diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..f1e6a93580c9c49e89311ebc624f5cd61074e744 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -1,5 +1,2517 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence du syndrome grippal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek\n",
+ "import os.path\n",
+ "import urllib.request"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Rien ne garantit que l'URL utilisée reste toujours valable. Nous avons fait une copie des données en local, puis nous avons utilisé cette copie pour les calculs."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "f = \"local.txt\"\n",
+ "\n",
+ "if not os.path.exists(f):\n",
+ " urllib.request.urlretrieve(\"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\", f)\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202513 \n",
+ " 3 \n",
+ " 43291 \n",
+ " 36033.0 \n",
+ " 50549.0 \n",
+ " 65 \n",
+ " 54.0 \n",
+ " 76.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202512 \n",
+ " 3 \n",
+ " 53093 \n",
+ " 46098.0 \n",
+ " 60088.0 \n",
+ " 79 \n",
+ " 69.0 \n",
+ " 89.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202511 \n",
+ " 3 \n",
+ " 59469 \n",
+ " 52154.0 \n",
+ " 66784.0 \n",
+ " 89 \n",
+ " 78.0 \n",
+ " 100.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202510 \n",
+ " 3 \n",
+ " 60334 \n",
+ " 53048.0 \n",
+ " 67620.0 \n",
+ " 90 \n",
+ " 79.0 \n",
+ " 101.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202509 \n",
+ " 3 \n",
+ " 84531 \n",
+ " 74994.0 \n",
+ " 94068.0 \n",
+ " 126 \n",
+ " 112.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202508 \n",
+ " 3 \n",
+ " 136020 \n",
+ " 124824.0 \n",
+ " 147216.0 \n",
+ " 203 \n",
+ " 186.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202507 \n",
+ " 3 \n",
+ " 208952 \n",
+ " 195988.0 \n",
+ " 221916.0 \n",
+ " 312 \n",
+ " 293.0 \n",
+ " 331.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202506 \n",
+ " 3 \n",
+ " 273519 \n",
+ " 258159.0 \n",
+ " 288879.0 \n",
+ " 408 \n",
+ " 385.0 \n",
+ " 431.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202505 \n",
+ " 3 \n",
+ " 334395 \n",
+ " 318416.0 \n",
+ " 350374.0 \n",
+ " 499 \n",
+ " 475.0 \n",
+ " 523.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202504 \n",
+ " 3 \n",
+ " 350043 \n",
+ " 332885.0 \n",
+ " 367201.0 \n",
+ " 522 \n",
+ " 496.0 \n",
+ " 548.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202503 \n",
+ " 3 \n",
+ " 252772 \n",
+ " 238917.0 \n",
+ " 266627.0 \n",
+ " 377 \n",
+ " 356.0 \n",
+ " 398.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202502 \n",
+ " 3 \n",
+ " 257247 \n",
+ " 242991.0 \n",
+ " 271503.0 \n",
+ " 384 \n",
+ " 363.0 \n",
+ " 405.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202501 \n",
+ " 3 \n",
+ " 231549 \n",
+ " 214627.0 \n",
+ " 248471.0 \n",
+ " 345 \n",
+ " 320.0 \n",
+ " 370.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202452 \n",
+ " 3 \n",
+ " 201726 \n",
+ " 185870.0 \n",
+ " 217582.0 \n",
+ " 302 \n",
+ " 278.0 \n",
+ " 326.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202451 \n",
+ " 3 \n",
+ " 201697 \n",
+ " 187843.0 \n",
+ " 215551.0 \n",
+ " 302 \n",
+ " 281.0 \n",
+ " 323.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202450 \n",
+ " 3 \n",
+ " 136694 \n",
+ " 126369.0 \n",
+ " 147019.0 \n",
+ " 205 \n",
+ " 190.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202449 \n",
+ " 3 \n",
+ " 108487 \n",
+ " 99037.0 \n",
+ " 117937.0 \n",
+ " 163 \n",
+ " 149.0 \n",
+ " 177.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202448 \n",
+ " 3 \n",
+ " 87381 \n",
+ " 78687.0 \n",
+ " 96075.0 \n",
+ " 131 \n",
+ " 118.0 \n",
+ " 144.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202447 \n",
+ " 3 \n",
+ " 76286 \n",
+ " 67626.0 \n",
+ " 84946.0 \n",
+ " 114 \n",
+ " 101.0 \n",
+ " 127.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202446 \n",
+ " 3 \n",
+ " 56399 \n",
+ " 49006.0 \n",
+ " 63792.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202445 \n",
+ " 3 \n",
+ " 47347 \n",
+ " 40843.0 \n",
+ " 53851.0 \n",
+ " 71 \n",
+ " 61.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202444 \n",
+ " 3 \n",
+ " 36039 \n",
+ " 30122.0 \n",
+ " 41956.0 \n",
+ " 54 \n",
+ " 45.0 \n",
+ " 63.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202443 \n",
+ " 3 \n",
+ " 46572 \n",
+ " 39928.0 \n",
+ " 53216.0 \n",
+ " 70 \n",
+ " 60.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202442 \n",
+ " 3 \n",
+ " 67785 \n",
+ " 60009.0 \n",
+ " 75561.0 \n",
+ " 102 \n",
+ " 90.0 \n",
+ " 114.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202441 \n",
+ " 3 \n",
+ " 79435 \n",
+ " 71386.0 \n",
+ " 87484.0 \n",
+ " 119 \n",
+ " 107.0 \n",
+ " 131.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202440 \n",
+ " 3 \n",
+ " 84965 \n",
+ " 76555.0 \n",
+ " 93375.0 \n",
+ " 127 \n",
+ " 114.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202439 \n",
+ " 3 \n",
+ " 91660 \n",
+ " 82937.0 \n",
+ " 100383.0 \n",
+ " 137 \n",
+ " 124.0 \n",
+ " 150.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202438 \n",
+ " 3 \n",
+ " 91786 \n",
+ " 82903.0 \n",
+ " 100669.0 \n",
+ " 138 \n",
+ " 125.0 \n",
+ " 151.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202437 \n",
+ " 3 \n",
+ " 56460 \n",
+ " 49319.0 \n",
+ " 63601.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202436 \n",
+ " 3 \n",
+ " 33657 \n",
+ " 27906.0 \n",
+ " 39408.0 \n",
+ " 50 \n",
+ " 41.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2079 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2080 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2081 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2082 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2083 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2084 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2085 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2086 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2087 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2088 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2089 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2090 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2091 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2092 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2093 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2094 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2095 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2096 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2097 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2098 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2099 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2100 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2101 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2102 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2103 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2104 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2105 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2106 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2107 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2108 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2109 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202513 3 43291 36033.0 50549.0 65 54.0 \n",
+ "1 202512 3 53093 46098.0 60088.0 79 69.0 \n",
+ "2 202511 3 59469 52154.0 66784.0 89 78.0 \n",
+ "3 202510 3 60334 53048.0 67620.0 90 79.0 \n",
+ "4 202509 3 84531 74994.0 94068.0 126 112.0 \n",
+ "5 202508 3 136020 124824.0 147216.0 203 186.0 \n",
+ "6 202507 3 208952 195988.0 221916.0 312 293.0 \n",
+ "7 202506 3 273519 258159.0 288879.0 408 385.0 \n",
+ "8 202505 3 334395 318416.0 350374.0 499 475.0 \n",
+ "9 202504 3 350043 332885.0 367201.0 522 496.0 \n",
+ "10 202503 3 252772 238917.0 266627.0 377 356.0 \n",
+ "11 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "12 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "13 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "14 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "15 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "16 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "17 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "18 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "19 202446 3 56399 49006.0 63792.0 85 74.0 \n",
+ "20 202445 3 47347 40843.0 53851.0 71 61.0 \n",
+ "21 202444 3 36039 30122.0 41956.0 54 45.0 \n",
+ "22 202443 3 46572 39928.0 53216.0 70 60.0 \n",
+ "23 202442 3 67785 60009.0 75561.0 102 90.0 \n",
+ "24 202441 3 79435 71386.0 87484.0 119 107.0 \n",
+ "25 202440 3 84965 76555.0 93375.0 127 114.0 \n",
+ "26 202439 3 91660 82937.0 100383.0 137 124.0 \n",
+ "27 202438 3 91786 82903.0 100669.0 138 125.0 \n",
+ "28 202437 3 56460 49319.0 63601.0 85 74.0 \n",
+ "29 202436 3 33657 27906.0 39408.0 50 41.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2079 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2080 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2081 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2082 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2083 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2084 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2085 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2086 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2087 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2088 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2089 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2090 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2091 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2092 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2093 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2094 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2095 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2096 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2097 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2098 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2099 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2100 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2101 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2102 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2103 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2104 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2105 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2106 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2107 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2108 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 76.0 FR France \n",
+ "1 89.0 FR France \n",
+ "2 100.0 FR France \n",
+ "3 101.0 FR France \n",
+ "4 140.0 FR France \n",
+ "5 220.0 FR France \n",
+ "6 331.0 FR France \n",
+ "7 431.0 FR France \n",
+ "8 523.0 FR France \n",
+ "9 548.0 FR France \n",
+ "10 398.0 FR France \n",
+ "11 405.0 FR France \n",
+ "12 370.0 FR France \n",
+ "13 326.0 FR France \n",
+ "14 323.0 FR France \n",
+ "15 220.0 FR France \n",
+ "16 177.0 FR France \n",
+ "17 144.0 FR France \n",
+ "18 127.0 FR France \n",
+ "19 96.0 FR France \n",
+ "20 81.0 FR France \n",
+ "21 63.0 FR France \n",
+ "22 80.0 FR France \n",
+ "23 114.0 FR France \n",
+ "24 131.0 FR France \n",
+ "25 140.0 FR France \n",
+ "26 150.0 FR France \n",
+ "27 151.0 FR France \n",
+ "28 96.0 FR France \n",
+ "29 59.0 FR France \n",
+ "... ... ... ... \n",
+ "2079 59.0 FR France \n",
+ "2080 64.0 FR France \n",
+ "2081 97.0 FR France \n",
+ "2082 93.0 FR France \n",
+ "2083 80.0 FR France \n",
+ "2084 116.0 FR France \n",
+ "2085 149.0 FR France \n",
+ "2086 281.0 FR France \n",
+ "2087 395.0 FR France \n",
+ "2088 485.0 FR France \n",
+ "2089 544.0 FR France \n",
+ "2090 689.0 FR France \n",
+ "2091 722.0 FR France \n",
+ "2092 762.0 FR France \n",
+ "2093 926.0 FR France \n",
+ "2094 1113.0 FR France \n",
+ "2095 1236.0 FR France \n",
+ "2096 832.0 FR France \n",
+ "2097 459.0 FR France \n",
+ "2098 207.0 FR France \n",
+ "2099 190.0 FR France \n",
+ "2100 198.0 FR France \n",
+ "2101 224.0 FR France \n",
+ "2102 266.0 FR France \n",
+ "2103 219.0 FR France \n",
+ "2104 176.0 FR France \n",
+ "2105 163.0 FR France \n",
+ "2106 195.0 FR France \n",
+ "2107 308.0 FR France \n",
+ "2108 213.0 FR France \n",
+ "\n",
