diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 26630eade3b6102a7ef28056182eb59587af3d18..6c27eb2ce4e05e963a6bb8cfeab630d18a3f0c1a 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -3,8 +3,8 @@ { "cell_type": "markdown", "metadata": { - "hideCode": false, - "hidePrompt": false + "hideCode": true, + "hidePrompt": true }, "source": [ "# À propos du calcul de $\\pi$" @@ -13,7 +13,8 @@ { "cell_type": "markdown", "metadata": { - "hideCode": false + "hideCode": true, + "hidePrompt": true }, "source": [ "## En demandant à la lib maths\n", @@ -22,10 +23,10 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 16, "metadata": { - "hideCode": false, - "hidePrompt": false + "hideCode": true, + "hidePrompt": true }, "outputs": [ { @@ -44,8 +45,8 @@ { "cell_type": "markdown", "metadata": { - "hideCode": false, - "hidePrompt": false + "hideCode": true, + "hidePrompt": true }, "source": [ "## En utilisant la méthode des aiguilles de Buffon\n", @@ -54,10 +55,10 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 17, "metadata": { - "hideCode": false, - "hidePrompt": false + "hideCode": true, + "hidePrompt": true }, "outputs": [ { @@ -66,7 +67,7 @@ "3.128911138923655" ] }, - "execution_count": 13, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -83,8 +84,8 @@ { "cell_type": "markdown", "metadata": { - "hideCode": false, - "hidePrompt": false, + "hideCode": true, + "hidePrompt": true, "scrolled": true }, "source": [ @@ -94,10 +95,10 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 18, "metadata": { - "hideCode": false, - "hidePrompt": false + "hideCode": true, + "hidePrompt": true }, "outputs": [ { @@ -134,8 +135,8 @@ { "cell_type": "markdown", "metadata": { - "hideCode": false, - "hidePrompt": false + "hideCode": true, + "hidePrompt": true }, "source": [ "Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :" @@ -143,10 +144,10 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 19, "metadata": { - "hideCode": false, - "hidePrompt": false + "hideCode": true, + "hidePrompt": true }, "outputs": [ { @@ -155,7 +156,7 @@ "3.112" ] }, - "execution_count": 15, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -163,11 +164,18 @@ "source": [ "4*np.mean(accept)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { - "celltoolbar": "Éditer les Méta-Données", - "hide_code_all_hidden": false, + "celltoolbar": "Hide code", + "hide_code_all_hidden": true, "kernelspec": { "display_name": "Python 3", "language": "python", diff --git a/module2/exo3/exercice.ipynb b/module2/exo3/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..2b24682e910e15a38a4f1706f31473b27d20fb89 100644 --- a/module2/exo3/exercice.ipynb +++ b/module2/exo3/exercice.ipynb @@ -1,5 +1,86 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmYJGd95/l9MzIj8qyrq7r6qD4ltS5AEghJ3Ie51wN4vNgGDPjEO+PZwYN3Z/HMzq7x7Dzr8T0z9ngsGwzLADMe47GwGWMwh8UlgQQCXS211Oru6u6qrjOr8o7IiHf/iHjjfCMy6og8It/P8/TTVVlZlfFmRvzi935/F6GUQiAQCASjT2bQByAQCASC/UEYdIFAIEgJwqALBAJBShAGXSAQCFKCMOgCgUCQEoRBFwgEgpQgDLpAIBCkBGHQBQKBICUIgy4QCAQpIdvPF5udnaUnT57s50sKBALByPPwww+vUUrnej2vrwb95MmTeOihh/r5kgKBQDDyEEIuxnmekFwEAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAYa75zYQNPLm0P+jD2BWHQBQLBWPOhz/wAv/vFpwd9GPuCMOgCgWCsWd5qo6Xpgz6MfUEYdIFAMLbUO100VB1q1xj0oewLwqALBIKxZXmrDQDoCIMuEAgEo83KtmnQhYcuEAgEI84yM+i6MOgCgUAw0lzb7gAQHrpAIBCMPNe2mYYuslwEAoFgpLkmNHSBQCAYfnSD4r0f/Ta+8cxa6HOWhUEXCASC4afW1nD/06v4zoWN0OesMA1dBEUFAoFgeKl3ugCAhvW/H8OgWKmZHrqmUxgG7duxJYUw6AKBIJU0VTPQWQ8x6BtNFZpOcWgiDyAdXrow6AKBIJUwQ17v8DNYWED02EwBQDqqRYVBFwgEqaRpGfIwycUx6EUA6QiMCoMuEAhs1uudQR/CvuF46GEG3VzrccugpyEXXRh0gUAAAHjg/Dru/Dd/h0vrzUEfyr7QVC2D3uYb9OWtNggBjk6Zkovw0AUCQWr4/mIVlAKr9fagD2VfaFhB0YbKN+grtTYOlBSUlCwAERQVCAQjQqPTxfnVeuRzzq82AAAdbfQNG+Bo52Ea+vJWG/MTCpSsaQbTsG5h0AWCMeCjX38Ob/uDb4DS8Fzr82umwU9DtgcANGNo6Icm8pAtgy48dIFAMBKs1juotbuRxtr20FMQHAScdMW2ZqDLMdbXtts4OJGHLFkGPQU3MmHQBYIxgBXZhMkP1aaK9YYKIEUeuks7b/hy0dWugfWG6vXQU7BuYdAFgjGAGTe/YWM8a3nnQDq0ZMArtdR9gdFVKz3T1NAlAMntTJa32vj9L5/DxfVG7yfvEWHQBYIxgBnyMD3ZHTDtpEBLBpxdCRDcmbBZovOTjoee1M7k8mYTv/WFp3GxD+mgwqALBGNAq0cK3/k1t4eeDg3dbcRrvlx0Nkt0vpK3s1ySklxYsDUnJW9uhUEXCMYAZsijPPSF6fT0NAHMNU/kzRzzgIduGfRDky6DntDOhN0o2E4gSYRBFwjGgF5B0fOrDdx0qAIgPQa92dExb3VS9K/72nYHspTBdDHnSC4JxQ6YQVeEQRcIBsN9j1zBl568NujD2Deiimx0g+LiehPXzZWhZDMpSlvs4uCEYn/txkxZVEAISTwPnf1d4aELBAPi97/8DD72zQuDPox9o2X3Bg8a68ubTai6gdNzJdOg9ynL5W8eXcK99z+757/T1nT8i//+KNZ8jcWaqo75SpiH3ra996Tz0NnfHQoNnRByjBDyFULIk4SQxwkhH7AenyGEfJEQcs76fzrxoxUI+sRqvZMa6YFSamvoPA+dFRSdnitDyUl9WffiRhO//N++j498/bk9/63Hr27jUw9e8swOZWueC/HQl7fNsn8AyEoZSBmSmEHXhsxD7wL4ZUrpzQDuAfCLhJBbAHwIwJcopTcA+JL1vUAw8qhdA9WmlhqD3ukaYNPVeAb9WStl8fRsCbKUvORCKcW//MvH0FT10E6IO2GrpVr/a/ZjLU0HpcB0UYYsZQI7k/W6itmyYn+f5LrtoOgweOiU0iVK6Xetr2sAngRwFMDbAHzcetrHAbw9qYMUCPrJesMaHJwSg+7Ox+ZluZxfa2CykMNMSYaSyyR+I7vvkau4/+lVHJ0qoKHq0Pc4y7PaNA35VtMx6GydJVlCSZE8N7KubmCrpWGmJNuPydlMYp93Z1izXAghJwHcAeBBAPOU0iXANPoADu73wQkEg2Ctxkrg0xEcdBszrkFfreP0XAmEEChZKdEb2Xq9gw//1eO44/gU3vuSE+bxheTGx4V55lWXh86mFZWULMr5rOc9YM8LGPSEg6JDleVCCCkD+AyAX6KUbu/g995PCHmIEPLQ6urqbo5RINg3KKV470e/ja+cXQl9DusHnpYS+KiKScDU0K+bKwOAleWS3Lr/3ZfOod7p4t/+6AswWcgBCB9AERfmoVddHjq7SRTlLEpyFjXXujetnjXTRcegJ7lurWvuQIYiKAoAhJAcTGP+SUrpX1gPXyOEHLZ+fhgA9wqhlN5LKb2TUnrn3NzcfhyzQLBrGqqO+59exXcubIQ+x/HQ02HQ3R6w30OvtTWs1Do4PVcCYBm2BCtFz6828LyjkzgzX0HZKvrxV3HuFOahMy0dcFodlJUsyorXQ9+wDLrfQ0/q81Z1HVKGQMqQRP6+mzhZLgTARwA8SSn9HdePPgvgfdbX7wNw3/4fnkCwvzR69MgGnMZNakokF5ayWJKlQHOu56yS/9OzloeecJaL2jXs4GAlb3noHS3qV3pSbarW/xwPXZFQ8hn0zWbQQ5el5DR095qTJs6rvAzAewC8lhDyiPXvLQB+HcDrCSHnALze+l4gGGp6DQ4GgNWaadBT46Fba52rKAHJxTbobg89wXV3dMMODpaV/fHQqxwNna2Teeh1j4ce1NCVBIOiatfoS0AUALK9nkAp/TqAsL3CD+3v4QgEydJrLBkAu0Cl0zVAKYW5SR1dmIZ+sJLHBV8L17W6av3MTOFLulJU7Rp2cLBiSS5RN9c42FkunKBoUZYCBp156FPFnP1YksFgVad90c8BUSkqGDPqtkEPN1rMQwcATd9bSt0wwAz63ETQQ99qqiAEmLDkDyUrJRoMVrt6wEPfa1B0u+WkLbIRe07aYtaSXJzPe6OhoiRLyOck+zE5wRuZ+yaWNMKgC8aKXn3BAXhKyNOQusiGWxysKGioOgxX3ne1pWGykEPGCtglGRwEzBQ+pieX98tDtwy6qhtoWQFdtuaSkkVZkdBQu7ax32yomHbJLUDyaYv9klyEQReMFbGCorUOspaB65eOfnmzuecCG8BcF0vLY7Cb2JwlqzRdWSzVpoapglt6yCQaDHbrySV57xq6YVBUm07VJ5NfGqqOnGQ23iopWVDq7FQ2mqpHPweSDorqQxUUFQhSQ72Hht7p6thud3F4Km99n7xBv7zZxKt/86v4wuPLe/5bH/7s4/i5/+8hz2NNtQslm7FlFX+RzaQ7HzvhSlG3QZcyBGUluyeDXle7MChw4kARgMugd7ooWZKOfyew2VA9GS6Aue40BEWFQReMFb08dBYkPDplDnvoR/n/wxc30TWoPXRhL1zaaOLypnfUWVPV7eAg4F17tali2hccZMHgJDBT+Bzt2gxY7j5tkZX72wbdykVvdHR7B+Bfd5iHnlhhkU6Rk/oTWBcGXTBWuLNceEZrzQqIHp0yDUQ/NPTvXap6jm0vbLU0Tz42YOZkF63goP91eJILkGxvcLe3Ws5n96Shs7WePGCmXbIAqemhmzcOZtgbtoeuBTz0JHu5CA9dMDQYBsVXnlpJzGPrN6zrnkFhB9DcsIDoUTaOrQ/l/9+/XPUc215gXSLbrrU1OzpKimQbOL+HPuUrgQeSkZoMg0LTqdeg95BcWqruaYvrh6UqBiQX6yYGwL6R1TtddLo66p0uZko5z99JtDmXbkDOSr2fuA8Igy6I5O/PreKn//Q7ePTK1qAPZV/o1aiKpSwuTPVnvqbaNfD41e3Ase0WJjlsu3OyNR1FOWtLDyxIqhsU2+2u3VMFMCtFgWRuZLwmVZUeHvp//c4lvPtPHgzISAy2XuahV10eOluvOz2SGXx/louSldBJcKaoCIoKhoLnrOEHe63mGxbqrr4mvFx0v4eetIb+5NK2/Rp7Td9razraliH2dh7soihLAcmFebfeAhvmoe+/1GSPYpO8HnpUHvqz1vn31HKN+3NmoA9N5iFLGft7FjcAnKBoQ+06fVxCJJckdqKabkDOCg1dMAQsWp5RGvKxAa8XzPOIV2sdVPJZu4ox6XUzuWWqmNu3iknAWzXZUL0eOnudKqenSZKSiz3owSe5RK374oZ5/j19rc79OVvnZCGHyWLObtBVd2W5OFKT7nRaDHjo8WMHlzeb+JtHl3o+jyE8dMHQsLjRApCeVrKNThes6R1v17FWVzFXUaBYmmfSkssjl6qYqyi4bq68Z8ml6uo26DbuTbVraeheD5158ZM8Dz0JyYVj0Cv5XOTu76LVquDpa2Eeuop8LoN8TsJUIWcb+Kaq24a87Fr3RjPYaRHY2VzRj3/zAv7xp77riVNEIYKigqGBaZftlHjo9Y5uF6GEeeizZSVR6cHNI4tV3LYwFegIuBvCPHQmPxQtfdyWXKzne7NczOckkeXCG8XGslwMTlGVphu4smk6FOEGXcNUwTTOU8WcNw/dCooWchIyxNTQNzmtcwEzD919jFFc3WqDUmB5K16aqagUHVL+9vFlfPnstUEfRt+glOLyZvo89EOT1iR4zqSctXoHcxXFvgCT1NC3mhrOrzVwx/EplBVpXyUXJqcATEPPIpMhKMmSnU3DPHpulksCPdFVzrDkiuLo236uVlvoGhTTxRyeWalzK2m3WpodA5gsyKg2NXR1A52uYe9ICCEoWdIO67TovokBzk0mzo7smmXIr1RbPZ8LBHPvk0QY9B3we393Dvfef37Qh9E3qk3NNjKj1kpW0w382l894enLApgG/WDFNOjcLJd6B3MeDz25dTP9/PZjUyjJWW6Qdie4jTjLcjEMiqamo2QFCN07gU3LuHkKi3J91tAj+rlcWDd3h6+9aR6droHFjWCmC+tFA5g6+lZLQ0N1Oi3ar2Ote7OpYrKQQ9anae/kBr60U4OuG8iJoOjwsVprj5xhi+LRy1v4zb89G/rzRVeqWFy9cFg4u1TDR7/xHL76lHfsYb3TxfyEKbn4syvamo5au2tq6Amm7zEeWayCEOD5C5P7I7lYRlzOZuyv210dlAJFVwofy/SptjQQ4gyaAJBo7IA3LDmq4+IlSz9//S3zAPiyy1bT8dBNyUX19EJnlJSsneXil1vcx9RLajIMipWaadCvxjDolFKz26IIig4Xmm5gra6mZhI8AHzu0SX8wVeeDdWJWUAUGD0PfdOeYuN4rWwrzppU+Q0o8+Zny7ITJEsoNxkAvr9YxXVzZUzkc6YHqfKrV+NSbWrISQSHJ/Oe4CDgeKvuG8dWU8VEPucZjZZo2qJ1DilS0EOvhXjo+VwGL7v+AADg3Eow06XaUm0PfaqQQ0PV7bUXfQa91jY9dPeOhGHHDnqc5xtN1W6pzPT9KNhzhYY+ZKRtig1gzpM0/+d7hqPsodtTbNxjyXxzJv2VmewznqsoyEkEhCSjJQOm5/bIYhW3H5sCYBqcsOrVuGy1zKrPqYITHHQGPTgpfO4slymfcbM99AQLi9zGbSIf7qFfXG/gxEwJlXwOR6cK3Fz0alOzYwBsLcxzLituycVcdy8PvdeNzB0IvbrV26Dz1pwkwqDHZKXG5kymyaBbjapCDPrlzSYmC6b3OGo3MuaZb7o8dCY1lJWsx7AxWGOu2bICQkii49iuVFtYb6i4zTLo+9EbnPVlmXCl77FgI9PQ3TeyTZcxZPRdQ1dMI8xzKi6uN+2S/hvmywHJpa3p6HQNR0O31sIMOruJma9jxih4nRaB+EFRZtAXpgu4Wu2d5aJZf09MLBoyrlmd8NJSYAM4HnqYEVncaOHYTCHxsWRJwAJ+bg+d3bhKitmoqu7LrHB76IDTeTAJ2M2DtRhg3uReAqObTRVTxRymirIdFGWSSyFEcgnP9khOcuEHRb0NxQyD4uJGEydnzZL+G+crOL/aQNclgbHP1slyMf+/bBn0kuyVXOpWHnqkht7LoFt24EUnpnGl2uKmW3rWLDz04WTF+iDT5KEzQ77d5rcvXdxs4th0EfmcZJeUjwosJc9dbMPWW85nuSXnTEM/UDINepLTe5iU4x/2sJfAaLWpYbIgY7KQtSUn9+Qe9n+k5JKkh65ba5aCQVG/h7683YbaNXB8hnnoFai6YVeOAq7WBSwPvcAkF/NaLSneLJe1egdtzQhUiQLxK2SXt9qQMgS3LUxB7RpY9w0TCayZk3ufJMKgx2QllRp6uORiGGYO+rGZYuKT4JOAeW/MUweCk+B5QdGpYs42sknuTPyNqni9ynfKVkvDdDFnp+9RSm2Pv+iRXFjpvxbqoSfhuISV/gPBdV+0UhZZ060z82UAwDmX7FL1DXv2a+glX1CUncP+Pi6Aq/Q/hoc+V1ZwzLrR9Mp04WX2JIkw6DFxJJfRMmxRMIPO0y9X6x2oXQML0wXTUx21oCgny4UZcDY42G9EWJUoI8kbmd+48XqV75SqlcI3VZChGxT1Ttfx0FlQVDYNmzmZKaihZ6UMshnSN8lFyhAUZSngVLCSf6ahX3/QNOhPLTuZLlVXHxfA8dR5Bt2dwsjz0ONKLte225ifzNsDUHrlotuZPcKgDxfMQ9cN6tHxRpntCA2dFXHYksuI3cg2LQ/d3XWw7vfQ1aCHPlt2V01KieWh+z230h499Lamo6XpmCrKtoHbammctEXz/2WrfN0vuQDWjSyBdbM1K76qSV6DrosbTeQkgiOW4SzKWRybKeDpFcdDZ60L2Hor+SwIcZwv1uqAvQbD3wsdiJ+HvrTVxuEJx6D38tA1XQRFB0Knq0cGOK5tOxWHSeYm9wvD8uAAvhFhJf92UDRBD103qO1J7hfMM2+quu1t2h66NezB7xX6PfREJ8Hbnpu/gdTu3md/10HA9NjZ++ouLAKcz5dr0HPJBIPDAoSVfDaQh35xvYFj00VPjvyZgxWv5NLySi6ZDMFkIQeDmjewjOt33d46L8vFSdeMfv+vbbVxaDKPiUIWJVnq7aGLoGj/oZTi1b/5VXzy25dCn7PimveYhsCoWcRifs0LijIPfWG6mNgFzvi/7nsML/jVL+A9H3kQn/jWBTvbZC9UW5qtB7snwQNOlovfeK7UOnZbAACJ3siCkou3cdZOsQc3uDz07ZZmr7GQc7JcAKcohskUbnYSO9hua9weKzx4kgsAlDkdFy+sOSmLjBvmK3hurWF7vdWmZg+aZrC1u1MWAW9O+m4rReudLmqdLuYn8iCE4Oh0oWdxkQiKDgBVN7C01caFtQb355puRrMPWulsadDR3RcQLyi6uNnEXEVBPichn80kWli0tNVGScni8mYL/+q+x/ET935rT39PNyi2WhqO+8aS1TtdZDNmfnlFyULVDfuCa3S6aKo6Dk64NPQEb2TMYLILnWncu5Vc3AFC5rFWWxpamo58LmN7uraHXo3w0GPGDjTdwKt+4yv4xLcuxDpGtWsgmyEerxswG3TVXU4FpRSXNpo4YQVEGTcdqkDTqV1gtNUyg7qEOH+PBXndGS7m9+a6MwSYyHMklxjBYJaDfthq7nZkqtCzuCjsJpYUwqDDnFsIIHTbzzxGlkKVhs6DboPOC4oubrRwzJrao+SkRHclatfA9QfL+PIvvwo/ec9xj7y1G7ZbGih1MiRYcVHDGnrAuu+xxwAnRsJu2kCyQVFbT7bSBDNWcHDXHrpbcnFp6O42sgDHQw+RH+Kc48tbbWw2NZwNmSbkJ6wvuF9DX2+oqHe6AQ/95TfMghDgi0+YHU+rLc3Tyx1wiotKAQ/d/H66KHukGEZOIvYxhsG0+fkJ06AfnepdXKQKDb3/sMBRmH7JLnaWqsTyaUeZWjsYLHSzuNm015u0h67qhlVqT3CgpKDe6cbexvNgxu3ULPPQnSk27ML2ByGZpOaWXMyxZMmmLbq34iVOoDYuW64iG2bQTQ1dR9HlrTLPlfW596ctAiz/vve6mSy3k66DXIOe99YEsAyXkz4Pfbas4MUnZ/C3jy8DsBpz+Y4/zEO3DTpHbgEQqzKYeeiHXB76RkONjP+ILJcB4Bh0/gfD7szMYx21IhsezCvP5zIByaVrSVALtoeebB66phu2B1PZhxJ45pGfmjVT3TxDD3xTbOp+D32iTx66FjJfc5dB0U3XOLlCToIsZbgeOls3M8ITHIOuxAwGs14/S3EHPYSMYisr3qAoy0H3e+gA8KZbD+Hscg0X1hqexlwMJiG5g6Du73k56IxehWSsSvSQy0MHEOmlC8llADDJJcw7Yt7bgu2hj75BZ4HQI5OFQFB0aasN3aA4Nm2uN8kSeMA86ZkHw/TNWkj1ahyYt3rS8tA3bYOueyomzceiJJfk1q3qpnHzZmJESy6PX92yW7f6qbbMTotFWQIhxO7n0tJ0u+zffA1z3ctbbUzkswE9G7Bu4DGcFtaNc6naitUlMkxymbCmFrG/cX61ASlDsDAdNOhvfN4hAOawmSqnFw0z8H7JpWR76MEbGKPXjWx5q43JQs5+P9kg8ajURZHlMgDYlol56n5Wah1kiGn8gHRp6EemCgFvmHletuSSS1Zy4XnoUXMme8G81cOTZlEUT3IJeuhtyFLG4/ElneXiv8hLcvjA5Fpbwzv+07fw4c8+wf05K/tnAcIpa2BymIfeNWio/BD3RsbOk4aqY7vV+/PqREgulDrX39nlGk7NlrjPPTpVwAsWJvH5x5ex1dQCHvpkD8mFl+HCkKVMdFB0u2175wDsHPkoyUnjSGtJIgw6gKbWW3KZqyj2nXnUGlXxYAbz8GQ+YESWrC0k21IqWQndBAuqNJ26DHp49724bNopfDlMh8yZ9Od9r9bM0XPujIm40gMArNc7uP/p1d5PtOh09WD6XsSQi7985Cqaqo6/f3rVNhJuzNa5jnFj5f9snihDyToZLzz9nD0nzjl+2ZWyF6uVbKjk4v3Mn7q2jZsOVUL/zhtvPYTvXaqi1ukGsnSYx+5PW5QyBNcfLOOmQxOhf7dXVtOylYPOmK8okDIk2kNn3RaFh94/Wj2Cote2zfzkuP0eho1nVmp48Py657Fa28zhnasoqLW9gxU2rIZDB6yqSSVGju5ecHurjoe+F8lFBbHS06aLciDLBXA8ONbljxl0N0xDjyMnfOybF/BTf/rt2AVSPOMWNrWIUopPPXgJSjaDeqeL71zYCDyn2tQ8gxtYT3S/QSeE2K10J0P05Lixg8WNJm6wSvKXYhp0XnDQ3XGx3ulicaOFmw+HG943WbILELwpse/LPg0dAP7ug6/C+156MvTvmh56+I3M76FnpQwOTeQjPXS7Ilh46P2jp4Ze62B+oj9zJpPgd//uHP63P/++57F6p4tKPotKPgfdoJ5A73pDRU5yCjbyVlFKUsFgdd8lF3MrzioH3Xno5UBQ1PzsV7Y7Hv0cMD02Sp2pM1Fc2WzBoPGm2ACWccsFDTovKPr9y1t4cmkbH3z9GchSJjBWD2Brdgy046F3PZN7AGft4R5677TFtqZjpdbBXadmAABXYvQGD9PQ2aDoWrtr55jfOB/uoV83V7ZvJH4NnXnsRZ/kEgczq4m/bnNiWQfzLg8dAI5M5SM/c1FYNACY5NJUda43trLdxlwlH3tM1bCxXu9gZbvjWVutzQx60CPetKa6MPkhybFkgHmxyFYecGUfgqLmmDHzQp8uyqi2VLPzoBoVFG17MlwA7GgMHcv0uBwzha/D8dDLIUHRTz14EYWchHfdfRx3n57Bl8+uBJ6z1fRKLhOFHLaaZqVoSeYX2fBGsQEsqyn6s2ZyywuPTyObIViKse6otEXAvOGeXd4GANx0ONygA46X7s9Dt7Nc5KCH3osoiW2l1gGlTlER42iP4iKWksvLfU8CYdABtCzPXDdowPtmVaLzE4prTFXyBr3R6eJ3vvBU7BzfKKpNDZ2u4dHKa20NFSXnGHRfYYe73wXzJJPy0DWO5LId4aGvbLfxH750LjRXfcs1CX6qmMOmtX7doLYxy0kZKNkMGp0u1K6BzabmyUEHXL3BYwRGmeRweQceeiAoqmTR0nTPurbbGv7q+0t4621HUMnn8OobD+KZlbqdA86otrw52VPFHGqdrpXlws/4CJNcZKm35MICoicOFDE/kY+VuhimoVdcY+ieWq6homTt+E0YP/rCBdxyeAI3+zTxo1NFvOjENO44PtXzePzIEU3J7Bz0Cb+HXsCylRXGQ+safSsqAoRBB+DNbvF7SKxKdH4in7inythqavjJjzyIf//lZ/BFq4hiLzANeb3utJLd9nno7lz0zaZq6+cAkM8mGwx2Sy55K4c6SnL55IOX8NtffBpPXN3m/tw9CHiqKGOrqXk6LTJY/vNqPZiyCMQfekAptQ1abMlFD+rJdqDWJf3d970raGk63nX3cQDAa286CAD4ylOOl97p6miquidrxZ394ffQe0ouMeoOLm84mVBHpvI9uw4C0ZWigOlUnF2q4cZDFU9wmsfJ2RL+xwde4QlSAuZkps/8o5fiBQu7M+hhHrq/SpRxsKJA06ndHM1P2K4kKYRBh6OhA8HUxWt2BaFie2xJSi4rtTZ+/N5v4bErWwD2VmADmMaGZX2wiTwAk1xy3JmOGyEeehLpmpRST5YLYFUOdsIllwesAO8TS1vcn5sBQia55KDqhn1j9g89aHS6gdFzDLsDX4/Pm+2AAKcCsxcdje+hA16n4tPfXsQthyfwgoVJAMCp2RJOHijiKy7Zxd9GFvD2aPFr6CwgzOvjApjr7tUm+vJmC3I2g7mygsOTvXuaAMy4BbXtiuscfHJ5u6fckhT+tMUvPXkN/+dfPoovn72GC1b1ql9y6SURhu1KkkIYdPg8dF9gdMXloccdJLtb2pqOH/+jB3DfdbZYAAAgAElEQVRxvYmP/tSLTU91jwa9pen2Seo16Boq1ig2wDvTcaOh4kDJ2xecHd9+wwKObuNWyWdDPfS2puN7i1UAwOMhHnq16fT4YEaLSSFlxVtk0+h0uWX/7mPqdQN3yw1xJbIOx7j5DXpb0/HE0jbe9LxDHo/1NTcdxDefXbcdEdbqwJ+2aP/dUA09PMsFiI4dLG42sTBVQCZDbNmh53zNEOPGbjDnrtVQa3dxY0RqYZL4exZ94oGL+M8PXMLPfOwh/Mbnn4KczQRugr2C+GG7kqTo+UqEkI8SQlYIIY+5HvtVQsgVQsgj1r+3JHuYyeKVXHwtVV0eelYyc3iT8tDPrzbw3FoDH37rrXjFDXMo58PzkuPCvHMAWHVJLv6gKNOsNd0wR5m5DHo+0TmTwSyAKIP+/cUq1K4ZaOJJLqoVK2DGimVBMM/Z7aFXrKZQvLJ/IH4wmOnnZ+bLO9LQg5ILS6U0X4/JGMdmvHrya248iE7XsHcq9rBkT5aL83UxRHLxBxQZ9rojdmSLGy27cvrIVB6aTrHWiG6q1gkxblkpg0JOstMxb47IQU8Sf+xgtdbBK26Yxcd/5i68++7j+F9eeTogBTEPPWwu7zBKLh8D8CbO479LKb3d+vc/9vew+ktLc4yH34Be2zarRA9Ygw/MDz3Zhk2zFatjHGcIw07ZdA2xXbMMF6XUlbbo1dCZcZjheOhJGHSNFV5IzoVSUXKhW9gHn9sAIcBbnn8YTy5tB7xCpmUyDZ0ZdqZteyUXyTbohMCzKwHir5t56HeenMFqrRNrJ8MrLPIPimbePqtQZtx9egaFnIQvsK6DvtmagNdD9xfZlHpq6L3XbQ4QN4/r8GTvniYAoHb10CZV5XwWz66assaZQRn0bNCgH50q4FVn5vBvfuT5+OAbbgz8TiwPfZgkF0rp/QCClQwpoqnq9pvuLwxZqZlVoqy6LslGVf5xVWUlt2cNvery0NctD6qpmpkUpobuLYFnRUUzHA89GcklWEkX5aE/+Nw6bpyv4KXXHUBD1XHJn+1hGbdJ20P3Sy5+DV3Haq2NAyVzB+ZGjuGpAs4k+DuOmYG4uAFChVNYBDifBfs7R3wZH0pWwj+47TA+893LuFJt9ZZcQsrgea1zzb8fvTOptTVUm5rdGoLpyr1SF6O8VZaLfnSqwO1X3g8UV3dN3aBYb6iBuIqfiR6VzcPooYfxTwghP7Akmel9O6IB0FR1e5akX3JhVaIMJaL4YK/4ixCYJLAXWIZLTiJYq5lfs5Ovks/a213mEdsGvdgfD51XSVfhTLABzPfn4YubuOf0Adxy2AwS+nV0d9k/4DLo1aDkwvpw84qKALeW3EtyaeNgRbH75ceRXXiFRWWfhn5ls4UMQSCTAwA+8LozAAV+74tPuzx0fpZLIef10N962xH8yptvCs9D933etbaGt//BN/C9S5sAnKZcrHmb3XWwR+pilLfKPN2bBxQQBbx56BsNFbpBexr0XpXNQ+ehh/CHAK4DcDuAJQC/HfZEQsj7CSEPEUIeWl2N3+siCeqdLn74P3zNziBhtFQds9YHF/TQvRd7rxabe0H1eavl/P4Z9FOzJTsoyk4+pv+5X8c26J5hycl76P6gKE+TfPRKFW3NwD2nZ3DDfBnZDAlkulRdbWQBR1dmkktZDma5rHDK/oH42T1LWy0cnszbmnKcwCivsMgfFL1SbWN+Is/NYz46VcB7XnICn/nuZXznwiayGeIJfsrZTGAwNOPYTBG/8KrrQlMD/Rr6s6sNPLJYxe988WkATjyCtVeeKuaQz2UidyZd3YBBw7sOsuKiGwcktwDOtU0pdTKfytEGvTxqQVEelNJrlFKdUmoA+GMAd0U8915K6Z2U0jvn5uZ2e5z7wqX1Jh67so1HrCwJRlPt2sOB/aXXrGqSoWSTm97j99BLSnYfNHTTMF43V7YN+rbLQ2f/