d0BEREREREREREREXk0KMIuIiIiIiIiIiIiIWRRgFhERERERERERERGzKMAsIiIiIiIiIiIiImZRgFlEREREREREREREzKIAs4iIiIiIiIiIiIiYxTq9OyAiIpKY6Oho5s2bx/3798maNSuff/55endJREREREREROJQBrOIiLyUYmJiGDhwIL6+vuzYsYOKFSumd5dERERERERE5CnKYBYRkZfSsGHDWLVqFZ06daJr165YW+tXloiIiIiIiMjLRn+ti4jIS+fy5ctky5aNRYsWUapUqfTujoiIiIiIiIgkQiUyRETkpfP222/TrVu3ly64vGLFCtzc3KhZs+Zzb8vNzQ03Nzf27t373Nt6Hvbu3Wu8hlfV5MmTcXNzw8fHJ936cPnyZeM4Xr58+bm21a9fP9zc3OjXr1+qjvPx8cHNzY3Jkycnu+/OnTspWrQoRYsW5bfffjO3qy+F12GOp4W0/K4ydw6KiIiISPpSBrOIiKQ7cwI0//zzD05OTs+hNy8HLy8vALJmzZrOPXlzFSxYEC8vL4oUKZLeXXktXLt2jT59+mBvb8/o0aOpXbt2endJXjLFixfn3r17FC9ePL27Is9oy5YtDBgwgLt379K1a1e6deuW4H7h4eG4u7sne74SJUqwYsWKBLdt3ryZRYsWcfz4cZ48eUKuXLmoVasWPj4+ODs7m+y7a9cu2rVrl2x7rVu3pm/fvsnul95OnTpFr169CAoKoly5csyfPz/J/YODg/Hz8+OPP/4gODiY6OhocuTIQbly5fDx8aFYsWIJHnfz5k38/PzYvn278WZnrly5qFy5Mm3atOGtt95Kst3Fixfj6+vL48eP8fX1pVGjRuZdsIiIvLQUYBYRkZeGh4cHLi4uKdr3dajJHBERQdmyZalfvz4//PCDybZp06alU6/EwNvbG29v7/TuxmshMjKSHj16YGNjw6xZs1IUUEpL/fv3Z/ny5Zw8efKFtiup07JlS1q2bJne3XhlvIzz+smTJ/zwww8sWrQoRfvfu3fP+LPhxmpC8uXLl+Drw4YNY+HChVhZWeHp6YmNjQ0BAQFMnz6dlStXsnTpUpPg54MHD4DYm7dlypRJtL0XcWPx2rVrVKtWLckAfFKWLFnCyJEjefz4cYr237t3L506dSIsLIzMmTNTunRprKysCAoKYvny5axatYrBgwfz2WefmRwXEBBAhw4duHPnDo6OjpQoUYLo6GhOnDjBvHnzWL16NXPnzk0wOH3v3j0GDhzIpk2bUn19IiLyann1/zoXEZHXRocOHfjggw/SuxsvjCHbSuR1t2XLFjJlysSyZcuSzXR7HgICAl54myLP28s2r8+cOUPPnj05efIknp6ehIWFcfr06SSPMQSYHR0dU31jdfHixSxcuJD8+fMzffp0ChQoAMRm27Zp04YTJ04wcuRIJk2aFK+9UqVKpfuN3IMHD5p1XNygrYuLC+XKlWPXrl1JHvP48WO+/vprwsLCqFWrFj/88AMZM2YEYm8Ajh8/nlmzZjF8+HAqVapE3rx5gdiAfNeuXblz5w41atTA19fX+GTV9evX6dKlC0eOHKFv376sXr0aCwsLY5sHDhzgm2++4cqVK1SvXp0jR45w69Yts65ZRERefqrBLCIikk4OHz6c3l0QeSHq1avHzJkz0yW4/ODBA86ePfvC2xV5nl7GeT1z5kxOnjyJj48PCxcuJFu2bMkeY8gozpQpU6raevz4MZMnT8bCwoKJEycag8sAzs7ODBkyhKpVq1KgQAFiYmKM2+7fvw9gDK6mJ3P/DeDv78+mTZsoX748q1atwsPDI9lj/v33X0JCQgAYPHiwyfVbW1vTq1cvsmfPTmRkJJs3bzZuW7t2LTdu3CBLliyMHTvWpGyXq6srQ4YMAeDkyZOcOHHCpM3x48dz7do1evXqxfTp07G3tzfrekVE5NWgALOIiLyygoODKVq0KG5ubhw6dCjR/X7++Wfc3NziZUeHhIQwatQovL29KV26NJ6entSqVYtBgwZx7ty5FPejZs2auLm5JVof8unF4gwLtw0fPhyAlStXxlssLKmFswIDA+nduzc1atTA3d2dMmXK0LBhQyZOnMjdu3cTbb9nz54ALF26lMaNG1O2bFlKlSpF48aNWbduXYqv1+DRo0eMHz+eWrVq4e7uTuXKlenRo0eSGWvJLQhnzkKKhnMuWLCAmzdvMmDAAKpUqULJkiWpXLkyffr0ITg4ONHjfv31V/79918aNWqEh4cHa9euBeK/b1FRUTRt2hQ3NzcGDBiQYF/mz5+Pm5sbFStW5Pbt2ynqf2RkJL/88gve3t54eHhQoUIF2rdvz4EDBxI9JrnF0J51AbonT54wfvx46tSpg4eHB+XLl6dTp04EBgam6jx3795lypQpNGzYkNKlS1OqVCnq1KnD8OHDuXbtmll9u379OqNGjaJ+/fp4eHhQunRpPvzwQ8aNG0doaKjJvj4+PpQtW5bo6Gjgv89VYp/Vp5kzxw327NlD165dqVy5MiVLlqRChQq0atWKNWvWJHrM9u3b6dixI5UrV6ZEiRKUL1+ejz76iEmTJqU68+/27duMHTuWBg0aULp0adzd3alZsyadOnVi586dCR4TGhrK+PHjje9XiRIlqFSpEh07dkz1In4xMTGsW7eONm3aUKlSJUqUKEHp0qVp1KgRs2fPJiIiIt4xic1rw/t25swZFi9ejJeXF+7u7vHmUHqPOaRufsJ/33nNmjUDYusJt2jRgnLlyuHh4UGDBg1YsGCByTHJzeu43/nXrl2jQ4cOlClThsGDB5ucJ60/nxkzZmTChAkMHDgQGxubFB1jyChObYB59+7d3Lx5kypVqlC0aNF428uUKcPMmTPp2bOnSVatIcCc2vZSYtOmTbRt25YKFSpQsmRJ3n//fTp27Bjv82b4fp49ezYAU6ZMSdXvPUtLSzp27MicOXPi1ZhOjCGQb2trS44cOeJtt7Ky4u233wb+GyOIfU/r1atH8+bNEwzKFytWzPheP/3vJhcXF/z8/OjQoYPJeyAiIq8nlcgQEZFXVq5cuShVqhQHDx5ky5YtlCpVKsH9DLX/4tbTDQwMpHXr1saagu7u7kRFRXHq1CmWLl3K6tWrmTx5MtWqVUvzfjs4OODl5UVgYCBXr14lZ86cKV7UasWKFQwcOJCoqChcXFwoX748t2/f5vTp0xw/fpzVq1czb9484x+KTxsxYgQLFy7E3d0dd3d3Tp06xdGjR+nVqxdAimsOR0RE0KZNG/bv34+lpSXu7u44OTlx4MABmjZtSo8ePVI2GGno1q1bNGvWjDt37uDm5kbBggU5dOgQq1evZvfu3SxbtozcuXPHOy40NJTOnTuTNWtWKlasmGjgwcrKCl9fXz755BOWL19OkyZNKF26tEn7hkexBw8enKLsPYDevXuzfv16AIoWLUqOHDk4d+4cLVu2TDSQ/TzFxMTQvn17Dh48iIeHB2+//TZHjhxh27Zt/Pnnn8yfPx9PT89kz3PhwgW+/PJLrly5gqOjI8WLFyc6OprTp0+zYMECVq5cyaxZs5Ksg/q0gIAA2rdvT2hoKJkzZ6ZUqVI8evSI06dPM2PGDFasWMH8+fON2YxlypQhMjLSGKw31HjNmTNnsm09yxwfP34806dPByB//vy4ublx9epV9uzZw549e9i6dSs//vgjVlZWxmN+/vlnfvzxRyB2gcmiRYvy5MkTjhw5wtSpU/n9999ZsGBBirLAb926RZMmTQgODiZDhgwUL14cBwcHLl26xLZt29i2bRu9evWiQ4cOxmNCQkL49NNPuXLlCnZ2dri7u2Nvb8+ZM2fYvn07O3bs4Pvvv6dx48bJtg8wZMgQlixZAsTWsy1evDi3b98mMDCQY8eOsWvXLmbNmpWqevp///03w4cPx9PTk/z582Np+V+uTHqPOaR+fj7Nz88PX19fihUrhru7O2fPniUoKIjhw4fz8OFD2rdvD6RuXn/zzTecPXuWsmXLmvxeeB6fz759+6Y4sGxgbsB39+7dAKn+Hf08AswxMTHGEhEA77zzDsWLF+fixYts376d7du38+WXXxpvnGTNmhUvLy/2799PaGgoBQoUoGDBgmTPnj1F7Xl7e6d6nA01pcPDw7l8+XK8fyNERUUZb8QWLlzY+PqHH37Ihx9+mOh5o6OjiYyMBOKvjTFq1KhU91NERF5dCjCLiMgrzdvbm4MHD+Lv70/v3r3jbb9y5QpHjx4FoEGDBkDsH1g9evTgzp07VK9enbFjxxr/2AwPD2f48OEsXbqUPn36sGnTJrJkyZKmfc6ePTvTpk2jX79+rFy5kgoVKsRb5C8hZ86cYfDgwURFRdGlSxe6dOliDJbcvn2bdu3acfToUb799tsEV5I/ePAgkZGRrFixwrgYz8OHD+nSpQt//fUXs2bNSnGAeenSpezfvx97e3tmz55N2bJlgdg/UidOnMiECRNSOhxpZt68eZQsWZLVq1cb38/r16/TokULLl26xJgxYxLs17Jly6hbty5Dhw5NNsuqcOHCdO7cmQkTJjB06FCWL19ufA/Gjh3LvXv3qFOnDvXq1UtRn3fs2MH69euxtLRk/Pjx1K1b17ht0aJFjB49OqWXn2a2bt1Kzpw52bJlC66urkBsUKZNmzYEBAQwfPhwli1bluQ5YmJi+Oqrr7hy5QoNGjRgwIABxkerHz58iK+vL0uXLqVHjx5s2LCBDBkyJNuvsLAwunXrRmhoKK1bt6Zbt244OjoCsfO/f//+bN++nV69erF8+XIsLS3p2bMne/fuNS4cl5qaq+bOcX9/f6ZPn07mzJkZM2aMSQDsn3/+MV5zqVKlaNWqFRA7voabE9OmTTNZ7OzBgwf06NGD3bt3M3PmTAYNGpRs3+fMmUNwcDDvvvsuP//8s8n4bt++nW7dujFp0iQaN25szICcMWMGV65coUCBAixcuNAY7IqKimLUqFHMnTsXX19f6tatm+z7FRgYaAwuT5061eTpkUOHDvH555+zZ88e1q5dS8OGDZO9HoPZs2czZswY43e5wcsw5ubMz7iCg4OZNm0afn5+VKxYEYh9uqF///6sXr2a2bNn07Zt21TN68OHD5M5c2Y2b95skn36PD6fgFnBRENmbYYMGbhy5QobNmwgKCiIiIgIXF1dqVKlCu+//36844KCggAoVKgQ4eHhbNmyhX379nH37l1cXV2pWbMm5cuXj3dc3BIZhw8fZuvWrVy6dAlLS0vy589P7dq1eeedd1J1DXPnzmX16tXkzp2bCRMmmJSs2LJlC71792bOnDm8++67fPDBB7zzzjtMmzYNHx8f9u3bh7e3d6oW+TNnnAsVKoSXlxdbt25lyJAhjBs3jsyZMwOx82H69OmEhISQN29e6tSpk+Lz/vnnn8TExBgXWXzWfoqIyKtLJTJEROSVVrduXSwtLTl//jynTp2Kt92QvVysWDFjVo6/vz8XLlzAwcGBH374wSSTydbWlkGDBuHi4kJoaCi///77i7mQFJg3bx4RERF4enrSvXt3k0y8bNmy8f333wOwb9++eLUQAa5evUrPnj1NVnp3dHTkiy++AODEiRMpXnRw+fLlADRr1swYeIPYLN+ePXsmmkH9PBkCI3HfT1dXV7p37w7Evu8PHz6Md9ytW7fo06dPih/hbdeuHSVKlOD48eMsWrQIiF3MaOXKlWTJkiXeY+hJMTzSXqNGDZPgMkDz5s0TDJA8b/fv32fo0KHG4DLEZvv17dsXgCNHjiRbQmb79u0cP36cvHnzmiwKBbFzbujQoeTPn5/r16+zYcOGFPVrxYoVXL9+nffee4++ffsag3cQO//Hjh2Lk5MTgYGBqS7nkBBz57gh2Ne3b9942ZXvvfceffr0AWKDUobasGfOnCEiIsKY2RhXxowZGTZsGN27dzcGHpNz/PhxAOrXrx8vOFijRg2GDh1Kv379jJmHEPtZ8fb2pmvXriaZlIbrtbS05P79+0mWIzIICwujUaNGNGvWLF5polKlSlGrVi3gvyzUlHJ1dY0XXIaXY8yfdX6GhITw+eefm7RnbW1Nu3btALhz5w4XLlxIUV8MLl++TO/eveOVNngen09zGUpkHD16lNq1azNmzBhWr17N+vXrmTNnDq1bt8bHxydeyaHLly8DsU8aNGnShF69erF48WI2bNiAn58fLVu2pEuXLjx+/NjkOEOAed68eTRt2pTp06ezbt061qxZw+TJk/noo48YMWIEUVFRKep/REQEM2fOBGDkyJHx6iHXqlXLmHk+Z86cVI5O2ho7diwffvghe/bsoWbNmnzxxRe0bduWGjVqMHnyZMqXL8+8efOwtbVN0fmePHlifAKgYcOGJr8zRETkzaMAs4iIvDS6dOlirCWZ1P/8/f2Nx7i4uPDee+8BmCxMY2AIMMd9xNMQ1KhYsaLJH9YGtra2xiDFnj170u4Cn5Gh3/Xr109we9GiRY0rv//999/xtjs4OPDxxx/Hez1PnjxA7KOuCdUIfdrjx4+NtXirVq0ab7uFhUWqMqDSiqenJ7ly5Yr3euXKlYHYQMCxY8fibffw8EjVgk/W1taMHDkSGxsbJk6cyPXr1xk+fDgxMTEMGjQoxTUxAfbv3w8kPI5AvKDzi+Dq6prgY/GlS5c2jlNAQECS59i+fTsA1atXTzCLzdLS0lhvNKWfMcM5nw5YGmTMmNEYnHvWz625c/zGjRvGOWYIoj7tgw8+wMLCguDgYM6fPw/897h+aGgof/31V7xjcuXKRZcuXRK99qc5OTkBsG3btngBNoDGjRvj4+NjUvqhXbt2jBs3LsHH4R0cHIxBZ8NCYUl577338PX1NdaZf5rhO+fmzZvJX0wclSpVivfayzLmaTE/P/3003ivGb7TITbInBq2tra8++67ifY1LT+f5jIEfENDQ6lXrx7Lli0jICCAPXv2MGDAABwcHNi3bx+dO3c21pyG/zKfhw4dip2dHX5+fhw4cIC//vqLnj17Ym1tjb+/PyNGjEiwvXv37tGlSxc2b97MkSNH8Pf3p3nz5sTExDB//nzGjx+fov4fOXKEmzdv4uTkRIUKFRLcxzAvDxw4kODn8UVxdHSkXr16FCtWjAcPHvD333+ze/durl69yltvvUXlypVTXNopIiKCb775hlOnTuHq6mpc40FERN5cKpEhIiIvDQ8PD1xcXJLd7+l9vL292bt3L/7+/nTp0sX4+vXr1wkICMDCwsIkaGJYoCupx2ALFiwIwNmzZ1N1Dc/L48ePuXLlCvBfLcWEFCxYkIsXLybY75w5cyZY79TOzs74c0ILbz3t0qVLxizA/PnzJ7hP3BqOL0pi72e2bNnIkCEDYWFhXLlyxXhDwsCcrKuiRYvSvn17pk6dyv/+9z+uXLmCl5dXkrUqn/bw4UNjgC1fvnwJ7lOoUKFU9+1ZJTa/LC0tyZ07NydPnjTOxcQYHl//448/6Ny5c4L7XLp0CYi/MFRy5/z999/Zt29fgvsYnmIwBBHNZe4cP3nypPHnxBZghNibFBEREZw/f54CBQpQqFAhqlSpwu7du2nbti3VqlWjTp06VKhQIcX1f+Nq0aIFW7Zs4Y8//qBevXp8/PHHVK5cGU9PzyQfWw8PD2fnzp0cPXqUGzducO/ePeM4GAJzcYN8yTl+/LgxgHXr1i1jxrTh+yk154KEP6svy5g/6/y0s7NL8PpS+/0cV7Zs2RJ8v5/H59NcderUoUiRImTNmtXkBoK9vT0tW7akYMGCtGnThoMHD7Jx40bjDdbw8HAg9mbPvHnzcHBwAGJLbXTs2BFHR0e+//57li9fTseOHY1PHHTu3Jm7d+9SqFAhk8UB8+TJw5AhQ8iUKRMzZszAz88PHx+fZH8/GMYyIiIi0bE0ZENHR0dz8eLFVJfgSCtjx45l5syZuLi4MGnSJN5//31sbGw4efIkU6ZM4ccff2TTpk3Mnz/fJAP/aY8ePaJbt27s3r2bjBkzMn369BT9201ERF5vCjCLiMhLo0OHDinOFourdu3aDBs2jMDAQJPFazZu3EhMTAzlypUzCRikZNV6w7a4q6mnJ0OfIel+GzJM4+5vkNLHXpMTd0wSq82ZlgsopZShnmRCMmXKRFhYGGFhYak6LikdO3Zk/fr1nDt3Dnt7e7777rtUHR93HBPLoE6PcUyq5rjh/U5oHOMyZMKfPXs22Zs0hkzE5BjOeezYsQQz0eN61s+tuXP87t27xp+3bt2aqnYmTZrE0KFDWbNmjXEhPoi9cdKgQQOaN2+e4kz7d999lylTpjB8+HAuX77MTz/9xE8//YSjoyPVqlXj888/j5fZeuLECbp06WIsPfAswsPD+fbbb1m7du0znyuuhD6rL8uYP+v8TKvv57gMmexPex6fT3MVK1bMpGzT0ypXrky5cuXYt28fW7duNQaY7ezsePjwIY0bNzYGl+P67LPPGDduHI8ePeKPP/7gs88+M54vKR07dmT+/Pk8fPiQnTt30qxZsyT3N8y/R48epXr+vUgHDx5k5syZWFtbx1to0sPDg+nTp/PZZ58REBDA7Nmz6dq1a4LnuX37Nh07diQgIIAsWbLwyy+/pHiRYhEReb0pwCwiIq+8rFmzUrFiRXbv3o2/v79xEaeEymMAKaq1a8jae3ohpvSS0vrABs+z34axgcT7ldrMxLSQ1DUb+hM3G9AgtWNrcP36da5duwbEZpgfPnzYrBskSfUhPcYxqfEwvPfJjZlhe48ePejUqVOa9mvMmDF89NFHaXLOxJg7xw372tjYcOTIkVTNLUdHR0aNGkXXrl3ZsmULu3bt4t9//yUoKIgff/yRBQsWMHv27BQ/HVC9enUqV67M7t272b59O3/88YdxEbUNGzbQqlUrvv32WyB2/nbq1Ing4GDy589P586djSWEDBmwNWvWTDZz3WD8+PGsXbsWGxsb2rZti7e3N7ly5TIG6ydPnsyUKVNSPDYGCX3GX5Yxf5HzM6US+058Hp/P58nDw4N9+/aZzL+sWbPy8OFDcubMmeAxtra2vP3225w6dYrg4OAUt+Xo6EjhwoU5fPhwim62GMYyX758CZbpelkYFmatVKmSSXDZwNLSkvr16xMQEMCqVasSDDBfunSJtm3bcv78efLly8eMGTMSPJeIiLyZXo6/mkVERJ6Rt7c3ELtiO8TWCT148CA2NjbxaqUasuASyvI1MGQlJZYBlhpxM+zM5eTkZPxD9kX1OzFxMzoTy24z95qTurbkJJVpZ9gWd/GyZxETE8PAgQN59OgR3t7eWFhY8N1336WohrVB3EeQX5VxNGQuJ5dZbciCTkm93pR6HudMjLlz3NDHiIiIVNfLNciTJw+tW7fGz8+PvXv3MmrUKHLkyMH169cZOHBgqs5lbW1NjRo1GDZsGNu2bWP16tU0bNgQAD8/P/744w8Adu3aRXBwMBYWFsyYMYOPP/6YHDlymJRXSOmcio6O5rfffgNi6zr36NGDIkWKmIxpWnwnGrwsY/4i5+ezepX6Cgnf2DKUsUrqGpIqB5Pa9hLzqozl1atXARINyMN/5ccMN07junnzJq1ateL8+fN4enqyZMkSBZdFRMSEAswiIvJaqFWrFra2thw4cIA7d+6wZcsWoqOjqVy5crxH/g01Zg21ExNiqJWZVL1jA0Nd4ydPniS43VDL8lnY2dkZF3tKq36by1CCBEg0w8vQj6clN1YXL140u1+G2tpPCwkJ4eHDhwCpWoAvKUuXLuXvv/+maNGijB49mk8++YSQkBBGjhyZ4nNkypTJODcTmyMv0zhGRUUZ3++4C48lxFBjNLH+m+N5nDMx5s7xuLVV06KfGTJkoGHDhsyePRuAQ4cOGeeyOYoWLcqoUaOMN90Mi9sZagLnzZs3wZrT586dS/Gj/bdv3zbum1g5gqNHj6ay54l7Wcb8Rc7PZ/Wy9DUmJoa9e/eycuVKrl+/nuh+Z86cAUw/l2XLlgVMa3A/zfDZNQRVHzx4wK5du/jtt99MnlKIKyoqyvh5iNteYgxj+fDhwzQpL/O8GG5o3r59O9F9DNueLgsUFhZG+/btuXz5MpUqVWLu3LkJLpAsIiJvNgWYRUTktZAxY0aqVq1KdHQ0f/31l7GWZkKPKlerVg2APXv2JPjHVlhYGLt27QKgSpUqybZtCBImtHDT9evXjUGcpxmyowwLACWnatWqAKxfvz7B7QcPHuTatWtYWFgkW2fyWWTMmNGYPbZ79+5426Oioti4cWOCxyY1Vo8ePUr0uJTYv3+/cdG8uAxZmvb29ri5uZl9foNr164xevRoLC0tGTZsGNbW1vTu3ZssWbKwevVqduzYkeJzubu7m/TxaevWrUvw9aTGMSYmhlWrVqW4D0+7dOkSx48fj/f6/v37jYG20qVLJ3mOGjVqAPDvv/8ag0NPGzJkCF999VWCbSV1zs2bNyeaqdq5c2e+/fZbk4B93CzElH7WzJ3jLi4ulChRAoi9CZGQc+fO8fHHH/PTTz8ZX1u7di09evRgz549CR5jyLyPiYlJ9KaCQUhICN9//72x/EVS5zOcy5CRnti5p0+fbvw5uTHMmDGjccwNC7HF9ffff3Pw4EEA46J/z+JlGHMwf36ay5x5bfA8Pp/msLCwYPjw4fTr14+5c+cmuM+pU6eMn0HD70CAunXrYmFhwcaNGxMMTm/bts2YdV+hQgUgthRMx44dGThwoPF3/NOWLl3K/fv3sbKyStHv0ZIlSxozfw2Z+0/bs2cPzZo1Y/HixQluT+37Zw7DZ+Sff/5J9KkMwzgbfi8ZjBgYcxQDAAAgAElEQVQxgmPHjuHu7s7UqVMTrHktIiKiALOIiLw2DIv/bN68mb179+Lo6Gj8QzquGjVqUKRIER4/fkz//v1NstMePXrE4MGDCQ0NJXfu3MbSG0kpWbIkAL///rtJjcj79+/Tv39/smXLluBxhlIdJ0+eTFGg5YsvvsDBwYEjR44wZcoUkwysa9euMXjwYADq1KlDvnz5kj3fszAE7n/99VeTbMTIyEjGjBmTaJaUYax27NhhErgIDw9n2LBhZj/SDLEB5AEDBpgsQBccHMykSZOA2DIqabGQ1uDBg3nw4AGfffYZnp6eAGTLlo1vvvkGgEGDBqU429Mwjlu2bGHnzp0m2/z8/AgMDEzwOMM4BgYGmhwXHR3NhAkTnqlERubMmRk4cCC3bt0yvnb37l1++OEHACpWrJjkY9YQGwgqXrw40dHR9OjRw6QGamRkJL/88guLFy9m69atKS7n0rBhQ1xdXQkLC+Orr74yKUfy+PFjfH192bp1K9u2bTPJrou7MFxyi6/FZe4c79ixIxAbwPTz8zP5nF64cIHu3btz4sQJ4yPrEBsU3rBhA9999x3nzp0zOV9UVBQ///wzEJstmVzmoJOTE2vXrmXFihVMmzaNiIgIk+1nz5411ootX748EJvZDLHfI/7+/sZ9Hz16xIgRIzhy5IjxpkJyi8LZ29sbv39+/fVXk+DZ9u3b+eqrr2jUqBEQezMjLYLM6T3mYP78NJe58xqez+fTXE2bNgViv++evjF26dIlevfuTVRUFEWKFKFevXrGbQUKFKBBgwZERETQoUMHbty4Ydx24cIFfH19AfDy8jKWcnB2djb+m2DQoEEcPnzYpL09e/Ywfvx4AJo0aZLs9xzEPk3Spk0bAGbNmhXvBvDRo0fp27cvAQEB8UrDGG4UPs8gvkHjxo1xdHQkNDSUwYMHx1uodenSpcbfJZ9//rnx9UOHDrFixQpsbGwYM2aMSWknERGRuLTIn4iIvDRmzJjBihUrUrRvjRo1jH+YGtSsWRNHR0c2b95MdHQ0devWTTDTxtramvHjx/Pll1+yfft2qlSpgpubG9HR0Zw+fZr79++TJUsWJk6cmKJMHR8fH1asWMHt27f58MMPKVq0KA4ODgQEBJArVy46duzId999F++4smXLMmfOHE6ePEn16tVxcHDA19eXd999N8F28uTJw8iRI+nduzeTJ09myZIlFC5cmDt37nD69GkiIiIoUaJEgm2ltZYtW7J+/XqCgoJo1qwZHh4eZMyYkRMnTnD//n0GDhyYYO3SRo0aMXv2bG7evEnTpk0pXrw4mTJlIjAwEBsbG/r27UuvXr3M6lPTpk3ZunUr1apVw93dnaioKA4dOsSTJ0946623zD5vXKtWrWLnzp24uLjEO1+TJk1YuXIl+/fvx9fXN0XlMj788ENWrlzJX3/9RYcOHShevDjZs2fn7NmzXL16lZEjR9K3b994x9WsWZPChQtz+vRpOnbsSLFixciePTtBQUGEhYUxduxYOnToYNY11q1blwsXLuDl5YW7uzu2trYEBARw//59MmXKxIABA5I9h5WVlfEzFhQURO3atfH09MTGxobTp08TEhKClZUVo0ePJnfu3CnqV8aMGZk0aRLt27dn7969VK9eHU9PT6KjowkKCiI0NBR7e3umTp1KxowZjcflz5+f7Nmzc+vWLXx8fMidOzcVK1Zk0KBBSbZn7hyvXbs27du35+eff8bX15d58+ZRsGBB7ty5w/Hjx4mKiqJUqVL069fPeEyLFi34888/2b17N/Xq1eOdd97B1dWV8PBwTp06xa1bt8iQIQPDhw9Pdpzs7OwYNWoU3bp1Y+LEicydO5ciRYrg6OjIzZs3OX78uPH7sVatWkBsRnrlypX5448/6NatG56entjZ2XH06FGsra2ZPXs269ev5+DBg8ybN4+TJ0/SqVMn3nvvvQT70L17d3r16sWmTZuoXbs2+fPn59KlS1y4cIFu3bpRr149VqxYQUhICJ988gm1atWie/fuyV5bYtJ7zMH8+Wkuc+c1PJ/P561bt+K1bSjntG7dOpMgaoUKFWjZsiUQG8w8dOgQ69evp2/fvkybNo38+fNz7949jhw5QmRkJHnz5mXq1KnG0kAGQ4YM4fz58xw+fJjatWtTunRpnjx5wuHDh4mIiKBw4cIMGzbM5Jhhw4Zx4cIFTp06RbNmzShRogTOzs4EBwcb+1ulShX69++fouuG2Ju/x44dY82aNfTs2ZPJkyeTO3dubty4YSzh8cEHH9C2bVuT48qWLcvmzZvZsWMHNWrUwMLCgvnz5yc75oMGDTK5AWi46RMUFETnzp2Nr2fPnt04f3PkyMHYsWP5+uuvWbduHTt27KBkyZLY2dlx5swZ483xjh07