+ "[2109 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(f, encoding = 'iso-8859-1', skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1872 \n",
+ " 198919 \n",
+ " 3 \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " - \n",
+ " NaN \n",
+ " NaN \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1872 198919 3 - NaN NaN - NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1872 FR France "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202513 \n",
+ " 3 \n",
+ " 43291 \n",
+ " 36033.0 \n",
+ " 50549.0 \n",
+ " 65 \n",
+ " 54.0 \n",
+ " 76.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202512 \n",
+ " 3 \n",
+ " 53093 \n",
+ " 46098.0 \n",
+ " 60088.0 \n",
+ " 79 \n",
+ " 69.0 \n",
+ " 89.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202511 \n",
+ " 3 \n",
+ " 59469 \n",
+ " 52154.0 \n",
+ " 66784.0 \n",
+ " 89 \n",
+ " 78.0 \n",
+ " 100.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202510 \n",
+ " 3 \n",
+ " 60334 \n",
+ " 53048.0 \n",
+ " 67620.0 \n",
+ " 90 \n",
+ " 79.0 \n",
+ " 101.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202509 \n",
+ " 3 \n",
+ " 84531 \n",
+ " 74994.0 \n",
+ " 94068.0 \n",
+ " 126 \n",
+ " 112.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202508 \n",
+ " 3 \n",
+ " 136020 \n",
+ " 124824.0 \n",
+ " 147216.0 \n",
+ " 203 \n",
+ " 186.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202507 \n",
+ " 3 \n",
+ " 208952 \n",
+ " 195988.0 \n",
+ " 221916.0 \n",
+ " 312 \n",
+ " 293.0 \n",
+ " 331.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202506 \n",
+ " 3 \n",
+ " 273519 \n",
+ " 258159.0 \n",
+ " 288879.0 \n",
+ " 408 \n",
+ " 385.0 \n",
+ " 431.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202505 \n",
+ " 3 \n",
+ " 334395 \n",
+ " 318416.0 \n",
+ " 350374.0 \n",
+ " 499 \n",
+ " 475.0 \n",
+ " 523.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202504 \n",
+ " 3 \n",
+ " 350043 \n",
+ " 332885.0 \n",
+ " 367201.0 \n",
+ " 522 \n",
+ " 496.0 \n",
+ " 548.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202503 \n",
+ " 3 \n",
+ " 252772 \n",
+ " 238917.0 \n",
+ " 266627.0 \n",
+ " 377 \n",
+ " 356.0 \n",
+ " 398.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202502 \n",
+ " 3 \n",
+ " 257247 \n",
+ " 242991.0 \n",
+ " 271503.0 \n",
+ " 384 \n",
+ " 363.0 \n",
+ " 405.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202501 \n",
+ " 3 \n",
+ " 231549 \n",
+ " 214627.0 \n",
+ " 248471.0 \n",
+ " 345 \n",
+ " 320.0 \n",
+ " 370.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202452 \n",
+ " 3 \n",
+ " 201726 \n",
+ " 185870.0 \n",
+ " 217582.0 \n",
+ " 302 \n",
+ " 278.0 \n",
+ " 326.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202451 \n",
+ " 3 \n",
+ " 201697 \n",
+ " 187843.0 \n",
+ " 215551.0 \n",
+ " 302 \n",
+ " 281.0 \n",
+ " 323.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202450 \n",
+ " 3 \n",
+ " 136694 \n",
+ " 126369.0 \n",
+ " 147019.0 \n",
+ " 205 \n",
+ " 190.0 \n",
+ " 220.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202449 \n",
+ " 3 \n",
+ " 108487 \n",
+ " 99037.0 \n",
+ " 117937.0 \n",
+ " 163 \n",
+ " 149.0 \n",
+ " 177.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202448 \n",
+ " 3 \n",
+ " 87381 \n",
+ " 78687.0 \n",
+ " 96075.0 \n",
+ " 131 \n",
+ " 118.0 \n",
+ " 144.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202447 \n",
+ " 3 \n",
+ " 76286 \n",
+ " 67626.0 \n",
+ " 84946.0 \n",
+ " 114 \n",
+ " 101.0 \n",
+ " 127.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202446 \n",
+ " 3 \n",
+ " 56399 \n",
+ " 49006.0 \n",
+ " 63792.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202445 \n",
+ " 3 \n",
+ " 47347 \n",
+ " 40843.0 \n",
+ " 53851.0 \n",
+ " 71 \n",
+ " 61.0 \n",
+ " 81.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202444 \n",
+ " 3 \n",
+ " 36039 \n",
+ " 30122.0 \n",
+ " 41956.0 \n",
+ " 54 \n",
+ " 45.0 \n",
+ " 63.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202443 \n",
+ " 3 \n",
+ " 46572 \n",
+ " 39928.0 \n",
+ " 53216.0 \n",
+ " 70 \n",
+ " 60.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202442 \n",
+ " 3 \n",
+ " 67785 \n",
+ " 60009.0 \n",
+ " 75561.0 \n",
+ " 102 \n",
+ " 90.0 \n",
+ " 114.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202441 \n",
+ " 3 \n",
+ " 79435 \n",
+ " 71386.0 \n",
+ " 87484.0 \n",
+ " 119 \n",
+ " 107.0 \n",
+ " 131.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202440 \n",
+ " 3 \n",
+ " 84965 \n",
+ " 76555.0 \n",
+ " 93375.0 \n",
+ " 127 \n",
+ " 114.0 \n",
+ " 140.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202439 \n",
+ " 3 \n",
+ " 91660 \n",
+ " 82937.0 \n",
+ " 100383.0 \n",
+ " 137 \n",
+ " 124.0 \n",
+ " 150.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202438 \n",
+ " 3 \n",
+ " 91786 \n",
+ " 82903.0 \n",
+ " 100669.0 \n",
+ " 138 \n",
+ " 125.0 \n",
+ " 151.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202437 \n",
+ " 3 \n",
+ " 56460 \n",
+ " 49319.0 \n",
+ " 63601.0 \n",
+ " 85 \n",
+ " 74.0 \n",
+ " 96.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202436 \n",
+ " 3 \n",
+ " 33657 \n",
+ " 27906.0 \n",
+ " 39408.0 \n",
+ " 50 \n",
+ " 41.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2079 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2080 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2081 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2082 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2083 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2084 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2085 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2086 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2087 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2088 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2089 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2090 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2091 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2092 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2093 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2094 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2095 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2096 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2097 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2098 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2099 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2100 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2101 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2102 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2103 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2104 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2105 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2106 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2107 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2108 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2108 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202513 3 43291 36033.0 50549.0 65 54.0 \n",
+ "1 202512 3 53093 46098.0 60088.0 79 69.0 \n",
+ "2 202511 3 59469 52154.0 66784.0 89 78.0 \n",
+ "3 202510 3 60334 53048.0 67620.0 90 79.0 \n",
+ "4 202509 3 84531 74994.0 94068.0 126 112.0 \n",
+ "5 202508 3 136020 124824.0 147216.0 203 186.0 \n",
+ "6 202507 3 208952 195988.0 221916.0 312 293.0 \n",
+ "7 202506 3 273519 258159.0 288879.0 408 385.0 \n",
+ "8 202505 3 334395 318416.0 350374.0 499 475.0 \n",
+ "9 202504 3 350043 332885.0 367201.0 522 496.0 \n",
+ "10 202503 3 252772 238917.0 266627.0 377 356.0 \n",
+ "11 202502 3 257247 242991.0 271503.0 384 363.0 \n",
+ "12 202501 3 231549 214627.0 248471.0 345 320.0 \n",
+ "13 202452 3 201726 185870.0 217582.0 302 278.0 \n",
+ "14 202451 3 201697 187843.0 215551.0 302 281.0 \n",
+ "15 202450 3 136694 126369.0 147019.0 205 190.0 \n",
+ "16 202449 3 108487 99037.0 117937.0 163 149.0 \n",
+ "17 202448 3 87381 78687.0 96075.0 131 118.0 \n",
+ "18 202447 3 76286 67626.0 84946.0 114 101.0 \n",
+ "19 202446 3 56399 49006.0 63792.0 85 74.0 \n",
+ "20 202445 3 47347 40843.0 53851.0 71 61.0 \n",
+ "21 202444 3 36039 30122.0 41956.0 54 45.0 \n",
+ "22 202443 3 46572 39928.0 53216.0 70 60.0 \n",
+ "23 202442 3 67785 60009.0 75561.0 102 90.0 \n",
+ "24 202441 3 79435 71386.0 87484.0 119 107.0 \n",
+ "25 202440 3 84965 76555.0 93375.0 127 114.0 \n",
+ "26 202439 3 91660 82937.0 100383.0 137 124.0 \n",
+ "27 202438 3 91786 82903.0 100669.0 138 125.0 \n",
+ "28 202437 3 56460 49319.0 63601.0 85 74.0 \n",
+ "29 202436 3 33657 27906.0 39408.0 50 41.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2079 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "2080 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "2081 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "2082 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "2083 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "2084 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "2085 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "2086 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "2087 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "2088 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "2089 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "2090 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "2091 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "2092 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "2093 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "2094 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "2095 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "2096 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "2097 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "2098 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "2099 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "2100 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "2101 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "2102 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "2103 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "2104 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "2105 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "2106 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "2107 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "2108 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 76.0 FR France \n",
+ "1 89.0 FR France \n",
+ "2 100.0 FR France \n",
+ "3 101.0 FR France \n",
+ "4 140.0 FR France \n",
+ "5 220.0 FR France \n",
+ "6 331.0 FR France \n",
+ "7 431.0 FR France \n",
+ "8 523.0 FR France \n",
+ "9 548.0 FR France \n",
+ "10 398.0 FR France \n",
+ "11 405.0 FR France \n",
+ "12 370.0 FR France \n",
+ "13 326.0 FR France \n",
+ "14 323.0 FR France \n",
+ "15 220.0 FR France \n",
+ "16 177.0 FR France \n",
+ "17 144.0 FR France \n",
+ "18 127.0 FR France \n",
+ "19 96.0 FR France \n",
+ "20 81.0 FR France \n",
+ "21 63.0 FR France \n",
+ "22 80.0 FR France \n",
+ "23 114.0 FR France \n",
+ "24 131.0 FR France \n",
+ "25 140.0 FR France \n",
+ "26 150.0 FR France \n",
+ "27 151.0 FR France \n",
+ "28 96.0 FR France \n",
+ "29 59.0 FR France \n",
+ "... ... ... ... \n",
+ "2079 59.0 FR France \n",
+ "2080 64.0 FR France \n",
+ "2081 97.0 FR France \n",
+ "2082 93.0 FR France \n",
+ "2083 80.0 FR France \n",
+ "2084 116.0 FR France \n",
+ "2085 149.0 FR France \n",
+ "2086 281.0 FR France \n",
+ "2087 395.0 FR France \n",
+ "2088 485.0 FR France \n",
+ "2089 544.0 FR France \n",
+ "2090 689.0 FR France \n",
+ "2091 722.0 FR France \n",
+ "2092 762.0 FR France \n",
+ "2093 926.0 FR France \n",
+ "2094 1113.0 FR France \n",
+ "2095 1236.0 FR France \n",
+ "2096 832.0 FR France \n",
+ "2097 459.0 FR France \n",
+ "2098 207.0 FR France \n",
+ "2099 190.0 FR France \n",
+ "2100 198.0 FR France \n",
+ "2101 224.0 FR France \n",
+ "2102 266.0 FR France \n",
+ "2103 219.0 FR France \n",
+ "2104 176.0 FR France \n",
+ "2105 163.0 FR France \n",
+ "2106 195.0 FR France \n",
+ "2107 308.0 FR France \n",
+ "2108 213.0 FR France \n",
+ "\n",
+ "[2108 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Le code a changé comparé à la version dans la vidéo. Application de la version mise à jour sur [GitLab](https://gitlab.inria.fr/learninglab/mooc-rr/mooc-rr-ressources/blob/master/module3/ressources/analyse-syndrome-grippal-jupyter.ipynb).\n",
+ "Une conversion a également été nécessaire, une erreur se produit sinon."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmcHVWZ93/Pvbf79pal01kIWQhLkB0kIQQURVBAcERHeI2jEBVFHd/Rd8ZxBMcZFAbFZUQZcWEEBBcWUQcYBAxhRyAkEMhOQva9k+6kO73e5bx/1Dl1T1WdWm7de/vemzzfz6c/t7qqzlJVp85znuWcIiEEGIZhGKZUEtWuAMMwDHNwwAKFYRiGKQssUBiGYZiywAKFYRiGKQssUBiGYZiywAKFYRiGKQssUBiGYZiywAKFYRiGKQssUBiGYZiykKp2BUaS8ePHixkzZlS7GgzDMHXFkiVL9gghJoSdd0gJlBkzZmDx4sXVrgbDMExdQUSbopzHJi+GYRimLLBAYRiGYcoCCxSGYRimLLBAYRiGYcoCCxSGYRimLIQKFCK6g4h2E9Fybd84IlpARGvlb7t27FoiWkdEa4joQm3/LCJaJo/dQkQk96eJ6D65/2UimqGlmS/LWEtE87X9R8pz18q0jaXfCoZhGKYUomgovwJwkWvfNQAWCiFmAlgo/wcRnQBgHoATZZqfElFSpvkZgKsBzJR/Ks+rAHQLIY4BcDOA78q8xgG4DsCZAOYAuE4TXN8FcLMsv1vmwTAMw1SRUIEihHgWQJdr96UA7pLbdwH4kLb/XiHEkBBiA4B1AOYQ0WQAo4UQLwrrm8N3u9KovB4AcL7UXi4EsEAI0SWE6AawAMBF8th58lx3+Qcdb+7qxaIN7tvPMAxTe8Sd2DhJCLEDAIQQO4hootw/BcBL2nlb5b6M3HbvV2m2yLyyRLQfQIe+35WmA8A+IUTWkNdBxwU3PwsA2HjTJVWuCcMwTDDldsqTYZ8I2B8nTVBe3goRXU1Ei4locWdnp99pDMMwTInEFSi7pBkL8ne33L8VwDTtvKkAtsv9Uw37HWmIKAVgDCwTm19eewCMlee68/IghLhNCDFbCDF7woTQpWgYhmGYmMQVKA8BUFFX8wE8qO2fJyO3joTlfF8kzWO9RDRX+kCudKVReV0G4EnpZ3kcwAVE1C6d8RcAeFwee0qe6y6fYRiGqRKhPhQiugfAuQDGE9FWWJFXNwG4n4iuArAZwOUAIIRYQUT3A1gJIAvgi0KInMzqC7AixpoBPCr/AOB2AL8monWwNJN5Mq8uIroBwCvyvOuFEMo7/TUA9xLRfwB4TebBMAzDVBGyBvyHBrNnzxb1ttrwjGseAcBOeYZhqgcRLRFCzA47j2fKMwzDMGWBBQrDMAxTFligMAzDMGWBBQrDMAxTFligMAzDMGWBBQrDMAxTFligMAzDMGWBBQrDMAxTFligMAzDMGWBBQrDMAxTFligMAzDMGWBBQrDMAxTFligMAzDMGWBBQrDMAxTFligMEWz58AQZlzzCB55Y0e1q8IwTA3BAoUpmjd39QIA7n5xY1XrwTBMbcEChWEYhikLLFAYhmGYssAChSkaAlW7CgzD1CAsUJjYiGpXgGGYmoIFClM0xAoKwzAGWKAw8WEVhWEYDRYoTNGwgsIwjAkWKAzDMExZYIHCMAzDlAUWKExsBDtRGIbRYIHCFA1xmBfDMAZYoDCxEaygMAyjwQKFKRpWUBiGMcECpY7J5wVm/8cTuH/xlmpXhWEYpjSBQkT/SEQriGg5Ed1DRE1ENI6IFhDRWvnbrp1/LRGtI6I1RHShtn8WES2Tx24haaQnojQR3Sf3v0xEM7Q082UZa4lofinXUQ8Ig30pk89jz4Eh/OufllWhRgzDME5iCxQimgLgSwBmCyFOApAEMA/ANQAWCiFmAlgo/wcRnSCPnwjgIgA/JaKkzO5nAK4GMFP+XST3XwWgWwhxDICbAXxX5jUOwHUAzgQwB8B1uuA6VKj2Io3sQmEYRqdUk1cKQDMRpQC0ANgO4FIAd8njdwH4kNy+FMC9QoghIcQGAOsAzCGiyQBGCyFeFNYw/G5XGpXXAwDOl9rLhQAWCCG6hBDdABagIIQOSmrJAc4uFIZhTMQWKEKIbQB+AGAzgB0A9gsh/gJgkhBihzxnB4CJMskUALqxf6vcN0Vuu/c70gghsgD2A+gIyOuQotrzQExmOIZhDl1KMXm1w9IgjgRwOIBWIvpEUBLDPhGwP24adz2vJqLFRLS4s7MzoHq1jeniqtWfc5QXwzAmSjF5vRfABiFEpxAiA+CPAM4GsEuasSB/d8vztwKYpqWfCstEtlVuu/c70kiz2hgAXQF5eRBC3CaEmC2EmD1hwoSYl1p9grSBagkW1k8YhtEpRaBsBjCXiFqkX+N8AKsAPARARV3NB/Cg3H4IwDwZuXUkLOf7ImkW6yWiuTKfK11pVF6XAXhS+lkeB3ABEbVLTekCuY9hGIapEqm4CYUQLxPRAwBeBZAF8BqA2wC0AbifiK6CJXQul+evIKL7AayU539RCJGT2X0BwK8ANAN4VP4BwO0Afk1E62BpJvNkXl1EdAOAV+R51wshuuJeSz0QZPJiTYFhmFogtkABACHEdbDCd3WGYGkrpvNvBHCjYf9iACcZ9g9CCiTDsTsA3FFklQ8qqueUZycKwzBeeKZ8nWDyk1Q7yKra5TMMU1uwQDkIGOnwXY7yYhjGBAuUOsFk3qq2glDt8hmGqS1YoNQJZpMXd+kMw9QOLFDqmHoVJ99/fDV+/dKmaleDYZgyU1KUF1NdqjZTvsT0tz71FgDgirlHlF4ZhmFqBtZQDgKqpqmwyY1hGA0WKHWCse8WAccqCH9TnmEYEyxQ6piqrzZc1dIZhqk1WKDUCcaw4Tr1oTAMc3DCAqWOYQ2BYZhaggVKncD+b4Zhah0WKHWCebXhan+xsarFMwxTY7BAqWOqttYwO1EYhjHAAqVOMGkj1dYQqh1lxjBMbcECpY6pVodebUHGMExtwgKlTuA+nGGYWocFSj1TJSnDwo1hGBMsUOoE4/L1I18NZ/nVrgDDMDUFC5Q6ploderXDlRmGqU1YoNQLRg2F56EwDFM7sECpE6otPHRqpyYMw9QSLFDqmGprCCxYGIbRYYFSJ9SSU77agoxhmNqEBUodw85xhmFqCRYodYJ5ccgRr4YquXI5C4Ht+wYqlj/DMJWDBUoRPLV6N5Zu2VftatQMldCQ7ntlC86+6Um8trm77HkzDFNZWKAUwad+9Qo+dOsLVSm7lsxblazKoo1dAIC3OvsqVwjDMBWBBUqdUFsmrwpyMF4TwxwisECpY6q22vAIlMGfXGGY+oMFSp1gDBvm0TzDMDVESQKFiMYS0QNEtJqIVhHRWUQ0jogWENFa+duunX8tEa0jojVEdKG2fxYRLZPHbiGyvglIRGkiuk/uf5mIZmhp5ssy1hLR/FKugymOSgoylpEMU7+UqqH8GMBjQojjAJwKYBWAawAsFELMBLBQ/g8iOgHAPAAnArgIwE+JKCnz+RmAqwHMlH8Xyf1XAegWQhwD4GYA35V5jQNwHYAzAcwBcJ0uuA5GTOatane+lRQs/Jlhhqk/YgsUIhoN4F0AbgcAIcSwEGIfgEsB3CVPuwvAh+T2pQDuFUIMCSE2AFgHYA4RTQYwWgjxorBCme52pVF5PQDgfKm9XAhggRCiSwjRDWABCkLokKFakV+1FHHGMEztUIqGchSATgB3EtFrRPRLImoFMEkIsQMA5O9Eef4UAFu09Fvlvily273fkUYIkQWwH0BHQF4HL7W09Eol82ZhxTB1SykCJQXgdAA/E0K8HUAfpHnLB5MRQwTsj5vGWSjR1US0mIgWd3Z2BlSv/qh231vJKDM2eTFM/VGKQNkKYKsQ4mX5/wOwBMwuacaC/N2tnT9NSz8VwHa5f6phvyMNEaUAjAHQFZCXByHEbUKI2UKI2RMmTIhxmbVBLY3bqy3IGIapTWILFCHETgBbiOhtctf5AFYCeAiAirqaD+BBuf0QgHkycutIWM73RdIs1ktEc6V/5EpXGpXXZQCelH6WxwFcQETt0hl/gdx30GLuxA++nv3guyKGOXRIlZj+HwD8logaAawH8ClYQup+IroKwGYAlwOAEGIFEd0PS+hkAXxRCJGT+XwBwK8ANAN4VP4BlsP/10S0DpZmMk/m1UVENwB4RZ53vRCiq8RrqTuq9glg7vYZhjFQkkARQiwFMNtw6Hyf828EcKNh/2IAJxn2D0IKJMOxOwDcUUx965lDLWyYYZj6g2fK1zFV69ArOf+kclnXNDOueQTf/vOqaleDYUqCBUqdUIvaQCWqVIOXOWLc9uz6aleBYUqCBUodc3AvDnnw6Cqvbe7mj4YxhwSlOuWZEeKQWb7+IOTDP/0rkgnCW9++uNpVYZiKwhpKHVO1KK9KLg55kArJXL72LkwIgSdW7qrJujH1CQuUOsG0JEm1w3cruUxKJWbKb9s3gH+6fymGsrnwkw8BHlu+E5+5ezF++Rz7bpjywAKlTqilkXu1BVlcvvGnZfjjq9vw/No91a5KTbBN+nV29gxWuSbMwQILlDqm2kKm3qK8UkmruWdy9SkQy426D43J+uoGPnTrC3jnd5+sdjUYA+yUZ4rGFmQ12i/v3D+I9tYGpFNJx/5GW6DkR6wutbx6sroPjan6EihLt+yrdhUYH+qrJTEOqt5XxfBzVLqDFUJg7ncW4sv3LPUcSyWtCmfzIydQatnfPZy17kNDnWkoTO3CLalOMH5Tvg7noYTJk1IFjjLjLFi1y3MslRh5k1cUbahaWkxOlptMHDxzfpjqwgKljqle2HD8gqOmpJhhXqoDTxk6yQaloYygQIkSklt1TZNhygQLlDqhliKrStNQKnsdSqCYzDgNJfpQ3ti6D7uKjIiKcrX5KkkU1kuYcsMCpY6pmogpoeCwpKVek/ILmMw4pQqUD/7kBbzre08VlSaKAC31mp9fuwdbu/tjp6/lwAGmvuAorzrB6EOpUkdQirYUtcpxR8/Dtobib/IqxYcylC1OGEUpqdTH+InbX0ZDkrD2xuKWdlFWRZYnTLlgDaWM/PyZt7BhT19F8jau5VWRkipLpU13QZFLdpTXiIYNh59TDpNXHCFZzQU4P/7Ll3DLwrVVK5+pDCxQykTPYAY3Pboa8257sWx5hmkg9biWV6Xr3D9sLavS3JD0HLOjvEYylrcOpH41qvjCur344YI3q1AyU0lYoMQgqKPvG6rMOlG1ZOeuaFVKzHsgY93/tEGgNFRDQ4lwQdV6tJVYL405tGGBEgPTAFd1CuXs+MOzOvjmoSjidnYDUkNpavA27bihyKUwUiavUjAVv+fAUNERbQzDTvkY5PLCE0WUl1KmUl1DLX0PpbR5KJWttJoF35CojbFSJKd8xWthRrVg0zOZ/R9PAAA23nTJCNaIqXdq462rM0wjSjXruJyjzUqH2MalojPlS7wqe1WVAGVkJO9bpLBhtnkxBwksUGJgmv1saygV6hvMYcOVKSsyMcqPKnDjRiCNRJhuMUSb2FjxagRS9XbEHDSwQIlBkIZSznfTOXKtnbe+pCiv8lXDiHo2JnFUjQF5pHtVLQWlOsWWjVoKVGEsWKDEwLRYbc7WUEaukVfvhZLlxlptOGoJ8a4t2sz0EXxGUaK8qv3lzaqWHh+WJ7UHC5QY5AwtWQmZcjZyh35iXG24OpR0jRHTxjUDBdWtKhP5IkV5Vb4aJmyNrU575mpHxzFeWKDEwORDUUKmnGaV8KXey1dWMZQmT6Kljqt9qUcT+BxqzIdSLU2zmjPly0G1fU+MFxYoMTD6UPLKdl+Zl9S89EqV5qFUcKZ8qX1rwYfifQ722lWlFVEU0eahVL4eQdRrv8waSu3BAiUGpoZs7yunhlLrr3qM6kVNErevyFdAUyyFWvah1Mo9igvLk9qDBUoMjCYvW0OpDMaXp2omrxImNkbsBSrRyVZiNYOoZQafVEr+h26vWvMDrkMQFigxCIryGlEfSvmKKgq7XnGivIoto0iCzCDV6IAqPQ+llLR17pOvuqmQ8VKyQCGiJBG9RkT/K/8fR0QLiGit/G3Xzr2WiNYR0RoiulDbP4uIlsljt5BcdImI0kR0n9z/MhHN0NLMl2WsJaL5pV5HMRijvAJs9+XA1BnWpVM+og8ltkCRwt4k2EvJO64mUOkw5lI0lIJPqT57Zvah1B7l0FC+DGCV9v81ABYKIWYCWCj/BxGdAGAegBMBXATgp0SkloT9GYCrAcyUfxfJ/VcB6BZCHAPgZgDflXmNA3AdgDMBzAFwnS64Kk2QU97wocCyYA4brpZTvoQOMGqUV8z8gwR7KfWuRBhzMef4po2ftCzlVxMxcotGMxEpSaAQ0VQAlwD4pbb7UgB3ye27AHxI23+vEGJICLEBwDoAc4hoMoDRQogXhfXG3+1Ko/J6AMD5Unu5EMACIUSXEKIbwAIUhFDFyZuWXrGdwXXu6aw0USc2xtUIAvMsqgqutHE1lPBzShlplyIM6r2tsoZSe5SqofwIwL8A0McKk4QQOwBA/k6U+6cA2KKdt1XumyK33fsdaYQQWQD7AXQE5DUimExe6hMb5XxF9WLC1vJaumVfGUuOSAWivJQGE7erELZgL77sIGJrKBX+Hkq9d6qlabtMrRFboBDRBwDsFkIsiZrEsE8E7I+bxlko0dVEtJiIFnd2dkaqaBhBUV4jOVdMr8WHbn1h5Mqt4DyUwonx8g/q+FXnG8uHEnspmFjJRpRqVrG0gISRrfnqnT24d9HmES2z3ihFQ3kHgA8S0UYA9wI4j4h+A2CXNGNB/u6W528FME1LPxXAdrl/qmG/Iw0RpQCMAdAVkJcHIcRtQojZQojZEyZMiHelLkxRXkGLEsZF78TMTvkq+VBKcSJH9qHEKyMwymskBKE7XYRzqmfyKj2PUinl2kdaoFz0o+dwzR+XjWiZ9UZsgSKEuFYIMVUIMQOWs/1JIcQnADwEQEVdzQfwoNx+CMA8Gbl1JCzn+yJpFuslornSP3KlK43K6zJZhgDwOIALiKhdOuMvkPsqht55B86UH0G7dF2GDVc4yisonbB/i888fn1q3+RVzSivaglTpjJU4ouNNwG4n4iuArAZwOUAIIRYQUT3A1gJIAvgi0II9QH2LwD4FYBmAI/KPwC4HcCviWgdLM1knsyri4huAPCKPO96IURXBa7FRm+8Rh9KhdfyCnt54pT7xMpdOHnqGEwa3RS7XsVSYYuX5kPxj/IaUZNXmc6Jmzaby2PPgWEcNsb7jKu1lpcuZKstTJnyUhaBIoR4GsDTcnsvgPN9zrsRwI2G/YsBnGTYPwgpkAzH7gBwR9w6l4IxyqvCM+WNlPg+febuxZja3oznv3beiBUbeaZ8iT4Uo5NNqHOKz7ySYcOljdKD037n0dW4/fkNWPKN96KjLR27nHKi30vWUA4ueKZ8RPS2G7j0ShlVlKgRUbHylm/j1u6B2HnEivIKM3nZv3Gd4P7pVOcVpxOL76+qrMkrLOmTqy0X5v6BjOdYYfn6+OXHwWk+jp8Payi1BwuUiOgvwVDW65WvhFPeWX60fVEp5UUeiWCAUjWUoGNx8q6khlJKjx42uS9oflSV5ImjPNZQDi5YoEREb7v9wznP8VzAkh+xywx5Y/TDxRZbrfj/qMXGLSNotWFhaygxMq5olFe8vK38o7WRwM/DjHDPrAuRUma7V0tDOZQX5AyDBUpE9DY0kMl6jhcc9SO3lldp+ZUhcazFISMKyRJnpgdNVIrTIcTtvCq+9EqoCdE6IWHSUCI8v0p0nnqWpYUNl6EyMTCZvBkLFigR0TvCwYzB5FWJ1YZLPB5ESaaGknw3UcuIR5CJRz2jWD6UmPWp9PdQwq4lymKZQVRiMF4ugVItTaGe5MmtT63DZ+5aPGLlVSJs+KDEETZcI99DKclsVcFRcWDaCpcRlEw9tjgdQkXX8irB7FOOvi2ojnkhkChzq9YFaLWW7i+FegoG+P7ja0a0PNZQYhD0TflyEjUiqmpUsGOO/0358CivWnPKV1LjK/iNvCcK1687DVD5dl3aoKhaPpSqFFsXsECJSJiGUgmTl6P8kDoVG65cmskrPlEMQKWUEehDsQVKHJNXTA2l0mHDYYEb8tckEP1WJcgL7znlRG97rKEcXLBAiYFRoNgdWWWcKOUejVXN5BXVhxKzjCDBXuhcYwiUSmooFTQhBs298RN2YcsMlYqeY7V8eaVQCa2t0pgmY1cCFigR0RvviC29UoRbvtjIk9K0jErqKNYNjNvRFG6DwSlfQthwJfuQypq81K9BoPik1e9PJSKa9FDhkqK8qvSBrXr8sNdICUEWKBGJbPIqoYxdPYP+5YfUqVjKMqEsxsWG90/R6vXg0m344V+8Dsegztme2BipBHfayjnlS9NQ4pu8/PIol9M8SnnVasOlUI8mr5EKdWaBEhH9cVRi6ZUHl27Dmd9eiMUbC2tcVtIpPxKRWqWUG3bel+9dilueXOfZH9hxBph/QutTdAqVLjxlJediqKyDOhR38eVymkcprx5nyrNA8YcFSkT0Fysb8AnguCze2A0AWLmjx6f8aPsiU472Fcd0VOHvoQQ53pWJJJZTvpIaSqycVf7RzKJGH4pPWmeHb871seU7cPoNC9Az6F0jLAzHTPm61FCqUmxJsMmrxnA4EgM1lHj5JxPkyMddZrkp6WWs4KjSL/IoKnZosClv1bnGsIFXYl5MqXlHSRu0fpm/DyXcN3fbs+vR1TeMzXv7o1TTWa5PWaXko7NkUzdOuu5xdPcNx847sNx61FByLFBqCr0NmTSUMKf8jv0DeKvzgG/+JoHiqoFhT/lfxoqnjWryipl/oQM1aZEq7zgaSrz6RPvAViUFdICG4pfGkN5NRnZQcUwp5QsbNif+6VPrcGAoi8WbuovK74u/exUPLNkael49RnmxhlJrhNh9C055s0Q56ztP4vz/fMY3e6OGEjbHoKSRbXVs15FNXrE7cFWOl1KivGI75ct0jn/akDYif6P4lhRROnzVXk2Dq1DK5KMpt6bwyBs78M+/fz30vLo0ebEPpXYxO+Wt30SJJi+/F9RosohXFIBoL8VwNo/HV+w01EUmrsQngO3fUn0o/mXHm9gYjyhFlTJHIKoJ0exDkb8BefqNbFV7zeT87YdPrNyFLV1ek5jT5OWb3EiUb6koK0GlTFMjNaejnLBAqTEc81AqsPRKSgkUzdbpMD2Y6lThSWH/+Zc1+Nyvl+CFdXtcaStPqT4UoxZZBQ0lyt2qpPnRNnkFBJJ4o7y0TtvnZiUpXKB85u7FuPjHz/mW696OgiNgwPdBWnWrVDutQ4sXC5RaI+o8lLiPTYUbj9js3wjFqK85dvk5N+NYOyp8ecGmHfVrPmlXzyD+z89fNF5vqSa4Us/xI6xDLmgo0dM6w4Z9MpZawMJVuwPL7x3yfuqhlLBhR4SYX9VsDaWorGPVoV5ggVJj6I8jyCkf/oJH94tEerFjEql9qRfTtbuSPhRlMgx6AUyfs1UELQAZpqHc/vwGLNrYhfsXbzEcraAPpZJOeflrapc5exDk70Px07xHpa2Fyv9iMImGUUrYsNNcVp2OnZ3y/rBAiUiYGcD+1kZISKpfRxnH9VJp57j9iVhXQSWZaEITh0W7AZ+6c1Fo/qbrC/InFEr2E0a+RQZS6XkoYamDTIA5H+GrX6vfvTpqQisA4OxjxptrFXDhZdNQYty4B5ZsjRXqrFOXYcOsodQWoRqKGu2FNLawkYLTb6K/PIYOsoJrQAHmr/z51SVyuRHPCOpoXt28zz91BA0lzIxjztf/WBDRwobj5Q1EF3TG+2F/cMx1bki7AwpBKH5+jKj1Kt4pr6f1KVtm6g6Q6RvK4p9//zquuOPl4gp1519/8oQFSq0R1pALJq/gfPw0GAoaHkeoU7FEsnjJOvl27rGivKKZ/IJegGRAKF3QRL6g0bqjDoa7U8mw4bC8u/uG8djyHeb8w0xeAVpZYWDk0kC1f/187io/v6jEoOdXNqe8T9Ksbcpzsm1fiE8wIuxD8YcFSkT0Tsa49IrcF6aBZH0kinH+ijBuloUooY9+Mk6Y+6FIhCVRx4PuYzJgOYLA5doDhA1QeAam4xV1yocc/9K9r+Hzv3kVO/YPGNJGM3kFBpL4PV/4d55qYOD3nII6XadvsEiBEkF7KmiizuM79luLr45uajDUKXo9qrXKcSmwQKk19JcsyCkf8uDCGmMxj73SAyU78ixmOd19wzj9hgV4fUvBRBWWVz7CfYykoQQc8/WhBGhcTtt9EVpkFCNfSH67e4YAmIMRorYnUxF+gSRRNIiw9h404bGUmfJRPv6lOk+3djWYyQEAGpLeB11MhzuSGsqK7fvx0V+8aNc9LrEmoMaABUoMTFqGarxhGorfcVOoo36mcdQcWFIwUd4JW0PxlBut5JfW70VX3zB++rS+KnBUk5f/OUECxc7fqGWYR+QKvyAEvzpGIoqG4jAxeRO0pJMAgL4hb6cSOlM+yClvL5bpztNcNx1VzTgmL/1IsZMEo3z8y09LVXNmEob2U0w1RlKgXPfgCry8oQtvbN1fdNpKfyjNBAuUiOiPw9TZFaK8QgRKEVFeTuFiMuHEbySRGpjPjOOoxRq/mhiSVh0Oql+QPLFXFA7wg4RpKEH+F72Obu5dtBlrd/U69kW5VXpdTRMFG5LWa5o1HIv6LIzzUHyc8nob9muvQRMmg/ZbaYPrFYRDGPkJOxUw4CNQTCbTYjrckXTKq6LirMCRyYU/x3LDAiUizlGkQUOJ6pQvwiEcdZ2mOERJm/AxeQnXb2hZPlqX+VxlrvA/M+ibM0GRXGH1poAZ1lH8Ctf8cRned/Ozvun80M8xCZSEHRwRnpdf3kFO+eCPkvkJDOvXT+MO0tT1AUrRPpQIX3v0C4fOZK0dJg23OIEychJFlRVnFXO9LbFAqTGcnwD2Hred8iEPzs9EYBodO04tc3uI8iIXTF7xNBST3hU1KimoQwp6oYP8JKX4UJwj4+gPI9oHtgrbWUPjUoI9aDkZ/7xV5xqQ1q2hRPBxqOfj194DNRRHWb7fVO4+AAAgAElEQVSn+aTVhZFP3WzNy3nCsDJ5GTWUIuowggJFFRXnw33DWRYoNYujow9wyof5UPxeNFODCW24JbSRKO1LVSnj8y2FqC+WQy5G1NCimky85jg16jali69Fhk2o86tvNA2lcJJZQ/Gf7Bm1iZjMtH4dbxRtLGwAFXVAUPzExsK2/xwZ83Mu+FD80xRbh0qjrtFvTlgQw6yh1C764zA75cM7Qv28KOWEmYoijX7zAr97eTOGsm6HbhQNxbwAoN3ph2Rh9KGElKlubVBUinOJf3P+QX4Qv46I7N9gzSooYsqTzrjX/5yM4boTAd/KCcs/yOSV8xG++rX4tecwDSWonfstgBqFKKsN+wlK+yN4xudbhEAZQYmiigoSJwtW7sLu3kHP/rrSUIhoGhE9RUSriGgFEX1Z7h9HRAuIaK38bdfSXEtE64hoDRFdqO2fRUTL5LFbSA7XiShNRPfJ/S8T0QwtzXxZxloimh/3OqLiXHrFe9yO948Z5VUop5g6hZ/z8Bvb8fU/LcOtru+vR/LJy1bsNsMULCURNZSQzthxbgQNRRdwfiGvptR5n6imQtkB9QoZVYc5r4NwfF46wIdi0l6ijvCDvuHjmSlfRKftb/Lyr4s+WChFQwmL8nLfe1WuaaBTTH87kmt5hflQsrk8Pnv3Yvzdf3tn/zs0lBGqcykaShbAV4QQxwOYC+CLRHQCgGsALBRCzASwUP4PeWwegBMBXATgp0SUlHn9DMDVAGbKv4vk/qsAdAshjgFwM4DvyrzGAbgOwJkA5gC4ThdclcDhlA/oUIQI7kT8TV6Gc0PMLFGaiJq70NXvnB0czeQlNRSf3iGsjRoj16KGDQdk7uyQnMcKM+VNo3nzyDUKwmfbVCe/dL55aycFmbxMZUS9FNN5tlPeI5T17WANJI5TXg9qMT2n3sEMZlzzCP5g+Hqi3n786rZ6Z688bq6zuU7R24Tfpd394kZs7S5tnTC/svzKVEJjw54+77F60lCEEDuEEK/K7V4AqwBMAXApgLvkaXcB+JDcvhTAvUKIISHEBgDrAMwhoskARgshXhRW67rblUbl9QCA86X2ciGABUKILiFEN4AFKAihiqA/UPNaXoXtoGdX1Ae09JF9mb3yUfJL+GooBeEZtbRCWm8+zryt36gvgJ+GEuyUj5S1M23IqNr3m90RytJPMfmr7OdgFCilayjuI7kIGkSYiTfo+enXaBqr7JQz2p3zlyyKGQv4mbxMFGXyMpy7r38Y//7gClxxu//CpXFQJfkJaBW5Zqr/tu7Cygo1L1B0pCnq7QBeBjBJCLEDsIQOgInytCkA9HXBt8p9U+S2e78jjRAiC2A/gI6AvEx1u5qIFhPR4s7OzngXCNfIyPBwHEt+xxgJmfJ0jIpDBI4fdpSIS1+IlFb+us0wUd89U6BBuNYVrkVccspk3zwKYceGvEN8KIow348w5O23pE60KK/COYEaitHkFZq973k5n/sRJcqrlLW89AGK6Tmn1LybEI0szPToTh7olytKoHj3qeSlrhPmzTdYcA/l/GfQ79NWVqgbgUJEbQD+AOD/CSF6gk417BMB++Omce4U4jYhxGwhxOwJEyYEVC8YR2inUUMJH9UFHbNNNT5rFZkafDHLerg7yShmH9WITY5id/2C61DYDrtPUTSUdKrQbD0aipofYejgC+aw8HoGHTPdd38fin+epnPMGor3a56KyD6UgDbrziLv0LaDBUYsp3xe94F5j9s+o2ywz8gkw/uGCx/0crdP1SaM65qVoPno+8odUhz2Pqj2YjoaZYJquSlJoBBRAyxh8lshxB/l7l3SjAX5qz7pthXANC35VADb5f6phv2ONESUAjAGQFdAXhUj9HsopWooBU93oUz9eEz7uZ9kjpJWCU6PhqLqFKONhvmibBU/wKkrfO6R9b//yDnqasPmMoNH7cWYMj3naNtGDUW+pSZfVtSIo6BOMHAtL5/81fWGOcaNafUoL8N52YCBjOOdMKQ9MFgQKO53LRsgBIuJ3DKdm/URzsXw/cdX48Gl25xlKY3bJ2PlJzEdzkXsk8pJKVFeBOB2AKuEED/UDj0EYL7cng/gQW3/PBm5dSQs5/siaRbrJaK5Ms8rXWlUXpcBeFL6WR4HcAERtUtn/AVyX8XQn0eQU97veCGf4NG+3yKEcUJGrfys3zgTo1SZ7lFzQfYF18AUcRUU8quniarleTtDbznu8kp1yhcV5RUl74gmr1JG1kaTl08n6Agb9sm/JJNXiIYSuPS93n4Mx/u0Tw57nPK5AIFSoskrTMBG4dan3sKX713q2GcP3nwGWPbcGsPrHbVPKiepEtK+A8AVAJYRkboLXwdwE4D7iegqAJsBXA4AQogVRHQ/gJWwIsS+KIRQBsAvAPgVgGYAj8o/wBJYvyaidbA0k3kyry4iugHAK/K864UQXSVcSyiFCUbmBunoKINCJn2ct4WOUC/Te7xYSjF52RpK3q2hRBuNhWlycU1e+iH3vQ5auiVoWRYdk+gN8/34ayjh99nPJKhQAsVkDnMPQPwGDkFC0H0kyqKCoU75gOsezPiHfQOFdyTs1pnubd9wzve4raEYtbXC9nA2j8aU/1g7KCij3N12VA3FPPt/5DWU2AJFCPE8/OfbnO+T5kYANxr2LwZwkmH/IKRAMhy7A8AdUetbKupxpBKJ0BFOYMhkiInAbxFC44tdxKgjjlNedRb+81CCMTl9wxy+wnCep14xNRS/CW9RcJjZjJ2zn1M+Qt4hy4kUou2CfQpC+M9XMNfZ+3wAoEczG/kv/ijrVESQiUJfir0Ybc99vlFTiDBHKcifBACb9vZh5qRRvnUw3Utljiz7Ol8yO7/7qcKGTc/doaHUusnrUEM1lFSSQjWUYJXdL39nOUD4yDVSZyVPcjc4PW2/5sjUUZqJx+RlqJ8J0wg4F+LwjbI4ZNAIOsgU4zci9+Rv2BfakZXgQ9HbRJCGEuQXcm97z/PuU4/Vnewf7yuYXfweg2obccKGdYFiqnLBV2RqH4XtoAUvrePmY2Hh1wMh3x4pxnxYKvmQ90EFLpgjKr31qzQsUCKiGkoq4SNQQhp64Ty/jsfbcKKah4JQo193c9Pzu/7hlea6+pi83HX2LdvQYYU5fCOZvALm/ASlD/PPBIUsC8N5On6mzChi3yFwDWVTUJSXbiINKCPIEe2+3n39hXBTX5OXus++x/1rM5QNNnmVoqEEzRdSZimzKbaw3T8cJlD8n3+5u22Vn99zGA7wodRdlNehhHqgjamE2QYbWUMxHzOavEKElN6hn/s2c0i0r4aiZbezx7sOEKBHeZl77TD1Psw0aDZ5heftF7igl2kyDxXs/uZ8VVbGR+R4Ft7DpYQNB12PjkmwB/l2oi4XE1RF3yiugIgp67h/nsMOgeI97i+cXXUN0VDch4N8KPp1hGkopmtWz6ZSYcN+z0E55U3rkzmivMqtOvnAAiUiBQ3F7EOJavLytTmrhuMYcep5+tetMZnAYaObjMdUDl6VuJB3yrT8KvQor3hhw6bFB8O0rsI8kiCBYt4GCiM24+jV1pjCnkGIIDR2KH5aj7bt91Jru40fbxPqOQSPrP38SVbZ3nyjmGnizkPx02oB5xpTgYLONOAIGZAELWwZPA+lsG8wREMx1avUsGH/NqnuszldZ6/1eejQKC/WUGoL9byTPiavqCPFsHkoOZ98AmfSB33HQ5hP0fM2fWNbr6u7swwbNSnMzk/teIBpKWCQGjjyVsIvaEVov6yVLymOebEUDSVsJFnoVIpbHNIZnmt4FhE0TT+5ELo4ZECeukAJcnCbyw0uI+eYhe88FjQPRc/KpKGEaXtKq4rrlPf/RIT1a2oX+/sz+NoflgHwifJigVK7OExeYRqKjxlGz8eN3UkXEYapdiXIv+OytRxP2HBhWy114caeYOazfH1oJ6s0FJ+X0dRvhC014cnDVQllTik2yksIgbtf3OSod9QyAf8ReVi4sbuuQdFYYWHDHg0lZH25vM+o+uNnTvfN066TLeT8NBjjbgDhJi/fddEQPoclaCXjIAe3/syffdO7RJPT/Oxfr7j9tmn+kVWu//uwRVuI0hjlFWEgW25YoERg895+PLnamvDv75T3f3hRHqzJhxLqlJe/JvupfY4wn6N3XKOazNHjBX9E+TSUsEUW1a6gdZeCTDkFDcW/8w3riIymFp/yFXGWIHHXy+/8wj0JXsvLXe9cSPsxCYWX1u/Fb1/eHJgO0HwoISYxE0GfHwCK+RZOsID1zEOJOLHxf5Z6F90IexdL7bD9/EZqryl//RtHxigvmcZv7lwlKGVi4yHDe29+xh5VJRPk65RX5rDgkWLwC5jz6SDMEVGFBhM2az0obHjK2GZjGr+JjXadQgRKmOA1C8nSNJSMNikunxf2x6kA/+XagfClvsO+g+7XCToElfGMcNNEkHnJUS93OseqvkGaT+HaH1u+01k3P63KHjmbjwe1jUxWf1cMeQeYJsMEv37cz1IQFlRzzszx3jqFPf8gG20E/Mx8QRMbB4YLaUw+lExeoCFJIJj7rErAGkoE9M6mIZnw/QSw8kXE0VBMM4+F4biJoGVV7Jnyrv36C++nbudC5qGEO+W9+8IcxUE2Y1M692kOweAR7AVh4yYslDXM5KF33vqzMkWbedI68vYfPRdr8gpbQkXVU/dpNDcmHef4CQbVgfoNNoLa63AuX1jgswjzIRCu4eYCTGL28ijGwIfC9lDGe4JelOmRBmlVUfDVUORuU5+j+3pMZuuhTB7pVBKJBJu8ahZ/DcUSNoBBoOgdTMhI1k9lDxoAEfzt877tyPGC+Ak5VTfz8vVhIZKmDjzU5GU4z5Ov4744zwv6jnaQE9ph1w8KgEC4hqLfL+eI2nxNzntiOC737TKEdzsXWnTXKVo0lX7tLQ0ugRJqog03PbnzGM7l0STLMZofA30oYULSXAfrWICGIvelUwkMej6XHcGHFmHgEITfoE5do6nO+gTRRoNAGc7lkE4lfCNTKwELlCJJJQhCeE0g2/YNIJkwz2gOW6kYMJs1nKN5/1Ezkb85xe+zp8JwjrdO0h/h0VAKnUkQSo3Xyw7zFwSp+KY8PJ1V1tyZ6+WZ6q3bo82derTRPuC8X1Fe5DANVpWtQkT9yvV810Tro4LmsGQCNRSfOod27P6DqOFsQUMpJsDBW26whuLnX8vlheFeWf+3plMYMIQNh72LpWoocZzyuoZiSj+UsdYkG0kfCguUIklJs5b+fBaushz2aoaxe7QSFAGmyBo7u2gdTdJkQFXn2ILKnNZUX3edPI1VqeEhGorqWHWTXFhHpPKOOg/F/SJncnnbnuzOw29mOBBsKvOW6b1fflpJFB9KWCep9h0Y8i6RE+RT0K9j2PBtEZPJq8mtofhpVXr7CQjRdm8D1jMK0lAKCx56j4VpfA4NJcBS4C5X/d/SmDRqKMUI0KfW7PaeEILvoC7A3DmkCRSz094S3H5THSoBC5QiUZMA9Rdqb59z5Oh++EGTrexzDIvLOey2AVE6Sak1mfBbVlv/N2wJco/GpeUROLM755097PR/GLQu+Rtk8gqa15PJ5dHSmDIes++hUUMJnhuh18dkkvHzm+gj5hff2ust2JV3kPO8zyRQ9Dkd7nRaPYcCBIr6jCzgHZz4T1zU6+w9HmiW1DQUY4CEYSBSKMtfgFr1DfehWOeZ20ZrY8rh7C6UFSz09UHXp+58xXM8DH8/pnD86igN5bJZU43p1arJyYR5dY9KwAKlSNQLlwto2O4RW9jif/p+R76OPAydr9xlmtRUyNe8iJ/+n5/N2na8Bi2FEdBOMwZhFuYojmby0srQQ1DzApmcsEe/fs/B1CEMhUR5+flIzMfN25u6+mHCObHRe1zV16RlBM270Os5aJisp5JmAvxOfo8hTOvWB1XueSWZXB5pW0Px1xaThnbtnGXvrVfU++HRXuW5LemkY+RvKitsHtp7j5/oOR6G72ctlNA3tDkl+EY1pYyDwqFsDulUEsmE9xlUChYoRZJKKJOXueMHvI0jyK6vME26C40skjsTRL5hw37rFzlNFsF18kxsDBmt2flqNmt3nu7tQt7Wb+9gNtQh7M5DvXTNjT7BEZoj2U2oD0UvJ0RD0Ttvh5bgs0ZUmIaiNIhhwyg0aGCjC0mThqI6WFPI9ElTRlv1CQgksE2LYRqbqzN0+lC8eQeZvBz3NsDUZmntLoGiCzmPxi4FSmPSOFM+bIKq/g4FLX3vh5+GovL93mNrsK/f+b36wWwODUlCOpU0CiQVTZdiDaV2Gd3cACB4xOJuHGFrFwFm01RUB3aQD8UUjgzAFeXlo27L/P2WXrHq4Fu03fH6OY6D5qH0D+fQ5XqB9DLVB5Cyho6+WY5+/aLt4kR56S+k6eXV69Gtrdar7zd16lZ99G1zxwBY1+euW5BPQe8YjRpK3pm/nt/t888A4K8pWmHyCd9zHFqPJxJPaD4U0/Xm5DFvuXpI71CAgG1IeqMxgwYzKquWRmu0736Hw6ITddOjSZMMQx+k+M1L2rCnz5FmYDiHpoYkUglyCO2t3f141/eewgvr9lpOeQ4brl3GSIGiHtCjy3bgG/+z3HGOyVGs8IsuzISM5s3OWuuXCL4eX79vQDjMMj7qsBpR+y0O6VcvhWnWut8XKe388oWRae+g+Tst+bywwyT1e6ReZJNACbO9F7Okusn8kNMurFsThH510AmajGcd1zor17NwhA270umLHBp9KIYoLzW4UPc3yORVEOrBpjjTgKvgQ/HmrTpXk+asC0nTfBF1TaZRe1Cd1DNvlVFubgHsFPreOqu8Uwny1TaC0O9hRjNTOwcqLg0lIwVKkpAXhfa1akcvNkvzamMqgSSxU75mmdpuzSpXD+9Pr22zj337wycDMGgoIZ0VUIgQ8/MPGDUUaXYI+lx8zscPkvOJStJRL6/f0ivubTcmH0xYPD9Q0AJ7BzPG49m8QFODV0OxBUpj0nPMMdPZIH2dUV7eMv3CgvU6KXTThC58fCP8cnm7Aw8yeQFegbKrtzA3xZ29ilZqakgYNZRcXoDIanNZl/BXwiIozN02W5km+gWM2IezeVvo+zmTrbp4j6nraEunHGZKu16aluo2TQb6UOT/LemULMeloYS0W3XfrHJjCBRDqLn7WR8Ycl7vYCaH5oakrSmqtpbSLBZt6ZTv3LlKwAKlCK5655GFF81gbjp2UhsAb4dz61Pr7G2/5TNWbO+x8vXpuIx2fSHs8v2aS9ancYY5mTO5vP1C+i0Oqergh2rgfms3+S3SOLpJCRSzhpLLWzOA1bbiD69uBQC8ummfPOZ9SRPk50ORI/NUItA2D5jDrPXj3X0FQRi0+q1CH7GbzskEdM6/C1h3SzltxzY3ejQU1c6aUqpjF476NgbURwhryZRgk1dhn7tztsKGE2hIklFzUvtMglsNcsY0Nxg1FNWu0w0JT7vN+QxsrP+tXz8NJWwNMdUmmhuTvqbNIPT3U907dz7f+NMyx/8DUqC4A4X0vEY1SYHCTvnaY+bENjuUMWcQKK1ydOPuoP+ycpe9bdIGntFWN3XY6iMsP05krdXjF75rO1595sY0JhPGF1d9ta61MYls3jkRzOlD8W+oKl8/H5KfGW90s3UffTWUXGF0rNd9t5xJrvI1aUapZCLQhzK2ucHTAbrrmjE8Q/257tYmIOr7/VxdmbxAusEcSAA471+Qfd6dUnW+Y1u812SPqGUHOuzSUNQoN2hOji1QjBpboTy3k1uFszalkkbNKegTBINysp5fx52TWntjMuFJn9ECCdzvoXq+zY1KQ3HWy89sq9eLyOoD/JaiD6JnQPO7yQLcGljPYNZuHzc+shKPr9iFpoaE/ayUJptxCJQGDhuuNdRicR89Y5odyqjaqkOgyMYY1KBM6vC63Qfsbb0TzBjUYB0hEGryUqO4TNYsUNINCbOtWgoUZX7y02iCTLNZg4biXBrDlEagvaURgPUCmfMVdtipfl9OnTYWAPDPF75N5u+9fw0+c3bUatLtLY3GCYRRNZQpY5uxdlevMV2Dz2cCMlnL5GWZn0yj34LPKEiguM1TjtF81u0TKJho9HxzeYFUgkBEljZnFJ4FbQ7w8ftobVd9Z0YxnMujIZlAuiFpFN7DARrKYCaHplQC6VTCaPLK5CyBk0omMJx1prfMdDIYINSHUpzZeiibQ1MqicZkwvOuhfHKxi589YE3HPV0l6lQfpT/fm6Dda4Q9mrhPXIApqcblU5ZYcPsQ6kdbvrIKXjmq+eCiOyZ8qqT1OeAtMkH6+5wxrU22t+Y+NnTbzmOCSHwH4+sAgBccMIk31Vv3S8lYL0USsD5NRdlR3cLMts0kEoaBYoqb+KoNABgW/eAsV5BExttk5n2Ygctm2LlnbcFygE/gaKZiExRVGMMQtA9AHDX+4lVlhbZ3tpgvNdhQQxZ6Y+Y0t6MXk0gZfMC49vSjvq5yeTySCUt56nfpLnWtFOTUHS0NhYWWnShnPLtLY0e85B6hsoXpQdQqHuUSiaMAQhqlykwQhEUYWZrKA0JYyi1Ot+tGQPWQKe5MSkFikEYSWHVmCSPhpKVwsZUZ/W/sjKYtCqFqc0PZqQZL1W8U37p5n2O/zMugfKjj55mH+vuczvm8xjXarUvJWz08tuaUkgSGSfFVgIWKBGYMrYZR3S0AihoIcokpF6+D799ii1s3B10/3AWLa41khT3L95ib1tqvHd9nsZUAvsHvOafnBBIECGZIF/Huq2heJzyhQ7F5DNQ13f8ZGs+wj6t/EwEv4Be/4zDPhys3WRzAmNbgn0oWc0hbJr/0ZZWmqI3cibd4PQZuGlvaUT/kNmBrTDPB8kjlSC0pVMOgZTL59GQJDT6jKhVXVJJQoLIaE4Z1mb/u0etg5mc3bY8PhTN5OUuW2kVTS7nuLoOAEgnE+YlW4TTz2IUKFqEmXvmeUYGITQ1mJc56XPcP2feg1krsikdYC5rTCbQkPT6UBztxh3KLK9TaeQeIZgLnqekIq4akglj+whi+/4Bx/85lw8lnUrgS+fPBOBdfmfHvgGMa7UGYHv7hvH6ln22tg1YJq9p41o8IceVggVKkbTIkaJ6sE+vsfwf3/nbk9GQUKM9fdScw2Amb4+aAecI56/achyNyYRxMtqxk9qwekfBjFLIB0gkCA2JhNEMI4SwOxU/p3w6lTB2rl1yJKS+laJ3EGHhzHYZBh+K/pJ/97HVmHHNI440mby1zlNzQ9LXh5LLC09HCBTul9Jw9DrbHYbUIv06957BDNbv6fO8uPoIz3SvN+7pB4HQ0ph0CKS+YdUBmjtnoOBcTST8l/VQGop7iZjBbEHYuJOu3mkFepgWPLSjmlwmHl1DSTeY66y0ClUn04h8IJOzP+egj/Zz+YJD34o+86bVo5ncA6WBYeteNTWYNZRM1pofk0qSIcrL31el2qh6T90aiq7hmZ7RYNZqt40+QjiIO1/Y6LwGOfhZsqkbgCW4ldldtUv1jPqGc+iQAqXrwDAuvfUFPL6i4LNtS6dwREcL9vYNBy5nVC5YoBSJGv0qib/ngOWAVZ1GKkGOjlCFA49tacTXLjoOQGH0v3hjFx7Uvg6nv8C5vLDnt8w+Yhw2dfU7BFF33zAWrNyFBAENKTKaYX7wlzVYusVSp92NXM2bSKeSxhGmcixP72gBAMdIMsocFqDwUuodjn6+qptz7SvLhj+qKWX0Zaj8TBqKeunbW61OQdcU3CNQP/PTC+ssAf/le15z7H927Z7CNbjuV2fvEB5ZtgPDuTxaG1OOEfbeA0MY39boa6LpHczgydW7sWJ7j2XyMvkscsI2xejPMZMTyOULNnT3oOHPy6yPZfUMZNA3nLMHCUDh2ShznLrX2VxBoLgHOIq+IWdak3D+3zd22B263jmre9PU4O+U73OZDHUGMjmkpYZiivIalmYto4aihWd7BIrLXOquV4/2TpvuyWDGWiq+MeUtN4y5R41z/K/qpt7/xlTCtowoM7DeF4xrswSKGkDoNDcmMb4tjVxeeOaxVAIWKEWiRnT//PvX8fDrzk+FJhKEyWOb8OaugpP9ja37AVij5nGyo1Pmo8t+/qIjfTpViFy5Z1EhHPSwMU3I5YXjxfzH+5di274BdPdnkEokjJFHtz5V8Ne4G3m/Mg81pYwjbuVYntpuCRTnyqaF8/06fQB4c2evLNtpLmp2rWirrlkIIc0/CYxqSvmavIayefs56B3OYDaHxmQCo9INsm7eiX0qJFnvFB5cWphL9MiX3gkAmDG+1d63vz+DVTuslzVBcHTMgHNZ+dZ0yu5wAWDPgWGMb0ujNZ0y+oTW7CxonibT5etb9iGbF/b16kJDCfkJ0s/lp9H9fokVTq23KTWomTS6CUBh7ozSlgBIM51Jg7CuQwkUt0nL3Z4GNAG7ea814W5ae4t1TwztRxco7giyzV39mDK2CekGswlxS1c/JoxKo8EVvahCnQvh5s583f43t0BRA6wEmRfp1E1eenvfuKcPjy3f4TnfmdZrEtQFRktj0h40HBjKOo798e/Pxqh0Cg1Jwisbuz15J4ns57TnAAuUmkM1SAD4BzmK/eTZM+x9b5/WjjW7rM5nOJvHZ+9eDMCyY49ptkYS7jV5ACtSS7ez6995V6NT/eVb31mwiTYkyRhZohyuQEGTUuwfyKAxlcDopgZjp/HMm52YfUS7bZ/VG73+ovb4dGK/e3mz7ZzO5QtLhmRyAh1yRKVQL68eidXW1GDM+7Zn38JQNo+x0qzl1lDSqYRtljRpKOq+6h3G1/9oxfdPHtOEEw8fg9bGpMN8pGscx0xsc0TlAXD4t1rTSfQNF176vQeG0NHWiHGtjR5BBDgFhCWMnJ3Vpbe+AEAzH2rPatAlFHoGzAL4yrOOsK9PocxyJxxu+cjUIKhvKGu3t6ntLXjLda1A4X6o5+jufHfst8K33/O2CRjL3TUAABqQSURBVACcAke1w4mj0zhsdBN27vd+NOzAULYQCuv4vonAjv2DmNre4qvx7RvIYNLotPVOGMyhSjD7CZRC+3DmvbtnCAkCpo9rcQRdAJYAfW7tHmv1AJfJ6zN3L8bnf/Oq0Qeq7ofS1BUf/+XLuO6hFfb/CSLbMtI7mEXPQBZ5AXzjkuNx+vR2EBHaWxo9+QCWif49x03EC9ech6MntHqOlxsWKEVi+v76aM0/ckRHC7Z1D2A4m8dzazsd6dqls3lfv7dxJYhsf4ZaNRcAnvzKuzEq7VR33aQS3ph7wOk83NUzZL/4PYMZ/OKZ9UgSob2lwVOf25/fgNU7e3Hc5FG2UNI7Df1F7TG8KDv3D+LrrklY9iTHrGUW0rUU9TKra04lExjtY/L69p9XAyio/Hpd+oezaGpM2uYBpSn0DWVtLcQ2eWkdhppbpK6xJZ3CQCbryFcxfVyLvayFfQ80wdfSmIIQVoe0q2cQ3f0ZDGXy6GhNe4Q6APyPXGnhsNFNnhG7PgJ/xzGWDd0hUOQ1qEg8vR7qvH9637G4Yq4lUPTPxKoObvq4FjQmE9g3MIyd+wfx6PKddsTgcYeNwsodPZ6oJltDkdFFbsf6Od97CgDw4dOnojGVcGjWapQ8vi2NMS3eQUNX3zB6B7OYPNYSfnrH3zuUxXA2jwltacuhb4jEWrf7AIjIY/JSPiQViel2yvcOZjAqnbIFTp8r0q+zdwjj29IY3dzgEfrPSXPosm370eAyeanBx17DsweAJ1d5v52yrz+Du1/cZP9/4uFjMLq5AUTWYHTrPqv96X3RsYYFKW/40El4+7SxaEunMGVss/EzweWGBUqRNDcm8benT7FH7gDQpX0PZfq4FuQFsG3fALZqobYzxrfao+oFK3dhhyuyI0lkaz/DubzdaMc0N9gjRt2Uos9Wb5BRYO6Z4W7TwxbZEX5Tjn4GMjl0tKWxt2/I0Wnc8L8rAQBTxrbYM6n/vHynfVx3BJrmilzzx0JM/efedRSAgtAYyuaQbnB2MmrkrjqX0c0po8lL9y8cGMqBqNAxPvtmJ/702jaMa2lEU4M1p0MJgu8/vga/fN6K21cmL70TVB2TWtSxs3cI9yzaAiEE3tzVi/f+8FkAwFcvfBumjWvBFpc/SwnVH1x+qu2oPjCUxWppzjpqQhsmjU5j9c5eh3C6ecGbuH+xZY6673Nz0aYJlN7BDE771gL73EtPOxyAU7ipe2gLFE24q/Pa0il7ORHd9KSE24RRaUwYlcaGzj57RQfVCT4pPxT18BtOk40a2Iwf5Q1+0BnVZA0cBh0CxSp3fFsabekUBjN5Rwf8yDKrrNOntwNwDhj+um6PXe6ophR6Bp3mn7v+utHK440dnmgrfU4O4PUp9g5mMbq5Ac0NSSuq0jXI2t07iAmjrDq7B3aqbR8/eTQakmSXqwuetbsP4OYFb+ID//Wco84LZLj6O+WAwc0Dnz9LftOEMGlUE1Zs77H7FWWOBoBLTpnsSXvF3COM35SpJCxQYvDuYyc4zBenTh1rb6vw4k17+7B9n/Xgl33zAgCwNZRf/XUjLpCdlFLtE4mCOt7ZO2R3LK3plN1J7RsolKkUkotPPkx2fAfwlfuXArA6yOP/7THkBfC9j5yCX145G0Ch89dNVh2tjcjkhHas8KIdO6nNNh89K2fzD2ZyWLShyxZyW7u93/jQQxTVyKnrwDC2dvfjqTWdHh+KykMJhzHNDUinkli3+4Dj5fv2n1fZ259791Fob2nEg0u3Y/9ABlfesUiawhpARJZz3BD+q2bh6xqKX8j1q5u7ccHNz9r/n3fcRBw9oQ19wzls6SoMCJR54gOnTNbCyrP2QOPCEyfZ9+GK2xfZ6X68cK29fURHK9o0k9eiDV12J3jecRMxeUwzkgnCJumD2Nc/jAt/ZNXt8LHNSKcSDs3pp3K+U2s6aX8nvl/r+JXfZ3xbGqdMHYN1nQdwmDSJzZcmsmMnWnXeqD3PvqGsbeqdPMYaIQ9qnfOPnnjT3j59ejuaG5K2wHlh3R7c9OhqWa+UbcbRO95/k47os4/uAFDwuazbfQCf/82rdp3bWxqRyxfa7Zauftz0mJX32JYGS+BoJkDlkJ5g+31cTveBDEY1pUBEGNfiNU+u3tmLiaPSGNWUcoTQAwU/2P2fm2t9k162rWv+WNDSP/frJfjxwrVYvq3HfoYvrNuDBXIVjbs+PQcvXnse3ChzJgDMmtGOhTKAAyisKwgAs45od6TTj40kdS1QiOgiIlpDROuI6JqRKtc9mrhs1lR7+wgZFfVfT67D1n0DOHJ8K0bJUbFyjgGw7bB/f+7RACyTlwoNfGLVLtuOnE4lbG3oitsX4cnVu5CXERuXzZqKH3307bYZ4X9kxNj6zj57lDT3qA60y/T3vWI5ZdUL/ON5p9l2cDVyVPbveWdMw3nHTUQ6lURDknD+cdZHg5S/YXNXP46a0IrFmiOws3cIZ9z4BDbt7ceUsc1Y/+2LMXG0dc0LV+/Gl2RH9PKGLnztouNsAas6Z6VBjW1utEN/r5fa0pJNXbaWcf2lJ+LYSaOQywts7urHBTc/Y9dB3auWxqQ9Sh+v+WxUJ3b3ixvx0nrnFxRPmToGAHDPZ+cCAD7yM2fQxHGHjcJpcjb+u77/FJZv248Z1zxid9RNDUlb+PcN5ewvNI4flbaF6JJN3RjK5oyT41rTSXsgoTv6Lzl5MhpTCUwZ22x/pOvlDV328cPHNmPymCbs7LHSdPUN47Zn18trT9vLq+gCZfl2K1hkdFMK08a1YGv3AH7+jCWE1JyH//w/pwJwhiPf+0ph3tThSqAMF6L5fvREQUiOaW5Ac2PSDgD56u9fd1yvMj+ddv0CvNV5AE9oSxRdcoqlkb0m/QKbuwpCbfKYJvs5q4l+//ee12wN/TdXnYmO1jT2D2RsB/enf2V9RfGMI62IKt2k9Ytn3sJfVu6yBfi41kZHRNTeA0PYsX8QR3S0YkZHKzZ39TusASu278fRE6z3fGp7C/YcsAaEA4YJsgDw+lbrmp7WPhWcTJAt7HQO0/xeM2TfcosciKj5WkDB/NWYTOCmvz0Zd37yDGPZlaZuBQoRJQHcCuD9AE4A8DEiOmEkyu5oS+O6vykUpauVyvywZFM3Hnljh91JAlYUmJujJ1oLSp4zczyOlJFF33p4JX729FvIy7W6dNX2079ajK/94Q30D+dw9IQ2NKYSuO9zVgd48pQxeH7tHrzVWXCkTu9owYnS8Xr/4q1Yub0Hew4M4ZyZ43HpaVNwmBwBqZHj8m1WR3PZrKn2dZ14+BgsXL0bD7++Hetk3r///FmYNb0dr23uRmev5Z9Zu6vX7gi/9v7jrKg32enc8L8rbZ/O3KPG4QvnHo1X/+19GN2UwsodPRgYzuGqu6wAhubGBD5zzpEACjH6asFHAJg2zrofKqppV0+h833P2yzB15ZOYV9/Bt19w/jBXwqjZmXCe3T5Tsy77SX0DGbQ0pjEER0t+P3nzwIAvH16QePUISI7ogoALvv5X+1tdR/VnJBfv7QJ2/cNgsha/uKUaWPsc8/89kLHKtX/9L5jAVgj/jd3HcDu3kFbWztn5nhcdNJhACxz4cOvb0c+L/CaNrv6pClj0NGWxsrt+/Hmrl5s2FN4/mcfPd4KZ00msHlvPwYzOTy1Zrcdrk5EmNbejOFs3jYxKj9TazqFGR0tePrN3ejsHcKiDV2O9jyqKYUJo9JYtNESbnqgyNP/fC4Aa2mXviFrDartLge8Eu4A8NjynfiMDGC56MTD0JZOYVxrI1Zu78FQNofvPbbGvs9HjW+zBcqunkEMZnJ4XQqez7/7aJw0ZYwdStvdN4zXtuyz28hsOZL/xTOWwBVC4Duy7au2qwdQCCHwzYetQc35x1sa6nA2b9+Hl9bvxV9W7rIHQG+TmuiqHT2YMCptz3vSue+VLfjEL1+2l0+581NW52/ycejL9Xz2nKPs7THNDY5+pzWdwnV/cwIe/od3Yt6c6bE+8lUOvFdbP8wBsE4IsR4AiOheAJcCWDkShX/y7Bn41sMr7UgWBRHhrKM68KIc/bqdZfd8di4+9t8v2f+fPr0dC7/ybkwZ2wwiwjuO6bDnQqgOuC2dwt2fnoMr77DMJSoMVPkxRjc14ONnTsdvX96MT9z+sj3yX/rv7wNgjZzPmTkez63dg4tveQ4A8LE50wAAc44ch1OnjsGClbsckwxP0cx4KvJFmTpmH9GOM2aMw6ubuvH7JVtxxo1POK7x7889GpecbNl0j5nYhiM6WrBpbz+Wb9uPdx87AXd9eo59r86ZOQF/em2bbTsHrEg53fTrnvyoNMQZHa1Yr5ljfv6JWXbnm8nn8diKnXhsxU5H2vNcn2c95Zt/AQBcfPJk24fV5DLJAYVwYn1UqEcCPfe19wCwfGhAIUT3Hcd0gIhw3GGjcdR4q777+jP4p/ut0fqdnzwD75HanxJWc25caOd796fn2B2H6hSP+vqfbU34Y3OmA7A67iWdfQ4T3R++cLatnXS0NeK+xVtwn7YygzJtnXV0QeN+z9smODqxs47uwD2Ltnie8WWzpiKRIHzglMm484WNnmekwq5HNaXw5OrdOPrrf7aPbfjOxQCstqH4/uNr7O3rP3QiAEvTemTZDkfbeP5r70EiQTh6gpX2o7e9hA+eamkzV8w9Al+5wBLOyuQz59uFe/mpd8xAh9QClm3bj28+tAKPa+3jWx+0yk0kCK9u3oeLfvQsTjh8tD09YO5RHfY0gH9/aAUuPfVwfEVqXe861uoHTp02FgkCLpdTAo6d1IZfffoUvLy+C59/91F4/4+fc0xmvu5vTrAHQQDw0rXnYzibxyW3PIdZM5xmrLEtjfjxvNPwkyfX4daPnw43n3rHkZ59I03daigApgDYov2/Ve4bEYgIy755AW6T/gmdu6+aY28rs4HirKM77AmON374JEwb14KjJ7TZndgvryyoqr/7zJn29ruOnYDF33ivPRIGgHfMLHQEuh+nuz+Dca2NdhAAAPz3lbNx4YmT7P/VC5lKJvAvsj6Kqe3N9rIagPUi6lz6dus2f0C+yG6+/N6ZjkUzv37x8QAsX8V7T5jkOPdiKXiUk/S5f7E6DCLCb7XrV2z4zsV2h/fvf3MCPnJ6wdx4ribcPzp7miPd3597NDbedAnGt6Xx0rXne/I97jCn4FdaHQBcPmsqTjzc0jDSqST+Tq7Lpnjg82fZddLnrwCw11kCgD9/+RzbrKY4S/oKgMIipDr6KFRpMgCwaW8/3nfCJHz7wycBAM4+psOTdtq4gh3904bO5luXWmmPmdiGX1wxC+fMHI9fzneaSr71wZM86W7625Pxg8utdq2bewHL5Pv6dRcYrw+wBlTqmmZqAkXxhy+cjYmjrDb+Pldb+deLj7dH8XqE00Oyw//ie46xn8NZR3U4numY5gZc9zeWwPj6xVZ7/9VfN9om3p/83dtxuWwzR8lnuHpnL/746jY0NSTwhy+cjYZkAsdPtvJ89s1OW5h8+fyZ+IfzjgFgDQrOmFGYqHjhiYfh9Ont+MK5R4OI8LNPzAKRJWju+excx5QDwDJxTe9owdNfPRc/+/gsz/259LQpWPBP7zZGddUCFLS4Xy1DRJcDuFAI8Rn5/xUA5ggh/sF13tUArgaA6dOnz9q0aZMnr0qwYvt+vNXZZ4+edIQQGMzk7dFjMQxn83h6zW6cf/wkR6cthMCdL2xENp/Hva9swQ8uP9WOlNH5y4qdyOYFLjzxMEf6rFygcEhODnRHhwghsHxbD044fLTnk8N3vrABz63dg3ceMx5/d+Z04wh/yaYurNl5AB+bM82T95u7evHL59Zj1hHt+OgZzs563e5erNrRi/Wdffj79xxtXLH36TW7ceykUThc62SEEBjO5bHnwDAODGbxtsO8L+Dybfvxgf96Hj/9+Ol4/0mHeeq1bOt+/Hjhm/jeZac6ovoAy9z2mAyxvVwzDwKWw3fNrl68sG4PPnL6VIcdXLFt3wDyeWGb7xSDmRxWbO/BC+v24FPvmGH73xQHhrJ4zw+eRv9QFs9/7TzbPwZYkUi/eGY97lm0GTdcehI+4ursn3mzE8u37cdp08bi2EmjHOa7IHoGM1jf2Yelm7uRTCbsMGTF/v4MXly/F72DGfzt6VMd7SOTy+PNXb0QwupsdSczALy2uRv7BzLYtm8AMyeOwpwjx3nyHsjkcGAogyM6Wj3Pf1fPIJ5cvRuZXB5XnjXDU/f1nQfw4vq9+MAph9sRXvv6h/HTp99CNidwySmHYcrYFsczyuUFrn94BU6ZOhZNDUmccWS7LeQAy5z16PKd2HNgCKdNG4vLTp/qMGdv3zeAVzZ2YUZHK06eMsZj6lZ97khHYJUCES0RQnhHz+7z6lignAXgm0KIC+X/1wKAEOI7fmlmz54tFi9ePEI1ZBiGOTiIKlDq2eT1CoCZRHQkETUCmAfgoSrXiWEY5pClbp3yQogsEf1fAI8DSAK4QwixIiQZwzAMUyHqVqAAgBDizwD+HHoiwzAMU3Hq2eTFMAzD1BAsUBiGYZiywAKFYRiGKQssUBiGYZiywAKFYRiGKQt1O7ExDkTUC2AngP0Bp40JOD4dwGafY2Fpg46VmrYe61XJcg+2Z1hKubVaL36G9VWvtwkhwtd7EUIcMn8AFgO4LeQc3+MAOktIW0q5YWnrrl4VLvegeoallFur9eJnWF/1ArA46Dz1dyiavB4u4bj3o83R05ZSbljaeqxXJcs92J5hKeWGHednWL60h9oz9HCombwWiwjr0VQqfaXgekWnFusEcL2KoRbrBBzc9Yqax6GmodxW5fSVgusVnVqsE8D1KoZarBNwcNcrUh6HlIbCMAzDVI5DTUNhGIZhKsQhL1CI6A4i2k1Ey7V9pxLRi0S0jIgeJqLRcn8DEd0l969S32CRx54mojVEtFT+TTSVV4E6NRLRnXL/60R0rpZmlty/johuoRK/6FPGepXzXk0joqfk81hBRF+W+8cR0QIiWit/27U018p7soaILtT2l+1+lbleVbtfRNQhzz9ARD9x5VWW+1XmOlXzXr2PiJbIe7KEiM4r972qQL3Kdr8AHFphwz5hce8CcDqA5dq+VwC8W25/GsANcvvvANwrt1sAbAQwQ/7/NIDZVajTFwHcKbcnAlgCICH/XwTgLAAE4FEA76+RepXzXk0GcLrcHgXgTQAnAPgegGvk/msAfFdunwDgdQBpAEcCeAtAstz3q8z1qub9agXwTgCfB/ATV15luV9lrlM179XbARwut08CsK3c96oC9Srb/RJCsECRN3UGnJ1kDwr+pWkAVsrtj8EKo0sB6JAPclxFHkz0Ot0K4BPaeQsBzJGNbrW2/2MAflHtelXiXrnq9yCA9wFYA2Cy3DcZwBq5fS2Aa7XzH5cvekXuV6n1qvb90s77JLTOu5L3K26dauVeyf0EYC+sAUJV25ZfvSpxvw55k5cPywF8UG5fDqujBIAHAPQB2AFr5ukPhBBdWro7pdr4b6WotEXW6XUAlxJRioiOBDBLHpsCYKuWfqvcV26KrZei7PeKiGbAGo29DGCSEGIHAMhfpcpPAbBFS6buS8XuV4n1UlTrfvlRkftVYp0UtXCvPgLgNSHEEKrftvzqpSjb/WKBYubTAL5IREtgqZTDcv8cADkAh8MyS3yFiI6Sxz4uhDgZwDny74oRqtMdsBroYgA/AvBXAFlYIxE3lQjpK7ZeQAXuFRG1AfgDgP8nhOgJOtWwTwTsr3a9gOreL98sDPtKul9lqBNQA/eKiE4E8F0An1O7DKeNZNvyqxdQ5vvFAsWAEGK1EOICIcQsAPfAsmcDlg/lMSFERgixG8ALAGbLNNvkby+A38ESPhWvkxAiK4T4RyHEaUKISwGMBbAWVmc+VctiKoDt5axTzHqV/V4RUQOsF+u3Qog/yt27iGiyPD4ZwG65fyucmpK6L2W/X2WqV7Xvlx9lvV9lqlPV7xURTQXwJwBXCiFUv1HttuVXr7LfLxYoBlSkAxElAHwDwM/loc0AziOLVgBzAayWZp3xMk0DgA/AMgVVvE5E1CLrAiJ6H4CsEGKlVHl7iWiuVGOvhGVrLSvF1qvc90pe2+0AVgkhfqgdegjAfLk9H4VrfwjAPCJKS1PcTACLyn2/ylWvGrhfRsp5v8pVp2rfKyIaC+ARWL6wF9TJ1W5bfvWqSL9VLmdMvf7BGlXvAJCBNZK4CsCXYTnc3wRwEwpO5zYAvwewAsBKAF+V+1thRTG9IY/9GDJCZwTqNAOWM24VgCcAHKHlM1s2kLcA/ESlqWa9KnCv3gnLfPAGgKXy72JYQRMLYWlFCyGDJ2Saf5X3ZA20aJty3q9y1atG7tdGAF0ADsjnfkI571e56lTtewVrQNWnnbsUwMRqty2/epX7fgkheKY8wzAMUx7Y5MUwDMOUBRYoDMMwTFlggcIwDMOUBRYoDMMwTFlggcIwDMOUBRYoDFMjENHniejKIs6fQdrKzwxTbVLVrgDDMNYkMyHEz8PPZJjahQUKw5QJuVDfY7AW6ns7rMmeVwI4HsAPYU2M3QPgk0KIHUT0NKw1zt4B4CEiGgXggBDiB0R0GqxVB1pgTYb7tBCim4hmwVonrR/A8yN3dQwTDpu8GKa8vA3AbUKIU2At7f9FAP8F4DJhrXd2B4AbtfPHCiHeLYT4T1c+dwP4msxnGYDr5P47AXxJCHFWJS+CYeLAGgrDlJctorBe0m8AfB3WR40WyJXBk7CWr1Hc586AiMbAEjTPyF13Afi9Yf+vAby//JfAMPFggcIw5cW9llEvgBUBGkVfEXmTIX+GqRnY5MUw5WU6ESnh8TEALwGYoPYRUYP8LoUvQoj9ALqJ6By56woAzwgh9gHYT0TvlPs/Xv7qM0x8WENhmPKyCsB8IvoFrFVf/wvW53xvkSarFKwPjq0IyWc+gJ8TUQuA9QA+Jfd/CsAdRNQv82WYmoFXG2aYMiGjvP5XCHFSlavCMFWBTV4MwzBMWWANhWEYhikLrKEwDMMwZYEFCsMwDFMWWKAwDMMwZYEFCsMwDFMWWKAwDMMwZYEFCsMwDFMW/j86FJ7pOJOkyQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'] = sorted_data['inc'].astype(\"float\")\n",
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4XGeZ6H/vFM2oW8223Hviku44PUBMClnYAJuAafGyuSSwgYWFvXspy2YXbi6wsARYLnADCYQAKZRsQkgIJoV0O7bjxC2OnbhLlmT1OvW7f5xzRiNpJI2kkebM6P09zzwz/s75Pp1zPHPe83YxxqAoiqIo6eDJ9gEoiqIouYMKDUVRFCVtVGgoiqIoaaNCQ1EURUkbFRqKoihK2qjQUBRFUdJGhYaiKIqSNio0FEVRlLRRoaEoiqKkjS/bB5BpqqurzaJFi7J9GIqiKDnFtm3bThpjakbbL++ExqJFi9i6dWu2D0NRFCWnEJHD6eyn5ilFURQlbVRoKIqiKGmjQkNRFEVJGxUaiqIoStqo0FAURVHSZlShISJBEdkiIq+IyG4R+Xd7/N9E5LiI7LBfVyfN+YKIHBCRfSJyZdL4OSKy0972PRERezwgIvfZ45tFZFHSnI0ist9+bczkySuKoihjI52Q2xBwmTGmS0T8wLMi8qi97TZjzLeSdxaRVcAGYDUwB/iziKwwxsSAHwI3Ai8CjwBXAY8CNwCtxphlIrIB+AbwfhGpBG4B1gIG2CYiDxljWid22oqiKMp4GFXTMBZd9j/99mukHrHXAPcaY0LGmIPAAWCdiNQCZcaYF4zVY/bnwLuT5txlf/4NsN7WQq4ENhljWmxBsQlL0CiKouQljR19/HHXiWwfxrCk5dMQEa+I7AAasW7im+1NnxSRV0XkThGpsMfmAkeTph+zx+banwePD5hjjIkC7UDVCGsNPr4bRWSriGxtampK55QURVFcyf1bj/LxX2yjrSec7UNJSVpCwxgTM8acCczD0hrWYJmalgJnAvXAf9q7S6olRhgf75zk47vdGLPWGLO2pmbULHhFURTX0hOOAfB6Q9coe2aHMUVPGWPagKeAq4wxDbYwiQM/BtbZux0D5idNmwfU2ePzUowPmCMiPqAcaBlhLUVRlLwkHI0DsK+hM8tHkpp0oqdqRGSG/bkQeDvwmu2jcHgPsMv+/BCwwY6IWgwsB7YYY+qBThE53/ZXXA88mDTHiYy6FnjC9ns8BlwhIhW2+esKe0xRFCUvCccsofH6CXcKjXSip2qBu0TEiyVk7jfGPCwid4vImVjmokPATQDGmN0icj+wB4gCN9uRUwCfAH4GFGJFTTlRWHcAd4vIASwNY4O9VouIfBV4yd7vK8aYlgmcr6Ioiqtxu6YxqtAwxrwKnJVi/CMjzLkVuDXF+FZgTYrxPuC6Yda6E7hztONUFEXJBxyh8XpDJ8YY7HQ216AZ4YqiKC4iZJun2noiNHWGsnw0Q1GhoSiK4iIcTQPcaaJSoaEoiuIiwtE48yoKAdjnQme4Cg1FURQXEY7GqS0PUlzg5Xhbb7YPZwgqNBRFUVxEOBanwOehKOCjNxwbfcIUo0JDURTFRYSiMQq8HooKvInscDehQkNRFMVFhKOWplHoV6GhKIqijIIlNLwUFXjpjUSzfThDUKGhKIriIsLRuG2e8qmmoSiKooyM4wgvLPCqI1xRFEUZmVA0TsCnjnBFURQlDRxHuAoNRVEUZUSMMZZ5yush6PfSG3afIzyd0uiKoijKFBCNG4yBAp8Hg5eeSMx1lW5V01AURXEJTrFCyzzlwxjLx+EmVGgoiqK4BEdoBOzkPsB1EVQqNBRFUVyC0+rVcYQD9ETcJTTUp6EoiuISEuYpr4cCn/VM7zZnuGoaiqIoLiE0yKcBuC7sdlShISJBEdkiIq+IyG4R+Xd7vFJENonIfvu9ImnOF0TkgIjsE5Erk8bPEZGd9rbviR0SICIBEbnPHt8sIouS5my0/8Z+EdmYyZNXFEVxE8k+jYR5KteEBhACLjPGnAGcCVwlIucDnwceN8YsBx63/42IrAI2AKuBq4AfiIjXXuuHwI3Acvt1lT1+A9BqjFkG3AZ8w16rErgFOA9YB9ySLJwURVHyiWSfRmFBjjrCjUWX/U+//TLANcBd9vhdwLvtz9cA9xpjQsaYg8ABYJ2I1AJlxpgXjDEG+PmgOc5avwHW21rIlcAmY0yLMaYV2ES/oFEURckr+n0a3pzWNBARr4jsABqxbuKbgVnGmHoA+32mvftc4GjS9GP22Fz78+DxAXOMMVGgHagaYS1FUZS8Y0Ceht/xaeSgI9wYEzPGnAnMw9Ia1oywe6rURTPC+Hjn9P9BkRtFZKuIbG1qahrh0BRFUdxLKGppFQPMUy4LuR1T9JQxpg14CstE1GCbnLDfG+3djgHzk6bNA+rs8XkpxgfMEREfUA60jLDW4OO63Riz1hiztqamZiynpCiK4hqSQ25z1jwlIjUiMsP+XAi8HXgNeAhwopk2Ag/anx8CNtgRUYuxHN5bbBNWp4icb/srrh80x1nrWuAJ2+/xGHCFiFTYDvAr7DFFUZS8Y4Aj3O9OoZFOcl8tcJcdAeUB7jfGPCwiLwD3i8gNwBHgOgBjzG4RuR/YA0SBm40xzll/AvgZUAg8ar8A7gDuFpEDWBrGBnutFhH5KvCSvd9XjDEtEzlhRVEUtxJKCrn1eISg3+O65L5RhYYx5lXgrBTjzcD6YebcCtyaYnwrMMQfYozpwxY6KbbdCdw52nEqiqLkOsmOcMCVLV81I1xRFMUlJPs0AAr97mv5qkJDURTFJST7NABXdu9ToaEoiuIShpqnvK6rcqtCQ1EUxSWEo3E8Aj6PlaJWWOC+lq8qNBRFUVxCOBanwOdJtHdVR7iiKIoyLOFoPOEEB0fTUKGhKIqipCAUjVPg8yb+XeRXR7iiKIoyDOFonICv/7ZsRU+pT0NRFEVJgePTcCgs8NEXiWfxiIaiQkNRFMUlhKOxAT6NogIv4VicaMw9gkOFhqIoiksIRwdpGk7RQhflaqjQUBRFcQlDzVPua/mqQkNRFMUlhCLxIeYpcFd5dBUaiqIoLmGwptEvNNwTQaVCQ1EUxSUM8WkUWN0r1DylKIqiDGGw0FDzlKIoijIsoWicgDdF9JQKDUVRFGUww/k0eiPu8Wmk0yNcURRFmUR2HW/nxTebU5inrFu0mzQNFRqKoihZ5p4tR/jl5iMAA2pP5WSehojMF5EnRWSviOwWkU/b4/8mIsdFZIf9ujppzhdE5ICI7BORK5PGzxGRnfa274ldNF5EAiJynz2+WUQWJc3ZKCL77dfGTJ68oiiKG2jo6Et8zgdHeBT4nDFmJXA+cLOIrLK33WaMOdN+PQJgb9sArAauAn4gIk6t3x8CNwLL7ddV9vgNQKsxZhlwG/ANe61K4BbgPGAdcIuIVEzkhBVFUdxGQ0eI2WVBoN8kBeD3evB7JbeEhjGm3hiz3f7cCewF5o4w5RrgXmNMyBhzEDgArBORWqDMGPOCMcYAPwfenTTnLvvzb4D1thZyJbDJGNNijGkFNtEvaBRFUfKCEx19vPWUGn5xw3l8YN2CAdsK/e5q+Tqm6CnbbHQWsNke+qSIvCoidyZpAHOBo0nTjtljc+3Pg8cHzDHGRIF2oGqEtQYf140islVEtjY1NY3llJRpSixuuPuFQ/S5qBCcMj2JxOKc7AoxsyzIxcurqSwuGLDdbS1f0xYaIlIC/Bb4jDGmA8vUtBQ4E6gH/tPZNcV0M8L4eOf0DxhzuzFmrTFmbU1NzYjnoSgAL7zRzJcf3M0z+09m+1CUac7JrhDGkDBPDaaowJt7VW5FxI8lMH5pjPkdgDGmwRgTM8bEgR9j+RzA0gbmJ02fB9TZ4/NSjA+YIyI+oBxoGWEtRZkQu+vaAVTTULLOiXbLCT67PJByu9v6hKcTPSXAHcBeY8y3k8Zrk3Z7D7DL/vwQsMGOiFqM5fDeYoypBzpF5Hx7zeuBB5PmOJFR1wJP2H6Px4ArRKTCNn9dYY8pyoTYU98BWBm4ipJNnMipmaUjaBou8mmkk6dxEfARYKeI7LDHvgh8QETOxDIXHQJuAjDG7BaR+4E9WJFXNxtjHDH5CeBnQCHwqP0CSyjdLSIHsDSMDfZaLSLyVeAle7+vGGNaxneqitLP7jpLaIRVaChZpqEjBMDs8tRCo7DAR3tPeCoPaURGFRrGmGdJ7Vt4ZIQ5twK3phjfCqxJMd4HXDfMWncCd452nIqSLr3hGG82dQEQirpH7VemJyc6+vB7hcqigpTbi/xe6nPJPKUo+ca+hk7idjiFahpKtmlo72NmaRCPJ9WzuWWe6nWR702FhjLtcJzgoEJDyT4nOvqYVZbaCQ456AhXlHxjT10HpUEfHlFHuJJ9Gjr6hvVngOMIV6GhKFnjcHMPS2tKKPB5CMdUaCjZpaEjNGzkFFiO8N5IjHh8SIpaVlChoUw7esJRSgI+Aj4vIRfZipXpR1coSlcoOqqmAdDnkqANFRrKtKMvEifo96qmoWSdpk4r3LamZHifhtsq3arQUKYdfZEYhQVeCrwe9WkoWeVklyU0qktHcIT73dVTQ4WGMu3ojcQI+jwE/Co0lOxy0tY0qktS52hAfyMm1TQUJUv0JmkaGnKrZBNH00jPPOWOUiIqNJRpR18kRqHfS8DvVaGhZJWmrjAiDCmHnkyh3yrcoeYpRckC8bhJOMIDXo+WEVGyysmuEJVFBfi8w9+K1RGuKFnE8WEkoqdU01CyyMnOENUjmKYgSWi4JDxchYYyrXD6ZxT6PQR86gifTMLROIebu7N9GK7mZFeI6tLhTVPQ7wh3S8tXFRrKtMIp/FZYoJrGZBKJxbnhrpe48jtPqwlwBE52hdPQNCyfhpqnFCULOEIj6PcS0OS+SeNfHtjFM/tP0heJJxLYlKGc7BqDeUqFhqJMPU4EiuPTCEVUaGSavkiM+7YeZdnMEqC/yZAykO5QlJ5wbFShEfB5ENHoKUXJCo6ppFDLiEwanX2W7f3cRZVAfztTZSCJbPAREvsARIQiv3sq3arQUKYVveH+6CktWDg5dIUsobG0phhQoTEc6ZQQcbAq3aojXFGmnIQjXDWNSaPbFhrzK4vwe0XNU8PQ1Gn1/R4pG9yhsMBDn0tMqaMKDRGZLyJPisheEdktIp+2xytFZJOI7LffK5LmfEFEDojIPhG5Mmn8HBHZaW/7noiIPR4Qkfvs8c0isihpzkb7b+wXkY2ZPHll+tEfPWWF3EZixjV9CvIFxzxVGvQxszRIo2oaKek3T40uNII+93TvS0fTiAKfM8asBM4HbhaRVcDngceNMcuBx+1/Y2/bAKwGrgJ+ICJee60fAjcCy+3XVfb4DUCrMWYZcBvwDXutSuAW4DxgHXBLsnBSlLHSFxnoCAdU28gwjnmqNOBnVlmAEyo0UuIIjapRfBpghYjnTD8NY0y9MWa7/bkT2AvMBa4B7rJ3uwt4t/35GuBeY0zIGHMQOACsE5FaoMwY84IxxgA/HzTHWes3wHpbC7kS2GSMaTHGtAKb6Bc0ijJmBggNu3SDJvhllq5QBICSoI9ZZUH1aQyisy/CBV97nO8+vp+KIj/+EUqIOAR93sR3N9uMyadhm43OAjYDs4wx9WAJFmCmvdtc4GjStGP22Fz78+DxAXOMMVGgHagaYS1FGReOiu8ULAQ0wS/DdNnmqZKAJTQa1acxgBPtfdS393HFqll87b2npzUnWOClN1d8Gg4iUgL8FviMMaZjpF1TjJkRxsc7J/nYbhSRrSKytampaYRDU6Y7jjPRKVgIaMZyhukKWdez1NY0OkPRhHNc6fervW/tfK5aMzutOUGfxzWRfmkJDRHxYwmMXxpjfmcPN9gmJ+z3Rnv8GDA/afo8oM4en5difMAcEfEB5UDLCGsNwBhzuzFmrTFmbU1NTTqnpExTeiMxCrwevB4h4Ld9GqppZJSuUMS6vj4Ps8osJ6+aqPrpSdJ206WwwJsQNtkmnegpAe4A9hpjvp206SHAiWbaCDyYNL7BjohajOXw3mKbsDpF5Hx7zesHzXHWuhZ4wvZ7PAZcISIVtgP8CntMUcZFXyRG0BYW6tOYHLr6opQEfIgIs8qCgGaFJ5Nc/yxd3OTT8KWxz0XAR4CdIrLDHvsi8HXgfhG5ATgCXAdgjNktIvcDe7Air242xjhn+wngZ0Ah8Kj9Akso3S0iB7A0jA32Wi0i8lXgJXu/rxhjWsZ5ropCbziW+LEmoqdUaGSUzpAlNICE0GjsVE3DIeFXG4vQ8LsnT2NUoWGMeZbUvgWA9cPMuRW4NcX4VmBNivE+bKGTYtudwJ2jHaeipENfNJYwCwR8tiNcQ24zSncoSmnQERpqnhqMY54q8qfzzG4RzCXzlKLkE73hGEH/QE1DixZmlq4kTaMk4CPo92il2yQSlZYL0r/9Bn1Wa2I3JKKq0FAGUNfWyyd+sS2RoJVv9Eb6hUYgkdznjie4fKGrL0qxLTREhNKgP2+/T+PBaabk9MlIB8eU5YYEPxUaygCeO3CSR3edYPfx9mwfyqTQF+k3T6mmMTl0hqKUBPtviCUBXyIMV+kvmjmW6Kmg/V11g19DhYYygEbbjNCYp+aEvki8P3pKy4hMCl19UUoD/UKjOODVPI0keiJRCnxW2He6JDQNF/g1VGgoA2jKc6HRG+mPnnLMUxpym1m6k3waAMUFvkSWuGL51YrGEDkFJEyqbnCGq9BQBuCERuar4zKlI1yFRsaIxQ3d4dgA81Rp0Kc+jSR6w7ExmaagP9JPNQ3FdTh1gvI1rj6UKuRWhUbG6A73151yKA74EuMK9CRpu+mi5inFtThmqemgaQQ0uS/jJBcrdCgO+NSnkUTfODQNdYQrrsQYk9fmKWOM5dNwzFNasDDjOGaoodFTKjQcesbh01BNQ3ElnaEofZE4IvnpCA/H4sRN/w/Q4xH8XlFNI4MkhMYgR3hfJE5Uo9QAyzwVHKumoY5wxY04/ozFVcW0dIfz7mbqqPaOWQosbUMd4ZmjK6nVq4OjdXRrrgZgmafGrGn4HU0j+99VFRpKAsc0tXpuOdDfjjJf6EtRXTTg9+adcMwmjqZRHEg2T1nXu0ud4YCVpzGWbHAgUcZfNQ3FVTh+jDVzygb8O1/oTdHHoMDrUaGRQYZzhAPqDLfpDcfHbZ5yQyMmFRpKAsc8tXqOpWnkm1/DqduT/IMt8HnUEZ5BOm3BUBrwJ8YcoaHOcIvecHQC5qnsf1dVaCgJGjv7CPg8LJ1ZnPh3PpFK0wj4PFpGJIN0J8xT/dfY0To0K3xoBF+6+O1uk2qeUlxFY2eImWUBqksCVgRVnnVbc4TGEE3DBc7FfKGzL0Kh34vP239rKVHzVIJQdGAE31go9HvVEa64i8aOEDNLg/i9HiqLCmjKM0d4R4rIHtU0MktrT4SKIv+AsRI1TyVIpe2mS9DvUU1DcRdNXSFqSqxOazWlgbzTNDr6IgCUF/bf1CyfhgqNTNHSHaaiuGDAmDrC+3Fu+mP1aYClIatPQ3EVHb0RZthPiWWFfjrtm2y+0NFrnU/ZAKHhVaGRQVq6w1QOERrWDbI7nP0bXrbpGUd/cAcVGorr6Ozr7+2cj6UfOnojiDCg10PApyG3maS1Z6jQCPi8+L1CpzrC+3OFxmmeygmfhojcKSKNIrIraezfROS4iOywX1cnbfuCiBwQkX0icmXS+DkistPe9j0REXs8ICL32eObRWRR0pyNIrLffm3M1EkrQ4nE4vRGYpTYoZL5WGSuvTdCacCHJ6n5TVGBNgjKJC3dYSqKCoaMl+Th92k8OJrGWJP7wHGE54am8TPgqhTjtxljzrRfjwCIyCpgA7DanvMDEXFE6g+BG4Hl9stZ8wag1RizDLgN+Ia9ViVwC3AesA64RUQqxnyGSlo4P+h+TcObdy06O/qilA9y0lYUFdDaHc7SEeUXkViczr7oEE0D8vMhZDz02FnxhQVjN/IE/d7ccIQbY54GWtJc7xrgXmNMyBhzEDgArBORWqDMGPOCMcYAPwfenTTnLvvzb4D1thZyJbDJGNNijGkFNpFaeCkZoHNQZFFxQf79yNt7I5QFBwqNquICOkNRNVFlAEf4DnaEQ36aO8dDv3lq7JpGMA9Cbj8pIq/a5itHA5gLHE3a55g9Ntf+PHh8wBxjTBRoB6pGWGsIInKjiGwVka1NTU0TOKXpixNZVBrsN0/1RmLE4iabh5VROnojAyKnoP8G19qj2sZohKNxdh5r5/6tR7n5V9v57p/3D9jeYl/DquE0Da09Na0d4T8ElgJnAvXAf9rjqTqlmxHGxztn4KAxtxtj1hpj1tbU1Ix03MowDNY0EglZefRDH07TAMsWr4zM5379Cu/6/rP8829e5ZGd9dz30pEB251rmMqnURzQPuEwsZDbQr8nd4WGMabBGBMzxsSBH2P5HMDSBuYn7ToPqLPH56UYHzBHRHxAOZY5bLi1lElgcEnr/nLW+fND7+gbXtNQoTE6r9V3sG5RJX/+7KX8j4sX09wdxrI2W7R2W9pqKp9GqZqngNRVCdIlpzUN20fh8B7Aiax6CNhgR0QtxnJ4bzHG1AOdInK+7a+4HngwaY4TGXUt8ITt93gMuEJEKmzz1xX2mDIJdIaGmqcgv4RGe2+EssKBtmTVNNKnvr2PVXPKWDazlKqSAKFoPGFugX7zVEWxf8jc4oBX+2mQHD01PqHhBkf4qN4YEbkHeCtQLSLHsCKa3ioiZ2KZiw4BNwEYY3aLyP3AHiAK3GyMcc7yE1iRWIXAo/YL4A7gbhE5gKVhbLDXahGRrwIv2ft9xRiTrkNeGSOdg0paJ3og5MkPPRSN0ReJq6YxTjr6InSFosyZEQSgsqj/ujkPGC1dI5un8ukBZLz0RmL4vYLfO77oqb5IHGMMdsZCVhhVaBhjPpBi+I4R9r8VuDXF+FZgTYrxPuC6Yda6E7hztGNUJk6q6CnIH02jo9c6j7JBQmNGoR8RFRqjUdfWC8CcGYVAvwmqpTvM/MoiwAomKAv6Ut4QSwI+usLRrN/wsk1veOytXh2Cfqen/dj7cWQSzQhXAEtoFHg9iS9jvvVAcKLDBjvCfV4P5YV+FRqjUN9mlcmvLbeERkJDS4o6S1VCxKE44MMYBpizpiO942j16uCWnhoqNBTAKmk9oK9znvk02nuHFit0qCwuGHDzU4Zy3NY05tqaRsIX1NV/3Vp7hhYrdHCue0ee1TMbKz3j6KXhEHRJn3AVGgpgaRolSUIj3xzh/cUKh1pkKzUrfFTq23vxeYSaUqsKcmXJ0PyW5q5wwtcxGMfP0dw1va9za4oqwOniaCg9WQ6DV6GhAMNrGvniCB9V01ChMSL1bX3MKgvitet2lQZ8+L1Cc3d6mkZVCiEzHWns7Eu0Hxgr/X5GNU8pLqArFB3Q1zno9+CRPNI0bEf/YJ8GqNBIh+NtvYnIKQARoaKoIGGeMsbQ0h1OmQ0O/ZrGdL/OTZ2hhLY2Vhzt3wmPzxYqNBRgYFl0sG4KxXmUkJWql4ZDRXEBrT0DE9WUgdS39yWc4A7JvqCecIxQND68pqGhzYSjcVp7IswsDY6+cwpKg6ppKC5isE8D8qvIXEdvhAKfJ2WoYlVxAZGYoTNPzjXTxOOG+vbeRLitQ7KG9tIhK4VqxaySlGuUF/rxTPPQ5pN2++SJahpdqmkobqCjb2hdpnxKyEpVQsQhYTqZ5k7a4TjZHSISMwPMU2BraLYQ2LSngaICLxcurU65hsdjmbOap7HQaOq0hMbMcQsNdyTcqtBQMMZYPo1BmkY+maesYoWpc1mdSCANu02Nk6MxZ5B5qqrYEgLxuOHPext4y4qaEZPOkoXMdMQRGuPVNByfY7Yf5FRoKHSHYxjDEKFREsifrnYdvdFhNY1K1TRGZN+JTgCW1BQPGK8sLqC9N8LLR1tp6Ahx+apZI65TWTzNNY0Jmqec4JRsVwtWoaHQaSdclQQGmacKfFl3umWK1p7w8EIjRXaz0s/O4+2UBnwsqhoqNADu2XIUr0e47NSZI64z3fNhGjssoVE9zpBbtwSnqNBQhtSdcsgnR3hDRx+zy1NHrTi+nE7t95CSV4+3s2Zu+YDe6tAvNH63/RhvXzmTGcMk9iX2L5neoc1NXX1UFPkp8I3/tlvqAj+jCg1leKERzI9ua+FonJNdYWaVpRYaTtSYE5ar9BOOxtlb38Hp88qHbHPMenEDn16/YtS1Kous0OZ4HnWDHAtNnaFxh9s6qKahuILOQa1eHfIleqqhw3Lkzh5GaHg9QmnAN+3rIqXi9YZOwtE4p6USGnYAwTvWzGbVnLJR16osLiBu+rPzpxuNE0jsc1ChobiCkcxTkZghFM1tv0ZCaAxjngLr3NU8NZSdx9sBOG3uUKGxrKaEv7toMV+8emVaa01339FEssEdSoPZf5BToaEMW5ep2C6QluvO8BNpCI2yQr+ap1Lw6rF2yoI+Ftg9M5LxeT3867tWJfppjEblNM4KN8bY5qkJahoFqmkoLsD5EQ/uuJYvlW5PtI9sngLLGa7mqaHsre9g9ZzyjDROms5Co6MvSigaz4h5KtsPcSo0FFq6w5QGfEOiOkrypBFTQ0cfAZ9n2JBbsEqmO939lH4aOvqYW1E4+o5pMJ2FxkQT+xxKg6ppKC6gpTuccGomkzeaRkeI2eXBEZ+WS4P+rFcPdRvxeGZMKg7TWWg47XIHF30cK8UBL12haFaLa44qNETkThFpFJFdSWOVIrJJRPbb7xVJ274gIgdEZJ+IXJk0fo6I7LS3fU/sX7CIBETkPnt8s4gsSpqz0f4b+0VkY6ZOWhnIcG0686Xl64n23hFNUwBlQdU0BtPSEyYaN8OGKo+VoN9LUYF3WgqNo609AMyvnJjQKAn4icUNoWj2uvelo2n8DLhq0NjngceNMcuBx+1/IyKrgA3AanvOD0TEKUbzQ+BGYLn9cta8AWg1xiwDbgO+Ya9VCdwCnAesA25JFk5K5mgepg9Cf8vX3HeEj+QEB8sR3tkXmbY5BKlwMpgzpWmApW1Mx6zwY629+L0y4TyNkkTRwuw94IwqNIwxTwMtg4avAe6yP98FvDvMHMkaAAAgAElEQVRp/F5jTMgYcxA4AKwTkVqgzBjzgrH0qp8PmuOs9Rtgva2FXAlsMsa0GGNagU0MFV5KBmjpDg2jaTjRU7n7BG6MoaEjlIam4SduyItkxkzR0GkFEMwsy6zQmI71p4629DB3RmGi8+F4SWj/WQwPH69PY5Yxph7AfneKzswFjibtd8wem2t/Hjw+YI4xJgq0A1UjrKVkEGMMrd2RlM1z8sER3toTIRyNj2picXqHd2iuRoKmhKaRGfMUTN8uicdae5lXkV5o8ki44TeZaUd4KjFqRhgf75yBf1TkRhHZKiJbm5qa0jpQxaIrFCUci6c0T+WDTyMRbjuKeao0UX9qqDN834lOfv9KXeYPzuU02prGRCN+kqksmq5Co2fC/gxINhnnntBosE1O2O+N9vgxYH7SfvOAOnt8XorxAXNExAeUY5nDhltrCMaY240xa40xa2tqasZ5StMT5wdcWTz0xuD3eijweXLaPOVkg4+qadhCY7Az/O4XDvGu/3qWT93zMgcauyblGN1KQ0eI8kL/iD0yxsp01DR6wzFOdoUzomm44UFuvELjIcCJZtoIPJg0vsGOiFqM5fDeYpuwOkXkfNtfcf2gOc5a1wJP2H6Px4ArRKTCdoBfYY8pGcSxL6fSNCD3K906T8uzRrHLJ8xTSVnhXaEo//rQbs6cPwOPwIM7jk/egbqQxs6+Ua/bWKkoLqA3EqM3nNvBFWPhmB05NS8D+S5Occ1s/iZTtzJLQkTuAd4KVIvIMayIpq8D94vIDcAR4DoAY8xuEbkf2ANEgZuNMc634xNYkViFwKP2C+AO4G4ROYClYWyw12oRka8CL9n7fcUYM9ghr0wQp/FQKp8GWM7wXNY0nKSq0XoYJDSNJPPUkeYejIGNFy6iwOfhwR11fPbyFRnJjs4FGjomXpV1MFVJ9afmFmQmaXAq2HG0jabOEAurilgxq3RMc/vDbTPn08hmROOoQsMY84FhNq0fZv9bgVtTjG8F1qQY78MWOim23QncOdoxKuPHKR43nKZh1brJ3afCps4QZUHfqCYWp1hjctHC5Nj6d581l3/69StsP9LGOQunR+R3U2eIJdXFo+84BpyHk9buMHNn5IbQCEVjXPej54nEDH6v8Nz/uoyZY8hdOdZqJfZlQtPoN09lLxFVM8KnOf0+jeHNUzmtaXSlV1m0NOHT6P8xHm2xhMaCyiKuWjObAp+Hx3afmJwDdRnGGBo7+8Z0c0wH5+Ekl8Ju23oiRGKGDefOJxIz/HrbsdEnJXG0pYeAz0PNODv2JVPk9yJCVh/kVGhMc1q6wwR8HooKUj+J53ojpnTLURf4PBT6vQPMU0dbeigN+Cgv9FMS8LGytoydx9on83BdQ6t9o8xkYh8M1DRyhVZbG790RQ0XLq3ini1HxpQEerSll3kVhRkxa3o8Yrdhzj1HuJInNHdZ2eDDfaHd0PRlIlhCI72n5cFFC4+29jKvsihxbVbPKWN3XXtW6/5MFY2TkNgHualpONr4jCI/HzxvAcdae3l6f/qh/a8ea+OU2WPzg4xEccCbk8l9Sp7Q2hMe1gkOUJLlp5qJ0tQZStssMLg8+tGWHhYkxdavmVNOR180YaPOZxomIbEPrGvs9UhOaRptPdZ3oqKogCtWzaa6JMAdzx5Ma+6x1h7q2vs4b3FVxo4n28U1VWhMc5qHKVbo4Ib6/eOlOxSlOxxLOzktuXufMYajrT3MT4qtX223NN11PP9NVHvrOwBYWpNZR7jHI1QU+XNS06gsLqDA5+Fjlyzmmf0n2XG0bdS5Ww5aAZ/rFldm7HhmlQUSSavZQIXGNKelOzRs5BRYBdK6w9ktxTxeTnaNrYdBWWG/ptHUFaIvEmdBVb/QOGV2KV6PsLuuI/MH6zK2HW5lSXUxVRlw3g6moii3iha29fSbpwA+dP5CZhT5+f4T+0edu+VgC2VBH6eMMUx3JGaXFarQULLHcHWnHIoDPoyBnhxMxhpr45uyoD/R+taJnErWNIJ+L8tnlrCrLr81DWMM2w+3cvYkhRbnWlZ4S3eE4gIvAZ8VLFIS8LHxgkX8eW/jqDfvLQdbWLe4Es8ECxUmU1sepKEzRCxLFZlVaExjwtE4XaHokDavyeRyI6aE0EjzaXl+ZSHHW3tp741wtKXXHhuYkLV6TnlC02jvjXDHswcTgiZfONzcQ3N3mLMXTKLQ6MkdodHWE2bGoN/IZadaNVq3Hh4+37ixs483T3Zn1DQFUDsjSMxukJUNVGhMY9p6B6rdqXBDVc3x0jRG89T6lbOIxg1P7WvkcHPq0g+r55TR1BmisaOPX289ylcf3sOVtz3NX17Pn0KZ2w63AkxaEmOuaRqtPUP9fqvmlFHo97L1UOuw8xzfV6aFb61dfLO+PTsBGSo0pjHtdlTI4KeoZIpdULZgvDR1hvDI8ImLgzlz3gxqSgM8srOe3718jNPnlQ/JJHec4bvrOthT38GMIj8lQR8b79zCFx/YmTWTQbqkk1+w/UgrpQEfy2eWTMoxVBYX0NoTdv21cmjpiQx5sPJ7PZwxvzwhYFNxxH7wWJThrPrZZdaDTH2W/BoqNKYxrYlQwuE1jWIXdAobLye7QlSVBNJufOPxCG9fOZPHdjdwuLmHT122fMg+q5IiqPbUdXDm/Bk8/KmL+ehFi/jV5iP8eW9DRs8hk/SGY7z1W0/xtUf3jrjfy0faOHPBjIza4ZOpLC7AGHLGrNeWQtMAWLuwkj31HcOabg+39FBU4B0x0GQ8zJnhaBoqNJQpxsl0HcmnkdPmqTHkaDhcvmoWAGvmlvH2lTOHbC8N+llUVcTLR9s40NjFqtoygn4vX7x6JRVFfh5+tT4jxz4ZPHfgJEdaevh/f3mTnz6XOs/AGMPh5m6W1kyOlgEkak692ZQbpeZbusMpfyPnLKogFje8MkzorZXnU5TxApdWuXoP9W1qnlIyxNGWHv646wSh6MgmpcGhhKnIdUf4WBsIXbi0mrevnMW/vnP1sD/21XPLefr1JqJxw+o55YBlrrhqTS2P721wbdnvP+9toDTg47JTZ3LrH/amfNJv743QHY5lpLjecDi+ks0H3V+0OhKL09mXOljk7PnWeWwdxkR1uNkSGplGRJhTXkh9h2oaSob45mP7+PgvtnHR159k+5Hhba6tSZmuw5HLmkZ9e9+YaycF/V5+snHtiBEvq+eUEbXt8Y65CuBdp9fSE47x5L7G4aZmjXjc8Oe9jbzllBo+dskSonHDSylu2pmsyDocVSUBls8sSSS+uZlENnjx0Aer8iJL69zX0DlkmzGGIy09LKzKvNAAqxOlahpKxthT38HqOWV4PXDrH/YOm5jX2hOmwDt8sULIXU0jFI3R2Bli7iTc/NbY2kVRgZeFSU+S5y2porokwKO73FcJ95VjbZzsCnH5qlmctWAGBT4PL7zZPGS/4/aNaO6MybnZOZy3pJKth1qIxuKT+ncmStsoJtz5lUUpy8o0doYIReOTommAJTSyleCnQiPPCEVjHDzZzdtOmcnNb1vGtsOtKW8OAG3dEcqL/CPaXIvs6KFcExrOD2oyejY4EVQra8sGOIu9HmHtwgp2uzD578nXGvF6hLeumEnQ7+WcBRU8/8bQ74VzA5wMYZvMusVVdIdj7Kl3d3a9Exo8nNCYV1HIMTsRNJkjTln9qsxGTjnMKS/MWoKfCo0840BjF7G44ZTZpbxv7Xxmlgb4/hMHUu7b2hMeMXIKnFLM3pxrxNT/xJz5m19VSYBTZ5dy4dKhReiWzSzhcHMP4ai7nqBfOdbOilmllNv/3xcurWJvfceQch7HW3sp9HtH/V5MlPNs85/bTVStI5inAOZVFNHcHaZnUPsAJ89nMjWNWNyw78RQ09hko0Ijz3C+RKfOLiXo93Ld2nm88GZzSqd4W29kxBwNh5Jg7lW6PT7JT8wPf+pi/vHtK4aML5tZQixuRSC5iT31Hayq7fe/XGALvBcHaaHH23qYm6HeDyMxqyzIoqoiXkih7biJ0cxTju/n+CAT1ZGWHjwyOQ8tYP2+Aa7+3jP8n0dGDqHONCo08ox9Jzop8HoSCUXLZ5ZiTH+iUTJtaWgaYPfUyLFGTMfbehGxnsgmA5/XkzKPYZmdEHeg0T3hpI2dfTR1hhJmNYDT582gosjP53+3k19uPpwYP97WO2VtWC9eXs0Lbza7TitLpiUNnwb0twZ2ONLcTW15IQW+ybnFrl1UyZP/9FauWj2bnz53MNH/ZCpQoZFnvHaik6UzS/B7rf/axbbwOHhy6JNva09kxMgph1xs+VrX1ktNSSBRZG6qWGKXEneT0HBqZSULjQKfh/tuuoBTZ5fypQd2JQo0Hm/tnXR/hsMly2voCcdGzKrONi1dYYJ+D4XDBIs4msZgZ/iBpi4WVU9uMMHi6mL++apTiMQM9245Oql/K5kJCQ0ROSQiO0Vkh4hstccqRWSTiOy33yuS9v+CiBwQkX0icmXS+Dn2OgdE5Hti68YiEhCR++zxzSKyaCLHm8/85Jk3+cQvtrG7rj2hukJ/CYPBQsMYk7IQWypKAv19JnKF421Td/NLpqjAx9wZhRxwUeLaHltorEwSGgArZpVyy7tWA1a9qZ5wlNaeyKSG2yZz4dIqfB7hmTF0wRsv24+0csHXHh9zxFF9ex9zyoe/HtaDiSchdMHKD9p1vIMLlmSu8dJwLKkp4dIVNfxy82EiUxSJlglN423GmDONMWvtf38eeNwYsxx43P43IrIK2ACsBq4CfiAijvj+IXAjsNx+XWWP3wC0GmOWAbcB38jA8eYdXaEo3/nzfh7ddYKTXWFWJNXuLy/0U11SMERodIdjRGJmxMQ+h9ryQo61DjVvuZm6tr4pM7MMZunMEt5wmdBYUFlEWXDo//Ups0spLvCy7XBrvx9oiq5badDP2QsqxtQ6dbz89LlD1Lf38dKhsTnej7f1MmeE6yEiVgRVkqbh5Olcduqs8R3sGPnI+Qtp6Ajx7P6TU/L3JsM8dQ1wl/35LuDdSeP3GmNCxpiDwAFgnYjUAmXGmBeMlVDw80FznLV+A6yXyfbQ5SAPbD9GVyjKN689nfecNZd3nl47YPuiqmLeHCQ0WhOhhKMLjSU1xTR0hIZEiLiVeNxMqW1+MMtqSnijsTut4oBTwe669gGmqWS8HuGsBRVsP9I6JYl9g7lkeTW7jnckGmZNBm09YR7bbeXOvHZibCG+dW29iVpPwzGvYmCuxhN7G6ktD7KyNnONl0bikuXVBHyeKRG+MHGhYYA/icg2EbnRHptljKkHsN+dAj5zgWTD2zF7bK79efD4gDnGmCjQDgzR+UTkRhHZKiJbm5ryp0R1Ohhj+PkLhzltbjnXnjOP295/5pAeEIurizk0SGi0pVHh1mGRHWt+6KS7tI2Xj7TyP3/9Cs/uPzkggfFkd4hwNJ4V8xRYzvDeSIy6LJWuTqajL8Kh5p4BkVODOXthBXvrO/jdy8cp8HpYUj15dacGc+mKGsCqizVZPLijjnA0TmnQx9769ENUnQTRkTQNsPqwOI7wUDTGM/ubuOzUmZMegeYQ9Hs5b0kVz+SIpnGRMeZs4B3AzSJy6Qj7prqCZoTxkeYMHDDmdmPMWmPM2pqamtGOOa/YdbyD/Y1dfPj8BcN+SRfXFNPYGRpQCsTppZGOI9xx6B1yWRjpNx/bx6+3HePDd2zmU/e8nMgurmuz7NYj2aInk1NmWzfdXcezn7i2ze73MFIXvnMWVhA38PtX6vjw+QtH7OSYadbMLWdGkT+j/UiMMdx091a++dhrdPRF+OlzB1k9p4zLTp3Ja2NIJmxot7Sf0TTWeRVFtPVE6OyL8NLBVrrDsUSTpqni0uXVHGjsom4KSotMSGgYY+rs90bgAWAd0GCbnLDfnUI8x4D5SdPnAXX2+LwU4wPmiIgPKAfcnQ00xWyzO4c5T2ypWFLtaAr9N/10yqI7OJpGqgisbHHwZDfPv9HMP1y2jM9dvoKHX63nH+9/BWNMwv+SLU1jzdxygn4Pmw9mPwfhxYPN+L0yYiOgM+fPQARKAz4+edmyKTw6yzx28bJqnhmkLU6EZw+c5LHdDfzfJ9/gHd95hmOtvXzp6pWsrC2jrr0v0UdmNNJNEHUqAu+t72TzwWa8HuG8KXCCJ3PJcuv3PxV+jXELDREpFpFS5zNwBbALeAjYaO+2EXjQ/vwQsMGOiFqM5fDeYpuwOkXkfNtfcf2gOc5a1wJPmEx9s/KEl4+2MbssSO0IT9WLbXNDsl/D8WmkY54qDviYVRZwldC4Z8sRfB7hwxcs5FPrl/Opy5bx+1fqeL2hix1H2ijweRLhxlNNwOdl7cJKVySubX6zhTPmzRg2ZBSsYIkPrlvAl9+5Ku2GVZnk0hU1NHWGeC1D2c13PHuQ6pIA7zpjDsfbern1PWu4cFl1Iqpwb5p+DeepfTTz1LpFlYjAC280s+VgC6tqyxKFPqeKFbNKmFkamBK/xkQ0jVnAsyLyCrAF+IMx5o/A14HLRWQ/cLn9b4wxu4H7gT3AH4GbjTFOmvIngJ9gOcffAB61x+8AqkTkAPBZ7EgspZ8dR9s4a8GMEfdZWFWER+D1pB/lwZPdFI+hQcyiqqF+kWyx42gb9245wuWrZjGz1HJSbli3ALCeMl94s5mzF8wY0nVvKjl/SSWvnejMalvTrlCUncfbOW/J6D2qb33Pabzv3Pmj7jcZXLK8GoCnM2CiOtDYxVP7mvjI+Qv5zvvP5PHPvYX3n2t9Nxy/TromKkfTGC1BtLzIz+o5Zfzl9UZ2HG3j3EWZ7QmeDiLCVWtmT1oyYTLjFofGmDeBM1KMNwPrh5lzK3BrivGtwJoU433AdeM9xnynuSvE4eYePmjfMIcj6PeyZm45W5LCDV9v6GT5rNK0u7Mtri52RVe6x/c28PFfbGNmaZDPXdFfxmPujEKWVBfzh1fr2FPfwWfWDy3xMZU4ZTo2v9nMO06rHWXvyWHb4VZiccP5U2wqGSu15YWcMquUR3ad4MZLl0zIgfyDpw4Q8Hn40PkL8HpkQDOpmtIAlcUFiWTH0ahr66W6JJDWw8cFS6r48TNWY6t1iyent/pofOWaIbfQSUEzwnOYHXbHsLPSaFx/3uJKdhxtoy9iKXevN3SyYlb6UTKLqos52RWmoy+7LTp/tfkIM0uDPPIPl7Bs5sCQxouWVbP9SBvG9N+0s8Xp82ZQVOAdtsLwVPD8GyfxeSTR9MjNfPiChbxytG1CJr0DjV3898vHuf6ChVSn6NgoIlyyvJoHXj7O82+Mbvu3wrbTK0OT/H07Z+HUaxpTiQqNHGbH0Ta8HuG0ueWj7nve4irC0Tg7jrbR3BUakgQ4GotTONPHwsOv1rF3gmWw43HDS4dauGR5daJaazIX22aOoN/DGfNHvyaTid/rYe2iykkNJR2JaCzOgy/XceGyaooKpta+Ph6uO2eeVZH5ydQVmUfDGMO3N+0j6Pfy8bcsHXa/r1yzhkXVxXziF9tpGKXzXd0oiX3JnLuoEq9HWFJdPOZukbmGCo0cYdfxdt71X8/y5f/exd0vHuY//vgaP33uEGvmlo/o5HQ4d7HlrNv8ZguvN1