s8c2mhwPPYamultYlovbaLF2qn59/IHzpvJ316kDyOckXH+wHAiMVn0pfHI2g5Is2Z6727iVlSyaqo7l7XaIhx5v3ctbbRyeLNjNmuKkLvIudH87gqvVVmSBzS++5nqU5Cy++MQ1TBXlgIFmGrlfQ++F7JNcWOzla+fW8MTVbSzaA8TNGxghBEcmC5H9XHq1kWVrj2qelTSylAGlZidKVpvQy0PP+Xa4ftydRPvBrl6JEHLY9e2PAHgs7LnDBPP6/HfTlqpjuiiDkKCHvtXSPNrkTgbo7hS/t7qXgQeMzaaKipLF/EQea3UmuZjvwwQz6K4bx4b1nOlS0ENPYt28XheVfA6UBlNIH3xuA2fmy/YN9pbDE3hiyWfQW8HjZ1KEks14dHJmRFZrnUCGCxA0bDxYUdGhyTyyUgaHJ6N7ezDMwiKv55zPZZAh3qCoXz93M1OS8f5XnrbWGJRPJkJayfbCX1DFYi9ShuCPv3YeixtNlGTJI9kc6TGOrVdPE1YPEdVlMWncaaphtQk8omI+YZk9SREnbfHTAL4F4EZCyGVCyM8C+A1CyKOEkB8AeA2Af5bwce4LLAPCfzdtajpKioSS7J0E3+nqaGm6R49MVHLxa+g9CmziUG2qmCrlMFcxR7u1Nd2loQcll82miko+6/EqHMml97oppXjtb30Vn3zwYqzj88tM5nEFt7GabuDhCxu4+9QB+7Fbjkzg2nbHk1+/2TQHPbjlBzbUwN+Bz62n+3PQAZeGHvF5b7fM8noWGFyYLvTU0Lu62YbAf6GzWadsd7K0FW3QAeBnXn4Ks2UlkKEDOEY+zynmiYLtyJz6BfMm+eMvPoa/+v5VPHRxA8dmip4dweHJfLSH3mNyz7Ql25yaLXF/3g+UBAx6v4OiPfdilNJ3ch7+SALHkjjbLb6H3lTNqS4lRfJ46OwGMFn0equJZ7lYJ0BJzqKtGejqRiADIy6bVtUkC/qu1Tu28bYlFyWH1VodgNnHxW8cnHmLvT301XoH59caePjCJt5994mez3cye1xpi5zMgceubKGh6rj79Iz92C1Wi9Unrm7jlWdMOa/aVD2DHgBHRw+OJXMMXVRQNOrzZhWSLHXv6FQR33x2LfT5QLT8wHqir9Y70HRqT8UJo6Rk8YmfvQs8OXyykENRlnbcGMq/I1uvqyjJEv7xq6/Df/3OIh67so3X3XzQ8zuHpwpYqXVCNeNOD4P+8688jTc+79Cuz/P9QHZJbKu1DspKNpZcVc7nwvPQOdlMSTJWlaI8D103KNSugWIua3roriIjXkm1nORYMp+HzgIuYX3a41BtqpgqynaMYK2u8oOilvHcbKjcSTZKROMiNywDYjFmCTwz6O785DInc+C7l8y4B2vXCpgeOgCP7OLvCw6Ez5l0e+w8ySWOhu4fHLwwXcDydjvSq48aHMwGRbPA6tGp4M7Bz82HJ7ja8/xEPnJCTxg8yWW2omBhuoh/8AJTbfWPhzs6lQelTqsMPyrnc/Yf64tPznB/1i88kkudHyjnMRHhoWsjlLY4crDAnztzhHnkRVlC0de+1PbQfWPJEguKsjJ4V9oiANT2ILtsWgbONui1DmrtLghxSsLdW0aehw6waS5xptg0rf/jV0wC3qAorwPk1WoLJVnySCNTRRlHpwqewKi7dS6DfV8OyccG+JIL2zVEGXRWVMQkl6PTBVDqGHoeUd4q64keloO+E37pdWfwsZ8OzVcIxQ6Ca07LCHZO/Lyl2V9n9SNnsB1KWNfFfvcF3w22Qdd1s2V2jwwXRiUiG00V3RaTg0ku7tasLSsVryBLKMreUnunpLo/QVG/zugvNNkNzMCx7onrDdOgl5WsLUtUlCzqqqnbbjaCBhEwA3ZxPHRmyJe327HeJ38xFeAEa91ez/J2O9DpDjC9U7+HHtojO0JD53ljcaSm5S0zV5xJNiyVLyrTJcq4sZ7oLLDaq41sFDMlGdf7DG8ceJILq5S+9cgk/uYDr8A7XrTg+Z0j1k4iLHWxl4Y+DLh3Jjvx0KMqm0cibbHfnF3e9nSX2y08DZ01OCrKkp3GxuB56FE9k/eKX092JJfdGfSubqDWNucuuiWX7bbmqcZjQ3obahcbDdWTg86IPTjYqtyktHcpOODsSnK+LBfAK7msbAcHUACm7HJ+te40quJKLnwNnXnolXzWnsrkp5fUdHWrjYOVvK39Lkz1Li5i76PCec2S5VRcrbbsiVL9xi+5rNVVOwYDmDdR//tll/+HBEZ7pS0OA+55B7yRhGEMU1B0eN9dF5984BI++GeP7PnvOGmLjqFougx6UZY8qXK8kmolKyU6WzNDYBsHu0/0LnPRq3ZfExn5nISKksWqJbkwWQNwDOi17TZU3fDkoDOUbCZWYdHiZhNZKwjnH8LAg6cn87Jc/PMcGXccm4JBgU88cAFAmORixQpCeprwAqKMnQ4OPjSZR4ZETy5ini/fQze371eq7T1553vBbdgMg2Kj0cGBUrRxKylmX6CVbX6DrlGQXFjwstbuotbu7sCg59BU9UC7YcMwW0OPQqVoX2E9N/bKFsdDZwa9IGdt78j/fLeXZHpsyeWh5zh50ruVXPxNm2YrCtbqHbt1rv91Lq6bBpgXSMv3MGyMy5st3G71NIkTGOVJLoWcBClD7BsvpRTXtjtcyeXVN87hTbcewq//zVn83RPX0OkasSUX9h7w9HOGv0e2HzO10Pl9OZvB/EQ+luQSGhTtmEHRgRl01iZa01FtaTAoPANPwohqVTEKkgs7NiZ37URDB4LXqWb0f83D++66KCumV7zXYOR2ywmKsvmabKteyJlB0abrxrHd0jCRz9qNuYDouYN7xV+EsFfJZdPXOXG2LFsGveu5SbETkjW64hn0OB66blBcrbbwopPTyEkkVmCUl7ZICPFsY6tNDWrX4Bp0Qgh+68duw3VzZfyvn/4egGCf76mQoKiSNdsh86Qc+zkR8zXtoqIJr+FdmC7EGhwcZtDrluSyl4DoXrBjB9ZgZAC2ZBdFQZY8w2Lc9EpbHAZYVtMVq+/PTiQXILiTHsSuZHjfXRcsF9RfxblTmOSiG9T2zN1ZLmUrZYwZ+2pTDXh7LA+dN0x6r5jDkoMe+m4lF9Y6lxm4AyUF63WVI7nsj4e+vN2GplOcmCnh6FRhR5KL/0J3G/RrNf74L0ZZyeKP33unfVPwa+jTIRo6IQQ3Harg+UcnQ48vKnaw3e6iqercwcFxNHR+HrpkjzTrlYOeJCx2wAx6HA+9KGdDr9FeaYvDAPs82Ge3E8kFCPZEH8SuZHjfXRd7lR4YWy3NbljEjIU/y8WgzgW31dI8QwMA88Oh1OlBsp/4I+IsrXC3694MSC5yiORi/ryXh94ra2XRnjNZwMJ00e75EYXKkVwAb+aAk+sdfoGdnC3h37/zDkwVc4HMjkMTeRybKeDmw8Fc7c/901fg515xOvTvRlUGs+M67MsVX5guYnm7HTrCLepCd990BuWhA07sgM2hjeOhmzEo/jnieKs7q1rtJ37JJSq24oaXlQUMJhA8Egbd6UK3e+1a0w00Vd1OK2PGwh0ULSleA1p1TY9nsG1ZErKLX0NnrW33KrkwD3W2rGCzqVkDooOSy0VrbmK45NJjEvwG68JXxLGZgj1IOAqt6829dx8TSy9lgbYorRsAXn3jQXzvX70e1x/09gMpyBK+9s9fa1eT7gR3j2w/S3aVqPe45icU6Aa1O1f6cbxVTpaLy6DHKSpKCnYDX2ceeowCpWKE5DJKGvrlzRYI4V8HPMI6Load20kyvO+uC7+h3Q0sZZEFmpixsA16zinzZTr6ViuY0+wMPUigURUnxWkvLXQ3mypkyWmjyrwsc7iFy0O3vl7cbCEnkUDPE4BJLtFrZhfCkak8FqaLWG+oPW9Gqq4jmyGB8nS35LLMxgBGaN2MXtPid0pUq4cle+fg9aSZUfYPHGfYWS4hpf+Mo1PFwM/7BVv3ekNFhoQPw3ATKblErHlYYHLQtVobB0py7DYEYYOiWR/9nPDQvfgb/+8GZsBZyTJ781vWCViQJTtoxlIXt5o8D51VkyUwX7NLA9JDWeHnuOoGxbef28BvfP5saO+QasPsFMmMnHvb7PbQWTqf2jUwUwq2YQXi9bBZ3Gzi0EQeSlayW6v26g2u6cE1s+Njn9G17TZmSjLXo00aJSuF5qEvbbVBSHBrzm6gYQY9juSSzZDYGm4SsHWv1VXMlBRPYkAYRVkKX/MI5aFTGk9iYoQFRXnDW5JmZ42SB8R+BEVtD92WXBwPPZsh1kAA53UoNQNTAYMec+jBbuB66EpwUPRvf+EpfOrBS1i3tvRfeWoVf/OBVwT+nj8n210cMuHy0DMZYuc/h06Cz0k9s1wub7TsKTZs3uTiRhNn5sNborKBz348QdGQfuX9ICx2QCnFFx5fxo3zlcANqdf5GpXlwpyKw1P5WEY0KVh2z1q94zlvoog06COQh+4+tp3cTMOmFkV9zkkxvO+uC3/j/92w5ZNcmIzBOi0CbmlHR0PV0TVoYJAuC+okNTBZ9hm3si+31zAo/uNXn8WxmSJ+/1134H9/4414cmkbT1+rBf5etent5e72OvyyCvs+LJshHyO7Z3GziQVrQj3bCfXKdAlrXsT6Y7AcdN4Ytn4Qlqb6tXNrOLtcw8+8/FTgZ7089OgsF/Pz8g+G7jfmMHQD6/VOrAwXACgqUZJLMD112NitQVeyEuRsJqihs95MwqB7YYZ2b5KLadD9QdGWqtsXoKOhd7ll/0C8Htm7heehl3ySy0bTnHX4I3ccxQ+/4Ah+7M5jkDIEf/m9K4G/F/DQK3zJxfzeXHuUh05puNTU6ZqTf5iHPluWUchJPTNdwmYuVvI56AZFSzP/7nyPgGhSKCE9bO69/zwOVhS87fYjgZ8V4hp0zrrZuT6ooiKGneXSUHtWiTKKOTPlUuOcIx3r3N7vGMd+kskQ+zPZqdw1kc96mskB/MZzSTMiBr132uLF9QZ+8VPfxaV1vkfIDPThyQIyxCW5aLptyG2tXtXt1rn+STBxptjsFt64qko+62lH4G+8P1dR8LLrZ3HfI1cDI9s2m5o93AEw0yDzOWd4hhsWGA3LZujVG3yp2galzg2TEIKF6d656JpucING7Pg2mxrW6h3MD8xDD+ahP3ZlC19/Zg0/8/JT/EyVPUku5u8OMgcdcLqKmo254nnoUTeyfvcF3y3s+u6VUeWHN9icBUWFh+5DyWaQzZBID/2zj1zF536whP/5P30TTy0H5QdWJTpZyHkCjS21i0KOeejshOzao8wm+umhc7zVsm+uKG+SyttvP4Ir1RYetqayA6bGy3qhMwghtrflN+jMY+f1QgeCLVX9sDJ/FgxlX/eqFo0KigLAc6sNUGqmAg4CmdMu+d77z6OsZPGuu49zfyeO5CJLfG91spDDP3r1dXjrbUHPv58o2Qy2WxrqnW7sAKGT3RO8TvvddXC3sGPcqYduxnxCCouEh+6FEBIZcAGAR69s4WBFASHAj9/7rcAg6O22BlnKIJ/LoOKaMNJ0SS7unQALovoLi5IcmBwmubh3Jrxp5G+49RDyuYxHdql3uugaNFA1yWSXgOSixPPQwwKjbLCF26AvTBd69nPphEou5vGcWzFvzgOTXKygKIsdXN5s4nOPLuGddx3zdKx0U4wwbEC0cSOE4P940024ISKQ3A+UrGSni+4kKAqEe+gjYdCZ5LKDLBeA33FxEO0Ohv8dtvAHB/08emUL95w+gP/2Cy/FRD6Hd//xA57pKVstDROFbKBPiDsoqmTNIb3Nju5Mj/dLLlJykgvPQ6/ks9B0ar8ebxp5WcniDbccwuceXbK9AruXu08TnyvL9u+4Yd+Heej5Hjeyxc0mchLxdEQ8Nl1Erd215SseYZILy8J5ZsUcjTfIoKhhTYIHgE986yIIgJ9+WTAYymA7vvAUPn2oS+ABM3agW2uOq6Hb6+YkL/S7jexuYVlsO/bQOT3RWVBUZLlwKHHS9xhr9Q6Wttp4wcIkjh8o4nd+7DY0VB0/uLxlP8dstGUaZ/f2qK05Hjob0ttQnaCoP8vFTltMIsslJG0RgC27rNY6KMlSoC/J2+84gmpTw/1PrwJwyv79Qc65ioKKr+EY4HjEYdVx/qEHfi5vms2k3H/3mJXxEuWlm/1reGmL5vt+zjLocYqKkkD2xQ4ev7qNW49ORpblSxmzuVVooypt+I2b2wjF1dB7Si6joKHvMiha5njoIigagV96cPPoFdNwP89qsnTigDk5/IrLkJgeOjPoOY+H7h4EW5Kzpofe0pDNENvYMxwPPRkN3f/h+wPCYY33X3HDHGZKMv7soUUA7rJ/7w3p515xGr/1jtsCv1+OadDDyv8XN5p2hgsjTupi2Fac3WCeXalDyhDMxvQS9xu71YP1eV+ptuzAbxTMMeAxCt6qO9gbV0O3g6IcWW5kJJdsBnI246nTiANPchlEdezwv8MWvAIbxmOWJ36rNTR4tixDyWY8Abntdtdl0PmSCwAUFQl1y0N3V1kymIceJyh63yNX8Mrf+ErsAKqm03APvYdBz0kZvOeeE/jCE9fwg8tVu9OiX3K5bq6MN956KPD77n4vPBzJJcxDbwYMHdPTowKjvMwewFn3ekPFwYqy48n1+4V7Z2IYFFc24xn0Qi66yGbYJRd5Nx66r3WGm1G4iQHmuufKyo7TKyv5HOqdri1TAaI5VyRFWQptzvWDK1s4PVeyt+mEEBydLnjKzmtWb3PAK7m4s1wA5qGbuq8/wwWINwme8dc/WMKljWbksAM3PA/dbp7PGlXV2qHbwZ97xSnMlGT828+fdUku8UaYvf2Oo/iT994ZatBtw+bz0DXdwB9+9Vms1VV7Z8SYLORQyWejhz2EZLmU5CzYNRXWNrcfuCuD1+odqLqBhRg54iUlujf4sBs39nkXrS6kcXBnifkJC34PG2UlG2i2FgdmW9wqgqb3vznXSJT+A7B7lfN47MoW7jo143lsYdqbMucu42eSC6XUykN3GXTFbAGq6cEqUaC3lswwDIrvXNgAYPYZPz0XPayXUhqa5QI4/WVWax28/PpZ7t+o5HP4J6+5Hr/210+goxkgJFgYFcZkIYfX3TIf+nPnRuas++GLm/gXf/EonrpWwxtvnce77gqm8U1w8nPdqF2de8KzdgS1dndgKYuAtzKYtVpYmO7dNKsgZyNbyQ67cWPneVzvHHAkl1aI5OJPlR1GfvWtt+5q1oG7/J9dc51u/6tjh/uschEWFGUBUf+QggWXh04pNQcjuySXrmH2aqEUHsmlZHWMq7ZUrjFkF2IvGeWpazU70+SC1ZY2CuduHiz9B8xCqLamY7vHrMN333McR6cKeOjiJibyudgd43qR9wWD1+odvPOPH8B2W8O973kR/ug9dwYyggDzBhmVbsqTmRgsiM2bJdov3HUH7HyKU/RTzEl24zc/puQyvH3BASc9N26GC+BILryd9CjITIApSfrbL8fB6bjofObsxt3P6tjhf4ctwuaK+gOijKNTBWw0VDTVLlqa6XG7PXQAuGb12S7m3Bq6+Tq8xlyA6TnmJNJTcnnw/DoAs2vexZDqVTdhept7XuEaJ2XRj5KV8MHXnwEQX26JA7vAWR76hbUG1K6B//cfPh9v4GjyjIKc5QbJGKaGzj/h7ZmfwyC5dHVbOopTll9SwiXCTlcfGcklbg46YN70CQH3RjYqGvpu4XVcHEQgeGTe4bC5oo9e3gIhTkCUwQJXVzZbdpUo8/iY3rVijTbzZrmYAyW2mlpoD2glK/X00B98bgNHpwo4M1+xB0dEoYWkODnDPbrcKlEeb7/jKG46VNnXiTf+0n9WdHK4RxOpKE8VCA+KAs5FMlAN3RUzubzZwnQxF0gZ5VGQs1zpgf2tYTdutuSyAw+dEIJijj+1aBRkpr3A64mu6v2/cQ+/qGVRlB3DJmcdQ/volS2cmi0FKh+ZQTfzo83HJgpOUBRwPHSP5GLpti1N5wZFgd7j2Cg1e5W/6sY5tFSd24rAT5iHXsxJIMQMijKD3qvPhJQh+PTP3wN9H+ee5n2l//ZYuB7GtihLWN4OLyyKMm6VIZBc3L17zAyXeEMnSrIUOV9z2OUHdiObrcT30AFrRzbClaK7heeha13a95vYyLzDYXNFH7uyxR3yyy68y9WWXeYflFyYh+7W0CXbs+IFRQFrzmREP/RnVupYb6i459QBnDhQwuJm05POxCOsCCGTISjLZic3XpVoGNMleUdN+nvhL/1f3mqjkJPsm2QYUZPggeBgbDeOhz7IQQ+Ohn55sxm7C2JBlrjpe8CIFBbldu6hA2wM3RhLLi77pOoGctn+ptuOzDvMG+u1WuMHRAGzF4MsZXB5s2n3ZXFXigLAimXQvXnojoEKyxAJ65HNeOA5M7vl7tMzOHmgCE2nuNpjck/UVHQWEF6tdXY063A/yWYIMsQruRyazPcM+PTqwRPWnAtwGfQBlf0D3oKquEVFgLVuTedmTIyGh77zLBcgfFC0KbkMdyB4L1QUjuQyAJlpuM8qF7y5oo9ZAVGeQc9kCI5M5XFlsxXobc68fTso6tPQGf7WuYxeHvqD59dxaCKP4zNFHD9g7hR6BUZZD2lukY017GGl1sFMUe5rKTGDEOKZK7q81Y7lOUfNmdQNCt0Iz3K5fq6M4zNFu3HYIGDHdnWrhbZmxG5rW5Sz0A3KDZ6PQpbLwlQRspTBjYd2lvERNig67ZJLPmd2hHVLLqac2N/PeWQ0dN5cUdaJ76bDE9zfYbnotoful1xqHMkllocuhXrolFI8cH4DL7v+AAghOGkV21zcaODl4OePA9GtNlk+tqbTAc+ZzNil/8vbbbz45EyP37Akl5DgYNRNDADe99KTeO9LTg50KAIzvOdXzcB2XA2dnVMtVbfjD4xRyHI5fqCIs//6TTuu0C3KwXqRsBqLNOE0/XM89LBpXEkyMu+wOyjKWKuryOfC+y4cnSrg8mYLW1aWC9V5E4kAABfHSURBVNvCs5vDCguKutMWXd56mIceFRQ9v9bAWr2Du08dAGAG9ORsJr6HHjL0gEkugzTozEM3DIqV7U6s7BM2xYaXFaTq0YUXhJCBlfwzmJZ8ftVsEhZXcrHL4MP6moxAxsdu3nuehx4lJ6YJ/5ALlTNSMmlG5h3mBUXXah3MRvRdWJguYK3ewUqtjZIs2Z6gZFUhrnA9dOfrsCyXKMnlwfOOfg6YF8XxmSIurEWnLkaNJWOtg1drnR33ad5PmIe+0VSh6gYOxZBcCi5P1c8ghujuFHZsz1oeelzJxW5U5Qvid3UDBh3uNe8FXsxkFAZE7wf+Bl2D2JWMzDvMDK0nKFrv4ECEgWMX39nlWsA4sz7jgNcrd3+9m6DoN55Zw8GKgtOzTl+TkweKuNRzFBsbKBu8OZXz5tSi1fpgPXRzHJvupCzGGGRsz2nVgjp6L8llGGBGaMvqBRQ21MJP2LCHQQw96Ce8QdFqytfM8EsuIigaAW+u6FpdtQc28GB659ml7YBxZvILIU5ZO+DsBAo5KTRwFeaha7qB+59exWtuPOjZNRyfKeHCeiOyR4TjxQRf09xNdKB2jQFLLuYkeMeg95ZceDdihtY1349hNuiEENsQHY2pnwMuiXDMjFuR02VyEF0HBwFXchEeOh/eXNG1eicy15p56A1VD3hWLDBayEke48s8q6imVmFB0YcubKLW6eI1Nx30PH5ytoi2ZmDFKgzi4WjoHA9dydoTcwbtobc13a4SjVPww+ITXMnFGqLLixsME0weiaufA96gqBtHTx7uLJfdUrSC4O6B5eMquZhB0f5+ziPzDtvThCyDbhgUGw010qDPVxRkrcCOvwCGeegFXwYC2wmEBUQBKyjKCXZ99akV5CSCl9/gzWZhbWWjAqORWS6uoO9ADbrloV/bbkPKkFjHYksuXA29/+1FdwMzvnGLioDwnQnb2aXVWy0qWVAKtF1JA2nflTAmXLOKAVNe62enRWCEDDpg5ojXreq7akuDbtDIwoeslMHhKdOLDGrolofum0jEPKuwgChgSS6crI0vn13BXadmAvM6T1iDHqK6LqoRerI7lfLgoDV0zcDSVhtzZSUwxo6HHRzk5KJr9lZ8sJksvdiNh16wb2Q+yUXv/xSbfsKLHaQ9bsCoWPUibHcyiAKynq9GCPkoIWSFEPKY67EZQsgXCSHnrP+nkz1ME7eHzjoP9ipvZ15VUHIxLzj/iDkm7YSV/ZvPCTbnWtxo4txKHa+58WDg+UenzVmbl2J46LwTwF1YM1cebOfBdlfHNatKNA5h0gMQfRMbJnYluYQMio7KZkoDvEHR46Khl63dCYubDGtQ9GMA3uR77EMAvkQpvQHAl6zvE8c9p3GtFs+gs8BoWFC04JvGQog5RzRKQ+d56F99agUAAvo5YBqshelCpIceWSlqGXRZyvTsnZIkihUMXt5qx26YFZbtATgdJofduMm2Qd9BUDRMcmE37txwr3m32C06NG9wEACUIf+c9wrb9W9bOvpQFhZRSu8HsOF7+G0APm59/XEAb9/n4+Liniu6Zk2PmevRDc720H0GmnnsxVwwaPGhN9+Md99zIvRvsrRFd9bKV55axYkDRU+6opvjM8V4GnpILxfA1M8HWTXJCouWt+J76JGDgyOKqYYJ1gt+Jxq6LGUgZUhoCl9ajVuBcwMfFw399Jx57T95dRsAf6Rk0uz21eYppUsAYP0fdEsTwD00IL6HziQXflDUL7kAwLvuPo7bj02F/k3FN72nren45rNrgXRFNycPRKcuRnno7FhnB6ifA+aNbKulodbp7kByMY+d14FvEDMXd4MiZVCSpchAuR/WGzy0yCalxo03KDrta2bcfmwKcjaDB59bh2FQdCP6FCVF4q9GCHk/IeQhQshDq6ure/pbJTlr56Gv1TvIZkjPQg+2TfYPq7DzzTkGvRf2GDrLCH/r2XW0NYMrtzBOHCii1u7aY+n8OO1z+WmLwGADooDpoTMjHFdyKYRoycDoXOh5WcLCdHHHu6OiEmyha0suKU5bBLzB4HHR0PM5Cbcfm8KDz20MbM27fbVrhJDDAGD9vxL2RErpvZTSOymld87Nze3y5Uw8Gnq9gwNluWe/ibtOzeBfv+1WvPKMN5WQ6V08D70Xim/Yw98/vYp8LoO7T4U3q2Itb1nnRz+qTkPnD7oll0HiDtjGnSIkZQiUbIavoY9IUPSDrz+DX3vbrTv+vSJn/N6o3MR2S6TkMuSf835wz6kZPHZlyx4oPoxBUR6fBfA+6+v3Abhvfw4nGm+WS3QOOkPKELznJScDHpEjuew8yMj0T9ag69nVOs7MVwJd9dyEVQ4yoqrKKvksMmSwk3sAr1d5eAc9yosh03t6NecaFm4/NoW7Tx/Y8e/xhj2kPW2xxKk7SPtNzM3dpw/AoOauHeh/z56e1owQ8mkArwYwSwi5DOD/BvDrAP6MEPKzAC4BeEeSB8koK07nvvUeVaK9cLJcduOhO1NsAHPM3S0hLXwZUdkeQPSw5HxOwsd++i5u3/d+4m6REFdDB1hP9AjJJaWeW1EODopmu7q0Nufi1R10xkRyAYAXHp9GTiL42jlTXu737rOnQaeUvjPkRz+0z8fSE/fA5LW6iusOlnf9t6KyXHrhHphsGBRXNlt4wy3zkb8T1dME6N334ZVn9iZX7QfMQ58s5CJ3I37Chh5oKb/QC3I2ILGlXU/mOS5OZk864wZuCrKE2xam8PVzawBGR0MfCGw7V7fma+6llexUMYecRDCzwxFbgPMhqV2zP4uqG1iYic5RtkvgO3zJxfTQh/vjYDeyncgtQPgYulHR0HdLSZYCn3fa5YeclIEsZcZWcgHM1tm2hi4MejjMQ7+23YbaNfYoueRw3y++HD/6woUd/y7zVDtdA4ubZm75sR5VhCVbQw8ZHDwCE12YVx43IMoIGxQdNhg7LRQ4NzInyyWdawbY5x0sLBr283u/YMNtgP7LiSMzgg5wZIsLVoHObI+iol7cciRa9w5DzjpB0VUrH/5YDw89qqcJYFZNDruWzIzQToOzRdkZJuJG1Vn73OEOiu6WkpwNjN9Le+k/YO5M3I6LquvIZkis3j9p4EUnpiFlCHSD9r1obqTOKpaPfckqod+Lh74XFJfksrjRAtC7irCnhj4CHjoLBu8kIArwPVXAKo0OSdVMA2ZQNCi5pHnNQHBHlvYB0X5KStZOYOh3RfBIvctMcrloTf85UBqUQXckl8ubTRysKD2DhPmsBEJGW0Nna9ypQS/mwiWXtHrngGnYOl0Duqs3eKerp1puAYKDosfNoAPOCEqhoUfAdOj9klx2izsourjZ7Cm3AOZs0UJOCtXQR2Fw8OHJPLIZgpt7pGj6iQqKpvlCL3Fa6I6DcfN/3qo+/Of2fvO6m+eRzZAdx5v2ykhq6BfXGyAEmCkOxqArLg19caOFF5+M1z04LB8bMPXkgjzcJ/3CdBGPffiNO0pZBMz0vbC0xWHflewF94BsVpk8LgZ9ra7a33fGYM1+XnxyZlfXyl4ZqXeZSS7VpoaZoozsgIwBOzkbHR1LW61YHjpg3pDCgqKj4KED2NUJWpTNkX0sTZGhdmmqDTovbtLp9n/oQb8pKkJyAXZ3reyVkXqX2fAJAJGTivpxHIA5gcigwLGYfbKLcjZQOcgw5Yd06slhVbKjEAjeC4VcsN3DOBg3f8xkVJyVNDBS7zKbKwoMLsMFcIKiz67WAcSfZBPW0wRI90nvlh7cjEKq5l7gTWtK+00MCGb3DGIU27gycu9yybpIBmnQWWbGsytm+mRcySUsOAikW0/mBQcBa80p3ZUAYZKLntrWuYyi4s2/H4ddybAwcu/yMHjohJgtYZe325AyJHYpfEnORnvoKT3peS1VAdNzS+tNDHAkl0CWS4rXDJiSC2uiB6T73B42Ru5dtg36gFIWGe6+JnGDs7zue4w0GzdbeuD0Bk+zceN56ONg3NwSG6UUi5vNPfVdEsRnpNIWAadadHZARUUMOSsB6MYOiALmBBu/UWOoKc5+CAuKarph36DTCDNsjTHLcnEPiq51NFzb7uBFJ+Kl9gr2xshdTczrGRYPPW5AFDAlF38pOCPNGjqTHoLDHgxMpXTNAH+e6jh46O4b+GNXtgAALxQGvS+M3JnFAmyD1NABx6DHDYgC5gXuLwUHgK5uwKDp7UYX6qF3aaolF9481XEosim6BkU/dGETJVnCTYd21whPsDNG7swahqAo4BjfYzPxPXTeAF3APYpt5D6OWERJLv3uRtdPpAxBPpfhFBalPMvFdZ4/fHETdxyfHptOi4Nm5K6msjU6jg1dHhRsUPRONXSA76kC6fXQw/LQOylvzgUEM5vUMWjOxT7vlVoHZ5e3hX7eR0ZOQ3/HixZwfKY4kLJaN6wt5k4kF3vIhU9H77DBwSk1bkXO4GDA9NDHwbg1O+NVWMTO828+uw6DQhj0PjJyBv30XBmn53Y/S3S/UHIZyNnMjtKxwqWHdHvoUoZAzmb4hUUplZkY7mIySulYZLmw8/xr51aRIcAdx6cGfETjQ7rPrAQpyhKOTReQ2YE2GOapjsOILl6VrKanuzkXYHXYtFJVuwYFpemeVgQ4Bv3yZgs3HpqwO00KkmfkPPRh4ZffcCPqISmIYTANvcHxVIH0BkUBpiUHb2RpXjNg3cis82QcbtyA47gAwItOCO+8nwiDvkvOzFd2/DslVzqXG/tCT7FxK8gSWppzI6OUjoWeXJSzqDbNMYXjMCAaAPK5DAgBKAXuPDEz6MMZK9J9Zg0ZPdMWU3yh+yWXrpWLn9ZAMKMoO9XBjoee7rRFQgiKVtKCCIj2F+Gh95HQvuDMc0uzh56TAj1NgHTLTIC3ley4SC6AOaWqpGR3VEkt2DvCoPcRVhQVqqGn+EL3jyVja067cSu6xu91uub/aZdcAGCuouDMfBmEpHsHNmwIg95HlGwGGRIssBkHDd2cp9q0v097dSyjKEtoqF07ZRFI/00MAP70p15sFxgJ+ocw6H2EEMIdQzcOWS4FOTiWDEj3TQwwM5sMagZE1THZlQDAoZgzAgT7S/rPrCGDN4ZuHDy3oizZ+dhA+oupGCw42FJ1bFiS0zhILoLBIDz0PlNSsp7+2IDLuKXYWy34slzGYVcCODnZ7/ijb+GZlToIgRj2IEgMYdD7TCEnBfuCj4OHnstC7Rro6gayUsaV5ZLuoNmpuRKkDMFEPosPvfkmvPHWQzg1Wxr0YQlSijDofaakBMfQOd5qeo2bnbKp6ZiQMmORew8ALz45g6f/nzeL9rGCvpDuq2kIKXIGRY+Dh+5voauNQe49QxhzQb9I/9U0ZJSUYJOqcUjh8w9MZnGDtHvoAkE/EVdTnynk+E2qgJQHRXOs06RVNWn1gE/zTUwg6DfiauozJUXiVopmM2RHrXhHjaJPclG76c/sEQj6jbia+kxRznK7LaZZPweCfWyc0v/03sQEgn6TbisyhJRkCapu2AYNGI/JPQWfQR+X5lwCQT8RV1Of8Rs2YDzmTLICG9YTfVyacwkE/WRPeeiEkAsAagB0AF1K6Z37cVBphnVcbKpdTBbM0Vxql6ZeSw6TXISHLhDsH/tRWPQaSunaPvydsYDXE30cPHR/HnpHSC4Cwb4jrqY+U+SModO6RqqrRAGnSZU/Dz3tOxOBoJ/s9WqiAL5ACHmYEPL+/TigtFOSg4Oix8FDz0oZyFKGk+WS7nULBP1kr5LLyyilVwkhBwF8kRByllJ6v/sJlqF/PwAcP358jy83+hQtDb3l6zw4DtJDwdU6WO0ayBBRFi8Q7Cd7siKU0qvW/ysA/juAuzjPuZdSeiel9M65ubm9vFwq4Hnona4xFtJDydVCd1xuYgJBP9n1FUUIKRFCKuxrAG8A8Nh+HVhasdMWO14PfRykh5KSxUbDHPIwDjKTQNBv9nJFzQP4OiHk+wC+DeBzlNLP789hpZeSHBwUrY6Jh/6y62fxtXOrWK93zJvYGKxZIOgnu9bQKaXnAdy2j8cyFhSVYNriuMgP77r7OD72zQv484cvQ+2Ox5oFgn4irqg+I0sZSBni6Yk+Dr1cAODMfAV3npjGp799aWzWLBD0E3FF9RlCCIqyd2qRptOx8VbfdfdxXFhv4pvPrqc+914g6DfjYUWGjJKc9aQtdsbIW33L8w9jspDDSq0zNjcxgaBfiCtqABR9PdHNAOF4eKv5nIR/+MKjAABlTG5iAkG/EFfUACjK3jF046Ynv+sus8BMeOgCwf6yH825BDukKGfR6Hg99HEybjfMV/CqM3OYKuYGfSgCQaoQBn0AlGQJ61aBjWFQdA06Vh46APzJ++6ERMZDZhII+sV4WZEhoag4Hro6pn3Bc1Im1TNUBYJBMF5WZEgo5hwNnRl0ESAUCAR7RViRAVBSsmK2pkAg2HeEFRkARVcbWdEXXCAQ7BfCigyAoixB0ynUriE8dIFAsG8IKzIA2Bi6lqoLD10gEOwbwooMgJLiDLlgw5LHpVJUIBAkh8hDHwDMQ//o15/DmfkKAOGhCwSCvSMM+gC48+Q07jo1g4984zlQaj4mNHSBQLBXhEEfAIcnC/izX3gJ1uodfOnJa3j86jbuOD496MMSCAQjjjDoA2S2rODHX3x80IchEAhSgtjnCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKUIAy6QCAQpARh0AUCgSAlCIMuEAgEKUEYdIFAIEgJhLLa8368GCGrAC7u8tdnAazt4+GMCuO47nFcMzCe6x7HNQM7X/cJSulcryf11aDvBULIQ5TSOwd9HP1mHNc9jmsGxnPd47hmILl1C8lFIBAIUoIw6AKBQJASRsmg3zvoAxgQ47jucVwzMJ7rHsc1Awmte2Q0dIFAIBBEM0oeukAgEAgiGAmDTgh5EyHkKULIM4SQDw36eJKAEHKMEPIVQsiThJDHCSEfsB6fIYR8kRByzvo/dZMwCCESIeR7hJC/tr4fhzVPEUL+nBBy1vrMX5L2dRNC/pl1bj9GCPk0ISSfxjUTQj5KCFkhhDzmeix0nYSQX7Fs21OEkDfu5bWH3qATQiQAfwDgzQBuAfBOQsgtgz2qROgC+GVK6c0A7gHwi9Y6PwTgS5TSGwB8yfo+bXwAwJOu78dhzf8OwOcppTcBuA3m+lO7bkLIUQD/FMCdlNLnAZAA/ATSueaPAXiT7zHuOq1r/CcA3Gr9zn+0bN6uGHqDDuAuAM9QSs9TSlUA/wXA2wZ8TPsOpXSJUvpd6+sazAv8KMy1ftx62scBvH0wR5gMhJAFAP8TgD9xPZz2NU8AeCWAjwAApVSllFaR8nXDnJBWIIRkARQBXEUK10wpvR/Ahu/hsHW+DcB/oZR2KKXPAXgGps3bFaNg0I8CWHR9f9l6LLUQQk4CuAPAgwDmKaVLgGn0ARwc3JElwu8B+OcADNdjaV/zaQCrAP7Ukpr+hBBSQorXTSm9AuC3AFwCsARgi1L6BaR4zT7C1rmv9m0UDDrhPJba1BxCSBnAZwD8EqV0e9DHkySEkB8GsEIpfXjQx9JnsgBeCOAPKaV3AGggHVJDKJZm/DYApwAcAVAihPzkYI9qKNhX+zYKBv0ygGOu7xdgbtVSByEkB9OYf5JS+hfWw9cIIYetnx8GsDKo40uAlwF4KyHkAkwp7bWEkP+MdK8ZMM/py5TSB63v/xymgU/zul8H4DlK6SqlVAPwFwBeinSv2U3YOvfVvo2CQf8OgBsIIacIITLMAMJnB3xM+w4hhMDUVJ+klP6O60efBfA+6+v3Abiv38eWFJTSX6GULlBKT8L8XL9MKf1JpHjNAEApXQawSAi50XrohwA8gXSv+xKAewghRetc/yGYcaI0r9lN2Do/C+AnCCEKIeQUgBsAfHvXr0IpHfp/AN4C4GkAzwL4l4M+noTW+HKYW60fAHjE+vcWAAdgRsXPWf/PDPpYE1r/qwH8tfV16tcM4HYAD1mf918CmE77ugF8GMBZAI8B+AQAJY1rBvBpmHECDaYH/rNR6wTwLy3b9hSAN+/ltUWlqEAgEKSEUZBcBAKBQBADYdAFAoEgJQiDLhAIBClBGHSBQCBICcKgCwQCQUoQBl0gEAhSgjDoAoFAkBKEQRcIBIKU8P8DRKN2O9aFL9kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "a = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])\n", + "plt.plot(a)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 4., 3., 5., 9., 16., 20., 22., 9., 8., 4.]),\n", + " array([ 2.8 , 4.86, 6.92, 8.98, 11.04, 13.1 , 15.16, 17.22, 19.28,\n", + " 21.34, 23.4 ]),\n", + " )" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAACmRJREFUeJzt3UGIXId9x/Hfv3F6SXKw8dqY1KraYEp8qVKECbgUh5Dgxgc7h0B9KDoElIMNCeQickkuBfeQ5FQCCjbWIXEJJK4NNm2MCLiFEioHE8uowSGoqWMhyfgQ91Rs/3vYMai25J3dHe1o//p8QMzM2zd6f56evjze7put7g4A+98frHsAAFZD0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxjihr3c2M0339wHDx7cy00C7HsvvPDC6929sdV6exr0gwcP5tSpU3u5SYB9r6r+a5n1XHIBGELQAYYQdIAhBB1gCEEHGELQAYYQdIAhBB1gCEEHGGJP7xQF3u/gsWfWst2zj9y3lu1y9ThDBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGG2DLoVXV7Vf2sqs5U1ctV9dXF8puq6rmqemXxeOPVHxeAK1nmDP2tJF/v7k8m+XSSh6rqziTHkpzs7juSnFy8BmBNtgx6d5/r7l8snr+Z5EySjye5P8mJxWonkjxwtYYEYGvbuoZeVQeTfCrJz5Pc2t3nks3oJ7ll1cMBsLylfwVdVX00yY+TfK27f19Vy77vaJKjSXLgwIGdzAhX3bp+DRys0lJn6FX14WzG/Afd/ZPF4vNVddvi67cluXC593b38e4+3N2HNzY2VjEzAJexzE+5VJJHk5zp7u9c8qWnkxxZPD+S5KnVjwfAspa55HJ3kr9N8lJVvbhY9o0kjyT5UVV9Oclvk3zp6owIwDK2DHp3/1uSK10w/+xqxwFgp9wpCjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBCCDjCEoAMMIegAQwg6wBA3rHsAuNTBY8+sewTYt5yhAwwh6ABDCDrAEIIOMISgAwyxZdCr6rGqulBVpy9Z9q2q+l1Vvbj484WrOyYAW1nmDP3xJPdeZvl3u/vQ4s+zqx0LgO3aMujd/XySN/ZgFgB2YTfX0B+uql8uLsncuLKJANiRnQb9e0k+keRQknNJvn2lFavqaFWdqqpTFy9e3OHmANjKjoLe3ee7++3ufifJ95Pc9QHrHu/uw919eGNjY6dzArCFHQW9qm675OUXk5y+0roA7I0tP5yrqp5Ick+Sm6vq1STfTHJPVR1K0knOJvnKVZwRgCVsGfTufvAyix+9CrMAsAvuFAUYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhhB0gCEEHWAIQQcYQtABhtgy6FX1WFVdqKrTlyy7qaqeq6pXFo83Xt0xAdjKMmfojye59z3LjiU52d13JDm5eA3AGm0Z9O5+Pskb71l8f5ITi+cnkjyw4rkA2KadXkO/tbvPJcni8ZbVjQTATlz1b4pW1dGqOlVVpy5evHi1Nwdw3dpp0M9X1W1Jsni8cKUVu/t4dx/u7sMbGxs73BwAW9lp0J9OcmTx/EiSp1YzDgA7tcyPLT6R5N+T/FlVvVpVX07ySJLPVdUrST63eA3AGt2w1Qrd/eAVvvTZFc8CwC64UxRgCEEHGELQAYYQdIAhtvymKNefg8eeWfcI7IF1/juffeS+tW17MmfoAEMIOsAQgg4whKADDCHoAEMIOsAQgg4whKADDOHGImDPreumpuk3NDlDBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYAhBBxhC0AGGEHSAIQQdYIgbdvPmqjqb5M0kbyd5q7sPr2IoALZvV0Ff+Ex3v76CvweAXXDJBWCI3Qa9k/y0ql6oqqOrGAiAndntJZe7u/u1qrolyXNV9Z/d/fylKyxCfzRJDhw4sMvNXV8OHntm3SMA+8iuztC7+7XF44UkTya56zLrHO/uw919eGNjYzebA+AD7DjoVfWRqvrYu8+TfD7J6VUNBsD27OaSy61Jnqyqd/+eH3b3P69kKgC2bcdB7+7fJPnzFc4CwC74sUWAIQQdYAhBBxhC0AGGWMVnueyJdd5kc/aR+9a2bWB1pnfEGTrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEPvmTtF18qvggP3AGTrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwwh6ABDCDrAEIIOMISgAwyxq6BX1b1V9auq+nVVHVvVUABs346DXlUfSvIPSf46yZ1JHqyqO1c1GADbs5sz9LuS/Lq7f9Pd/5vkH5Pcv5qxANiu3QT940n++5LXry6WAbAGN+zivXWZZf2+laqOJjm6ePk/VfWrXWxz3W5O8vq6h9gH7Ket2UfLGbOf6u939fY/Xmal3QT91SS3X/L6j5K89t6Vuvt4kuO72M41o6pOdffhdc9xrbOftmYfLcd+2p7dXHL5jyR3VNWfVNUfJvmbJE+vZiwAtmvHZ+jd/VZVPZzkX5J8KMlj3f3yyiYDYFt2c8kl3f1skmdXNMt+MOLS0R6wn7ZmHy3HftqG6n7f9zEB2Ifc+g8whKAvoarOVtVLVfViVZ1a9zzXiqp6rKouVNXpS5bdVFXPVdUri8cb1znjteAK++lbVfW7xTH1YlV9YZ0zXguq6vaq+llVnamql6vqq4vljqklCfryPtPdh/wI1f/zeJJ737PsWJKT3X1HkpOL19e7x/P+/ZQk310cU4cW34+63r2V5Ovd/ckkn07y0OLjRBxTSxJ0dqy7n0/yxnsW35/kxOL5iSQP7OlQ16Ar7Cfeo7vPdfcvFs/fTHImm3efO6aWJOjL6SQ/raoXFne+cmW3dve5ZPM/aJJb1jzPtezhqvrl4pKMywiXqKqDST6V5OdxTC1N0Jdzd3f/RTY/WfKhqvqrdQ/Evve9JJ9IcijJuSTfXu84146q+miSHyf5Wnf/ft3z7CeCvoTufm3xeCHJk9n8pEku73xV3ZYki8cLa57nmtTd57v77e5+J8n345hKklTVh7MZ8x90908Wix1TSxL0LVTVR6rqY+8+T/L5JKc/+F3XtaeTHFk8P5LkqTXOcs16N1ALX4xjKlVVSR5Ncqa7v3PJlxxTS3Jj0Raq6k+zeVaebN5Z+8Pu/rs1jnTNqKonktyTzU/EO5/km0n+KcmPkhxI8tskX+ru6/obglfYT/dk83JLJzmb5CvvXie+XlXVXyb51yQvJXlnsfgb2byO7phagqADDOGSC8AQgg4whKADDCHoAEMIOsAQgg4whKADDCHoAEP8H8IJKtNnWIm7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(a)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +97,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5b58a3ae26346460dd39e62a39c55243d7..e83bd016139b120e04b25e455179662d89aca33b 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,10 +28,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" @@ -61,9 +59,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020221733951332478.046548.06049.071.0FRFrance
120221635005042854.057246.07564.086.0FRFrance
2202215310080690824.0110788.0152137.0167.0FRFrance
32022143155441143891.0166991.0234217.0251.0FRFrance
42022133191914179558.0204270.0289270.0308.0FRFrance
52022123166224155035.0177413.0251234.0268.0FRFrance
62022113122849113306.0132392.0185171.0199.0FRFrance
720221038790479741.096067.0133121.0145.0FRFrance
820220935018243958.056406.07667.085.0FRFrance
920220833096325942.035984.04739.055.0FRFrance
1020220733488229446.040318.05345.061.0FRFrance
1120220634662340398.052848.07061.079.0FRFrance
1220220536297056043.069897.09585.0105.0FRFrance
1320220437220964804.079614.010998.0120.0FRFrance
1420220337461367144.082082.0113102.0124.0FRFrance
1520220235592049511.062329.08474.094.0FRFrance
1620220135762950699.064559.08777.097.0FRFrance
1720215235434947029.061669.08271.093.0FRFrance
1820215134169835359.048037.06353.073.0FRFrance
1920215033811732497.043737.05849.067.0FRFrance
2020214934016834716.045620.06153.069.0FRFrance
2120214834184236364.047320.06355.071.0FRFrance
2220214733659831338.041858.05547.063.0FRFrance
2320214633005925302.034816.04639.053.0FRFrance
2420214532036416564.024164.03125.037.0FRFrance
2520214431899915042.022956.02923.035.0FRFrance
2620214332704021935.032145.04133.049.0FRFrance
2720214232834323382.033304.04335.051.0FRFrance
2820214132504320586.029500.03831.045.0FRFrance
2920214032628621842.030730.04033.047.0FRFrance
.................................
192719852132609619621.032571.04735.059.0FRFrance
192819852032789620885.034907.05138.064.0FRFrance
192919851934315432821.053487.07859.097.0FRFrance
193019851834055529935.051175.07455.093.0FRFrance
193119851733405324366.043740.06244.080.0FRFrance
193219851635036236451.064273.09166.0116.0FRFrance
193319851536388145538.082224.011683.0149.0FRFrance
19341985143134545114400.0154690.0244207.0281.0FRFrance
19351985133197206176080.0218332.0357319.0395.0FRFrance
19361985123245240223304.0267176.0445405.0485.0FRFrance
19371985113276205252399.0300011.0501458.0544.0FRFrance
19381985103353231326279.0380183.0640591.0689.0FRFrance
19391985093369895341109.0398681.0670618.0722.0FRFrance
19401985083389886359529.0420243.0707652.0762.0FRFrance
19411985073471852432599.0511105.0855784.0926.0FRFrance
19421985063565825518011.0613639.01026939.01113.0FRFrance
19431985053637302592795.0681809.011551074.01236.0FRFrance
19441985043424937390794.0459080.0770708.0832.0FRFrance
19451985033213901174689.0253113.0388317.0459.0FRFrance
194619850239758680949.0114223.0177147.0207.0FRFrance
194719850138548965918.0105060.0155120.0190.0FRFrance
194819845238483060602.0109058.0154110.0198.0FRFrance
1949198451310172680242.0123210.0185146.0224.0FRFrance
19501984503123680101401.0145959.0225184.0266.0FRFrance
1951198449310107381684.0120462.0184149.0219.0FRFrance
195219844837862060634.096606.0143110.0176.0FRFrance
195319844737202954274.089784.013199.0163.0FRFrance
195419844638733067686.0106974.0159123.0195.0FRFrance
19551984453135223101414.0169032.0246184.0308.0FRFrance
195619844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1957 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202217 3 39513 32478.0 46548.0 60 49.0 \n", + "1 202216 3 50050 42854.0 57246.0 75 64.0 \n", + "2 202215 3 100806 90824.0 110788.0 152 137.0 \n", + "3 202214 3 155441 143891.0 166991.0 234 217.0 \n", + "4 202213 3 191914 179558.0 204270.0 289 270.0 \n", + "5 202212 3 166224 155035.0 177413.0 251 234.0 \n", + "6 202211 3 122849 113306.0 132392.0 185 171.0 \n", + "7 202210 3 87904 79741.0 96067.0 133 121.0 \n", + "8 202209 3 50182 43958.0 56406.0 76 67.0 \n", + "9 202208 3 30963 25942.0 35984.0 47 39.0 \n", + "10 202207 3 34882 29446.0 40318.0 53 45.0 \n", + "11 202206 3 46623 40398.0 52848.0 70 61.0 \n", + "12 202205 3 62970 56043.0 69897.0 95 85.0 \n", + "13 202204 3 72209 64804.0 79614.0 109 98.0 \n", + "14 202203 3 74613 67144.0 82082.0 113 102.0 \n", + "15 202202 3 55920 49511.0 62329.0 84 74.0 \n", + "16 202201 3 57629 50699.0 64559.0 87 77.0 \n", + "17 202152 3 54349 47029.0 61669.0 82 71.0 \n", + "18 202151 3 41698 35359.0 48037.0 63 53.0 \n", + "19 202150 3 38117 32497.0 43737.0 58 49.0 \n", + "20 202149 3 40168 34716.0 45620.0 61 53.0 \n", + "21 202148 3 41842 36364.0 47320.0 63 55.0 \n", + "22 202147 3 36598 31338.0 41858.0 55 47.0 \n", + "23 202146 3 30059 25302.0 34816.0 46 39.0 \n", + "24 202145 3 20364 16564.0 24164.0 31 25.0 \n", + "25 202144 3 18999 15042.0 22956.0 29 23.0 \n", + "26 202143 3 27040 21935.0 32145.0 41 33.0 \n", + "27 202142 3 28343 23382.0 33304.0 43 35.0 \n", + "28 202141 3 25043 20586.0 29500.0 38 31.0 \n", + "29 202140 3 26286 21842.0 30730.0 40 33.0 \n", + "... ... ... ... ... ... ... ... \n", + "1927 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1928 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1929 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1930 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1931 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1932 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1933 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1934 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1935 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1936 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1937 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1938 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1939 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1940 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1941 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1942 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1943 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1944 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1945 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1946 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1947 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1948 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1949 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1950 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1951 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1952 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1953 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1954 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1955 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1956 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 71.0 FR France \n", + "1 86.0 FR France \n", + "2 167.0 FR France \n", + "3 251.0 FR France \n", + "4 308.0 FR France \n", + "5 268.0 FR France \n", + "6 199.0 FR France \n", + "7 145.0 FR France \n", + "8 85.0 FR France \n", + "9 55.0 FR France \n", + "10 61.0 FR France \n", + "11 79.0 FR France \n", + "12 105.0 FR France \n", + "13 120.0 FR France \n", + "14 124.0 FR France \n", + "15 94.0 FR France \n", + "16 97.0 FR France \n", + "17 93.0 FR France \n", + "18 73.0 FR France \n", + "19 67.0 FR France \n", + "20 69.0 FR France \n", + "21 71.0 FR France \n", + "22 63.0 FR France \n", + "23 53.0 FR France \n", + "24 37.0 FR France \n", + "25 35.0 FR France \n", + "26 49.0 FR France \n", + "27 51.0 FR France \n", + "28 45.0 FR France \n", + "29 47.0 FR France \n", + "... ... ... ... \n", + "1927 59.0 FR France \n", + "1928 64.0 FR France \n", + "1929 97.0 FR France \n", + "1930 93.0 FR France \n", + "1931 80.0 FR France \n", + "1932 116.0 FR France \n", + "1933 149.0 FR France \n", + "1934 281.0 FR France \n", + "1935 395.0 FR France \n", + "1936 485.0 FR France \n", + "1937 544.0 FR France \n", + "1938 689.0 FR France \n", + "1939 722.0 FR France \n", + "1940 762.0 FR France \n", + "1941 926.0 FR France \n", + "1942 1113.0 FR France \n", + "1943 1236.0 FR France \n", + "1944 832.0 FR France \n", + "1945 459.0 FR France \n", + "1946 207.0 FR France \n", + "1947 190.0 FR France \n", + "1948 198.0 FR France \n", + "1949 224.0 FR France \n", + "1950 266.0 FR France \n", + "1951 219.0 FR France \n", + "1952 176.0 FR France \n", + "1953 163.0 FR France \n", + "1954 195.0 FR France \n", + "1955 308.0 FR France \n", + "1956 213.0 FR France \n", + "\n", + "[1957 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" @@ -78,9 +1043,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
172019891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1720 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1720 FR France " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +1123,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020221733951332478.046548.06049.071.0FRFrance
120221635005042854.057246.07564.086.0FRFrance
2202215310080690824.0110788.0152137.0167.0FRFrance
32022143155441143891.0166991.0234217.0251.0FRFrance
42022133191914179558.0204270.0289270.0308.0FRFrance
52022123166224155035.0177413.0251234.0268.0FRFrance
62022113122849113306.0132392.0185171.0199.0FRFrance
720221038790479741.096067.0133121.0145.0FRFrance
820220935018243958.056406.07667.085.0FRFrance
920220833096325942.035984.04739.055.0FRFrance
1020220733488229446.040318.05345.061.0FRFrance
1120220634662340398.052848.07061.079.0FRFrance
1220220536297056043.069897.09585.0105.0FRFrance
1320220437220964804.079614.010998.0120.0FRFrance
1420220337461367144.082082.0113102.0124.0FRFrance
1520220235592049511.062329.08474.094.0FRFrance
1620220135762950699.064559.08777.097.0FRFrance
1720215235434947029.061669.08271.093.0FRFrance
1820215134169835359.048037.06353.073.0FRFrance
1920215033811732497.043737.05849.067.0FRFrance
2020214934016834716.045620.06153.069.0FRFrance
2120214834184236364.047320.06355.071.0FRFrance
2220214733659831338.041858.05547.063.0FRFrance
2320214633005925302.034816.04639.053.0FRFrance
2420214532036416564.024164.03125.037.0FRFrance
2520214431899915042.022956.02923.035.0FRFrance
2620214332704021935.032145.04133.049.0FRFrance
2720214232834323382.033304.04335.051.0FRFrance
2820214132504320586.029500.03831.045.0FRFrance
2920214032628621842.030730.04033.047.0FRFrance
.................................