Ur16deM55syZA8TO7zFjxiTZr7jva1BQEBMmTDDZbujz/PnzTW5keXt7p+hmvoiIvNwUYBYRkZfG09lESUnoDzAHBweqV69uzCD68MMPEz2+SJEirF69mlmzZrFz505jBlju3Llp2rQprVu3Nj72mpwCBQowf/58Jk2axKFDhzh69Ciurq40bdqUzp07s3379gSP++CDD2jdujWrVq3i7t27ODg4JBt4qF+/PgULFuSXX35h3759/PPPP9jZ2VGiRAnq1avH//73P+zs7FLU72eRIUMGFixYwNSpU/H39+fo0aNkypSJMmXK0KVLF+zt7RM8LmvWrCxatIhx48axb98+AgMDcXZ2xsvLi65duz5TDUtHR0cWL17M5MmT2blzJzdu3CBLlixUqVKFXr16PXP95Zs3bxqz4vr37x9voTvDQn+ffPIJy5cvp169esmWWLG0tOSnn35i5syZrF27llOnTnHlyhVKlCjBiBEjKFOmTIIBZltbW+bOncu4cePYtWsXQUFBZMmShffee4+uXbvGq6GZGjY2Nvz8889MmzaNjRs3EhwcjKOjI3Xq1KFHjx7G0hHJyZ8/P6tXr8bPzw9/f38CAwOJiIjA2dmZjz76iC+//JLixYunqm+lSpVizZo1zJ49m127dnHo0CGio6N56623qFOnDm3atImXvW9nZ8fYsWMZMWIEFy9e5M6dOymaC+bOcYCvv/6aihUrsnDhQg4dOsSePXuws7OjZMmS1K9fn+bNm5tk09va2vLTTz/x22+/sWHDBs6fP8/Zs2extrYmV65ceHt78+WXX5IrV64UjVPVqlVZsmQJixcvZs+ePZw4cYJHjx7h5OREpUqV+OSTT4yLUxpMmDCBsWPHsnXrVo4ePUqOHDmoU6cOHTt2JG/evOTMmZPAwEAOHDjAqVOnklwAzdvbmydPnjBnzhzOnTvHgwcPeOedd+jdu7cxqN2jRw/8/Py4fPkyjx49StF1JSW9xxzMm5/mMndeG6T15/PRo0ds3bo1wW3nzp0zyRKPmxVtCHbXqVOHZcuWcezYMf78808cHBwoXrw4tWrVokWLFgl+p2XMmJFFixYxf/581qxZw6FDh4iJiaFgwYLUq1ePli1bxjsue/bsLFu2jEWLFrFx40bOnDnDiRMncHJyonLlyjRs2BBvb28sLVP+oK+lpSVjxozBy8vLeA0XL17E0dGRcuXK0bBhQz755JN45/zf//7HyZMn8ff35/bt27z99ttJfq8Y/PnnnyZPSxmEhoaavAdP/zvJy8uL33//HT8/P/766y8OHz5MZGQk2bNnp06dOrRo0cL4VIOB4UmNO3fuJPr+GsR9X5PaPzAw0OTpnGLFiiV5XhEReTVYxCS2woGIiIjIK8DHx4d9+/bRtWtXunXrlt7dEREREREReaOoBrOIiIiIiIiIiIiImEUBZhERERERERERERExiwLMIiIiIiIiIiIiImIWBZhFRERERERERERExCxa5E9EREREREREREREzKIMZhERERERERERERExiwLMIiIiIiIiIiIiImIWBZhFRERERERERERExCwKMIuIiIiIiIiIiIiIWRRgFhERERERERERERGzKMAsIiIiIiIiIiIiImZRgFlEREREREREREREzKIAs4iIiIiIiIiIiIiYRQFmERERERERERERETGLAswiIiIiIiIiIiIiYhYFmEVERERERERERETELAowi4iIiIiIiIiIiIhZFGAWEREREREREREREbNYp3cHnpfIyCju3Hn43NvJmtVR7byk7bxO16J21M6LbOd1uha1o3Zex3Zep2tRO2rnRbbzOl2L2lE7L7Kd1+la1I7aeZHtvE7XonbUjoGLS6YEX39tM5itra3Uzhvezut0LWpH7bzIdl6na1E7aud1bOd1uha1o3ZeZDuv07WoHbXzItt5na5F7aidF9nO63QtakftJOe1DTCLiIiIiIiIiIiIyPOlALOIiIiIiIiIiIiImOW1rcGcmOjoKKKjo9PsfOHh4URGRqTZ+dTOq9VGUu1YWlpiaZm+jyiIiIiIiIiIiIg8T29UBvPjxw/TPOB49+7zL6Ctdl7eNpJqJzIygsePX0wfRERERERERERE0sMbk8EcHR2FpaUltrb2aXpea2tLIO0yotXOq9VG0u3YEB7++P/nnjKZRURERERERETk9fPGZDBHR0cryCcvnKWlVZqWZBEREREREREREXmZvDEBZhERERERERERERFJWwowi4iIiIiIiIiIiIhZFGB+wZYvX0r79q3o2rU97dq15J9/9ia674ED/zJwYJ9Et69fv4adO7enWd9OnQqiX79vEtx29Wowbdr4xHt9/nw/jh49zPr1a5gyZYLJfkOGfMuTJ4/TpG8bN65j1arlaXKupJgzprt372TSpB+fU49EREREREREREReXm/MIn8vg6tXg1mzZhWzZs3D2tqaS5cuMmrUCN57r7xZ56tfv0Ga9u/HH39gxAjfVB3j49MKgIsXL8TbNnRo6s6VlIMH99O8ecs0O19izBnTKlWq8fvvqzh+/BjFipV4Dr0SERERERERERF5Ob2xAWan5k2w89+cpud88kFt7i1aluj2Bw8eEB7+hIiICKytrcmTJy9TpvwMwD//7GXWrOnY2NiQKVMmhg37weTYhQvns22bP9HR0VSs+D6tW7fnl19mkCVLFgoUKMTixQt4+PAhXbv25Pr1qyxevAArK2vc3IrRrVtPrl27xvDhg7C0tCQqKorBg4fz1ls5jecPCDhE1qxZeeutnISG3mPw4H6Eh4cTERFBr159cXJyIiYmmrFjfQkMPIabWzH69h3A999/R/XqXgleb5MmDZg3bwnjx4/G2dmFkyePc/36NQYPHkGJEsWZMGEMR44cxs2tKGfPnmHIkBFcunSRmTOnYWdnT9as2RgyZATW1tZcuHCefPnys2CBHzt3bsfS0pL3369Cy5atCQg4yIwZU7G2tiZHDlf69h3IkSMBLF++BAsLS4KCTtCyZWv27t3DqVMn6dz5K6pWrc6vvy5gx46tiY7pihVLsbCw5MKFc1Sv7kXr1u05d+4s48ePxsLCAkdHR/r3/46sWTPTqFEzfvttMYMHD0+DmSQiIiIiIiIiIvJqeGMDzOmhSJF3KFasBE2bfkTFiu9TocL7VKtWA2tra+7fv8+QISPIlSs3w4cPZu/ePTg6OpocP23aLCwtLWnW7GM+/bS5ybYzZ07z668riIyMZPToEUyfPgdbW1sGDerH4cOHCAw8ynvvladVq7acPHmCmzdvmgSYDxz4B0/P0gDs378PF5ccfPvtYK5cuczFixdwcnLi0qWLjBkzkaxZs9G48Yfcv38/xdceHh7OuHFTWLVqGRs3rsPOzobDhw8xa9Z8zp07S+vWLQBYvnwJXbv2xNOzNDt3buPu3VAiIiJxdXUFYPHiBaxatRErKytjyYwJE8YwceJPODllZtq0iWzf7o+zswtBQSdZuHAZAQEHGDp0EL/99jvHjh1h+fIlVK1aPdkxDQw8xqJFy4mOjqZp0wa0bt2eCRPG0Lt3f/LkycuKFb+xYsVS2rRph4eHJ76+w1I8HiIiIiIiIiIiIq+DNzbAnFSmcWpYW1sSGRmd4v0HDRrG+fPn2Lv3LxYtmseqVcuYNGk6WbJkYdSoEURFRREcfIWyZd8zCTDb29vTtWt7rKysCA0N5d69eybnLVy4CLa2tpw6FcT169fo1asrAGFhD7h27RrlylWgf//e3L9/nxo1vChZ0sPk+Js3QyhT5j0ASpTwYObMnxgzZiTVqtWkYsX3uXo1mNy585A9uzMA2bJlJyzsQYqv2xC8dnFxJTDwGOfPn6NECQ8sLS0pVKgwrq5vAVCjxgeMGeNL7dp1+eCDOmTP7syGDWspVaosANWre9GjR2dq1apL7dp1uX37FpcvX6J//94APH78mMyZs+Ds7EKRIu9ga2tL9uzO5MmTFwcHB7Jly8aDBw9SNKZubkWxt7c3eS0w8BijRo0AICIigmLFigNgZ2dPZGQkUVFRWFlZpXhcREREREREREREXmVvbIA5PcTExBAeHk7+/AXIn78ATZp8RosWTbh+/Rq+vsMZM2YC+fMXYNy4USbHXbt2lV9/XcDs2QtxdHTEx6dZvHPb2Nj8/39jy2KMGzcl3j5+fr+yb9/fTJ8+BW/vj6hX70OT7RYWFgA4Ozvj5/crBw78y8qVyzh27Ah163rHC5zGxMSk+NrjHhsTE0NMTAz/3xwAlpax603WretN+fIV2bVrB3379mTEiNEcPLif//0vduHAb775lgsXzrNt2xa6dm3PuHFTcXZ2MZYaMThw4F+TNp9u/9q1qyxZsjDJMU0oUGxvb8/kyTOMYyUiIiIiIiIiIvIms0zvDrxJ1q5dzejR3xsDs2FhD4iOjiZr1qyEhT3A1fUt7t+/z4ED+4mIiDAeFxoaStas2XB0dOTkyRNcu3bNZHtcefPm5/z5c9y5cxuAX36ZQUjIDfz9N3H27GmqVq1Ou3adOXnyuMlxzs4uhIRcB2LrQf/zz17KlatAz569OXEiMM3H4u2383Dy5AliYmI4f/4c165dBcDPbxZWVtZ8/HEjvLxqc/78Wc6dO0OBAgUJC3vAnDkzyZcvP19+2Q4npyxYWcVO4XPnzgKwbNliTp8+lWz7sWOaNUVjGlfhwkX4+++/APD338S//+4D4MmTJ1hbWyt7WURERERERERE3ijKYH6B6tdvwIUL52nf/gscHByJiIigR4/e2NnZ06hRUzp1akOePHlp0aIls2f/TPv2nYHY2s2Ojg506tQad/dSfPxxI378cRQeHp7x2rC3t+err77mm2++wtbWhiJF3HB2diFPnnyMHTsSBwdHLC0t6dGjt8lxZcq8y5Ili2jRwoe3387DsGGDWLhwLpaWlrRp0yHNx6JYseLkyZOX9u2/4J13ipI/f0GsrKxwdX2LHj06kymTE5kyZaJuXW9cXWNrRWfIkJHQ0Du0a9cSBwdHSpb0wMkpM/36DWbkyKHY2Njg7OzCRx814ujRw0m2X6TIOzg4OKZoTOP66qtvGD36exYunIutrR3ffRdbLuPIkQBjGRAREREREREREZE3hUVMauocvGJCQv5bhC4yMjY71draJk3bSG0N5pe5nfbtW+HrO5rs2XM813YAoqMj2bRpI/XqfcijR49o0aIJS5euxto67e55vMj3pk+fr/n88y8oXrykyba0nHcuLplM5vTzonbUzut0LWpH7byO7bxO16J21M6LbOd1uha1o3ZeZDuv07WoHbXzItt5na5F7aiduO0kRCUyxKh372+ZMOHHF9KWra0tJ04E0qaND927d6Bt245pGlx+kf78czc5crjGCy6LiIiIiIiIiIi87tI9ohcUFETnzp1p1aoVn3/+OVevXqVPnz5ERUXh4uLCmDFjsLW15ffff2fu3NiSDZ9++ilNmjRJ766/dooUccPXd8wLyfoF6Nmzzwtp53l7//0qlC//fnp3Q0RERERERERE5IVL1wzmhw8fMnz4cCpWrGh8bdKkSTRv3pxFixaRO3duli1bxsOHD5k6dSp+fn7Mnz+fWbNmERoamo49FxEREREREREREZF0DTDb2toyc+ZMcuT4r+bv3r178fLyAsDLy4s9e/YQEBCAu7s7mTJlwt7ennfffZcDBw6kV7dFREREREREREREhHQukWFtbR2v7u6jR4+wtbUFwMXFhZCQEG7evEm2bNmM+zg7OxMSEvJC+yoiIiIiIiIiIiIipl66Rf4sLCyMP8fExJj8N+7rcfcTERERERERERERkRcv3Rf5e5qDgwOPHz/G3t6e69evkyNHDlxdXdmxY4dxnxs3blCqVKlnbqtXr26cOXP6mc5hYWFhDIAXKlSYceMmJ7rv1avBtGz5GW5uRQEIDw+nRYsvqFathsl+f//9F1evBvPJJylfyPDhw4e0bPkpy5atSXbf77//jurVvXj//SomfRs4sC9z5y4EYoP4gwd/S/36DahYMf4CdiEhN/j+++8YM2YiNjY28bZ7e3uxbt1Wk9fWr19DhgwZyZQpEytX/sbw4aOM+02c+CNNm35Grly5U3zNCRkypD+ffdaCYsVKPNN5REREREREREREJHkvXYC5UqVKbNq0iY8//pjNmzdTpUoVPD09GThwIPfu3cPKyooDBw7Qv3//Z27rzJnT7NnzZxr0OuXy5s3HlCk/A3Dv3l2+/LIFFSpUxM7O3rhPhQqVXmifEnLlymVatWpLoUKFE9w+ceJY2rTpkGBwOTH16zcA4MCBf+Nt++qrr83r6FO6devFt9/24uef56bJ+URERERERERERCRx6RpgPnr0KKNGjeLKlStYW1uzadMmxo4dS79+/ViyZAm5cuWiYcOG2NjY8PXXX9OmTRssLCzo0qULmTJlSs+upwknp8xkz+7MrVu3mDNnJtbWNty7F8r771fl7NkzVK5clV9/nc+oUeM5dOggc+b8wo8/TjIeHxb2gAED+gCYZOw2adKAefOW4OjoyJQpEyhYsJAxuGvw55+7WL16BdevX6N//yE4OTkZtwUEHGTGjKlYW1uTI4crffsONAkkX7t2jeDgK7i7exIZGcmwYYO4desm4eHhtGnTwRggnzVrOvv2/U3mzJkZNWo8c+bMJEuWLBQoUCjeWHTt2p5evfqwfftWwsIecPHiBa5cuUz37l9TseL7LFjgh7//ZvLmzUdUVCSNG39KxowZ+fHHUdjY2GBra8vQob44OzuTJ08+/v13HxUrVkybN0pEREREREREREQSlK4B5pIlSzJ//vx4r8+ZMyfea3Xr1qVu3bovolsvzNWrwdy7d5ccOVwBcHJyom/fAaxfH1vmolSpMqxb9zv//PM3c+f+wrffDjE5ftOmDRQsWIju3b9m69bNbNmyMcVtW1hYMHr0eP78czfz5v1C1649jdsmTBjDxIk/4eSUmWnTJrJ9uz+1a9czbj948F88PGJLlJw5c5q7d0OZOnUm9+/fN2aE37t3j+rVvWjbtiMdOnzJmTOnUty3GzeuM3bsJP7++y9Wr15OiRIlWbHiN379dTlhYWF89lkjGjf+lPXr1/DJJ02oW9eb/fv/4fbtW2TKlAlPz9IcOPCvAswiIiIiIiIiIiLP2UtXIuN1d/HiBbp2bQ+Ara0tAwcOxdo69m0oXjx+3eDOnb+ifftWNGjwEblzv22y7fz5s5QqVRaA0qXLpqofZcq8a2xz+vT/6kbfunWLy5cv0b9/bwAeP35M5sxZTI69efMmLi45AMiXLz8PH4YxfPggqlatwQcf1AYgQ4YMFC5cBAAXFxcePHiQ4r4Zgtc5cuTgwYMHXL58iUKFCmNnZ4+dnT3FihUHoHLlaowd+wOXLl3Ey6sW+fLlNx53+PChVI2HiIiIiIiIiIikHXPWPrO1tSY8PDJVxyS3Jpo8fwowv2BxazA/zdo6fj3jhw/DsLW1ISTkRrxtMTFgaWkBQHR0jPF1CwsL48+RkYl9KP/bJ+7+NjY2ODu7JNrHp4+xt7dnxgw/jhw5zIYNa/jzz9307z8EKyurp/oak9BpEhT32JiYGGJiTPto+Pndd8sxa9Y8/vprNyNGfEfXrj2MgXMREREREREREUk/6bH2maQPy/TugCRtwoQxfPfdSG7cuMHRo0dMtuXNm48TJ44DpgvnOTpm4Natm0RFRXHsmOkxBkeOxGb4Hjt2hHz5ChhfN9RiPnfuLADLli3m9GnT8hbOzs7cuBEb8D558gRbtmzE07MU33zzLefPn3uWy01Qzpw5OXv2DJGRkdy5c8d4zcuXL+HevbvUrl2PTz9tTlDQCQBCQkKMZUdERERERERERETk+XmjM5gLFSr8zOewsLAwZuemxfni2rbNHxeXHBQp8g7du/dkyJCBTJ8+21hSo25db/r3/4avvuqEh0cpY2Zv48bN6Nu3J3nz5qNAgYIJnjsmJoY+fXpy48Z1Bg0aZrKtX7/BjBw51JjN/NFHjUy2ly5dlt9+WwxAzpy5mDFjKqtXr8DS0pLmzX3SdAwAsmXLTq1adWnXriX58hWgePESWFlZkzt3HgYN6kfGjBmxsbGhf//YGtUBAQeoW9c7zfshIiIiIiIiIiIipt7oAHNa1GextrYkMjI6RfvmzJmLX36Jv6ghwIAB3xl/rl+/gfHnmjU/AGJrHc+aNc/kmEyZMjF58gzj/2/TpgMAH330CR999Emi/YjbVlyGvnl6lmLmzLmJHv/WWzl5662cHD16hJIl3RMcx3Xrthp/HjFiNIBJ+Ypy5coRGRlt3M9QkqNgwf+C9AULFja+nidPXlq3bo+VlRUtW35Grly5cHHJQYUKlUzavX37FhcuXODdd8sn2n8RERERERERERFJGyqRIWbp0eMbfvllOhERES+kvVu3btG+/Rd07Nia2rXrGhcZfNqkSePo2bOPSc1mEREREREREREReT7e6AxmMV+OHK6MHz/1hbXn49MKH59Wye733XffP//OiIiIiIiIiIiICPAGZTBbWloSHR2V3h0lbxQAACAASURBVN2QN0x0dBSWlm/Mx0xERERERERERN4wb0wGs6WlFdHRTwgPf4ylpVVanjnFNZjVzotuJ32vJTo6iujo6DSebyIiIiIiIiIiIi+PNyq10t7eEWtrmzQ9Z+bMjml6PrXzarWRVDvW1jbY27+YPoiIiIiIiIiIiKSHNyaD2cDS0ipNM0ptbW3TPGitdl6dNl5kOyIiIiIiIiIiIi+bNyqDWURERERERERERETSjgLMIiIiIiIiIiIiImIWBZhFRERERERERERExCwKMIuIiIiIiIiIiIiIWRRgFhERERERERERERGzKMAsIiIiIiIiIiIiImZRgFlEREREREREREREzKIAs4iIiIiIiIiIiIiYRQFmERERERERERERETGLAswiIiIiIiIiIiIiYhYFmEVERERERERERETELAowi4iIiIiIiIiIiIhZFGAWEREREREREREREbMowCwiIiIiIiIiIiIiZlGAWURERERERERERETMogCziIiIiIiIiIiIiJhFAWYRERERERERERERMYsCzCIiIiIiIiIiIiJiFgWYRURERERERERERMQsCjCLiIiIiIiIiIiIiFkUYBYRERERERERERERsyjALCIiIiIiIiIiIiJmUYBZRERERERERERERMyiALOIiIiIiIiIiIiImEUBZhERERERERERERExiwLMIiIiIiIiIiIiImIWBZhFRERERERERP6PvfuPsruu733/2pPJzi8mJIRJSPjtBBUVEJDSBILQCCFK7yS31wUrorX31oVFc9U5V+CKLOltu4DEk/KjVWstoFauEVpi2yNNiIAtk0kKUtFbT8XZa3kAcwiohF+ZZDLJ3D9mGPIDEvY3M7P3zDwea2WZ/d3fz/6+Zy0y43qu73y+ABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUEhjrQcAAAAAAIZHW9vyVCqdVa0plxvT3d1T1Zpqr8HIJTADAAAAwBhRqXSmo6N9yK/T1DR1yK9BfbBFBgAAAAAAhdTdHcyvvPJKrr766rzwwgvZuXNnPvGJT2Tu3Lm56qqrsmvXrjQ3N2flypUpl8u1HhUAAAAAYEyruzuY77333px44on55je/mVtuuSV/9md/lltvvTXLli3LXXfdlaOPPjr33HNPrccEAAAAABjz6i4wT58+PVu3bk2SvPjii5k+fXo2bdqUhQsXJkkWLlyYjo6OWo4IAAAAAEDqMDB/4AMfyObNm3PhhRfm8ssvz9VXX52urq6BLTGam5vz3HPP1XhKAAAAAADqbg/m7373u5kzZ07+5m/+Jv/5n/+Za6+9NqVSaeD93t7eGk4HAAAAAMCr6u4O5sceeyznnntukuTtb397tmzZkkmTJmX79u1Jki1btmTmzJm1HBEAAAAAgNRhYD7++OPz+OOPJ0l++ctfZsqUKZk/f37Wrl2bJFm3bl0WLFhQyxEBAAAAAEgdbpFx6aWX5nOf+1wuv/zy9PT05Prrr09LS0uuvvrqrF69OnPmzMmSJUtqPSYAAAAAwJhXd4F5ypQpueWWW/Y7fscdd9RgGgAAAAAA3kjdBWYAAAAAGGva2panUumsak253Jju7p6q1lR7DTgYgRkAAAAAaqxS6UxHR/uQX6epaeqQX4Oxpe4e8gcAAAAAwMggMAMAAAAAUIjADAAAAABAIQIzAAAAAACFeMgfAAAAADAiVSqdaW1dXNWacrkx3d09Va1paZmbVatuq2rNWCEwAwAAAAAjUldXVzo62ms9xphmiwwAAAAAAAoRmAEAAAAAKERgBgAAAACgEIEZAAAAAIBCBGYAAAAAAAoRmAEAAAAAKERgBgAAAACgEIEZAAAAAIBCBGYAAAAAAAoRmAEAAAAAKKSx1gMAAAAAQD1ra1ueSqXzTZ9fLjemu7unqmtU8/lQTwRmAAAAADiASqUzHR3tQ3qNpqapQ/r5MFRskQEAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCECMwAAAAAAhQjMAAAAAAAUIjADAAAAAFCIwAwAAAAAQCGNtR4A6klb2/JUKp1VrSmXG9Pd3VPVmpaWuVm16raq1gAAAABAvRGYYQ+VSmc6OtprPQYAAAAAjAi2yAAAAAAAoBCBGQAAAACAQgRmAAAAAAAKEZgBAAAAAChEYAYAAAAAoBCBGQAAAACAQgRmAAAAAAAKEZgBAAAAAChEYAYAAAAAoBCBGQAAAACAQgRmAAAAAAAKEZgBAAAAAChEYAYAAAAAoBCBGQAAAACAQgRmAAAAAAAKEZgBAAAAAChEYAYAAAAAoBCBGQAAAACAQhprPcDr+Yd/+Id87WtfS2NjYz71qU/lrW99a6666qrs2rUrzc3NWblyZcrlcq3HBAAAAAAY0+ruDubnn38+f/mXf5m77rorX/nKV7J+/frceuutWbZsWe66664cffTRueeee2o9JgAAAADAmFd3gbmjoyPz5s3LYYcdlpkzZ+ZP/uRPsmnTpixcuDBJsnDhwnR0dNR4SgAAAAAA6m6LjKeffjq9vb359Kc/nWeffTbLly9PV1fXwJYYzc3Nee6552o8JQAAAAAAdReYk2TLli35i7/4i2zevDkf+chHUiqVBt7r7e2t4WQAAAAAALyq7rbImDFjRk4//fQ0NjbmuOOOy5QpUzJp0qRs3749SV98njlzZo2nBAAAAACg7gLzueeem40bN2b37t35zW9+k23btmX+/PlZu3ZtkmTdunVZsGBBjacEAAAAAKDutsiYNWtWFi1alN///d9PV1dXPv/5z+eUU07J1VdfndWrV2fOnDlZsmRJrccEAAAAABjz6i4wJ8lll12Wyy67bK9jd9xxR42mAQAAAADg9dTdFhkAAAAAAIwMAjMAAAAAAIUIzAAAAAAAFCIwAwAAAABQiMAMAAAAAEAhAjMAAAAAAIUIzAAAAAAAFCIwAwAAAABQSNWB+fvf/37uuOOOgdfd3d257rrrcvbZZ+fcc8/NV7/61UEdEAAAAACA+lRVYH7wwQfzyU9+Mps2bRo4tmLFitx9990pl8uZOHFi/vzP/zz333//oA8KAAAAAEB9qSow33nnnXnXu96VW2+9NUnyyiuv5O67787JJ5+cBx54IOvWrcv8+fPzrW99a0iGBQAAAACgflQVmJ944oksWbIk5XI5SbJhw4bs2LEjy5Yty/jx49PQ0JBFixalUqkMybAAAAAAANSPqgLztm3bMm3atIHXGzduTKlUynnnnTdwbPLkyXnhhRcGb0IAAAAAAOpSVYG5ubk5v/jFL5Iku3fvzve///2cdNJJmTVr1sA5mzdvzuGHHz6oQwIAAAAAUH8aqzn57LPPzje+8Y1Mnjw5P/rRj7Jly5Z89KMfHXh/69atueeee3L66acP9pwAAAAAANSZqu5g/vjHP57GxsbcdNNNWbt2bU477bRcdtllA+//3u/9Xp555pn84R/+4aAPCgAAAABAfanqDuZjjz02a9euzcaNG9PQ0JBzzz134IF/SbJ06dLMmzcvp5566qAPCgAAAABAfakqMCfJYYcdlve9732v+94nP/nJQx4IAAAAAICRoarA/Mgjj7yp8xoaGjJ9+vSceOKJKZVKhQYDAAAAAKC+VRWYP/zhD1cVjGfMmJHly5fn0ksvrXowAAAAAADqW1WB+eMf/3ieeOKJPPDAA5kzZ05OOeWUNDU15eWXX86Pf/zjbN68Oe973/tyxBFHZOvWrXn44Ydz/fXXZ9q0aVm0aNFQfQ0AAAAAANRAVYH5wgsvzOrVq/PFL34xl1xyyX7vf/e7383NN9+c22+/PSeeeGJ+9atf5UMf+lC+/vWvC8wAAAAAAKNMQzUnr1ixIkuWLHnduJwkra2tufjii7NixYokyZFHHpkPfehD+dnPfnbokwIAAAAAUFeqCsw//vGPc9JJJx3wnLe+9a157LHHBl4ffvjh2bVrV7HpAAAAAACoW1UF5gkTJuSHP/zhAc/5yU9+kp07dw683rRpU2bNmlVsOgAAAAAA6lZVezCfd955+fu///vs3r07l1xySY477rhMmjQpO3bsyObNm3Pffffl29/+ds4999wkyapVq3LvvffmYx/72JAMDwAAAABA7VQVmK+++ur87Gc/y7333ps1a9bs935vb29mz56da6+9Nknyi1/8IqeffnquuOKKwZkWAAAAAIC6UVVgnjFjRu69996sX78+jz76aH71q19l69ataWxszKxZs3L66afn/e9/fyZOnJgkufbaa22PAQAAAAAwSlUVmJOkoaEhF110US666KKDnisuAwAAAACMXlUH5iTp6enJb37zm/T09LzhOXPmzCk8FAAAAAAA9a+qwPziiy/m2muvzYMPPphdu3a94XmlUik//elPD3k4AAAAAIBaq1Q609q6eL9jXV1db7imoaGU3bt7q7rOpEmT0tIyd69jLS1zs2rVbVV9znCqKjDfeOONuf/++3P88cfnne98ZyZMmDBUcwEAAAAA1IWurq50dLQP+XVeeunFPPvsliG/zmCqKjCvX78+ixYtyi233DJU8wAAAAAAMEI0VHNyd3d3LrjggqGaBQAAAACAEaSqwNzS0