jZyqfMTl9oOE7E7eOoE3SivY9P37uD7/z59THPTWZfQycdfdFhu+qdv6QKj1ghpFNdcyoVly6v5o2m7qxk0z/+WiMnOvr40Hkjmy7dQtDv5cZLl/D8G81s2jM2M2h3KMonf/Uyj+y0zFtVI/SFLy/08/0PnkV7b4Q/jfB3jDHUtfWlLTRKg37ee9Zcrl07b/SdcxwVGjmAMYYvP7iLgye7+e32Y3z5v3fxg6fe4KJlVXzn/WemtUZ5oZ+Vs8vYcqiZ1+32lGPRNBZWFbNiVgl/3D32rnT3vnSEWNzwytGJNSdyei8M52gsL/TzxatXcvNbpzZsdDjeeooVBvn061OvbfzixcPUlgdZP8X5AhPhw+cvZM3cMv7xvh3sT9FCdTh+8sxBHtlVz+ffcSqfXr981P1PmVXKnPIgL4xgojrU3ENvJMb8MYRtf/O6M/h7l3z3JhP3660KD71Sx8tH2viPa0/n3WfOpb03gt8raYXLJnP+kip+ufkwBV4P5YX+MffPvmr1bL7/5AGau0IjPs0lE43FuXfLUXwe4URHHyfa+8ZdrnzLwRbmlAdHLHPxPy5ZMq61J4OlNSXMKQ/y9OtNfHAKn/j3N3TyzP6TfPbyFfi8ufNcGPR7uf0ja/nr7z/HtT96gX+6YgUfWLdg1HPYfLCZ1XPKRjRLJSMiXLC0mideayAeNymDQe5+4TA+j2QtiMHN5M43apoSixu+9ad9rJ5TxrVnz6PA56GmNDBmgQHwtxcuosDr4cl9TayYVTLmKJUr18wmbhhTFNUTtpnkY5daN3PHeT9WjDFsOdTCusWVU1aeYaKICG85pYbnDpycsgqkYGXKlwZ8fPj8hVP2NzPFnBmF3HfT+ayqLePLD+5m/bf/woM7jg+b+BeNWX66c9IIBknmwqVVtPZEUuZsdIWi/HrrUa4+rZZZZZPTjyWXUaHhch7f28DRll4++bZlaYfHDseCqiK+/jenA2MzTTmsqi1jfmUhf9yVvonql5uPMLssyCfftgy/V3jl2PiExu66Dpo6Q1mPihorb1lRQ2coyid/tZ2Xj0x+34hth1v5054Gbrx0SVYS9TLB0poSfvWx8/jx9WspLvDx6Xt3cNPd21JG7r12opOecIxzxpgbceEy63s0OFprx9E2/uWBnXSGonz0okXjPod8RoWGy7nrhUPMKQ9y+arMlFn+q9Nr+eGHzk5blU9GRFh/6qxh28cO5khzD0/vb2LDuvkUB3ysrC1jx5HxCY3fbj9GgdfDVatzy1xw2amz+NsLF7H5YAsf/dlLaV23ifCDJw9QXVLA3128eFL/zmQjIly+aha//9TFfPHqU3n8tUa+/uhrQ/ZzGjiNNay4ttzO69lZn+gc+OqxNt7zg+d4+NV63rd2Xlqh7NMRFRou5vWGTp470MyHL1iYUdv0O06rHVIJN10uXFpFXySe1s3/V1uO4BFhg52Re8a8Gew83k5sjCXDI7E4v3+ljvUrZ6YMtXUzBT4P//bXq/nuhrNo64nw+N7G0SeNk+auEE+93sTfnDOP4ikuYzFZeD3CjZcu5foLFnLPliPsrhsYTLHtcCuzy4LMGYef7Ka3LOHlI2186p7tRGJx7nj2IMUFPrZ86e38x7VD8pYVGxUaLuDuFw/z199/dkif399tP47P03/TdQPn2WGtz4+ShNXY2ce9Lx1h/akzE47v85dU0RWK8tWH94ypON0z+5s42RXmvWfnbjjjxcuqqS0P8uutk9eW8w8764nFDe85a+7oO+cYn1m/goqiAm79w97EWCga46VDLZyzqGJcfq73n7uAf33nKh7b3cDHfr6VP7xaz/vPnZ+zZr2pQoVGlnn1WBv//tBuXj3Wzs2/3J5QlY0x/HFXPRcsrXLVl7i80M+aueUjZu7G4oZ/uOdl+iIx/unKUxLjV582m7+7aDE/e/4Qt21KP2fjt9uPU1lcwFtGqOTrdrwe4b1nz+UvrzeNueVoujzw8nFOnV3KqbOH752Rq5QX+bnJzuM40NjJoZPdXPP956hv7+Oq1bPHve7fXbyYf/mrlTy1r4m4MfzthYsyd9B5igqNLNHRF+Enz7zJTXdvo6Y0wFevWc1Lh1r51p/2AZaD71BzD1etGf8PYrK4cGk1Lx9tTdnJry8S43P37+DFN1v43+8+bYDDXUT48jtX8s7Ta/nxMwcTlXZHor03wqY9Dfz1GXOmpBjbZPK+tfMREf75t68OiKaKxQ2/f6VuiKY5Fl5v6OTlI228Ow+1DIf3nj0Pn0e476WjfOa+HdS393Hn367lXWfMmdC6/+OSJXzz2tP50l+tGrfZdjqRH4bPHKOzL8IHf/wiu453cNrccv73u9dwxvwZ7Knv5CfPvMlfnVbL4681IgJXrHKj0KjiR395g0v/4ylOm1vGnX97LiJCe0+ED9+xmV117fzTFSu49pyh5iQR4VOXLefhV+u5+8XD/MMoyViP2o7KfDC5LKwq5mvvOY1//u2r3PjzrVx7znzixnDX84fYeriVcxZWcP9NF+AdY5ScMYav/H4PZUEf16W45vlCTWmAy06dyU+fO0Q0bvjmtadnrA/3dWuzU+E3F1GhMcVEYnFuunsbe+s7+fH1awdERX3h6lN58rVGbrhrK6FIjHMXVbqyjs15Syr5wLoF1LX18uS+Jp54rZELl1Zzw10vse9EJ7d/ZO2I0V6nzC7lslNn8rPnD/H+c+ePGAv/u+3HWVpTzOnzsltLKlO879z5tPWG+e6f9/PkPqsUeGnQxwfWzeeeLUf56XMH005Q3HmsnR89/QYBn4dnD5zk3/96ddpJl7nKdWvn86c9DZw2t5y/yWEfVy4j+dbTaO3atWbr1q3ZPoxh+cYfX+OHT73BN689PeXTzbP7T/LtTfuYXR7koxctzkpt/nSJxOK87VtPUVlcQHGBjxcPNvN/P3g2V6eRRbvjaBvv/38vUODz8On1y3nv2fOG+G5eb+jkitue5n9eeQo3vy2/yjNEYnF213VQ6PeyoLKIoN/Dx36+jaf3N/GLG84btr4WWJrFPVuO8m8P7Sbg99AbjnFqbSn//fcX5VQG+HiIxOJ85fd7+MC6Bayak3++m2wiItuMMWtH3U+FxsTpi8TSqrn/x131fPwX2/nAugV87b2nTcGRTT6/3HyYLz2wC59H+NZ1Z4zJpn7wZDdfemAnz7/RTNDv4d4bL+DM+f0NpT760y1sPdzKX/7n21wVDDBZtHaH+ZsfPc/JzhA/+vA5XLC0akhUUFcoyhd/t5OHXqnjkuXVfHfDWRT6vYiQ1aZTSu6jQmMKCEVjfPXhPfxq8xE++bZl/MP65Smf9LpCUf7PI3v51eYjrJlbxm8+fmHe/MBD0fYUJjgAAAhtSURBVBj//vs9vGPN7ESf4rGyt76DjXduobY8yAN/fxEej/Ds/pN8+I7NfOEdp3LTOBIRc5VjrT2870cvUNfex8raMjZesJCzFlRgMJxo7+Mrv9/DoeZuPnv5Cv7+rROvEqAoDio0JpE/vFrPt/60j+auEB19Uc5eMIPtR9o4d1EFn3/HSn741AHebOpm1ZwyasuDPLLzBHXtvXzskiV89vIVeSMwMsnvth/js/e/ws1vW0pZ0M93H99PVUkBm/7xLdPuevWGY/z3juPc9fyhIX2zZ5YG+N4HznJ9Nz4l91ChkWGisTivHm/nxTeb+dZj+1hZW8bp88pZf+os3r5qFv/98nG+9MBOusMxCv1eLlxaxeuNnTR0hJhfUcg3/uZ01rrYP5Ft4nHDhh+/mCh//pYVNXztvael3c8gHzHGsP1IWyKvo6zQx+nzZlBemFtZ8UpukFdCQ0SuAr4LeIGfGGO+Pty+4xUakVicD/14M+ctqeStp8xM2NYPN3fz6rF2vv/kAQ40Ws2LLlleze0fWTuk+dGhk9384sXDfPj8hSyyO9051zdXKrNmk0gsnugMuGzm2KvwKooyfvJGaIiIF3gduBw4BrwEfMAYsyfV/uMVGvXtvXz6nh1sO9JKLG4oC/roi8YTGdpLqov51PplnD5vBouritWWrChKXpGu0MiFPI11wAFjzJsAInIvcA2QUmiMl9ryQu7/+AW090R4en8Tz79xkpKAj+WzSlkxq5Q1c8ryPpxRURRlNHJBaMwFkqu8HQPOm6w/Vl7k511nzJlwaQJFUZR8JBcenVPZgQbY1ETkRhHZKiJbm5qapuiwFEVRph+5IDSOAcmp0/OAuuQdjDG3G2PWGmPW1tTkbiVURVEUt5MLQuMlYLmILBaRAmAD8FCWj0lRFGVa4nqfhjEmKiKfBB7DCrm90xizO8uHpSiKMi1xvdAAMMY8AjyS7eNQFEWZ7uSCeUpRFEVxCSo0FEVRlLRRoaEoiqKkjevLiIwVEekE9gHlQHsGl3b7etXAyQyt5fZzdfO1A/efb6bXA72GEyXb168aKDbGjJ6zYIzJqxew1X6/PcPrun29rS4+Nrevl7FrlyPnm9H19Brm/vUby9/PZ/PU76fZepnE7efq5msH7j9ft18/cP85u/0aTtrx5aN5aqtJo1JjvjFdzzsT6LWbOHoNJ0a2r99Y/n4+ahq3Z/sAssR0Pe9MoNdu4ug1nBjZvn5p//280zQURVGUySMfNQ1FURRlklCh4VJEZL6IPCkie0Vkt4h82h6vFJFNIrLffq+wxy8XkW0istN+v8weLxKRP4jIa/Y6w7bKzRcyde3sbX8UkVfsdX5kd5LMezJ5DZPWfEhEdk31uWSDDH8HnxKRfSKyw37NzNZ5AfkXcpsvL6AWONv+XIrV8nYV8B/A5+3xzwPfsD+fBcyxP68Bjtufi4C32Z8LgGeAd2T7/HLh2tn/LrPfBfgtsCHb55dr19Aeey/wK2BXts8t164f8BSwNtvnlDiebB+AvtL8j4IHsfqk7wNq7bFaYF+KfQVoBgIptn0X+Fi2zyfXrh3gxwpjfH+2zyfXriFQAjxr3zSnhdDI8PVzldBQ81QOICKLsJ5ENgOzjDH1APZ7KlX1b4CXjTGhQevMAN4FPD6Zx+smMnHtROQxoBHoBH4zyYfsOjJwDb8K/CfQM+kH60Iy9Pv9qW2a+rKIpOpmOmWo0HA5IlKCZRb5jDGmI439VwPfAG4aNO4D7gG+Z4x5czKO1W1k6toZY67EeioMAENs9fnMRK+hiJwJLDPGPDCpB+pSMvQd/JAx5jTgEvv1kck41nRRoeFiRMSP9YX7pTHmd/Zwg4jU2ttrsZ6Anf3nAQ8A1xtj3hi03O3AfmPMdyb/yLNPhq8dxpg+rI6R10z2sbuFDF3DC4BzROQQlolqhYg8NTVnkF0y9R00xhy33zux/ELrpuYMUqNCw6XYKugdwF5jzLeTNj0EbLQ/b8SylTqmpz8AXzDGPDdorf+NVcDsM5N93G4gU9dOREqSfuA+4Grgtck/g+yTqWtojPmhMWaOMWYRcDHwujHmrZN/Btklg99Bn4hU25/9wDuBrEagaXKfSxGRi7EinXYCcXv4i1h20fuBBcAR4DpjTIuI/AvwBWB/0jJXYEVMHcW62Tk20u8bY34y6SeRJTJ47QR4GMss5QWeAP7RGBOdivPIJpm6hsaY5CfpRcDDxpg1k34CWSaD38Fu4GmsQAwv8Gfgs8aY2FScRypUaCiKoihpo+YpRVEUJW1UaCiKoihpo0JDURRFSRsVGoqiKEraqNBQFEVR0kaFhqJMMSLycRG5fgz7L5ou1WEV9+PL9gEoynRCRHzGmB9l+zgUZbyo0FCUMWInqf0RK1HrLKyy19cDK4FvY1V1PQn8rTGm3i6b8TxwEfCQiJQCXcaYb9m1mX6EVcL+DeDvjDGtInIOcCdWkb9np+7sFGVk1DylKOPjFOB2Y8zpQAdwM/BfwLXGGOeGf2vS/jOMMW8xxvznoHV+Dvwve52dwC32+E+BfzDGXDCZJ6EoY0U1DUUZH0eTagT9AqtExBpgk1252gvUJ+1/3+AFRKQcS5j8xR66C/h1ivG7gXdk/hQUZeyo0FCU8TG4/k4nsHsEzaB7DGtLivUVxRWoeUpRxscCEXEExAeAF4EaZ0xE/HZvhGExxrQDrSJyiT30EeAvxpg2oN0uegfwocwfvqKMD9U0FGV87AU2isj/w6pM+l/AY8D3bPOSD/gOsHuUdTYCPxKRIuBN4KP2+EeBO0Wkx15XUVyBVrlV/n87d2gEAAACMWz/rfGookmW6D0Cjj69+IbNeQqAzNIAILM0AMhEA4BMNADIRAOATDQAyEQDgGwAIrabcXvvj4wAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
+ "1er août de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
+ "modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_august_week[:-1],\n",
+ " first_august_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAD8CAYAAABU4IIeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG35JREFUeJzt3X+Q1HV+5/HnCweHjYsKCC4/1OFqORN07zROoVveD3HDj81tqXvn7rEa5SpWYVy3ypypU6hw5Z6Si1xdrTnirdFa3bjrD/Q2S0likCBCnZcQYCg1ikoGbwkSWWfIoGCq4HbkfX/0Z7Snne7p6f729LdnXo+qru7+9Ofz6c98GPo9n1/fVkRgZmaWlQnNboCZmY0tDixmZpYpBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFNtzW7AaDrnnHOio6Oj2c0wM2spe/bsORIR06vNP64CS0dHB11dXc1uhplZS5H0dyPJ76kwMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObDkQM+xE3zz4R30HD/R7KaYmdXNgSUH1m3tZveBPta92N3sppiZ1W1cnWPJmwtXb+Jk/6lPnj+x8yBP7DxIe9sE9q35ahNbZmZWO49YmujluxZyzSWzmDSx8M8waeIErr1kFi/fvbDJLTMzq50DSxPNOHMSk9vbONl/iva2CZzsP8Xk9jZmTJ7U7KaZmdXMU2FNduSjk9x4+QXcsOB8ntp1kF4v4JtZi1NENLsNo6azszN8rTAzs5GRtCciOqvN76kwMzPLlAOLmZllyoHFzMwy5cDSAnwy38xaiQNLC/DJfDNrJd5unGM+mW9mrcgjlhzzyXwza0UOLDnmk/lm1oocWKrQzMXzgZP5G759JTdefgG9H50c9TaYmY2ET95XYfWG13ly10FuXHA+a77+pQa0zMwsv0Z68t6L9xV48dzMbOQ8FVaBF8/NzEauqsAi6YCk1yW9KqkrpU2VtEVSd7qfUpR/laT9kvZJWlKUflmqZ7+kdZKU0tslPZPSd0rqKCqzPL1Ht6TlRelzU97uVPb0+rtjMC+em5mN3EhGLAsj4pKiebaVwNaImAdsTc+RNB9YBlwELAW+L+m0VOYhYAUwL92WpvRbgKMR8UXgAWBtqmsqcA9wObAAuKcogK0FHkjvfzTVkTkvnpuZjUxVi/eSDgCdEXGkKG0fcFVEHJY0E9geERdKWgUQEb+f8m0GvgscALZFxC+n9G+l8rcO5ImIHZLagJ8D0ykEqKsi4tZU5mFgO7Ae6AW+EBH9kr6cyn8yOhqKL5tvZjZyjbpsfgB/IWmPpBUp7dyIOAyQ7mek9NnAu0VlD6W02elxafqgMhHRD3wITKtQ1zTgg5S3tC4zM2uianeFXRkR70maAWyR9HaFvBoiLSqk11KmUl2DG1MIhCsAzj///KGymJlZhqoasUTEe+m+B9hAYb3j/TQFRrrvSdkPAecVFZ8DvJfS5wyRPqhMmgo7C+irUNcR4OyUt7Su0rY/EhGdEdE5ffr0an5cMzOrw7CBRdIZkiYPPAYWA28AG4GBXVrLgefS443AsrTTay6FRfpdabrsuKQr0m6wm0vKDNR1PfBSFBZ/NgOLJU1Ji/aLgc3ptW0pb+n7m5lZE1UzFXYusCHtDG4DnoqIFyTtBp6VdAtwEPgGQETslfQs8CbQD9weER+num4D/hj4HLAp3QAeBX4saT+FkcqyVFefpPuA3SnfvRHRlx7fDayXtAZ4JdVhZmZN5ku6mJlZRY3aFWZmZlYVBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFjMzy5QDi5mZZcqBxczMMuXAYmZmmXJgMTOzTDmwmJlZphxYzMwsUw4sZmaWKQcWMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZNVXPsRN88+Ed9Bw/0eymWEYcWMysqdZt7Wb3gT7Wvdjd7KZYRtqa3QAzG58uXL2Jk/2nPnn+xM6DPLHzIO1tE9i35qtNbJnVyyMWM6uoUVNVL9+1kGsumcWkiYWPoUkTJ3DtJbN4+e6Fmb6PjT4HFjOrqFFTVTPOnMTk9jZO9p+ivW0CJ/tPMbm9jRmTJ2X6Pjb6PBVmZkMajamqIx+d5MbLL+CGBefz1K6D9HoBf0xQRDS7DaOms7Mzurq6mt0Ms5bQc+wEa/78Lf5i78858YtTTJo4gSUXfYHf/Te/4lHFOCNpT0R0Vpu/6qkwSadJekXSn6XnUyVtkdSd7qcU5V0lab+kfZKWFKVfJun19No6SUrp7ZKeSek7JXUUlVme3qNb0vKi9Lkpb3cqe3q1P4uZDc9TVVarkayx3AG8VfR8JbA1IuYBW9NzJM0HlgEXAUuB70s6LZV5CFgBzEu3pSn9FuBoRHwReABYm+qaCtwDXA4sAO4pCmBrgQfS+x9NdZhZhgamqjZ8+0puvPwCej862ewmWQuoaipM0hzgceD3gDsj4muS9gFXRcRhSTOB7RFxoaRVABHx+6nsZuC7wAFgW0T8ckr/Vip/60CeiNghqQ34OTCdQoC6KiJuTWUeBrYD64Fe4AsR0S/py6n8J6OjoXgqzMxs5Bo1FfYHwF3AqaK0cyPiMEC6n5HSZwPvFuU7lNJmp8el6YPKREQ/8CEwrUJd04APUt7SuszMrImGDSySvgb0RMSeKuvUEGlRIb2WMpXqGtwYaYWkLkldvb29Q2WxFudLgpjlSzUjliuBayQdoDAFdbWkJ4D30xQY6b4n5T8EnFdUfg7wXkqfM0T6oDJpKuwsoK9CXUeAs1Pe0roGiYhHIqIzIjqnT59exY9rrcaXBDHLl2EDS0Ssiog5EdFBYc3jpYj4DWAjMLBLaznwXHq8EViWdnrNpbBIvytNlx2XdEXaDXZzSZmBuq5P7xHAZmCxpClp0X4xsDm9ti3lLX1/GycuXL2JjpXP88TOg0QUzll0rHyeC1dvanbTzMa1ek7e3w8sktQNLErPiYi9wLPAm8ALwO0R8XEqcxvwA2A/8A4w8AnwKDBN0n7gTtIOs4joA+4DdqfbvSkN4G7gzlRmWqrDxhFfEsQsn0Z08j4itlPYlUVE/APwlTL5fo/CDrLS9C7g4iHSTwDfKFPXY8BjQ6T/XwpbkG2cqvacRc+xE3zn6Vd48IZLc3kGI+/tMxspXyvMWlo15yzyvgaT9/aZjZQv6WJjVum1rgbk5bLseW+f2YCGXdLFrNXkfQ0m7+0zq5UDi41Zeb/WVd7bZ1YrXzbfxrS8X5Y97+0zq4XXWMzMxrAsdh16jcXMxhVf0qeyZuw69FSYmbW04g/ONV//UrObkxuj8Q2g5XgqzJrOBwStFt6uXVmW3wDqqTBrOT4gaLXwdu3Kmrnr0FNh1jTNHKqPJo/IGsPbtYfXrF2HHrFYw5VbXB0vf3F6RNY4/urkyh6+qZM1113M/Flnsua6i3n4pqpns+riEYsNq96/uMstro71vzjHy4ismYo/KNdc95nr21qTOLDYsGrddVPNB+tYPiD48l0Lyy6emo1lDixWVr1/cVfzwTqW/+Ic6yMys3K8xmJl1bsG4g/W1lgD8AFDy5pHLFZWFoFhLE91VaMVRmQ+YGhZ8wFJq+jWH3cxffKkQYFhtHaWWGP5gKFVa6QHJB1YzMapLE9m29jmk/dmVhWvgVmjeI3FbBwb72tg1hieCjMzs4o8FWZmZk3lwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFrNh+CKNZiPjwGI2DH8DpNnI+OS9WRn+Bkiz2njEYlZGvd9HYzZeObBY7jVrjcMXaTSrzbCBRdIkSbskvSZpr6T/ktKnStoiqTvdTykqs0rSfkn7JC0pSr9M0uvptXWSlNLbJT2T0ndK6igqszy9R7ek5UXpc1Pe7lT29Gy6xPKmmWscrfANkGZ5M+xFKNOH/xkR8ZGkicD/Ae4A/i3QFxH3S1oJTImIuyXNB54GFgCzgBeBfxoRH0valcr+NfDnwLqI2CTp28A/i4jfkrQM+HpE/HtJU4EuoBMIYA9wWUQclfQs8NOIWC/pj4DXIuKhSj+LL0LZWvxFVGb5kPlFKKPgo/R0YroFcC3weEp/HLguPb4WWB8RJyPiZ8B+YIGkmcCZEbEjCtHsRyVlBur6CfCVFNCWAFsioi8ijgJbgKXptatT3tL3tzHCaxzZ8HZpG21VrbFIOk3Sq0APhQ/6ncC5EXEYIN3PSNlnA+8WFT+U0manx6Xpg8pERD/wITCtQl3TgA9S3tK6Stu+QlKXpK7e3t5qflzLCa9xZMPbpW20VbXdOCI+Bi6RdDawQdLFFbJrqCoqpNdSplJdgxMjHgEegcJU2FB5LL/8RVS183Zpa5YRnWOJiA8kbQeWAu9LmhkRh9M0V0/Kdgg4r6jYHOC9lD5niPTiMocktQFnAX0p/aqSMtuBI8DZktrSqKW4LhtDHr7p02ndNddV+nvGSr1818Ky32lv1kjV7AqbnkYqSPoc8GvA28BGYGCX1nLgufR4I7As7fSaC8wDdqXpsuOSrkhrJDeXlBmo63rgpbQOsxlYLGlK2nW2GNicXtuW8pa+v5kxelOJeV/DyXv76pXHn6+aNZaZwDZJfwPsprDG8mfA/cAiSd3AovSciNgLPAu8CbwA3J6m0gBuA35AYUH/HWBTSn8UmCZpP3AnsDLV1Qfcl953N3BvSgO4G7gzlZmW6miKPP7DmsHobJfO+xpO3ttXrzz+fP7O+wys3vA6T+46yI0LzmfN17+Uef1meZT37eB5b1+9RvPnG+l2YweWOoz1X1yzSnqOnSi7hpOHnXt5b1+9RvPny/wci5VX7TkLT5VZI/mSN0PLe/vqleefz4GlDtX+w+ZxDtTGDl/ypry8t69eef35PBVWp1t/3MX0yZMGnbMY2CLrqTJrJP9+2WjxGksFo32tsFaZ4+05doLvPP0KD95waa7aZZW1yu9Xq/P/D6+x5Eqe50CLeaquNbXK71er8/+PkfM3SDZYni9J4kt+tL48/361Ov//qJ2nwsYxT6WYlef/H5/yVJhVzVMpZuX5/0ftHFjGgUrnHPK6XdEsD/z/ozaeChsHfMkZM6vHSKfCvHg/hnnxsTreTmqWLU+FjWH+at/qeDupWbY8YhnDvPhYmUd0Zo3hEcsY58XH8jyiM2sMj1jGOH+1b3ke0Zk1hgOLjWs+uW6WPW83NjOzinzy3szMmsqBxczMMuXAYpZz/mrrxnL/Zs+BxSznfICzsdy/2fPivVlO+auHG8v9Wz0v3puNET7A2VhZ9a+n0j7LgcWsTo36YPEBzsbKqn89lfZZPiBpVqfiD5asv5bABzgbq57+9bXmyvMai1mNPEdfnbH6tQTj6auLvcZiNkq8BlKdsTpV5KnK8jwVZlYjf7BUNh6mijxVOTQHFrM6+IOlvJfvWlh2qmis8NXDh+bAYlYHf7CU5xHd+OU1FjNrGH/RXP1a8ZyMd4WZmeXY6g2v8+Sug9y44PzMt7NXK/NdYZLOk7RN0luS9kq6I6VPlbRFUne6n1JUZpWk/ZL2SVpSlH6ZpNfTa+skKaW3S3ompe+U1FFUZnl6j25Jy4vS56a83ans6dX+0GZmo6XWEceFqzfRsfJ5nth5kIjC5oeOlc9z4epNDWppdqqZCusHficifgW4Arhd0nxgJbA1IuYBW9Nz0mvLgIuApcD3JZ2W6noIWAHMS7elKf0W4GhEfBF4AFib6poK3ANcDiwA7ikKYGuBB9L7H011mJnlSq3brVt5O/uwi/cRcRg4nB4fl/QWMBu4FrgqZXsc2A7cndLXR8RJ4GeS9gMLJB0AzoyIHQCSfgRcB2xKZb6b6voJ8GAazSwBtkREXyqzBVgqaT1wNXBD0ft/l0LgMjNrunq3W7fy5ocRLd6nKapLgZ3AuSnoDASfGSnbbODdomKHUtrs9Lg0fVCZiOgHPgSmVahrGvBByltaV2mbV0jqktTV29s7kh/XzKxmWYw4WnXzQ9XbjSV9HvgT4Lcj4lhaHhky6xBpUSG9ljKV6hqcGPEI8AgUFu+HymNmlrUsRhytup29qhGLpIkUgsqTEfHTlPy+pJnp9ZlAT0o/BJxXVHwO8F5KnzNE+qAyktqAs4C+CnUdAc5OeUvrMjPLhVYdcdRr2BFLWut4FHgrIr5X9NJGYDlwf7p/rij9KUnfA2ZRWKTfFREfSzou6QoKU2k3A39YUtcO4HrgpYgISZuB/1q0YL8YWJVe25byri95fzOzXGjVEUe9qhmxXAncBFwt6dV0+3UKAWWRpG5gUXpOROwFngXeBF4Abo+Ij1NdtwE/APYD71BYuIdC4JqWFvrvJO0wS4v29wG70+3egYV8ChsF7kxlpqU6rAla8QCXmTWOD0ha3fJwgMvMGmekByR9rTCr2Xi4eq2ZjZyvFWY1a+UDXGbWOA4sVrNWPsBlZo3jqTCri7+PxMxKefHezMwq8nfem5lZUzmwjAE+R2JmeeLAMgbUelluM7NG8OJ9C/M5EhsPeo6d4DtPv8KDN1zqHYctwiOWFuZzJDYeeETeejxiaWE+R2JjmUfkrcsjlhY3Xi/LbWOfR+StyyOWFjdeL8ttY59H5K3LgcXMcstXdmhNPnlvZmYV+eS9mZk1lQOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFjMzy5QDi5mZZWrYwCLpMUk9kt4oSpsqaYuk7nQ/pei1VZL2S9onaUlR+mWSXk+vrZOklN4u6ZmUvlNSR1GZ5ek9uiUtL0qfm/J2p7Kn198VZmaWhWpGLH8MLC1JWwlsjYh5wNb0HEnzgWXARanM9yWdlso8BKwA5qXbQJ23AEcj4ovAA8DaVNdU4B7gcmABcE9RAFsLPJDe/2iqw8zMcmDYwBIR/xvoK0m+Fng8PX4cuK4ofX1EnIyInwH7gQWSZgJnRsSOiAjgRyVlBur6CfCVNJpZAmyJiL6IOApsAZam165OeUvf38zMmqzWNZZzI+IwQLqfkdJnA+8W5TuU0manx6Xpg8pERD/wITCtQl3TgA9S3tK6PkPSCkldkrp6e3tH+GOamdlIZb14ryHSokJ6LWUq1fXZFyIeiYjOiOicPn16uWxmZpaRWgPL+2l6i3Tfk9IPAecV5ZsDvJfS5wyRPqiMpDbgLApTb+XqOgKcnfKW1mVmZk1Wa2DZCAzs0loOPFeUvizt9JpLYZF+V5ouOy7pirRGcnNJmYG6rgdeSuswm4HFkqakRfvFwOb02raUt/T9zcysydqGyyDpaeAq4BxJhyjs1LofeFbSLcBB4BsAEbFX0rPAm0A/cHtEfJyquo3CDrPPAZvSDeBR4MeS9lMYqSxLdfVJug/YnfLdGxEDmwjuBtZLWgO8kuowM7McUGEAMD50dnZGV1dXs5thZtZSJO2JiM5q8/vkvZmZZcqBxczMMuXAYmbWRD3HTvDNh3fQc/xEs5uSGQcWM7MmWre1m90H+lj3Ynezm5KZYXeFmZlZ9i5cvYmT/ac+ef7EzoM8sfMg7W0T2Lfmq01sWf08YjEza4KX71rINZfMYtLEwsfwpIkTuPaSWbx898Imt6x+DixmZk0w48xJTG5v42T/KdrbJnCy/xST29uYMXlSs5tWN0+FmZk1yZGPTnLj5Rdww4LzeWrXQXrHyAK+D0iamVlFPiBpZmZN5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpapcbXdWFIv8HdlXj6Hwtce55XbVx+3rz5uX31avX0XRMT0aisbV4GlEkldI9mnPdrcvvq4ffVx++oz3trnqTAzM8uUA4uZmWXKgeVTjzS7AcNw++rj9tXH7avPuGqf11jMzCxTHrGYmVmmxmxgkfSYpB5JbxSl/XNJOyS9LulPJZ2Z0idKejylvyVpVVGZ7ZL2SXo13WY0oX2nS/phSn9N0lVFZS5L6fslrZOkLNqXcRsz70NJ50nalv699kq6I6VPlbRFUne6n1JUZlXqp32SlhSlZ96HGbev6f0naVrK/5GkB0vqanr/DdO+PPTfIkl7Uj/tkXR1UV156L9K7Rt5/0XEmLwB/wr4VeCNorTdwL9Oj38TuC89vgFYnx7/EnAA6EjPtwOdTW7f7cAP0+MZwB5gQnq+C/gyIGAT8NUctjHzPgRmAr+aHk8G/haYD/w3YGVKXwmsTY/nA68B7cBc4B3gtEb1Ycbty0P/nQH8C+C3gAdL6spD/1VqXx7671JgVnp8MfD3Oeu/Su0bcf9l1tF5vAEdDP5QPMan60rnAW+mx98C/pTCF59NS/8IUxv1S1lD+/4n8BtF+bYCC9Ivz9tF6d8CHs5TGxvdh0Xv9xywCNgHzExpM4F96fEqYFVR/s3pP3PD+7Ce9uWl/4ry/QeKPrjz0n/l2pe3/kvpAv6Bwh8Rueq/0vbV2n9jdiqsjDeAa9Ljb1D4YAT4CfCPwGHgIPDfI6KvqNwP0xDwP2cxTK2hfa8B10pqkzQXuCy9Nhs4VFT+UEprpJG2cUDD+lBSB4W/uHYC50bEYYB0PzBsnw28W1RsoK8a3od1tm9As/uvnLz033Dy1H//DnglIk6Sz/4rbt+AEfXfeAssvwncLmkPheHh/0vpC4CPgVkUpiF+R9I/Sa/dGBFfAv5lut3UhPY9RuEXrgv4A+CvgH4Kf1mUavQ2v5G2ERrYh5I+D/wJ8NsRcaxS1iHSokJ6JjJoH+Sj/8pWMURaM/qvktz0n6SLgLXArQNJQ2RrWv8N0T6oof/GVWCJiLcjYnFEXAY8TWEeGwprLC9ExC8iogf4S6Azlfn7dH8ceIpCEBrV9kVEf0T8x4i4JCKuBc4Guil8kM8pqmIO8F6j2ldjGxvWh5ImUvhP82RE/DQlvy9pZnp9JtCT0g8xeAQ10FcN68OM2peX/isnL/1XVl76T9IcYANwc0QMfPbkpv/KtK+m/htXgWVgN4OkCcBq4I/SSweBq1VwBnAF8Haa1jknlZkIfI3CVNCotk/SL6V2IWkR0B8Rb6ah7HFJV6Th6c0U5lIbZqRtbFQfpp/3UeCtiPhe0UsbgeXp8XI+7Y+NwDJJ7Wmqbh6wq1F9mFX7ctR/Q8pR/5WrJxf9J+ls4HkK62h/OZA5L/1Xrn0191/Wi0R5uVH4a/ow8AsKfxXcAtxBYWH+b4H7+XQR+vPA/wL2Am8C/ymln0Fhd9PfpNf+B2mnzii3r4PCottbwIsUrjQ6UE9n+od+B3hwoExe2tioPqSwAyhSva+m269T2HyxlcJoaStpE0Yq87upn/ZRtPOmEX2YVfty1n8HgD7go/T7MD9n/feZ9uWl/yj8EfaPRXlfBWbkpf/Kta/W/vPJezMzy9S4mgozM7PGc2AxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDL1/wERgRmeflUJDAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2021 743449.0\n",
+ "2014 1600941.0\n",
+ "1991 1659249.0\n",
+ "1995 1840410.0\n",
+ "2020 2010315.0\n",
+ "2022 2060304.0\n",
+ "2012 2175217.0\n",
+ "2003 2234584.0\n",
+ "2019 2254386.0\n",
+ "2006 2307352.0\n",
+ "2017 2321583.0\n",
+ "2001 2529279.0\n",
+ "1992 2574578.0\n",
+ "1993 2703886.0\n",
+ "2018 2705325.0\n",
+ "1988 2765617.0\n",
+ "2007 2780164.0\n",
+ "1987 2855570.0\n",
+ "2016 2856393.0\n",
+ "2011 2857040.0\n",
+ "2023 2873501.0\n",
+ "2008 2973918.0\n",
+ "1998 3034904.0\n",
+ "2002 3125418.0\n",
+ "2009 3444020.0\n",
+ "1994 3514763.0\n",
+ "1996 3539413.0\n",
+ "2004 3567744.0\n",
+ "1997 3620066.0\n",
+ "2015 3654892.0\n",
+ "2024 3670417.0\n",
+ "2000 3826372.0\n",
+ "2005 3835025.0\n",
+ "1999 3908112.0\n",
+ "2010 4111392.0\n",
+ "2013 4182691.0\n",
+ "1986 5115251.0\n",
+ "1990 5235827.0\n",
+ "1989 5466192.0\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
+ " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFx9JREFUeJzt3X+UZGV95/H3Nz0jP2ZgwCAzMg2OIa4rwgD2EIOuyiAhiCRuDEf8gQGPZnQ3KuuPszEeV1ddNxo72WM2GoPG6DHKnCy6iSGu0YXBX/Eg02hmwImjK0a6x4kC2mP3GOlpvvvHc8dpxoHurp/dT71f59Tpqlu37vN8b1V/quq599aNzESStPz9XL87IEnqDANdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVIkVvWzspJNOyg0bNvSyyQeYnp5m1apVfWu/3wa9fnAdWP/yrH9sbOzuzHzEfPP1NNA3bNjA9u3be9nkA9x8881ccMEFfWu/3wa9fnAdWP/yrD8i/nkh8znkIkmVMNAlqRIGuiRVwkCXpEoY6JJUiXkDPSI+EBHfi4jb50x7eER8JiK+0fw9sbvdlCTNZyGf0D8IXHLYtNcBN2bmY4Abm9uSpD6adz/0zPxcRGw4bPKzgAua6x8CbgZ+t4P90oCanJxkenq6a8ufmZlhz549PzN91apVrFmzpmvtSr0QCzmnaBPoN2Tmmc3tH2bmCXPu/0FmHnHYJSK2AFsA1q5dO7J169YOdLs1U1NTrF69um/t99tSr392dpadO29ndvZA19oYHh5mfHz8Z6YPDa3grLPOZGhoqGttLwVL/TXQbcu1/s2bN49l5qb55ut6oM+1adOm9EjR/lnq9e/Zs4f169cDY8C6rrQxOnoHr33t4w+buhcYYWJiglNOOaUr7S4VS/010G3Ltf6IWFCgt3ro/79ExCMz87sR8Ujgey0uRzqCdUC3gnV3F5ct9Veruy1+AriquX4V8Ded6Y4kqVUL2W3xOuBLwGMjYjwiXgy8HfiViPgG8CvNbUlSHy1kL5fnPchdT+9wXyRJbfBIUUmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Il2gr0iHhVRNwREbdHxHURcXSnOiZJWpyWAz0i1gOvBDZl5pnAEPDcTnVMkrQ47Q65rACOiYgVwLHAnva7JElqRWRm6w+OuAZ4G/Bj4NOZ+YIjzLMF2AKwdu3aka1bt7bcXrumpqZYvXp139rvt6Ve/8zMDDt27AA2Aiu70sbw8BTj44evgxlgBxs3bmTlyu60u1Qs9ddAty3X+jdv3jyWmZvmnTEzW7oAJwI3AY+g/Pf9NXDlQz1mZGQk+2nbtm19bb/flnr9ExMTCSRMJGRXLqOj244wvbQ7MTHR71XQdUv9NdBty7V+YHsuIJfbGXK5CLgzM7+fmTPAx4EntbE8SVIb2gn07wC/HBHHRkQATwd2daZbkqTFajnQM/MW4HrgNmBns6xrO9QvSdIirWjnwZn5JuBNHeqLJKkNHikqSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkirR1s/nqk6Tk5NMT0/3vN29e/f2vE2pJga6HmBycpLTTjudffvu6XdXJC2Sga4HmJ6ebsJ8DFjX49Z3Apf0uE2pHga6HsQ64JQet+mQi9QON4pKUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUibYCPSJOiIjrI+KfImJXRJzfqY5Jkhan3RNcvAv4VGZeHhEPA47tQJ8kSS1oOdAj4njgqcDVAJl5H3BfZ7olDY5enpR7ZmaGPXv2ALBq1SrWrFnTk3bVG5GZrT0w4hzgWuBrwNmUk1Bek5nTh823BdgCsHbt2pGtW7e21eF2TE1NsXr16r61328LqX9mZoYdO3YAG4GVPenXIfuBXV1te3h4ivHxw9fBDLCDjRs3snJlb2uenZ1l587bmZ090JP2hoeHGR8fB2BoaAVnnXUmQ0NDPWl7KViuGbB58+axzNw074yZ2dIF2AQcAJ7Y3H4X8NaHeszIyEj207Zt2/rafr8tpP6JiYkEEiYSsseXsa63PTq67QjTS80TExPdfxIedH2PNf3o7mV09NPN9bG+1dxPyzUDgO25gFxuZwx9HBjPzFua29cDr2tjedIA69VJuXf3qB31Q8t7uWTmXuCuiHhsM+nplOEXSVIftLuXyyuAjzR7uHwLeFH7XZIktaKtQM/Mr1LG0iVJfeaRopJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEu3+HrpUjb179w5Em6qXgS6xD1jByMhIvzsitcVAl9hPOd/5GOXcnr20E7ikx22qVga69FO9OlHzXA65qHPcKCpJlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKtF2oEfEUER8JSJu6ESHJEmt6cQn9GuAXR1YjiSpDW0FekQMA88E3t+Z7kiSWhWZ2fqDI64Hfh84DnhtZl52hHm2AFsA1q5dO7J169aW22vX1NQUq1ev7lv7/baQ+mdmZtixYwewEVjZk34dsp/yZa97bQ8PTzE+fvg66H67D663bR+qfwbYwcaNG1m5stc1989yzYDNmzePZeameWfMzJYuwGXAe5rrFwA3zPeYkZGR7Kdt27b1tf1+W0j9ExMTCSRMJGSPL2Ndb3t0dFtf2u1nzUeuvzzPExMT3X/hLSHLNQOA7bmAXG5nyOXJwK9HxLeBrcCFEfGXbSxPktSGlgM9M38vM4czcwPwXOCmzLyyYz2TJC2K+6FLUiVWdGIhmXkzcHMnliVJao2f0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJTry87nqjsnJSaanpzu2vJmZGfbs2fOQ8+zdu7dj7UlLzezs7Lz/A92yatUq1qxZ09U2DPQlanJyktNOO519++7p2DJHR0e5+OKLO7Y8aTmZnJxk587bueiii/rS/vHH/zzf+c7/62qoG+hL1PT0dBPmY8C6Di31DmBinnl2Apd0qD1p6ZienmZ29gCd/Z9aqL3s2zfC9PS0gT7Y1gGndGhZuxewLIdcVLtO/k8tLW4UlaRKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRItB3pEnBoR2yJiV0TcERHXdLJjkqTFaecEFweA12TmbRFxHDAWEZ/JzK91qG+SpEVoOdAz87vAd5vrP4qIXcB6oLpA7/TJmhfCkzWrF/r1OuvFCZMHUWRm+wuJ2AB8DjgzM/cddt8WYAvA2rVrR7Zu3dp2e62amppi9erVi3rM7OwsO3fe3pyLsB82Ais7sqTh4SnGx+erfz+wq6PtLlz32z7yOqi75rkO1f+vlM9e7f//t2JoaAVnnXUmQ0NDPWtzZmaGe++9l/Hxh9P753kG2MHGjRtZuXLxbW/evHksMzfNO2NmtnUBVlPOuvrs+eYdGRnJftq2bduiHzMxMZFAwljCRA8vn2ranUjIjlxGR7ctYL6xjre78Ev32z7yOqi75iPXf7DdXr+uJ37a9sTEROf/yef5Xx4dHe3T8zzRVs3A9sz587itk0RHxErgY8BHMvPj7Sxr6ev1iWUdclEv1HvC5EHUzl4uAfw5sCsz/6hzXZIktaKd/dCfDLwQuDAivtpcLu1QvyRJi9TOXi5fAKKDfZEktcEjRSWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkirR1gkueqkT5/WcmZlhz549i3qM5/aUtFwsi0CfnJzktNNOZ9++e9pazujoKBdffHGHeiVJS8uyCPTp6ekmzMcop8xq1R3AxCIfsxO4pI02Jak3lkWgH9Lu+Q93t/B4h1wkLQ9uFJWkShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSbQV6RFwSEV+PiG9GxOs61SlJ0uK1HOgRMQS8G3gGcAbwvIg4o1MdkyQtTjtnLPol4JuZ+S2AiNgKPAv4Wic6dmTtnj1oBljcSaLh+x1qe7G60e5C6u9Xvb1q+0jroPaa5zpYfz9rLm32+gTsh9rrX83dFpnZ2gMjLgcuycyXNLdfCDwxM19+2HxbgC3NzccCX2+9u207Cbi7j+3326DXD64D61+e9T8qMx8x30ztfEKPI0z7mXeHzLwWuLaNdjomIrZn5qZ+96NfBr1+cB1Yf931t7NRdBw4dc7tYRY/niFJ6pB2Av1W4DER8eiIeBjwXOATnemWJGmxWh5yycwDEfFy4O+BIeADmXlHx3rWHUti6KePBr1+cB1Yf8Va3igqSVpaPFJUkiphoEtSJQx0SaqEgb5AEbE+Itb3ux/9EhG/EBGviogL+92Xfhj0+sF1sBzqN9DnEREbIuKzwKeAd0bEU/rdp16LiH8HfIbymz0vi4j/0Ocu9dSg1w+ug+VSv4F+BBFx9JybTwBuzcyzKLtovjIizmrmO9LRssteRFwYEY9urgdwIfCmzPxt4A+BSyPigjn3V2XQ6wfXwXKt30BvRMTxEfHeiNgNjEbEo5q7fgP4TnN9K/BN4CUHH9bjbnZVRJwRETuA/wr8RURcmGW/1jOAdQCZeQvwD8CLDj6sH33thkGvH1wHy71+A/2QS4CjKU/cfcAbI+IYytesXwPIzJ8A1wNPaW7f35+udkZEDEfE8XMmXQF8LDOfSnnzen5EPAb4KM06aPxv4MyIOGo5r4NBrx9cB7XVP1CBHsWKiHhxRHw+Iq6JiNObu38RuC8zDwD/A/gBcCXwaeCREfHwZr7dwF0RcX7PC+iQiHhcRHwS+ALwloh4VnPXvwLHNtf/ivKbn8+kfBr5+TnfWu6l/Grm2b3rdecMev3gOqi1/oEK9Oar09OA3wL+ADgKeF9z917ge8077l2UJ+t0yhP8NQ79BPBK4J5m+rIREavm3DwHGM/MDcBNwGgz/V7gJxFxXGbeC3wDOIVS6z8Ar27mexgwC3y7+z3vjEGvH1wHg1B/1YEeEedHxDsi4urmdgCPAz6VmX+bmX8APCoingRMUN6ZH9c8fBewupn2J5SNIL9GeTNYC/xjT4tpQUScGBEfjIhbgbdHxCOadXAW8MWIiMz8BPDDiHgm5dvHcc39NLdPBu6nfGs5OSLeB1wHHMjM7/W6psUY9PrBdTBo9Vcb6BHxeOBPgR8Bz4mIV1PqXQ/8aM6W6Q8Cz6cE9AHgSc302yhbtvdn5ueA1wFXA08G3pqZ9y+lrdsP4qmUmi6lbLh5PXA85cfU1uWhH/L5EGUdfJmyvp4BkJlfapaxIjN3AS8F7gD+e2a+iKVv0OsH18Fg1Z+Zy/5C+ST9EsrXqBXNtD8CrmmubwL+GLgcuAj4+zmPPZXy1QtKgH+Fcmalc4G/AR45Z97od60PUv8Q5YX2WcrQ0EnN9L8CXtlcfzTw9ub+8yhjh0Nz1t/3m+Wsp3w7eTnwF8B7gFX9rtH6XQfWP/9l2X9Cj4izKRsunwW8CXhDc9cE5bynUN5Rvwj8JnAjsC4iNkbEyizj5RMR8ZTMvIny85rvAD4OXJeZ3z3YVjbP/BJ0GfDrwJuB8ynbB6DsoXPwG8ddwOeBZ2TmrZRPK5sBMnMKuAU4LzMngBdShpX2Am/IzOke1dGqQa8fXAeDXj/Q3ino+iIizgWmM3N3M+mXgN2ZeXVEPAF4W0RsAm4GfjUijs3M/RHxj8BzKPuSfhT4beCPI+LHwE7gzmZ57wU+mpmTvatqfs1YX0bEeZSvhp8H/i7LrpT/BvhWZt4UEXdSjmi9GBgDfiMiTsrMuyPiG8B0RJwG/E/gyog4mXK2qXsoXzfJzO3A9p4X+RAGvX5wHQx6/QuxbD6hR8QvRsQXKGPeb4yI32ruuh/4dvNp+zbKV6Xzgf0c2uUIyunOv08J9GuB25tlfRa4OzPHoXwKX8Jh/lTgA5Qt7hcBv9/Mcj+wOyKOycw7KetgI2UscA9l31ooW+WHKM/7xyjr4QXACHBtLqH9aeeKiKGm/qdRvgIPVP0ATW0Z5ejEQXwNHD/I9S9Yv8d8HuwCrALOn3P7MuBdzfUnUt49HwVcRfmatb6573LKePnB+z7bTD+aMtxy0pxlngs8rN+1Pkj9xwIv49C3iZXAfwJ+p7n/RGBHU8MVlLHBDXPW1bWUM5xfRvkGsoayjeCTc2sGfq7ftT7E8/8Syj/daygbsgam/jn9Ow74O8oZwQBeNSjroPkfuKr5v/3YoNXfymVJfkKPiNcD3wI+GRFrm8m/Stk3nCyH3n4ZeAVlH9JTKfuMQxkrP4eyd8qHgB9ExIcpGzu/Dvx0LCwzv5KZ93W/osWJiHXADcAFwIcpG3GeTfnmcQAgM39A2Wj7Sso44ckc2uXyc5T97e/LzBuAP6cc4fpuytb8mYNt5RL8RNLsL3wj5Z/vfcDFlO0f51E+iVVd/2GOoRwvcXpEnER5nQ9B3esgIlZStn1dDrwzM3+zuevcg/PUXH/L+v2O8iDvzBdQvi69H3hNM+3VlPGyg/OcAdzVXH8b8JY5990KnNtcP4qyy9J5/a5rEfUfAzxxzu2rKRt5rgK+PGf6KcCe5vrvUA5VPrF5/N8Cp82Z96Re9L2D6+CEOdf/M+Wf9gWDUv+cfl8FvBP4L8CLKYef3zoI64CyY8ILDpt2BXDLINTf0jrrdwce5Ik8uCvRFRwaMjkB+CFw9Jz5bqW8Y58A/C/KV6z/Q3kHPqrfdbRRfxy8NLefMGc93EPZf/bgvJ85GP7Af6Ps8XMP8Lv9rqMD6+F4ynaOfwHe0ty+B1hbe/1znvsXUYbeng18pJl294Csg8soB/b8IWUnhzdShlLvBU6uvf5WLktyyCUzZ5ur/xc4LiLOzswfUsbNXzpn1tuA45r7XkEZVvlrYEuWLd/LUjbmTLqG8mkFyvjfqwCi/L7MPwMHd618M+WbzPrMfEePuts1mbmPMrT2y5SN2c+hDJu9NIpq65/z/F9KGXa6ERiOiDdQNvZvgbpfA1mGSu6khPMLgccD/57yGnhZ7a+BVsQDc2PpiYj3UMbDX9vs5fEfKcF+IuWAoUvnvAFUJyKGKeN/r8jM3VF+TGwL5cW9HvhqLsUj1josIs6hvJl/iTJOeiZlV7Nq64+I1ZThlqMoNf9bysEwr6d8cn8M9a+DYzNzf3P9bMpr/4uUQ/Orfw0s1nII9HMoe608nfKi3k85DP/HwHsz844+dq/rovx+zNOA36OMp45TvmJeAfxTll01qxcRp1Le2J6XmfdExJXAHZn5lT53rWuinGjlzygb8K6j7HL3+sy8uLm/+nUwV5RfOnw/cEVm3jto9S/Ecgj051J23dsPvJWyxbuerdLziIgvAr9A+VW3PcCbM3NHXzvVIxGxhvJG/nzKRvBrgXdn5sxDPrBSzcEwzwa2ZubefvenFyLiKMq5Cg4Oufwp8J4sP3OtwyzpQI+IjZTD8K+nbBBaVj9Z265m1603UcYR/3I5bxdoRUSsoAyz/IRS/0A9/wdFxBBwfy7lf9YuioiXUnZX/fCgvgYWakkHuiRp4ZbkXi6SpMUz0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Il/j9QKOfElE3UJAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20, color='blue', edgecolor='black', linewidth=1.2)"
+ ]
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +2528,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
- "nbformat_minor": 2
+ "nbformat_minor": 1
}
-