192719852132609619621.032571.04735.059.0FRFrance
192819852032789620885.034907.05138.064.0FRFrance
192919851934315432821.053487.07859.097.0FRFrance
193019851834055529935.051175.07455.093.0FRFrance
193119851733405324366.043740.06244.080.0FRFrance
193219851635036236451.064273.09166.0116.0FRFrance
193319851536388145538.082224.011683.0149.0FRFrance
19341985143134545114400.0154690.0244207.0281.0FRFrance
19351985133197206176080.0218332.0357319.0395.0FRFrance
19361985123245240223304.0267176.0445405.0485.0FRFrance
19371985113276205252399.0300011.0501458.0544.0FRFrance
19381985103353231326279.0380183.0640591.0689.0FRFrance
19391985093369895341109.0398681.0670618.0722.0FRFrance
19401985083389886359529.0420243.0707652.0762.0FRFrance
19411985073471852432599.0511105.0855784.0926.0FRFrance
19421985063565825518011.0613639.01026939.01113.0FRFrance
19431985053637302592795.0681809.011551074.01236.0FRFrance
19441985043424937390794.0459080.0770708.0832.0FRFrance
19451985033213901174689.0253113.0388317.0459.0FRFrance
194619850239758680949.0114223.0177147.0207.0FRFrance
194719850138548965918.0105060.0155120.0190.0FRFrance
194819845238483060602.0109058.0154110.0198.0FRFrance
1949198451310172680242.0123210.0185146.0224.0FRFrance
19501984503123680101401.0145959.0225184.0266.0FRFrance
1951198449310107381684.0120462.0184149.0219.0FRFrance
195219844837862060634.096606.0143110.0176.0FRFrance
195319844737202954274.089784.013199.0163.0FRFrance
195419844638733067686.0106974.0159123.0195.0FRFrance
19551984453135223101414.0169032.0246184.0308.0FRFrance
195619844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1956 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202217 3 39513 32478.0 46548.0 60 49.0 \n", + "1 202216 3 50050 42854.0 57246.0 75 64.0 \n", + "2 202215 3 100806 90824.0 110788.0 152 137.0 \n", + "3 202214 3 155441 143891.0 166991.0 234 217.0 \n", + "4 202213 3 191914 179558.0 204270.0 289 270.0 \n", + "5 202212 3 166224 155035.0 177413.0 251 234.0 \n", + "6 202211 3 122849 113306.0 132392.0 185 171.0 \n", + "7 202210 3 87904 79741.0 96067.0 133 121.0 \n", + "8 202209 3 50182 43958.0 56406.0 76 67.0 \n", + "9 202208 3 30963 25942.0 35984.0 47 39.0 \n", + "10 202207 3 34882 29446.0 40318.0 53 45.0 \n", + "11 202206 3 46623 40398.0 52848.0 70 61.0 \n", + "12 202205 3 62970 56043.0 69897.0 95 85.0 \n", + "13 202204 3 72209 64804.0 79614.0 109 98.0 \n", + "14 202203 3 74613 67144.0 82082.0 113 102.0 \n", + "15 202202 3 55920 49511.0 62329.0 84 74.0 \n", + "16 202201 3 57629 50699.0 64559.0 87 77.0 \n", + "17 202152 3 54349 47029.0 61669.0 82 71.0 \n", + "18 202151 3 41698 35359.0 48037.0 63 53.0 \n", + "19 202150 3 38117 32497.0 43737.0 58 49.0 \n", + "20 202149 3 40168 34716.0 45620.0 61 53.0 \n", + "21 202148 3 41842 36364.0 47320.0 63 55.0 \n", + "22 202147 3 36598 31338.0 41858.0 55 47.0 \n", + "23 202146 3 30059 25302.0 34816.0 46 39.0 \n", + "24 202145 3 20364 16564.0 24164.0 31 25.0 \n", + "25 202144 3 18999 15042.0 22956.0 29 23.0 \n", + "26 202143 3 27040 21935.0 32145.0 41 33.0 \n", + "27 202142 3 28343 23382.0 33304.0 43 35.0 \n", + "28 202141 3 25043 20586.0 29500.0 38 31.0 \n", + "29 202140 3 26286 21842.0 30730.0 40 33.0 \n", + "... ... ... ... ... ... ... ... \n", + "1927 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1928 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1929 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1930 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1931 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1932 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1933 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1934 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1935 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1936 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1937 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1938 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1939 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1940 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1941 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1942 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1943 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1944 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1945 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1946 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1947 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1948 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1949 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1950 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1951 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1952 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1953 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1954 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1955 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1956 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 71.0 FR France \n", + "1 86.0 FR France \n", + "2 167.0 FR France \n", + "3 251.0 FR France \n", + "4 308.0 FR France \n", + "5 268.0 FR France \n", + "6 199.0 FR France \n", + "7 145.0 FR France \n", + "8 85.0 FR France \n", + "9 55.0 FR France \n", + "10 61.0 FR France \n", + "11 79.0 FR France \n", + "12 105.0 FR France \n", + "13 120.0 FR France \n", + "14 124.0 FR France \n", + "15 94.0 FR France \n", + "16 97.0 FR France \n", + "17 93.0 FR France \n", + "18 73.0 FR France \n", + "19 67.0 FR France \n", + "20 69.0 FR France \n", + "21 71.0 FR France \n", + "22 63.0 FR France \n", + "23 53.0 FR France \n", + "24 37.0 FR France \n", + "25 35.0 FR France \n", + "26 49.0 FR France \n", + "27 51.0 FR France \n", + "28 45.0 FR France \n", + "29 47.0 FR France \n", + "... ... ... ... \n", + "1927 59.0 FR France \n", + "1928 64.0 FR France \n", + "1929 97.0 FR France \n", + "1930 93.0 FR France \n", + "1931 80.0 FR France \n", + "1932 116.0 FR France \n", + "1933 149.0 FR France \n", + "1934 281.0 FR France \n", + "1935 395.0 FR France \n", + "1936 485.0 FR France \n", + "1937 544.0 FR France \n", + "1938 689.0 FR France \n", + "1939 722.0 FR France \n", + "1940 762.0 FR France \n", + "1941 926.0 FR France \n", + "1942 1113.0 FR France \n", + "1943 1236.0 FR France \n", + "1944 832.0 FR France \n", + "1945 459.0 FR France \n", + "1946 207.0 FR France \n", + "1947 190.0 FR France \n", + "1948 198.0 FR France \n", + "1949 224.0 FR France \n", + "1950 266.0 FR France \n", + "1951 219.0 FR France \n", + "1952 176.0 FR France \n", + "1953 163.0 FR France \n", + "1954 195.0 FR France \n", + "1955 308.0 FR France \n", + "1956 213.0 FR France \n", + "\n", + "[1956 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +2118,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +2148,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +2173,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +2201,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmcnEWd/z/f7p47M0kmN0kg4SagCITLAxTkcEVxvRYvoqLsKrvrqr91QVdxVVS8RReEBQS8gEVdUEAIN0gMSThCQhIScpAJOSaZZDKZs4/6/fFUPf08T1c99XQ/3dPdM9/365XXdJ6jqp56qupb36PqISEEGIZhGCYuiWoXgGEYhhkbsEBhGIZhygILFIZhGKYssEBhGIZhygILFIZhGKYssEBhGIZhygILFIZhGKYssEBhGIZhygILFIZhGKYspKpdgNFk6tSpYt68edUuBsMwTF2xYsWK3UKIabbrxpVAmTdvHpYvX17tYjAMw9QVRLQlynVs8mIYhmHKAgsUhmEYpiywQGEYhmHKAgsUhmEYpiywQGEYhmHKglWgENHNRLSLiFZ5jnUS0WIiWi//Tvacu4KINhDROiI6z3P8JCJ6UZ67hohIHm8iojvk8aVENM9zzyKZx3oiWuQ5Pl9eu17e2xi/KhiGYZg4RNFQbgFwfuDY5QAeFkIcAeBh+X8Q0QIAFwE4Vt5zLREl5T3XAbgUwBHyn0rzEgB7hRCHA/gxgKtlWp0ArgRwKoBTAFzpEVxXA/ixzH+vTINhGIapIlaBIoR4AkBP4PCFAG6Vv28F8B7P8duFEMNCiE0ANgA4hYhmAegQQiwRzjeHbwvco9K6C8DZUns5D8BiIUSPEGIvgMUAzpfnzpLXBvMfs2RzAncu24psjj/ZzDBMbVKqD2WGEGI7AMi/0+Xx2QC2eq7rksdmy9/B4757hBAZAL0ApoSkNQXAPnltMK0xy21LNuNLv1+J3y6NtL6IYRhm1Cm3U540x0TI8VLuCUursEBElxLRciJa3t3dbbqs5tnVNwwA2D+UsVzJMAxTHUoVKDulGQvy7y55vAvAXM91cwC8Jo/P0Rz33UNEKQAT4ZjYTGntBjBJXhtMqwAhxA1CiIVCiIXTplm3oqlZlKkrmdDJU4ZhmOpTqkC5B4CKuloE4G7P8Ytk5NZ8OM73Z6RZrI+ITpM+kIsD96i03g/gEelneQDAuUQ0WTrjzwXwgDz3qLw2mP+YJZN1BEqKBQrDMDWKdXNIIvodgLcCmEpEXXAir74L4E4iugTAqwA+AABCiNVEdCeAlwBkAFwmhMjKpD4DJ2KsBcD98h8A3ATgV0S0AY5mcpFMq4eIvglgmbzuG0IIFRzwHwBuJ6JvAXhOpjGmyeZyAFigMAxTu1gFihDiQ4ZTZxuuvwrAVZrjywEcpzk+BCmQNOduBnCz5vhGOKHE44a0MnkleS0qwzC1CY9OdUKWTV4Mw9Q4LFDqhJxwBArLE4ZhahUWKAzDMExZYIFSJ5DUTAQvlGcYpkZhgVInkFzPyfKEYZhahQVKncAaCsMwtQ4LlDrBFSisozAMU6OwQKkT5OdjWENhGKZmYYFSJ6hoYZYnDMPUKixQ6gRyJQqLFIZhahMWKHUCR3kxDFPrsECpM1hBYRimVmGBUifkw4ZZojAMU5uwQKkT2CnPMEytwwKlTqiHsOGzf/gYPnrj0moXg2GYKmH9HgpTW9SwPMEr3f14pbu/2sVgGKZKsIZSJ7APhWGYWocFSp1A4A+hMAxT27BAqROI5QnDMDUOC5Q6QcmTHJu8GIapUVigMAzDMGWBBQrDMAxTFligMAzDMGWBBQrDMAxTFlig1Akc5cUwTK3DAoVhGIYpCyxQGIZhmLLAAoVhGIYpCyxQGIZhmLLAAmWMIITAKVc9hDuXba12URiGGafEEihE9HkiWk1Eq4jod0TUTESdRLSYiNbLv5M9119BRBuIaB0Rnec5fhIRvSjPXUPy4x9E1EREd8jjS4lonueeRTKP9US0KM5zjAVyAtjVN4zL/7Cy2kVhGGacUrJAIaLZAP4VwEIhxHEAkgAuAnA5gIeFEEcAeFj+H0S0QJ4/FsD5AK4loqRM7joAlwI4Qv47Xx6/BMBeIcThAH4M4GqZVieAKwGcCuAUAFd6Bdd4hnf6YhimWsQ1eaUAtBBRCkArgNcAXAjgVnn+VgDvkb8vBHC7EGJYCLEJwAYApxDRLAAdQoglwvnYx22Be1RadwE4W2ov5wFYLIToEULsBbAYeSE0pjHtDcnfSWEYptqULFCEENsA/ADAqwC2A+gVQjwIYIYQYru8ZjuA6fKW2QC8Bv4ueWy2/B087rtHCJEB0AtgSkha4xYWJwzDVJs4Jq/JcDSI+QAOAtBGRB8Nu0VzTIQcL/WeYDkvJaLlRLS8u7s7pHj1gWnFvFJQWFFhGKZaxDF5vR3AJiFEtxAiDeAPAN4IYKc0Y0H+3SWv7wIw13P/HDgmsi75O3jcd480q00E0BOSVgFCiBuEEAuFEAunTZtW4qPWPoJ1FIZhqkwcgfIqgNOIqFX6Nc4GsAbAPQBU1NUiAHfL3/cAuEhGbs2H43x/RprF+ojoNJnOxYF7VFrvB/CI9LM8AOBcIposNaVz5bFxC2smDMNUm1SpNwohlhLRXQCeBZAB8ByAGwBMAHAnEV0CR+h8QF6/mojuBPCSvP4yIURWJvcZALcAaAFwv/wHADcB+BURbYCjmVwk0+ohom8CWCav+4YQoqfUZ6knWHAwDFOrlCxQAEAIcSWc8F0vw3C0Fd31VwG4SnN8OYDjNMeHIAWS5tzNAG4ussgMwzBMheCV8mME1lwYhqk2LFDGCOyUZxim2rBAGSOwhsIwTLVhgVInkOWTjSxPGIapNixQ6gTb1ipjYeuVrr0D+Ifrl6B3MF3tojAMUwIsUOoMk9iof3EC/OzhDVi6qQf3vbi92kVhGKYEWKCMEcaAguISbtxjGKZWYYFSZ4wlwcEwzNiCBUqdoJzyxvBgFjQMw1QZFihjhLGwDmUsPAPDjGdYoNQZ5g9sjW45KoklQpphmBqFBUqdYA0bHqVyMAzDmGCBMkYYC+tQGIapb1ig1AmuU94gOMaCOFGPRhw4zDB1CQsUpmZwhSLLE4apS1ig1BnjwSnPMEx9wgJljMAhtwzDVBsWKHWGUWywPGEYpsqwQKkzjCav0S1GRWCzHcPUNyxQxghjaTBmnzzD1CcsUOoMk6+EfSgMw1QbFihjhLGkoTAMU5+wQKkzxrLgUFqW7XPHDMPUJixQ6oyx/MVGuCvlGYapR1ig1Anj4ZvyDMPUNyxQ6g3TXl7jRJ68tm+w2kVgGMYAC5QiePbVvXhs3a6q5D1eBEYYSzfuwRu/+wj++FxXtYvCMIwGFihF8N5rn8bHf7msKnmLwN+C82NA4NgeYe2OPgDAs1v2Vb4wDMMUDQuUOsO8Un4MSBSJKchL+Yk4CIxhahMWKHXCWNBA4qKqgOUJw9QmLFDqDONK+XEgcNwPcLGKwjA1SSyBQkSTiOguIlpLRGuI6HQi6iSixUS0Xv6d7Ln+CiLaQETriOg8z/GTiOhFee4akiMGETUR0R3y+FIimue5Z5HMYz0RLYrzHPWAEiRje3NINmkxTD0TV0P5KYC/CCGOBnA8gDUALgfwsBDiCAAPy/+DiBYAuAjAsQDOB3AtESVlOtcBuBTAEfLf+fL4JQD2CiEOB/BjAFfLtDoBXAngVACnALjSK7jGI2NhHUrepKWXKPX/hAwztilZoBBRB4AzANwEAEKIESHEPgAXArhVXnYrgPfI3xcCuF0IMSyE2ARgA4BTiGgWgA4hxBLhjIq3Be5Rad0F4GypvZwHYLEQokcIsRfAYuSF0JhEyYsxvVLeAmswDFPbxNFQDgXQDeCXRPQcEd1IRG0AZgghtgOA/DtdXj8bwFbP/V3y2Gz5O3jcd48QIgOgF8CUkLTGLWNAQYmMSYNhGKa6xBEoKQAnArhOCHECgH5I85YB3SggQo6Xeo8/U6JLiWg5ES3v7u4OKV59YBYc9S9RbEIx75SvfFkYhimeOAKlC0CXEGKp/P9dcATMTmnGgvy7y3P9XM/9cwC8Jo/P0Rz33UNEKQATAfSEpFWAEOIGIcRCIcTCadOmlfCYtYEy94yl9SYmjOtQ1G7Eo1gWhmGiU7JAEULsALCViI6Sh84G8BKAewCoqKtFAO6Wv+8BcJGM3JoPx/n+jDSL9RHRadI/cnHgHpXW+wE8Iv0sDwA4l4gmS2f8ufLYuGU8mLxYQ2GY2iYV8/5/AfAbImoEsBHAJ+AIqTuJ6BIArwL4AAAIIVYT0Z1whE4GwGVCiKxM5zMAbgHQAuB++Q9wHP6/IqINcDSTi2RaPUT0TQBqH5RvCCF6Yj5LTSMKfhjOj2FcOyhLFIapSWIJFCHE8wAWak6dbbj+KgBXaY4vB3Cc5vgQpEDSnLsZwM3FlHcsMx40FAWLE4apTXilfJ1gDxuuf4lS/08wOhwYzmDe5ffijmWvVrsoDOODBUqdYVrAOBY0lPw6E8PCxjHwjOVgR6/zTZjrn9hY5ZIwjB8WKHWCTQMZD4OtWwdj2Oa1YdcBrJPb9JsZwxXA1DVxnfLjklxOIJEY3U7tmrzGwfb1JtworzE8oL79R48DADZ/9532i8f+K2fqDNZQSiA7HtSBKhC1Vsd7kFctPP+SV/agdyBd7WIwNQYLlBLI5kZfoIyHLzYqTOOl62OpYN6rtvXiyrtX1cVmm9Uq4cBIBh/6n7/h07ctr1IJmFqFBUoJ5Ko42NTBOFcxRmNh40dvWopbl2zB3hqefVdbQRkccZaPrd9l8/Uw4w0WKCVQFQ0l4j5XTDyaUk6XGM5kLVeOX9JZp7E1pup3+BBCYN7l9+KHD66rdlHGFPXbIqpILle9vI1fbBwLHlqb0JR/4zrl+4cz2H1gWHuuucH5RM9QuoovucYZyTh105Cs3+FDTQp/9siGKpdkbFG/LaKKVMcpP/bDht3NHyts0zn3x09g4bce0p6rJw2lWn6ekaxTN/WsoVTByDAuqN8WUUWqYfJSjOVPANsol5zZtm/QeE4NkmoWXouohZ/VeufK5JWshXCzEhkTGn0NwgKlBKrhlB8LGkhUqvmsyYTTJTI8hTUyFtriWHiGWoQFSgnUplN+7PSQaj5JSi5YzWRLL8XaHfuxtWegXEUqwP02TpUqaizM7sdQd6kpWKCUQHVNXianfP1TC508KQVKOlu6yev8nzyJt3zv0XIVqYByVNPTr+zGlj39peVv2ai0Hqhm6P9YhrdeKYGqmLzGgVNeUU2h2ZCML1AqTTm+3vnh/3E+tBppi5cxCAuUysAaSgmYNJQDwxl85/41FY0QMneD8dNBKukLVj6UdAyTV6Wp9liY31euegV5fus+HP9fD6Knf6Sk+2v37dY3LFBKwDS7+fkjG3D94xtxx7KtZc/TujnkGOoh1XyWvA+ldjWUnKUtjBbVzP76x19B72AaS17ZU9L9onZfb13DAqUETGONCjWtRsjpWJAnUQfISg6krg+lylFeuZD8q+0Ud/OvYjHUAtRSrQHVrsOxCguUEjCZvNSO9pUY8PKbQ47dD2wpqtnZlTWt2lFzYYtn1U4NVYvysuS7sfuAu99XpVALUEvd0YCjwisDC5QSMJm8lG2/Eg6/ehIYpQ7GSpDUwrNW22kbln+1Z9dhO1/3D2dw1g8fxxV/WFnRMigNZf9QaZt4VnvCMFZhgVICZg2l8iuYzT6U2ukgcYtiu380FmhXc782W/7VftVhbe01uQvByq7eipZhbmcrAODVEtf7sIZSGViglIBpFbXaEqMiGoqavRvPVxfvIFNqWao9UAJ5YVXtooSZvKpdT66GoinIiHQwVnqfr6aY6dfSBGwswQKlBGwmr2q01VrqH3E7ay08Cpu8zIRVzWhXW6n51UIbG4uwQCkBu1O+cl75Wv2mvLdccUtSzdmj2hq/2jPYsCivfNhwtcoYri0DlRcscc2e1Z4wjFVYoJSAqbOrwagq9tkaMYNUMq3RGAPygRWVzyuMsPyrLewUumKM/kBdYgBIbVThmIMFSgmY7Nvu9zwqkKfNQ1FL/SN2Z7U55WMmH5p2BSP1iiEsf1dDGaWyBMnv5VVYglzIuVqi2u93rMICpQRMJq/R+OZ5rfYDv1O+1LDh8l4Xh2prKOHvuTbChrXnRmkn5Li7BdRqP6p3WKCUgGl2o45SBSSKzcxRSx0kdthwBQdMWz3Wig8ljGpvvRK2DdCoaU9xAz9q9/XWNSxQSsC09YoSNJXQUPKhmqbztTtrjZyGZaAsR71aNQ9l8qqyihL2Pqs9GIYJ27yGUtlCxhWqbPKqDCxQSsD4PRRl8qqold+QddUHGf3vktKKkEepRB1Iqm3yCkM9Q7UmEWGTGxH4W7EyjIHQ9LFIbIFCREkieo6I/iz/30lEi4lovfw72XPtFUS0gYjWEdF5nuMnEdGL8tw1JG1GRNRERHfI40uJaJ7nnkUyj/VEtCjucxSDbVCqiIZicXbWUgcpfaCLdl+c6o28AWWMPMpCDa31KCb/0dLs4jr/WUOpDOXQUD4HYI3n/5cDeFgIcQSAh+X/QUQLAFwE4FgA5wO4loiS8p7rAFwK4Aj573x5/BIAe4UQhwP4MYCrZVqdAK4EcCqAUwBc6RVclcbolJd/K6mf1OrWK96OXemtV+JgnQy4ZajdAafanwAOIzdKKkpcgVDL77eeiSVQiGgOgHcCuNFz+EIAt8rftwJ4j+f47UKIYSHEJgAbAJxCRLMAdAghlgjnLd8WuEeldReAs6X2ch6AxUKIHiHEXgCLkRdCFcfolB8FH0qp5ytNWRc2VtQpH+26as9gQyOpRq0UpvzNfhLbFkG1AsuTyhBXQ/kJgC8B8LqpZwghtgOA/DtdHp8NwPvlqS55bLb8HTzuu0cIkQHQC2BKSFqjgklDGQ1t35iF58RT63dXviAhxLZvV1NDoSouTo1IfA2wPE4uXSr5wIpKO+XjaWm1/H7rmZIFChFdAGCXEGJF1Fs0x0TI8VLv8WdKdCkRLSei5d3d3ZEKakJtrWJbh1KRnVeK6EAfvWlp+QtQBCV7UCw3lkNziWryqrqGEuancJ3y5U870v0h5+KWLXIZYj9D9SXK5t39uPXpzdUuRlmJo6G8CcC7iWgzgNsBnEVEvwawU5qxIP/uktd3AZjruX8OgNfk8Tma4757iCgFYCKAnpC0ChBC3CCEWCiEWDht2rTSnlSSsOwmrBppJWY/dpNX9TtIuahslJc3vdoNzQ0jvkkx5v0hE6dKTqq8xF3vUu3PEwDA+3/xNK68Z3XJX52sRUoWKEKIK4QQc4QQ8+A42x8RQnwUwD0AVNTVIgB3y9/3ALhIRm7Nh+N8f0aaxfqI6DTpH7k4cI9K6/0yDwHgAQDnEtFk6Yw/Vx6rKEqgmNahqE5UydltrX6xsZxhw6YEyuHv9a3o1yREdbAOJb65J6ZJMkLZKk3cCVS1NVAA6B10Pg5WA0UpG6kKpPldAHcS0SUAXgXwAQAQQqwmojsBvAQgA+AyIYQSzZ8BcAuAFgD3y38AcBOAXxHRBjiayUUyrR4i+iaAZfK6bwgheirwLD7UYGPcy6uSi7ps5qAyZLl8cw/amxtw1Mz2ou/1dfASy2IVGGWIbvLKiZwQSBhi8qptYw99xlGIousdSCORANqbG4z36wZ1W3h7uRgtTYgpjrIIFCHEYwAek7/3ADjbcN1VAK7SHF8O4DjN8SFIgaQ5dzOAm0stcym4Ji9L2HBFByND2uXI8v2/WAIA2Pzdd8ZKJ+5gYt4NIH76UT8EVgszWBP5spVWxij1d/w3HkRzQwJrv/kOzf32tCtdfXEnbbX0fo0LpesQXilfBFGd8lX5YmMNOZFL37Av/MZyzEpzlnKOVpSSjqjCbrTW+Qylwx0N2r28Rsk3EXdhYw3Jk5oSbnFhgVIEDfKzo8MZfa9RDaMaE45qN0lh+F1SWoYOVo4IIm/auo48WlFKOopdI1O64C7tvvz95jqKW7boZYh3fy0M4vkJaHXLUU5YoBSB+o71wEhGez7fmSqgoVRx5lwsldpnyTX0lElD0eYxCoEVxrx95TDnH1tgxzVJqr86DS9WytFx309Mf10tUO0AkHLCAqUE+of1YX6ZrNJQqmEuGfUsA/lHM9dESyv8eJwB0ftutCabamqZEV9imIYQhdjPFnL/aO02HM+LVFsTs1rQlsoFC5QiUO99MK0XKCr6yxRWXI68KzdvLR8lm2Ks5+PNSoGAQNEklBcopdrmYwQM+NIJyyNeXvE1SPNwPlrfQxEx31MtKAWqCLVQlnLBAqUI1HvPGjyPSnWtiMnLEj1T7UmO34dSGZNXGeSJr550HbmaXwKMem/cVx13AIsm7OLlEbUMpT5LtfuLF9ZQxinqvZs0kGyN2N+rgfBLlJhp6RNwZ3QxRkS/yaswHXfmW2Iecd599G+1xK3gmLeHCI3RavtxNclaGsRrqSxxYYFSFMqkFa6hVGTrFcvsfCy0SdszuBpgjDx8YcMh50t9h1G3dolDfHlSnnLp60+9o1HyoZRs9itfWUolb7arckHKCAuUIlCNMGNoARkpaKqjodSOzatiTnnL+Sj4NBTNvCC2D8Xz9MUmEXUtT9zQ5tgmL/U3LBKtws3RfU8l+itryik/hiQKC5QiyPtQ9A1AmcIq0VZtnbiG+kflnPKulhbD8W11yhdeV1z63rSKS8MnjCo4QYj/eQHz/aO2jiemebmWxnA2eY1TVEcyfw8l3uxW5bFz/5D5fMkpV5ZyDobmzxzLwSpC8jc88Qp+u/TVwjQsWkDckFxf+jHuDSP2wsbSbiu4X2vyquCkypdPTHNR1TV6cJTXuMeuocQXKHcu34pTv/0wXuzq9edtSbLabTKquabYtKIc1/Ht+9biy398seC43YdSPmdv8RqK53fIrXHrN/7nc0POaX5Vgrih07U0iPNeXuMUmw+lHIvilm50Nk1et7MvmLvvT2HZaqdRlmsGXHC8DIvmbAO+mmGXPvP1/C7ahxLthrhmufhjvVlDiiKsegfTOO3bD+OeF7SfMIpEPniiVNNkDfWXGipLXFigFIHN5KVWysdpIMmE+uZKDXwBqAj8A2llOnmYqSUqUVfKlz7zLZOGEnZdzAHIJixtTuJw7clujuvuG8KO/UP44YPrwgsSVgbENHlFvO+sHz6G258pNJ2Wg7hraWoRFihFYDV5WSJP0tkclm7cE5pHKum8kqAWZHNIV3uSY/twVXFphR+Pk77fx1GYkNvJS44eyv8udqCI+ly2EHLr/ZY7Td/7yd+vymGuv7AUVL3EMfXkB+P4gt+ch8DG7n5c/odC06mNB1bvwMU3PxPpWjZ5jXOMTnl53NQhr330FfzDDX8LFSpSnli3yC84XnUvSvmwOeXLtngwREMphymlaE3C54cy3xt3CxpbsaIOcHoflMrDnIZKP55AsWtC4ffbrzGZtqPwj79agSde7o7UBjjKa7zi+lD009esZTB6bd8gAGBD9wFjFqmE80qCnc3W5EarTfb0j+CvG3YX5l/Gslg1lBhp+7/YqDsfz5RiSz/83ogDecz6teVjG+jd28NMhhHyt+Wz+KWd2Cb7TGEa/rSKJcp96TJsyhelDYwhecICpRhsJq/8Xl76+9uanA9kDo7oN5cE8j4U5Y8pKEOVG9/Hf/kMPnLjUowYvgkDlK4t2Z4t7j5bThoeDUJn8nLLMvoaSlQfStwNGG3Fss3MwwbjfP3Z87fl8+nbluOCa5405BNTk4xwTdrQB4vBNPn0YjMx1hMsUIrAdcobGoDqIKZGTvrPl/tQX4UMphH1a4aVZu0OJ/os2FFGJ/+QqXHUFKxOefXXnMe1j23AdY+9oj0XR0OJvH19hc2bNqe8qhtde47yDGpC1tM/Yr1270DaUAb/32KJIvjLoaFEMeuNJZNXWb4pP15Qr92kPeTXoZSeB8leakrC7F8YHdQYEpy9xdlyJIhtNwBbJ+3aO2A85x/wNRpKBJPX9/7iRCd95q2HFd4P+0BlIqrZMK4P1zaA2TQH1f4TiUKJEmXH7agO8fDz0a6z3a9+64SjqZ8XQxQ/DIcNj1NsA1o5Vsob8w6UoeD8KDVK1fEyIbO3uCWx+VBsE8c3X/2o8Zx39h0aNhyehZHyRXlFsBmVSFynvNLQE5pROIoOGaV/2P048SZvtokFEK6h5HICNz+1Cb0GDUqRjSCUKvH9pGrBAqUI1OzTtlLeNLir7hfWn0zX2PrgaM1x1CBSYF/2zfhiDnjG46r+S++B9jUY6rpyzHyL1VCiXR93YaPVKW85r4SyRkGJNMD7BnNLCL6JcoYNm8ocJlCefmUPvvHnl3DVfS9pz7sTr3Fm8mKBUgTuDNnQAFy7bpwZh2yIRZu2ytgmwwaqvMmr/BqKbUB11y/EeFa7D8VusgkjykBlJGCGMV4WoWyPrN2JHb36PeFsd9tm1WqQJJ2GEiEUzzshM/Ulm4YSfy+vwrSChDnld/U5dTtgCLBRE6/x5kNhgVIE6rWbbKvKUV2OqI0CDcV2fRklSlgfUB2lYOGl93fMothMXvE+sOX9XZhOPo9S0xfa31GIenWUKK9P3rIcF/73U/p8LBnZIpPUc+k0lCih3d56sWn75jRUfqVqkuETCyB80qSCBTpaGrTnVdVEifKqs00xQmGBUgyuDd+goShzSQVXvo7GZCZ0IJQ9JdjZItv/AYxkcnjz1Y/goZd2as/bFjbGWhBn2b4w/sJGb16VuVedM5VRDZY79w+Hnjdhq1/XKa/RUKJoeN4B1NaXTMQOG7ZMLIBwgTKUdjSTxqR+CGUNhbGiGrHJLuquALaEDYdpEwR9bHG+g5oGEWOSRRPWCfI+lBCTl6Usu/qG0LV3EF+7e5X2PuP98nicFcy2LyrGNqVE8A8Y740oguyfUbDlU5iWF6sPJcQpH0V78g6gto/VmRgNTVKZvJIaVUytw9KdA+BOvNiHwhixOQKzlo4ehShrVXSUs0mGKiiuhhI0eYXP/P1p6EOjowYelGvrFd1rih2OGiF8eiidxU8eehnDGb/93S/sQvKQ50w2/qj+B1M+tnDZvA9FUzYoDcV8v1ecx7BiAAAgAElEQVRg2fbFM5GP8irtPUVZL6QiGZOaB1UTKuOaM/mXNRTGiHrtppDZ/DflTRqKXVrko7z8adg+qlRWDSVCYsE6CMb1R6HQTySf0XB91C07wvP0zc+NeZRnoNKnccvTm/GTh9bjlr9uDilbWB7RBYYOm2nNGjbsRnnpnPKht8pr7ALFpnnE3TUhysLGEdnGE5pRUmkopvK7vsYIESTsQxmn2GLf1czNvLGj3Zxikjn22Xv5JErYgKQ6ykhAoNi2NIlC3qoXbtaLI1C8nVcf5eX/WyzewcmoycrEg6vA/QO9uQC2ohUjUHTX2iYUeYGiyVuFzoeUMhvBh2I1ean8yuJD0V+jhEFKI1FU+zeVX/Vj1lAYI66GYmjsroZimXFEaWQFs3c1I4t4fRzCbP9u9ErQ5OXtoDaHqklgBP6azscSKD7BZz5fDg3FlEJzQxJA3rFbLN6i6eoirskrqoaiDRt287DfD4SE4Fs1lHjvKcqOBsqspROcaYtAyUdDRojyYoEyPrHNkF0fisXkVcqAaIueiZria/sG8ZdVOyx5mc9RhI5iNcmo744HS20xY9j2UotC1LDh0rEPVA1JfWBDVLOht9y64IhimpeuDmxmmrD3W+yM3LTmxfaOlcm11PcVxYeSlid0jndVR0YNRf6NVh/WS+qGkgUKEc0lokeJaA0RrSaiz8njnUS0mIjWy7+TPfdcQUQbiGgdEZ3nOX4SEb0oz11DctQioiYiukMeX0pE8zz3LJJ5rCeiRaU+RynYYudNkR1qgAmL/FBRXsErrG0uYs/6+2v/in/69YrQa8I6gZqUjmTMGoqtKFlXOPqPu2HBFqFZLh+K3uRVPg3FVEyTJ60UU6FWoFi3LQlPM+peX2F7oYU9irf9Gz8FYZnZqwG9HCvljRpKSCSX7ZsuvFK+eDIAviiEOAbAaQAuI6IFAC4H8LAQ4ggAD8v/Q567CMCxAM4HcC0RJWVa1wG4FMAR8t/58vglAPYKIQ4H8GMAV8u0OgFcCeBUAKcAuNIruCqB3zau77TuYGQUOAg9D+QbYkEjs/fTSKi1CaEfcAr1oTh/gwOBb9YZ0QZfIDRFYVq6csUzeXl/h73DUtMX2t86TM8f/F2Qh+chdJFexTjttRqKb78zTfruFkOFadu0dO/9YWW17W+VdoWa+ZrDv3wfvnPfGu25KD6Uh9c666R0AiVtmTwWY40wXdPdN4zrH39l1PbpKwclCxQhxHYhxLPydx+ANQBmA7gQwK3yslsBvEf+vhDA7UKIYSHEJgAbAJxCRLMAdAghlgin5m4L3KPSugvA2VJ7OQ/AYiFEjxBiL4DFyAuhiqDeuTJX6DqMzSmvOk/YrMUdVAPXWKO8jCnqCWvoYYOB0qAKzDWe36VGIdkEsk3gRMHmP4ibRyRfkiHyQvh+h7QRz2+dhhJ1HQlg8qHkQs+HaSi5CPXn11BMAsWiJVnCdlXa1z+xUXsuSvDEfS86pmFd2HDWsitGoggNxfQIX/zfF/Cd+9di1bb91jRqhbL4UKQp6gQASwHMEEJsBxyhA2C6vGw2gK2e27rksdnyd/C47x4hRAZAL4ApIWnpynYpES0nouXd3d2lPSDyja4hafiiohD2dSqWsGLvuWBDFYG/QYod/0JnkCFpGdehRDAhKIzb/7v1p79PJWuz8asZ5ZS2xoJztkV1ccNRo0S7GU1eETP15qH70FlUh3bwt8IXhaU9b57ceLUX0/N4Jwylbr2i2kCp76mYCZAu+MD1oRjaoutrjLCVsCn/A0NOFGBwvVItE1ugENEEAL8H8G9CiDBRqutHIuR4qff4DwpxgxBioRBi4bRp00KKF45656mEXpXNRukkSkMJGRDVrcF26IYcW/wzUQkbdKJEeYVrKJa8TT4Ui/8i6nYbB3e2OmUN2WsK0Nvp4y6YK8aXZLBqWu/1ntM75W0aij5Phbde9AJHvT/zuWA+XjJF9BUT6Vy4hmLrD7bPGHhpShUOk7ZdMdQ4MRzyZdNgWoVpOPnG2RkCAK577BWs7NoXK42oxBIoRNQAR5j8RgjxB3l4pzRjQf7dJY93AZjruX0OgNfk8Tma4757iCgFYCKAnpC0KoZquI2ycQUbkm/1r0lDieBINEVz5QWNabAtjlKjtMiwYMtv6gkvTf4Z9ELZdL+tDvLXqXo2nwP0gr2ce3nZNNXg80f+YqPnOp0PxVo/3sFU0wwylsHWDarQpe0T2HZhYTZ5xXPK2yc13t/6ixfM6gCQ7/O+/C3m7aYG556wz30rTK89aZi8FsvVf1mLd//8r7HSiEqcKC8CcBOANUKIH3lO3QNgkfy9CMDdnuMXycit+XCc789Is1gfEZ0m07w4cI9K6/0AHpF+lgcAnEtEk6Uz/lx5rGLkNRQpUAId2dv+bd94CB3MDQ1V/c8YAVVkmwsWQUTo5IDX5BUMebUL1OD54GW2L16q66MLlMLr/BqKTqD4/xaL18wVZYZuKlt4Hnm0Jq+I9e+kFS6QtOtcQgbzKEEJWU/bsQWwmMhvfRJ+3oT3NlMaAyMZ51qdULUJlJQTbzQYYa2RqZ5ShvDyYhhth36cTwC/CcDHALxIRM/LY18G8F0AdxLRJQBeBfABABBCrCaiOwG8BCdC7DIhhKrtzwC4BUALgPvlP8ARWL8iog1wNJOLZFo9RPRNAMvkdd8QQvTEeBYrquOplxwcFLxCwrxYSzVCcz7uLLzQHuRLo7B8xVHgo4moYZj38tKnpcOsgYTPOqOuQ1GvQi8wwgVnlE/YessTtK9Hmfmq2XeYySsMW0SdTRj6tShd+cKFgmlCELzevOdd/nepTnllSjK9p6hffARCfBjDGeN591MVhnyapYayfyj8i46Afd1aHJEQ9k2XSlCyQBFCPAWzf/Fswz1XAbhKc3w5gOM0x4cgBZLm3M0Abo5a3riodqO2qw42Mr+Gok8jaxEK3nQLo7z8acQl2BGi7AAL5KO8wvbyss6QLYOILQos6mChS8amoYSZcwrLAyQpeMwz+zfOnvXli+p/sT5DZJOjfkDO+ARK4f35PesKz63d3hd6r5O/Z/JVokBRpiSjFmgZSP11rb9WvSdtRKc8Z7I2tMjdEDZ294eWAzA/g7s4MoZQiLJSv5zwSvmIqIHCpKFE2kE1pxqhXaAURnlZNJRinfIGHw0QrRMUOuXDByEvpnUorrnJ0AfU9VYfTYimYxOcYSGxgH1mG2WgMvvBor1D71W2Z9Th1yI0570CJaSOdGL3mc15Q4F5n64IfcXyDEMZJVBMeUT7SJjzW39NWDSb204M2ag0ldkstCyW9hzH5JXORGtT5YIFSkSU89LkQ4m0P1EEh29+Fh7IfxQ1lMt++6z1vnTwfq+GFtmHoi+D7RPLtqiXvB9EN9h6yqEZDWz7sdn8C8EFsDpMQssnjEKEi8/kZTHr2e7X5ePXUMxanN20ZniPEQSKbZBVGkoUoaUtmzcvi1AKi3Qzr/QXvnKGYcrfNS/HcMoHN3GtNCxQIqI6XoMhyks1igSZO0NeTQ4bLGR+hsHG1D68l8+f2mZMX1G4jsZ6C4B8ByoweUXYwyqYd/Aqm8krakhv2K7OXiGiew9h2o33vOmaSAOVrLuCzyhHHTc814UNdk6aGoFj2XHZFvobJVrRdC8QTUMJX/wrXB+Kqa/ZZvU+DcUyeQjbTcBkjVL3mL45779Wf9wN0Y8QemyCTV41inrpDW4on/9FqQbWmErYNRRLZ3HS1wsss1PeOT5vSisOm2YXKIUmr2ijmauhhIQN2yZFRh9JiInBezzO98a96wIK6jiXX5xqKoPt87XRthVRdRgmlPX5B9PVjRfeY7atWewCxSx0bU0mivZRilPe+0ylOvWj+PzCzFruSnnTzuMyzUhRXoayRtmI1QabvGqUwpXygfO5/Hm7D8XcQGwLpmxhwwmiSDPdgtmx/RbffWEzQLtTXuYZuMz2xcsoW9d4r9Nd5jUBBB23Nu0jeL8ufWH8Tx5V/rC1PGFPaFvJ7vcThYcV2zScsPNRNcUgUTSUsLTVO2gM6Wu26Ca/FqfJPxe+84XpHebTd/5G01AMAkX+HYnhlGeTV41S6JT3vyjVQBuTiZB1KOrasHzkX4M5xBo2HPETwqa9wmwoc0f41uvRO7P/eHhZbHUQTF+XzkiIhmIbSAHg83c8n7/G4r8wRyApk5d5g80w/BqKWYMATBpK/rcuR1uUV5iz2lQO03HTNWGTBvUOWxqTyOSEdcW+Nn1P+y3JjxTRPLth1wFrezWavNR+YHGc8ixQao+tPQN4dK2z4N+0l5fqGKEmL6V9RFilHhwHbA5rn4ZiTL2wvO79EdudaWYWZSB183YHpKDQDB+obHWQTyf/N5iHV6AEB60oIb+PrN3l/taWw3PIZkoJDva2XX7dfC0zfJ9JSbd5pHewtAlFncAyaNrvu+5pAMCEppRMx1D+rLf8BpNRBIHS2pg05mMbSKMKTdN5mz/Ue/+2fYOhZTFPJOIvbIzyCeJyEmdh47jh/J88gX6putr28opi8gp7x/koo8BgG0jDREQFJTTK6/RDp1jvC6rS3tQiR3kZjhvDal0Nzzbj8wsG79pDb+c0+cGCaRjz0Q7G+nJ4MQ3IUbfYsM3wvcnoN8C0zd6jzc6DAnHFlr0AnL2vDgybhYI/xF5fhrC6cDUUudYjk8shmUj6rrGZRaP6iQDTWp3woABvmnsHRjBX7i+nS9PsQ3H+xlmcyCavGqTfYwdtMCxsdE1eqRCB4g6Y5pdsDinVCxr3vByeiaKtSQkWwRZKmi+fivLSlw+IMOBbBK7RjKA+wFWEQAmmFaqhWGalhfmE5216DWnXbCgCx71mGDPeGX6YBhFMU1cuvcAI9xN5Bb/uXajNFO17mZn7Qlik2kjW6Y8tSkMJcZqbsGmDfi0qTEszCRRgensTAODAUOFaFP87CC1qvHUoLFBqG+VDCb4nr4aSE4ZGmhO+vzpM17iz8wqZvHyzWsOMKJcTnrUgZg0lcvRP4LqwFdje46b6DV4HFD7nSDbnzmzDfChRFhnq3oWvHgxpZA2h16VoKDahtr13qOC81dxjmRx4j+n2Emsy1K/ufqPJSJivGdZoKEGKccprTVoyzQSZzodP8HJCuKY/XaRXFD+SSrueTF4sUIrEtAPozv1Ox1WzM+0aB7cRmtM3aihuGkUXWUuhwPLMag2dxPtMwciTKHsj5dORDxGwz9nWgNgW9HnLYnpPw5mca3sv2O3A51sIeQD3msIy+Muov8/0tT/bLr+6fG1RXrvkFzp9+Xg1oZAIJqA0gZLfnqjglHu/ej/GNVshWpbXKW8qo20g9QqhMC3PmSCa0w/zobSFCBS/JqtPQ7WTwZH4Gorhm25lhwVKkTQk9Or8JbcuB5DfFC7sOxVhYcOqs5sGfJsZIZWMFjZc6EPxnrObIcL38grPW80eE4aNFW1RXkC4Yz6bE+6gFuzwI5mccSCy2c2D6Lde8Q7Ghno0mLy8g6BuoNaV02byOjBcuDmhd8Kg1VAs5fCmP5wtHCxt3yoJez9uubwCJVP4DgEYJwZA3iwGhFsLnHIW5u+uK0smtP0pbein3vK3NckdhzWhw1F2llDt5+a/btKej4LyoYySPGGBUix5k5e+ESg1POw7FWGTJ9MKXJWdLW5f97lSHWFOedPszisI43wC2DRrMm3d7+bhG0jN6edE/hsWwWcZ8Woohu1zTGaOILaZscnsko+UC5q88v//2t2rQvM1BYcA/vrv09jvs758Ne3Uc/+IRmDYNJThdASBktJHS2rzCGooWSVQUsY0VBlM573vKUzgNBh8orb1YjmRj3YbsmgoRk3WU8btveGRYibUc+q+OlkJWKAUiduRDQ1JOe213/p2B0z7wsbCKC/9cYV7PKIPJWylvMlm63f2BjUo7+9oAiWoodhWYPv8PIY6VHk3uDPgwsGouSEJosL3kNfy9GaOwvKED+amejRtfe6t0/W7DoTm64avawfD/G/dFwNtPhTvYKu7P6wdAPlt38OCU2wCxfveCgRKBJOXbwGr5rz33dg0FF2AjDvxM37OWrgCT7e4MYrJyzvh0PnCopDvayXdXjQsUIokJTuyqRGYZsZAvpGH+UFsGweGzYiSCWdz+SjmGpPTX3cuWDbA8oEti8k3b/Ly36+SsEV5AUDvoP47E6qITYYBaySTQ2MygVSCjD6UhgRF1FAKj3nTNK+ido4HB5rITvmcQEPS7IPwvhudQEj7ZueF6Xtn1FqTlxCudqk7f+EbDjKmDTh1ZDN5ecsY3MvKNXmFOP+9z60T7F6/hm5yoiYbDalCE7LPx2Q0z3pMXjoNJZLJKy94w0ygYeRNXqyh1CQdzQ0AzINmY4iGohpFFA3FGOUVMutLUHTnm2lzSyKzqSYbMlh6ixXV5OW17NoW6wFOJ1Qd7NU9A/prXA1F/6nikUwODckEkhqBkt8NIWEUyrMntbiC0LZtiWkNgCrT3oERXz5Rvx2ezSFUQ/ELFJ3Jyjs7L7x/0CZQcsI17XrPz5rYjPedOAdnHjnNvU5HLifcT+TaNlINPg/gNXmF+FBCdkQAgMF0zm0jYVpcQ7JwoXKkKLWcQCqRQGMqYXXKh5m82uQzRvk2vQ5Vj4lRGulZoBRJR0uh3fYt33vE/d3apHwoYQLFPHDkP23qvyZsK211PGhCCiOoqquO0ZxKGs1JXrt0uiBs2K7Cu3m5H5jSz/RMtwvkY/tNX8LzrgcCCjt8OptDYyqBVCJRIGy8g0jYXl6dbY2+vHT5A+YtM1T9DmdyPi0l6hYb2VzOsx5KU0bP4KMTCDYNZXAk606MdELRJ1Cy3pm+QGOKkFARXCZTTgQNJczk5YYNuz4Uc18D9BOkoZEsJrc671Hn41BtozmVRDYn/EECai+xlHmbJWUxaGlIYkhj8oqyb1wml3MjxUrVUNKsodQ2x82eCMDfCLb25B1mp853VpmH2W3DBMregRHtNaqBh836lMkrCkGBp9JtbigcaBUD6Yx7TYHA9Gko0fI2CZGw/ZEmtToa4v5B/YeLXMGo1igEyrlxdz+InM5u8qE0JM0mr5FMzk3bpqGYB8v88Z7+Eev1QdJZ4UYT6ga0EYvJS4W4A/pnGBjJYqKsZ5OGouoguHtzKpFwJzZhu0qnkiSDHyKYvAwLQFsazELJ70MpfIaBdMYVKN6JkltGWS7lp/FOoPLCJmHcSyyXc8yCrY3JksOGM1nhamFxBQr7UGqQ9544G5NalMmrsBGcfugUo81zZdc+7B1wZtXGTfNywhVOwTF9xNVcDN+4EHknd5Sw4eCsTzW8plTSOLD1DzsdY2JLQ+FKeV9ZbCYvKRwNq5HDtv+f1OIMAkYNxTOzBAJrZzI59A1l8Ni6bq0PRY0ZyQQZO/lwJhtqaoli8sqaBEpEDUUFFgTTUiifQ0tDUjsQ3b5sa2j6g+ksJraECxTdQJfO5pBMkBtpaJKPmZxAkkhrdnSvyfrT9ZIPG07Ja8NNXrrzgyNZd3IypDELqnLpojbVuSZ3YlFY/qxwnrGlIYlBncDK+a/Vkc7l3GfURdvZ2LKnH/+7vAtAYQBMpWCBUgQLZnWEqvN9w+m87T7Qyj5923L3tyky5LYlm93fwZmnf3+lwnuzOeVDMTcc7yAZnLmqgamlMWkc2NTnTCe1NBZ08ihbkivUvSbnpul2IZxQzASZnfJqJqls9N56884UHQ1Fb1Y0rT0AnIFKCTWbKcOk6aWzAlOk2cwbvRNdQwnXktTg19aUss5stT6Ukaw7cdKavIRwZ+5BX0WD1DzU/015JhOkfQf5Z/AIFINT3t16RfMMXt+Rzvw8lM6FmrzSgTy8ZVDtxBT4ocqUSBCaG5LadSi2KDNVRiXYdVqUjc/f8TzW7exz/sMaSu2gnIyfeNN8d/ala0Srtu03hg0fNbMDAHDkjAlGB9vL8uU3pgpNSl61XZe3kA0YMG/5kQ5xdLqzrlTCuFLeq6EEO4nXfGTTkHSmP9t3zFUZG1IJtDc3aNdXAPlBXLctx7AcOD539hF6DcV1ypN2kNo3MIKcADpkJ+8b1qzxCImEy1+Tw9Gz2gHk33nw3rccMVV7r0pXmbzCQmbbm1Nap7wX3bsaSGesGop25p4VSCYS+UlXiMM9mSCkEiHfM/EcHzZqKNGc8rrzAyMZTG6TGopmsFbPpdaSeN+lamOhAiXnaAUtjUmtwPKOASZteGjEoymWsEXGTu8uCdHmKrFhgRKBb7/3dXj839/qdIKkeUvpL//d0e4354PnG5MJHD2zHemswJ7+EbywdZ/v/Egmh98945gizjt2pq9DCCGQzgq0N6u4ds1AJlVsJ2xY/xxe1T44UKhO0dRg11CmdzShfySLfQN5c03ap0FFM3mZhKTZrp5DQ4LQ0ZLCfoOGotLUmYTUwHFwZytSml2h1WOnEgntrPE7960FADy1oRsA0G8VKGbBOLm1EY2phC8NNfCdePCkUM0incn7MMKivNqa9Cavtsak+1VPvYaSc30opnUoroaS9YffphKUn1SFRCQmE44mYxIo3glL8BlGsjkQef1khWl4hYQpbLi9uQHJBGkHfPVcrmlPs66lKWV+B84OyJAmL51AyR8z1oHF9GgjrSlzpWGBEoHZk1pwyBSnA6oZi5qte2cXHz71EDSm9OGqAyMZtDYmsWl3PwBg5bZe3/l/v+sF93dTKuFr5KrBTZvgRDgpX4yXnAASUuCZGk/Y+gKvozEn9LNLNfi9TgYm7POUw2aS85KPZMvnY1tsp/JIJQntTQ1GH4r7HO4WOIUmr+aGJFJJKpj1ZTzmMl0nV3mq2blOoKRDbP++50gQWhuTgSivvKkqLEw0nc3ld/Q1BH+kEoTmVLIgHSEEBtJZN3pIV9WDIxlMamlEYzKhrWedD0VtHJpKklu2YcPnb9VeXjqhrhgYybiLiIPPoNYSqXesG7APeAV1MMQ9JzCUdsyGzamEtq7Vc+U1FK8mpiYtUkMp2EInh5xwBI7J5OXNU1cF6WwOmVw+CKWUsOFdfXkNJeoap7iwQCkS1RFVg1W2/HMXzMCEppRRQ9k3kMak1kacffR0APlv0yvufv41AMC7jj8ITYFGPiR/HzPLMZutCggjwOkkCXJCXk0D2dCIebDLR3mZzQjdB0ZABMye3ALAvDgs8uaQyM/uvAJuKJ3FW7//KD516/KC+1LJhNRQTFFeYRqKEigJZzAPCIRhzyCSzuUKTBHquZTJ66t3ry7I/8BQBkRAR3NKq+mNZHLYsX8IyUQCrQ1J9Hu0zf6RDJpSCTQ3FAoCLwMjeYFgChtuTDlrIIITh+FMDkLkhWLwGTPZHPpHnMCDjpYGrSbomLzUtiJ+f1gqQe5Aa3qGoXQWTakkGpJknHkPjGTd8Oygr2pYPl+7XBPWpxF6XpNosC0rTb210Rnw9RqKkNcUmrzSrslLr6Go525KJYxRXl6fiK6/qDIpq0SxGkqw7cX5Ln0xsEApEqXOL9vcAwC4a4UTRbH6tf0AgAmyAQRndnsHRtDZ1oiff/hE+f/8+R89uM79PTiSLRhQ3vHTJwAApx7aCQCulqN4bd8gntqwG0miUIFyxvcfdX8HG2g655916Rrgrv1DmDqhSbstdyZgSw/DOytXA77SFjqaU9g3MILNewbw0Jqd/jJmhWPyajZrKOmsXzB6wz2HPBpKW2PK1TIVqpNPaEpBiMJZnfqvGmSc/Pz19Pj63UglCI2ppPZb4Dc9tQkjmRz6hzOYNakFXXvzIefdfcOY3tEkJxT62f2KLT3YsX/IuABW1UFDMlEwMfHWgRqMg2a578u2uGl3P3YfGHbNsG4d5ASGMllM73C0ZTWYq/aSTCTQmAxfjNc3lEFHc8pZo6F5zlxO4Mn1u90Q+uA1AyMZNDck3cFW970R76aYwcFVtb+WBiVQzBqKWu2uWyjZZOgrIx6B0taU8mlLCq92q6sn1bdaGlNoTPrf4+rXenHjkxtD13vtD9RJTug3qSw3LFBK5Mn1u9E/nMG37l0DALjq748DABw0sQXJBGHN9ryztW8oje29Q+hsa0RLYxJNqYTbWQDgmkc2uL+J/CYvIfKhxGrGE5w1fuAXS9C1dxBZ4UTZmMIkvQQdnQPD/oFGp6Gs2b4fMzqa3MF6SCMYAP0Ot17Weuom/zlcpzzT2puMEVyZrNJQ9DNnID9gKpOM1xyhNL3mhgQmaDq6GsSVwPTWQXffMBa/5Ai4D50y143m230gb1bYN+D4xtJZgQlNSew5ULh1vIrk6x1MY3Jro28m3d03jGlSYJuCDr7/gDPgb97dL8Nug6bLHG55ejN6B9NaDUUNVJ3SIR2cPT/58m4A0A6CgDO4CwFMamlAc0MCPf3Oe1Dtq7Ux6Q60upk/4Ey22psbjOagnX1O5JsSdsFrNu8ZwCGdre570tXVgeGMK3CCbXmznJDNntTi9DWNUHt1j1O/sya2yLJ4NBRLlJca/BtTSUxoSmoF3jNyQjqxRR9goqwJLQ3Jgvf4L799Dt+6dw02BiaWXr5w5/MFx7xjTqVggRKDe1dud38vOMgxR7U0JnHMrHas3eEMmkIIvO7rDwIANnY7DaCzrRF7+/UvN0nkrgXJZHO+mclJh3RqB0L1zeqe/hGkkgltRMjWvf6tSoID8r5Bpzwz5MwzGKa4+8AwXujqxVlHz3DNJd7BSHUyIr9vJcgfn+vCDs/COuXoV1uUT29vNvpQ0nJBXIchymtgJIPP3e50JBX2mtFoKE2pJNqaUj5zE5AfCNzVyZ56XNmVD6I4/7iZ+OlFJwDwL7D0vpdjZ0/Mh2x6n0EOkjnhrCr3DlTdfcOY1t6Eae1N6Okf0Wofew4476mzrRFtjckCLcu7qWRjKlmg6ajBeYr0xwUH6yNnTAAAfPjUgz1lzpdR5dfalMJh0yZg7Y79vmef0JTClLZGtDYmsV7z/EII9A05g32LwRy0ebfTVj/xpiiKlM8AABp2SURBVHkACqOwuvuGMXNiM9oaUyAym7yU/yGoRar+Mm9qK5oaklpfz96BNCa2NLhpBE2yANBm2O04384SmNDUgMF0tkBL+sOz2wAA86e24YCm/H/buAeAI1CaUglf8IMSJLv7CicsisfWdfv+f3Bnq1HAlxMWKDHwDjhqbQLgvLyuHqdTvLwz38FPkyarSa2N7mxhxZYeX5pJjw16JJtzB86vXrAAh0+fgPZm8+w1nXW2tNCZvLYE9r7ymjKG0ll85Y/OdumHTnUGlD39+cY6nMninB89DgB4/eyJboSPT6DIDjelzaxhbNnTj8/f8YLvmBI+qi6VKSWIEI6AbZQ+lL7hTEFHfuLl3XhV1vtkaX/3mp2U8GptTGJCc8pndti0ux9LXnE6sZrZetceeOs8lUi4GpBXiHgH9/lT2tC1d9AY/j17UovPPNk/nMG6nX3YP5jB1AlNyOaEdkapBMZZx8xAe8D05yyMzb/nphANRa2DCQYWHDTJ0bDPXTADX71ggay3/HOpyL6JLQ2YNbHFNd1+T2pOE5pTSCUTmDelDX/yTLi8+WdzAh0tDU4ElEZD+dD//A0AcP6xM9GYLNwLq7tvGNPbm5FIECY0pgrCt4fSWWzZM4A5k5zvuAc19m45EE9rb0ZzQ0Jr8vrV37agp3/EswzAE9wx4vdvBNuheicdLQ2uCbw/8JwnHDwJ09qbMGtis7Y/f+n3K908dJom4Gi5uw8M473X/tXVuoD8TghvPWqae+yJL70Nh06bUJBGuWGBUgLXf+wkAH5fhlohDwBzO1vRtXcQuZzA5j35ay5583wAjrmha+8gFr+0Ey9J34tCmbwAZ2amZl9qAJjQ3KBd/6BoSBL2D2YKBjI10B4xvbBR/fejeZObcrjv7ssPZis273UHjtmTW1wN5eE1u9xrVIc5aFKzUaB84pfL3N8/+MDxAOBqamqWOKOjWXtv33AGOeEMZMosFzQleDv2YbLz9MoBcNW2XvzPE5sAOEIvqOm97QeP4Y/PObNGXWSPd3BPJcm9Rn38aOnGPTjvJ46v60vnH4V5U9uQzQmfjwQADul0Brkr/u4YNCTz29wo7XXe1DbMnOjUwTOb8pONkUwO7/75U+7/P3rqwWhvTvnq4OKbl+LSX60AADz4+TPQ0pAsGMjULHWOfM/dAbOcMhURkbsxoTdMXa1tmN7ehOkdTdi8ux8jmZyrrc+U7++l7fvR0z9SoD0oja5d+lB0GopiyoRGOeDnrxkYyeDAcAbT5J5uugnWfS86ZTl53mQAfi21dyCN57fuQ1MqgY7mFCa2NBS0V6+pUpk2vRqCErDuosPAYK/Sm9jSgAlNhRMPwLEmHGGZIAKOBtPo8YV5J6B3Lt+Khd96CM++ug8/eehl9/jnbn/Ozf+OS0/DHZeeZky/3LBAKYEzjnAk/01PbdKenzu5FSPZHHb2Dbkzxoe/eKa7in1yayPW7ujDp29bjj1yQD11vqO9JBPkOn137h/ymRIAx2ntbfDeQfSDC+dgclsjegfTeN3XH3CP/+HZLnzzzy+hozmFBz9/hivYlFNvj8f8NlWaQry+Ae+gc9i0Ce7MTA3AAPCLx14B4PiQdhlUcaWqT25twAIZsaZ23P3V37Y4dScHXIV6/n3SVj+ptREdMv9XPbPx7r5hXPbbZ93/HzWzHURO0MT+oTQu+NlTeGn7fiTlOpa2xhSG0jltJJZaQe0dBLxBFA2JBOZNdcLI7125Hcs29+Afbvibe/7cBTNdwf2iJyJv8+5+vNDViw8unINp7U1o8Jgnd0m/wQcXzsEb5k4CAHz2N/nnWbejDyu7nLSOntkOIvL5WvYNjOCvG/a41x85ox2HTGlF72DabS9rd+zH+65bAsAxeU1ubfAJvO29g7htyZaCVeJezUuVc3p7E06YOwmD6axrQlL17sWbvhACn7jFmVS0NzdoTV4nfnOx+3velDafn2VgJIMFX3Pa9UGTmt10gkLrC3c6WvCZcobu9TX8x+9X4s8rt2PqhCYQETrbGn39qad/BF//00vu/1VEn1foqMnFTOlfCX6GQAnNiS0N7u7k3jVbQgg8v3UfJrc1oqO5AfsGA7tOZ3Noa0ziQ6fMxdzOVuca2f68Gv5Dngnd3oE0hjNZ3PjkRvxtoyN00tkcTj10Ck49dApGi7oWKER0PhGtI6INRHT5aOXb0pjEmw7Pv6R7/vlNvvPz5JqV/350A7r2DmJCUwqHygEIcMwdiu37nA6qXnqSyFVV739xuztgKNV5275BrH5tP+Zdfi+29w66neGL5xyJb//969wG7FXjVQcbzuRARK6f5Glp4lH+lK9dsMCd+XkHa6WJ3f+5t6AxlcAkOeBe8PpZAIAVW/a6WtPr5kzEpt39vu3ll23uwbzL7wXgLNp79qvnYOoEJ43fLH0VK7t6cf+qHQCc/dBmTWzGoXLh3Rap4Skf0OTWBnfQetfPn3I74gU/e9LNb8V/vh0NcvuUF7p6ccktec0omxPO7FvOHNUM/nCP5jan03k/Nz65EY+udTptr2dAaGlMYuqEJnzstEPQ2pjEB36xBF4Onz4Bxx7UgeaGBP71d8/hxic34u7nt+GtP3gMQF5oNybzPhQlDKZ3NLvrjQDgsXVO/tv25etTaV/tzSn0yQCI3ZoAgMPkM6n392sptAFgRnszZk9uwTbPgH/6dx7x1UlbY+FCWhXNOL2j2V2b9eR6x17/juNmugEbv77kVAD+dvTc1n1Ys32/W/agyetvG/e4e5stPGQyUsmEM+BL86sSqEB+TdbElgY8sHonjrvSETRev+Yb5k7GUTPasXzzXvfYX1Y77UwJwakTmrCnPz+gf/+BtfjTC04I/3++85j8BEtq7Lv2D+Frd69Ge3PKbaNes+ETL3e7E5uOlhRmyb6u+jngmJ+zOYF5U1oxt7MVQ+mcb9L2Snc/+keyOEVOMg+fPgEvdO1DNifwujkToWP55h5c//hGN0gIAD771sO111aSuhUoRJQE8N8A3gFgAYAPEdGC0cr/V5881f2tOpbiDQc7M8xf/+1V3PL0ZhwYzvj22JrjmYXfsXwrUgnCabLxvG7OREzvaMbUCY245pEN+MiNSwHkTV6neWYbp3/nEdwhN/o7cmY7UskELj3jUPf8ii097owSAH75iZMBAG89ylkL85Ebl2Lz7n7s6hvGyfMm45Nvnu+Gc/5o8cuuqWHFlr2YP7XNXQcDOLPkJ17uxp3Lt+Kp9U5k0EdPOxhvP2YGAODBl3ZgOJPFcCbrM9385wULQERuR31y/W7f502ntTdhyRVn4xrp9F61rRf7h9JuPbQ0JPH6OZPc69WA5d1mQmkYimWeAUUJQaVl7RsYwaNrd2GDx5mtIntuX7YVn7hlGbbtG3Q1lIe+cKZ73cnzO7Vf4wOcb6pMaXOe8Vv3rnGDBQDg7GOc+m9uTGLfQBp/XvmaKzBndjS7W5cAwMd/uQyf+fUKbNqdH5iVs3rWpBas2rYfO/cPueU7aGIz7vqn0wHkAxMWr9kJIQRWbMkHFhw8pRWzJ7Xgle4DWL7Z78f73vteDyA/O9+yZwD9wxk8tX63q5VPaEph3lSnHX9Nrsd5zbMv2QkHT0IyQXhw9U7sPjCMpRv3+My7Hc0pHDZ9Arb3DmFjt1P3yzzt5NefcvrX7Ekt2LbPCZP+P49GrCYAavuUA8MZn5b6ruMPQjJBOGRKKzbsOoB9AyM+LeNnH3La19QJjRjO5LB/MINMNr9bxRlHTsOn3nIoOpqdsF0lsK+VmngmKzBLmiZ/8fgrbrretVOdbY1uv+2RE5JMNod/u8NpC+84bpar6W6SJs90NueaThfMcoTHW46Yin0DaVz76Abcu3I7jp7ZjmNlENDTl5+FfzzzUPSPZPGjxXmz1yNfPNPdGX00SdkvqVlOAbBBCLERAIjodgAXAngp9K4ykUgQTpnfiWc29bi2ZsWEphSOmD7BdaAqW6vigwvn4IWt+9w1LIdOa8MbD5+K+/71LThG7vH07uNnu/Z5AO5M5xvvPhYbdh1wB+kfykakfA8NyQSu/ciJ+OxvnsX7rlviNvrL3nYY3niYsz/UkTPa3Y351Kz5vSfOBuBsLvmFc47EVfetwdFf/Yub/zkLZvieYWJLA9bu6MOX7lrpHvvWe17nzri/de8a32wJcHxPJx482a2/i06ei9uXbcXVf3Ecus9+9Ry3ro49qAMzOprwH79/0T0P5DW5tx8zHQ+t2YUzv/+YL4/zjp3hDshB+/RX/u4YfOotjrlvvgw+CN5/cGer619QvOm7j7i/vZrM/MBEYtbEZtzyiVPc/yc1e4b/4qMn4aRDnMnDCXOduvjn3zo275PnTXbv+f1nTnfNU/ev2oH7V+3AxJYGPP+1c9zJidJ0T/32w276v/30ae4gpXxN1z++EULA1Q6+8nfHAHCE1wOrd+L9Hg3rvSfOxgdPngsAOH6uMyD9y++e8z3Du493vsjo1aQA4FY5YQGcSLmTDp6M3z/bhd8/2+W77g1zJ2HBrImY29mK796/Fmf98HHf+bOOnu5qOp1tjXh47S4c9uX73PNrvnG+a447ZlYHHljthHOffNVD7jVXvmuBW45Xewbwhm/kTWmLTj8E75LPoNrB8d94EItOPwSAI4y+/35HqBI5Oypc/8RGXP/ERjeNmz6+0KOh7caPHlyHR9btck2Yp8zvRFMq6W5h86W7VmL55h7sOTCC57fuQ0OScOxBHa5J8Cv/twqXve0w15cGwN0e5+R5TntRff20Q6fgP995DASc/v7ZMw/H9Y/ny/bO18/C/Kn+tjla1K2GAmA2AO+qqy55bNT47adOxQtfO9f9LLCXP/3Lm93fN3/8ZN+5plQSP/jA8a7z/dqPOIsdFxzU4Q4WX73gGFel/vzbj3R9KKlkAnf+4+n4w2ff6KbX2pjE0R7b9ULpjATyu9kulI1SseTys1y/DQAcNSN//6I3znM/ZKX49FsO9f3fqwkBTiMGnAb+EU/IqWJGRxPOO3am79g/nXkYAMckc9IhkzG5NS94icgduJQZ5NmvnuMOuD+96ATXPKf43adPwy8+epL7/6vf93pfOS884SC3fpXg9vLAv52BJ770NjQkE3jmK2cXnPeaOYFCf8EXzjnSd+zr7/YrzMfPnYTzj8vXwdulpqKY3p4PSDjpkE78+3lH+c6fPK/Tp+kqX56XQ6bktd+5nXnBeIMcDK94x9H4tKyTs47xTxIAv5BsSiXdmbCXa+TsnojwwpXn4vRDp+B3nz7NNYUqrvvoiQX3fuJN8/B/l70JLY1JTG9vdv1Fio+/cZ7vHZ4caLfnHzvTFSaAX2NXPPb/3upqwN76BhwT19fedaz7/1M8feDWJY5J8HNnH+EKNAD4+rv87/FrFyxwJ2f/79wjAThryVZtcwT2ZW87DLd90plYtDfl5+x3Lu/Cw2t34fg5E3HPP78ZRIQ5k1vQ3pTChl0H8Pk7XsDPHtmA2ZNa8MKV+XFlbmcrTpBWjyltjfjsWw9DKplwI9AmtjbgoS+cgVPnd+KFK8/Ff3/4xNBdxysJRfn+eC1CRB8AcJ4Q4lPy/x8DcIoQ4l8C110K4FIAOPjgg0/asmVLQVqV4qXX9mPdzv14zxtma1/wUDrrfo62FHb0DmHznn5tp3ropZ3oPjCM25dtxVlHTce/nn24tgz3rtyOZAI4Z8FMXzmEcPZmIkAumNTPPVZt68URMya421Ao9vaP4Nv3rcHASBYff9M8nDB3klbw7uobwl0ruvDBhXPdQcBbhlXb9uP2Za/i9MOm4ILXH+Q73903jG37BvHImp1429HTccLBk6Hj6Vd2Y2ZHc0HY5HDG+TLhM5t6sOCgDndGH3yOs3/0OBadPg+fPmO+b5U84Phk7l+1HY+v68a33/s6bT09vWE3Xt7Zh3cdf5C7/kPRN5TGpt39ePqVPbjwDQe55rYgyzf34Pi5kwrSH0pnsbG7H4+s3Yn3nTRHe/+a7fvxjp8+iTOOnIYbL17oi0jcfWAYT67vxo8Wv4yT53Xiv959rK8ehBD443PbkEwQprU34agZ7QXPEMaeA8PY3juEdTv6sLNvCJ858zBfOxzJ5LB3YAR3LNuKc4+dgaNn+gVYNiewflcfEnLj0yNm+IW4EAJ/WbUDHS0NeLVnACcePLlA0GdzAhu7D6CzrRGZnNBGEr62bxBPru9G31AGl7x5fkFfEULgTyu3o6M55ZqMAcdkev0TG5HO5HDW0dMxe3ILDu5s9d2/YdcB3LZkM846ejr6hjJ4+zEzfEJxe+8g/rJqB9bt6MPh0yfg/ONmYs5kf3CKqivvuxtNiGiFEGKh9bo6FiinA/i6EOI8+f8rAEAI8R3TPQsXLhTLly83nWYYhmE0RBUo9WzyWgbgCCKaT0SNAC4CcE+Vy8QwDDNuqVunvBAiQ0T/DOABAEkANwshCrd/ZRiGYUaFuhUoACCEuA/AfdYLGYZhmIpTzyYvhmEYpoZggcIwDMOUBRYoDMMwTFlggcIwDMOUBRYoDMMwTFmo24WNpUBEgwDCQosnAugNOX8wgFct2djSqPR5WxmrXT6g9stY6fKVI42xXoflKEO91yFQO2U8SghRuF9RECHEuPkHoNty/oY490dMo9Ln4z5jRc/XQxkrXb56KGO1y1cPZRxPfQXAcltZhRDjzuS1z3L+TzHvj5JGpc/HfcZKnwdqv4yVLl850hjrdViOMtR7HQL1UUaX8WbyWi4i7EdTqftHAy5jfGq9fEDtl7HWywdwGStRjvGmodxQ5ftHAy5jfGq9fEDtl7HWywdwGYshUjnGlYbCMAzDVI7xpqEwDMMwFWLcCxQiupmIdhHRKs+x44loCRG9SER/IqIOebyBiG6Vx9eob7DIc48R0Toiel7+m67Lr8LlaySiX8rjLxDRWz33nCSPbyCia6iMn3QrYxkrVYdziehR+c5WE9Hn5PFOIlpMROvl38mee66QdbWOiM7zHK9IPZa5jGWvx2LLR0RT5PUHiOjngbRqog4tZayJtkhE5xDRCllfK4joLE9aFevTJRMlFGws/wNwBoATAazyHFsG4Ez5+5MAvil/fxjA7fJ3K4DNAObJ/z8GYGGVy3cZgF/K39MBrACQkP9/BsDpcD7CeD+Ad9RgGStVh7MAnCh/twN4GcACAN8DcLk8fjmAq+XvBQBeANAEYD6AVwAkK1mPZS5j2euxhPK1AXgzgH8C8PNAWrVSh2FlrJW2eAKAg+Tv4wBsq3Q9xvk37jUUIcQTAHoCh48C8IT8vRjA+9TlANqIKAWgBcAIgP01VL4FAB6W9+2CE3K4kIhmAegQQiwRTku8DcB7aqmM5SqLoXzbhRDPyt99ANYAmA3gQgC3ystuRb5OLoQzcRgWQmwCsAHAKZWsx3KVsRxlKUf5hBD9QoinAAx506mlOjSVsZKUUMbnhBCvyeOrATQTUVOl+3SpjHuBYmAVgHfL3x8AMFf+vgtAP4DtcFav/kAI4R1IfynV469WWP00le8FABcSUYqI5gM4SZ6bDaDLc3+XPFZJii2joqJ1SETz4Mz6lgKYIYTYDjgdHY7GBDh1s9Vzm6qvUanHmGVUVKweI5bPRC3VoY1aaIte3gfgOSHEMKrTp62wQNHzSQCXEdEKOGrpiDx+CoAsgIPgmBm+SESHynMfEUK8DsBb5L+PVaF8N8NpWMsB/ATA0wAycFTiIJUO7yu2jECF65CIJgD4PYB/E0KEaZam+qp4PZahjEAF67GI8hmT0ByrVh2GUSttUV1/LICrAfyjOqS5rOohuyxQNAgh1gohzhVCnATgd3Ds04DjQ/mLECItzTV/hTTXCCG2yb99AH6LypoftOUTQmSEEJ8XQrxBCHEhgEkA1sMZwOd4kpgD4LVgulUuY0XrkIga4HTg3wgh/iAP75SmA2WK2SWPd8GvNan6qmg9lqmMFavHIstnopbq0EgNtUUQ0RwAfwRwsRBCjUWj3qejwAJFg4roIKIEgP8E8At56lUAZ5FDG4DTAKyV5pup8p4GABfAMfmMavmIqFWWC0R0DoCMEOIlqUL3EdFpUnW/GMDdlSpfKWWsZB3KZ74JwBohxI88p+4BsEj+XoR8ndwD4CJpq54P4AgAz1SyHstVxkrVYwnl01JjdWhKp2baIhFNAnAvgCuEEH9VF1ejT0ei3F7+evsHZ/a8HUAajtS/BMDn4ERfvAzgu8gvAJ0A4H/hOMdeAvDv8ngbnGillfLcTyEjbka5fPMArIPj6HsIwCGedBbC6RSvAPi5uqdWyljhOnwzHHPASgDPy39/B2AKnACB9fJvp+eer8i6WgdP9Eyl6rFcZaxUPZZYvs1wgjUOyHaxoAbrsKCMtdQW4UzG+j3XPg9geqX7dKn/eKU8wzAMUxbY5MUwDMOUBRYoDMMwTFlggcIwDMOUBRYoDMMwTFlggcIwDMOUBRYoDFMjENE/EdHFRVw/jzw7PDNMtUlVuwAMwziL6YQQv7BfyTC1CwsUhikTcrO/v8DZ7O8EOIs6LwZwDIAfwVkYuxvAx4UQ24noMTh7mb0JwD1E1A7ggBDiB0T0Bji7C7TCWbj2SSHEXiI6Cc5+aAMAnhq9p2MYO2zyYpjychSAG4QQr4fzaYPLAPwMwPuFs6/ZzQCu8lw/SQhxphDih4F0bgPwHzKdFwFcKY//EsC/CiFOr+RDMEwpsIbCMOVlq8jvufRrAF+G82GkxXIH9CScbWoUdwQTIKKJcATN4/LQrQD+V3P8VwDeUf5HYJjSYIHCMOUluJdRH4DVIRpFfxFpkyZ9hqkZ2OTFMOXlYCJSwuNDAP4GYJo6RkQN8tsWRoQQvQD2EtFb5KGPAXhcCLEPQC8RvVke/0j5i88wpcMaCsOUlzUAFhHR9XB2jv0ZgAcAXCNNVik4HxZbbUlnEYBfEFErgI0APiGPfwLAzUQ0INNlmJqBdxtmmDIho7z+LIQ4rspFYZiqwCYvhmEYpiywhsIwDMOUBdZQGIZhmLLAAoVhGIYpCyxQGIZhmLLAAoVhGIYpCyxQGIZhmLLAAoVhGIYpC/8fZ04o0Do6DDMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,9 +2240,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8XHWd+P/XO5P7pW3SpheS0hba0haQYmsLAgpUW8ALiKB1V6m7aF0WV92vqwvu7g+VLz9hRVB0xUWoFrwA4oWqIJZyE4SWVKCl9/QCTW9Jc2uuM5mZ9/eP+Zx0kkwmk8skM8n7+XjMYyafOefknNN03vP+XEVVMcYYYxKRMdInYIwxJn1Y0DDGGJMwCxrGGGMSZkHDGGNMwixoGGOMSZgFDWOMMQmzoGGMMSZhFjSMMcYkzIKGMcaYhGWO9AkMtUmTJunMmTNH+jSMMSatbN68+biqlva13agLGjNnzqSiomKkT8MYY9KKiLyVyHZWPWWMMSZhFjSMMcYkLOGgISI+EXlNRP7gfi4RkfUissc9F0dte7OIVIrILhFZEVW+SES2uvfuERFx5Tki8ogr3ygiM6P2WeV+xx4RWTUUF22MMWZg+pNpfBHYEfXzTcAGVZ0DbHA/IyILgJXAmcBlwA9FxOf2uRdYDcxxj8tc+fVAvarOBu4G7nDHKgFuAZYCS4BbooOTMcaY4ZVQ0BCRcuADwP1RxVcCa93rtcBVUeUPq6pfVfcDlcASEZkGjFPVlzWyiMeD3fbxjvUYsMxlISuA9apap6r1wHpOBhpjjDHDLNFM47vAV4FwVNkUVT0C4J4nu/Iy4GDUdlWurMy97l7eZR9VDQKNwMQ4x+pCRFaLSIWIVNTU1CR4ScYYY/qrz6AhIh8EqlV1c4LHlBhlGqd8oPucLFC9T1UXq+ri0tI+uxkbY4wZoEQyjQuAD4vIAeBh4FIR+RlwzFU54Z6r3fZVwPSo/cuBw668PEZ5l31EJBMYD9TFOZbpZtfRJjbtrxvp0zDGjHJ9Bg1VvVlVy1V1JpEG7mdU9ZPAOsDrzbQKeNy9XgesdD2iZhFp8N7kqrCaROQ8115xXbd9vGNd436HAk8By0Wk2DWAL3dlpps7/7yL//zd1pE+DWPMKDeYEeG3A4+KyPXA28C1AKq6TUQeBbYDQeBGVQ25fW4AfgrkAU+6B8ADwEMiUkkkw1jpjlUnIrcCr7rtvqmq9nU6htpmPy3+UN8bGmPMIPQraKjqc8Bz7nUtsKyX7W4DbotRXgGcFaO8HRd0Yry3BljTn/Mci+pbO/AHLWgYY5Jr1M09NVbVNvsJ9+giYIwxQ8uCxijQEQpzoj1IZkaszmbGGDN0bO6pUaChtQOAYFgJhsJ9bG2MMQNnQWMUqG8NdL5uD1rQMMYkjwWNUaCuJSpodFhjuDEmeSxojAL1FjSMMcPEgsYoUNslaFj1lDEmeSxojAKWaRhjhosFjVGgLqoh3Ab4GWOSyYLGKFBv1VPGmGFiQWMUqGvtwOcG9ln1lDEmmSxojAJ1LX6mjssFLNMwxiSXBY1RoL6lg1MmeEHDMg1jTPJY0BgF6loCTBufB0C7NYQbY5LIgkaaawuEaOsIMW2CVU8ZY5LPgkaa8+adKpvgMg2rnjLGJFGfQUNEckVkk4i8ISLbROQbrvzrInJIRF53jyui9rlZRCpFZJeIrIgqXyQiW91797hlX3FLwz7iyjeKyMyofVaJyB73WIXpwgsak4tyEQG/BQ1jTBIlsp6GH7hUVZtFJAt4UUS8ZVrvVtU7ozcWkQVElms9EzgFeFpE5rolX+8FVgOvAE8AlxFZ8vV6oF5VZ4vISuAO4OMiUgLcAiwGFNgsIutUtX5wlz16eNVRedk+cjIz8Nsst8aYJOoz09CIZvdjlnvEWyPuSuBhVfWr6n6gElgiItOAcar6sqoq8CBwVdQ+a93rx4BlLgtZAaxX1ToXKNYTCTTGCbggke3LIDfLZ9VTxpikSqhNQ0R8IvI6UE3kQ3yje+vzIrJFRNaISLErKwMORu1e5crK3Ovu5V32UdUg0AhMjHOs7ue3WkQqRKSipqYmkUsaNQJu0aXszAxyM33WEG6MSaqEgoaqhlR1IVBOJGs4i0hV0+nAQuAI8B23eaw1RzVO+UD3iT6/+1R1saouLi0tjXsto010ppGTlWFdbo0xSdWv3lOq2gA8B1ymqsdcMAkDPwaWuM2qgOlRu5UDh115eYzyLvuISCYwHqiLcyzjdAaNzkzDgoYxJnkS6T1VKiIT3Os84H3ATtdG4fkI8KZ7vQ5Y6XpEzQLmAJtU9QjQJCLnufaK64DHo/bxekZdAzzj2j2eApaLSLGr/lruyozTEV09lZVh1VPGmKRKpPfUNGCtiPiIBJlHVfUPIvKQiCwkUl10APgcgKpuE5FHge1AELjR9ZwCuAH4KZBHpNeU1wvrAeAhEakkkmGsdMeqE5FbgVfddt9U1bpBXO+oE51p5FhDuDEmyfoMGqq6BTg3Rvmn4uxzG3BbjPIK4KwY5e3Atb0caw2wpq/zHKv8oa69pxrbOkb4jIwxo5mNCE9zXbrcZmbY4D5jTFJZ0EhzXRrCrXrKGJNkFjTSnDWEG2OGkwWNNBcIhvFlCL4MiWQaNk7DGJNEFjTSXCAUJssXGQNp1VPGmGSzoJHmAsEw2b7IP2NuZqR6KjLExRhjhp4FjTTnD4bJzvQBkJPl6ywzxphksKCR5jpCYXIyXabhBQ1rDDfGJIkFjTQXCIbJ7gwakWdrDDfGJIsFjTQXCEY1hLtqKmsMN8YkiwWNNBcIRWcaXtCw6iljTHJY0EhzXXpPedVTlmkYY5LEgkaai5VpWO8pY0yyWNBIc4GoLreWaRhjks2CRpqLVE9FGsJzrCHcGJNkFjTSXMyGcKueMsYkSSLLveaKyCYReUNEtonIN1x5iYisF5E97rk4ap+bRaRSRHaJyIqo8kUistW9d49b9hW3NOwjrnyjiMyM2meV+x17RGQVpovohnBvkF/AgoYxJkkSyTT8wKWqeg6wELhMRM4DbgI2qOocYIP7GRFZQGS51jOBy4AfuqViAe4FVhNZN3yOex/geqBeVWcDdwN3uGOVALcAS4ElwC3RwclERoR7mUaWCx7edOnGGDPU+gwaGtHsfsxyDwWuBNa68rXAVe71lcDDqupX1f1AJbBERKYB41T1ZY3MqPdgt328Yz0GLHNZyApgvarWqWo9sJ6TgcbgDe7zgkakbcOChjEmWRJq0xARn4i8DlQT+RDfCExR1SMA7nmy27wMOBi1e5UrK3Ovu5d32UdVg0AjMDHOsYwTPY1IVqaXadgst8aY5EgoaKhqSFUXAuVEsoaz4mwusQ4Rp3yg+5z8hSKrRaRCRCpqamrinNro44+qnsq26iljTJL1q/eUqjYAzxGpIjrmqpxwz9VusypgetRu5cBhV14eo7zLPiKSCYwH6uIcq/t53aeqi1V1cWlpaX8uKa2pKoFgmBwXLDIzXPWUNYQbY5Ikkd5TpSIywb3OA94H7ATWAV5vplXA4+71OmCl6xE1i0iD9yZXhdUkIue59orruu3jHesa4BnX7vEUsFxEil0D+HJXZoBgOJJ0eZmGL0MQsUzDGJM8mQlsMw1Y63pAZQCPquofRORl4FERuR54G7gWQFW3icijwHYgCNyoqt5osxuAnwJ5wJPuAfAA8JCIVBLJMFa6Y9WJyK3Aq267b6pq3WAueDTxutZ6DeEiQpYvg4C1aRhjkqTPoKGqW4BzY5TXAst62ec24LYY5RVAj/YQVW3HBZ0Y760B1vR1nmORFzS8TAMi7RpByzSMMUliI8LTWCDUM2hk+cSqp4wxSWNBI411Zhq+k/+MmVY9ZYxJIgsaaSxWppHty7BMwxiTNBY00lisTMOqp4wxyWRBI43FagjP8mUQtOopY0ySWNBIY7GqpyJtGpZpGGOSw4JGGotVPZVt1VPGmCSyoJHGvIwiq1v1lAUNY0yyWNBIY7EbwjNslltjTNJY0EhjXtDIic40Mi3TMMYkjwWNNBaz91SGtWkYY5LHgkYaiz2NSAYdQaueMsYkhwWNNOZlFFk+q54yxgwPCxppLPbgPqEjbEHDGJMcFjTSmD9W76kMq54yxiSPBY00FrPLbaY1hBtjkieR5V6ni8izIrJDRLaJyBdd+ddF5JCIvO4eV0Ttc7OIVIrILhFZEVW+SES2uvfuccu+4paGfcSVbxSRmVH7rBKRPe6xCtMpEAqT5RMy3NrggFu5z4KGMSY5ElnuNQh8WVX/JiJFwGYRWe/eu1tV74zeWEQWEFmu9UzgFOBpEZnrlny9F1gNvAI8AVxGZMnX64F6VZ0tIiuBO4CPi0gJcAuwGFD3u9epav3gLnt06AiGuzSCg02NboxJrj4zDVU9oqp/c6+bgB1AWZxdrgQeVlW/qu4HKoElIjINGKeqL6uqAg8CV0Xts9a9fgxY5rKQFcB6Va1zgWI9kUBjiGQa0Y3gAJk+sVlujTFJ0682DVdtdC6w0RV9XkS2iMgaESl2ZWXAwajdqlxZmXvdvbzLPqoaBBqBiXGOZYi0aWR3yzSyfBkEw0o4bIHDGDP0Eg4aIlII/Br4kqqeIFLVdDqwEDgCfMfbNMbuGqd8oPtEn9tqEakQkYqampq41zGaBII9Mw2vusq63RpjkiGhoCEiWUQCxs9V9TcAqnpMVUOqGgZ+DCxxm1cB06N2LwcOu/LyGOVd9hGRTGA8UBfnWF2o6n2qulhVF5eWliZySaOCP9Qz0/B+tkkLjTHJkEjvKQEeAHao6l1R5dOiNvsI8KZ7vQ5Y6XpEzQLmAJtU9QjQJCLnuWNeBzwetY/XM+oa4BnX7vEUsFxEil3113JXZog0hPfMNKTzPWOMGWqJ9J66APgUsFVEXndlXwM+ISILiVQXHQA+B6Cq20TkUWA7kZ5XN7qeUwA3AD8F8oj0mnrSlT8APCQilUQyjJXuWHUicivwqtvum6paN7BLHX1iN4Rb9ZQxJnn6DBqq+iKx2xaeiLPPbcBtMcorgLNilLcD1/ZyrDXAmr7OcyyK1RBu1VPGmGSyEeFpzB8Mk5vl61KWlWnVU8aY5LGgkcbaO0JdFmCCqN5TNsDPGJMEFjTSmD8YJierW5tGhlVPGWOSx4JGGvMHQ+Rmdq2eyvaqpyzTMMYkgQWNNNbe0TPTsOopY0wyWdBIY/6OEDndMg0vaNhMt8aYZLCgkcZitWlkWZdbY0wSWdBIU6oaCRo9Mo1Im0bQMg1jTBJY0EhT3lKv1uXWGDOcLGikqb6CRsCqp4wxSWBBI035g5HpvLqPCO+cRsRGhBtjksCCRpryd8TONDJ9Nk7DGJM8FjTSlJdp5HSfe6pzllurnjLGDD0LGmmq3WUauZm9zHJr1VPGmCSwoJGmes00bBoRY0wSWdBIU721aViX24Gpqm8lslikMSaeRJZ7nS4iz4rIDhHZJiJfdOUlIrJeRPa45+KofW4WkUoR2SUiK6LKF4nIVvfePW7ZV9zSsI+48o0iMjNqn1Xud+wRkVUY4GSX2+69pzIzIpmGdblNXFV9K+/99nM8te3oSJ+KMSkvkUwjCHxZVecD5wE3isgC4CZgg6rOATa4n3HvrQTOBC4Dfigi3ifbvcBqIuuGz3HvA1wP1KvqbOBu4A53rBLgFmApsAS4JTo4jWXtHa56qlumISJk+cRGhPfD9sMnCIWVnUebRvpUjEl5fQYNVT2iqn9zr5uAHUAZcCWw1m22FrjKvb4SeFhV/aq6H6gElojINGCcqr6skXqAB7vt4x3rMWCZy0JWAOtVtU5V64H1nAw0Y1pvg/sgUkVl1VOJq6xpBuDtutYRPhNjUl+/2jRctdG5wEZgiqoegUhgASa7zcqAg1G7VbmyMve6e3mXfVQ1CDQCE+Mca8zrrSEcvKBh1VOJqjwWCRoHLWgY06eEg4aIFAK/Br6kqifibRqjTOOUD3Sf6HNbLSIVIlJRU1MT59RGj842jZiZhtjU6P2wp9oyDWMSlVDQEJEsIgHj56r6G1d8zFU54Z6rXXkVMD1q93LgsCsvj1HeZR8RyQTGA3VxjtWFqt6nqotVdXFpaWkil5T2Ots0esk0rE0jMeGwUlndjC9DOHbC33lfjTGxJdJ7SoAHgB2qelfUW+sArzfTKuDxqPKVrkfULCIN3ptcFVaTiJznjnldt328Y10DPOPaPZ4ClotIsWsAX+7KxrzeutyCVU/1x+HGNto6QiyaEelfUVVv2YYx8SSSaVwAfAq4VERed48rgNuB94vIHuD97mdUdRvwKLAd+BNwo6p6X99uAO4n0ji+F3jSlT8ATBSRSuD/4HpiqWodcCvwqnt805WNef5gGF+GdI7LiGbVU4nzqqaWzYs0yR2saxvJ0zGmT3ev381jm6v63jBJMvvaQFVfJHbbAsCyXva5DbgtRnkFcFaM8nbg2l6OtQZY09d5jjXtHaGYWQa4TMOmEUmI1wh+6bzJfOvJndauYVLez155i7PLx3PNovK+N04CGxGepiKr9sUJGpZpJKSyupmJBdnMnlxIXpbPgoZJae0dIWpbAtQ2B0bsHCxopCl/MNRjqVdPlk8I2iy3Calt8TNlXC4iwqkl+RY0TEo73BCpPq1rsaBh+qm9I0xuVu+ZRsCqpxLS4g9RkBMJvtNL8m2shklph1zQON7sH7G50ixopKl4mUZ2plVPJao1ECQ/O9K0d8qEXI40to/wGRnTOy/T8AfDtAZGpnu4BY005Q+Gyekl08jMEOtym6CWwMlMY0J+NifaOwhZ1Z5JUYcaTn6pGakqKgsaacrfESa31zYNyzQS1RYIdWYaJflZqEJjW8cIn5UxsR2qP9kl/Hizf0TOwYJGmmoPhnrNNLKseiphLYEgBdmR4FtckA2MbCOjMfEcbmjr7DVpmYbpF39H711us21EeMJa/SHycyKZRnF+JGg0tFrQMKnpcGMbC04ZB0CtBQ3TH/5gKOa8U+BGhFvvqT4FgmECofDJTCPfMg2TusJh5UhDO2eXjQcYsbEaFjTSVHucTCMn09c5dbrpXZvrfZLn2jSKC7IAaGi1Ng2Teo43+wmEwsyeXEhuVgZ1LdamYfohMiI8dqaRm5VBe4dlGn1pCQQBemYaVj1lUpA3RqNsQh4TC3Is0zD9ExmnEfufLzfLR1tHaMQG/6SLVhc0vDaN/Gwf2ZkZ1Fv1lElBh11322nj85hYmG1tGqZ//B1hcntp0/DK/dauEVeLP1I95WUaIkJxfhb1lmmYFFTrqqNKi3KYWJBtvadM4sJhJRDqvU2jM2hYFVVcXvWUN04DIlVUdS3WpmFSj9fWNj4vi5KCHGptnIZJlLdWRm/jNLw5qdqtMTwuryHcGxEOUFKQbV1uTUpqaO2gwFWhetVTI1EFbUEjDXkZRG8jwvNcptE2QnPTpIsWd396ZBoWNEwKamgLMMF11phYkD1i808lstzrGhGpFpE3o8q+LiKHuq3k5713s4hUisguEVkRVb5IRLa69+5xS77iloV9xJVvFJGZUfusEpE97uEtBzvmeRlE75mGr8t2JrZWv+s9FZVpFBdkWZdbk5IaWzsYnxfpFl7iZi8YiR5UiWQaPwUui1F+t6oudI8nAERkAbASONPt80MR8f5H3gusJrJm+JyoY14P1KvqbOBu4A53rBLgFmApsAS4xa0TPuadXB+89y63gHW77UNnppHVNdNoaA0QtkkLTYppaOtgQn7XoDESnTb6DBqq+gKQ6LrcVwIPq6pfVfcTWQt8iYhMA8ap6ssaqYR7ELgqap+17vVjwDKXhawA1qtqnarWA+uJHbzGHG/gXm/raXjVVu0dlmnE42UaedlRmUZ+NmGFE+2WbZjU0tAa6AwaRbmR56b24LCfx2DaND4vIltc9ZWXAZQBB6O2qXJlZe519/Iu+6hqEGgEJsY51pjX3lem4T4E2yxoxNUSCJHtyyA7qheaNyrcphIxqaaxrYPxeZEMoyg3kh03jcCXm4EGjXuB04GFwBHgO65cYmyrccoHuk8XIrJaRCpEpKKmpibeeY8KXqbRa5fbTK/LrQWNeFoDQfJzugZeb1S4jdUwqURVaWg9WT1VmOMFjTTJNFT1mKqGVDUM/JhImwNEsoHpUZuWA4ddeXmM8i77iEgmMJ5IdVhvx4p1Pvep6mJVXVxaWjqQS0orJzONPrrcWptGXC3+EAVRPacgKmjYWA2TQloCIYJhZYJrCB/nVU/50yRouDYKz0cAr2fVOmCl6xE1i0iD9yZVPQI0ich5rr3iOuDxqH28nlHXAM+4do+ngOUiUuyqv5a7sjGvNcagtGidvacs04grstRr10zDa2C0brcmlXgLg3VmGiNYPRX7UyeKiPwSuBiYJCJVRHo0XSwiC4lUFx0APgegqttE5FFgOxAEblRV75PrBiI9sfKAJ90D4AHgIRGpJJJhrHTHqhORW4FX3XbfVNVEG+RHNa+tIi87/jgNCxrxtQROrqXhGcmujMb0xhtw6rVp+DKEgmzfiFRP9Rk0VPUTMYofiLP9bcBtMcorgLNilLcD1/ZyrDXAmr7Ocaxp6xyUFn/uqTarnoqrLRAkv9v8XQU5meRl+UZsKU1jYmls7ZppQKQHVTo1hJsR1NpH0PDaOizTiK/FH+oysM9TWpRjQcOklIa2nkGjMDczfRrCzcjqq3oqI0PIzsywEeF9iLRp9Ey2JxVmU9NkQcOkDm+Wggmuegoi3W6b06Uh3Iys1kAQX4aQ7ev9ny8vy2ez3PahJWCZhkkPDW2RNo3u1VMnLNMwiWgNhMjL8uGm74opNyvDJizsQ6s/dqZRWpRjmYZJKY2tHeRkZnRZQ6coN9PaNExi2gKhXqumPLlZPqueiiMcVlo7Qp0LMEWbVJhDfWsHHSHL1ExqiB7Y5ynKsTYNk6DWQKjXRnBPbqbPGsLjaA+GUKVHl1uIZBpg3W5N6mhoC3RpzwDLNEw/eNVT8eRm+2xEeBzdl3qNNqkwEjSsXcOkiobWDsZ3zzRys2jvCA97RmxBIw21dySSaWTYhIVxeKPq83pp0wCsXcOkjMa2js4pRDzepIXNw1xFZUEjDfXWVTRabpbPJiyMI95Yl1KXadRYpmFSRH1roHMBJs9ITY9uQSMNtSbUEJ5h1VNxnHCDpbyJ36JZpmFSiapS1xJgovsy4/Fmuh3utV8saKShtgSqp/Ks91RcsUbYenKzfBTlZFqbhkkJJ9qCdISUSYVdG8LH5Y7M9OgWNNJQQr2nsnw2TiMOby6f7im/Z5KN1TAp4nhL5O9wUrdMw6ueGu5R4RY00lBbIEReVt9tGtbltnfdp5rurrTw5KjwcFhHpGujMXCy6/fEwp5dbmH4p0e3oJFmVJXWQJC87Pj/dDlZGbQHrU2jNw1tAXwZ0lkv3F30qPB7n9/Lu29/huoT7cN5isYAUNvcW6Zh1VMmAf5gmLD2vgCTJy/LRyAYJhyOuULumNfQ2sH4vKxep2IpLcrhaGM7zf4gP3vlLZrag3xvw55hPktjTo4X6p5pjNRCTBY00ozXTtHn4D5vISZrDI+pIUa/92hXnD2NlkCIzz1UwZHGduZOKeThVw/yv8/v5Rcb3x7GMzVj3XFXPVWS3zVo5GT6yM7MGPYlX/sMGiKyRkSqReTNqLISEVkvInvcc3HUezeLSKWI7BKRFVHli0Rkq3vvHrfsK25p2Edc+UYRmRm1zyr3O/aIiLck7JjmDdhLZHAf2DrhvTnR1nOEbbQls0p43/wpvFRZy8SCbNb+4xLys3x868mdfO23W62R3Ayb2hY/xflZZMaY1XrcCKypkUim8VPgsm5lNwEbVHUOsMH9jIgsILJc65lunx+KiPfpdi+wmsi64XOijnk9UK+qs4G7gTvcsUqILC27FFgC3BIdnMYqb1BaIhMWgi3E1Buveiqemy6fR2aGcM3icqaNz2PDl9/LrVdFFp+07rhmuBxvCvRoz/BEVu9LsaChqi8QWbs72pXAWvd6LXBVVPnDqupX1f1AJbBERKYB41T1ZVVV4MFu+3jHegxY5rKQFcB6Va1T1XpgPT2D15hzcqnXPto0si1oxBOZAC5+0Jg9uZA//+t7+Nf3zQVg8rhc5k4uBKCuxSYzNMOjtsXfoz3DMxKTFg60TWOKqh4BcM+TXXkZcDBquypXVuZedy/vso+qBoFGYGKcY41p3pxJfVVP5WR664Rb0IglMtV07P+I0U4rLeyyhoH3n9cyDTNcapt7jgb3FI7A9OhD3RAeqyuKxikf6D5df6nIahGpEJGKmpqahE40XbX2sdSrJzfL2jR6EworTe3BPqunYplYYNOmm+F1vNnPpILeM410mbDwmKtywj1Xu/IqYHrUduXAYVdeHqO8yz4ikgmMJ1Id1tuxelDV+1R1saouLi0tHeAlpYe2OBPtRfO+HdukhT15804NJGiMz8vClyFWPWWGhT8Y4kR7sI82jfSonloHeL2ZVgGPR5WvdD2iZhFp8N7kqrCaROQ8115xXbd9vGNdAzzj2j2eApaLSLFrAF/uysa0ztlZ+xgRnmddbnsVb96pvmRkCMX52dS2WPWUST7vy0lv1VNFI9B7Kv4nDyAivwQuBiaJSBWRHk23A4+KyPXA28C1AKq6TUQeBbYDQeBGVfU+tW4g0hMrD3jSPQAeAB4SkUoiGcZKd6w6EbkVeNVt901V7d4gP+a0uTaN3D5GhHuZRlvAqqe6a2iN/EccSNAAmFSY3dl33phk6m0KEU9RTibNgSDhsJKREXug6lDrM2io6id6eWtZL9vfBtwWo7wCOCtGeTsu6MR4bw2wpq9zHEtaE+w9dbJNwzKN7ho7q6f6bgiPpaQg26qnzLA43jmFSG9tGlmoQnMgGHOa/2SwEeFpxusNZSPCB65xEG0aEKkqqLXeU2YYeBlt720aw796nwWNNNMWCJGTmYGvj1R0pCYzSwcNrQNv0wCYWJBNrWUaZhh4X05Keu09Nfyr91nQSDOJrKUBkeqr3KwMq0aJoaGPtTT6MrEgm6b2IH7L4kyS1bUGyPZl9Dob80hMj25BI81EgkafTVFAZIIzCxo9NbZ1UJiTSVaMuXwS4fVksXtrkq2uOUBJQXavszEXjkCNggXJzC89AAAfEElEQVSNNNPWEexzYJ+nuCCbevtg66GhLTDgLANOVhXYAD+TbHUtAYp7qZqCqCVfh3GmWwsaaSbR6ilwvXxa7YOtu8YEJiuMx+vJYu0aJtnqWgNMjBM0TrZpWPWU6UVrINRnzylPcb5lGrEca2qntCh2b5REnMw0rAeVSa66lkCvjeAwMh1eLGikmab2YK+NYt2VWC+fmA7Vt1FenDfg/a1NwwxGiz/IJ+/fyC839b2Yl9em0Zu8LB++DBnWTCOxTx+TMg43tLFoxoSEti1xvXw6QuEBN/qONi3+IPWtHZQNImiMy80kyyc2KtwMyNZDjbxYeZwXK49TWd3Mf31wQcztAsEwTf5g3KAhIsM+0619kqSRZn+QxrYOyibkJ7S914BWb+0anQ41tAFQNmHgQUNEmFiQY9OjmwHZU90MwKXzJvOTl/b3ugqk9/82XtCA4Z/p1oJGGjlU7z7wEvyW7K0pXN8yvLNgprKq+lYAyosTC7y9mTwuh2pb8tUMwN7qZgqyfXz1sjMIKzy17WjM7bzqz76DRhYnLGiYWA7381tycUGkZ4XVvZ/kBd7BtGkATC7KofpE+1Cckhlj9lQ3MXtyIWdMKeK00gKefPNIzO0SDxrDu3qfBY00UtXQvw8874/NgsZJVQ1tZPsyKO1lLp9ETR6Xa5mGGZA9x5qZPbkIEeGKs6bx8t7amD3xvE4s8brcQmSmW2vTMDEdqm8jyycJf+B51VM2VuOkqvo2TpmQO+hppCcX5VDXEiAQtKnnTeIa2zqobvIzZ0pkrfnLz55KWGHDjuoe23rd5eMN7gOXafgt0zAxHGpoY9r4vIQ/8CZ0tmlY0PBEutsOrj0DYMq4XMDWCjf9U+kawWeXRoLGgmnjKMrJZMuhhh7b1rYEEIEJfQxELcrNsoZwE9uh+tZ+9frJzsygKDfTqqeiVNW3DarnlGeyGxx4zNo1TALCYeWlyuNsqYoEBy/TEBHmnzKOHUeaeuxT1+JnfF4WmX10l/dW74sseJp8Nk4jjRxqaOOiOf1bA72kINu63DrtHSGON/sHNUbD42Ua1q5h+qKq/N8/7mDNS/sByMnM6JLtLpg2jkcrDvZYfa++paPPRnCIZBrBsNLeEU54XrrBGFSmISIHRGSriLwuIhWurERE1ovIHvdcHLX9zSJSKSK7RGRFVPkid5xKEbnHrSOOW2v8EVe+UURmDuZ801kgGKa6yd/vb8nFNtNtp0P97EgQj5dpWA8q05cHXtzPmpf2c/W5ZSyaUcyl8yZ3WQ9nwbRxtAZCvFXX2mW/2hZ/n43gED3T7fC0awxFpnGJqh6P+vkmYIOq3i4iN7mf/11EFhBZ//tM4BTgaRGZ69YQvxdYDbwCPAFcRmQN8euBelWdLSIrgTuAjw/BOaedo43tqPZ/UFpJQbZVoThv1w7NGA2ITCWSIZZpmL79fOPbLJ1Vwp3XnhOzPXLBKeMA2H74BLMmFXSW17UEmDmxoMf23UXPdDt5iM45nmS0aVwJrHWv1wJXRZU/rKp+Vd0PVAJLRGQaME5VX9ZIpdyD3fbxjvUYsMzLQsaaqobIB15/q1Zs0sKTdh6N1BufMaVo0MfyZQiTCnMsIJu4qk+0s/94C8vmT+61A8vsyYVkZgg7jpzoUl7X0sHEXtYGjzbckxYONmgo8GcR2Swiq13ZFFU9AuCeveBXBhyM2rfKlZW5193Lu+yjqkGgEZjY/SREZLWIVIhIRU1NzSAvKTVtPxz5gzrd9bpIVGlRDjXNfoIh6xq648gJyibkMX6Ay7x2N8XGapg+bDpQB8CSWT0+tjrlZvk4vbSQ7VFBo70jRG2Ln8lFuX3+jqnjIl8k97qeWck22KBxgaq+E7gcuFFE3hNn21hhVuOUx9una4Hqfaq6WFUXl5b2r6E4XWzcX8eMiflMHd/3H1G000sL6Ahpj/rSsWjn0RPMmzr4LMMTGRVuQcP07tX9deRl+TjTVUH1ZsEp49h2uLHz5/3HW1CNZCF9mTe1iNKiHJ7bPTxfmAcVNFT1sHuuBn4LLAGOuSon3LM3aqUKmB61ezlw2JWXxyjvso+IZALjgbrBnHM6CoeVVw/UsXRWSb/3neuqYvYcG55vIamqvSPE3poW5k+L/5+3PyKjwtOjeqq+JcBd63fz6Z9sYu1fDxAOD0/3zLFu4/46Fs0o7nOW6YXTJ3DshJ+D7sudN54jkZqFjAzh4rmlvLC7ZlhqFAYcNESkQESKvNfAcuBNYB2wym22CnjcvV4HrHQ9omYBc4BNrgqrSUTOc+0V13XbxzvWNcAzOlydkVPIrmNNNLR2sDROitsb75vKnmM9+4GPJZXVzYTCyrxpQ5tp1LYE6EiDqr+v/34bP3hmD5XVzdyybhufebBi2Pr1jxVvHGzgzUMns4XG1g52HWtiSQJf9i6YHfm//VJlpE/R3ppmROC00r4bwgEumTeZxrYOXj/Yc5DgUBtMpjEFeFFE3gA2AX9U1T8BtwPvF5E9wPvdz6jqNuBRYDvwJ+BG13MK4AbgfiKN43uJ9JwCeACYKCKVwP8h0hNrTGkLhNi4rxaApaf1P9MoyMmkbEIeu4epvjNVeY2MQ5lpTBmXi2rq96Bq8Qf587ZjfGLJqfzlq5fwufecxjM7qzlqjfhD5mhjO5/48St88Psv8i+/fI3qE+3c/fRuVE8GhHhOLy2ktCiHv+6N/F+vrG6mvDiP3ARX6bxwziR8GcKzu3pORzLUBtzlVlX3AefEKK8FlvWyz23AbTHKK4CzYpS3A9cO9BzT3VPbjvJPP9vM+LwsyibkDbir6NwphWM+09h5tIncrIyEujAmyvsWWFndPCSjzJNl/fZjtHWEuHJhGSLCpfMm878v7GPX0SamjU/d804nd/xpJ8GQcv2Fs3jolbfYsOMYrYEQ1184i0Uz+v6yJyK8+/SJvFRZi6pSWd3cOdVIIsblZrF4RjHP7qzhKyvmDeZS+mTTiKSwp948Sn6WjwwRLjtr6oCPM3dKEftqWsZ0D6pthxs5Y0pRl0FVg+U1qu/s1lUy1Tz++iHKJuSxeEZknK3XzrV7jH+RGCqvvV3Pb187xGcumsV/fXABT3zhIt5RPp4Pn3MKX7tifsLHueD0SRxv9rPrWBP7j7ck1Age7T8+MJ8f/N25/T39frNpRFKUqvJi5XEunT+F739icH8Ic6YUEQiFOVDb2u8/xHRUfaKdRysOsvo9p5OdmUFts59XD9Tz2YtOG9LfMyE/m2njczvHf6SimiY/L+w5zmcumtU5TqC4IJvJRTnsOjq2qyyHyv88W8mE/Cz++ZLZQKQd8eHV5/f7OOefHqnG+vEL+/EHw/3uXv+O8sSWgR4syzRSVGV1M9VNfi44vf+N393NnTK2GsPvf3E/d/55N9/bsBuAJ948SiisfPicU4b8d82fNq7HoKxU8sirbxMKKx9bPL1L+RlTiyzTGAK7jzXx9I5qPv3umRTmDO47+PSSfJYvmMKv/xYZtpaqX/AsaKSoF10vigtmTxr0sWZPLsSXIWyJ6tkxWoXCyrrXD5OZIdz73F427qtl3euHmDO5kPlD2HPKM29qEZXVzSm5rkYorPxi49tcOHtSj2+tc6cUsae6idAwdr1VVb75++389rWqvjdOE//7/D7ysnysOn/mkBzv29eew4yJkbbL/mYaw8WCRop6qfI4MybmM71k8PMk5WdnsnRWCU9tOzrqu1lu3F/L0RPt3HrVWZQV5/GJH7/CqwfquXLhKSRjBpp508YRDCt7a1KvqueZndUcbmznk+ed2uO9M6YU0d4R7hwXMBye3lHNmpf289XHtnTpmprqOkJh7vrzLn5VcZD2jlBneYs/yO+3HOaaReV9LpSUqPF5Waz9hyXcfvXZQ3bMoWZBIwW1+IP8dW8tFw5BluG5/Kyp7KtpYc8o73q77vXDFGT7uGphGb/75wu47vyZzJiYz0feWd73zgMw32sMPzryVVQHjrd0+VLw0CtvMWVcDu+bP6XHtnPdee8aRBWVamTQafQHaW+CoTC3P7mDWZMKmFiQwxcefi2h/UZKMBTmng17eGLrEb762BbueaaSrzy2hRXffaHzvJ/fXUMgGOYD75g2pL975qQCVi7pGehThQWNFPTHrUdoDYT4yLllfW+coBVnTkUEntx6dMiOmWpe2VfLb147xOVnTyMv28fEwhy+/uEzef4rlyStS+ysSQVk+zJiLqIznF7ZV8vFdz7HI69Gpnc7cLyFF3bX8HdLZsRcxGeOqy8fzDf+n73yFtf+6GVu+NlmOkLhuFVdj1ZUsbemhZsun8ed157DvpoW7v/LvgH/7mT77tN7uGv9bv7553/jt68d4t+Wz+U7157DW7Wt/Hn7MQD+vO0oxflZnb3SxgoLGinosc1VnDapgEVD+Mc4eVwui2cU8+SbR4bsmKlk2+FGPrO2glNL8vmPfnRzHKxMXwYLT53AE1uPjGi7xgMvRhb4ufvp3bR3hPjFprfJzBBWLpkec/uCnEwumjOJh155i8a2nuswqCpV9SerrhpaA7xUeZx9rhpuS1UDt/5hB6dNKuDZXTVc+p3nOOM/n+Tibz/LN36/rXPtEohkznet383iGcUsXzCFC+dMYsWZU/jhc3tTcpbgv1Ye53+eq+TaReWs+fRi7rz2HG68ZDYfObeMsgl5/KriIB2hMBt2VvO++VP6XFlvtBlbV5viqpvaeWrbUTbtr+Oji8qHvA7+wwvL2Hm0iRf3HO974zRS0+Tns2srKMrN5KHrlwx7XfAN7z2dqvo2fvO3kWngPVjXytM7jnHh7EkcO+Hny796g4c3vc3yM6d0rjAYy02Xz6OxrYMfPlfZ4737/7KfC+94lqe2HeWlyuMsuW0Df3//Rq750cscrGvliw+/zqTCbH59w7v5+ocWUDYhj0+/eyanlxbys1fe4uJvP8vPXnkLgB//ZR/Hm/3cfMX8zr/pr10xn45QmNUPbe4yUd9IU1Vu/eMOTi3J5xtXnsml86Zwjfu/mJEhfPSdZbxYeZz/ebaSpvYgy88c+PipdGVBI0VsrWrk4m8/x+ce2ky2L4Or3zl0VVOejy0up2xCHnf8aeeombCusbWDzz5YQV1rgB9ft3hERjhffEYp55SP5wfPVtIwAkvrPvjyATJEuPPac1g2bzJ/3HKE4oJsPn/JnLj7nXnKeK4+t5yfvHSgS4P427WtfGf9LgBu/cN2bv7NVsqL8/jeyoU0twf5wD1/Yf/xFu782DkUF2Tz6Qtm8fDq8/nPDy7ggU+/i+e/cgkXzJ7Efz3+Jv/yy9f4/jOVXHH21C6Z84yJBdz1sYUcrGvlQ99/kYc3vZ2Ue6Oq3PTrLdz51K6EOoG8sOc4O46c4MaLZ5Of3bML7TWLpqMaqb6aP20cF80ZunbHdGFBIwUcbmjj+rWvUpyfzUPXL+GZf3tvUj78cjJ9fHn5XLYeauTxNw4N+fGH2+GGNq6+9yW2Hz7Bdz9+LmeVjR+R8xARvrJiHocb2njPfz/L468P370NBMP8+m+HWL5gClPH5/LDT76T1/7r/Tz/lUs6V4SL599WzEWAO/8cCRKhsPLvv95CZkYGd33sHKrq23i7rpVvXX02Vy4s48vL53KiPcin3z2Td58e+wPzlAl5/OiTi3jXzBJ+/8Zhrj63jG9d/Y4e233onFN49t8u5j1zS7npN1v5iVtDeyj97vVDPPzqQX7wbCV3rd/d5/Y/em4vU8flcuW5scf0nDoxn+9cew4/+uQi/vAvFyY8N9RoYiPCR5iq8uVH36A1EOLXNyzljCFc7yGWKxeWsfblt/iv323jHeUTUrYveCJuWbeNo43tPHj9Es47bfCDIAfjwjmTeOKLF3Hzb7by1ce28I7yCV2W7kyWZ3ZWU9cS6By8l5PpIycz8Q+yaePz+MxFs/ifZ/fy0XeWs2l/HS/vq+W/r3kHV7+znN3HminM8bHU3d/PXnQaC04Z1+fMrblZPh78xyUcrGtlTpyVEsfnZXHfpxZz4y/+xm1/3MHiGSWcXT744H/sRDub36rn1j/sYOH0CcybWsT3n6lk4fQJLIvRm6ymyc8t697k5X21/OcH5se9hx9dlJyeeOlCRlu//cWLF2tFRcVIn0ZCVJVfbjrI1367lf//I2fzd0uHp5vdoYY2PvT9FykpyOaJL1xEdmb6JZyvH2zgqv95iS+/fy7/six+NcxwOnainffd9TwLpo3jl589r9clPofKZ9ZWsKWqgb/edOmAG2Sb2jtY9p3nO2fr/fji6dxxTc/MIJkaWztY/t3nKczJ5CPnlrFwejEXDrDqp6bJz/vvfp6G1g4KczL51T+dz+mlhVz+vRcIhpUvXDqHbz+1iwn5WVw6bzLXnT+Tlfe9zOHGdr64bA6fe89pY65xG0BENqvq4j63s6AxMn78wj6+/dQuAqEw5582kV98dmlSBp/1Zv32Y3z2wQruvPYcrkmTb07N/iD5WT4UuG7NRnYcaeKFr14y6OkbhtrDm97mpt9sZfmCKdz5sXMYlzs0y8tG232sifXbj3H3+t1cf9Esbr58cD3Gapv9PL3jGAfr2vj8pbNHpNrlhd01fO6hzbS5cRBfuHQ24/OzmVSYzYfPiT840x8M8fV125g9uYg3DzXyhy2HWfsPS3jH9Amdfx8v7K7hujWbAHhH+XjG52Xxlz3Hyc7MIEPg559ZmtCMtKNVokEjtf63jQIt/iC+DHHrLLTz5qET1LcGKC3K4d2nT6QoN4s3DjZw+592cv5pE7n4jFKufufQ95Tqy/vmT+aMKUXc/5d9fPSdZcP+++NpbO3gF5veptnfwcp3nUpLIMhPXzrAIxUHWTBtHEW5mbyyr45vfPjMlAsYAB9/13Sa/UG+9eROPvajl/nlZ89LqEfX3ppmfvzCPg41tDE+L4sls0r45NIZPbKVvTXNXP3Dv9LsD3LapAI+uXTGoM95YmEOH3/XyA4oe8/cUt64ZTkdoTBf++1W7nnmZK+uZ3dWc+n8KZQW5rB0VknnPdn8Vh3ZPh9rXz7AY5tP9l77/CWzeXe3wbHvmVvKqvNnEAiFueVDZ5Kb5eOJrUe488+7+I8r5o/pgNEflmkMkXBY+e7Tu/n+s5X0dkvzs30smVXCziNNiMCfvvQexucN/bfQRP2q4iBfeWwLP/mHd3HJGZNH7Dw8qspjm6v4xu+30+wPkiHgdfLK8glXn1vOi5XHOd7s59arzuoxCV+q+cueGq5fW8G8qUU89I9LGZ/f+791iz/IB7//IsdOtDNnciHHmwMcamjjKyvO4O+Xnsqzu6ppDYQIBMP87JW3qG/t4Hf/fAGnThz8NDOpSFV57WADU8fl8uvNVXwnqhG7bEIen790NifaOvjWkzs7y7+4bA6nluTzUuVxbvvI2eRlj71G6sEYVdVTInIZ8D3AB9yvqrf3tu1ggsaRxrYB9VradbSJb/5hGy9V1vLhc07hjKlFiMCkghzmTxtHaVEOb9e18tjmg2w9dIK8rAxuvmI+75o5st9s/MEQl975PPWtAf79snlcfvZUJhed7NevqsOWgbxV28Jtf9zBn7cfY+msEv6/Dy1gQn42v3/jMFPG5bB01kROmZBHIBim2R+kJEXn5eluw45j/NPPNjO9OJ8vLz+DI41tLJpRzMLpkWmst1Q18trb9bxYWcuGncf45WfP47zTJqKqfOmR11n3xmEKsjNp9gc7j5mf7eP+VYt77b00Gh1pbKPFH2Ln0RP85KUDbH6rHoAPvGMa75s/mRNtQa47f0ZKZczpZtQEDRHxAbuJLB1bBbwKfEJVt8fafqBB42hjO+/99rNcNGcSn1hyKk3tQQK9LFo0bXwup5cW0hoI8sCLB3jk1bcpzMnk3y+fx98tOTWt/nAPN7Tx1ce2dM6qu3RWCR9bPJ37XtjHgdoWpozLZXJRDlPG5VLqnudNLeLCOZNo6wixv6aFmiY/bx5upL0jzFXnnkJdc4Bdx5rIy/JR2xKgNRBk4fRiJhflEFIlHFamjMuluCCb3752iKfePMor+2rJ8mXwhWVzWP2e04Z0saSRtnFfLTf8/G/UtZwcw1Gcn0Vulo8jjSdHRP/r++byxfedbNRvC4RY/VAFhTmZfO69pzN1XC7ZmRnkZ/vGZFdPj6ryu9cPsa+mhS8umzMmG62TYTQFjfOBr6vqCvfzzQCq+q1Y2w80aLQGgvzkpQP86Pm9NLUH+97BycwQPnX+DL5w6ZyUnZWyL15VwCv7arn/L/upawlwqpvbv6bZT/UJP8ea2qk54afJfeMtzMmkJRDsrIoTAZ8IwRiDBn0ZEnNeIq/6ac7kQi6dP5l/vGBW3BHM6ex4s58Dx1soL87nhd01vF7VQHN7kKWnlfD++VPIy/ZRlIQGc2MSNZqCxjXAZar6Gffzp4Clqvr5qG1WA6sBTj311EVvvfXWgH9fY2sHO4+eYGJhDrlZPb/BqMLbda0cqG0hN9PH4pnFzBjCdadHWmNrBxVv1XHB7Ekxv816M/Bu2HGMUybkMW9qEZOKcpg7pYj2jhBPbD3C1HG5nHtqMR2hMOPzsiJreVQ10tTegS9DyBDhrbpWqupaufzsaZ1VNcaYkTOagsa1wIpuQWOJqv5LrO3TpcutMcakkkSDRjpUBlYB0d1kyoHDI3QuxhgzpqVD0HgVmCMis0QkG1gJrBvhczLGmDEp9UZGdaOqQRH5PPAUkS63a1R12wifljHGjEkpHzQAVPUJ4ImRPg9jjBnr0qF6yhhjTIqwoGGMMSZhFjSMMcYkzIKGMcaYhKX84L7+EpEmYNcAdh0PJGOF+6E87iTg+BAdC4b+mlP9eHb/Bs7u3eCk+v07lUg8KO1zS1UdVQ+gYoD73Zek8xmy4w702obrmtPgeHb/7N6N1PFS/f7VJLqtVU+d9Ps0O+5QGOpzS/XjDbVUv95Uvn+pfq2pfO9g6M+vIdENR2P1VIUmMH9KOhrN1zYc7P4NnN27wUn1+9ef8xuNmcZ9I30CSTSar2042P0bOLt3g5Pq9y/h8xt1mYYxxpjkGY2ZhjHGmCSxoDGCRGS6iDwrIjtEZJuIfNGVl4jIehHZ456LXflEt32ziPyg27E+LiJb3HH+eySuZ7gN4P69X0Q2i8hW93xp1LEWufJKEblH0mnN3gEY4nt3m4gcFJHmkbqe4TZU909E8kXkjyKy0x3n9pG8roQMZbcte/S7m9s04J3udRGRtdAXAP8N3OTKbwLucK8LgAuBfwJ+EHWcicDbQKn7eS2wbKSvLwXv37nAKe71WcChqGNtAs4HBHgSuHykry+N7t157njNI31d6Xb/gHzgEvc6G/hLqv/tjfgJ2CPqHwMeB95PZHDiNFc2DdjVbbtPdwsa7wKejvr5U8APR/p6UvX+uXIBaoEct83OqPc+AfzvSF9POty7buVjJmgk4/65974HfHakryfew6qnUoSIzCTybWQjMEVVjwC458l97F4JzBORmSKSCVxF19UOR70B3L+PAq+pqh8oI7JCpKfKlY0Jg7x3Y95Q3T8RmQB8CNiQzPMdrLRYT2O0E5FC4NfAl1T1RH+r01W1XkRuAB4BwsBfgdOG/ERTVH/vn4icCdwBLPeKYmw2JroVDsG9G9OG6v65L3u/BO5R1X1JOt0hYZnGCBORLCJ/dD9X1d+44mMiMs29Pw2o7us4qvp7VV2qqucTSZH3JOucU0l/75+IlAO/Ba5T1b2uuIrI2vOeMbEO/RDduzFriO/ffcAeVf1u8s98cCxojCDXQ+cBYIeq3hX11jpglXu9ikh9aV/Hmuyei4F/Bu4f2rNNPf29fy79/yNws6q+5G3sqhGaROQ8d8zrSOCep7Ohundj1VDePxH5v0QmIPxSss97SIx0o8pYfhDpCaXAFuB197iCSG+oDUSyhQ1ASdQ+B4A6oJnIN+QFrvyXwHb3WDnS15aK9w/4T6AlatvXgcnuvcXAm8Be4Ae4ga+j9THE9+6/3d9i2D1/faSvL13uH5GsVoEdUeWfGenri/ewEeHGGGMSZtVTxhhjEmZBwxhjTMIsaBhjjEmYBQ1jjDEJs6BhjDEmYRY0jBlmIvJPInJdP7afKSJvJvOcjEmUTSNizDASkUxV/dFIn4cxA2VBw5h+chPU/YnIBHXnEpkW+zpgPnAXUAgcBz6tqkdE5Dki84FdAKwTkSIiM8LeKSILgR8RmSJ7L/CPGplLbBGwBmgFXhy+qzMmPqueMmZgzgDuU9V3ACeAG4HvA9eoqveBf1vU9hNU9b2q+p1ux3kQ+Hd3nK3ALa78J8AXNDKXmDEpwzINYwbmoJ6cQ+hnwNeILK6z3s106gOORG3/SPcDiMh4IsHkeVe0FvhVjPKHgMuH/hKM6T8LGsYMTPf5d5qAbXEyg5Z+HFtiHN+YlGDVU8YMzKki4gWITwCvAKVemYhkubUTeqWqjUC9iFzkij4FPK+qDUCjiFzoyv9+6E/fmIGxTMOYgdkBrBKR/yUyo+n3gaeAe1z1UibwXWBbH8dZBfxIRPKBfcA/uPJ/ANaISKs7rjEpwWa5NaafXO+pP6jqWSN8KsYMO6ueMsYYkzDLNIwxxiTMMg1jjDEJs6BhjDEmYRY0jDHGJMyChjHGmIRZ0DDGGJMwCxrGGGMS9v8AeBVY/XemzmcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +2300,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 11, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +2320,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +2344,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG3xJREFUeJzt3X+QldWd5/H3BxvBMaiAYPghwlYcN5rM6tCFTjm7K7oC2aTEzGiG1VWqxiqMmipnnVqBlS13lanVqa1xlrJitEYT1CgyTijZUUIQteLMEqAZNYiGabI6yEhs3EbBVNGx5bt/3NN6uTbdt7ufe+/z3Pt5Vd26T597znkOh+77vefH81xFBGZmZiM1qtENMDOz5uCAYmZmmXBAMTOzTDigmJlZJhxQzMwsEw4oZmaWCQcUMzPLhAOKmZllwgHFzMwy0dboBtTT6aefHjNnzmx0M8zMCmXHjh3vR8SkwfK1VECZOXMmHR0djW6GmVmhSPqnavJ5ysvMzDLhgGJmZplwQDEzs0w4oJiZWSYcUMzMLBMOKDnSdegI33pwC12HjzS6KWZmQ+aAkiOrNney/e1uVj3f2eimmJkNWUtdh5JX56zYQE/v0U9/fnzrXh7fupcxbaPYvfJrDWyZmVn1PELJgZdvn8sV509l7OjSf8fY0aNYeP5UXl46t8EtMzOrngNKDkw+ZSzjxrTR03uUMW2j6Ok9yrgxbUweN7bRTTMzq5qnvHLi/Y96uPbCs7hmzgye2LaXA16YN7OCUUQ0ug11097eHr6Xl5nZ0EjaERHtg+XzlJeZmWXCAcXMzDLhgGJmZplwQCkYX01vZnnlgFIwvprezPLK24YLwlfTm1neeYRSEL6a3szyzgGlIHw1vZnlnae8CsRX05tZnvlK+Sp0HTrCd558hfuvucAjAjNrOb5SPkPeWWVmNjhPeQ3AO6vMzKrnEcoAvLPKzKx6VQUUSW9L2inpVUkdKW2CpE2SOtPz+LL8yyXtkbRb0vyy9Nmpnj2SVklSSh8j6amUvlXSzLIyi9M5OiUtLkuflfJ2prInjrw7juWdVWZm1RvKCGVuRJxftjCzDNgcEWcDm9PPSDoXWAScBywAvivphFTmAWAJcHZ6LEjpNwAHI+JLwH3AvamuCcCdwIXAHODOssB1L3BfOv/BVEfm+nZWrbv5Yq698CwOfNRTi9OYmRVeVbu8JL0NtEfE+2Vpu4FLImK/pCnASxFxjqTlABHxP1K+jcB/A94GXoyIf5nS/0Mqf2NfnojYIqkN+BUwiVJguiQibkxlHgReAtYAB4AvRkSvpN9L5T8dDfXH34diZjZ0We/yCuAnknZIWpLSzoiI/QDpeXJKnwa8U1Z2X0qblo4r048pExG9wIfAxAHqmgh8kPJW1mVmZg1Q7S6viyPiXUmTgU2SfjFAXvWTFgOkD6fMQHUd25hSAFwCMGPGjP6ymJlZBqoaoUTEu+m5C1hHaT3jvTTVRXruStn3AWeWFZ8OvJvSp/eTfkyZNOV1KtA9QF3vA6elvJV1Vbb9oYhoj4j2SZMmVfPPNTOzYRg0oEg6WdK4vmNgHvA6sB7o23W1GHgmHa8HFqWdW7MoLb5vS9NihyVdlHZ3XV9Rpq+uq4AXorS4sxGYJ2l8WoyfB2xMr72Y8lae38zMGqCaKa8zgHVph28b8ERE/FjSdmCtpBuAvcDVABGxS9Ja4A2gF7glIj5Jdd0E/AA4CdiQHgAPA49J2kNpZLIo1dUt6W5ge8p3V0R0p+OlwBpJK4FXUh1mZtYgvpeXmZkNyPfyMjOzunJAMTOzTDigmJlZJhxQzMwsEw4oZmaWCQcUMzPLhAOKmZllwgHFzMwy4YBiZmaZcEAxM7NMOKCYmVkmHFDMzCwTDihmZpYJBxQzM8uEA4qZmWXCAcXMzDLhgGJmZplwQDEzs0w4oJiZWSYcUMzMLBMOKGZmlgkHFDMzy4QDipmZZcIBxczMMuGAYmZmmXBAMTOzTDigmJlZJhxQzKxpdB06wrce3ELX4SONbkpLckAxs6axanMn29/uZtXznY1uSktqa3QDzMxG6pwVG+jpPfrpz49v3cvjW/cypm0Uu1d+rYEtay0eoZhZzdV6Kurl2+dyxflTGTu69JY2dvQoFp4/lZeXzq3J+ax/DihmVnO1noqafMpYxo1po6f3KGPaRtHTe5RxY9qYPG5sTc5n/fOUl5nVTD2not7/qIdrLzyLa+bM4Ilteznghfm6U0Q0ug11097eHh0dHY1uhlnL6Dp0hJXPvclPdv2KIx8fZezoUcw/74vc8fUve/RQIJJ2RET7YPk85WVmNeOpqNZSdUCRdIKkVyT9bfp5gqRNkjrT8/iyvMsl7ZG0W9L8svTZknam11ZJUkofI+mplL5V0syyMovTOTolLS5Ln5XydqayJ46sK8ysFvqmotbdfDHXXngWBz7qaXSTrEaqnvKSdBvQDpwSEd+Q9OdAd0TcI2kZMD4ilko6F3gSmANMBZ4HfjsiPpG0DbgV+BnwHLAqIjZIuhn4nYj4tqRFwDcj4o8kTQA60nkD2AHMjoiDktYCP4qINZK+B7wWEQ8M9G/wlJeZ2dBlOuUlaTrwdeCvypIXAqvT8WrgyrL0NRHRExFvAXuAOZKmUApGW6IUxR6tKNNX19PAZWn0Mh/YFBHdEXEQ2AQsSK9dmvJWnt/MzBqg2imvvwRuB46WpZ0REfsB0vPklD4NeKcs376UNi0dV6YfUyYieoEPgYkD1DUR+CDlrazrGJKWSOqQ1HHgwIEq/7lmZjZUgwYUSd8AuiJiR5V1qp+0GCB9OGUGquvYxIiHIqI9ItonTZrUXxZrAb7Hk1ntVTNCuRi4QtLbwBrgUkmPA++laSzSc1fKvw84s6z8dODdlD69n/RjykhqA04Fugeo633gtJS3si6zz/E9nsxqb9CAEhHLI2J6RMwEFgEvRMR/BNYDfbuuFgPPpOP1wKK0c2sWcDawLU2LHZZ0UVoDub6iTF9dV6VzBLARmCdpfNpFNg/YmF57MeWtPL/Zp85ZsYGZy57l8a17iShdWDdz2bOcs2JDo5tm1nRGch3KPcDlkjqBy9PPRMQuYC3wBvBj4JaI+CSVuYnSwv4e4JdA31/1w8BESXuA24Blqa5u4G5ge3rcldIAlgK3pTITUx1mx2jWezx5Cs/yaEi3XomIl4CX0vH/Ay47Tr4/A/6sn/QO4Cv9pB8Brj5OXY8Aj/ST/n8pbU02O66hXFjXdegI33nyFe6/5oLcX3hXPoW38ptfbXRzzADfy8taQLX3eCrCm7Rv02555nt5WcurfJPuk8c3ad8byxrB9/Iyq1KR1ll8byzLM095Wcsr2pu0b9NueeWAYkax3qQfvO6zmYeVV35uj4tZw3gNxczMBuQ1FDOzYfA1PsPngGJmVsa36Rk+r6FY7hXpgkMrLl/jM3IeoVju+ROj1UORto/nlUcollut/InRo7L6K9r28TzyCMUaaqAF0Fb+xOhRWWP0bR9fd/PFXHvhWRz4qKfRTSoUj1Bs2LL4FD3Q/bNa8RNjK4/K8sDX+IyMA4oN20hupljtG2eRLjjMwsu3zz3uvbrM8s4BxYYsi0/R1b5xttonxlYclVnz8BqKDVkWaxt+4zw+z+NbUXmEYkOWVTBotemsahVtVOYdadbHAcWGJYtgULQ3TutfEb6YzOrDN4c0s2Ep0heT2cj45pBmVlOtfJ2Q9c8BxcyGxRsrrJLXUMxs2Lyxwsp5DcXMzAbkNRQzM6srBxQzM8uEA4qZmWXCAcXMzDLhgGJmZplwQDEzs0w4oJhlaKBvoDRrdg4oZhnyV/daK/OV8mYZ8Ff3mnmEYpYJ3yjRzAHFmkAe1i18o0SzKgKKpLGStkl6TdIuSf89pU+QtElSZ3oeX1ZmuaQ9knZLml+WPlvSzvTaKklK6WMkPZXSt0qaWVZmcTpHp6TFZemzUt7OVPbEbLrEiiYv6xb+6l5rdYPeHDK96Z8cER9JGg38HXAr8AdAd0TcI2kZMD4ilko6F3gSmANMBZ4HfjsiPpG0LZX9GfAcsCoiNki6GfidiPi2pEXANyPijyRNADqAdiCAHcDsiDgoaS3wo4hYI+l7wGsR8cBA/xbfHLK5+AuezOojs5tDRslH6cfR6RHAQmB1Sl8NXJmOFwJrIqInIt4C9gBzJE0BTomILVGKYo9WlOmr62ngshTI5gObIqI7Ig4Cm4AF6bVLU97K81uL8LpF7eVhOtGKo6o1FEknSHoV6KL0Br8VOCMi9gOk58kp+zTgnbLi+1LatHRcmX5MmYjoBT4EJg5Q10Tgg5S3si5rEV63qL28TCdaMVS1bTgiPgHOl3QasE7SVwbIrv6qGCB9OGUGquvYxkhLgCUAM2bM6C+LFZi/4Kk2vA3ahmNI16FExAeSXgIWAO9JmhIR+9N0VlfKtg84s6zYdODdlD69n/TyMvsktQGnAt0p/ZKKMi8B7wOnSWpLo5Tyuirb/BDwEJTWUIby77X8e/C6z6Z1V1450OccG4qXb5/Lyufe5Ce7fsWRj48ydvQo5p/3Re74+pcb3TTLsWp2eU1KIxMknQT8O+AXwHqgb9fVYuCZdLweWJR2bs0Czga2pWmxw5IuSmsg11eU6avrKuCFtM6yEZgnaXzaRTYP2JheezHlrTy/mY2QpxNtOKpZQ5kCvCjp58B2SmsofwvcA1wuqRO4PP1MROwC1gJvAD8GbklTZgA3AX9FaaH+l8CGlP4wMFHSHuA2YFmqqxu4O513O3BXSgNYCtyWykxMdTSMFy+t2dRzG3TR/n6K1t568XfKZ2TFup38cNterp0zg5Xf/GpNzmHWrIr291O09o5UtduGHVBGyNdCmA1f0f5+itberGR2HYoNzNdCmA1f0f5+itbeenNAGaFqFy8952p51Ojfy6It/hetvfXmgJKBahYvfYGY5VEefi+Ldg+0orW3nryGUmOtOudq+ebfSxsKr6HkRFHnXBs9FWK1VdTfy2bSjH9jDig1VtQ51zxMhVjtFPX3spk049+YvwK4Dop0vynfw6l1FOn3spk089+Y11DsGF2Hjhz3Hk7+9Go2ckX8G/Maig2Lp0LMaquZ/8YcUFrQYIuB3hZpVlvN+jfmKa8W1Gr3ITKzkal2ysuL8i2kmRcD66Hr0BG+8+Qr3H/NBU0xPWGWNU95tRBfezAyzbjN0yxLHqG0kGZeDKwlj+zMquMRSotp1sXAWvLIzqw6HqG0GH8H+9B5ZGdWHQcUsyr4qnKzwXnbsJmZDchXypuZWV05oJiZWSYcUMzMLBMOKGZNqhm/wKlIWrH/HVDMmpSv7G+sVux/7/IyazL+vvjGyrL/83L/OO/yMsupWk+F+Mr+xsqy/4s2yvGFjWZ1Vv4mUYuvD/CV/Y2VRf8X9f5xDihmdVLPNwlf2d9YI+3/l2+fe9yvCc4zr6GY1UkRv0s8T/KynlAvd6zbyRPb9nLiCaP4zSdHG/qFeF5DMcsZT0WNTNHWE0aqiHcG9wjFrI5ufKyDSePGHjMVUn4HaPs871prvGpHKA4oZpZrnipsPE95mVlT8FRhcTigmFnuFXE9oV7ydIsXT3mZmRXYinU7+eG2vTXdBZbZlJekMyW9KOlNSbsk3ZrSJ0jaJKkzPY8vK7Nc0h5JuyXNL0ufLWlnem2VJKX0MZKeSulbJc0sK7M4naNT0uKy9Fkpb2cqe2K1nWNmVnTnrNjAzGXP8vjWvUSUrmuauexZzlmxoWFtqmbKqxf404j4MnARcIukc4FlwOaIOBvYnH4mvbYIOA9YAHxX0gmprgeAJcDZ6bEgpd8AHIyILwH3AfemuiYAdwIXAnOAO8sC173Afen8B1MdZmYtIY+32Bk0oETE/oj4h3R8GHgTmAYsBFanbKuBK9PxQmBNRPRExFvAHmCOpCnAKRGxJUrzbI9WlOmr62ngsjR6mQ9siojuiDgIbAIWpNcuTXkrz29m1vTyuFlhSLdeSVNRFwBbgTMiYj+Ugo6kySnbNOBnZcX2pbSP03Flel+Zd1JdvZI+BCaWp1eUmQh8EBG9/dRlZtYS8naLnaoDiqQvAH8D/ElEHErLH/1m7SctBkgfTpmB6jq2MdISStNszJgxo78sZmaFVH5R7Morv9LAlpRUtW1Y0mhKweSHEfGjlPxemsYiPXel9H3AmWXFpwPvpvTp/aQfU0ZSG3Aq0D1AXe8Dp6W8lXUdIyIeioj2iGifNGlSNf9cMzMbhmp2eQl4GHgzIv6i7KX1QN+uq8XAM2Xpi9LOrVmUFt+3pemxw5IuSnVeX1Gmr66rgBfSOstGYJ6k8Wkxfh6wMb32YspbeX4zM2uAaqa8LgauA3ZKejWl/RfgHmCtpBuAvcDVABGxS9Ja4A1KO8RuiYhPUrmbgB8AJwEb0gNKAesxSXsojUwWpbq6Jd0NbE/57oqI7nS8FFgjaSXwSqrDzMwaxBc2Ws202u3GzZqV7+VlDddqtxs3a3X+xkbLXFG/vtTMRsYjFMtcHq/gNbPac0CxzOXxCl4zqz1PeVlN5O0KXjOrPe/yMjOzAXmXVwvL0xfumFnrcEBpQt6ua2aN4DWUJuLtumbWSB6hNBFv1zUbnKeEa8cBpYl4u67Z4DwlXDue8moy3q5r1j9PCdeetw2bWUvoOnSElc+9yU92/YojHx9l7OhRzD/vi9zx9S97FD8Ibxs2MyvjKeHa85SXmbUMTwnXlqe8zMxsQJ7yMjOzunJAMTOzTDigmJlZJhxQzMwsEw4oZmaWCQcUMzPLhAOKmZllwgHFzMwy4YBiZmaZcEAxM7NMOKCYmVkmHFDMzCwTDihmZpYJBxQzM8uEA4qZmWXCAcXMzDLhgGJmZplwQDEzs0w4oJiZWSYGDSiSHpHUJen1srQJkjZJ6kzP48teWy5pj6TdkuaXpc+WtDO9tkqSUvoYSU+l9K2SZpaVWZzO0SlpcVn6rJS3M5U9ceRdYWZmI1HNCOUHwIKKtGXA5og4G9icfkbSucAi4LxU5ruSTkhlHgCWAGenR1+dNwAHI+JLwH3AvamuCcCdwIXAHODOssB1L3BfOv/BVIeZmTXQoAElIn4KdFckLwRWp+PVwJVl6Wsioici3gL2AHMkTQFOiYgtERHAoxVl+up6GrgsjV7mA5siojsiDgKbgAXptUtT3srzm5lZgwx3DeWMiNgPkJ4np/RpwDtl+faltGnpuDL9mDIR0Qt8CEwcoK6JwAcpb2VdnyNpiaQOSR0HDhwY4j/TzKzYug4d4VsPbqHr8JGanyvrRXn1kxYDpA+nzEB1ff6FiIcioj0i2idNmnS8bGZmTWnV5k62v93Nquc7a36utmGWe0/SlIjYn6azulL6PuDMsnzTgXdT+vR+0svL7JPUBpxKaYptH3BJRZmXgPeB0yS1pVFKeV1mZgacs2IDPb1HP/358a17eXzrXsa0jWL3yq/V5JzDHaGsB/p2XS0GnilLX5R2bs2itPi+LU2LHZZ0UVoDub6iTF9dVwEvpHWWjcA8SePTYvw8YGN67cWUt/L8ZmYGvHz7XK44fypjR5fe5seOHsXC86fy8tK5NTvnoCMUSU9SGimcLmkfpZ1X9wBrJd0A7AWuBoiIXZLWAm8AvcAtEfFJquomSjvGTgI2pAfAw8BjkvZQGpksSnV1S7ob2J7y3RURfZsDlgJrJK0EXkl1mJlZMvmUsYwb00ZP71HGtI2ip/co48a0MXnc2JqdU6UP/K2hvb09Ojo6Gt0MM7O6uPGxDiaNG8s1c2bwxLa9HDh8hAevax9yPZJ2RMSgBR1QzMxsQNUGFN96xczMMuGAYmZmmXBAMTOzTDigmJlZJhxQzMwsEw4oZmaWiZbaNizpAPBP/bx0OqVbuhRFkdpbpLZCsdpbpLZCsdpbpLZC7dt7VkQMejPElgooxyOpo5o91nlRpPYWqa1QrPYWqa1QrPYWqa2Qn/Z6ysvMzDLhgGJmZplwQCl5qNENGKIitbdIbYVitbdIbYVitbdIbYWctNdrKGZmlgmPUMzMLBNNG1AkPSKpS9LrZWn/StIWSTsl/W9Jp6T00ZJWp/Q3JS0vK/OSpN2SXk2PyQ1u64mSvp/SX5N0SVmZ2Sl9j6RV6cvMMpdhe+vRt2dKejH9v+6SdGtKnyBpk6TO9Dy+rMzy1Ie7Jc0vS69p/2bc1tz1raSJKf9Hku6vqCtXfTtIW/PYt5dL2pH6cIekS8vqqsv7AgAR0ZQP4N8Avwu8Xpa2Hfi36fiPgbvT8TXAmnT8W8DbwMz080tAe47aegvw/XQ8GdgBjEo/bwN+DxClLzD7Ws7bW4++nQL8bjoeB/wjcC7w58CylL4MuDcdnwu8BowBZgG/BE6oR/9m3NY89u3JwO8D3wbur6grb307UFvz2LcXAFPT8VeAf65X35Y/mnaEEhE/pfQNkOXOAX6ajjcBf9iXHThZpe+0Pwn4DXCoHu2EIbf1XGBzKtcFfAC0S5oCnBIRW6L0W/QocGVe21uLdvUnIvZHxD+k48PAm8A0YCGwOmVbzWd9tZDSh4ueiHgL2APMqUf/ZtXWLNuUZXsj4tcR8XfAkfJ68ti3x2trvQyjva9ExLspfRcwVqWvYq/b+wI08ZTXcbwOXJGOrwbOTMdPA78G9lP6SuP/GZ993TDA99PQ9r/WdLhYXVtfAxZKapM0C5idXpsG7Csrvy+l1ctQ29unbn0raSalT3JbgTMiYj+U/ngpjZ6g1GfvlBXr68e69u8I29onb317PHns28HkuW//EHglInqoc9+2WkD5Y+AWSTsoDSN/k9LnAJ8AUylNHfyppH+RXrs2Ir4K/Ov0uK7BbX2E0i9FB/CXwP8BeikNZyvVcwvfUNsLdexbSV8A/gb4k4gYaPR5vH6sW/9m0FbIZ98et4p+0hrdtwPJbd9KOg+4F7ixL6mfbDV7X2ipgBIRv4iIeRExG3iS0pwzlNZQfhwRH6dpmb8nTctExD+n58PAE9RpSuF4bY2I3oj4TxFxfkQsBE4DOim9aU8vq2I68G5lvTlqb936VtJoSn+UP4yIH6Xk99J0QN+US1dK38exI6i+fqxL/2bU1rz27fHksW+PK699K2k6sA64PiL63tvq+r7QUgGlbzeGpFHACuB76aW9wKUqORm4CPhFmqY5PZUZDXyD0tROw9oq6bdSG5F0OdAbEW+k4e9hSRelIfj1wDP1aOtw2luvvk198TDwZkT8RdlL64HF6Xgxn/XVemBRmn+eBZwNbKtH/2bV1hz3bb9y2rfHqyeXfSvpNOBZYHlE/H1f5rq/L2S9yp+XB6VPyfuBjylF6RuAWyntlvhH4B4+u7DzC8BfU1rMegP4z/HZTo8dwM/Ta/+LtIumgW2dCeymtEj3PKW7gPbV007pl/uXwP19ZfLY3jr27e9TGuL/HHg1Pf49MJHSZoHO9DyhrMwdqQ93U7Yjptb9m1Vbc963b1Pa0PFR+t05N8d9+7m25rVvKX2I+3VZ3leByfXo2/KHr5Q3M7NMtNSUl5mZ1Y4DipmZZcIBxczMMuGAYmZmmXBAMTOzTDigmJlZJhxQzMwsEw4oZmaWif8P5AS727RchlQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +2383,56 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2021 938731\n", + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2053781\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +2447,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFu1JREFUeJzt3X2UZHV95/H31+FpoGEgQRodiGPUuCIjII0GXbUbXYNAko3hiIpGPJrW3YhEJ2cz8RhZTdxgzGSP2WjMaIweH+hjEHYTxpC4ug1iDNKDDwOixIUxMIQhgIz2MCsOfPeP3+10t/bD7emqrv51v1/n9Jl6uHXrW9+p+tS9v3tv3chMJEn1eEyvC5AkLYzBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSarMQd2Y6bHHHpsbNmzoyLz27t3LEUcc0ZF51c5eTLIX09mPSbX2Yvv27fdl5mPbTNuV4N6wYQNjY2Mdmdfo6CiDg4MdmVft7MUkezGd/ZhUay8i4rttp3WoRJIqY3BLUmUMbkmqjMEtSZUxuCWpMq2COyLeEhG3RMTNEXF5RBzW7cIkSTObN7gjYj3wZmAgM08G1gAv73ZhkqSZtR0qOQhYGxEHAYcDd3evJEnSXKLNOScj4hLg3cA+4O8z88IZphkGhgH6+/tPHxkZ6UiB4+Pj9PX1dWRetVtJvdixa8+iHt+/FnbvW/jjNq5ft6jnXa5W0ntjsWrtxdDQ0PbMHGgz7bzBHRHHAJ8BLgAeBP4KuCIzPzHbYwYGBtIjJztvJfViw+Zti3r8po372bJj4Qf+7rzs3EU973K1kt4bi1VrLyKidXC3GSp5EXBHZv5rZv4IuBJ4zmIKlCQduDbB/c/Az0fE4RERwAuBW7tbliRpNvMGd2beAFwB3ATsaB6ztct1SZJm0WqQMDMvBS7tci2SpBY8clKSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqM29wR8RTI+JrU/6+HxG/uRTFSZJ+0rynLsvMbwOnAkTEGmAXcFWX65IkzWKhQyUvBP5vZn63G8VIkuYXmdl+4oiPADdl5p/OcN8wMAzQ399/+sjISEcKHB8fp6+vryPzqt1K6sWOXXsW9fj+tbB738Ift3H9ukU973K1kt4bi1VrL4aGhrZn5kCbaVsHd0QcAtwNPD0zd8817cDAQI6NjbWa73xGR0cZHBzsyLxqt5J6sWHztkU9ftPG/WzZMe9I30/Yedm5i3re5WolvTcWq9ZeRETr4F7IUMlLKEvbc4a2JKm7FhLcrwAu71YhkqR2WgV3RBwO/Afgyu6WI0maT6tBwsx8CPjpLtciSWrBIyclqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMm1PXXZ0RFwREd+KiFsj4sxuFyZJmlmrU5cB7wOuyczzI+IQ4PAu1iRJmsO8wR0RRwHPBy4CyMyHgYe7W5YkaTaRmXNPEHEqsBX4JnAKsB24JDP3/th0w8AwQH9//+kjIyMdKXB8fJy+vr6OzKt2ne7Fjl17Ojavpda/Fnbv63UV7W1cv66r8/dzMqnWXgwNDW3PzIE207YJ7gHgH4HnZuYNEfE+4PuZ+buzPWZgYCDHxsYWUvOsRkdHGRwc7Mi8atfpXmzYvK1j81pqmzbuZ8uOtiN9vbfzsnO7On8/J5Nq7UVEtA7uNhsn7wLuyswbmutXAM880OIkSYszb3Bn5j3AnRHx1OamF1KGTSRJPdB2XfNi4JPNHiW3A6/tXkmSpLm0Cu7M/BrQauxFktRdHjkpSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlWl1BpyI2An8AHgE2N/2TMSSpM5re85JgKHMvK9rlUiSWnGoRJIqE5k5/0QRdwDfAxL488zcOsM0w8AwQH9//+kjIyMdKXB8fJy+vr6OzKt2ne7Fjl17Ojavpda/Fnbv63UV7W1cv66r8/dzMqnWXgwNDW1vOwzdNrgfn5l3R8RxwOeAizPzutmmHxgYyLGxsdYFz2V0dJTBwcGOzKt2ne7Fhs3bOjavpbZp43627FjISF9v7bzs3K7O38/JpFp7ERGtg7vVUElm3t38ey9wFfCsAy9PkrQY8wZ3RBwREUdOXAZeDNzc7cIkSTNrs67ZD1wVERPTfyozr+lqVZKkWc0b3Jl5O3DKEtQiSWrB3QElqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMq2DOyLWRMRXI+LqbhYkSZrbQpa4LwFu7VYhkqR2WgV3RJwAnAt8uLvlSJLmE5k5/0QRVwB/ABwJ/FZmnjfDNMPAMEB/f//pIyMjHSlwfHycvr6+jsxrudqxa0+r6frXwu59XS6mErX1YuP6dV2d/2r4nLRVay+Ghoa2Z+ZAm2nnPct7RJwH3JuZ2yNicLbpMnMrsBVgYGAgBwdnnXRBRkdH6dS8lquLNm9rNd2mjfvZsmPe/7JVobZe7LxwsKvzXw2fk7ZWQy/aDJU8F/iliNgJjABnRcQnulqVJGlW8wZ3Zv5OZp6QmRuAlwNfyMxXdb0ySdKM3I9bkiqzoEHCzBwFRrtSiSSpFZe4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVmTe4I+KwiPhKRHw9Im6JiHcuRWGSpJm1OQPOD4GzMnM8Ig4Gro+Iv83Mf+xybZKkGcwb3JmZwHhz9eDmL7tZlCRpdlFyeZ6JItYA24EnA+/PzN+eYZphYBigv7//9JGRkY4UOD4+Tl9fX0fmNZcdu/Z0/TkWq38t7N7X6yqWB3sx3Vz92Lh+3dIW02Pj4+PcseeRnjz3Yno9NDS0PTMH2kzbKrj/beKIo4GrgIsz8+bZphsYGMixsbHW853L6Ogog4ODHZnXXDZs3tb151isTRv3s2XHgs7vvGLZi+nm6sfOy85d4mp6a3R0lIuu2duT515MryOidXAvaK+SzHyQcpb3sw+gLklSB7TZq+SxzZI2EbEWeBHwrW4XJkmaWZt1zccBH2vGuR8DfDozr+5uWZKk2bTZq+QbwGlLUIskqQWPnJSkyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKtDnn5IkR8X8i4taIuCUiLlmKwiRJM2tzzsn9wKbMvCkijgS2R8TnMvObXa5NkjSDeZe4M/NfMvOm5vIPgFuB9d0uTJI0s8jM9hNHbACuA07OzO//2H3DwDBAf3//6SMjIx0pcHx8nL6+vo7May47du3p+nMsVv9a2L2v11UsD/ZiuuXYj43r1/XkecfHx7ljzyM9ee7FvOahoaHtmTnQZtrWwR0RfcC1wLsz88q5ph0YGMixsbFW853P6Ogog4ODHZnXXDZs3tb151isTRv3s2VHm9Gtlc9eTLcc+7HzsnN78ryjo6NcdM3enjz3Yl5zRLQO7lZ7lUTEwcBngE/OF9qSpO5qs1dJAH8B3JqZf9z9kiRJc2mzxP1c4NXAWRHxtebvnC7XJUmaxbyDYpl5PRBLUIskqQWPnJSkyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKtDnn5Eci4t6IuHkpCpIkza3NEvdHgbO7XIckqaV5gzszrwMeWIJaJEktRGbOP1HEBuDqzDx5jmmGgWGA/v7+00dGRg6ooB279ky73r8Wdu87oFmtOPZikr2Ybjn2Y+P6dT153vHxce7Y80hPnnsxr3loaGh7Zg60mXbes7y3lZlbga0AAwMDOTg4eEDzuWjztmnXN23cz5YdHSuzavZikr2Ybjn2Y+eFgz153tHRUbZcv7cnz71Ur9m9SiSpMga3JFWmze6AlwNfBp4aEXdFxOu6X5YkaTbzDopl5iuWohBJUjsOlUhSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlWgV3RJwdEd+OiO9ExOZuFyVJml2bc06uAd4PvAQ4CXhFRJzU7cIkSTNrs8T9LOA7mXl7Zj4MjAC/3N2yJEmzicyce4KI84GzM/P1zfVXA8/OzDf92HTDwHBz9anAtztU47HAfR2aV+3sxSR7MZ39mFRrL56QmY9tM+G8Z3kHYobbfiLtM3MrsLXNky5ERIxl5kCn51sjezHJXkxnPyathl60GSq5CzhxyvUTgLu7U44kaT5tgvtG4CkR8cSIOAR4OfDX3S1LkjSbeYdKMnN/RLwJ+DtgDfCRzLyl65VN6vjwS8XsxSR7MZ39mLTiezHvxklJ0vLikZOSVBmDW5IqY3BLUmVWdHBHxPqIWN/rOpaDiPjZiHhLRJzV61p6zV5MshfT1dKPFRncEbEhIq4FrgHeGxHP63VNvRQR/x74HOW3Zt4YEf+pxyX1jL2YZC+mq6kfKya4I+KwKVefCdyYmRspuzG+OSI2NtPNdCToihIRZ0XEE5vLAZwFXJqZvw5sAc6JiMEp969Y9mKSvZiu5n5UHdwRcVREfDAibgP+KCKe0Nz1K8A/N5dHgO8Ar5942BKXuWQi4qSI+AbwX4G/jIizsuzveRJwPEBm3gD8A/DaiYf1otZusxeT7MV0K6EfVQc3cDZwGKXhDwPviIi1lNWdXwTIzB8CVwDPa64/2ptSOy8iToiIo6bcdAHwmcx8PuUL65UR8RTgUzT9aFwFnBwRh66UftiLSfZiupXYj2Uf3FEcFBGvi4gvRsQlEfGk5u4nAw9n5n7gvwPfA14F/D3wuIj4qWa624A7I+LMJX8BXRART4uIzwLXA++KiImf2f1/wOHN5U8D9wDnUpYcfnrKGskDlF9vPGXpqu4OezHJXky3kvux7IO7WYV5AfBrwB8ChwIfau6+B7i3+Ua8k9LkJ1H+Y77J5M/MHgzc39xepYg4YsrVU4G7MnMD8AXgj5rbHwB+GBFHZuYDwD8Bj6e87n8A3tpMdwjwCLCz+5V3nr2YZC+mWy39WHbBHRFnRsR7IuKi5noATwOuycy/ycw/BJ4QEc8BdlG+OZ/WPPxWoK+57U8pGxd+kRL6/cDXl/TFLFJEHBMRH42IG4HLIuKxTT82Al+KiMjMvwYejIhzKWsWRzb301w/DniUskZyXER8CLgc2J+Z9y71azpQ9mKSvZhuNfZjWQV3RDwd+DPgB8DLIuKtlBrXAz+YsmX3o8ArKUG8H3hOc/tNlC3DD2XmdcBm4CLgucDvZeajy23r8DyeT3l951A2jrwNOIryY1/H5+QPzXyM0o+vUHr3EoDM/HIzj4My81bgDcAtwH/LzNdSF3sxyV5Mt/r6kZk9+aMsGb+esjpzUHPbHwOXNJcHgD8BzgdeBPzdlMeeSFkFghLUX6Wcdec04H8Bj5sybfTqNS6gF2sob5ZrKcM7xza3fxp4c3P5icBlzf1nUMbt1kzp5b8281lPWfN4E/CXwAeAI3r9Gu2FvbAfnfvryRJ3RJxC2YD4y8ClwNubu3ZRznEJ5RvvS8CvAp8Hjo+IZ0TEwVnGs3dFxPMy8wuUn3F8D3AlcHlm/svEc2XzP7bMnQf8EvBO4EzKWD6UvWMm1ibuBL4IvCQzb6QsWQwBZOY4cANwRmbuAl5NGRq6B3h7Zu5dotfRCfZikr2Yzn402py6bNEi4jRgb2be1tz0LOC2zLwoIp4JvDsiBoBR4Bci4vDMfCgivg68jLJv5aeAXwf+JCL2ATuAO5r5fRD4VGbuWYrXcyCacbaMiDMoq2tfBLZl2V3x54DbM/MLEXEH5WjPFwPbgV+JiGMz876I+Cdgb0T8DPA/gFdFxHGUsxLdT1kFJDPHgLElf5Et2YtJ9mI6+9FOV5e4I+LJEXE9ZUz6HRHxa81djwI7m6XnmyirLGcCDzG5aw7AjyirNsdTlqpvbuZ1LXBfZt4FZam6ktB+PvARytbrFwF/0EzyKHBbRKzNzDso/XgGZRzubsp+p1C2cK+h/L99htKTC4HTga25zPY1nUlErGl68QLKKupq7sXapheDrPL3BZQD6uxHS50cdwGOAM6ccv084H3N5WdTvt2eALyGsrqzvrnvfMp49sR91za3H0YZJjl2yjxPAw7p1djSAnpxOPBGJtcUDgZ+E/iN5v5jgG80r+cCyrjchil920o5W/V5lLWLdZTx/M9Off3AY3r9Wlu+L15P+RBtomw4WpW9aOo8EthGOZsUwFtWcS8Obz7zn6ccFLOq+9H2r2NL3BHxNuB24LMR0d/c/AuUfavJcgjpV4CLKftUnkjZ5xrKWPaplL1BPgZ8LyI+Ttno+G3g38aeMvOrmflwp+ruhog4HrgaGAQ+TtlQ8lLKWsV+gMz8HmVD6pspY3THMblb43WUfdcfzsyrgb+gHP35fsqW8R9NPFcu86WHZr/az1M+TB8CXkzZbnEGZQlq1fRiirWU4xGeFBHHUj4Ha2B19SIiDqZsyzofeG9m/mpz12kT06ymfixIB785BymrLR8GNjW3vZUyPjUxzUnAnc3ldwPvmnLfjcBpzeVDKbv2nNHrb7YD7MVa4NlTrl9E2ZDyGuArU25/PHB3c/k3KIffHtM8/m+An5ky7bFLUXuX+nH0lMv/hfIhvHA19qKp/zXAe4HfBV5HOcz6xlXaiyuBC3/stguAG1ZjP1r3rYP/ARO73FzA5FDH0cCDwGFTpruR8o16NPBXlFWdv6V8Qx7a64Z0qBcx8ddcf+aUntxP2bd0YtrPTYQ88PuUvW3uB36716+jwz05irJ9Yjfwrub6/UD/aunFlPfDaynDaC8FPtncdt9q6sWU13ke5QCYLZSdE95BGTJ9ADhutfWj7V/Hhkoy85Hm4v8GjoyIUzLzQcq49humTHoTcGRz38WU4ZD/CQxn2XJcvWxMuekSypIFlLG3twBE+S2V7wITuy++k7KWsj4z37NE5S6JzPw+Zajs5ykbm19GGQZ7QxQrvhdT3hPnUIaNPg+cEBFvp2yUH4ZV9764mrJ32P2U3fOeDvxHynvjjavlvbFQXTnLe0R8gDJe/VvNnhT/mRLgx1AOrDlnStCvaBFxAmXs7eLMvC3KD2QNU96g64Gv5XI9OqtLIuJUypf5lynjlSdTdtVa8b2IiD7KMMmhlNf+7ygHibyNsiT+FFZJLyZM7P7bXD6F8vn4EuWQ9FXz3liIbgX3qZS9RF5IeXM+RDn8fB/wwcy8peNPukxF+a2UFwC/QxnbvIuy2ncB8K0su0OuKhFxIuXL7BWZeX9EvAq4JTO/2uPSui7KCT/+nLLh7HLKrmtvy8wXN/evml7MJMov830YuCAzH1jt/ZhNt4L75ZTd4B4Cfo+yxXhlbdVtKSK+BPws5RfG7gbemZnf6GlRPRAR6yhf5K+kbKTeCrw/M3805wNXuOYgkZcCI5l5T6/r6YWIOJTy2/oTQyV/Bnwgy881awYdD+6IeAbl8PMrKBteqv0p1cVqdne6lDKG94mVMoZ/ICLiIMrwyA8pvVi17wsoByIBj2Y3lpwqFBFvoOwe+vHV/t5ooytL3JKk7llWP+sqSZqfwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5Iq8/8BnVLOiAvrP5IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -341,9 +2480,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } @@ -364,7 +2501,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4,