pJnn312qGYBAAAAAGAEqSowX3nllfnbv/3bPPPMM0M1DwAAAAAAI0RVezBv27YtZ599dhYvXpxFixblmGOOecMH/X3sYx8blAEBYLi1tS1PpdJZ1ZpyuTHd3T1Vran3JwEDAADAwVQVmD/72c+mVCqlt7c3a9asecPzSqWSwAzAiFWpdA7L04EBAABgpKsqMN9www1DNQcAAAAAACNMVYF56dKlQzUHAAAAAAAjTFUP+QMAAAAAgFcd8A7mhQsX5vrrr8+CBQsGXr8ZpVIp69evP/TpAAAAAACoWwcMzL29vQd8/WbXAQAAAAAw+hwwMD/wwAMHfA0AAAAAwNhlD2YAAAAAAAo54B3Ma9asKfzBS5YsKbwWAAAAAID6d8DAfM0116RUKlX1gb29vSmVSgIzAAAAAMAod8DAfMMNNwzXHAAAAAAAjDAHDMxLly4drjkAAAAAABhhPOQPAAAAAIBCDngH88KFCwt9aKlUyvr16wutBQAAAABgZDhgYO7t7S30oUXXAQAAAAAwchwwMD/wwAPDNQcAAAAAACOMPZgBAAAAACjkgHcwr1mzJmeffXZmz5498PrNWrJkyaFNBgAANdTWtjyVSmdVa8rlxnR391S1pqVlblatuq2qNQAAUC8OGJivueaa3HrrrQOB+ZprrkmpVDrgB/b29qZUKgnMAACMaJVKZzo62ms9BgAA1LUDBuYbbrghp5xyyl6vAQAAAAAgOUhgXrp06QFfAwAAAAAwdnnIHwAAAAAAhRzwDuZ9dXd350tf+lK+973v5dlnn82OHTte97xSqZSf/vSngzIgxXkwDQAAAAAwlKoKzH/6p3+a73znO2lqaspJJ52UiRMnDtVcDAIPpgEAAAAAhlJVgfn+++/PvHnz8ld/9Vcpl8tDNRMAAAAAACNAVXswb9u2Le9///vFZQAAAAAAqgvMLS0tefnll4dqFgAAAAAARpCqAvOVV16Z1atXi8wAAAAAABx4D+bvfe97+x0788wzc/HFF2fp0qU57rjjMn78+Nddu2TJksGZEAAAAACAunTAwNzW1pZSqbTXsd7e3iTJX//1X+93fqlUSm9vb0qlksAMAAAAADDKHTAw33DDDcM1BwAAAAAAI8wBA/PSpUsP+gEvvfRSHn/88Wzfvj1nnnlmpk+fPmjDAQAAAMAbaWtbnkqls6o15XJjurt7qlpT7TVgLDlgYH7V448/nhtuuCFf+MIXcvLJJw8c37BhQ9ra2vLCCy8kSSZMmJAvfOELbypMAwAAAMChqFQ609HRPuTXaWqaOuTXgJGq4WAn/PznP88f/MEf5PHHH8/mzZsHjr/00kv51Kc+la1bt+Z3f/d380d/9Edpbm7OddddlyeeeGJIhwYAAAAAoPYOegfz7bffnp6entx+++2ZN2/ewPF77703L730Uj760Y/mmmuuSZIsW7Ysra2tueuuu3L99dcP2dCMTdX+2otfeQEAAOBQDdcWDC0tc7Nq1W1VrQGoBwcNzI899lguueSSveJykjzwwAMplUr54Ac/OHDsyCOPzCWXXJKHH3548CdlzBuOX3vxKy8AAADsabi2YAAYqQ66RcYzzzyT0047ba9jPT09+dGPfpTZs2enpaVlr/fmzp2711YaAAAAAACMTge9g7m3tzdNTU17HfuP//iPbN++PWedddZ+50+ZMiU7d+4cvAkBgBHBr48CAACMPQcNzEceeWR+/etf73Wso6MjpVIpZ5xxxn7n/+Y3v8nkyZMHb0IAYETw66MAAABjz0G3yGhpacl999038Lq7uzv33ntvSqVSzj///P3Of/DBB3PCCScM5owAAAAAANShg97BvHTp0rS1teUzn/lMFixYkHXr1uXJJ5/MhRdemFmzZu117j/90z+lo6MjV1555ZANDAAAAEAxtjUDBttBA/PFF1+cf/zHf8x9992Xf/7nf05vb2+OPvroXHfddXudd+ONN+brX/96ZsyYkcsvv3zIBgYAAACgGNuaAYPtoIG5oaEhX/rSl/Iv//IveeKJJ9Lc3JyLLrpov32Wp0yZkpNPPjk33XRTpk2bNmQDAwAAAABQHw4amJOkVCrlve99b9773ve+4TlXXHFFli9fPmiDAQAAAABQ3w76kL83q1wuD9ZHAQAAAAAwAgxaYAYAAAAAYGx5U1tkjBWepAqMRtV+b/N9DQAAAHizBOY9eJIqMBr53gYAAAAMFVtkAAAAAABQiMAMAAAAAEAhAjMAAAAAAIUIzAAAAAAAFOIhfwAAwKBpa1ueSqWzqjXlcmO6u3ve9PktLXOzatVt1Y4GUNcqlc60ti6uak213z9fvQ7AYBKYAQCAQVOpdKajo73WYwCMOF1dXcPy/bOpaeqQXwMYW2yRAQAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIiH/AEA1Ehb2/Kqn+Re5GnxLS1zs2rVbVWtAYB6N1w/R6u9BsBYIzADANRIpdI5LE+LB4DRaLh+jjY1TR3yawCMZLbIAAAAAACgEIEZAAAAAIBCBGYAAAAAAAoRmAEAAAAAKMRD/mqgUulMa+viqtZ40i3A6DNcPw9aWuZm1arbqloDAACHQvuAsUNgroGuri5PugVg2H4eAADAcNM+YOywRQYAAAAAAIW4g5lD5tdeAAAAAGBsEpg5ZH7tBQAAAADGJltkAAAAAABQyKi9g/n888+3BQMAAAAAwBAatYH5Bz/4QdVrbMEAAAAAAPDm2SIDAAAAAIBC6vYO5u3bt+cDH/hAPvGJT2TevHm56qqrsmvXrjQ3N2flypUpl8u1HhEARoRKpTOtrYurWlMuN9pqCgAAgIOq28D85S9/OdOmTUuS3HrrrVm2bFkWL16cFStW5J577smyZctqPCEAjAxdXV3p6Ggf8uvYagoAAGDsqcstMiqVSjo7O3P++ecnSTZt2pSFCxcmSRYuXJiOjo4aTgcAAAAAQFKndzDfdNNNue6667JmzZokfXdevbolRnNzc5577rlajgcAQA21tS2veksW274AAMDQqLvAvGbNmrz73e/OscceO3CsVCoN/L23t7cWYwEAUCcqlU7bvgAAQJ2ou8D80EMP5amnnspDDz2UZ555JuVyOZMmTcr27dszceLEbNmyJTNnzqz1mAAAAAAAY17dBeabb7554O+33XZbjj766Pz7v/971q5dm9bW1qxbty4LFiyo4YQAAAAAACR1+pC/fS1fvjxr1qzJsmXLsnXr1ixZsqTWIwEAAAAAjHl1dwfznpYvXz7w9zvuuKOGkwAAAAAAsK+6DswAsKe2tuWpVDqrWlMuN6a7u6eqNdVeAwAOxXD9fGtpmZtVq26rag0AwMEIzACMGJVKZzo62of8Ok1NU4f8GgDwquH6+QYAMBRGxB7MAAAAAADUH4EZAAAAAIBCBGYAAAAAAAoRmAEAAAAAKERgBgAAAACgEIEZAAAAAIBCBGYAAAAAAAoRmAEAAAAAKERgBgAAAACgEIEZAAAAAIBCGms9AABAPWprW55KpbOqNeVyY7q7e970+dV+PgAAQL0RmAEAXkel0pmOjvYhvUZT09Qh/XwAAIChZosMAAAAAAAKEZgBAAAAAChEYAYAAAAAoBCBGQAAAACAQgRmAAAAAAAKEZgBAAAAACiksdYDAAAAAEOvrW15KpXOqtaUy43p7u6pak1Ly9ysWnVbVWsAGLkEZgAAABgDKpXOdHS013oMAEYZW2QAAAAAAFCIO5gB9uFXB4HRplLpTGvr4qrW+L4GAAC8GQIzwD786iAw2nR1dfm+BgAADAlbZAAAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFCMwAAAAAABQiMAMAAAAAUIjADAAAAABAIY21HgAYOm1ty1OpdFa1plxuTHd3T1VrWlrmZtWq26paU8RwfT3VXqOoSqUzra2Lq1pTr1/PaPpaAKh/w/VzZ7j+Pw4AwEgmMMMoVql0pqOjvdZjDJrh+nqamqYO+TWSpKura9R8PaPpawGg/g3Xzx0AAA7OFhkAAAAAABQiMAMAAAAAUIjADAAAAABAIQIzAAAAAACFeMgfcMiG60nulUpnVecDo5PvOVBMW9vyqv+79m+HIobrv7WWlrlZteq2qtYAAINPYAYO2XA9yb2paeqQXwOof77nQDGVSqd/OwyL4fpvDQCoD7bIAAAAAACgEIEZAAAAAIBCBGYAAAAAAAoRmAEAAAAAKMRD/gAAAKDG2tqWp1LprGpNudyY7u6eN31+tZ9fVKXSmdbWxVWtqfZrefU6ANSewAwAAAA1Vql0pqOjfUiv0dQ0dUg//1VdXV1D/rUkw/f1AHBgtsgAAAAAAKAQgRkAAAAAgEIEZgAAAAAACrEHMwAAAAAwpEpJmpMc2//nuNf5+39PcnGS3TWakWIEZgAAqKFKpTOtrYurWlMuN6a7u6fq6wAADJWp2Tsaz92xPbP2eH1skgkH+YwXMjm92TakczL4BGYAAKihrq6udHS0D/l1mpqmDvk1AIDRaWKSY7L/ncd7vt7v/2l0d+/3Ob/OhDyZpjyVaXkqR+TJHJGnclieymF5Mofnl3klvfnaUH4pDAGBGQAAAABI0reVxduTnNP/Z36St76JdS+nsT8WH54nMyObG5rzi92T81Sm5MkcnqczNdtSPsindB3i9NSCwAwAAAAAY9SkJL+V12LyvCRH7HPOzpTydKb0x+Mj8lSm56lMy5OZkqcyNU/l8DyfienL033KjRPS3b1juL4MakhgBgAAAIAxYvbu3bk4fTH5nCTvTjJ+n3OezuS057i0Z27aMzs/zqz0ZNywz8rIIDADAAAAwCjUkOSU7L3dxQmvvLzXObuSPJYj0563pD0nZkNm56kcPuyzMnIJzAAAAK+jUulMa+viqtaUy43p7u6p+joAJjD4cQAAIABJREFUMBiakvx2XovJv91/bE8vZHw6MicbMjftOSabMievHHRvZHhjAjMAAMDr6OrqSkdH+5Bfp6lp6pBfA4DR6YS8ttXFOem7W7lhn3MqacqGHN9/h/KcdI4/Jtt37hzmSRnNBGYAAAAAqHPj07df8p7bXczZ55zulPJYZvbH5BPSkdl5Zp97mMulfRM0HBqBGQAAAADqzPS8dnfy/CS/lWTSPuf8OuW059j+7S7m5NHMzvb9HtkHQ0tgBgAAAIAam7t7V07La3con/w65/z3TOvf7qIl7ZmdJzIjSWlY54R9CcwAAAAAMIwmJHlP9t7u4shXXtnrnK405JEclfa0ZEOOTUeOzq8zefiHhYMQmAEAAABgCM3MayH5nCRnJinvc87/zOS055iB7S7+PUdlZ8YN96hQNYEZAAAAAAbRO/Pa3cnnJGnZ5/3dSR7PjGzICf0P5JudzeNnpXtn93CPCodMYAYAAACAQzQuyQeTfDbJGfu893IaszGz05652ZBjsjFz8mIm7nVOuWQvZUYmgRkAAADeQFvb8lQqnVWtKZcb093dU9Waaq8B1I8pSf73JG1JTug/9lwm5P60ZEPekvbMyU8yK7vSULMZYSgJzAAAAPAGKpXOdHS0D/l1mpqmDvk1gME1M8nyJFcmOaL/2BOZmi/m/Hwz78r2jK/dcDCMBGYAAAAAeJNOSvJfkvx+MrDJxYbMysr8Tv4hc7PbncqMMQIz1ECl0pnW1sVVrfFrdgDUOz/fgOHkew4w3Oalb3/l1mQgIX83LVmRC7IhR9duMKgxgRlqoKury6/ZATDq+PkGDCffc4DhUEryu0mu2fZK5vUf25GGfCOn5L9mQX6WGTWcDuqDwAwAAAAAe5iQ5MPp2wrj7Umya1eez/h8Ob+V2/LbeSaH1XQ+qCcCMwAAAAAkmZbkj5L8n0mO6j/2PzIlt427IH+16115ORNqNxzUKYEZAAAAgDHtuCSfSfKHycC9yT/KjKzMBflO3p6GcZPTvWtH7QaEOiYwAwAAADAmnZa+B/ddmtci2bocm5X5nazP8enbhTkp12Y8GBEEZgAAgDGgUulMa+viqtaUy43p7u6p+joA9e7C9IXlC/tf96SUb+Xt+WLOz48ys4aTwcgjMAMAAIwBXV1d6ehoH/LrNDVNHfJrABTRkL47la9K8u7+Yy9nXP46Z+bmzM+TObx2w8EIJjADAAAAMKqdn+Tm9G2JkSTPZGJuzTn5cs7M1kyq3WAwCgjMAAAAAIxKb0nyxSRL+1//j0zJn+Z9+WbelR2yGAwK/5IAAAAAGFWaknw+yaeSTEjySsblhizIf838bM/42g4Ho4zADAAAAMCo0JDkD5L8WZJZ/cfuzLvyuVyU/5mm2g0Go5jADAAAAMCId1769lk+vf91e47Kp9OaR3NUDaeC0U9gBgAAAGDEOjHJyiS/1//6yUzOVflAVufkJKXaDQZjhMAMAAAAwIjTlOQLO7bnk3ltn+Ub+/dZ7rLPMgwbgRkAAACAEaMhyUfTt8/yUd3dSZJv5J35XC7KLzO1hpPB2CQwAwAAADAiLEjfPstn9L/uKM3Op3r/lzxin2WoGYEZAAAAgLp2QpIVST7Y//qpTM7VeX/+rvH0dO/srt1ggMAMAAAAQH06LMn/naQtycQk29KQm7IgK3NOujI+5ZKH+EGtCcwAAAAA1JVSko8kuSHJ7P5jf5t35Josss8y1BmBGQAAAIC6cU769ll+T//rjZmZT2dJNg2kZqCeCMwAAAAA1NzxSW5Kcmn/66czKVfn/fl/8870xlYYUK8EZgAAAABq5oj07bH8X/LaPssrsiArMz/bUq7tcMBBCcwAAAAADLsTknwmyf+RZEr/sW/l5FyTxXk6TTWbC6iOwAwAAADAsDkjyWeTfDDJuP5j9+X4/D+5KBszp3aDAYUIzAAAAAAMuUXpC8sL+1/vTCnfyjvyxbw3P0lzDScDDoXADAAAAMCQaExyWfrC8qn9x15MY76a9+SWzMvTmVq74YBBITADAAAAMKiaenvzsSSfTnJs/7HNmZSbc26+mjPyQibWcDpgMAnMAAAAAAyK2Uk+leSKl1/KtP5j/5Fp+WIuyF15R7qlKBh1/KsGAAAA4JCcnOT/SnJ5knL/sR9kTlbkd3Jf3pLelGo3HDCkBGYAAAAACjkvffsrX9L/eleSu/PW/Pm4i9Kxa0btBgOGjcAMAAAAwJvWkGRp+sLy2f3HutKQO/LurMq5qWR6yuMmJLt21G5IYNgIzAAAAAAc1KQkH03SlmRu/7FfpZy/yLz8Zc7KrzKlZrMBtSMwAwAAAPCGZiT5RJJPJmnuP1bJYVmV83NHTk1XxtduOKDmBGYAAAAA9lJKMi/Jh5N8JMnk/uP/luaszML8fU7K7jTUbD6gfgjMAAAAACRJzkhyWZJLkxy3x/H/lhOyMr+TH+SY9OVngD4CMwAAAMAY9s70ReXL8treyknyZCZndd6dO3N6fpojazMcUPcEZgAAAIAxZm767lK+LMm79jj+TCbmOzk1386p2Zg56XW3MnAQdRmYV6xYkR/+8Ifp6enJFVdckVNOOSVXXXVVdu3alebm5qxcuTLlcrnWYwIAAACMGMcm+XD3jixN8p49jv865fxd3pFv5/T8IMfYWxmoSt0F5o0bN+bnP/95Vq9eneeffz5Lly7NvHnzsmzZsixevDgrVqzIPffck2XLltV6VAAAAIC6NivJ/5a+O5XPTZIdO5IkL6Yxa/K2fDtnZH2Oz86Mq92QwIhWd4H5rLPOyqmnnpokOfzww9PV1ZVNmzblj//4j5MkCxcuzJ133ikwAwAAALyO6Un+1/RF5QuSgXS8LePy3xrelrt2vzv35cTsqL8sBIxAdfedZNy4cZk8eXKS5O677855552Xhx9+eGBLjObm5jz33HO1HBEAAACgrjQlaU1fVL4oyfj+490p5Z/ylnw7Z+QfMzc7G5vS3b2jZnMCo0/dBeZXrV+/Pvfcc09uv/32LFq0aOB4b29vDacCAAAAqA+TknwgfVH5A0km9h/vSSlrc2y+nTOzJidlayYNrPFEK2Cw1WVg/td//dd85Stfyde+9rU0NTVl0qRJ2b59eyZOnJgtW7Zk5syZtR4RAAAAYFg1Jnl3kvnp2095cZLD+t/bneShzMnqnJm/y9vyXKbUaEpgrKm7wPzSSy9lxYoVufPOOzNt2rQkyfz587N27dq0trZm3bp1WbBgQY2nBAAAABha05P8dpJz+v/8VpLJ+5yzMTPz7bwnd+dt2Zypwz0iQP0F5u9973t5/vnn8+lPf3rg2I033pjPf/7zWb16debMmZMlS5bUcEIAAACAQdbbm7l5LSbPT/LO1zntZzk8G3J82vOWfD/H5ReZPqxjAuyr7gLzpZdemksvvXS/43fccUcNpgEAAAAYfBOSnJnXYvI5r7yc5n3O2Z6GPJJZ2ZCWtOe4dGROfmXrC6DO1F1gBgAAABhtmtMfkvv/nJm+yDygtzdbMjHtOTbtmZsNmZPHclS6pRugzvkuBQAAADCISknekdeC8vwkJ+1zzu4kP8kRac+J2ZAT88j44/OfO6f0rwYYOQRmAAAAgEMwO8lZ/X/ek+TsZL+dkV9OYzZldv92F8dmY+bkhUwceL9cmpBkx3CNDDBoBGYAAACAN+mI9EXks/b436Nf57wnMyXtOa4/KM/JjzMru9IwnKMCDAuBGQAAAOB1HJbknJ6evDOvBeWW1zlva8bn0RyVR3NCHsnR+bccladz+LDOClArAjMAAAAw5k1Iclpe2+rirCRvT9LQtW2v87ZlXB7LzDyS4/Nojs0jmZXOHJFeeycDY5TADAAAAIwpjel7CN+eMfmUJOP3Oa87pfykNDP/1ntMf1CemZ+m2VYXAHsQmAEAAIBRbWaS85PMT19MPj3JpH3O2Z3k/8v0PJLjBmLy45mVjJ+S7m4P3wN4IwIzAAAAMKo0J3lv+qLyBem7W3lfnWnKIzkmj+TEPJqZeSyz80rK+523/xEA9iQwAwAAACPajPQF5QvSF5Xftc/7r2RcHs4x+ZeclH/LnPwwR+X5/e5hBqAIgRkAAAAYUY5IcvHOnTk7fUH51H3e35Zxac/ReShvzYM5Lo9mTnZm3LDPCTAWCMwAAABAXZue5Ly8tuXFaUmyvWvg/a40ZEPm5KG8LQ/m+DyS2emWPACGhe+2AAAAQF2ZlmRB9g7KDXu8vz0N2Vg6Jg/0zs1DOT6bMkdQBqgR330BAACAmpqavqD86h7Kp2fvoLwjDdmYo/Jg3paHcnw25uj0jp+S7u4dNZgWgD0JzAAA/P/t3XuQVPWd//9n98z0XGEY7ojglcWEqKuwRqLJF0vxFssNRheT4IpxrTIoWrpJea2IpRsl5catGE2xCdnErLsSNprErV1ZqYplokYN+iOOIsQoMqLgIFdnYC495/fHdDdz6R7mdJ8DDDwfVV3d0/3pfp/39PTMxxcfP0eSpP1mAt0rkntepkKvHZLbSfBSj0D5RSayh4per5PaXwcsSRqQAbMkSZIkSYpcBfBpegfJJwFj8oztIMEfGJcJlI/mBSayu0+gLEk6OBkwS5IkSZKkkoxhb4g8Y/duPg18CvJGxNtI8SfGsJojWc1EVjOKNxjTb4WyJGloMGCWJEmSJEmDUk73dhZ9VyVP6DmoswOALmAdw1nNEZkweSyrGUsTw4HEfj1uSVJ8DJglSZIkSVI/Y+m/xcU0oDLP2F2UZ1YlT6QxeTSvdtXTyFha3ClZkg55BsySJEmSJB2mEsBRdG9n0fcyssBz3mEYqxnPaiblViWvZwRBZlVyqryS9va2/XD0kqSDgQGzJEmSJEmHuArghHSayfQOkacCNQWes4MK1jCSPzExs1fyaP7EOHblXcMsSTpcGTBLkiRJknSIqANOoP9q5OOA8taWvM/5kGrWMJo1TGAN41hDA2sYzYfU4V7JkqR9MWCWJEmSJGmIGUP/IPnTwKQC47uAdxjOm4xmDUewhjGsoYG3GM12qvfPQUuSDkkGzJIkSZIkHUTq6A6Ks5fJfW4fSeFtLdpJso76zErkCZlAeSTrGEVXqs69kSVJkTNgliRJkiRpP6mgOyDuGxwf09rKEZnbDYN4ne1UsI4G1jA+s7XFSNYwindoIE0y73NS0bQgSVIvBsySJEmSJEUgAYwn/6rj7O0JhZ6c7szd3EOSJurYwAiaaKCJkTQxnA3U0cRwmqj3RHuSpIOGAbMkSZIkSYPQQOHgeBLdK5Mr9vEaaRJ8QA0bGJ4LjzfQwIdl9bybrmYD9WyhBk+uJ0kaKgyYJUmSJEmHvRryB8fHtLbktq6oHcTrNFOZCY9HsIFRmRC5jg0Mo4nhfMiwvFtYpMoqaU+7P7IkaegxYJYkSZIkHdKqgXF0rzAutAJ5VKEnp9O5mzup6LF1xUiaaMiEyd1bV7zPcPbscw2zJEmHFgNmSZIkSdKQUxkENNC95/G4Aa7HAcMH8XptmX2Pm6hnQ27f43o+LBvBO+kamhjOTqpi6kaSpKHLgFmSJEmSdFBIsTcUHig0Hg/Uf7Jr0K/bRpLNVPN+ZuuK7L7H3YFy99YVzdQS5Nn32K0rJEkamAGzJEmSJClSSaCe7pPijcxcGvpc97w9hu7QuCFEjfZMaLyZWjYxjM0MZxPD2cwwNlPNJmrYTB2bqGMHlXjSPEmS4mHALEmSJEnKq5r84fCAwfGundRDntPY7VsnCT6imk3UZsLh+kxw3D80bqmop72jPYIuJUlSKQyYJUmSJOkQlgRGAJO70qQYOCTuGxiXsuPwdirYRhVbqWIbNWyllq3UZm7XsI0UW6lkG1U0U8sm6thKdd5tKvJJJVyRLEnSwcCAWZIkSZKGiBpgEt3bSexzJXHm9ojsk1taQtfbQzITEFdmQuFsUFzDNmozj6Uy11VspZpPKkbQ3JEgXdQaZkmSNNQYMEuSJEnSQaACmEh3gJy9TO5ze2QRr9sFbCfFdqr5OBcU915N3L2SOMVWqnNB8Vaq2UNF6HqpRCVpPCmeJEmHCwNmSZIkSYpZAhhH/tD46JZPOILuVcn7WvPbRpIm6viAYX22nMi/mngr1eykki6SpFKVtLcb/EqSpGgZMEuSJElSiZLAscBUegfI2RB5IpAq9OSuLgDSJGiihiaG00QDTTSwgQaaqKOJYTQxnGZqB71HsSRJ0v5gwCxJkiRJIRwJfKbP5dNA9T6e10wlTQxnAyNoYmQmQB7GpvKRvNNZzQcMc99iSZI05BgwS5IkSVIeo7u6mMHeEHla5rq+wPgN1PIWo3mPUWxgZGYlci0bqOd9hhfczziVrKTdPYslSdIQZcAsSZIk6bA2nL3hcc/L2JZP8o5vppLXGUMjE2lkAo2M5E3GsIOq/XbMkiRJBwsDZkmSJEmHhSrgU/QPkicXGL+TChoZRSNHZC4jaWQszdTupyOWJEk6+BkwS5IkSTqklANT6B8kHweU5Rm/hyRvMjKzGnliJlQew+aKMbR3tO+/A5ckSRqCDJglSZIkDUkJ4Gj6B8knAKk84ztJ8Cb1NDI+EySPoZHR/IUGuvKcXC+VSMR38JIkSYcIA2ZJkiRJB70J7A2QT9m9m6l075tcaLOKdxhGI2MzQfI43mAkbzGadv8TSJIkKVLOriRJkiQdNEbSf0XytMz9OZ0duZsbqc4FyW8wjkZG8SZjaMm7hlmSJElRM2CWJEmStN8l6D7h3meBE9kbJk8oMH4rKV5nDI0cwZrkZFZ3DeMNxrKN6v10xJIkScrHgFmSJElS7GqA04DPAWcAM4GGPOM+oZw3GJU54d4RuRPubaKO7lgaUuWVtLe37a9DlyRJ0gAMmCVJkiRFbiJ7w+TPAafQ/z8+mqjhBSbzGkflguQN1BPgyfUkSZKGCgNmSZIkSSUpo3ubizOA/7e7ldOAo/qM6STBKkbxPMfyAsfwPBN4n/r9fqySJEmKlgGzJEmSpFCGA6ezd4XyZ4Fh2Qc7OwHYTgUvMpEXOI7nOZKXOcIT70mSJB2CDJglSZIkDegY9obJZ9B9Mr5knzF/YRjPcxR/SE7ld11jeIOxbnUhSZJ0GDBgliRJkpRTQfd+ydkw+XPAhD5j2kmwirE8z3G8wGReYCKbqQM8AZ8kSdLhxoBZkiRJOoyNpDtEzq5Q/hugus+YLVTyPEfyAsfzPEewignsoWJ/H6okSZIOQgbMkiRJ0mFkKr23uzghz5g1jOB5js6ckG8C6xgFbnchSZKkPAyYJUmSpENUFTCD7iD5C62tnAaM7jNmN0leZjzPczwvMIkXOYKt1Oz3Y5UkSdLQZMAsSZIkHSLGsXff5DOAU4FU9sF0JwAfUs3zTOL5zHYX/x/j6aDsQByuJEmSDgEGzJIkSdIQlAQ+Te+T8R3XZ0wXsJpRPM8xvFQ2hefSY1jPCNzuQpIkSVExYJYkSZIOYrXApB6Xo+k+Ed9MoL7P2F2U8weO4HmO4wWO5A9MZBeVAKTKKmlPt+2/A5ckSdJhwYBZkiRJOkAqgKO6umgAJrM3RO55e+QAz19PHS8wmec5juc5gkbGkiYZ+3FLkiRJWQbMkiRJUgwSdO+J3Dcw7nl7PJBs+WTA19lDkibqaKKeJkbSRAN/YhzPcwQfMDzWHiRJkqR9MWCWJEmSijCCwsHxJOBIepxgr4A0Cd6nlvcYRhMNmQB5BBuopYnhNFFPMzW4Z7IkSZIOVgbMkiRJUh/VwPFdaUZSeAVy3SBe5yOqaGJYJjQelQmR62iijg3U8yHDKEtV097u3siSJEkamgyYJUmSdFgpB45g4K0rRgO0tAz4OjupyATFI3JbVzQxnA3U0cRw3mc4e6jY5/GUldSNJEmSdGAZMEuSJOmQUAaMpXvf4/F9rieyN0Qez75D3TaSbKSO9xieCY9HsoF6mjJbV2ygnp1UxdeMJEmSNEQYMEuSJOmglQTG0DssPqqtjRH0D5FHZcbvSxfwPjWZPY4bMuFxQyY8HsYG6mmmlopUlVtXSJIkSftgwCxJkqT9ahjQAIykeyuKfCuOs9djyBMaFwh9u4DNVLGJWjYzjE0MZzPD2cRwPqSGDQyjieF8wDA63ZhCkiRJioQBsyRJkkKrYG9IPDJze2JHO1V97huZZ1yYCWgX3SfK20wNmxjGZoazJdnAxq5aNlPNJmrYTC2bqGMLNXQNag2zJEmSpKgYMEuSJB2mEsBwCgfBA4XEdflecM+eQdX9hHK2UslWqvmYmtwq480M7xcaN1NLuk9onCqvdOsKSZIk6SBhwCxJkjTEVTJwQDx+z25q84wZwb5PdldIJwm2Usk2KtlKDVupYUdiGFuCKrZSyzaqejxezVaq2UYV26imw+0pJEmSpEOGAbMkSVKRyoBUn0tFnvsKPT68o52ukM+vov+q4up9HWhHR8GHdlKRCYGr2EoN26hhK3Vso5qt1GZC4lQuIM6GxZ+QonsN9F6pClcWS5IkSYcbA2ZJkhS7MrpD0Gq6A9LsdUXmscFekkBdRwftIZ/XM7QdbABc1fIJ5QM8niLPyefCGuSWEvvSTrLfauJt1OYC4x3JYWzpSmZC5L1B8XaqPNmdJEmSpJIYMEuSdIirCAJqCb9KNhsE9w2GC91X19JCRYHHK6JsaM/uKF+tsK6ufQ7pJEE7SToylzbKaO9z6ej1dXmP63I6kynaush93XtMGR0kMreTuUsbZZnVxXuD4lYq6LuauCf3LJYkSZIUFwNmSdJhpYLuP34VPS7lfW6PSKdpz3P/QLfLGfwK3Ozt6j17SA/yedlLtt5A4XDfAJlPdkXzzduXrnTBh9Ik2E0ZuynPXfZQTgdlpEmQJtnjuvt2V4/b6R7jgkQFHUHQY1zP5yXzvFYyE/Im+4W12fs6co/tvQTl1bR0pvOExGW553SVuIbZ4FeSJEnSUGfALEkCuoPPnuFkmHC1vrN7y4J8YwYKZHte8t3X91LZ2kJyEOP6vmbP1x6U1pbBjixNR/t+KZNdYds7YO0flmZXznZQxh4q2E2K3VRkLqnMfdmAuCwTEiczj5fTWV7Dzs6A3VSwJzcu81iE2zDsr31+U8lK2jH8lSRJkqSBGDBLUswSdIe2lX2uR6bTdOS5P9/Yno+FPZlYdUtL3hOR9X1+SfHf7v20ZUG68ArZweogkdvOoLPH1gZ7b5fRmSinI0js/Tpznb109rq9d0y+VbS9V+Emet0mWUF7V7rHKlz6jO27srf7Ot82DAOtsk2lqgxkJUmSJEmxMGCWNOSU072naw1793mtKXBfz5Wrg1khWw7U7N5NMMix2dccKBgu+It2f62SHWDbgl7DgLZMINk3fN37dVnmdlmv8LUzkaI9oE/w2nNM/kC2+7US3a+Rud57X/b+vZdEeSW7O9O5r3P193HJHkeaBAPtU5u131bIuj2CJEmSJGmIM2CWNKAEe1e59tzyoOfXIzIrcQs9nu+5lQwcDOe9b9fO6E8Wlk9nR+QvuSezJUFbZnuC7iC3gjYStGW2Jeh9XZG5Ls/dn729d5Vq3y0PkpmtEPruI1tFS2dXn60Q+q90LWUvWbcskCRJkiTp8GTALJUoRbjVseVAfWdn7gRig10hW2gP3IH2x63e3QpFPK9nKDyobRP210rcjDQJWimjtccer625fWLLaaUyt2dsG+WZVaxlva57r3ztvYI2KKugLd1FZ2YrhcGskN0bHpf1CYu76+RbNZtKGcpKkiRJkqShzYBZont1bANwZDpNKnN7sJfKYgpmgt/YdXZG8jJ7V8buvWRXwmb3q20LEr32qG3P3c6uuC3Pje/IBLCtpDLBcPcJw1ozJw3rHRZX5ALkdEUtOzq66CgQ2EYlVVZJe9pAVpIkSZIkaV8MmDUkJIGqIMidLG2gE5tlH6sCRjC4kDiVLVTEStwOErRT1me/2ERmhWz/PWQ7KSOdKKMjSOT2qO27uraz1+ravbc7eoS0vffDTdB7r9zur4PySvZ0pnPjeu572/d23z12swHxYPas3W/bIyQq6XAlriRJkiRJ0kHDgLmAskFesusokz0uA32dAIalO9ldxHPLQtwuA2ra22kP+bzBHkvP+yp37ya9jzF97+sbEBcKjLP3lwF8smsf71rxWiljG5XsSFSzNahkGzVsozZzXcM2qthGJdtIsY3qzNfd13uK2BHY/WolSZIkSZJ0KDhkA+ZGBh8S50LZXTtzt2PVup+2R2jbs3/qxHBCtL66IHdytOwJzTp6fd29BUPvk5aVsz0XEBcOibdTRVvmo7C/gl9JkiRJkiTpUHDIBszTSnx+mkSBS7LX7S4SmQt0kSDIfb33EmQe674kIZEkHQR9xvR9Tu/b2Vp7a/b9uv9tkuV0dnX1ek66x+umKcsdd5okQabv/sfc82v63Zcsq6A93dnvOfn76h6TDYE7egXC/S/ZrRq6SO63E6JJkiRJkiRJGpxDNmD+DLNJM6VHIDzwdRcJyiqq2N3RQdcg9pwtxX7bHqF8P9XxhGiSJEmSJEnSYemQDZjfoB4YE+o5qUQ5XaTjOSBJkiRJkiRJOsTEvt2wJEmSJEmSJOnQZMAsSZIkSZIkSSqKAbMkSZIkSZIkqSgGzJIkSZIkSZKkohgwS5IkSZIkSZKKYsAsSZIkSZIkSSqKAbMkSZIkSZIkqSgGzJIkSZIkSZKkohgwS5IkSZIkSZKKYsAsSZIkSZIkSSqKAbMkSZIkSZIkqSgGzJIkSZIkSZKkohgwS5IkSZIkSZKKYsAsSZIkSZIkSSqKAbMkSZIkSZIkqSgGzJIkSZIkSZKkohgwS5IkSZIkSZKKYsAsSZIkSZIkSSqKAbMkSZIkSZIkqSgGzJIkSZIkSZKkohgwS5IkSZIkSZKKYsAsSZIkSZIkSSqKAbMkSZIkSZIkqSgGzJIkSZIkSZKkopQf6AMI4zvf+Q6rV68mkUhw++23c9JJJx3oQ5IkSZIkSZKkw9aQCZg76JzKAAAXaklEQVRffvll3nvvPZYtW8bbb7/NbbfdxvLlyw/0YUmSJEmSJEnSYWvIbJHx4osvcs455wBw/PHHs3PnTj755JMDfFSSJEmSJEmSdPgaMiuYt2zZwrRp03Jfjxo1iubmZurq6vKOb2xczoYN++voJEmSJEmSJJVi1Cg47bQlB/owhqQxY4YdsNpDJmAOgqDf14lEouD4adO6L5IkSZIkSZKkeAyZLTLGjRvHli1bcl9/9NFHjB49+gAekSRJkiRJkiQd3oZMwHzGGWewYsUKAN58803Gjh1bcHsMSZIkSZIkSVL8hswWGaeeeirTpk3j8ssvJ5FIcNdddx3oQ5IkSZIkSZKkw1oi6Lu5sSRJkiRJkiRJgzBktsiQJEmSJEmSJB1cDJglSZIkSZIkSUUZMnsw97Ru3ToWLFjA/PnzmTdvHvfccw+vvfYatbW1AFx99dXMmjWLt956i9tvvx2Ac845hwULFrBixQoeeOABxo8fD8DnPvc5vvGNbxRVY/To0SxevDj3nLfffpuHH36YE088kVtvvZUPPviAsrIy7rvvPiZNmlR0L4XqNDc3D6qXMN+zBx98kJdeeokgCDjnnHO45ppr6OjoiLSfQnUG+96EqfP444+zfPlyKioquOqqqzjvvPNi6SdfnVL6yR7je++9R21tLd///vepr6/nN7/5DT/72c9IJpPMnTuXSy+9tKR+wtQp9rNTqMaOHTu4+eabc/cBsfSSr04c783//M//8JOf/IRkMsnMmTO56aabYuknX504+nn44Yd57rnnCIKAWbNmsWDBglj6yVcnjn6ybr75ZlKpFPfff38s/eSrE/Vn58wzz+SYY47JPe+nP/0pXV1dkfeSr87KlSsjf2/y/a2O470pZU4w2DpNTU2RzwvC1CllXlDo+xb1vCBMnTh+F5QyLyilRim93HDDDWzbtg2A7du389d//dfcc889kc8JwtSJo5+o5wVh6sTRT9TzgjB14uinlHlBKTXi6CUrqjlBmDpx9BP1vCBMnVLmBYXqRD0vCFMn6vdn7ty5Jc0LSqlRypyg0Pcs6jlBmDpxfHaizgrC1Cmln1deeYXvfe97lJeXU1NTw3e/+91YsoIwdeLop5R5QSk14ugl6jlBmDph+ilZMMS0tLQE8+bNC+68887g5z//eRAEQXDrrbcGb775Zr+xl156adDY2Bik0+ngpptuClpbW4Mnnngi+Ld/+7fIamTt2LEj+OpXvxqk0+ngiSeeCBYtWhQEQRA8++yzwY033hhbnX31EqbO2rVrg7lz5wZBEATpdDo4//zzg48++ijyfgaqE2U/W7ZsCWbPnh3s2bMn2LNnTzB37txg9+7dkfczUJ1i+/n3f//34J577gmCIAgef/zxYOXKlUFLS0tw7rnnBjt37gx2794dnHfeecG2bdtK6idsnWI+O/lqBEEQ3HjjjcEjjzwSLFy4MPf8qHsZqE6U701ra2tw1llnBbt27Qq6urqCSy+9NPjzn/8ceT8D1Ymyn6amptz3q7OzM5g9e3awadOmyPsZqE6U/WT9/ve/D7785S8Ht9xySxAE8fy8FaoT1Wenq6srmDNnTr/nR93LQHWifm8K/a2O+r0pdk4Qtk5WVPOCsHWi7CeOeUHYOlH2U8q8IIoaxfbS06233hqsXr06ljlB2DpR9hME0c8LwtaJsp845gVh60TZTynzgihqRP2zFgTRzgnC1omynzjmBWHrRP3+RD0vCFsnjp+3IAg/L4iiRpS9xDEnCFsnyn7iyArC1im2nzlz5gR/+ctfgiAIgh/+8IfBkiVLYpkXhK0TZT9BUPy8IIoaUfYSx5wgbJ3B9BOFIbdFRiqV4kc/+hFjx47N3dfS0tJv3JYtW2htbWXatGkkk0m+973vUV1dnXdssTV6Wrp0KfPnzyeZTPLiiy8ye/ZsAM4880xWrVoVS53B9BKmzrBhw2hra6O9vZ22tjaSySTV1dWR91OoTtT9bNy4kWOPPZbKykoqKys54YQTWL16deT9FKpTSj+//e1vufjiiwGYO3cuZ599NqtXr+bEE09k2LBhVFVVMWPGDF599dWS+glTp9jPTr4aAPfeey+nnnpqr+dH3UuhOlG/N9XV1fzmN7+hrq6ORCLBiBEj2L59e+T9FKoTdT9HHnlk7l9wd+zYQSKRoK6uLvJ+CtWJuh+A9vZ2fvjDH/b619o4ft7y1Ynys9Pa2ko6ne73/Kh7KVQn6vem0N/qqPspZU4Qpk5PUc0LwtSJup845gVh6kTdTynzglJrlNJL1jvvvMOuXbs46aSTYpkThKkTdT8Q/bwgTJ2o+4ljXhCmTtT9lDIvKLVGHD9rUc8JwtSJup845gVh6kTdTxzzgjB14vh5ywo7Lyi1RtS9xDEnCFMn6n7iyArC1Cmln4aGBrZv3w50/75saGiIZV4Qpk7U/UDx84JSa0TdSxxzgjB1BttPFIZcwFxeXk5VVVWv+1paWvjBD37AFVdcwTe/+U22b9/Oxo0bGTVqFHfffTdf/epX+elPfwpAa2srzzzzDF//+te56qqreOutt4qukbVnzx5+//vf5/6jb8uWLYwcORKAsrIykskk7e3tkdcZTC9h6kyYMIHzzz+fs846i7POOovLL7+curq6yPspVCfqfiZPnsy6devYunUrLS0tvPbaa3z88ceR91OoTin9bNy4kVdeeYWrr76am266ie3bt/c6boDRo0fT3NxcUj9h6hT72clXA6Curq7f86PupVCdqN+bnnXWrVvHxo0bOfnkk2Ptp2edOPqB7j+4F110EQsWLKC2tjaWfvLViaOfJUuW8JWvfKXXz0Mc/eSrE+Vnp7W1lY8//pgbbriByy+/nEcffTSWXgrVifq9KfS3Oup+SpkThKmTFeW8IEydqPuJY14Qpk7U/ZQyLyi1Rim9ZD366KPMmzcPIJY5QZg6UfcD0c8LwtSJs5+o5gVh6sTRDxQ3Lyi1Rhy9RD0nCFMn6n7imBeEqRN1P3HMC8LUieuzU8y8oNQaUfcSx5wgTJ2o+4kjKwhTp5R+brvtNq677jrOO+88Vq1axZw5c2KZF4SpE3U/UPy8oNQacfYS1ZwgTJ3B9hOFIRcw53P55ZfzzW9+k5///Occd9xxPPTQQwRBwPr167nhhhtYunQpTzzxBOvWreP0009n4cKF/OQnP+G6667jW9/6VtE1slauXMmsWbNIJru/nUEQ9HpuEAQkEonI6xTbS6E6TU1NPPPMM6xcuZJnnnmGxx9/nI8//jjyfgrVibqfESNG8K1vfYsFCxZw6623cvzxxxMEQeT9FKpTSj9BEDBhwgSWLl3KlClTWLJkScHjLqWfMHWK7SdfjYHGRtlLIVG/N1nr16/nH//xH/nnf/5nKioqYuunb524+rnzzjv53//9X5YuXUpTU1Ns/fStE3U/69evp7GxkS9+8Yv9xkbZT6E6UX52qqurufHGG3nggQdYunQpTz75JI2NjZH3UqhOHL/X8v2tjuP3WpRzgkJ1sqKcF4SpE3U/ccwLwtSJup+o5wVhapTSC3SvhFy1ahWnn356rna+Yy7lvQlTJ+p+Com6n0Li6ifKeUGYOnH1E+W8YLA1ou4ljjlBmDpR9xPHvCBMnTh+t0U9LwhTJ67PTpTzgsHWiLqXOOYEYepE3U8cWUGYOqX0c++99/KDH/yAFStWMH36dP7jP/4jlnlBmDpR91NIsf2EqRFXL1HOCcLUKfWzE8YhETDPnj07d8KB2bNns3btWkaNGsWUKVNyS8WnT5/O22+/zUknnZT7sM+YMYOtW7fm/d99BlMj67e//S0zZ87MfT1u3Diam5uB7k3IgyCgoqKi6F4K1Sm2l0J1Xn/9dU4++WSqq6sZNmwYU6dOZd26dZH3U6hO1P0AXHDBBTz++OO5f3SYOHFiLO9Pvjql9DN69GhmzJgBdP/vEm+//Tbjxo1jy5YtuTEfffQRY8aMKamfMHWK7SdfjUKi7qWQqN8bgE2bNnHddddx//3386lPfSq2fvLVibqfDz/8kNdffx2A+vp6Tj31VF5//fXI+ylUJ+p+nn32WT744AP+7u/+jrvvvptnn32WH/3oR5H3U6hOlJ+duro6LrvsMlKpFLW1tcycOZO1a9dG3kuhOlG/N4X+VkfdT9RzgkJ1sqKcF4SpE3U/ccwLwtSJ4/2Jcl4QpkYpvQC88sorvf5X6DjmBGHqRN1PIVH3U0gc/UQ9LwhTJ+p+4pgXDLZG1L3EMScIUyfqfuKYF4SpE3U/ccwLwtSJ63dblPOCwdaIupc45gRh6sTx3kSdFYSpU0o/a9euZfr06UD3CdsaGxtjmReEqRN1P4UU20+YGnH0EvWcIEydUj87YRwSAfO1117LBx98AMBLL73ElClTmDRpEi0tLWzfvp2uri7WrFnDsccey8MPP8yKFSuA7mXjI0eOpKysrKgaWY2NjZxwwgm5r8844wyefvppoPsX/Wc/+9mSeilUp9heCtWZPHkyjY2NdHV10dHRwbp165g0aVLk/RSqE3U/nZ2dXHHFFbS1tdHc3MyaNWv4zGc+E3k/heqU0s8XvvAFfve73wHwxhtvcMwxx3DyySfz+uuvs3PnTlpaWnj11VeZMWNGSf2EqVNsP/lqFBJ1L4VE/d4A3HHHHSxatIhp06bF2k++OlH3s3XrVhYtWkRnZyfpdDp3f9T9FKoTdT/z58/nqaee4he/+AV33XUXs2bN4pprrom8n0J1ovzsrF27lltuuYUgCOjs7OTVV19lypQpkfdSqE7U702hv9VR9xP1nKBQnawo5wVh6kTdTxzzgjB1ou4n6nlBmBql9ALd/8Hd872OY04Qpk7U/RQSdT+FxNFP1POCMHWi7ieOecFga0TdSxxzgjB1ou4njnlBmDpR9xPHvCBMnbh+t0U5Lxhsjah7iWNOEKZO1P3EkRWEqVNKP6NHj879o/brr7/OUUcdFcu8IEydqPsppNh+wtSIo5eo5wRh6pT62QkjEfRdl32Qa2xsZPHixWzcuJHy8nLGjRvHV77yFZYuXUpNTQ3V1dXcd999jBo1itWrV/PAAw/Q1tbG5z//eRYuXMj777/PbbfdlvvjePvtt/f7F6YwNQBmzpzJiy++mHt+Op3mzjvvZP369aRSKe6//34mTJhQUi/56gyml7B1vv/97/PCCy8QBAEXXHAB8+fPj6WffHXi6Oexxx5j+fLlVFVVccstt3DKKafE0k++OqX088ADD7B48WKam5tJpVIsXryY0aNH8/TTT7N06VISiQTz5s3j4osvLqmfMHWK/ezkq9HQ0MD8+fPZuXMnmzdvZsqUKSxYsIDTTjst0l4K1Zk0aVKk782uXbv40pe+1Os15s+fz6xZsyLtp1CdqVOnRv6ztmTJElauXEkQBMyaNYvrr78+lp+1fHXi+OxkvfTSSzz55JPcf//9sfSTr06Un53Ro0dz3333sWrVKpLJJGeddRbf+MY3YuklX5043pt8f6vj6KfYOUExPwNRzgvC1Imjn6jnBWHqxNFPsfOCUmuU0stDDz3EQw89xPTp07nwwgtzY6OeE4SpE3U/6XQ68nlBmDqlzAvy1Xn33XcjnxeEqVPKvKDQz0Gx84JSa8Tx2cmKak4Qpk4c/UQ9LwhTJ45+op4XhKkT189bMfOCUmvE0UvUc4IwdeLoJ+qsIEydUvq56aab+O53v0tFRQX19fV85zvfYfjw4ZHPC8LUibqf2traoucFpdYoZU6Qr87HH38c+ZwgTJ3BzgmiMOQCZkmSJEmSJEnSweGQ2CJDkiRJkiRJkrT/GTBLkiRJkiRJkopiwCxJkiRJkiRJKooBsyRJkiRJkiSpKAbMkiRJkiRJkqSiGDBLkiRJQ8SKFSuYOnUqV155JZ2dnQf6cCRJkiQDZkmSJGkgixcvZurUqcyYMYM9e/YcsONoamrijjvu4JJLLuHHP/4x5eXlB+xYJEmSpCwDZkmSJKmA9vZ2nnzySZLJJLt27eLpp58+IMeRTqe5+eab+frXv859991HRUXFATkOSZIkqS8DZkmSJKmA//u//2Pbtm1cfvnlJBIJfvGLXxyQ4ygrK+Oxxx5jwYIFB6S+JEmSVIgBsyRJklTAsmXLALjyyiuZPn06q1at4i9/+UuvMS+99BJTp07lkUceYdWqVXzta1/jlFNO4ZRTTuG6665j06ZNubHvv/8+U6dO5Y477uDPf/4z//AP/8CMGTM46aSTuPLKK3n77bf7HcMf//hHrrnmGs444wxOPPFEZs+ezeLFi9mxY0e/sW+99RY33HADp59+Op/5zGeYNWsW3/72t9m8eXPE3xlJkiSpmwGzJEmSlMe7777Lyy+/zCmnnMLRRx/Nl770JQCWL1+ed/zatWu5/vrr+Zu/+Ru+/e1v88UvfpGVK1dy7bXX9hv70UcfcdVVV3Hcccdxxx138LWvfY0//vGPzJ8/n/b29ty4lStX8vd///ds2bKFhQsXcvfddzNz5kweffRR5s2b12tP6NWrVzN37lzeeustrr76au69914uuOACnnrqKS677DKam5sj/g5JkiRJ4JlBJEmSpDyy22F8+ctfBuCCCy7gn/7pn/jVr37FzTffTCqV6jV+xYoVLFu2jJNPPhmAOXPm0NTUxB/+8AeampqYNGlSbuxzzz3Hv/zLv3DBBRfk7tuxYwe//OUvWbVqFTNnzqS9vZ1FixZxwgkn8J//+Z9UVlYCcMkll3Dsscdy33338fjjjzN//nwAFi1aRENDA8uWLaOhoSH3uqeddhrXXnstS5Ys4c4774z+GyVJkqTDmiuYJUmSpD6yJ/erqqrKhcB1dXWce+65bNu2jZUrV/Z7zqmnnpoLl7NOPPFEoHvFck/jx4/vFS73HJtdafzKK6/Q3NzMueeeS1tbGzt37sxdzj77bBKJBC+99BIA69ev58033+QLX/gCZWVlvcZOnz6dESNG8PLLL0fwnZEkSZJ6cwWzJEmS1MeKFSvYtm0bF198MXV1dbn7L7nkEn7961+zfPlyLrzwwl7PmTx5cr/Xya467uzsDD02ux/zgw8+yIMPPpj3OD/88MNeY5ctW5bbN7qvrq6uvPdLkiRJpTBgliRJkvrIbo9x2mmn8d577+XuHz9+PKNHj+bFF1/st+1F3y0zBjKYsS0tLQBcc801fP7zn887pqqqqtfYOXPmMGfOnLxjE4nEoI9PkiRJGiwDZkmSJKmHd955J7edxEB7Fv/Xf/0XN910U2zHUVtbC0B9fT2f/exnBzW2qqpqn2MlSZKkKBkwS5IkST1kVy9fdtllnHnmmf0eb2tr47bbbuOXv/wlCxcujO04pkyZAsBrr73W77EgCNi+fXvuZH7Zsa+++mre19q6dSsjR46M6UglSZJ0OPMkf5IkSVJG9uR+qVSKm2++mfPPP7/f5W//9m8555xzaG5u5tlnn43tWGbMmMGoUaN47rnnePfdd3s99t///d+ceeaZPPXUUwAcddRRfOpTn2Lt2rW88MILvcauXr2aM844g3/913+N7VglSZJ0+DJgliRJkjJWrFjB9u3bueiiiwZc8Ttv3jwAli9fHtuxpFIpFi1aRFdXF1dccQU//vGP+dWvfsW9997L7bffztFHH81ZZ52VG3/XXXdRVVXF9ddfz0MPPcSvf/1rHnzwQa6++mpGjRrFRRddFNuxSpIk6fDlFhmSJElSxrJlywC48sorBxx32mmn8Vd/9Vf87ne/48ILL4zteM4991x+9rOfsWTJEpYsWUJrayvjxo3jiiuu4JprrqGuri439pRTTmHZsmU88sgjPPbYY+zatYuGhgbOPvtsFi5cyBFHHBHbcUqSJOnwlQiCIDjQByFJkiRJkiRJGnrcIkOSJEmSJEmSVBQDZkmSJEmSJElSUQyYJUmSJEmSJElFMWCWJEmSJEmSJBXFgFmSJEmSJEmSVBQDZkmSJEmSJElSUQyYJUmSJEmSJElFMWCWJEmSJEmSJBXFgFmSJEmSJEmSVJT/H0Q4cM9eTwvYAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 1440x720 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Définition du graphe\n",
"plt.style.use('seaborn')\n",
"plt.figure(figsize=(20, 10))\n",
"\n",
"# Représentation du prix du blé par des barres noires\n",
"plt.bar(\n",
" df['Year'], \n",
" df['Wheat'], \n",
" width=5, \n",
" color='black', \n",
" edgecolor='black',\n",
" linewidth=0.5,\n",
" label='Prix du blé (shillings)',\n",
" zorder=1\n",
")\n",
"\n",
"# Suppression des salaires nuls\n",
"salaire_non_nuls = df.dropna(subset=['Wages'])\n",
"\n",
"# Représentation de la surface bleue\n",
"plt.fill_between(\n",
" salaire_non_nuls['Year'], \n",
" salaire_non_nuls['Wages'], \n",
" color='blue', \n",
" alpha=0.5,\n",
" zorder=2\n",
")\n",
"\n",
"# Représentation du salaire moyen hebdomadaire par une courbe rouge, délimitant la surface bleue\n",
"plt.plot(\n",
" salaire_non_nuls['Year'], \n",
" salaire_non_nuls['Wages'], \n",
" color='red', \n",
" linewidth=2,\n",
" label='Salaires (shillings/semaine)',\n",
" zorder=3\n",
")\n",
"\n",
"# Ajout de la légende\n",
"plt.title(\"Évolution du prix du blé et des salaires entre 1565 et 1821\", fontsize=25, pad=20)\n",
"plt.xlabel(\"Année\", fontsize=20)\n",
"plt.ylabel(\"Shillings\", fontsize=20)\n",
"plt.xticks(range(1565, 1830, 5))\n",
"plt.xlim(1565, 1830)\n",
"plt.grid(axis='y')\n",
"plt.legend(frameon=True) \n",
"\n",
"# Affichage du graphe\n",
"plt.tight_layout()\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
......@@ -16,10 +187,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
rownames,Year,Wheat,Wages
1,1565,41,5
2,1570,45,5.05
3,1575,42,5.08
4,1580,49,5.12
5,1585,41.5,5.15
6,1590,47,5.25
7,1595,64,5.54
8,1600,27,5.61
9,1605,33,5.69
10,1610,32,5.78
11,1615,33,5.94
12,1620,35,6.01
13,1625,33,6.12
14,1630,45,6.22
15,1635,33,6.3
16,1640,39,6.37
17,1645,53,6.45
18,1650,42,6.5
19,1655,40.5,6.6
20,1660,46.5,6.75
21,1665,32,6.8
22,1670,37,6.9
23,1675,43,7
24,1680,35,7.3
25,1685,27,7.6
26,1690,40,8
27,1695,50,8.5
28,1700,30,9
29,1705,32,10
30,1710,44,11
31,1715,33,11.75
32,1720,29,12.5
33,1725,39,13
34,1730,26,13.3
35,1735,32,13.6
36,1740,27,14
37,1745,27.5,14.5
38,1750,31,15
39,1755,35.5,15.7
40,1760,31,16.5
41,1765,43,17.6
42,1770,47,18.5
43,1775,44,19.5
44,1780,46,21
45,1785,42,23
46,1790,47.5,25.5
47,1795,76,27.5
48,1800,79,28.5
49,1805,81,29.5
50,1810,99,30
51,1815,78,
52,1820,54,
53,1821,54,
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment