diff --git a/module2/exo4/exercice.ipynb b/module2/exo4/exercice.ipynb
index 733084cb2e00a35e51aa67afa495e4b60c87a32f..a82890ec39468bef7d627daac6b32e6ba8bcccc5 100644
--- a/module2/exo4/exercice.ipynb
+++ b/module2/exo4/exercice.ipynb
@@ -31,7 +31,7 @@
"### 20200414\n",
"\n",
"* Les librairies utilisées sont pandas, matplotlib et isoweek.\n",
- "* Exercice 4A - Pas de soucis majeur."
+ "* Module 3 - Exercice de la section 3A - Pas de soucis majeur."
]
},
{
@@ -40,7 +40,7 @@
"source": [
"### 20200415\n",
"\n",
- "* Exercice 4A - J'ai planté un exercice par faute d'inattention et parce que je ne comprends par forcément bien les questions."
+ "* Module 3 - Exercice de la section 4A - J'ai planté un exercice par faute d'inattention et parce que je ne comprends par forcément bien les questions."
]
},
{
@@ -51,7 +51,8 @@
"\n",
"* Les vidéos sur Jupyter sont intéressantes. \n",
"* Exercice 5A réussi avec succès.\n",
- "* Duplication du journal local en Markdown sur Jupyter comme demander dans l'exercice."
+ "* Duplication du journal local en Markdown sur Jupyter comme demander dans l'exercice. Pour accéder au document, il faut lancer le serveur Jupyter en cliquant sur le lien _Accès directe à la version Jupyter du Journal_.\n",
+ "* Module 3 - Exo 1 - Faire attention à démarrer le travail sur le notebook après avoir ajouter le fichier CSV dans le repo. Sinon, faire un GIT PULL (bouton à droite) pour récupérer le fichier CSV sur le serveur de notebook."
]
},
{
diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..8153735b844da16a0d2e7715b9221e09cb20c096 100644
--- a/module3/exo2/exercice.ipynb
+++ b/module3/exo2/exercice.ipynb
@@ -1,5 +1,2316 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence de la varicelle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202015 \n",
+ " 7 \n",
+ " 2003 \n",
+ " 609 \n",
+ " 3397 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202014 \n",
+ " 7 \n",
+ " 3881 \n",
+ " 2223 \n",
+ " 5539 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202013 \n",
+ " 7 \n",
+ " 7341 \n",
+ " 5247 \n",
+ " 9435 \n",
+ " 11 \n",
+ " 8 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202012 \n",
+ " 7 \n",
+ " 8123 \n",
+ " 5790 \n",
+ " 10456 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202011 \n",
+ " 7 \n",
+ " 10198 \n",
+ " 7568 \n",
+ " 12828 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202010 \n",
+ " 7 \n",
+ " 9011 \n",
+ " 6691 \n",
+ " 11331 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202009 \n",
+ " 7 \n",
+ " 13631 \n",
+ " 10544 \n",
+ " 16718 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202008 \n",
+ " 7 \n",
+ " 10424 \n",
+ " 7708 \n",
+ " 13140 \n",
+ " 16 \n",
+ " 12 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202007 \n",
+ " 7 \n",
+ " 8959 \n",
+ " 6574 \n",
+ " 11344 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202006 \n",
+ " 7 \n",
+ " 9264 \n",
+ " 6925 \n",
+ " 11603 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202005 \n",
+ " 7 \n",
+ " 8505 \n",
+ " 6314 \n",
+ " 10696 \n",
+ " 13 \n",
+ " 10 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202004 \n",
+ " 7 \n",
+ " 7991 \n",
+ " 5831 \n",
+ " 10151 \n",
+ " 12 \n",
+ " 9 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202003 \n",
+ " 7 \n",
+ " 5968 \n",
+ " 4100 \n",
+ " 7836 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202002 \n",
+ " 7 \n",
+ " 6534 \n",
+ " 4530 \n",
+ " 8538 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202001 \n",
+ " 7 \n",
+ " 9835 \n",
+ " 7019 \n",
+ " 12651 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 201952 \n",
+ " 7 \n",
+ " 7941 \n",
+ " 5246 \n",
+ " 10636 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 201951 \n",
+ " 7 \n",
+ " 5823 \n",
+ " 3675 \n",
+ " 7971 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 201950 \n",
+ " 7 \n",
+ " 6424 \n",
+ " 4276 \n",
+ " 8572 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 201949 \n",
+ " 7 \n",
+ " 6621 \n",
+ " 4540 \n",
+ " 8702 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 201948 \n",
+ " 7 \n",
+ " 5542 \n",
+ " 3383 \n",
+ " 7701 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 201947 \n",
+ " 7 \n",
+ " 7536 \n",
+ " 5058 \n",
+ " 10014 \n",
+ " 11 \n",
+ " 7 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 201946 \n",
+ " 7 \n",
+ " 2638 \n",
+ " 1316 \n",
+ " 3960 \n",
+ " 4 \n",
+ " 2 \n",
+ " 6 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 201945 \n",
+ " 7 \n",
+ " 4492 \n",
+ " 2615 \n",
+ " 6369 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 201944 \n",
+ " 7 \n",
+ " 5728 \n",
+ " 3627 \n",
+ " 7829 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 201943 \n",
+ " 7 \n",
+ " 4834 \n",
+ " 2751 \n",
+ " 6917 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 201942 \n",
+ " 7 \n",
+ " 6279 \n",
+ " 3989 \n",
+ " 8569 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 201941 \n",
+ " 7 \n",
+ " 4130 \n",
+ " 2030 \n",
+ " 6230 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 201940 \n",
+ " 7 \n",
+ " 4211 \n",
+ " 2218 \n",
+ " 6204 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 201939 \n",
+ " 7 \n",
+ " 3137 \n",
+ " 1310 \n",
+ " 4964 \n",
+ " 5 \n",
+ " 2 \n",
+ " 8 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 201938 \n",
+ " 7 \n",
+ " 3078 \n",
+ " 1416 \n",
+ " 4740 \n",
+ " 5 \n",
+ " 2 \n",
+ " 8 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1502 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1503 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1504 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1505 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1506 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1507 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1508 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1509 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1510 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1511 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1512 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1513 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1514 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1515 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1516 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1517 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1518 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1519 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1520 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1521 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1522 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1523 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1524 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1525 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1526 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1527 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1528 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1529 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1530 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1531 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1532 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202015 7 2003 609 3397 3 1 \n",
+ "1 202014 7 3881 2223 5539 6 3 \n",
+ "2 202013 7 7341 5247 9435 11 8 \n",
+ "3 202012 7 8123 5790 10456 12 8 \n",
+ "4 202011 7 10198 7568 12828 15 11 \n",
+ "5 202010 7 9011 6691 11331 14 10 \n",
+ "6 202009 7 13631 10544 16718 21 16 \n",
+ "7 202008 7 10424 7708 13140 16 12 \n",
+ "8 202007 7 8959 6574 11344 14 10 \n",
+ "9 202006 7 9264 6925 11603 14 10 \n",
+ "10 202005 7 8505 6314 10696 13 10 \n",
+ "11 202004 7 7991 5831 10151 12 9 \n",
+ "12 202003 7 5968 4100 7836 9 6 \n",
+ "13 202002 7 6534 4530 8538 10 7 \n",
+ "14 202001 7 9835 7019 12651 15 11 \n",
+ "15 201952 7 7941 5246 10636 12 8 \n",
+ "16 201951 7 5823 3675 7971 9 6 \n",
+ "17 201950 7 6424 4276 8572 10 7 \n",
+ "18 201949 7 6621 4540 8702 10 7 \n",
+ "19 201948 7 5542 3383 7701 8 5 \n",
+ "20 201947 7 7536 5058 10014 11 7 \n",
+ "21 201946 7 2638 1316 3960 4 2 \n",
+ "22 201945 7 4492 2615 6369 7 4 \n",
+ "23 201944 7 5728 3627 7829 9 6 \n",
+ "24 201943 7 4834 2751 6917 7 4 \n",
+ "25 201942 7 6279 3989 8569 10 7 \n",
+ "26 201941 7 4130 2030 6230 6 3 \n",
+ "27 201940 7 4211 2218 6204 6 3 \n",
+ "28 201939 7 3137 1310 4964 5 2 \n",
+ "29 201938 7 3078 1416 4740 5 2 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1502 199126 7 17608 11304 23912 31 20 \n",
+ "1503 199125 7 16169 10700 21638 28 18 \n",
+ "1504 199124 7 16171 10071 22271 28 17 \n",
+ "1505 199123 7 11947 7671 16223 21 13 \n",
+ "1506 199122 7 15452 9953 20951 27 17 \n",
+ "1507 199121 7 14903 8975 20831 26 16 \n",
+ "1508 199120 7 19053 12742 25364 34 23 \n",
+ "1509 199119 7 16739 11246 22232 29 19 \n",
+ "1510 199118 7 21385 13882 28888 38 25 \n",
+ "1511 199117 7 13462 8877 18047 24 16 \n",
+ "1512 199116 7 14857 10068 19646 26 18 \n",
+ "1513 199115 7 13975 9781 18169 25 18 \n",
+ "1514 199114 7 12265 7684 16846 22 14 \n",
+ "1515 199113 7 9567 6041 13093 17 11 \n",
+ "1516 199112 7 10864 7331 14397 19 13 \n",
+ "1517 199111 7 15574 11184 19964 27 19 \n",
+ "1518 199110 7 16643 11372 21914 29 20 \n",
+ "1519 199109 7 13741 8780 18702 24 15 \n",
+ "1520 199108 7 13289 8813 17765 23 15 \n",
+ "1521 199107 7 12337 8077 16597 22 15 \n",
+ "1522 199106 7 10877 7013 14741 19 12 \n",
+ "1523 199105 7 10442 6544 14340 18 11 \n",
+ "1524 199104 7 7913 4563 11263 14 8 \n",
+ "1525 199103 7 15387 10484 20290 27 18 \n",
+ "1526 199102 7 16277 11046 21508 29 20 \n",
+ "1527 199101 7 15565 10271 20859 27 18 \n",
+ "1528 199052 7 19375 13295 25455 34 23 \n",
+ "1529 199051 7 19080 13807 24353 34 25 \n",
+ "1530 199050 7 11079 6660 15498 20 12 \n",
+ "1531 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 5 FR France \n",
+ "1 9 FR France \n",
+ "2 14 FR France \n",
+ "3 16 FR France \n",
+ "4 19 FR France \n",
+ "5 18 FR France \n",
+ "6 26 FR France \n",
+ "7 20 FR France \n",
+ "8 18 FR France \n",
+ "9 18 FR France \n",
+ "10 16 FR France \n",
+ "11 15 FR France \n",
+ "12 12 FR France \n",
+ "13 13 FR France \n",
+ "14 19 FR France \n",
+ "15 16 FR France \n",
+ "16 12 FR France \n",
+ "17 13 FR France \n",
+ "18 13 FR France \n",
+ "19 11 FR France \n",
+ "20 15 FR France \n",
+ "21 6 FR France \n",
+ "22 10 FR France \n",
+ "23 12 FR France \n",
+ "24 10 FR France \n",
+ "25 13 FR France \n",
+ "26 9 FR France \n",
+ "27 9 FR France \n",
+ "28 8 FR France \n",
+ "29 8 FR France \n",
+ "... ... ... ... \n",
+ "1502 42 FR France \n",
+ "1503 38 FR France \n",
+ "1504 39 FR France \n",
+ "1505 29 FR France \n",
+ "1506 37 FR France \n",
+ "1507 36 FR France \n",
+ "1508 45 FR France \n",
+ "1509 39 FR France \n",
+ "1510 51 FR France \n",
+ "1511 32 FR France \n",
+ "1512 34 FR France \n",
+ "1513 32 FR France \n",
+ "1514 30 FR France \n",
+ "1515 23 FR France \n",
+ "1516 25 FR France \n",
+ "1517 35 FR France \n",
+ "1518 38 FR France \n",
+ "1519 33 FR France \n",
+ "1520 31 FR France \n",
+ "1521 29 FR France \n",
+ "1522 26 FR France \n",
+ "1523 25 FR France \n",
+ "1524 20 FR France \n",
+ "1525 36 FR France \n",
+ "1526 38 FR France \n",
+ "1527 36 FR France \n",
+ "1528 45 FR France \n",
+ "1529 43 FR France \n",
+ "1530 28 FR France \n",
+ "1531 5 FR France \n",
+ "\n",
+ "[1532 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Vérification si des données manquent."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202015 \n",
+ " 7 \n",
+ " 2003 \n",
+ " 609 \n",
+ " 3397 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202014 \n",
+ " 7 \n",
+ " 3881 \n",
+ " 2223 \n",
+ " 5539 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202013 \n",
+ " 7 \n",
+ " 7341 \n",
+ " 5247 \n",
+ " 9435 \n",
+ " 11 \n",
+ " 8 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202012 \n",
+ " 7 \n",
+ " 8123 \n",
+ " 5790 \n",
+ " 10456 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202011 \n",
+ " 7 \n",
+ " 10198 \n",
+ " 7568 \n",
+ " 12828 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202010 \n",
+ " 7 \n",
+ " 9011 \n",
+ " 6691 \n",
+ " 11331 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202009 \n",
+ " 7 \n",
+ " 13631 \n",
+ " 10544 \n",
+ " 16718 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202008 \n",
+ " 7 \n",
+ " 10424 \n",
+ " 7708 \n",
+ " 13140 \n",
+ " 16 \n",
+ " 12 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202007 \n",
+ " 7 \n",
+ " 8959 \n",
+ " 6574 \n",
+ " 11344 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202006 \n",
+ " 7 \n",
+ " 9264 \n",
+ " 6925 \n",
+ " 11603 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202005 \n",
+ " 7 \n",
+ " 8505 \n",
+ " 6314 \n",
+ " 10696 \n",
+ " 13 \n",
+ " 10 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202004 \n",
+ " 7 \n",
+ " 7991 \n",
+ " 5831 \n",
+ " 10151 \n",
+ " 12 \n",
+ " 9 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202003 \n",
+ " 7 \n",
+ " 5968 \n",
+ " 4100 \n",
+ " 7836 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202002 \n",
+ " 7 \n",
+ " 6534 \n",
+ " 4530 \n",
+ " 8538 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202001 \n",
+ " 7 \n",
+ " 9835 \n",
+ " 7019 \n",
+ " 12651 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 201952 \n",
+ " 7 \n",
+ " 7941 \n",
+ " 5246 \n",
+ " 10636 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 201951 \n",
+ " 7 \n",
+ " 5823 \n",
+ " 3675 \n",
+ " 7971 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 201950 \n",
+ " 7 \n",
+ " 6424 \n",
+ " 4276 \n",
+ " 8572 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 201949 \n",
+ " 7 \n",
+ " 6621 \n",
+ " 4540 \n",
+ " 8702 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 201948 \n",
+ " 7 \n",
+ " 5542 \n",
+ " 3383 \n",
+ " 7701 \n",
+ " 8 \n",
+ " 5 \n",
+ " 11 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 201947 \n",
+ " 7 \n",
+ " 7536 \n",
+ " 5058 \n",
+ " 10014 \n",
+ " 11 \n",
+ " 7 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 201946 \n",
+ " 7 \n",
+ " 2638 \n",
+ " 1316 \n",
+ " 3960 \n",
+ " 4 \n",
+ " 2 \n",
+ " 6 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 201945 \n",
+ " 7 \n",
+ " 4492 \n",
+ " 2615 \n",
+ " 6369 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 201944 \n",
+ " 7 \n",
+ " 5728 \n",
+ " 3627 \n",
+ " 7829 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 201943 \n",
+ " 7 \n",
+ " 4834 \n",
+ " 2751 \n",
+ " 6917 \n",
+ " 7 \n",
+ " 4 \n",
+ " 10 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 201942 \n",
+ " 7 \n",
+ " 6279 \n",
+ " 3989 \n",
+ " 8569 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 201941 \n",
+ " 7 \n",
+ " 4130 \n",
+ " 2030 \n",
+ " 6230 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 201940 \n",
+ " 7 \n",
+ " 4211 \n",
+ " 2218 \n",
+ " 6204 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 201939 \n",
+ " 7 \n",
+ " 3137 \n",
+ " 1310 \n",
+ " 4964 \n",
+ " 5 \n",
+ " 2 \n",
+ " 8 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 201938 \n",
+ " 7 \n",
+ " 3078 \n",
+ " 1416 \n",
+ " 4740 \n",
+ " 5 \n",
+ " 2 \n",
+ " 8 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1502 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1503 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1504 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1505 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1506 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1507 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1508 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1509 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1510 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1511 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1512 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1513 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1514 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1515 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1516 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1517 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1518 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1519 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1520 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1521 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1522 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1523 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1524 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1525 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1526 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1527 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1528 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1529 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1530 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1531 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1532 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202015 7 2003 609 3397 3 1 \n",
+ "1 202014 7 3881 2223 5539 6 3 \n",
+ "2 202013 7 7341 5247 9435 11 8 \n",
+ "3 202012 7 8123 5790 10456 12 8 \n",
+ "4 202011 7 10198 7568 12828 15 11 \n",
+ "5 202010 7 9011 6691 11331 14 10 \n",
+ "6 202009 7 13631 10544 16718 21 16 \n",
+ "7 202008 7 10424 7708 13140 16 12 \n",
+ "8 202007 7 8959 6574 11344 14 10 \n",
+ "9 202006 7 9264 6925 11603 14 10 \n",
+ "10 202005 7 8505 6314 10696 13 10 \n",
+ "11 202004 7 7991 5831 10151 12 9 \n",
+ "12 202003 7 5968 4100 7836 9 6 \n",
+ "13 202002 7 6534 4530 8538 10 7 \n",
+ "14 202001 7 9835 7019 12651 15 11 \n",
+ "15 201952 7 7941 5246 10636 12 8 \n",
+ "16 201951 7 5823 3675 7971 9 6 \n",
+ "17 201950 7 6424 4276 8572 10 7 \n",
+ "18 201949 7 6621 4540 8702 10 7 \n",
+ "19 201948 7 5542 3383 7701 8 5 \n",
+ "20 201947 7 7536 5058 10014 11 7 \n",
+ "21 201946 7 2638 1316 3960 4 2 \n",
+ "22 201945 7 4492 2615 6369 7 4 \n",
+ "23 201944 7 5728 3627 7829 9 6 \n",
+ "24 201943 7 4834 2751 6917 7 4 \n",
+ "25 201942 7 6279 3989 8569 10 7 \n",
+ "26 201941 7 4130 2030 6230 6 3 \n",
+ "27 201940 7 4211 2218 6204 6 3 \n",
+ "28 201939 7 3137 1310 4964 5 2 \n",
+ "29 201938 7 3078 1416 4740 5 2 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1502 199126 7 17608 11304 23912 31 20 \n",
+ "1503 199125 7 16169 10700 21638 28 18 \n",
+ "1504 199124 7 16171 10071 22271 28 17 \n",
+ "1505 199123 7 11947 7671 16223 21 13 \n",
+ "1506 199122 7 15452 9953 20951 27 17 \n",
+ "1507 199121 7 14903 8975 20831 26 16 \n",
+ "1508 199120 7 19053 12742 25364 34 23 \n",
+ "1509 199119 7 16739 11246 22232 29 19 \n",
+ "1510 199118 7 21385 13882 28888 38 25 \n",
+ "1511 199117 7 13462 8877 18047 24 16 \n",
+ "1512 199116 7 14857 10068 19646 26 18 \n",
+ "1513 199115 7 13975 9781 18169 25 18 \n",
+ "1514 199114 7 12265 7684 16846 22 14 \n",
+ "1515 199113 7 9567 6041 13093 17 11 \n",
+ "1516 199112 7 10864 7331 14397 19 13 \n",
+ "1517 199111 7 15574 11184 19964 27 19 \n",
+ "1518 199110 7 16643 11372 21914 29 20 \n",
+ "1519 199109 7 13741 8780 18702 24 15 \n",
+ "1520 199108 7 13289 8813 17765 23 15 \n",
+ "1521 199107 7 12337 8077 16597 22 15 \n",
+ "1522 199106 7 10877 7013 14741 19 12 \n",
+ "1523 199105 7 10442 6544 14340 18 11 \n",
+ "1524 199104 7 7913 4563 11263 14 8 \n",
+ "1525 199103 7 15387 10484 20290 27 18 \n",
+ "1526 199102 7 16277 11046 21508 29 20 \n",
+ "1527 199101 7 15565 10271 20859 27 18 \n",
+ "1528 199052 7 19375 13295 25455 34 23 \n",
+ "1529 199051 7 19080 13807 24353 34 25 \n",
+ "1530 199050 7 11079 6660 15498 20 12 \n",
+ "1531 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 5 FR France \n",
+ "1 9 FR France \n",
+ "2 14 FR France \n",
+ "3 16 FR France \n",
+ "4 19 FR France \n",
+ "5 18 FR France \n",
+ "6 26 FR France \n",
+ "7 20 FR France \n",
+ "8 18 FR France \n",
+ "9 18 FR France \n",
+ "10 16 FR France \n",
+ "11 15 FR France \n",
+ "12 12 FR France \n",
+ "13 13 FR France \n",
+ "14 19 FR France \n",
+ "15 16 FR France \n",
+ "16 12 FR France \n",
+ "17 13 FR France \n",
+ "18 13 FR France \n",
+ "19 11 FR France \n",
+ "20 15 FR France \n",
+ "21 6 FR France \n",
+ "22 10 FR France \n",
+ "23 12 FR France \n",
+ "24 10 FR France \n",
+ "25 13 FR France \n",
+ "26 9 FR France \n",
+ "27 9 FR France \n",
+ "28 8 FR France \n",
+ "29 8 FR France \n",
+ "... ... ... ... \n",
+ "1502 42 FR France \n",
+ "1503 38 FR France \n",
+ "1504 39 FR France \n",
+ "1505 29 FR France \n",
+ "1506 37 FR France \n",
+ "1507 36 FR France \n",
+ "1508 45 FR France \n",
+ "1509 39 FR France \n",
+ "1510 51 FR France \n",
+ "1511 32 FR France \n",
+ "1512 34 FR France \n",
+ "1513 32 FR France \n",
+ "1514 30 FR France \n",
+ "1515 23 FR France \n",
+ "1516 25 FR France \n",
+ "1517 35 FR France \n",
+ "1518 38 FR France \n",
+ "1519 33 FR France \n",
+ "1520 31 FR France \n",
+ "1521 29 FR France \n",
+ "1522 26 FR France \n",
+ "1523 25 FR France \n",
+ "1524 20 FR France \n",
+ "1525 36 FR France \n",
+ "1526 38 FR France \n",
+ "1527 36 FR France \n",
+ "1528 45 FR France \n",
+ "1529 43 FR France \n",
+ "1530 28 FR France \n",
+ "1531 5 FR France \n",
+ "\n",
+ "[1532 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et le début de la période qui suit, la différence temporelle doit être zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\" d'une seconde."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Premier affichage de données"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXm4HUWZP/55zzn33qw3hGyEBAgkYQtIgBBRBFlEMm7ACAqOgDP8xEGccUQdwWXUwSCujPAVFAQEN0AWQTZlX2NCCJAQQjYSsm9kX+52Tv3+6K7uquq3qqvPPXdJTn+e5zznnOrqqurqqnrrXYuEEMiRI0eOHDlUFHq6ATly5MiRo/chJw45cuTIkSOBnDjkyJEjR44EcuKQI0eOHDkSyIlDjhw5cuRIICcOOXLkyJEjgZw45MiRI0eOBHLikCNHjhw5EsiJQ44cOXLkSKDU0w2oFkOHDhVjxozp6WbkyJEjx26FV155ZYMQYlhavt2WOIwZMwYzZ87s6WbkyJEjx24FInrHJ18uVsqRI0eOHAnkxCFHjhw5ciSQE4ccOXLkyJFAThxy5MiRI0cCOXHIkSNHjhwJ5MQhR44cOXIkkBOHHDly5MiRQE4cctQNZi7diPlrtvV0M3Lk2C2w2zrB5ciRFef8ahoAYOk1H+3hluTI0fuRcw45cuTIkSOBnDjkyJEjR44EcuKQI0eOHDkSSCUORNSHiGYQ0etENJeIvh+mf4+IVhLRa+HnI8o9VxLRIiKaT0RnKOnHEtGc8Np1RERhehMR3RWmTyeiMbV/1Bw5cuTI4QsfzqEVwKlCiKMATAQwhYiOD69dK4SYGH4eAQAiOhzAeQAmAJgC4AYiKob5bwRwCYDx4WdKmH4xgE1CiHEArgXwo84/Wo4cOXLkqBapxEEE2B7+bQg/wnHLmQDuFEK0CiGWAFgEYDIRjQTQLISYJoQQAO4AcJZyz+3h73sAnCa5ihw5cuTI0f3w0jkQUZGIXgOwDsDjQojp4aUvEdFsIrqViAaHaaMALFduXxGmjQp/m+naPUKIDgBbAAxh2nEJEc0kopnr16/3esAcOXLkyJEdXsRBCFEWQkwEMBoBF3AEAhHRWASiptUAfhZm53b8wpHuusdsx01CiElCiEnDhqUeZJQjR03QXq7g4dmrETC8OXLUBzJZKwkhNgN4BsAUIcTakGhUANwMYHKYbQWA/ZTbRgNYFaaPZtK1e4ioBGAQgI2ZniRHji7C9U8uxGV/nIUn5q3r6abkyNFt8LFWGkZEe4W/+wL4EIC3Qh2CxNkA3gh/PwjgvNAC6UAEiucZQojVALYR0fGhPuFCAA8o91wU/j4HwFMi36bl6CVYtaUFALBpZ1sPtyRHju6DT/iMkQBuDy2OCgDuFkI8RES/I6KJCMQ/SwF8AQCEEHOJ6G4AbwLoAHCZEKIclnUpgN8C6Avg0fADALcA+B0RLULAMZxXg2fLkaO2yLcrOeoIqcRBCDEbwNFM+gWOe6YCmMqkzwRwBJPeAuDctLbkyNETkAoxkVOHHHWE3EM6R13i1heW4Gt/ft0rrzSqzgWdOeoJOXHIUZf434fexD2vrEjPCIBYY7ocOfZs5MQhR44cOXIkkBOHHDk8kUuVctQTcuKQI0cKujuQywOvrcTNz73dvZXmyGEgPwkuRw5PdJdC+st3vgYA+PxJB3VPhTlyMMg5hxw5UpCHgMxRj8iJQ44cOXLkSCAnDjlypCJgHXInuBz1hJw45MiRgtwJLkc9IicOOXLkyJEjgZw47GZ4Y+UWbNyRRwftCeSMQ456Qk4cdjN87PoX8PHrX+jpZtQVcmOlHPWInDjshli5eVdPN6E+kSsdctQRcuKQI0cKcj+HHPWInDjkyJEjB4CFa7fh4dmre7oZvQY5cciRwxO5UGnPxuV3v47L/jgLO1o7eropvQI5cciRIwXyPIdc5bBnY87KLQCAjkr+ogEP4kBEfYhoBhG9TkRziej7YfreRPQ4ES0Mvwcr91xJRIuIaD4RnaGkH0tEc8Jr1xEF0lwiaiKiu8L06UQ0pvaPmiNHdYid4PbsRWNnWwfGXPEwbnlhSU83pWexZ79mb/hwDq0AThVCHAVgIoApRHQ8gCsAPCmEGA/gyfA/iOhwAOcBmABgCoAbiKgYlnUjgEsAjA8/U8L0iwFsEkKMA3AtgB/V4NlqjsfeWIOlG3b0dDNydDPqRR/97vbAf+bWOicOlT18E+CLVOIgAmwP/zaEHwHgTAC3h+m3Azgr/H0mgDuFEK1CiCUAFgGYTEQjATQLIaaJYAt2h3GPLOseAKdJrqI34d9//wpO+/mzPd2MHDlydCFy4hDAS+dAREUieg3AOgCPCyGmAxghhFgNAOH38DD7KADLldtXhGmjwt9munaPEKIDwBYAQ6p5oK5GOZdH1i3yN18fyKd4AC/iIIQoCyEmAhiNgAs4wpGd2/ELR7rrHr1gokuIaCYRzVy/fn1as3PkqAl6IRPbJZAb5jp5XCv2dN2SLzJZKwkhNgN4BoGuYG0oKkL4vS7MtgLAfsptowGsCtNHM+naPURUAjAIwEam/puEEJOEEJOGDRuWpek5diNs2N6KnW25OWGtsbWlHY+9sSY1X90Th55uQC+Bj7XSMCLaK/zdF8CHALwF4EEAF4XZLgLwQPj7QQDnhRZIByJQPM8IRU/biOj4UJ9woXGPLOscAE+JXky+v/fgXKzb1tLt9fbiLqkpJv3gCXzsOv/4Udta2nH2DS9i0brt6Zk7gd29+7929+v499+/giUWo4r8vIoAuc4hgA/nMBLA00Q0G8DLCHQODwG4BsDpRLQQwOnhfwgh5gK4G8CbAB4DcJkQohyWdSmA3yBQUi8G8GiYfguAIUS0CMDlCC2feit++9JSfPeBuTUrb8mGHV6RVutpzL6dwSrsuQUb8Oqyzfj54/O7sEW7L15fvhlbdrVHMbm2t/BcWSRWqhv7LB65ziFAKS2DEGI2gKOZ9HcBnGa5ZyqAqUz6TAAJfYUQogXAuR7t7TVoL9duBJ3y02cwoKmEN75/hjNfPmZrg0qVs3937f8zf/kijhw1CKVisBfsqFTYfJECsL5pQ9XjY09D7iFdNWo7gLZ7uOzXi1ipWvh2z4pN2aLa7glOcHNWbkGpEDxI7gGcwwc5cagSPTG/8ildG/RpyDbs9xQxS0QcLFyvJH57xtNWj1znECAnDlWiJ3aR+ZitDerFNBXQx2mpKDmHNLFSkK9SEfjW/XO6XNHf25AzVgFy4lAlemL85DsaHlnX+qxWOXsKLSkVpM4h+fxbdrVj3dZWADHnsGDdNvxh+jJ88Q+vdFcTewXyeRYgVSGdg0c+fnZfVPvudsd3rrZZipXKjFjppB8/jS272rU0yWAU9hTq6IndWbdUS+ScQ5UoFrp/wizbuLPb69xToE74rHN/d14a1UctFuxiJY0whA8sd9D1Rxx6ugW9AzlxqBKlHiAOVz30ZrfXuTvBNanVa/Xq7NUQmrKmmWHLkS2JQ09shHoSuc4hQE4cqkRDqfu7Lt/RVA+166oWK+2GREXlmArhIu8rU5eLZJ3RhlznECInDlWioQdmzO64OHUnXNIPdZHMOvl3Z6mK+qSFyF/DfY+0VpIRiAt1Rh1y4hAgJw6eMJVU0tu0e9vQ7VXuVnCKlZTfFkvOTpUPAI+/uRZjrngY725vjdK2t3bg73PTg911B0xxkW++4u5MHatAPs8C5MShSjTkxGG3gtp3H/9//kH9gHgnndb9t70YnKA2b/W2KO0b98zGJb97pct8BSoVgWsfX2CNzTX+W49Gv6Vi2VemLsNI5Arp+kROHDxhDpiGYi5W2p2g7pZNk800+L5pbg19Z2MQQHBXWzl5sQZ4ftEG/OLJhfjOX95Izbs+5GhSOYfwOcrSY7q+aEMuVgqREwdPmMOlJ+ZLPVtRPLdgvVU84/Mu2sv+sqRyReDpt9ZFosRH3lgNoHM7yq4i7G0dwXO1tKcTn/XbWmVjnJDhQuTz1p+1Uh1PNAU5cfCEqXPokeFTx2P2wltn4JLfVe+pa4snxOH2l5biX3/7Mh6ZswZvrNyC5RuzBepT0Zm4TJWKwHf+8ob1/AVAiYfkUU0UFiNl8euoVNDaUY4V0nXGOtTzJkxFThw8YY6Xnthc7EliJSEEfvHEQizNcG5DZ5AlEunqLQExWLFpJ1Ztzk4YavWe5q3Zit/94x188Q+zHHUF8IkXFSua3fkWr9+BQ779WCRWqjdrpbrehSnIiYMnTGLQEwv1nsTtrtvWimufWIALb51RszJd78QWbI6DNDZo66hgs6KfSHvntY7e6vO+XZFUTW43DK3kLTb519teBgD0gHqtR7GzrYyfP74ArR1doyfaXZDHVqoSPcM57DmQ/dddEzCLWKmxJD2JK2jt8CcqPblh4BgHc4xGuoSMddSbWOnm55fguQXrMaCpiEtOGtvTzekx5JyDJ8yJn0dl7Ry6eyHNopCWnENruaKdCtbd3S+PSnVJdWSTuAXcbG7sBJfVCbA+iIN8TKnc39lFFma7C1KJAxHtR0RPE9E8IppLRF8O079HRCuJ6LXw8xHlniuJaBERzSeiM5T0Y4loTnjtOgpHHRE1EdFdYfp0IhpT+0ftHBJipZ7gHPYc2hChFqIYn7Uri86hSXIOHSJSynq1o8Zipf/806tBuY5iJdHzWr9Jt0LyRS1dehau3YadbemnHvYEyPiu9+NCfV57B4CvCiEOA3A8gMuI6PDw2rVCiInh5xEACK+dB2ACgCkAbiCiYpj/RgCXABgffqaE6RcD2CSEGAfgWgA/6vyjdTV6QITQ7TXuHvBZ7LKIleIAdZVez619+c7XAPCEKaFzMKKt+qJWYqVKReD0a5/D5++YWZPyag3JIVHUTz3YmF6AVOIghFgthJgV/t4GYB6AUY5bzgRwpxCiVQixBMAiAJOJaCSAZiHENBGM2jsAnKXcc3v4+x4Ap1Ev42V7A+ewJ7EO3f0oWRTSUufQ1qETB19xDJetM8/rw5GwOgfjf1YP6ei+GlkryWpfXPSuNc/yjTtx8k+expotLTWpMwvMpyzvQfOtGmRiGENxz9EApodJXyKi2UR0KxENDtNGAViu3LYiTBsV/jbTtXuEEB0AtgAYkqVtXY2EzqG+x03NUIstQC3FSs/MXxeZ17aXK8igqmDb0V3Pl8WUNavOoVaxlXzq/f30d7D03Z2479UVqXlrDfmYkhj3dq6xq+FNHIhoAIB7AfyXEGIrAhHRWAATAawG8DOZlbldONJd95htuISIZhLRzPXr1/s2vSboFaas3V5jOl5YuAEvLd7Q081Ihe+C+LnbXsavn3sbQKiQ7gULhJc6gUlLWCuFma59fAHmr9mWvMGCWrk5+NDn9o4gU2MPxC6TRCESK9W5XMnrDRBRAwLC8AchxH0AIIRYK4QoCyEqAG4GMDnMvgLAfsrtowGsCtNHM+naPURUAjAIwEazHUKIm4QQk4QQk4YNG+b3hF2EnlgzesNCZeKzt0zHZ26enp7RQHc/STVd9/Ds1ZqVU+fCZ3QCHjt3bmyYGxi5+O1oK+PcX73kXX2tdA4+Gyop/ntz9VY8M39dTerNCvm4WYwY9kT4WCsRgFsAzBNC/FxJH6lkOxuAjPz1IIDzQgukAxEonmcIIVYD2EZEx4dlXgjgAeWei8Lf5wB4SvSyg1wTHtI90IZqQ03XAks37MCnfz0NC9b67zi7G74hu7Pgvlkrs7ejyrps8FmafWaLusannQanomY6Bx/OIWzXfbNW4nOhE15XY+XmXZj0gyfQJi2/jNhS9QofzuEEABcAONUwW/1xaJY6G8ApAL4CAEKIuQDuBvAmgMcAXCaEkAbDlwL4DQIl9WIAMp7wLQCGENEiAJcDuKImT5cBHeUKHp2z2ip+SMRWqjMnuMfmrsH0JRvxl1ezL5YcutvaoNr3pZpddqb/u/p5OZNb85mr5QC68zyHLP4otcJfXl2JDcoZHFFU2jrnHFI9pIUQL4Af24847pkKYCqTPhPAEUx6C4Bz09rSlbjtxaWY+sg8/OK8iThzYtIYK8k51NfAkQOgVpO3+8VK1dbY80ZzPmuzj8hRLSfLel+okfjfp40dGcfXum0tEAIY0dyn2mYliGZ0El6dsw55+IwQMsb/0g072euJcdIjTnA9N1izLCavL9+MPg1FHLLPwPRyO9GmLKVUTRqqaCD3nrqa6/BZeF9aHJuQZhlKNdM5ZBAr+WLy1CcBAEuv+Wg1TQKQfMfVWnXtaciJQ4hBfRsAOA6CSVgr1R5CiF4bqiCLHPbMX74IoHMTttaoxTz3PXtZS+t8tV5jgpOA1Gptq51COh09YXRhU6nUu1gpj60UQjo+qc5Sf5u7BmOueJiNp98Vu4o064jDRjbXvE5fyPWhVk/d3buyWogBe7Mo0cdaqVrU6rCf3roTtzkZ1jltyImDhJxc6i7podnBCWCzV2zulsB7bSkRQIf0bwQATB6zdxfU7odazO81W1rwx+nLAHRjULcq211SFsaeWtt8eijrLjdLt9fqFfm0sCcYZ7NO2c5eSsu6DblYKYScW7bB2RXhM95evx3bWmJrmNaOCvo32fPLNnb3Dnb62+/iBw/Pq1ndF9/+Muau2trpcrKg2lZXI1Lh6urMrrlahXStFjcfa6WdbR14ZM4afPKYUVaCLzx0zbUOXugDa3t7MafYHciJQ4j40JR4oMhfre0VrN2mx3qpxbA59WfPav/TOAe5AHT3juYP4S4/re61W1si3Y0LG3e01aJZmVBtn2Wx1GGXmBpshX0WTDaeU6drDuAjVrrqoTfxpxnLse9effD+sUPZPL11sbU9Xc455ADgPjTlv++dzeSv/cjxJg41r7k2eO/VT+LkQ3rOc93VL9UuTOr50VWVUItx4libDxjSD++8uxMnHdx1/e4j+lu3NfAT2NlqPwPBqysy0FLf4Hzf/+tc9Gss4utnHMpeN2nfjtaAm++tOpLuQq5zCCEXD1/dW2eHzdf+/Hoira3sPlxEEofutujIUtsz87PFvFpZxRnNJtLWLiEE/vLqKnemWqLGr8f1eEMHBHLIEjNwa7W4ZdFHuwk0j45yBeu2Bgt9Fj7r+B8+6ZXvtheX4pdPL7ZeN4nfK+9sApArpHPiEEIOBG8ZcycHzj2vJKNOph1JGekcenDQ+nqQu2D2cFeLma64dw7unZUtyucx+++VuR526HShhnVXWzlayLpSrMQRnmpg29Rc9dCbmHz1k9iy02JGHmLTjjaMueJh3D1zuTNfVtheUW+MZdadyIlDCDkQfK1nukJ+miZWEj0kVvJZ+Dszj1Tz4a5g5e+qYjFh5ew9tFjYhuSMpXFsSm48upqbaeGzKWyFwNqtumjHNXtsVT4xLwiwt7Wl3Tn/lm0MHFR//493HLXYceT3/obtrclT6Kw6h6pq2XOQE4cQLp2DK381kGfUmkhjY6M1tAfFSraasyw2rgWgU5FPa9gtPmcydxeqVUi7kOVkPBv+MH0Z3nv1k3jT0/KMW5hNdKWt0raWDjZUudVaKecccgBx7HZ1mLgIRWfGjU18lDYYe4NC2tbEWslne8t05DgH33fO7uI70Ra7eXVcKlu+o9JM4agtDz4tDMfx9obtPlXi8rtfS62qq/0c2ACFlrw9GQW5NyAnDiHkAPHVOTw2d031ddnk9in3yUBgPapzsLSyU/LZ3kIRFFTjFcyqHDrfFC+0d1QSoV9qJfqs1et5510+bll3toMdp9b5yKcvWLsNv3n+7Rq0pncjJw4h5Pio1alXPnWZSDt5St7X7fbiluq0nWutOIdewsrXKp5QLWBriqrI/9njC3DU9//eTS3Scd2TC2OdnSNfrd5tZ94MN8dsrbI19xP/7wX84OF5NR2r7eUK3nk3GaanJ1H3xGH+mm0Y981HsHxTsKtR5Y9dtTzYdtmpOgdpytrN7K5KjNSmq787wzn46DS6G6xpqGfrtD6qQVtsOofL706aQ9va0RmklbNg7XY8HZowq1mfnr9O80WwFaOFEq+uid7IEobbNh9b2oMJWMvAfN99cC4++JNn8K5yrkRPo+6Jw59mLENHReCxNwIxUXfsGK07lZSlJA6f0XOwLeR8+IbsLe0ljEPNTj+rBaodkrXqSuu4TGnXv972Ms785QvRf1/OuCvBLej2drkbdMsLS/Dy0sRpxlXhxUXBOexqOJ2eRt0Th+gw8ciUtevrtE2CtMkRh8/ovhV08frteGROrF/ROYf4Dze/am2PbkNXvLLOWLJ2ZifsewzrLS8syVhyz2Dt1ngnbFuD9UOIqnubvnOC28TYDLfSGIMfPvoWzv3VNK96d0fkxCGcvj4y01rBNpDTRDO+E6CjXMEvnliIMVc8jJ/9fb4z76rNu5zORx+77gXt/yvvqLb17ra9tnyzV3vV5+4t8XdKnTj+rDO0+7O/mZ5IMxfMLbvacdVDb3q0o0YK6SwuEY5rXqfVOdthv9+3jdxBc7Vw7NwTkRMHyTl0oxw/qwJMQrLEafkeeG0Vrn1iAQDgxmfsYQMA4P3XPIWTfvK09fouwydjwdrYbFE9MjSL+NXcHFY0bsS/nK5ENWKlzvpvvLRoQxTXx4Ubnl7k1Z7aiZV4cE8r87Kn4SlJ3Fnk3huDTvigrNmSDNdi0x30RPiMXjL8AXgQByLaj4ieJqJ5RDSXiL4cpu9NRI8T0cLwe7Byz5VEtIiI5hPRGUr6sUQ0J7x2HYWziYiaiOiuMH06EY2p/aNani/87k4fAruvgK/OwZ2vTVm0fbh06+l3FnznL28AAK5+ZJ7SNq5NfgtsmizaH7V7ew2sQtpRsxB46q11ifS4/91t29Hagc/8Zjp2tCUdJM2WNDUUnWX1BnDDQR0jkqvcuKNN35h5O6HqFfgaRHzngbmJNJuSujvDZ/QeDVcMH86hA8BXhRCHATgewGVEdDiAKwA8KYQYD+DJ8D/Ca+cBmABgCoAbiEiO5hsBXAJgfPiZEqZfDGCTEGIcgGsB/KgGz5YJnA9BmvyzWrbTNujSipP1pa2lRc3iqvbD7ndh+IIFa2IugnsmW/clDlfp4jnYUMzeB/JkQBWuds4MYxzZkPaM7Zy8I4TZX/0a/YhDd1krsfeklEMEtHaUccxVj0fBF4XwH68Jn45OPGvtNiedR28SZaUSByHEaiHErPD3NgDzAIwCcCaA28NstwM4K/x9JoA7hRCtQoglABYBmExEIwE0CyGmiaAH7jDukWXdA+A0SluZa4To+EvPXbmKat9jp62VUirWHLi6sBdtJq6p9xl5qy3HF5MPzH5yXhNHHBzvp7EY5+eeQRXHcXA9t/kKpWULX07t9Te2clxTlNssqGkEYiMF+M76qQ/P0/7b2uhjbmrL0q2cQy/yq5HIpHMIxT1HA5gOYIQQYjUQEBAAw8NsowCoZiorwrRR4W8zXbtHCNEBYAuAIUz9lxDRTCKauX59ttDQjmfS/mcZD9UOHttOJU3v4Sv6UolDVw459TFYzqGKcqpZ0NImVjXcE8c5uJrG5kc8nr55/xxnfa6nNp/v+YV24tBbNsH8mdYxWGswphxuI/T68s144PVVRj6+HUs9HMtsBMRWZleu473k9QHIQByIaACAewH8lxDCFWnLpqdy6a9c1+IEIW4SQkwSQkwaNqw2h5uYFQttd+NGrSdiGrEpezo6qMrUrhzIanu5vvAVK2nWStWIMFJuqqYPsgbeq1aPFN9vz5el+Vo5XazKyWo9pHEOlHyuihDMfOTLNyMY2/JxQS47DBFetWLeWqL38Q2exIGIGhAQhj8IIe4Lk9eGoiKE31IbtwLAfsrtowGsCtNHM+naPURUAjAIQG28S9Jgyr8z3Oqa+OWKwJgrHsYvnliYuGb1c0ipT/jRBs27tyvP5NU4B4Y6+Nbd1XLWqhwbWT8Hezt1c9wYvl60teqBSg1pwwXHH4A+DfYlwjX+uUtqGkt8UwiKC1kW+DaDONitlSziNK8WVYdepHLwslYiALcAmCeE+Lly6UEAF4W/LwLwgJJ+XmiBdCACxfOMUPS0jYiOD8u80LhHlnUOgKdEF64Yn/71NFz3ZLBomwtYZ2TnKuSO5cZnk2aH9oGcpnMQXvlq4eXtd4ZDnIebYFbOwejzzi5oqWKlGs3makakN3Fw6RwytL+zXJgKKeKzFeMK+526qFuI7wuGPsWXO7fq8Tji0GFyDvHvz71/jPPersbyTTt7TQgNH87hBAAXADiViF4LPx8BcA2A04loIYDTw/8QQswFcDeANwE8BuAyIYTk7S4F8BsESurFAB4N028BMISIFgG4HKHlU1dACIHpSzbi548v4K9nWJ5cE0Ban3C7Z9tdaRNBhlnOMmZtC8vyjTvxxJtr2WsbtrfiwCsfST1URX38m5golb5rms3rOivkoTEmqiGWWd4b4OAGlfQ7pi3FmCseZk2H3ePOv/21XNCk9ZDtnbgIX1ozbGK71ca50JqxgqM8e7yyZHqSOMR5VMs2K+egtL25T8nRqgwIi/zX217G5Kv9jj/taqQ+mRDiBdhH52mWe6YCmMqkzwRwBJPeAuDctLbUAuaBI1nNKi89eWzkWGYbPG0dFcxesQUAr3irVsYpJ2O6P0S63uTEHz9tvX/RusCy5sHX3Ocuq/U8m/HsaFs56aI1kdmyQ839H6eOw/VPpTuRcVW4ut1ncbohPMd41eZdGNS3wSg8W1t82tFZayWRUrcriF3aGOWK5eNzOYtJzceVaZ5loRK5kmJ15tPv1YR256CWUsuAfp1B3XlImxZBSaWY+/7DRzazeTvKleilfu+vc3HhrTOC8j1lq0F57sojzsGTw7DVn4btYfCvASm7IrUdqxnPU1vdLoV0GtKyjrniYfzACC2htuOso0fhA+OGptbDW0j47ZQ1cZvye014pCbn0+DbA2kLRxax0tYWP+dHWzlOziGlbo5z4Kz1OqvQ51LNdqv/Gzz0db4zatayTXj/D5/07mcVvqFnuhJ1RxzMCZ7gHFKmabFA+O7HDw/yKgNywnf/htN//iwAYJbiEMWvj9kUYBLlcPakzRdVOVzNvmZHW0Ac+je5iUOatZKv85kuVkrJ61Heb4ygdCXDtNeHXvpwDlsHUyMnAAAgAElEQVR2tuPI7/0NM5dutHMOTMewxMHxYOo1M5xJor4Mm85L7pjpvF4qBMujXQzqIg4pnAMly+XmnrfOwSrW48oU1jwq5+DDebnad+3jC7BqSwteW5Z9oXf5snQX6o84GC8zsTsQ2sUEChTvetQdR2tHBW9v2JGog90hVck1+p77q+2MqqAOUpnex2K7L5G2kPfxDPOglaP8fmHhBtzzygrdsasKobo6yTvjbGTW/cqyjdjW0oFfPr1IJ3BKHu5dtzPv0b0Qxdd2trljL6UeHapgTij6tKFUKDj7y62QdtdNRInxw5Xne6BUFlFtgnPQiIOqc+DrUjlzpwly2HcrNiW56jQMSNmYdQfqjzh08nqBKNIj+HhWZpFd+4uV3Pm+99c4fkxnJKJp62hae30VwaqjkrpIfvaW6fjan1/H35QjWVl/ipTy1Wb69kdWhbR69U8zlkW/WZl3WeBb98/Bzc/FSnz3whf/bm13e0rqQQw7J7uWnF814zWVcwASHcpxRZ21VuLuT4qV4t+qp7uP7N+VQ64TaQ6QQHLT4hsipStRf8TBGLRJhXS6WEm+SJ/Jxx9LaBNB6P+3t3bg+KufxPS3g4Pco6isjvq27GzvtgNDahVi/D/+9Krz+lbleapRsmrMIPlxDz5EXf2vvuZnFOU89/5bO8r4w/RlmKoELnQ9VRY9Qi0twIuRWIkvc69+jdZ71cc+4ZqncM8rK7Tr3MaBIw6dOafBdr+pSNfESooI0s+c236t2AkutTccU1t/xMH471JIc7vHgHOgRF5bHdzgsYXJMLO+uWor1mxtwU/DMxk6PHQOU37xnPa/K2O2VMuFuQ6a555NnSjVrH3CeKc+PZKmkH59+Wb8Otz5cyISCc6ip4XZ/ft6G5sL9XtGD9L+1zL8ealYcLJah+4z0HpNfZ6Vm3fha3/WjzQNdA56A//1tpcT5XiLYK3cTTLNpZBWdQ4+R4r6iJWqQXfGdbKh/ohDgjrYneC4F1QoEOT48bKtZmPI8Pc9Mmc1my6LkzJZ18Ax7cQ7QxvSd6nu69UMcO4O1VqQKzJLLWZ/zF5hURYS4b1GwD418OGZv3wRM5YoBx9Zx0IyjQvp4CtPN/Nd/IEDjXL4gv7v0xOTddqrBBBb7rjESjZLznTxrB/x8ucc/O83N2cqEVCNKByBcuPyHdeyzD3fsCHdifojDubrNFlM5bppDw0Eg5oizsFPB5BogyW7eR6AObiqcYLrykHme/5EFnB9qXEOVdnu20WJj1scAQHg+2dO0P6XQ+JshucmAAvX8VFXObFSmsWRCZuyGwAaivoUdh3F+YOzdBcjWe66bS3MHUCx6OayKiJ5Yl4cVj5F50Dk9Sb9dQ4WsRKTZnIEu5QzNNTn8Qnl7XpMfVOTbdzmnENPwOhzkwCo78QM0AUEcsQC6TuqxBhyMw6ZF2yZ3fckOBVykP362cVYElpTcTtXDp1VSPu2c5/mPt71cPM1beJpjBzp78T2iFx6e7jl3G7odASAb4cHIAHA+ZP3j37zYqVsnMOmnW3RQmU+a5I42LmMzx5/APoqFmQyr3ouh8T44QNw4fvGWEUjs5ZtwrTF71o7MN1ayX1dorOcA3tmtME6qH4IqrWSl1jJQeJUB7m0/pCWjr75uwN1RxzMPndZJHAmh4VCbK1k81jWrZU4qxe/N2/eGdvH+48cIYBtLe344aNv4dO/noZ5q7cm5L/VIi3EuO/E/sx748WUu+N1xSGoOlPWGL5yYGLEHlKsl2bFoi3ArEKac4Kzlzl31Vb8Mjwa1CyuZPiSpHlIFzWFa/IeiWs/PTEyp+T6/J9veAmvLd+sWfcA8DbWKJeF17vUOTJ7fvs50EzdRver4UxUYttZzkEdax2OyXLur15ymtf2FOqOOJgTwXwpejC55AstEEVKK/nC1TKuuHe24aHMtSFbm3e2lbGjtaMqzqFYoKi+XW1l/MefXsVDs3ndRq1RlQCIualYUB2TstdjhmH3slZitsSy/82Ju3lnm/Y/zbpoF3MUaNo7fXyeFH/pGc3FOa0c9dEl8eBCQMh8nLOaCpM4+bZjV3vZa3xcfHuspHaVmcXc1pzzqoGAFsaik9ZKqjiU8+FoL1ews60DLy9NniLYG06EqzviYPa5OQBun/ZO9JvTORQLsXOYHFTqALzz5eWa0wsvVvLkHMKb563eignf/VtVOodSQZndBOxlxvRh25de7uotu7CKCZmh1ut7/KLLGgcA1PVPeCgJXeDOEbDlU9t16D4DI87NfK5ZhgesLXyGBCtWMv5/8eSx2n9TlCnhK1aSBFFdsFyvR+ZL66tSoaC1VT67bQxJC6cxQ/t7jbO0iL3/G+qFbGWx1oIOU9Z2pUI/Pwd7HpXmbmAirV5wy3Qc/j9/Y+/tDfGV6o84KL9P+ekzuO3Fpda8fBhqig54b+0IJrnrPXK71Grfu2/gPRUFY1doi5e0cUcbm27D+374lHNyl4p+CkcAeG15vHNKNWVlSk21qlJ+E0jn5hxchFpXqUgRcU7bUapXuTHU0pFuz//fUw7V/svXaJaWFCvx7ZC51OFQcSzkvubDDUVKtFUt28QBQ/pF7fESr6rPw2SXoi+rnwNTR0JaoPxWfRM6r5COy/rgT55JxB/7x9v2I2t8oyF0JeqPOChvc8kG9xGCE/fbK5FWJEpwDi4qb2G62dSxw/o7765KrOQpYz/mqscTaZ05KKihUPAmYk/PXx9NRO4eTk7ui0pFaE5pvopQM1upUIg4hyzB7z72nn0T13e1ZQ+8J/vA7J8WQ0SVFmqEW/S5BVR2eWBVZG+dTaxkN/OWdWaH63ls5XGi/gRxF8DH3jMSt1w0Cf90xD72fAw6KgKL1m1jr5mObGf98sXU8iRya6UeQJY+N1l2IJikMmaQFA+4dhhZwmf4Nm3Lrnas3cqbH5ooFuLJTY66aw1OoetCi4MLuyEMkR5cz6Z1MCe4n7Ak2f6GInn5mQD6fQMZTo3nHNztMcVKh4XRgQf20cWELlPW4NtXIe/XUw0FfglJffXCJ5NOuLjs8nHsnEMSZWVX/sbKLXh7ww60tJdx2mEjUCgQnvzqB3HoPgO9OfzH3ljDpptdvXar/yE+PU8a6pA4ZIFtMMbEIalzYO5IpFgHnZHumsfz1yR3KwvWJtOKhdh719e2vBYoFOyHxHCIuSJ/kU218IvKqmcqFshbDpwW36idsVZKe7Ki4ZD2n6eOw4NfOgFHGh7SaYH3OKc1Xqzkvi7BbaDMdrDXPW32NH0UcwMZRNMENzc1zu76FwDoB0WNHTYAxx4w2FtnxukmAb6vVbiC6+WcQw/Ap8+jgW0Rccj5IHelWc3OamGJ0JcJzPXha59LpB00rH/mgVaTBRjZdCuS/U/VHzDXubSZSwN5rvnsHRXh5eegljugqYSGYiHyc0iPe5OdwHlzDpILJMJ7Rgdiz2v++cgon+rF/cCrK6N0KSK0ncBmq69aayUrByPrFJ5zUf3N3ECOa7IeV5k2FAvkPa9t0YfTbk8c+JTh3u5A/REHj6ERy2KTu8wCJQPvuez9WbGStW06rnnkLWu5fUp+URv7lIrRRA1EJf6j7q6Zy73zmihYZNW2+n/3j6UAqgvmx93xh+nLwvx6unmWgqu2vo3B9Hjf2CHZOAelCp4Q+D2DioLBOai70rHDB8R1hxmemb8e1ykn3slxyO1m31q9NVlfNHDdhLBk5Ryct4VSJZ+56CtWSr9/wr7NiTQbCmR/32Yf2kLb/9kINmjCdYqcL9fSlUglDkR0KxGtI6I3lLTvEdFK40xpee1KIlpERPOJ6Awl/VgimhNeu47CFZaImojorjB9OhGNqe0j6nCNi9GD+wZ5wv9B7Bj9BTYWC9ruR+azgXv9vhEkZyy1WzNYRL1sXXISbt7ZjucXds8hIkT8hLWN+V8+vdh5XSLrlDG7ul9jyfuwn3HDB+L684/Gzz51VEDsPCvX5OTGPYePbMa81UnxX1rZcoOuigglOAukba18ZF5TXPbonNX44aPJTYjmD+FoW5OFONTKe17nHJLXZRRVcyFfv60V725vjcbT/V98P35yzlFh29LrLTpMsc2QIUWmD15dlvRdMOEahz1PGvw4h98CmMKkXyuEmBh+HgEAIjocwHkAJoT33EBEcot7I4BLAIwPP7LMiwFsEkKMA3AtgB9V+Sxe8JNzCrywcAN++fTixKA7YEi/BIu/bptd0cRd4/QFvm2ToSZ8J1fFk333xZGjBuGDBw9LzWeLVGrbjcm+TNvV+Z4zHNnbK7367NdPxrCBTZoVlm1+yjwfP2pfNPdpQIHcpp96G5V2GG+1IgRWbk76h/icQKjm061xkxZIJWNXGpmyGjP+LctYlJxKULS9bf2aeA7WRhxkUwWEp4hX+c20Qy7UpgfycVOfwLE/eCK6JxAN8hZfHFxiJbMd3/nLGwnflbNveCm1DtceZbfQOQghngNg38LqOBPAnUKIViHEEgCLAEwmopEAmoUQ00Qwa+8AcJZyz+3h73sAnEbm9qaGcIfYDfMAuHcWzxISxXbycjymmagtM0JUv2o5NtBnPBy1X6CA9BVxCCEyDzRX5wfWT35l+BzRKBFzYe5ys+441fIOGBKYCutewjzMEUgUe5qnLeRqG01z6Swnlt10wbFa/Wo+tX1qU2X5CeIQ/jVNm23zITJlZa/GsB1KY3tPkugKwfe9GQk3rcyGUKTDhboBoIlU00RQKgpEVnExd79qLl0L9AKpUqd0Dl8iotmh2GlwmDYKgCqoXhGmjQp/m+naPUKIDgBbAAzpRLuc8OMc9Ekx7391xinNtjpZp56zo1LBuOEDcP35RzvzcZA7Je+D1xF4WGeBq2RfvUWBiD8Fzco5hN9VWCu5HOOqVf6bi2JBee50pXmQobWjjBcXvWuUY/F8Ycr88IR9okW+aIw5tRjO69lmRWTuu2yLkK8TXL9G3uLGS+fAZFLjbHH3mJBhxblzuaHUQYyu0IViwW5owt3fbHEudcG5B94dOAcLbgQwFsBEAKsB/CxM555WONJd9yRARJcQ0Uwimrl+fXWU2s9CQqcOnGUQ4L9AmwtCpRJMdvOgFp/iJLvvW3dFCPzbb90HyZtwFe0re7fF67eKlaRyP01k48sxyfxM9mr4UpXYpYuVggzLNybFR7YFwbYxkGNHioMqymJn5lGvm1ZEi9fvCO/Ty7ctgGpsJRf6Wix1UsentV57hdyiLDkHm0dxxGkh6SviIhJFi0J6/bZWdkzZIg8cMarZWodbrOS42E2oijgIIdYKIcpCiAqAmwFMDi+tALCfknU0gFVh+mgmXbuHiEoABsEixhJC3CSEmCSEmDRsWLrc29J66xWV5XV5B0chKTxfIBe1lShJNHwW3VJEHHzr9suntcPZR36ESRXDaO2xNMhXZMPBpXPgivPx/Oas1Hy9e+X1nW3+x7WmdankBNTFToJTHpuWMOtD3VfyACM3UUprmzXwniW/KrrlynWaFnP1S87BIgO6PzTn1c9+D0pyiWajTZiR5zM3/4PPbyFq+w3up/3XCJLjYXcLnQOHUIcgcTYAacn0IIDzQgukAxEonmcIIVYD2EZEx4f6hAsBPKDcc1H4+xwAT4kuDEnoKll9v1ygrChf+O37Ak1RSkVUf0ZsdERpBp1DVqT1kU+RgX18BrGSh1lwWtu0fOF3tZPMJCCkKaTdZca+BlVVrUH2YSwmSnIOOnEIOQdD8yzjgH3/E0dgyoQ4RIRtHMWB93STZCEEfvVs7LFu6jaictMU0h7irASYe2S/cEeMAsCzC9ZH5cp3Kh/ZNhbVdpic1eL1/KFO1iYbVbjqVNEbOIdUQRkR/QnAyQCGEtEKAN8FcDIRTUTwupYC+AIACCHmEtHdAN4E0AHgMiGEVONfisDyqS+AR8MPANwC4HdEtAgBx3BeLR7MBp8+//PM5dGgkmP10S+fGA148wzpNBt4Lix4oZAMiuezkEeme746h6o4BzvSYu3E+fi608IcvJmiH2GtlRwF8vJJZxVBFoZzcDAjetWRiMy/82XW7338cBw/dkgi3ck5KP/UMamiNfTmbywVcMg+A/HY3DVafhPydlM8+OryzbhGMX01x7DZblc6l8flVcyNO5tuxYT6PjnxoFmvLZYVhQP7c+8fg3874UCc9JOnE2W52txerkRtdnNJPU8dUomDEOJ8JvkWR/6pAKYy6TMBHMGktwA4N60dtYJzVxx+T3s7ViJKmaqMZQOoETKDwg4f2Yw5K7dYyzWVZRUhwhPlMjRc1p1yrq+Jqs5xdll0wd/agyvHrnMIvtMOIvJ9GvluuOevhmdTTVnTGuFLRLR7wtyjB/fDofsk5dTSDFOWyekZ9N967f98TCzVVRfKmRZfGklwTPHgzlbdZNPGOaSfzscH0Miiox3QVLKKtTiY4mB1g2U688n+buuooIlxOG0oEvYZFJ9g6GuFplpVufUr1kvdhtxDOgWsws0wiUtbgJOnPIXWE8Yy5dMym9OPDdURB/u1Qlo8hRA2IpLVcsoE613saDAr165CpKcppNNMWSOfjeQ1Lv6VmtdsmiwislKriEQ+1cbepjSfrOga1HH3+gr7pkbWoz6vudGxRf1NCwBo60HfBfOzx++PJy7/oBb4z3X8bVNDIaFzUOdGg0HkmsOAhltbeL1RuWJEC7bWrEPtP6dCuhfIleqPOKQtfEYeLm5KwRCcpr1H0wZbCIECJVlZtd71Fsc6G7trgyvbPx89ik1P8wWx1T1eCeNQsAT5u/j2bJZTJszFta2j4uyLVFGdp9UMKXbvqdZKUb4MnFNUj9m84EpDyTBlVfKoJ5nJKhPHiVbDpiIpHmwziYOh24j4Flu/qn4OrFjJ3k5VXj9xv8HYZ1AfzanvHcOfSEXfhmJCHKweHGWK4fbqFxCHLTvbtXRV36gHJ3S/VwmNODgV0sm0to4K7np5WbcRjpw4qGBeFmfGGg8QWWY2zkGG5TAXIHWHtmgdr/gyo3OmwZXPNKWNDrF3lMcxDh89cmTiPo6IcMdjZsX3HnxT+3/wtx/FV+5KiqKqEe2oMIeC5ufguG9I/8aYc8hQX2SPb9QsRRpyhxx1qZJNDeBmU5rbdANpMMWDCc7BsoLY1q+TDh4atA98/7ha2aqEOpdtUhd1Fzfdp6GYMCRRxUrmXBzQFPTpdksYknJF6J7plnrNhby9Q6nTeNovnHSQUl6yxBufWYxv3DsHf3ltZeJaV6D+iEMNxEoxh2GXa6voMHUOFRnAL04799jR2kJuO5C8lmKlUw4drv0vRwuLvTxOl/Cx94xM5CMmn83cMAtsPicm4h108mFaVfGDZfvmNGV19M+wgU2xuDHDDi/KadR73xffH9SfCJ8RZzxy9CBc8U/BaWw+5rY+UrWmhlhpqj5GkjjoS4gsmtswffQ9IzHliJHRdTbKKsNRS7Qxoc5VsZZtTpQKhIZiIXaCC9OdMdEi4YBg002DEFtRpoFFWwrn0GgYHqiQFpTbLKKuWqP+iEPGreT/nTcxkaa64QshsGCt27ytneEciPSJZh6raXPqySpWyqJzSDvMRu5QzTnI7Uo5J7gse9cTxw9l023hkU245P7aAmd51oUG51YoKLtyx9KbxapJa6/UORjph41s1rzSZT6zy6VOwddRz4aj998L0795WtTPpqe7uUCbnIMwvlUMbNKDHnJ51mxtsUYrbVXqlveqY08u2K+8owe96xs9S3ivx6YuInKW60nCz+c89oDB2n+bJ7cs4aUrT7W2LQ7Xbi2ipqg74uAC1+cHDTWP7oS2A3nOI8rpDoM1FSKYdM3aKV6657FtEGXWOXjlCuBS6AFAU6mAAhGWbdRlu9xh9IRk+AxXW045xM+pkTtZjYPLWMAWh0fF/bN01p08OQd1Ic9mDCAnfnIUklJnrLjW88V6MPmVvvDZMKI5tsIxxYhtRt+tM043c3FsRCpnwdft8gFK5xyC62u26KckNimEDogXdicjq6sVlWSec+cOeDp/8v746blHafnSzoYeOqAJe/dv9CJcXY26Iw4+81XNw05WZQeyaUdbanlPzFur/a+IwM+hf1MJh4wYqJQZV2xjkUcO6huWkVptaj5T5imPr7T1UakQiMI2Gs/MyZ05PwcX8ZFB8SRsbfiIcsavC+ZiqsK1e5M41RC5+eocNEV8Btpg4xziMnWuJSn2Cr59OAfXztMcd6Z40DzFbuY7fGhqPmyJEt8IfFTWSiUZJl+ilSEOGucgDQGMjpfBAU2FtHsB1sV4JlxiJVn+Ps19EpyuLlbin9MWeqa7zVuzR4vazeGWM/rRZNWqyeeW+2atxM8/FYun1HMiHvnyiRBC4LsPztVevjr4nrj8g9h/736Ys3JzxG1wjnUcsnhIS0cpa5yfQjBlTKc/LhAhFz7jG/fMZssd0FTybqe/Gap9kfTZ0X9eUQ4ChnjFcb8W2tuzpQCwtSWwiuEeL1Du61UnFeaGJY6TONj70OSqzIXqpcUbEtd1yH5nOAeYnAPH1VX8dA7hraoISurpzHEXRY41CKiPzsH2Ek2xknYoUfibew65MalURMKsW1r72ULPREndJFeqP87Bcc23y1WrB9dEa7KcEKWyzsUCoVQsJNh3ddyOGz4AjaUCjj1g76i+ZLwmvQ4ZJTLLbkNyDq5InQWihG07t9MrGJwQEIcyMNFYKiTqtBGo7EeeJvP7OfGZ/z1jK4X5Zq/YjLte9j9J79LfzwIAbN2VVDaSInJ8NDzMPmlqG3xzepEff/I93u0oG7IWUzyonrXMtcNFP1ds2pUaW6mtXGFijgnMWLJRs1aSUMeizYS4ydA5mPm5e6y0IVJI68nqXzVMuImIODAPf86xo6N28v48etu6GvVHHDwWlzTCrO6U1ayqnT8AHDi0Pz548LBEzHvp56DVabxy2yJoM2U1OYnLTz8YHzpseKbFVNrLPzJndZSmhlAuhmIlk6WWbVKfoMDsflyhGhL6CYdMOs5jfzZ5iZNT+5zEZy5QqmmuzHbUfnslypAT+xP/70U8+PqqxHUVQwc0Rr+lyGQXJ3qjeLH/04xlUXv0euW4SHJM40bo49IFM/YPJx40mqZBRN8cURaanwOHplIxUejtLy3Fp349DY+FhFEtXzWWijkHvXB5jGfB2Fj5SBES4TPksyQ4B+W3Q38UEwc9fURzU5Sf09fJkoNyrc2uKeqPONSgDHWXpi4ij1/+wUTefZr7GIpnu9JNXZzSzq/lfCdUdIR22LYFedjApsQgkzqB2YrXrDoJAuKQjCPFPYvLWS6ZN9lO2606+24vc3ioVP3Bw/MS16pxItKskBxiA1V5nAbO8so0e47qMcpMFSsp17I4wJkKU9cYAoAL3ncAm84pe5tKRYVz4HnDC5XyGosFFAsUhRt/Wzk4aWA4pzTOQS76Rt0JhbTQ83OILZv46wmxLpLjklvE2zp4wqT+TdM5+EQVrgXqjzgwnS7NzY4YNSh5kQEpA8dFxds6KolFckdrB+as3BKJcNQy1abZojeaux8J8+jJLbvao9PYjlSe6/LTD45+Sy9QCU5hrNZTJH5YcqaHtmNCORTIf8Hm4wjF+MiRgcJ61F4BcZi+5N1EHltV+gQ1RWdJXQIvTvMLTGjWJ2GaPQP8TjJprRR8c7viLItJkvADri3VmRN1L3uXtZKZj8uiBtKbMKpZ464AYO/+jfjRJ4/EP4WGCZrOwWKKLcW7pujNy8/Bku5SSLsWcduBUepfq87BQXS6AnVHHLiBfubEffHKtz8UEYm0RS1mjZPiIRW72suJRf/WF5YAQOKEMHPHaeUcLKas/3Xna9r/PmG4ACH0stQTqwb2MYlDcrunTv5CgRID8wPjhsZHSirXiGkjh79/5SQUKbn4jRvOi0LUbnluYVKHYe4OuQVcrUut9YZnFkW/ObGNKVb60injEmUT2U0kp56tx53kxGIc58CJdsynksSizLAOJrGyLS59G4qJNnLiQYmzJu6bSOO8w2PORRh+Du7x0VBM6qIGNJXw6eP2j0UwDOdglmoSh5iAqW0xoYvpTMjNzHc/frhWZlCWXfxTthAmbWNSsOgcIgfI7kHdEQfuXRcLhCEDkmIWG3SW035TQBz8/BdMk0Eb51A0Fj+1LhWfP/GgyHFLJQ5Fw+60UVGacwq/E8YNxc9CW+0gHhSzW7Y4wUkIIfDioqQ/yLCBTTh4xEB2p3TCON4JTk6qWcs2sSfcmbJirr02wvvTvy9QykmWa667x+yvOzjJfLZFb6Kho+BycXbwjFQp8Vym5zwn5ojL48fso18+EScfopvwZhEPqnWpY1nfNMSL7uzlfNA/mb2pVEgqly1GHkA8Z5L36GIlLyc4C+cgIe+V0ga1v6UTHrdxlO8nSRx0To91gss5h64F97LlguvLfpOyQLs4h5GD+kaiHeVmr7aVQyJy2+eO0/KY4oNF67ZjW0t7IhZTY6kQDTItNLHR4BnfPA33XhqEaGhlOAcAGBvu4ksM50CknG+sPWY8wL969+v4l99MTz6v3N2HO6UfPBTHTUoL7b1xO+9fIpv3f08sRGtHme1uXeTCgxMrxSKBSG7A1m8bF8MH9tH8J9R2DBvYBAAYoYSBVtuSWOCN8mXoaklc1PxJkVSybbZ0dXNz/6srEtdsqIhkPlUMKwTw3/fyps0yf0OxkHjuRgdxiBde/h6Tq3SFoImezJKlbAyBiBupCFxwywxruXE+PV19RwXiq5Vpuc6hi8BtFuTO1zynwQY1n22C3HzhJNz+b8exgeo4kLE9lLugY8cMNvKFAzy8/qGfP8suvLJMARg+CXqevfo14oAhwVGGph5EQpo3FgrJYIGAYkGlpKlKtftedQcKkyKb34QiNwBYt62FzZtFmfzGyq2sPsQtTgjAKXzNqrlXL0Oac/00bGATjhsTh85Wy/vUpMCM8eNMnCp47N6lrL6dsfX37TFu0VHFg1yAQw1EgSoAACAASURBVBOyLm2joFw3F2gXGosFq/6AQ8Q1GWXLsxmyOQrKMW0QVujzz+QwblROydvRmpxPVs5B+V0qFlgru+iWbuIc6s4JjpPlRZyDZ6f7cA6nHz4CQDI2ja2K4DjGGHIQmTv9OHxGnDbbEpNf7jjVIH5moDS1DttOSkrCbArpnWG0VTW0BZHNHI9vZ2LhteRNW1TUy2QRg/m0K6lzSC4qXBulGKZAAEdqNZm7trsPFjFb+Iy09sl3KDmHaYtjnVb/Rn2aW8cgS+wsmS3lcCIbtVxzgXahgfF/cXEONmV4FN4lg7WSyRGYKEfEQRdjvr58c5Rny672xH02Zbj6t7lPqduC67lQf5yD41qaDbaWN5AX4WeKnBoA+hs+DWSUJwe36j8gy+N0DubO12bKykEuaCoLy4e6cO/mZF02zqG5b7D4yNDdQCxe8QEn1/6X4w/A9ecfjZsvnKSlpy0qpx4ax2ja2VpOhPoA/LgP7jyHwMImNsLk+kKGz/Dx5Fbft2kWnayb38FKyMOAOioC0xa/i1tfDLiw//rQeByyz0CjvNSmaXXb+tz1LmzWUkEIDf7evfvrlklFSm7muFPZzp+8n1ZnIlw5qfUjmpDczl7Lh+RaIEW0EXGQF8J8qrWV3JRN1rhFXvSl9sfAPg3Y1pIkLL1OIU1EtxLROiJ6Q0nbm4geJ6KF4fdg5dqVRLSIiOYT0RlK+rFENCe8dh2Fs4eImojorjB9OhGNqe0j6uDGc/RiskwaBC/YDMn7/DdOxROXnxTnMxXN4c7uqjN1qxBDqqRwDvorslkrSYwfPgCP/deJUd0VITTOwe7NHC58SrlSF3HsAYMxZcI+uPrsI5POe0Q4dJ9mPPf1U3DxBw7EJ48ZjTv+bXIkXvEBJ1NvKBbw8aP2xai9+mrpaU6MZx8dH4f54OuxOOv8yTEx9iFanFgpqN/OOQwd0KhxDhw0Rb2SLoQ94Bwngz7QCAgZ6xwqmkhOcrA+sHEOti7nzG5tAfcA3QRYzbevoWeZFFoNNpWKXjqHy0KrsUgZblxXN0SSS31t+Wacf/M/4gsJzjUpKgXijYUkEqb4ST22VHbPp4/bL5GWGMfK34E2zkGOu27SSPtwDr8FMMVIuwLAk0KI8QCeDP+DiA4HcB6ACeE9NxCRJPU3ArgEwPjwI8u8GMAmIcQ4ANcC+FG1D+MDm+cmEE92n7632bPv3b8R44bHOzXTDHFXezly7lFh5pOcAxfGQW2ziaP33ys6g1iWqXIZfCDBuMw7lZAP0rS3sVTAry44FuOGD7DSz/2H9AMR4WefOgonHTzM08olfkYbJ9S/Sd8pukITmNCOcVTawnk2m+AU0kH98Vs32/Dglz4QcRhWLgDq4qFwDhU7QZFEXj7Dl08bnzjXIiIOFaE9N9cOeZANVw/XXtt75MxuZZJLlFokgnrrOZOCxVMSvOs/czQe+o8PYECfkpfOoWAs0CZnqPaB5KZnWQIGRm1WNkwq5Lw0OQeZzTbmJGxKc/U5G0sFNshgNO6cLa8dUomDEOI5AOYp5GcCuD38fTuAs5T0O4UQrUKIJQAWAZhMRCMBNAshpomgx+4w7pFl3QPgNOpK0siMczlQs1QbLH4e+QxdwrptLdFBKi6UK5XQOsi2SKXvohev244Vm3ZpwdS4M3/VMmev2Jy4ruf16yPbMaG2vLYFaPhAfVeZ5bwCta2jB8cciE+soYTOQdH1xJwD4f1jh0R5hg5oiqyazF4aEyr9zz5mFCbs24zTDx+R0DnYCYrOsXD55ElxP/nbfE2ZyRWp7mTNehJpDs6BM7uVxguqKHOfkDOIPMsNO/6BTSXc9rnjcMtFgQixX2MJR4waxHJMHOeQ9Hw2risLtjRJ9p3qtmHWRx6GZIif1DOtOX8Xm85BfadNpQJr8i4Jy4uL048JqAWq1TmMEEKsBoDwW9rnjQKgRhtbEaaNCn+b6do9QogOAFsADEEXgXvZEYuYoRxfD2DVBPKFhRtw36yVLMto2sebO8C4vHiXz9WvpsnD41XFGKdzUEUmqboMU6xky+bFOcT126o1d8gy31rGmunFK07V/qv9d/EH4iirfRuLqYuDKdOniICqOgfgj58/XqtPihtVov7ol0/Ek189GUBAQB7+zxMxaq++OucghLVNm3e1Y+3WFsV3I5lHXQDV88c5E4JigXDQMO6cEqZcxzjnxEpyTfvqnwPLpq+fcQi++uFDorLktzrOKkLglEOHY69+us6B2zQ0MgNYfTcA5xOi5EX6pkotU826cUdbFD/t/z59tPZMMltRESuxUgqLtdKfL31f9LuhyBMHKR6+b9bueUwoN7yFI911T7JwokuIaCYRzVy/no/wmQZW52CYpfnADBb3f59Onhgny5Tz4OWlJgOm5DPaVi4LNiaOemAJt/iq8/V/Pna49X6zjcG9IpUbyuIL4pqDkw/cO55gxk7yNOMsBRUy37fufyNxzdRPaOIEY6SnPUXSWilI2NlWjoLfmZBOgsLwBC4ViDEs0LfFQgjrOc/lisAT89ZF7ybtPGi1btuY9h3qLiKvnu1wb7i4mWElvnjy2Ggcy7YUjc2AeU9cd3LTwO2a1YW8o1xJiLtUTsrG0V5ihGiPx3mQ++HZq3HMVY9j4brt+MRR+0bckARHuDkRqGS2zEeWomBAEgc9w03PLcYTb+oRcbsa1ZqyriWikUKI1aHISLZ6BQCVZx0NYFWYPppJV+9ZQUQlAIOQFGMBAIQQNwG4CQAmTZrkK7XQy2CGRtkgDj6ik1KhoO1+xjAnxgVlBovFr55djL/OdkTpNFhoG+egmrJyHXDUfnEcJe68ZXl/AyOXFkKkWvIkFdL2fK4d2t1feJ+SV98hfvOjh1nvy+KtW2Ke0YStuCRxCL5/8rf5WL5xF5tH6gYWrNmu9T3Xpeai6xIrFQukbUZsfT50QCM2bG/TrYP4rFb9ggm5mHLv8kunxuFDxoSHNVUqulEDKYtxHPIiqW/h25isd8WmXYl86vidfPWTCQu1HW1lJW9Qn/qkf/7392n+J7LuoMzg+wXFw18VbZn5bDolCR/v7IZiQTsUCACufuQta/6uQrWcw4MALgp/XwTgASX9vNAC6UAEiucZoehpGxEdH+oTLjTukWWdA+ApkeWEmozgSj5831CBG77YtJ0ZkDzwxiVeEQK45tG38Pb6HZZcYd3qbqoiUGJYaNWUlRtgFxx/QNxGZgEY0dwHXzplHO64+L1KmTHBse3i1OfxgRSveOU1doic6ECiIvxOcgMMWbNfU+J7E7qe4P9WxcSQW8yfnr8ebeWKJsrjNiSmPN1l4fThw0fgwKH9ld0pn/G7H5+QqC8L58DllQs5J25UQ5zITUe5kswrpzMpeU3CyIGzlGLbrZTDmS4PaIr3wFKEqRJHFzctq1e5EVUpbnIYWlHhzWoMM5tCWkVjkdBerniJv7oSPqasfwIwDcAhRLSCiC4GcA2A04loIYDTw/8QQswFcDeANwE8BuAyIYQk25cC+A0CJfViAI+G6bcAGEJEiwBcjtDyqaugdvfAphJmfOs0HH9QoOJQ2d40lAqUaiIKhAppj3ccSBmCjHdMW4ppb79rjXYqd1Rcueqg55pULBC+dsYhWmA71RJHKhnHMjLpIK8hi7c8T5bopKaIznbAPBBMrheYOE1DDBt5wBSvWN6PbfFkuALAXBj8wCkmTW7JXLC0vAVCRyUW+dnNZIMLqkjCtgixhIDNFwZvNAabeTayera5GRcs2lWHFWxv7dDOIbftomUf6cTOLmq1LaZf+VAciZjzNudDr8sygQdeW6kdh6oSmyTnEEPW86HDhuP7nwgI9w8ffUu7xkGGDbHFV+supIqVhBDnWy6dZsk/FcBUJn0mgCOY9BYA56a1o1bQDnQpUMIaBvCLf18oJM81YPMRv3M0oeoc/ueBuQCAkUycnaBM0qxmJMzAbi6xlFa3wjnIXXmDZffuzTkQvyhyMJWeLuJgWwCk0lOFKq6wFWk719oUscj7VScsX+s2diEgI8SFg3MoFUjTMbn8IQCds7KfC+JHHShsm3oAFBCfWiYh31lHhSEORp3tZYFn5sc6QysBC6+p11llvGGtZEIV8cXe0sn7tbojzkHgy0bE4+cXbsCViXzyf1yWmnb+5P3x3QfnxtdcxCHcgLSXK9Z52B2oaw9pzqEL8BMrlQrEmvKZIPITrxj6ybB99kWgbOyoAOALzLnH3L3W+hXxgerMo+fzWxBVWbOJQw2PXZNzsFXRULRbNXFzSF2kOI9nALj5+SVseYmxEX43Kv0if/3lshPwbYeehC9ff+EuD+kiBZyDqCj3MqBo8U0nDpwdPd/OoJnPzncbgMg2lSsioRBO05XYdQ5hmWX7ewwS9Xrc7UzmYzdM4TdX5OadsehKtfQz4SJqrjUhipPV0cs5hz0O2gvjRSQ+y1+xQBqrbeMOArGSD+eQzGdboCW7bQ6whEUMSwnsZQoRmydyMZi4u63iGvC7o39ceVrC0oNI58JsYr1SIRmITW2/CZduIvWdGMXJvuTEdhP32yvBtalgvYaN9DSFtM458PXEnIMyLi2PuWSDXf+ltTMca2mbgkispHAO35hyaJAWiZX4Mmx6rojT0MS3XD5n0xJlVgw/FJuuBeCNPr6vRDeQt8p3o1qy2USl5YrA9U/FZ4eYkApvUyktMfnAvdn0WqMOOQddrKRCDgifnX7JECvZJiHnyMOB4xxs4pUCUcIqhMvPylIdC0ugeAwGpG2++YqVbPbxJmGQdfuIlUoh58Bd5RZWWwhyHyT9HOziuDRw/WCaVFYqdj+HYqRzCImDY1wAuulmmoFBGgqheDDtSSVBLyvc56C+gSI2PlaVL8VO8INvldjZTt9zlaNCGj9sb1UtmOybKG4ToYYkMYmIypGZVlsSD81ehb86zheX3Knc3LhCbXQl6o84OFi9LINMTtioXFtGyyKZyMak2XQfgbVH8jQ5c9HgduD2RZ9CnUPQWFuTfRXSprmiC6b1im3xCxR1fJkcQdnRZo9smbawJ8eGM7sTLisgCadYqaBzinbFdfCtij189GIuRA5rKc9fUDgHuajJ8cspa1VwhyYBcb+1d7gNP7Js6qT49EePxaahvB4uvawwJ4B4AZchZwC7zk0l3qccMgzP//cp2vVIrBT2o/kO232VeZ1E3YmV1H42F0+TRXShVChoslDbopVlTTGLWLB2O5uPKBgw//77V7T0xPP4j/DILyE+ZrJzzxNZmnjJgUmzBrGJlQKdg00+nUxzRt1MaVMybEl11OHC9x2gneGtlq8+SkU4OKZwI/LsgvVhWyxtDp9q/fbYQzqLXwi3I2hqKKKtXPFyfiyFotZyJJoMF07OzDPEpSePxRkT9mHLk+9A0x0x+Wxy/30H9cGNnz3WyJvMx1srgS0z2Ub9v+n5reLE8UOxraUDTQ2xgnz/vfthv737aflM4mAq+DtL8H1Rh5yDS0kZfPv0vS/n4L2oZFrIeT2Gn1jJrceQykTb89j6LJkvKMPHHM+XiAU6Bz6/Gb0WAHa02jmH2/9tsrOuWnAOE/Ztxv+eeYTF4SyA6hRlq6JQIJTLAl8LQ1LYFdLB99Zd8XOPt5zFzYF7U31KBbS0l7VwGzbluzS5le9c6swqDkX6sAFN1vbI/KpZtUs/YBo1vHTlaYkgi1xIDpfIMM2nxiQiatmcmLhcEZofz2Ejm2FCEoe2UCGtzqHmPiX2IKCuQP0RB+X3KUrs/wD+YqVSkSL5vAvetEG2T6mb23ECsVjJhDn5XCah3L2aWMnSBf60LtgZr9nCn+im151siwrZDy5RVR8mmOF2B3EYP8K9aProHNLgusXc7ZYtHvFAvCOP73WX2V6uYOiAJiy95qOJeEVZ0dQQRAjtq+x2m/vyUV2LoS5MWvFJgi1bzu/67XVziz4ncpTvSn3fdku/5NxxBaO0KYXNeiR3pO7qzZAcxVBEp/rKcEEQG0s6YVKtv4YMaEqcF99VqDuxkhxnN184CScfohOHaDB67HYTnINDIe2DSLGllKNG/DTL5BSNbPweTxB0T1ib9dVzC3STRucZBEJoZwucdLBJjPkyzLAfv///3ovlG3fii3+YZe1n7hAYp84hTUySQrB84KpDdTwsgNBe5j3igXhHLmGzJFOJQ63M4/uUimhpL2sOnzYEO+M4QJzqGAfwBNZlNh5HA1DT7Av5YuUcdde8c0VElZDvztyl72+IgOI1Q7ZV4PTDRyQOqQJi3ZEefiNZd8Q5hA++aWfsbd/ctwErmRAiXYG6Iw5yHzNqr74JB5MsOocikWErbpOF+y0q3OEiNgcYu1jJyMfMkAar/wJCU1ZpIcG3c7ESAuT9Y4fgB2cl/BqD8hCI59Q++vmnjmLzqs3kgu4N6tuAQWEIZ5v4hVVIe5z0ZYNNrJRFhu+qwxRhtpcrmg+FCukEJ2F7h6p1DydmSwP3aJJzMAPB2epXNxiynbG1UvIe1/yIfSeUEORMPllGSfNBsfRRgQnJ4RBVmWIlNSaYWo8ssiKEVWdmhtyxQb679nIFW3a245SfPhNda+5TwkLHpqeWqD+xUmTxkbwWOd14iPSKBTLM1jrXLtkedfC4/By4QWY7oAYAvvWRwzD17CMwenA/cCgUAoIzOBRDnDie3+WruOqsIzC8mffiJiIs27hT80BWww6YebnfiTYyIgEJjli6xEoqnl2QdPAy2yH72xUfK1GG65ohjuioVKycg3SCi/5btsWRArdcSUShrRZNpSLKFaGN9b0toiq5+ElCItt58iHD0aehgIvePwaAvknw2Tq5nBkBRQTUoebjy+I2Vi7xq0oUTzlkWMIUW87R1o5gnLvEg4VQPJi2wZC3CwFs3qXHimru24CdbWUv6UZnUX/EIfzmBk98mlY6dSgVCa3KwtdZhbQcUOpOZdVmnn206RzMQanuYPYZ1Af/8t4DrPXLhXfv/o0Y3K8BXz8jGY4CAD6oiIZcYUYenh2EW/jdtHeiNO4Ur6Du+HfabrtimVycmM2luFOruejWGYkwGuajzVoWHILExXVyNtiCRaEIZE545ka7JUQ7kOQArfnkbrdi3726MKBPknjLMSUXPwA47TA+pHqxUNCslSTnO6K5D9666p9wRKg7SjupzrymboRc3Ic6b13EwZw7LvNYlSj2aUiKLkc090FjsRDFiqoIu6hM6mTSuAdVHJcQuYZt6Kz/ig/qjzhENteMyKWgm5C5UCwUtMUniwKXS5O7mafnxzHbX1r8bjIj7IrZhA+C8j8tXpQUCbSXK9h/737W3c+lJ4+11qdCyks3K9FJbVyBvli42hjs+r7259mJa2qMrBv/5Rh7IZa2HPqdx/TrxvjgjsRMg+tZnpi3FgDwUEhEOxxxdMx+tomMCsoGI4sxggTH2cm6VYdC+3sMQl2YOgcT6nO633fw3aERB7tYVJ23rnxegfcYayWOOBQLhP5NRexsLePNVVuxZMMOWBj+KKpCunlsTBTNPpQbrO4wZ607nYPL5lpyDj6mYiVDrKSeo6CCGyfcwJVKpy/98dUozRU0jWMrE5yDuuimLBZEQayoTTvbreINQJ/YPguQTZSkolkJaexW4hIqFWCDYscPAH//ykk4eEQcr2mIwzwyricbTJNcUzGZtQ7T4bKjIqy6hMR7TdE5dJTtoo2skK87zWoHCK1xhMCvn30bgNuJU8LJORSSnIOLI0jzpAaCd/Ludl1Uwz2bvFtdC/Yb3DeRD4gX/Y9c97zWbq6NlUr8zh/80gmWfMG3EMnnkIYXOXHoAri8NeXkbPNQvgU6h4DVnnr2Eay1DMAPUk4+zrXH5iPgK1ZS//pwDnfNDE54PW4M77EK6KIhnwXIRyGvynFdsnIbx6QSBqBz3sw2mO/iL5fxE1uFW38SfMvnaeuw6xzMYhpsca9Ijt+K1aIpKzjOwZo3VJxLHY7tedSx6BQjht9q39sMIMoVgXeVTYPN+XLx+h2aUQUQHN2aqFuK6BTCMXIvB3HwWjP08y5cHvGAfiSthDx/PhcrdQGcOodwQrV62BGXChRNGNfCy9Xjq4c41wiLrJbJDY6EQlppV9pC7nv8py4SSL9HyvLNiLEqVHY9lXPwmBM+3ZtqrWTMjAMMTmGQxdZfq8NVfsQ5BP9dnIOv/0q0mHqYsn719IPdGYy6VJ2DK686LjvLOcTilXiBnjTGHnTOXPR9wYmL5DhUiYOt3yXHJGGz7JL9E5/L4X7f5YqIdFNRWyXn4EGMOov6Iw7RS0y+GClWWrZxJwb2KeG1/zndWk6xQGgJJ4zLbJDbPY5i2FPuVX/2eF6BXLSaspqcgz9x0JXC9ryqjbaLKP7ivOBMbUlo1SMlTailuBZt86xpa3ke1MFFhPo2FBOc4GWnBO2X3q0+3ImrGWOHDdDK6yhX7LoEk3NIISIVkX5g1UHD/DynY+LgKVbysKpSn9P5viPrq3QHQBM+S+e44QPwu4t5T3lOIe0yGFDFvO2WvjIDZtqWDVn3xh1tuOCWGdq1nHPoBnCDUu6Kd7aVcdCwAU7v0lIhlnHaTE4Bfvd4BxO6gXvXWU1ZTRQzEAdffwyVOLj0GBP2DXQwLSF3ZRO7AToRS7Ne8Yq8mZrDjQOGJPUJZhhlW3/d9rnj4nY4nuX6zxwNABjeHIg0WjsqDmsuP86h2s2AO58/cWivVCIFO1ALziH4LnsopKvBOceOtppsy1pULsBqalwwOQe+r2Q+mTdNrMSZYsvNRHfoHOqOOLh0DupgTpXRe4pszEuD+zXggCH8EZzJ9thl0Gu2xvJVGTrCXFzUsZe2k1SrcuVUd62u55bXpKu/bbdrttNtyuonVvJaQDKuMcUCRW1zPfcphw6PPNtdVezVT4azDv63tJdZ8QaQfB71fGoV2vtO3Qy4/5vlmJ7xHJZv1E2vd7Txoih1LLg5h+Dbx1rJhM/Guo+FGAcNC77aFHGaldiFm7VYZ2nnHIKz3+V/vmrXAUIyekBOHLoAsbVS8s1kscTxJSTmbsMWl4YLV2GVcRYI67bGYSm+evoheP6/T8G+hsJMvd/F3QD+k66pGC9gLoIjq25pL6OxVHDuotMOe1fL9IvZn5rFCVsd8j2nFS/73UdkIkUMbs5B/3+0JcR1Fs7BfB9Wr95OdKbNoiu7ziHdWqkaNFmIMRCLHXe1p+scCoWAoy2lmMLLQ5vSzreQ1Ziio7eumhKNwV5PHIhoKRHNIaLXiGhmmLY3ET1ORAvD78FK/iuJaBERzSeiM5T0Y8NyFhHRdVRNlDNPODkHZQFN4xxUaxCXzkHdJR03ZjArUlLbZbtXRYEoEXzLDPsr83HttZUp4er9hpIysR1FyvJ2tZfRlKIdJctvrkyznzgRkA+hc+kubJfk4uC78Lr0GvJKRQRtcXEOan3fmHKoVRmuvo90sZJ+3Wp+WaXp17c/ehj27s+LZdX54uME11FJ918w4XNuOxesUUJWo0b2ta0J8shguX7Y3nuskE4jDkG6qbvo01CM6uj1xCHEKUKIiUIIGWnqCgBPCiHGA3gy/A8iOhzAeQAmAJgC4AYikrPhRgCXABgffqbUoF0sXOEzssjo1YFiszsP8sVd/JUPHewtUnK1oVAg7GpTvbNt/hBKWSmTSr3c6NAPqOGG3Yr44Lu1vaLpKdLa2e4Y9CbncMaEEXjmaycn8g0fGJsmfuGkg/DXL30gkcc1t2yXpGI0bYGSw8GHc6gIgftfXen0rNU5K1e96ubGv8/Ne7X0KlcIH5Ej4GfK+o+3N0ZptmK/9mHd+spHrOTSg8lqNOLgcFKsKM5ttq6Xfg6SsUgjDqp46sfnvEe75hMKv7PoCrHSmQBuD3/fDuAsJf1OIUSrEGIJgEUAJhPRSADNQohpItjO3aHcU3PEtkrJF0MZiIMmsnGKldSddrZdmM2efe7KLZqC0DZOspmyxnDJYrN4MwPBALeJ0rh2uo5PlOcZS5xz7H6suEqN9zRqcF8cOTrpoOjmHPhrckKmhUz2ESvJa0IA37x/TlCuJaCar8JetUBy6Xi4tvkoubPAe064xhAzDO2n4OnpPkunm3MIytvZ5qFzKAS6BOkwZ1c0Q+ccLNXLd6E64PVvLIVtCG7KdIhTlegscRAA/k5ErxDRJWHaCCHEagAIv2UgllEAliv3rgjTRoW/zfQEiOgSIppJRDPXr09XkLENjsIHJ69lcRoreS68jZ56DG5BshETc9dwksXiIosMWrURt4k3AH1y+kTUBIADh7q5Jd/lJ+Ac4v99He3k2qHCNbX6e3h1uyD7xUeeLkQcqM7GYelmxvZ6iwXCPiFhtIXiMOvn6jDLrAaujZDuBOc3hgDgR5880ulrkBVqyBUTsjSVOLg4+daOSrTTT1Ncp+kcZHKbFg5EtiH47tgN/BxOEEIcA+CfAFxGRCc58nI9IRzpyUQhbhJCTBJCTBo2LD1qKFuG45rvDg3QRUmuvCVPp7FPTNTp4dJrPuqsX+KR/zwRh++bPE0KyCYmU3HIPgPTM6VArc61Q8tWZuDfUSoQBvYp4YRx/HkXKmwTdUj/RnYxHjd8AH5lHC2ZFb4LVYGC8Rgdq+mxK057j/1CaxZXCJSgbr2cWi66QArn4KlzMPHp4/a3Xku032PtVMWPJmSzVH2HfdHX46Bd/c9Hsvnke5Sbu1SxksI5SCJa3F04ByHEqvB7HYD7AUwGsDYUFSH8lpHkVgBQjz0aDWBVmD6aSe8aOHQO6stKs+5J4yy4clwT+9gDBkeHD501cV9nmaqibyATSVNCfUbf9gLAv39wbHqmFOhB//yHmUs/IU0BiwXCZybv7+Wb4QpvzR13+f1PTEhYfWVFLFZKE+0Yfhspi4X5m8OK8CAYl3guKEf//8WTeSdFlTAdMaoZM751mrNcCZcBRNFXrJSBcJh97aOQdhFQ+dzqAm3jxszxPXKQJcyGoWjOIlZKcA69WedARP2JaKD85p9fOAAAE8NJREFUDeDDAN4A8CCAi8JsFwF4IPz9IIDziKiJiA5EoHieEYqethHR8aGV0oXKPTWHy5SVlN54RTnwnoM6+F1EvEHbJbnbtjb0XbDZh0uontNDBtgd9YoZdpy2+6pFFjNaFUcx+gGJwGQwmBi+Zbp9UJLXXMTWF7LYtBYWKHYSdOVXHyHt1fgEyAvqigt69Tun4/OW8CYq5zBsQJNTFKPd51hZ1I2Kj7WSV30m4+Cxdrq4IikOVvVL/Rotfiieq6gkOFJfaI+RFXyrJrEm59DbA++NAHB/2OgSgD8KIR4jopcB3E1EFwNYBuBcABBCzCWiuwG8CaADwGVCCNnzlwL4LYC+AB4NP10ClymrOhjXbm1lcsTwZbdLnuInAJi3eisA4PE317rLDAdZU6mAfo32V5hF51BrqNXZJgGH68+3h9uW1krliv9JZ75WMxIuCxZfyHLTlcKETTvblP/u8uQ9tYCvHqNBC7To/x5dY13rd0fdWR7VfJeuoJVR4DvH40jioBIZ8/haW91pbZQbgoYUj/hH5qyJ0kzRY68mDkKItwEkzn0UQrwLgOU9hRBTAUxl0mcC4MMt1hiyS11n0fpg5juxeZ2Lhc0a4hpInxSynMEph8dnsXuvNTSxUsoiqfbe4P52y6YCUcRqpy28Ud0u8QbT0bXQjxSiXV4KcYC++Iwfzut6fJ0Es8DXsEANue7b54D9YCfA5KZdnEP827Zrj/J6ju/GYgG7KsGe1MlVFggNRT0MuM0AIk35LyHHW2sUk82t51G5QPOMjN3Fz2G3QsVpreQ/+NUdnwu+4SZUpDvgBddlCAYbssiqa40sll8SJ4wbkhqDSbLkaQpXCWefM5dqwTnIvk73NdCP//zoe0Za8sW/0xSRjZ79opbpWsiPHBWL+Xz7HHB7H6s6BxfBUR912hVuXYfv+G7IwMmbY8FmxffMfD/LSUkUbnhmcdgWN+egEqOIc8iJQ9fBJVbKxsb6dV01lhlp+eRi6zI5BfSdcVONLIZ8kcU7W76Tg4a6I4UWKFbS+RIcF3HgrrgWSl/IOZ/GMRHpsXts8PVeV/G58Lxme91xQS6C0lgq4DPvDayEGjJwn30cRFZ9d67+Vk8RTOtLXzGv6uCZtllTjSMuO2VsKveShnlrtmn/rcYSYbWqvqPDOJc7j8raBYi6tJOcgzrAZQRSDg2elhm2sjn4ii3U56nFopcFat2L12935MxWZqTM89zFus/aSF6zyZWzoMPY5dmgisnS8kn4nrtx1tGsq1AEtfvSRDLychbDApd4Tn0njUV7f6s+Bmnv23yGkw7mTd21w6pS5rskmkMHNOLrZxzaaX1PS4qhiUS/hmJirUhyDtmPrc2KuiMOcpvKTTJ1EqY5WKkT33XwS6kKnUNq6I5wkqYVp27YfcUNPvj6GYekHhajzqN0hyy/etXT92phrWRe2W/vvk5u7Oqzeft1E/fNWgkAWLlplzMfwS8U9uotcTlpfSX1X+lOnP7jQS6iLuMHE65+VOeEGqvLhDwoatRefVNDsJhDzFZqQ4aIBf2agmeolUh2GxOCm0OpWEicTic3HHHgvZo0yYm6Iw5R+AyWc4h/cwHdVPgq57LIOON70iaCJA7+nEMtYxledso4/Mdp473rTusrXw6ZFLGSrwVUllP6fvzJhH2FBile8UValxPZI3iqOGPCPvE9KXllX6aNoSxcgBRvjGh2m7Gq+glfTtW1aZHxw847bj9rHolEIEHL46URGRWjQn+XrS18iHSJNN2fhO/pe0AyerN5BkTOOXQB3DqHOPW68492llPNQu/LOaTtaOROLgtx6G6oj5A2IeMolWllUhyiwHNxyxLP6n1j0z2uz5+8Hz5+lNtJ8VsfCZzr0kRAhYKfWEl1ykvnHAKk9Y+vWA4AdrQGi3TaInjjZ2Mz5AGe/iKusfH/t3fmQXoUVQD/vewmi7ll2ZAQTDbhDiEEEgnkAFE5VoKhRKviQSKHgCf6hwrI8QdagqWUCFYBpaEARSjLK+BVaBkpz5BoosQYTjFgStQACaSCBp5/TM/u5Dume3Znvm8m+35VX+1sb3+98+bN9Jt+/fp1nBNr3vTme5r3/7+alCfN7v3lKausa4lHdbs9+2d/54MLg9pbMLObcYGpWWqN66s1972NHApgILdS+sPTLN1wzOJDDwDg3OMb7/McE5qDKUmjDc+ThKeODvp3ezEnZRFaFrIswIsDL3w66RgxkLI7NHImbeQwmFWmn3/HHG72vDjE6dN9kUVJt9KKk6an1h34Tvo1in3TPjdiltDmV18Lc1UlO/rx+4W9TacZhzOOnszaK9/CQvespVG79W6ze+n8Rb1B5wXhQQ++EVWS+GXl1CPS0//UGofalBt7WjByGPpy0IoxkJU1Hd9k1cUnz+Sc46Z6b4xkJxbiZlCFr74nvfPpzxvvaS++uadmSAexukF668GwV4Zbz4nGBtvXYe1ORG+ERs6ktRni7x8Mo5wf3Wd6kiOhs45pHMZayxmzJ/sr4X/Lz7IwMTZy/pQyA22GupV8RmRSYMc7pmY+5OxjG1/PIraKybL+I77Xjzl4Ymq9OIx2evdonv7PLub37g8MPNOtyK00/IxDSm6lJD53hIgEvTHs9Qbty7VD1KFMnpDebveYaGThy8zY2TGCjdeczpiuoUfgDAX/yCHMrZRMaZLHOocQl85g6O8kPc/vXnMogZ1pWvBDklo3Sy1Z5hziAZZvEjvLSu6bls9l7VPbveHYoSTdZI9/ri/TmoxmhPa/yVHare9rvsIfYMfuaFJ6pidTcRx6fsrhPVyzdFa/PPE1bkVW1uFnHNxP3/A8S6K6NMaMCo+rDq03d9pEertH86756S4tgAmBk2VF4jO0vs1PYpJeoDyilV4JWGMwGPrvHe9IUTJPsPu46qyjuO/hrd7OOZtxCI2ACm9z2dypLJubHm6bhb12ccwxMg8GNtppRvJaJ4MH0pjieQGMR14dI6RhxKONHApA02akE+SVbiJ54/hCAcd2dbJj9x7vCGP8fiNZ88lTczm/VnCm54F5LXAeKPlAhEcrNa/Xm2FXviy84qyd7604mXgvS2edxkVLZnLRksZJ9JIMzq2U3zxG3uRlXJPEYcEHpCS3rCXUbTXRk/omdivVBg70jxzKnFup6njdSgX4Jn1RO9/90CLWbHku9zefdtNsQVKMBrqVkikDQjvTNDX2BfrvsxIvdnqdZ1W6kMwV1VqdZzFGoRPS7TQOeRnXRqQt1EtyxtEHBrc5/nXpXW9y5JBk9KgO3rNgGof2pGcTyINhZxwCBw653uiX9x3J2qe2e+sdOmksh04qXullI+7zfdc8aRxCJwHTctCICD3juvjXzvQMvFmJI91mp6ycB5cO5NVsiQTzIn5RWXKYPxJIA/Uz2I2B8iCLcZ37hols2PqCt17/nuEBTT/62b5MfYYvh1c851AbeDFuv5HBizGHyvAzDin7OSTJ8yXo0lMOyWUDnX2VuAP36WSvkUOgG8GXoKwI1+2Cmd3cd/GJ/REmzRAZSB/t69wuWjyD7S+HJXsMoauzgwc+upiZPX7XWmy4fAv2su6RnidZjOt9l5wYFIywcmEv655+niMnN95pMUmWxXUh9eP7O0ua9LwZfsYhcORQRMib0Zj+UFafcdDsbiVf5983ezJ3/+7poLaysGCmf0HdaxnkuWrprCGfUy2zp4ataYnnynybULWTLM9rV2dHUPbds489iKVzphTSF/jWoWzdvguAZ1/Ylfv/DmXfcm4HkJY+Yzhz23nz+Ow5LdlSo4745T7LnENoam3fm/G1Z+ff6Yay7cXd/cdZch21mjgbaWjiuPMSOxVWnaJeEn0jnZ//Ndpd+fsbitsx2cewGzn0zZ7M4QeOzSVv/75EaAheFr596UlBaY771zlkmHPwhQL+7fqzAs4w/7DHweJL9NhOPnXmkfz31dea7jeRJPS6F8HJh/cUFmSQNz6jc9SU8WzetiN4cWQRDDvjML17DNM9IYwhk3SGnzd6fO4x49wq2fEZ9m8eE5ijJoR1V721P8lbOzjrmCm5pAovip5xXdy0PH3Vfhm464IT2n0KuXH3hSdw/8Z/7LVffKspjXEQkTOBm4AO4Guqen07ziNr1IExdC5cPMOF6KU/CFcvncV1D/wl9//vy2VVNL69F4zhxwFjuzh/0Yy2nkMpxtQi0gF8FegDZgHvFpG2OINHdY4w49BiRnWOYOXCXu91v3Bx9LB0e5IiVo3TZoXHxxvV5qFPnso9Fy1o92kEUZaRwwnA46r6JICI3AssA/J/TTQqzeqPLGLKhPBEgoZRJqZ1j2aaZ6+YslAW4zAV2Jr4/RmgGubVaClzPNksq8Q9H1jAM57d4gyjXZTFODTyJ9RFqIvIxcDFANOmZduVyzDKxsJDLPDBKC+lmHMgGikk9wI8GKgL8FXV21V1vqrO7+lJz9djGIZhDJ6yGIeHgcNEZIaIjAKWA6vbfE6GYRjDllK4lVR1j4h8BPgpUSjrKlXd1ObTMgzDGLaUwjgAqOqPgB+1+zwMwzCM8riVDMMwjBJhxsEwDMOow4yDYRiGUYcZB8MwDKMO0SK2wmoBIrIT2NLgT9OAvwc0MQF4Mcd6RbQZKksR/7uINk2e1tfLUjfvZydLXZPHT17yHKGq47ytqGolP8C6JuX/Cvz+7XnWK6LNUFlMnuEnT0Fy5/rsmDzllKdZ31n72RfdSv6dwyPuz7leEW2GylLE/y6iTZOn9fWy1M372clS1+TxU4Q8TamyW2mdqs4PLa8i+5IsYPKUHZOn3OQlT2g7VR453J6xvIrsS7KAyVN2TJ5yk5c8Qe1UduRgGIZhFEeVRw6GYRhGQZTeOIjIKhF5TkQeSZQdKyK/FZE/i8j9IjLelY8SkTtc+UYReVPiO/Nc+eMi8hURacteoDnKs0ZEtojIBveZ1AZZ3iAivxCRzSKySUQuc+X7i8iDIvKY+/n6xHeucDrYIiJnJMrbrp+c5amcfkSk29V/SURuqWmrcvrxyFNF/ZwmIuudHtaLyJsTbeWvn9Bwq3Z9gJOB44FHEmUPA6e44wuA69zxh4E73PEkYD0wwv2+FjiJaGOhHwN9FZdnDTC/zbqZAhzvjscBjxLtAf4F4HJXfjlwgzueBWwEuoAZwBNAR1n0k7M8VdTPGGAxcClwS01bVdRPmjxV1M9xwEHueDbwbJH6Kf3IQVUfArbXFB8BPOSOHwTOdcezgJ+77z1HFPo1X0SmAONV9bcaXcm7gHOKPvdG5CFPC04zCFXdpqp/cMc7gc1EW74uA+501e5k4FovA+5V1VdU9SngceCEsugnL3lae9bNySqPqr6sqr8Cdifbqap+mslTFgYhzx9VNd4EbROwn4h0FaWf0huHJjwCvN0dv4uBXeQ2AstEpFNEZgDz3N+mEu02F/OMKysLWeWJucMNia9uxzA/iYj0Er3Z/B44UFW3QfQAEI16oPFe4VMpoX6GKE9M1fTTjKrqx0eV9XMu8EdVfYWC9FNV43AB8GERWU80HPuvK19FdGHWAV8GfgPsIXCP6jaSVR6A96rqMcAS9zmvpWecQETGAt8BPq6qO9KqNijTlPK2kIM8UE39NG2iQVkV9JNGZfUjIkcDNwCXxEUNqg1ZP5U0Dqr6V1U9XVXnAd8i8vWiqntU9ROqOldVlwETgceIOtiDE0003KO6XQxCHlT1WfdzJ3APbXJniMhIohv7m6r6XVf8TzfUjV0Sz7nyZnuFl0Y/OclTVf00o6r6aUpV9SMiBwPfA1ao6hOuuBD9VNI4xJEFIjICuAq41f0+WkTGuOPTgD2q+hc3NNspIie64eMK4AftOft6ssrj3EwHuPKRwFIi11Srz1uArwObVfXGxJ9WAyvd8UoGrvVqYLnzk84ADgPWlkU/eclTYf00pML6adZOJfUjIhOBHwJXqOqv48qF6WeoM9pFf4jepLcB/yOykBcClxHN7D8KXM/AYr5eokytm4GfAdMT7cwnugGeAG6Jv1NFeYiiMNYDfyKamLoJFyXTYlkWEw1f/wRscJ+3Ad1EE+mPuZ/7J77zGaeDLSQiKsqgn7zkqbh+/kYUMPGSuz9nVVw/dfJUVT9EL44vJ+puACYVpR9bIW0YhmHUUUm3kmEYhlEsZhwMwzCMOsw4GIZhGHWYcTAMwzDqMONgGIZh1GHGwTAKQEQuFZEVGer3SiJTr2G0m852n4Bh7GuISKeq3tru8zCMoWDGwTAa4BKh/YQoEdpxRAsUVwBHATcCY4F/A+9X1W0isoYo99UiYLWIjANeUtUvishcolXvo4kWKV2gqs+LyDyi/Fm7gF+1TjrD8GNuJcNozhHA7ao6B9hBtL/GzcA7NcqDtQr4XKL+RFU9RVW/VNPOXcCnXTt/Bq515XcAH1PVk4oUwjAGg40cDKM5W3Ugh803gCuJNll50GV47iBKhRJzX20DIjKByGj80hXdCXy7QfndQF/+IhjG4DDjYBjNqc0tsxPYlPKm/3KGtqVB+4ZRGsytZBjNmSYisSF4N/A7oCcuE5GRLrd+U1T1ReB5EVniis4DfqmqLwAvishiV/7e/E/fMAaPjRwMozmbgZUichtRhsybgZ8CX3FuoU6iTZg2edpZCdwqIqOBJ4HzXfn5wCoR2eXaNYzSYFlZDaMBLlrpAVWd3eZTMYy2YG4lwzAMow4bORiGYRh12MjBMAzDqMOMg2EYhlGHGQfDMAyjDjMOhmEYRh1mHAzDMIw6zDgYhmEYdfwfgye0CmRLBBsAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYHFd97/09XVvvMz37SDPa5U1esbyA2Q3YLAGS13AN3MAbnPi9BN5ASJ4EktwE3lzfG7hJeAMJEAIJhrAZB2K2GBwbs1m2LC+SZcm2dmk0o9mn9+7azv2j6lRX7z0zvdR0n8/zzDOt012t6p7u+p7fTiil4HA4HA7Hja/TJ8DhcDgc78HFgcPhcDhlcHHgcDgcThlcHDgcDodTBhcHDofD4ZTBxYHD4XA4ZXBx4HA4HE4ZXBw4HA6HUwYXBw6Hw+GUIXb6BNbK0NAQ3bZtW6dPg8PhcDYUTzzxxAKldLje4zasOGzbtg0HDhzo9GlwOBzOhoIQcqaRx3G3EofD4XDK4OLA4XA4nDK4OHA4HA6nDC4OHA6HwymDiwOHw+FwyuDiwOFwOJwyuDhwOBwOp4yeFod4VsN9T5/v9GlwOByO5+hpcfjRMzP44DefxvmVbKdPhcPhcDxFT4tDRjUAAPPJfIfPhMPhcLxFT4tDXrfEYTHFxYHD4XDc9LQ4qLoJAFhMqR0+Ew6Hw/EWXBwALKS55cDhcDhu6ooDIWSSEPJTQshRQsizhJAP2usfI4ScJ4Q8bf+8wXXMRwkhxwkhzxNCbnGtX0sIeca+79OEEGKvK4SQb9nrjxFCtjX/pZaT55YDh8PhVKQRy0EH8AeU0ksB3Ajg/YSQy+z7PkUpvdr++REA2PfdDmAPgFsBfJYQItiP/xyAOwHstn9utdfvALBMKd0F4FMAPrH+l1afgluJWw4cDofjpq44UEpnKKVP2reTAI4C2FzjkLcA+CalNE8pPQXgOIDrCSHjAKKU0n2UUgrgKwDe6jrmbvv2vQBuZlZFK3EC0mluOXA4HI6bVcUcbHfPNQAes5c+QAg5RAj5Z0JIzF7bDOCc67Ape22zfbt0vegYSqkOIA5gcDXnthacmAN3K3E4HE4RDYsDISQM4N8AfIhSmoDlItoJ4GoAMwD+hj20wuG0xnqtY0rP4U5CyAFCyIH5+flGT70qqsHdShwOh1OJhsSBECLBEoavUUq/AwCU0llKqUEpNQH8E4Dr7YdPAZh0HT4BYNpen6iwXnQMIUQE0AdgqfQ8KKVfoJTupZTuHR6uOwK1LnnNEoeltArTLNMiDofD6VkayVYiAL4E4Cil9G9d6+Ouh/06gMP27e8BuN3OQNoOK/C8n1I6AyBJCLnRfs53A7jPdcx77Nu3AXjIjku0FGY56CZFIqe1+r/jcDicDYPYwGNuAvCbAJ4hhDxtr/0JgHcQQq6G5f45DeD/AQBK6bOEkHsAHIGV6fR+SqlhH/c+AF8GEADwH/YPYInPVwkhx2FZDLev72U1BrMcACvu0B+U2/HfcjgcjuepKw6U0l+ickzgRzWOuQvAXRXWDwC4vMJ6DsDb6p1Ls8kbJmTBB9UwsZjKY9dIuN2nwOFwOJ6k5yukx/r8AHg6K4fD4bjpaXHI6wbGmTjwjCUOh8Nx6GlxUHUTo1E/CAHmea0Dh8PhOPS0OOR1E0FZQCwoY4FbDhwOh+PQ0+Kg6iYU0Yf+gIRElqeycjgcDqPnxUEWfQgpItJ5vdOnw+FwOJ6hp8UhrxtQRAEhRUCKiwOHw+E49Kw46IYJkwKy6ENYkZDKG/UP4nA4nB6hZ8WBtc6wxEHgbiUOh8Nx0bPiwFpnKDzmwOFwOGX0rDgUWw4iklwcOBwOx6FnxaFgOQgIKyJU3YRmmHWO4nA4nN6gZ8VBNawANEtlBcBdSxwOh2PTs+KQt0eEyoLlVgLA01k5HA7HppF5Dl0JEwdF8iFkcnHgcDgcNz0rDioTB8EHolhr3K3E4XA4Fj0rDm7LQZEs7xovhONwOByLnhUH1Yk5CJBEa9Adtxw4HA7HoufFQZF8CEgCAB5z4HA4HEYPZyvZqazubKVcd4vDIycW8MiJhU6fBofD2QD0vOXQS3UOf/uTF2BSiu/87lCnT4XD4XicHrYcCr2VZPsnpXa3OMSzGlb4UCNOh3n63Aq+d3C606fBqQO3HERLH8M90HwvkdOgG7TTp8Hpcb78q1N49OQS3nzVpk6fCqcGPWs5sMZ7imgFo0OK0PUxh0RWx0pWA6WNCUQ8q+HQ1EqLz4rTa2Q1A+kut9K7gZ4Vh7xmBaQlwUpjDcliV9c5qLqJrGbAMGnDWVlf/MVJvO3z+6DzhoScJpLVTGRUo+FNCqcz9K44GCYU0QdCLHGI+LvbrZTMFWINK5nG4g5nFjPI6yaW0mqrTovTg+TsTYrKNx2epmfFQdVNJ94AwBr408WmbsLlMos3GJSeiWcBAHPJfEvOidOb5GyrPdPFlno30LPikNcty4ERUsSujjkkso1ZDl977Aze8YVHAQDTKzkAwDwXB04TYeLQzZuxbqBnxUHVTScYDQBhWezqCumE262Ure4mOnw+gX0nF5HIaZhNWOIwl8y1/Pw4vUOWWQ4qtxy8TM+KQ76SW6mbxSFbeG21LAdWOf74qSXophUwnEtwy4HTPHL2FEYuDt6mrjgQQiYJIT8lhBwlhDxLCPmgvT5ACHmAEHLM/h1zHfNRQshxQsjzhJBbXOvXEkKese/7NLGjwYQQhRDyLXv9MULItua/1GJU3ShyK4X9ItKqAdPszgwKt+VQK+bAigN/ebzQZmM+xcWB0zxyKos5dO9mrBtoxHLQAfwBpfRSADcCeD8h5DIAHwHwIKV0N4AH7X/Dvu92AHsA3Args4QQ5r/5HIA7Aey2f2611+8AsEwp3QXgUwA+0YTXVpPSgHRYsU6xW/2gLObgI8BKprpbic3W/pUtDoKPcMuB01RyOos5cMvBy9QVB0rpDKX0Sft2EsBRAJsBvAXA3fbD7gbwVvv2WwB8k1Kap5SeAnAcwPWEkHEAUUrpPmolOH+l5Bj2XPcCuJlZFa0ir5uQhWK3EgCkuzSDIpHTIPgIRiL+htxKL8ymAAAXjUa45cBpGrphQrOr9DNduhHrFlYVc7DdPdcAeAzAKKV0BrAEBMCI/bDNAM65Dpuy1zbbt0vXi46hlOoA4gAGK/z/dxJCDhBCDszPz6/m1MtQddMZ8gOg6+dIJ7I6on4R/UGpZn8lZjkAgF/y4aLRMA9Ic5pGTi98vnjMwds0LA6EkDCAfwPwIUppotZDK6zRGuu1jileoPQLlNK9lNK9w8PD9U65JmWWg2yJQ7fuZhI5DdGAhP6ghHgDlgMAbOoLYCSiYD6Z59WsnKaQdQlCNyeAdAMNiQMhRIIlDF+jlH7HXp61XUWwf8/Z61MAJl2HTwCYttcnKqwXHUMIEQH0AVha7YtZDaWprEEWc+hWt1JWQ9QvoT8g10xlzbt2duP9fgxHFOQ0E0n+ReY0AVbjABQLBcd7NJKtRAB8CcBRSunfuu76HoD32LffA+A+1/rtdgbSdliB5/226ylJCLnRfs53lxzDnus2AA/RFm9VVaMklbXrLQcd0YDtVqppOZgYCMkAgPG+AEYifgA8nZXTHNziwAPS3qYRy+EmAL8J4NWEkKftnzcA+CsAryWEHAPwWvvfoJQ+C+AeAEcA3A/g/ZRS9il4H4AvwgpSnwDwH/b6lwAMEkKOA/gw7MynVpLXjJIKaZat1J0fWGY59Nkxh2ram9cMXDoeAQBs6vNjJKIA4FXSnOaQ09wxh+7ciHULdec5UEp/icoxAQC4ucoxdwG4q8L6AQCXV1jPAXhbvXNpJqWWQ5BZDl3qPknkCm4lVTeR00wEZKHscXndxPahEF68YxBvuGIcBiuE40FpThPIuiyHRgPS51eyuPuR0/jIrZfA52tpEiPHRc9WSGdUAwGpcHFkbqXutRwKbiWgeguNvG7CLwr4wKt3Y8dw2HErccuB0wxyReLQ2Ebsx4cv4As/P4nzK9lWnRanAj0pDnndQEY1ELN96wCcXXQ3Wg5sloNlOdjiUCXukNOMohTfaECEJBAs8rbdnCbALAfRRxpO/mAt493JEpzW05PiwFI5++wLJWCNC5UFX1daDmyWQzRgxRwAYLlClbRumNBNWpTFRQhBxC8VzYPoNeIZrWb6L6dxmOUwEJIbthzYxsRtdew/tYRnp+PNP0GOQ0+KAysCYy4WRlARujJIxmY5RAMiYkHLWqp0sSuMTi3+WIS7vJ15Pf7g2wfx4Xue7vRpdAXsAj8YVhqOOSylLZcmq8FRdRN3fvUAPnn/8605SQ6ABgLS3QhzqfQH5KL1kCx2ZZ0D66sU9UtOmmolNxGrji4Vh4hfRLKHxeH8ShYan1rWFFi20mBIbjiG4LiV7GMffn4OKxmNx8FaTG9aDrZLpcxykLvTcnjoOas+sT8oO695uZI42D5dRSrOYgorYk8XwSVzWsX3i7N6si63UqMV0o5bybYcvvvUeQDAAu/51VJ6UxyqupXEros5fObBY/i7B4/h9ZeP4erJfiiigIgiYqlCzIGZ7dxyKCaZ07GcUcvauT8zFcdPnr3QobPamLhjDo1WSC85MQcT8YyGB4/OQfQRLKXL/yac5tGb4uBYDqVuJaHrspV+cGgG122L4R/e+SIIdo54LCTXthzEYssh4peQyvdmQJZSilReh0lR1LBQN0z8v994En/274c7eHYbj6xmQBZ9CNsz2+s1QtAN03ED53UD+04uQDVM3HL5GHSTNjwPnbN6elQcNIg+glBJEVhQ7j7LQTNMjEb9RcVDsZBcMebAdnWVAtK9ajlkVMMpBFxyvWf3PT2N04sZLPLd66rIayb8og9BRYBJ66enLrsSJ3Ka6SRXXDYeBQAsprlrqVX0pjhkNfQHJZSOjAh1YbaSahR3nwWAgaBUMZWVfVH9UqnlYGUr9WJnVrcoMnHQDROfeegYAMAwacX3klOZrGogIAuuXma1N2NuQc5rhrOBmRwIAgDmk/y9bxU9KQ7xjFZU48Cw5kh3n+Ugl1gCAyEFy+lyc9zJVpJKLAe/CN2kRX1xegV3fQdLqTw+n8LpxQxeebHVNn4hxS9QjZLTDfglAUGZdUGuvRlzWwY53XTiFBOxQNn9nObSk+KwklXL4g2AHXPoMstBMyikUsshJFX8UlUPSFtCmuzBuEOiyHKwXj/zgV850Q+AZ82shqzdtia4BsshpxlOthMThwWeztoyerbOYbzPX7YelEVkVAOmSbumwZeqm2XiEAvJyGmmY+LPxLNYTmvVA9JsSl5Ox0ikPeftFRIVLAcmDjuHQwC4OKyGnG5CkYTC/JQqm7Gp5QweODLrJFEAltvTNCkU0YfBkAIfqVyvw2kOvWk5ZDT0BSpYDvYH1t05cqOjGiYksVjoBu1COJbO+tc/fgG/+7UnaqayAujJoLT7NbMLESsq3DUSBsCbEq6GnGogIPmcmEO1dNZ7Hj+Hj3//CPadWARg1SAxyyEgCxB8BAMhhQtzC+lRcVDLahyAQtvuaruZjQal1Io5lFoOtkuNpbPOJXNYSKnVYw5dPl+7Fizm4Jd8zvvF0icnYkHIgg/z/AJVl6xqIJHTGo45nF7MAAAePDqH/qCEoCwib8ccWDflobDM4z0tpOfEQdVNpFXD6U7qhlkOmS4JShsmBaUoz1YqaaGxnFGRyutOGm+lOgcAPdl8j1kOWwdCzvu1klUh+AiiftG6QPGMGSRyGj778PGqab3//b7D+K1/edwVc7C/a1UshzOLaQCW5TsQkqGIvoLl4IgDtxxaSc+JQ7xKdTTQfZaDZlhfVEksjzkABcuBZS4x9wh3KxVI5jQIPoLNsYATHI1nNUT9IgghGIrwCxQA/Oz5eXzy/udx9EKi4v3nljI4NLWCVF5HQBIca7TShoNSilMLaeffgyEZfsmHvGYiZ7uVAGAwLGORWw4towfFwfow9VXMVmosg2KjoNoB5tKAtBNzcFkOQHVxKHyRe1EcdIQVEQOuqvKVjOZku3Xj7nUt9Sys/qDaZySR06EZFDPxHBRJwFBYgV/yOe4jNysZDYmcjldcZKUKD4Rk+CXBmcPithwWu+y99xI9Jw6FjqwVLAfbrdQtvnXWglsWigPSUb8EH7HEIacZjhjOJXMQfQSiUF7nAHTP+7IakjkdEb+IQbuqnFKrZUPU/vxYfu/uuUCl8zpe9JcP4P7DM6s6jn3WqoqDq81FQBLg8xHsGArjxHyq7LGnbZfS2/dOIiAJGI36bbeS6QSkActySKtGwz2aOKujd8WhglvJsRy6JObA2kyXWg4+H0EsKGMpoxZNhJtP5susBna8X/L1aMxBc1qd53UTGdVAIlsoorR2r1YLjaxq4PV/9wv855HZDp/12llMqVjOaPj2galVHces1Go9uNwpwX474WHnSLE4LKbyePTkIs7Y1sTFYxF8484b8f5X7XIsh6xqOBX8Q2EFAE8lbhU9Jw7MhRKr4FZyMii6JuZgWw4VLvjMTeIuMppP5svadTOs5nt6z/URStiWQ8zlilvJao7lORRWnAZwP3thDkdnEjh0vvKEsqnlDP7HD454+j1kbbF/cXxhVZYiq5GpZDmYJi16LuYW2jkcwtRy1nFJ3b3vDN7xT4/iZy/MgxBgciCAqyf7iyyHnGY439OhcPXZJJz103PiwALSfZUsB4VZDt0hDtViDoAVlF5Kq0V9gRbTakXLAbAK4RI5HW/6zC/x/q8/Cb1Hht8kshoifqkoThN3Ww4Ra/c6n8rjh89Y7burWVgPPz+PL/7yVMNDbjoBc9GouomfPT/f8HFqDXFI5nW4wxh+RxzCoBRO8HkxlQel1ryGTX2Boqw5vySUZSsVLP3u+L56jZ4Th2u2xPCh1+xGWC4vDi9YDt3hVlKruJUAYDiiYC6ZL2saV1Uc/CKOTCdwZCaBHx6awR/926Hmn7AHSeZ0O2XVEoHZRK5IHIbt9anlDB48OuscUwm2u2bFhl7EPaf5x6uYVVFLHFi8YYvdLM8vF8QBgONacrdE3zYULHoORfQ5bj0mLux3NxWteomeE4drt8bwoddcVLE9hiL6IPhI1/RXYqmsslj+WrcMBDG1nCnrTVNa48AI+0Vnh/fqS0bwnSfP40I81+Qz9h7JnIaIX8TWQetidfh8HJQWYlbDEcui+IefnkBGNeAjxcFXN+wCmlW9a3WxC+1Fo2E8cGTWqTeoRyEgXf7ambV+3bYBAIDf3oBsHwqBEOD4nCUO8YzmtGrZNhgqeg5mObhTWdnvXmwI2Q56ThxqQQhBUBa6pjNrtYA0AGwdCEIzKI7MWHnpUTsjqbQ6mhFRJPu3iDdftQlA9eBjt8AG/UT8EvqDMmJBCU+dWwEAJ1tpIhbEJWMRPHFmGaNRBVdN9hftng2TOimwTBxynrYcrHP8o1sugSgQfPiegw25EAsB6QqWgy0YL79oCFG/iB22xRCQBWzuD+DEvCVAK1kVe7fF8MGbd+PteyeLnsMvCUjnrXTYILMcRCYO3n0/NzJcHEoIyWL3WA46S2Ut/zNvsXfCT51dQUQpuE2quZVYOuvVW/qduoduEdFqpFUDJgWiAev1bh8K4aAtDiwg7ZcE3P+hl+Pwx2/BAx9+BWJBuah77XeenMLLP/lT5HUDqmG9X15OvWQX2h3DIfzlWy7HE2eWnZnNtWCusspuJWtt10gYB//idbh2a8y5b+dwGCdsy2EloyEWlPH7r70IV032Fz2HIvocdy+zGFjWE3crtQYuDiUEFaFrYg55ZjlUuOAzs/34fAr9IcnZCVdzK7Eq6b1bB5x6kG4pFqzEvhOL+OUxKyDL2odsGwo5LbxL54GEFRFRv4SoX3QuhgAwE88hmdeRyRsFy8HDFzN2bn5JcCzEqeX6AfRCtlK5Ncksh75A+YCt7UMhp64hntEqJooAKMqic2IOMrccWklPtuyuRX9AwlKXlOTXshzGon7Iog+qbmIgKLvEoXq2EmDFbAqV5N1hYVXi499/FsfsHS0Txh1DBT94tYtYxC8VXSDZrjavm4WYg4cvZuzcWKGa5Wat/3duJCAdrVB4Ohr1I6MaiGc1JPN6xSFcQPHnMsDdSm2BWw4lbI4FPZ1quBqc3koVxMHnI5i0B6bEQrLzpSwdEcrYPhxCf1DC1Vv6uyqr62cvzOPcUnkLh4WU6syOZpbD9qGwc39/hZbv1mOtedusBQVzIeV1w9lde/lixmIO7HMQUsSG6n5qikNOByGomCE4bKcCs4ylSp0L3OcDFLIKJYFA8BEekG4RdcWBEPLPhJA5Qshh19rHCCHnCSFP2z9vcN33UULIcULI84SQW1zr1xJCnrHv+zSx7UtCiEII+Za9/hghZFtzX+LqmIgFMBPPerpQqVEKAenKg4u22q6lWFAuBKSrWA5vvXozHv3ozQgrIoIK68VffiHYSC02zi5m8N4vP47P/exE0Tql1lzoi0bDEFwiut1tOVS5iEUDEnSTOjvwXAXLgV3MvCgS7LzZ5yAkC0g1EFvK1wpIZ60spEoZgiO2OBybTQJAxQmNQCG+ABTcSYQQ+EWfpy2xjUwjlsOXAdxaYf1TlNKr7Z8fAQAh5DIAtwPYYx/zWUIIk/zPAbgTwG77hz3nHQCWKaW7AHwKwCfW+Fqawub+ADSDYq4LBrioNSqkATjpmbFgwXKolq1ECCnsJp1e/MVfykeOL+DKj/24qKOml/n8z0/AMClmS1JyEzkdhknx9r2TOPyxW5zsGpZ7L9vtRCpR2sHWcStpphMDymoG9p9awpUf/wmmPWal5jQDiuhzLuTWXPXGLYdUXi9r3Jdw9aIqZdgRB8tyqBpzcMXCAi4rImAPAeI0n7riQCn9OYClBp/vLQC+SSnNU0pPATgO4HpCyDiAKKV0H7U+OV8B8FbXMXfbt+8FcDMpjVq1kc32LnFqudzVsNFQa8QcACudFbBmStcLSLsJOL34iy8a33z8HExqFYp5ndlEDvfa/YNKNwIs9TQWlJ3XClgt3ceifvQFywOrjNLZF07FsWG46hwMnF5MQ9VNPDtducV1p3DXEQCWODRiDbKNiOGymhgJuz9VJRzLYa6eW6k85gBYn1duObSG9cQcPkAIOWS7nVhu2mYA51yPmbLXNtu3S9eLjqGU6gDiAAbXcV7rYqLfEoduiDvUqnMACm6lfrflUMXKcCMLPog+UpStlM7reMBuOKdtgNYaX913Brpp4obtA5hLFosZqxpnQ5HcbB8KVb2AAYV6kXi23HJw1zmw3fiphfKupJ0kqxpOoBewsrAaSTxgrw0ojzsksrqTDlxKLChD9BGnEK56QLo85gDAmfPAaT5rFYfPAdgJ4GoAMwD+xl6vtJ2iNdZrHVMGIeROQsgBQsiB+fnG+76shoLl0EXiUOWCf+l4FIrow0WjEWdn14g4sGJBtzg8cGTWuRB6XRwMk+LeJ6bwiouGsXdbDAt2V1WG05yxgjh85PWX4GNv3lP1uUstB3fMgdUC5NRCm/RTC96yUHO6WWY5NFLP4m4JUprOmshpVS/6Ph/BUFhxNmMNxRxK3ErccmgNaxIHSukspdSglJoA/gnA9fZdUwDcpY0TAKbt9YkK60XHEEJEAH2o4sailH6BUrqXUrp3eHh4Ladel6BsDXbZiJZDPKvhu08VDLRCtlJlF8hYnx+HP34Lrt8+4Io51HcrAdb75N5Rfv/gNETbT+3eRXqRnx+bx4VEDm/fO4nhsALDpFhy9ZhasifjDVS4UF012Y+bdg1Vfe5otZiDbhQFpFMethzcGwQrIN2Y5VBtYmAiW92tBBTiDkDh/SulVBCcdZHHHFrFmsTBjiEwfh0Ay2T6HoDb7Qyk7bACz/sppTMAkoSQG+14wrsB3Oc65j327dsAPETXMoqqiWzuD+D8BrQcfnBoGr//rYOOsNWLOQAFlxMz+xuxHIDyYsGTC2lcNBqx/l/D25le3z5wDgMhGTdfOoqRqB8AMJcoxB2cmEOo+gWtGix2kyiJOeR10/HLZzXD6STqteB9Xi+POTQakGZV9mXikNOrBqSBQtwh4hfLBk0xKtU5ADwg3UoaSWX9BoB9AC4mhEwRQu4A8Ek7LfUQgFcB+H0AoJQ+C+AeAEcA3A/g/ZRS9pd7H4AvwgpSnwDwH/b6lwAMEkKOA/gwgI8068Wtlc39gQ0ZkGaVuayZnmqYkARSNXjqZjUxB8BuM+K6aCxnVIxErS+55nHL4cGjc3jDFWOQRZ9zYXLHHZYyKiSBOG1CVkPp7pmlrbpjDlnNcNJDZxP5hi6+7aI05hBSRGRUo25qt2qYTltzt6WhG5aV1IjlUM31BJRYDmUBaW9/3jYqdT/9lNJ3VFj+Uo3H3wXgrgrrBwBcXmE9B+Bt9c6jnUzEAnj4hTlQShu6sHoF1giPuUg03awajC5lIhbEb920Da+4aKShxwdcMQfTHnbD2lerHo456IaJvG5iJGJZDOy3O2NpOa0iFpTX9LcPSAIEHylkK1V0KxmOCw6wxmLu2dS3thfUZHK6UbTLDyuFAViRGhf4vG5i0B6+4445MJGsFpAGCpZDpemMDLZpcafZAtbnMM8th5bAK6QrsDkWQE4zi6akbQRY4JC1/9CMxsVB8BH8xa/tcRry1SPkEgerIhgFy8HD4sCEi11s2K513iUOS2m1YqZSIxBCivorFbmVXOKQyuvODvi0h4LSWdUo2pk7A7DqVMNb4lDuVmLutUYsh2pV50DBcnC7vADwIrgWwsWhAhMx6wLJWglvFNiXkmXbqAZtWBxWS1AutFVg/x/bhXs5IM3SHllhYEAWEFHEInFYzqgVx8g2CuuvRCkt6q2Ud7mVMqqBS8etGI2XgtI5zSwqhGSutVpBaUqp06MLsN6/B47MOhYlULmvEmPY/txUK4ADCn2UAiUJEzzm0Dq4OFTg+u0DUEQffnBouv6DPYTjVnLND2g0hrBagrLg7IrZBC+2A/SyW4ldoN1588NRpTjmsA7LASj0V8q7RLK0fUY6r2M4omAs6sdJDwWlc1qx5RCUWXv26uLAsuL8kg9hRcRXHjmD3/nKATx+egnTK9b7Ot7nr3p8wXKo4VaSCmJBjDoXAAAgAElEQVTuxi/xVNZWwcWhAn0BCa/bM4b7np729EjHUhy3UtrtVmpNzMSdxbLiWA4sIO3dbCX293SL5khEKc5WymhrylRiRP0SEjmtaG5DXjcK7TNUA2lVR0gW7Yl83smMy2lGUfA3ZMccalkOBVedgLAiImk/9uRCGmeXLOGbHKjurhxpICDN/l6lloNf9CGnmWUtOzjrh4tDFW67dgLxrIaHjs51+lQahn0pi8WhNX9id/ERcx0MhGQIPuLtmAOzHCS3OPidgLRhUqxk1Io1Do3CLAf3jtadrZTXDaTzBkKKiNE+v2fajTA3mPsC3MhgJxYQlkUfIn4RiuiDJBCcXkzj7FIG/UGp5oV/JKpgKCzj4rFI1ccQQiCLvnJxsC2JvIddmRsVLg5VeOmuIYxGFXzv4MZxLaXbKA4hWYBmWL5mVhfQH5QhC74N4VZy136MRBTMJ/OglCKR1WDSytXRjWLFHIrFwb3zzqpW+4ygImAsquBCPOeJna9mUJi0uBo5pNR2K5kmLWrw+Nsv245P3nYltgwEcWYhg7NLWWypYTUAlsWx/09e4wwXqoZf9FUISHfPTIdjs0ns+fP7K7aQ7wRcHKog+Ah2jYSLApVeJ2UHpJfcAemWxRwKA39YzCHqFyEJxNsBaeZWcu1AhyMKspqBbx+Yclw864k5RAMiEtlitxJL71REHzKaNdshLIsYjfqR103H+uokTMz8lSyHCv2VfvzsBVz18Z9g0c6OkwUf/st1W/CWqzdj26A14e3cUqamS4nh89Wvx1EkoWJA2n3uG5njcymkVQNnFr0hDnwSXA1Enw8pwzsFSvVgu7vCQHsDSsuylQqjQlcymlPdKosbw3Jwxxxu2jWE8T4//ujfDjntG9aTrRT1S0jm9SJrIekaL8pcWEFFxKid/nshkavaV6hd5CuIgzPYqYLl8P2D00jmdWen63bVbR0M4ZETi9BNE7dePtaU84sFpbK/C7NyumHgD0v79cqERW451EASfE4mhtehlCKl6vARK3vIMCk0g0ISWxOQDiouy8GV+ikLPk9XSDtuJZc4XL65D4985NW4+73XO7vX9YgDszrcsYRCMVhxgdmY3b7jQrzzcQf3iFAGGwlbOvDHMCl+cWwBALCQssTO7arbNhREVjOgGbSuW6lRPv9fr8Uf3nJx0Ro7125wKyVKOvl2Gm451EAWvR1cdZNRDVAKbOoP4PxKFisZFZpRaIbWbNwDf1aymlPdKok+T79nrM6hNMWXEIJXXDSM7/zuS/DtA1O4ZLx6cLQeLF7BXFSSUKiYdgdmg7ZbCfCGOJSOCAVQdY70oakVxxW2wNxKYrHlwGiWOLChS26Ye9ArF9T1ULAcvPFauOVQA9Hng75BxoUyFwb7Ii6lVairaJ+xWgIlbiV20ZM8HpB2p11WYudwGB95/SXret9YphOb8tYXkIvcSoyw4hIHD2QsOZaDXPzaKzXf+9kLhZb5juXgEodtrkr7ZolDJbopIM0+I1wcNgCS4PN0cNUN+2C5xUEzzJodWddDyBWQjme1IreS6uU6B628zqHZsBqJaWdGgVRRHIKyAFn0YSgseyKdlV1g/SXCGa4wDe5nL8xjk13YxsTBLbib+wMQfQSij9QsgFsvbJPSDeKQyLJOvjzm4HkkYeO4ldjOjvVGWkqrUA2z6vzo9cKKozKqgeWMunHcShUC0s1mMGQFmVl1cH9AciwW97wCliY6GvV33K309LkVJxDqL0kXDSnFg51ymoFDU3G8bo8VaGbZSu73VBR8mIgFsDkWqNqGuxl0Z0DaG0LHxaEGkrDx3EosbXApo0LTacsqpANyoedOPKs5rQ9kj6eyqhXaZzQbJpTnXZYDw205MHEYi/pxIdG5lOlzSxm89R9+hXufsAZFlVoOQbnYcnh2OgHDpHjxzkEIPlLRrQQAr7pkBK+8qDVDuRgsIJ31yAV1PbCAtFfEgQekayB5PPPGjSMO9pjTZdut1MoiOAB2AVdhvKMsenumb6VspWbjl4SiCWrujqTRInGw3sPRPj+eOrfSsvOpByua3H/KGsBYWmgWVsQit9ehKetcr5roR8QvFtU5uPmLX6s+TrVZsOB5bgO1ualG6YCoTsMthxpIAvF0cNUNK4AbCMmIKCIWbbdSqwPS0yW7Yyv917vvGSuCa6U4AIWMpYAkFOX/F1kOcsFyWEqrHfObs50qyzpyV0gD5QHpQ1NxjEQUjPX5nZoOoLjOoV34u8hycALSHomfcHGowUZyK7EK1rAiYiAsYzFlB6RbdBGUBR9EH8F0vFwcvNznJq9bzQgFX2uHOLFah4AsFLmwmDgQUnCJjFUYVdpOSouuSquQw4pQVOdwcGoFV070A0BRqnSrkh9qwYTMy5+5RuEB6Q2EJPhgmBTGBhAItusIKSKGw1avIFVvXbYSIVb+Oyv1d7uVvGw5tPI9ccOytwKSUBSoZW6loCQ4E83YkKT5VGeC0qU+bn+JOITkguWQzGk4OZ/GVRPW5LoicWixNVYJWfDBRza+5WCY1LHAvBJz4OJQA9EO5nr5YsdI53VIAoEi+jASVXAhkYNJ0TK3EmAFKqeWs5BFHzb3W7EO7zfeM4r6KrUKNk/ZL/mKxIFZDiHXfGomGIlcZ3aMpRfW0kyukCIiqxkwTIpnzscBAFfY4uCOp3RCHAgh8Esbf+CPO+DvFXHgAekasB3mRnAtpfI6QooIQghGIn78p91qvFXtMwDgzpfvwGI6j3fdsNUp5rLaZ3j3/cprrRuA5CbmditJ5W4ltzhE2LS1DomD263kl3xlDfCYdZDK6Tg6kwRgtRyx7nOJQwfcSoBl6Wz0gHTC1XjRK1YQF4casDRQTTcBpcMnU4dUXnc6aA5HFCdls5Vf2Pe+dHvZmuTxliOtrP1wM+AKSLv/BmG/CEIKmUpsDag9UKeVsADoUFiBYZb/7Zh1kMhpWE6r8JFCFTgTDlksF5V2EZAEZFXvfuYagWUqBSQBGY3HHDwPK97x8sWOkcoVxIFN1gJa61aqhNeqypfTKo7OJJx/t81yCDK3UnG2kiL64BcFp+U54JrT3EG3EiHANVv6i86LwQQgmdORzGmI+CUnXsKK+lrV/bcRFMnXBZaD9bcf6/Nzy2EjwHZ82gZxKzniEC20K2i3H9hLLbsppfjAN57Ek2dW8Oif3Iy+gGTFHFpYAMcYsFtolAakZcEaWBN2uZVYSmuyU5aDaiAoCfjjWy/GhXh5xhRzHaXyOhI5vSgIzeIlnYg3MAKSgJxHLqhrhTVmHI0qmPNAKxWAWw41Ed1uJY+TtmMOQGctB7lDdQ4X4jmcWUwXrT303Bx+dXwRWc3Avz91HkD73EpOtpIrlVUWLNdLQBKcOQmA1fk0rIgdjTkEZBG7RiJ46e6hsvsLloOGZE4rCkKz+9phjVXDLwkbvisrS0YYjfqR0QxPTAbk4lADaQO5lZJ53fFdF4tDe/3AkuCDSQG9ze/Zx7//LO78yhPOvw2T4q4fHcWO4RAu3xzFN/afBaW0bW6lwXB5KisTpY+8/pKyeI3V3K4z0+AyqlEkVqWEXW6lRFZHNOAKpvs7bzlMxAJ4/kKy7Z+5ZsIC0mNRPyj1Rt0GF4caFMSh8ypej3ReR1guTDETbZ9wuzNI2EWi3e/ZTDyHY3NJJ6VxeiWLk/NpvPem7XjXDVvx3IUknjy7grzeuZgDe29+7apNeNGWWNHjw/7yzqftop44uC2HhB1zYEQ9IA637hnDYlrFY3b7j40IC0gP2xs7L6SzcnGogbRB6hx0w8RSWsWAvVv1+QiGwtaHrBMBaQBtjzssZ1SY1JrDC8AZRDMcUfCmK8cBAI+eXLSK4NpwIesPyhB8BCFFgCwU3ErVCCuiU8jYbrJ1xKGQraQjmdOruJVaH8epxisvHkFAEvDDZ2Y6dg7rJZHVEZIF5/30wqhQLg41kJw6B2+Lw/mVLDSDYrtr+harum17QNoW1HZnLLHmcc9dsPLwmZneF5AQ8UtQRB/iWa1tAWnBR/CP//VavOuGrY7lUKv3UKSjloNeMUuJoYg+e5qdjkRWK3ErFVJZO0VAFnDzpSP48eELG9a1lMxpiAYkp9uxFzKWuDjUwNkFe7ioCwBOLViB2G1DLnGIdMZyKLiV2vcl1QzT2XU/f8FKW2VmOtvl9gUkxDNa29xKAPCay0axqT9QiDnUsRw6F5A2yjqxuiGEIOKXEM9qSOb1YreS06q9s5eSN14xjsW0iifPdq677XpI2IH+oFSYk9JpuDjUYKO4lU474lAYxzgcsSuWW1ghXYlOBPGXM6pzm1kOzK3UFyyIQyKnQdXNtncPdbKVaohSpWlr7SKr1XYrAZaFMGM3WXQPLPKC5QAAezZZFdunSzLWNgqJrJUiHJQ3kDgQQv6ZEDJHCDnsWhsghDxACDlm/4657vsoIeQ4IeR5QsgtrvVrCSHP2Pd9mtjllIQQhRDyLXv9MULItua+xLWzUdxKpxczCMkChsOFLKVOWw7tdCstpy0hCCuiy63EZilYF6++gGS7lUwnBtAuSrOVKhHxSx21HBoRB9ae3T2TQhGtUaedTGUFgNE+6/Pe6Yl6a2U5o6IvIDkWXNYDVdKN/EW/DODWkrWPAHiQUrobwIP2v0EIuQzA7QD22Md8lhDCPnWfA3AngN32D3vOOwAsU0p3AfgUgE+s9cU0m43kVto2FCpqX8BiDr0QkGbxhuu2xTCfzGMprSKe1eAjherjgjgY7bccpAbcSn4RKVWH2YGCy0xeR0CqXQ8bUSScXy63HKx/Sx23HBRRwFBYxswGFAdKKc4vZzERCzixn3TewHeenOqo16LuX5RS+nMApTlibwFwt337bgBvda1/k1Kap5SeAnAcwPWEkHEAUUrpPmpVd3yl5Bj2XPcCuJl0qklLCRvGrbSYLoo3AMBLdg7hZbuHsGUgWOWo1iALHbAcbLfSi3cOAgCeu5CwfLgByRHMvoCElYwGzaBt3+Wy96Sm5aCIoLT9g14opcg06FZK264Od7YSALzy4mFcuzVW6bC2Mtbnd1xfG4nljBXLmRwIOn+Hnz43hw/fcxAPPz/fsfNa67dklFI6AwD27xF7fTOAc67HTdlrm+3bpetFx1BKdQBxAINrPK+m0km30nMXEg3tIjXDxNRytihTCQC2D4Xw1TtuKOr+2Q46UefALAd2gTq3lEEiqxVNXYsGJMxXmXXcalhX1lpZUmFX59N2ktdNUAoElXriUHnUKQD89duuwm/dVN6Esd2M9wU2pFvp7JI1E2XrYMhxKz1tj42d7WArjWZ/Syrt+GmN9VrHlD85IXcSQg4QQg7Mz7deUQvtM9pr6r8wm8St//8v8OBzc3Ufe24pA8OkZZZDp+hIQNoWh4tGIwCsiWrxrFY2u5lZM+3OyWeWSi2LxWm+1+YqaRb4DNaZcVHUT6nEcvAK431+T7mVjs4k8LmHT9R9HGv7ssVlOZy0k0zmkp2ZDgisXRxmbVcR7N/sKjYFYNL1uAkA0/b6RIX1omMIISKAPpS7sQAAlNIvUEr3Ukr3Dg8Pr/HUG0fuUEHXU2eXAVgX/nqw7IztQ+11H1VD6kCdw3JGQ1gREfFL6AtImEvmkcgVt3noKwqittdyEH0EPlInW8nVoqKdsGKrWnUOQOUMJa8x1udHPKt5ooAMAO59YgqfuP+5uhsl9j3fMhCEv2TjMr8BxeF7AN5j334PgPtc67fbGUjbYQWe99uupyQh5EY7nvDukmPYc90G4CHqha5TcLmV2iwOh89bufqL6fofDFYRvG3QG5aDk63U5lTWmN0FdSSiYC6ZQ7zEreS+3W63EiHEyuqpEZB2Bv60OZ2VFVvVqnMAit1KXhWHTX3WNEKvWA8XbJdQPcE/s5jBcERBQLZGx7pneM8nPexWIoR8A8A+ABcTQqYIIXcA+CsAryWEHAPwWvvfoJQ+C+AeAEcA3A/g/ZRSFmF7H4AvwgpSnwDwH/b6lwAMEkKOA/gw7MwnL1AYE9perWKjGBeSap1HAo+dXMK2wSAGw96YRiR3wK20lFad4TMjUcWyHErcSp20HAAgFpTQH6zujulUzMFxKzUQkAaAkCw4c068xlifVdvjlbjDrH0e7ilvlTi7lMFWV+KI+2/RScuh7haAUvqOKnfdXOXxdwG4q8L6AQCXV1jPAXhbvfPoBM1KyzRMiumVLCYbyBzSDdMZTlPPctAME4+eXMSvv2hzzce1E6lD2Ups8tpwWMGBM8s1LYdO9AH619++AYOh6gLOYg5nljJ475cfx//89Suci10ryazScoh4NN4AFCwHVo/RaWaTtS2HuUQOQUXE2aWMk2kH2H+LNLCpz78h3Uo9QcGttD7L4QeHpvHqv3kYK5n6lsCJ+bTTrnc+Vfnx39h/Fm/89C/wyIlFpFUDL91V3oO/U3SifUax5eDHhXgOed0syqrptOWwYzjsVGtXIqJY99339DQeem7OiTu1GuafD9WJOTDLxh3H8RqstscLlgOlFLMJ68LOBvmU3n/b5/fhXV98DBcSuaKUc2Y5vGTXEOZT+Y7NduDiUAPBDiSu90J3Yj4NzaBOymUtmEvpis19WEwVdg3nljJ46LlZqLqJv/vPY3h2OoE//PZBEAK8eId3xKFgbbXvA72cVhGzLYeRiALdTgGOFqWyFi5qna7mrQSbKc2sxuVMe7KWVutW8mqmEmC1Rx8MyZjxwCS15YzmWM+JCuJwaiGNs0sZHDy3AkqBrYMFcQjIIvoCEi4dj0IzKFba9FkoxXvfEo8hCT5o66xzYGP/GumXcvh8HAFJwHXbBrDg2jV85qFjeO+XD+APv30QFxI57B4JYz6Zx5Wb+2ruSNtNu9tn5DQDadUouJVcg47cGTZFlkObK6QbQRR8RYHI5QaszGbQaECavZdeDUYzxvv9mPGAW8ltvSQquJUeObEIANizKQoARZbDpj4/rtnS77TAmU91xrXkvW+Jx5AF37rrHGZXIQ7PTsdx2aYoRqIKcprpHPPCrJWV9L2D07h4NIK733s9woqIV18yuq5zazbtDEin87qTrcWG64xECn56tyAEJMFJs213b6VGCbsuvPE6Qcxm0WgqK4s1lBbAeY3xvgDOe0AcZl1ZRpViDo+cWMB4nx//8n9fhw/evBtXTvQ79/31267C37/zRY44zCW4OHgSUSDrvtAx32O9/GvDpHh2OoErNvc5w3qY9XBiLoVb94zh+m0D+OPXX4xN/QH84o9ehd991c51nVuzaWedw4e+9TTe9JlfAgAG7FTWIsvBdSEjhDhi4UXLASikswKFwr718sJsEm/++1+WuTRzmoH/9aOjTtpnN7iVAGDHUAinF63C0E4y67YcSoTeNCn2nVjES3YOYSTqx++/9qKiHmghRURYEZ3P8nyqM24yb9uIHkASfOtun8GqHOtZDqcW0sioBvZsijoziBdSKvySgGRex4t3DuI9L9nmPJ752b2EKPiaEqdphKnlLLYOBnH1ZD+u325le7CgJFBsOQCWWCykVE/GHADLcghIAiZiAaw0yXI4NBXHoak49p9axK2Xjzvr+08t4R9/fhIRRQQh9eMwAUlAX0DCeH/rM6jWw87hMFTdxPnlLLYMdq4wlNU4+CVfmeVw9EICyxkNL9lZu0uQIw4dylji4lAHSfCtqyurZphOSmo9cTjMgtETfU6G1EIq78xF3j0SXvN5tBNJ8LWlCC6R1XDjjkH8zduvctYiigi/5ENOM8t2uUwsOt1BtBqXjEWwdTCEhWS+ocy2RmDW6sGpeJE4MNdLMm+Np6zX65IQgh998GUY9OCGxM3OEasY9MR8qqPiMJvIYygsQxJ8ZdlK/3nEaihxU50sw7BibRa4W8mjSOt0K1luIet2PbfS4fNxKKIPu4bDjuWwmFIdv/quDSIOsuBri1spXjKyErAuYizuUHqf41bq4LzjWnzytqvw6duvRn9QalqGSjpvbSwOTRVPSGPttwEg2GBzxs39Afjr9GDqNDuGrO/IiflUR89jNpHDSMSPiF8sylYyTYpvP3EON+0arFvHQgjBcEThAWmvsl63klv161oO03FcOh6FKPic7JuFVB7H51KI+MUif7qXkUVfy91KumEildfLXEeAlc7ql3xlIsAsCa+6lQDrgtAflJuWypq223EcmooXdfk9v5JFxG+5lOrFGzYSsZCMwZDccXG4EM9hrM+PqF8qcis9enIRU8tZvH3vZI2jCwxHlI65lbz7LfEI4jrdSu6Wu5kafXNMk+LZ8wlcvtlKbVNEAVG/iMVUHsfmktg1Eq5r+nsFqQkZXvVgX7hKAdKRqFJRNLzuVmL0ByXEs2pTip/StrWazOlFIzTPL2dx6VgUN24fdDYi3cLO4TBOzHV2XOhsIofRqGU5uMXhWwfOIeoXccuesYaeZ3N/AKcW0h0phPP2t8QDyOt0K80mG7Mczi5lkMzruNyehQsAQ2EFCykVx+fS2DW8MVxKACCJpOUxB2dGdAUR+J2X7cCfvfGysvWJWAD9QQmiz9siGwtK0AzqDNdZD2nXhuTQVNy5fX4li82xAD7zzmvwmXdcs+7/x0vsGA511HJQdROLaRWjUQURv1QUc3j4+XncevlYw+6567bFMBPP4dxS+9NzuTjUYf1upRx8BBgIyTW/7IenrS/u5ZuLxeHJs8tYSOU3TLwBsGMOLRYH5setJA7XbInh167aVLb+npdsw/0ffLnnLbD+gLWTb0ZQOq0a2DoYhF/y4aAdd9ANExcSOWzuD2AorGAi5o12781i53AYi2m1aenAq4UloIxG/YgGRKcILqcZiGc1bF1FB+Ubd1gZTftOLjT/ROvAxaEOokDW5SKZS+QxFFYQ8Ys1A9LPnI9DFnzOwBoAGLRn4l42HvVUc716WG6l9lgOqynK8ktCW5rZrRfWvbUZQem0HZd58Y5B3HtgCueWMriQyMEwKTbHAut+fi/CMpZOLnTGemAxAut7b1kOlFIn/ria2OGukTCGwjL22RXV7YSLQx3Wm5Y5m7R8jwFJqOlWevZ8AhePRYr84b/9sh34szdeiu++/yVFlb9eRxZbbznUcittdPrtau9mtNDI5K350P/fWy4HCPCBbzyFM4vWcJnN/d0pDlsGLHFopSvmq/tO43//+LmK9zFxGI5Ym0LNoMjrJubsqumRVYgDIQQ37BjEoyeX2h534OJQB3mdbqXZRB4jEQUhpbrlQCnF4em4E4xmXLs1ht9+2Q7Ppl5WQxZ8yGstditlrfeyG8Uh1kzLQdURVkRMDgTxP3/9Chw8t4J/+OlxAOhay4FVc7dycNKDz83h35+arnhfsThYf8tEVnOKYVe70XvxjkFcSORwerH+ZMhmwsWhDut1K80mchiJKgjK1S2HqeUsVjJaUbxhI7NrJIz9p5fwyPHW+UkLbqXuq+Psc8ShCTGHvO70TXrTleO4ZCziNH3rVsshZNdttHJcaEY1MJfMVdzNF9xKstOwMJHTnQac7ir+Rti7LQagvFal1XBxqIMkrD1nP5XXsZRWMRGzBodn8pXF4VkWjN7UHeLwp2+8FDuGQnjf154sSuVtJvGsBkkoHqnYLRQC0s2wHAynHTghBHe8dDsA68Ll9YK2tRK0X1eqyvetGeQ0A5pBK9ajzKfy6AtIdjq6JfTJnGU5iD7izB5pFJZqXG+iXLPh4lCH9bTsPmubgVsHgwjKIjJa5Z3MM+fjEH0EF49FKt6/0Yj4Jfyv37gC8ayGp862ZreTyFmT3ryeebQWZNGHkCw0pRAundeLBvm8+epNGI50X4aSG5+PICgLRWm8zYa1Op+rMON5Ppl3gs4Rt+WQtJJTfKtMpWaDoJJtni/efTZ5k5HW4VY6u2SJw5aBypbDhXgOv/fNp/DMVBy7RyNdtZMbjVp+1Wbsdv7ivsO4dDyK26/f4qzFS2ZEdxv9QRkr2fW5lUyTIqMaRe0xFFHAF9+9F12oqUXUivE1A+Yink3kcUlJPdtCKo/hMBOHYsthtS4lwGreJ/pI1XGjrYJbDnVYT53D2SWrSnPrQKhizOGJM8vYf2oJr9szij9/U3nR1kaGpWM2Yy7BfQencd/TxcG/RFbz/GyB9RALrb+/UsZu2BhWijcdV032F80P6EbCithytxJQGOTlZj6Zx5BtObCYWNKOOawmU4lBCEHELyLFxcFbSOtoIndmMYO+gIS+oISgLCKrGUX9bRbshlr//U2XFQ0Y7wbCigjBR9YtDrphYiWj4XhJxWsiq3VlphKjPyCvOyDN2rXUG+TTjYSUFruVmDgk8/j+wWn86XefQV631uaT5ZYDy1YaXmNKetgvVpxF3Up671OzSqyurGt3K7HZsKy5WVYznGyKhVQePlKYYtZNEEIQ9Yvrdo0wv/t8Mo+4SxDiWQ1bVlFputHoC0iYia8vT59V5Icb7LraTQRlsWWprJTSgjgkcnjkxAJ+dXwRF+I5/M3br0JaNZyYQ0gWIPoIpleyWEqra7IcACvuwN1KHmM9bqUzixlnNizz+6ZdftCFVB4DIQWCx3v9rJW+gIR4dn0faPcEM3e/nEROR18XprEyShu2rYW0Yzl0TyyrUcJNiDkw11Eped102vDPJfM4Mp3AloEgHnxuDp964AUAhSpoQghevHMQ333qPIDVp7Eywn6x7QFpLg51EAUfNIOuujpRM0ycX8kWLAc72Jx1xR3mkyqGwt1nNTAscVifKcz61ADACXuuBaW0yIroRpopDqEetBxCiujMslgLj51cxJUf+0nFedTu7/ChqTiWMxrueOl27NkUxb1PTAEobpHx5qs2Of2V1trpINqEz8Nq4eJQB9meibxa19LMitW/hlkOLNfc/YFdSOU3zIyGtdAXlNctDm7LgcUd0qoBw6Rdna0U8UvIasa6OgIzK7UnxUEW1uVWen42CdUw8dxMouy+jMuiYOJxyVgEb7hi3HHlsZgDANxy+ZjTFut6atIAABkvSURBVGfNbiW/hFSe1zl4Cjb4e7WupTN2phLr88KCgllXrcO8nffcrfQFpHWnsjJxGAzJTo/+RBf3VWI4LSDWsVtkG5FQD7qVQopYc35KPViV85kKLSuY5TDuauJ4yXgUr7+8kNM6FCl4BKJ+Ca+6eBjAOtxKSvsth97bUqwS0RYHTafAKjxAZ1wFcEDB78u+sJRSLKTyXe5WEtedcbOYso6/dmsMx2y3Ujc33WMU8uN1xNY4jKfn3UqqlR242qIzoJBJyGqV3LBYxNbBIGbiVuvzvoCEvoCES8YieGE2icFQsQj87it3IeqXMLpGtxJzM1JK21b4yS2HOjC30mq7jB6aWkFfQMKYXQzGLAdW65DK68jrZvdbDvYHeq0spVX0B60v3dmlDPK6saZ23RsNlmGUWEf6InNxhHoxldXejGWqBJXrUbAc0phazuDt/7jPWWPf4W12ttyl44XOBr/zsh14wxXjZUkmV03243+/7ao1CRVgbRYMkyLX4oaWbrg41GGtbqXHTy/jum0x58PALAeWQbFg74i7XRwMk67L97uUVjEQkrFrNALDpDg2m8Kx2SQAYLKLW0Cwhm3rcSU4dQ5Kb7qVAKy51mHe/n6eWcrggSOz2H9qCY+dshoWsjTWLbZX4NLxQjfl/+vaCfz9O1+05vOuRtj5PLQv7sDFoQ5FbqUGmUvmcGohjeu3Dzhr7AvKdnPMbB3q4oA0ayC3nqD0YjqPwZCM67dZ7+WjJxfx6KkljPf5MTnQnV1FgeK2C2slpeqQRZ+zweklwusUhwXbSphayuLAmWUAwHHbrcliDpdv6kNYEXHTrqH1nm5dnM1CG9NZ1/WpIYScJoQ8Qwh5mhBywF4bIIQ8QAg5Zv+OuR7/UULIcULI84SQW1zr19rPc5wQ8mnioW5q0hrcSo+fsj5M121ziQMLSDPLwdXWt1uJBtbfQoNZDmN9fuwaCeMXxxbw2MklXL99oCub7jEiTbEcjJ4MRgPlMb7VQCnFfCqPqF+Eaph4+Lk5AAVxYDGHiVgAz3zsdc4oz1bCxK6dQelmbCleRSm9mlK61/73RwA8SCndDeBB+98ghFwG4HYAewDcCuCzhBD2yf0cgDsB7LZ/bm3CeTWFtbiVHj+9hIAkFM1nYK2l2YeVWQ7DXe5WApohDtZ7dNPOQfzy+AIWUnncsL272o2UEmmCGyGd13syGA0ULqZrcWkm8zpU3cS1W619LbP2mTiwmENQFtu2QWmGJblaWmFvvgXA3fbtuwG81bX+TUppnlJ6CsBxANcTQsYBRCml+6gVufyK65iOI63BrbT/1BKu2dJfZM4LPgK/5HP8lfMpFYQUerV3I444rLGBnGla/fIH7ffopl1DMOzeVDfsGKh16IbHna20VtKq3pPBaGB9A39Y4JmJA7t9ciENwyy0zmjnLJFmpDavlvWKAwXwE0LIE4SQO+21UUrpDADYv0fs9c0AzrmOnbLXNtu3S9c9AXMrNTrTwTApnruQwNWT5V0vQ7Lo+EAXUnnEgrIT0+hG+tbQmXUlo+LBo7POcYZJHQG9cecgfMQK4u8Y6t6+SoA100ERfevyMafzhUE/vQZ73WuxHJjL94qJfkgCgSQQvPXqTVB1E1PLGcet5Jfb993thFtpvduKmyil04SQEQAPEEIqT9y2qGR/0Rrr5U9gCdCdALBly5ZKD2k6BcuhMXGIZzWYtHIlZMQvOm2YF5LdXeMAAP1rcCt9ff9ZfPL+53HwL16HRVYAZ79PUb+E11w6ik39ga6ONzAifml9biV7fnQvUshWWn3MYd52+Y5F/ZiMBRHxi7hsk5WRdHwuhYyqQ/ARyG3c2DkT5doYkF7XJ4dSOm3/niOEfBfA9QBmCSHjlNIZ22U0Zz98CsCk6/AJANP2+kSF9Ur/3xcAfAEA9u7du/bk+VXgiEOD7TNYRW+lwqVdIxE8b6dhWgVw3RtvAKygoLjKtt0zK1Z//MVU3nkv3a63L7x7b8XjupGoX3R68qyFTN5Yc7uGjc56UlmZ5TAcUfCxN+9BSBGwa9iqZTg+l0JWNRGQhLZuUJgltCFiDoSQECEkwm4DeB2AwwC+B+A99sPeA+A++/b3ANxOCFEIIdthBZ73266nJCHkRjtL6d2uYzpOzHaNuBvA1YJVBFdqw33ZeAQn562dx7HZFLZ1uWuEELLq5nts7OJSWsWS/Z53c1ymFuttvreSVbu6/1QtWKwlvZaYQyoPwUfQH5Dw8ouGce3WAfQFJQyFFUscNKPtUxtFwYegLGwYt9IogO/a6ikC+Dql9H5CyOMA7iGE3AHgLIC3AQCl9FlCyD0AjgDQAbyfUspsvvcB+DKAAID/sH88wZbBIHwEODGfbujxjuVQQRwuHY/CpMAPD80gmddx7ZZY2WO6jb6AhJVViYMlCAsp1SkULG1F0Cusx62kGSbmknmM93dvLUgtWALI2iwHq1tyaTXzzuEQTi2kMRELdKQNerunwa1ZHCilJwFcVWF9EcDNVY65C8BdFdYPALh8refSShRRwEQsiJMlk8iqwWIKsVD5jo1VUv7rY2cBFGdDdCvRVTbfm0tY4rCUVjGXzIOQ7q4FqUXEL+JChTGUjXAhngOlwOb+tfXy6QZWOyqUUoq8bmK+ist3U38A+08tYTAstzVTiRFWRCTb2Jm1N6NVq2THcAgnG7UcariVtgwEEZIFHDy3gsGQ7DTl62b6g5JT01EPSqmTRriUzmM+mcNgSOnqjK5aWJ0413YxmLZbSW/u7/7PWDVCqxz485Mjs/hv//oEJMGHl1QY2zsa9WMumUNGDcHfEcuhvdPgevNbt0p2DIVxaiFdNP+5GstpFbLoq2h2+nwEl9jWwzVbYj2RcbNt0BLWRt67lYzmVKIvplXMJvIYXWOL424g4pfW7EaYtkeMbuphyyHoSh1vhEdPLkLy+TAcVrC3glU/FlWgGRTnV7IISO2/dDZjANRq4OLQADuGQ8hqRkMm/nJGRSwoVb3wsw6OveBSAoDLxqPIqAbOLGXwxJklfPepqaqPZfEGwGrVPZfMYTTauxe3iF90Bhs1yuHzcSyk8ji/zMShN2MOABBWVjfw5+hMApdtiuJXH3k1PvDq3WX3j/VZ7+XZxYzTDqedWOLA3UqeYsewlVV0cj5d98u2lNYqupQYl41bLTV6Rhzs/PAj0wl8Zd9pPHFmGS/eMYSxvvKLPstU8hEr5jCbyOPyTX1lj+sVWFXsJ3/8HB54dhav2zOG971yZ9U5FpRSvOuLj+GWPaMQfD4MhuS2Z9V4iZAiOvNA6kEpxZHpBN545aaqj2GfWd2kHYk59AdlJ6bZDrjl0AA7h8MAgJML9YPSKxm1pji89ZpN+KvfuKKi2dqN7BoJQ/QRPHl2GU+dXYFuUnx9/9mKj521g9E7hsOYT+axkMpjpIctB5aG+i+/Oo3ljIrP/+wEvnewYgkQAOv9i2c1HDizjOmVbE9bDUBxR4J6TMdzSOR0XOaazVDKmOuz2AnRHY34sZhWkdfXPht7NXBxaICRiIKQLDQUlF7KqDXz8oOyiNuv37LmoR8bDb8kYOdwGN8+cA6qYQ03+vpjZ6FWqDhnlsMlYxGcXEiBVqk07xWY5aDqJj725j0ArJhWNU7YGXUn59N47kKip+MNALBzJIxTi2kcPh+v+9ij09asaPdshlKGI4ozxKcTqaxjfdZ3gWX0tRouDg1ACMH24ZDTlbEWKxkN/cHeLDyqxmWbokjkdEgCwf946x4spPJO/yQ3c4k8IoqIiVjQqUjv7ZiD9TkKygJed9kYgrJQs6DwhCvdejaR73nL4Y6XbkcsKOMvf3Ck7jTCozOWOFxSQxwEH3G6KAc6IA7suzC7xvTm1cLFoUFesnMIvzqxgMdOLlZ9jGlSrNSxHHoRFoS/ZksMr7pkBIQAz11Ilj1uPpnHcFRxurAC3HIAgNdcOoqALKA/INX0OZ+cTyMgCWBG6eYeF4e+gITff+1FeOzUEh5+Yb7mY49eSGDLQLBuL6pRO+7QEbeSLQ5rrX1ZLVwcGuSDN+/GloEgPnzPwaoZA4mc1XSvv0bMoRdhQfibdg5BEQWMRf04V2Fw+2wih5GIUiSuvWw5bBkIYiSi4J03WE0m+4JyXcth92gYF41aYtzrlgMAvH3vBAQfwZP2NLdS0nkdX/rlKew7sVg0C7oaY3ZqdUfcSo7lwN1KniKkiPir37gS51eyeOBIwSXy1UfP4O2f3wfTpK5Gcdyt5Gbvthj+y95J3LbX6q84ORDEueVycZhL5jES8TtdWHu5Ohqwmjfu/9PXOJPG+gIi4tkaMYe5FHYOh3GN3ZaFi4PV4WAyFqgaL/zG/rP4yx8cwVBYwbtu2Fr3+cbtdNbOZCtJkEVf29xKPJV1Fbxoaz8IAc66dr2/eGEe+08v4WfH5p3sklrZSr2IXxLwiduudP49GQviV8cXih5jmBRzSctyYL2Uerk6uhL9AbkoruAmndcxHc9h53AIF41G8P2D09g+2N2NHRtl53C46vs2E88hJAt44MOvaOi5mCXbCXEghGAs6seFOHcreQ5FFDAa8ePcUtZZO7NoCcXXHj3jZJJwcajN5EAAFxI5Z2gKYAUEc5qJKyb6MGBbC71cHV2J/mD1DrenFqyd8c7hMF63ZwxP//lrnWFLvc4Ou2FepWLC+WQew6uIa7GMoU60zwAs1xKPOXiUyYGA4xIxTYozS2n4JR8eem4Oh6etlDkekK7NlgGr38/5lYLIPnLCsiRevGPQCUj3cjC6EqzDbaXMm2NzVoB/54hVk8MtrgI7h8PI66bTb8rNqsUharmVQh0Sh9E+P89W8iqTsSCmbLfSXDKPnGbit27aDh8h+MxDxwGAp7LWYdIWB3dQ+lfHF7FrJIyRqB9+SUBEEStWUfcyfUEJqm4ipxXXiDw7HcddPzyK4YjSE80cV8sOu4i1kmtpPrU6cbhuWwx/9sZLcdOuoaad32oYiyp2x93Wzzrj4rBKJgaCmEnkoOomTi9apvxLdg7i679zIy4ejWBTn79nRzM2ymTMuoCdnE/jj+89hAeOzOLx00tFnTA//c5r8N9esbNTp+hJ+gOWReV2LWVVA7/5pf2QBR++eeeNUMTebZdRjZ12+5tKM1nmk3mndqERRMGH337Zjo61JRmN+pHXzVUN0For/Cq2SiZjAVBqtUQ+Y4vDtsEQJgeC+OHvvRS6SXui2+p6GIkokEUf7t53GmcWM7jniXOgFEXi8KqLRzp3gh6F9VRayaqOVfWjZ2awlFbxzTtvdNq8cIoZCMnoC0hllkNeNxDPaquyHDoN+7tfSORanjLPLYdV4rhEljM4s5iB6CMYt/9ghBBn5jSnOj4fwUQsgDOLGUwOBLB1wJq2x1I2OZVh7kp3Idy3DpzD9qEQbtg+0KnT8jyEEOwcDpUN7GKTBjeUOLBCuDZkLHHLYZUU/OVZ++IW5MG/NTAZC+LkfBrvvWk73njlOM4sZnjxYB2Y5cBcCqcW0th/agl/dOvF3Fqtw47hMB5+vrhKmg2W2kji0M4WGvyqtkrGon6IPoJzyxmcXkzzAOAauXgsgqhfxG3XTmAk4sd12/jOtx6OONiWww8OToMQ4LYXTXTytDYEF49GsJDKY9E1ldARh/DGSXwYiSr4vZt3O10HWgm3HFaJ4CPY1B/AuSXLrcQvamvjQ6/Zjd+6aZvTXI5TH8etZFdJvzCXwmQs2NNtzRuFdVs9OpPES3dblgITh6HIxrFYFVHAh197UVv+L245rIHJgQD+T3t3GyNXVcdx/PvbXVrpc2m7UNrahwRsS4M8VKWIVSQo9Q0aTKQB22KCohL1jRGMib7xBUQJgWpqYzGAitWgsVWEAFEQwYfWNpTSUPpApNjQrZS2u01bSv6+uGdg2tltd3bv7L3T+X2Sm5m5M3vyP//e7n/O2XvPfWLL63QfOcYMjxwGZMSwjneWIrD+GTW8g/Y2VU0rdTNzoq+C7o/KukmV1Vfh3eJQuSLfjueRwwB87PxOdr95mE9ccA6f8ZDehoik7EK4Q9mFcDu7epg/3SPX/pgwajido4cfXxy6DzM+rVdktVwcBuDmhbO4eeGsosOwFjTuzGwJja6DR+g5+vY7t7C1U5szeQwv7j7AgcNvsW1Pd91XR7caFwezJjI2ra+0I62l5Gml/pszeQzPbt/Lrb/cwNNbuzhr5LB+LdPdqjyeMmsilWmlnS4OdZszeTRvvR08vbWLjjbxRs/Ruq6ObjUuDmZNpDKttHNvD8M62jjXf9Tvt7npjKUp487kxzdcArT2zaROxdNKZk2kM63n/9z2/zFzwkja2nzxW3/NmjSKq2Z3cuNl07lydicrbryUC6c2/nqBZuWRg1kTWbJgOh3tYtNr+z2lVKf2NrFq2Qe4cna2btc1887x3fJOwsXBrIlMHT/inYugZrg4WAN5WsmsySy7fAb7Dh3l2oumFB2KncZKM3KQdI2klyRtk3Rb0fGYlVVHexvf/ORszj/bp2Fa45SiOEhqB34ELALmAoslzS02KjOz1lWK4gB8ENgWETsi4ijwK+DagmMyM2tZZSkOU4BXq17vSvuOI+mLktZJWtfV1XXi22ZmlpOyFIfeTtauuYN2RKyMiPkRMX/SpElDEJaZWWsqS3HYBUyrej0V+G9BsZiZtbyyFId/AedJmilpGHA9sKbgmMzMWlYprnOIiGOSbgUeA9qB+yJic8FhmZm1rFIUB4CIeAR4pOg4zMwMFFHzd9+mIOkg8FIOTY0F9ufQTqPamwjszbG9svc37/Yg3xzmGV8j+tqIdst8DJb9+CtT7iqxTI+IU5/RExFNuQHrcmpnZc5x5d1eLv1sov7m2l7eOcwzvkb0tUH/JqU9Bst+/JUpd/XGUpY/SBdpbcnby1vZ+9tK+WtUX53D8rSXtyGLr5mnldZFxPyi42i0VulnIzmHg+P8DVyZcldvLM08clhZdABDpFX62UjO4eA4fwNXptzVFUvTjhzMzKxxmnnkYGZmDeLiMMQkTZP0Z0lbJG2W9PW0/yxJj0t6OT2OT/snpM93S1pe1c5oSRurtr2S7i6qX0Mprxym9xZL2iTpeUmPSppYRJ+GUs75+1zK3WZJdxbRn6E0gNxdLWl9OsbWS/p4VVuXpv3bJN0jqVw3BM/zNCtv/TqdbDJwSXo+GthKdg+LO4Hb0v7bgDvS85HAFcAtwPKTtLseWFh0/5oph2QXge4BJqbXdwLfK7p/TZS/CcB/gEnp9f3AVUX3r2S5uxg4Nz2fB7xW1dY/gQVkC4/+CVhUdP+qN48chlhE7I6If6fnB4EtZMuTX0v2n4v0+On0mZ6IeAY43Febks4DOoG/NjD00sgxh0rbyPStbQwtsOBjjvmbBWyNiMr6+U8A1zU4/EINIHcbIqJyTG0G3iNpuKTJwJiIeC6ySvFA5WfKwsWhQJJmkH2z+AdwdkTshuwAJPtl31+LgdXpIGspg8lhRLwFfBnYRFYU5gKrGhhu6QzyGNwGzJY0Q1IH2S+3aaf4mdPGAHJ3HbAhIo6QFZRdVe/1eg+bIrk4FETSKOBh4BsRcWCQzV0PPDT4qJrLYHMo6Qyy4nAxcC7wPHB7rkGW2GDzFxH7yPK3mmzU+gpwLM8Yy6re3Em6ALgD+FJlVy8fK9WXOxeHAqRfSg8Dv4iI36bdr6ehJulxTz/bej/QERHrGxJsSeWUw4sAImJ7GnX9Gri8QSGXSl7HYESsjYgPRcQCsrXOXm5UzGVRb+4kTQV+ByyJiO1p9y6y+9ZUlO4eNi4OQyzNba8CtkTEXVVvrQGWpudLgd/3s8nFtNioIcccvgbMlVRZhOxqsjnk01qex6CkzvQ4HvgK8NN8oy2XenMnaRzwR+D2iPhb5cNp6umgpMtSm0vo///5oVH0X8RbbSM76yPIpjA2pu1TZGd+PEn2zetJ4Kyqn3kFeAPoJvvGMbfqvR3A7KL71aw5JDsDZ0tqay0woej+NVn+HgJeTNv1RfetbLkDvgP0VH12I9CZ3psPvABsB5aTLkouy+YrpM3MrIanlczMrIaLg5mZ1XBxMDOzGi4OZmZWw8XBzMxquDiYNYCkWyQtqePzMyS90MiYzOrRUXQAZqcbSR0RsaLoOMwGw8XBrBdpUbVHyRZVu5hsaeYlwBzgLmAUsBdYFhG7Jf0FeBb4MLBG0migOyJ+IOkiYAUwguyCpy9ExD5JlwL3AYeAZ4aud2an5mkls769D1gZERcCB4CvAvcCn42Iyi/271d9flxEfDQifnhCOw8A30rtbAK+m/b/DPhaZOsSmZWKRw5mfXs13l0P5+fAt8lu2PJ4umlXO7C76vOrT2xA0liyovFU2nU/8Jte9j8ILMq/C2YD4+Jg1rcT15Y5CGw+yTf9njraVi/tm5WGp5XM+vZeSZVCsBj4OzCpsk/SGWmd/j5FxH5gn6SPpF2fB56KiDeB/ZKuSPtvyD98s4HzyMGsb1uApZJ+Qrba5r3AY8A9aVqoA7ib7PaPJ7MUWCFpBNkqujel/TcB90k6lNo1Kw2vymrWi3S20h8iYl7BoZgVwtNKZmZWwyMHMzOr4ZGDmZnVcHEwM7MaLg5mZlbDxcHMzGq4OJiZWQ0XBzMzq/F/b47I7QTYlioAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1991,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAD8CAYAAACyyUlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHgNJREFUeJzt3X+QVeWd5/H3B5uAOmLAgBEQYSLjBswOBqox4242LhPAZEuwRjM9OkplqMIxmElSW5Vo6RaW8sc4lawbytKVxETUiLJsKNmNRFvc1Li7TANGE0HC0BkJIkh3qolgtujY8N0/znPldNt03+57u++P/ryqTt3T33uew3k8Vn/7+XGeo4jAzMysFKMqfQFmZlb7nEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWckaKn0B5faxj30spk+fXunLMDOrKa+88spvI2LiYMvXXTKZPn06O3furPRlmJnVFEm/KaV8Ud1ckr4habekXZLWSxor6R5Jb0t6LW1fyB1/p6RWSXslLcrF50p6PX23RpJSfIykZ1K8RdL0XJllkvalbVkplTUzs6HRbzKRNAX4O2BeRFwOnAU0pa8fiIg5aXsuHT8rfT8bWAw8JOmsdPzDwApgZtoWp/hy4GhEXAo8ANyfzjUBWAXMBxqBVZLGl1ZlMzMrt2IH4BuAsyU1AOcAh/o4dgnwdER0RsSbQCvQKOkiYFxEbItsqeLHgaW5MuvS/kZgQWq1LAKaI6IjIo4CzZxOQGZmViX6TSYR8TbwbeAAcBh4NyJeSF/fLumXkn6QazFMAd7KneJgik1J+z3j3cpERBfwLnBBH+cyM7MqUkw313iylsMMYDJwrqS/Juuy+gQwhyzJfKdQpJfTRB/xwZbJX+MKSTsl7Wxvb++jNmZmNhSK6eb6c+DNiGiPiPeBHwN/FhFHIuJkRJwCvkc2pgFZ6+HiXPmpZN1iB9N+z3i3Mqkr7Xygo49zdRMRayNiXkTMmzhx0DPbzEastmMn+NIj22g7fqLSl2I1qphkcgC4UtI5aRxjAbAnjYEUXAfsSvubgaY0Q2sG2UD79og4DByXdGU6zy3As7kyhZla1wMvpXGV54GFksanFtLCFDOzMlqzdR879new5sV9lb4Uq1H9PmcSES2SNgI/B7qAV4G1wPclzSHrdtoP3JqO3y1pA/BGOn5lRJxMp7sNeAw4G9iSNoBHgScktZK1SJrSuTok3QfsSMfdGxEdpVTYzE677O4tdHad+uDnJ1sO8GTLAcY0jGLv6msqeGVWa1Rv74CfN29e+KFFs+K0HTvB6uf28MLudzjx/inGjh7Fotkf564vfpJJ542t9OXZMJL0SkTMG2x5r81lNoJNGjeW88Y00Nl1ijENo+jsOsV5YxqcSGzA6m45FTMbmN++18lN8y/hxsZpPLX9AO0ehLdBcDdXTtuxE9y+/lUevPEK/2VmZiOKu7nKyDNazMwGx91ceEaL2UC5FW89uWUCvPzNq7l2zmTGjs7+c4wdPYolcybz8reurvCVmVUnt+KtJ7dM8IwWs2K5FW9n4pZJUpjRsukrV3HT/Etof6+z0pdkVnXcirczccskeeTm05MYVi+9vIJXYla93Iq3M3EyMbMB8XMp1hs/Z2JmZn7OxMzMKs/JxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnEzMxKVlQykfQNSbsl7ZK0XtJYSRMkNUvalz7H546/U1KrpL2SFuXicyW9nr5bI0kpPkbSMyneIml6rsyy9G/sk7SsfFU3M7Ny6TeZSJoC/B0wLyIuB84CmoA7gK0RMRPYmn5G0qz0/WxgMfCQpLPS6R4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictMzOrDsV2czUAZ0tqAM4BDgFLgHXp+3XA0rS/BHg6Ijoj4k2gFWiUdBEwLiK2Rba65OM9yhTOtRFYkFoti4DmiOiIiKNAM6cTkJmZVYl+k0lEvA18GzgAHAbejYgXgAsj4nA65jAwKRWZAryVO8XBFJuS9nvGu5WJiC7gXeCCPs5lZmZVpJhurvFkLYcZwGTgXEl/3VeRXmLRR3ywZfLXuELSTkk729vb+7g0MzMbCsV0c/058GZEtEfE+8CPgT8DjqSuK9JnWzr+IHBxrvxUsm6xg2m/Z7xbmdSVdj7Q0ce5uomItRExLyLmTZw4sYgqmZlZORWTTA4AV0o6J41jLAD2AJuBwuyqZcCzaX8z0JRmaM0gG2jfnrrCjku6Mp3nlh5lCue6Hngpjas8DyyUND61kBammJmZVZF+X9sbES2SNgI/B7qAV4G1wB8BGyQtJ0s4N6Tjd0vaALyRjl8ZESfT6W4DHgPOBrakDeBR4AlJrWQtkqZ0rg5J9wE70nH3RkRHSTU2M7Oy82t7zczMr+01M7PKczIxM7OSOZmYmVnJnEzMzErQduwEX3pkG23HT1T6UirKycTMrARrtu5jx/4O1ry4r9KXUlH9Tg02M7MPu+zuLXR2nfrg5ydbDvBkywHGNIxi7+prKnhlleGWiVkR3JVhPb38zau5ds5kxo7Ofo2OHT2KJXMm8/K3rq7wlVWGk4lZEdyVYT1NGjeW88Y00Nl1ijENo+jsOsV5YxqYdN7YSl9aRbiby6wP7sqwvvz2vU5umn8JNzZO46ntB2gfwS1XPwFv1oe2YydY/dweXtj9DifeP8XY0aNYNPvj3PXFT47Yv0CtPvkJeLMh5K4Ms+K4m8usH+7KMOufu7nMzMzdXGZmVnlOJmZmVjInEzMzK5mTiZmZlczJxEYsL5FiVj5OJlYWtfiL2UukmJWPnzOxssj/Yl593acqfTl98hIpZuXn50ysJD1/MRdU8y9mL5Fi9mF+zsQqqhaX4fYSKWbl128ykXSZpNdy2zFJX5d0j6S3c/Ev5MrcKalV0l5Ji3LxuZJeT9+tkaQUHyPpmRRvkTQ9V2aZpH1pW1be6lupavUXc2GJlE1fuYqb5l9C+3udlb4ks5rW75hJROwF5gBIOgt4G9gEfBl4ICK+nT9e0iygCZgNTAZelPQnEXESeBhYAfwT8BywGNgCLAeORsSlkpqA+4G/lDQBWAXMAwJ4RdLmiDhacs2tbGpx7apHbj7dml+99PIKXsnQaTt2gtvXv8qDN15R9cndat9AB+AXAL+OiN+kRkVvlgBPR0Qn8KakVqBR0n5gXERsA5D0OLCULJksAe5J5TcCD6ZWyyKgOSI6UplmsgS0foDXbUNoJPxirkW1NCnCat9Ak0kT3X+R3y7pFmAn8B9Ti2EKWcuj4GCKvZ/2e8ZJn28BRESXpHeBC/LxXsp8QNIKshYP06ZNG2CVzOqLZ6tZJRQ9AC/pI8C1wH9LoYeBT5B1gR0GvlM4tJfi0Ud8sGVOByLWRsS8iJg3ceLEM9bBbCSoxUkRVvsGMpvrGuDnEXEEICKORMTJiDgFfA9oTMcdBC7OlZsKHErxqb3Eu5WR1ACcD3T0cS4zO4NanRRhtW0gyeSvyHVxSboo9911wK60vxloSjO0ZgAzge0RcRg4LunKNB5yC/Bsrkxhptb1wEuRPQDzPLBQ0nhJ44GFKWZmffBsNRtuRY2ZSDoH+Dxway78D5LmkHU77S98FxG7JW0A3gC6gJVpJhfAbcBjwNlkA+9bUvxR4Ik0WN9BNjZDRHRIug/YkY67tzAYb2Zn5kkRNtz8BLyZmfkJeDMzqzwnEzMzK5mTiZmZlczJxMzMSuZkYmZmJXMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMicTMzMrmZOJmZmVzMnErIa0HTvBlx7ZRlsNvBrZRhYnE7Makn8Vr1k1Gehre82sAvwqXqt2bpmY1QC/iteqnZOJWQ3wq3it2rmby6xGFF7Fe2PjNJ7afoB2D8JbFfGbFs3MzG9aNDOzynMyMTOzkjmZmJlZyfpNJpIuk/Rabjsm6euSJkhqlrQvfY7PlblTUqukvZIW5eJzJb2evlsjSSk+RtIzKd4iaXquzLL0b+yTtKy81Tczs3LoN5lExN6ImBMRc4C5wP8DNgF3AFsjYiawNf2MpFlAEzAbWAw8JOmsdLqHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqsNAu7kWAL+OiN8AS4B1Kb4OWJr2lwBPR0RnRLwJtAKNki4CxkXEtsimkD3eo0zhXBuBBanVsghojoiOiDgKNHM6AZnZCOZ1yqrLQJNJE7A+7V8YEYcB0uekFJ8CvJUrczDFpqT9nvFuZSKiC3gXuKCPc5nZCOd1yqpL0Q8tSvoIcC1wZ3+H9hKLPuKDLZO/thVk3WdMmzatn8szs1rmdcqq00BaJtcAP4+II+nnI6nrivTZluIHgYtz5aYCh1J8ai/xbmUkNQDnAx19nKubiFgbEfMiYt7EiRMHUCUzqzVep6w6DSSZ/BWnu7gANgOF2VXLgGdz8aY0Q2sG2UD79tQVdlzSlWk85JYeZQrnuh54KY2rPA8slDQ+DbwvTDEzG6G8Tll1KqqbS9I5wOeBW3Phvwc2SFoOHABuAIiI3ZI2AG8AXcDKiDiZytwGPAacDWxJG8CjwBOSWslaJE3pXB2S7gN2pOPujYiOQdTTzOqI1ymrPl6by8zMvDaXmVkxPJV4aDmZmNmI4KnEQ8vvMxlB2o6d4Pb1r/LgjVd4sNJGDE8lHh5umYwg/svMRiJPJR4ebpmMAP7LzEYyTyUeHm6ZjACD+cvMg5VWTwpTiTd95Spumn8J7e91VvqS6o5bJiPAYP4yy3eJrb7uU8N4tWbl98jNp2e8rl56eQWvpH45mYwQxT7k5S4xMxsMP7Ro3bQdO8Hq5/bwwu53OPH+KcaOHsWi2R/nri9+0n3MZnXMDy1aWXmw0swGw91c9iFe98jMBsrdXGZm5m4uMzOrPCcTMzMrmZOJmZmVzMlkGPhpcjOrd04mw8ALLJpZvfPU4CHkp8nNbKRwy2QIeelrMxspnEyGkJ8mN7ORwslkiA106WsP1ptZLSoqmUj6qKSNkn4laY+kz0i6R9Lbkl5L2xdyx98pqVXSXkmLcvG5kl5P362RpBQfI+mZFG+RND1XZpmkfWlbVr6qD49Hbp7H6qWXM2vyOFYvvbzbUti98WC9mdWiopZTkbQOeDkivi/pI8A5wNeB9yLi2z2OnQWsBxqBycCLwJ9ExElJ24GvAf8EPAesiYgtkr4C/OuI+FtJTcB1EfGXkiYAO4F5QACvAHMj4uiZrrVWl1PpOVhf4MF6MxsOQ76ciqRxwGeBRwEi4g8R8bs+iiwBno6Izoh4E2gFGiVdBIyLiG2RZbDHgaW5MuvS/kZgQWq1LAKaI6IjJZBmYPGAa1kDPFhvZrWsmG6uPwbagR9KelXS9yWdm767XdIvJf1A0vgUmwK8lSt/MMWmpP2e8W5lIqILeBe4oI9z1R0P1ptZLSsmmTQAnwYejogrgN8DdwAPA58A5gCHge+k49XLOaKP+GDLfEDSCkk7Je1sb2/voyrVze+pNrNaVcxDiweBgxHRkn7eCNwREUcKB0j6HvA/c8dfnCs/FTiU4lN7iefLHJTUAJwPdKT453qU+VnPC4yItcBayMZMiqhTydqOneD29a/y4I1XlK314PdUm1mt6rdlEhHvAG9JuiyFFgBvpDGQguuAXWl/M9CUZmjNAGYC2yPiMHBc0pVpPOQW4NlcmcJMreuBl9K4yvPAQknjUzfawhSrOM+6MiuOp7uPDMUup/JV4EdpJte/AF8G1kiaQ9bttB+4FSAidkvaALwBdAErI+JkOs9twGPA2cCWtEE2uP+EpFayFklTOleHpPuAHem4eyOiY3BVLQ8vkWI2MPk/vFZf96lKX44NEb9pcYDajp1g9XN7eGH3O5x4/xRjR49i0eyPc9cXP+nBcrMcT3evLX7T4jDzrCuz4ni6+8jiVYMHoTDr6sbGaTy1/QDt7gs2+xD/4TWyOJkMgmddWbkMxazAauI/vEYOj5mYVdDdm17nR9sPcFPjNA9OW0WVOmbilolZBXhWoNUbD8CblVkxz1V4cNrqjZOJWZkV80CrB6et3riby6xMBtp15cHpD6v3CQn1zAPwZmXiB1pL5wkJleMBeLMq4a6rwfOEhNrnMROzMvJrBAbHExJqn1smVtVqrQ/dD7QOjlt1tc8tExt2A1mS3Ev9jxxu1dU2D8DbsCtmkNUrzpoNr1IH4J1MbNgMJEF4ZpTZ8PIS9FYzBjLI6j50s9riAXgbNgNNEH6oz6x2OJnYsBpIgvDMKLPa4TETMzPzmImZmVWek4mZWQ8DeRbKMk4mZmY9+GHZgSsqmUj6qKSNkn4laY+kz0iaIKlZ0r70OT53/J2SWiXtlbQoF58r6fX03RpJSvExkp5J8RZJ03NllqV/Y5+kZeWruplZd5fdvYXpd/yEJ1sOEJEtODn9jp9w2d1bKn1pVa/Ylsl3gZ9GxL8C/hTYA9wBbI2ImcDW9DOSZgFNwGxgMfCQpLPSeR4GVgAz07Y4xZcDRyPiUuAB4P50rgnAKmA+0AisyictM7Ny8oKTg9dvMpE0Dvgs8ChARPwhIn4HLAHWpcPWAUvT/hLg6YjojIg3gVagUdJFwLiI2BbZFLLHe5QpnGsjsCC1WhYBzRHRERFHgWZOJyAzs7Lyw7KDV0zL5I+BduCHkl6V9H1J5wIXRsRhgPQ5KR0/BXgrV/5gik1J+z3j3cpERBfwLnBBH+fqRtIKSTsl7Wxvby+iSmZmvfOCk4NTzEOLDcCnga9GRIuk75K6tM5AvcSij/hgy5wORKwF1kL2nEkf12Zm1ic/LDs4xbRMDgIHI6Il/byRLLkcSV1XpM+23PEX58pPBQ6l+NRe4t3KSGoAzgc6+jiXmZlVkX6TSUS8A7wl6bIUWgC8AWwGCrOrlgHPpv3NQFOaoTWDbKB9e+oKOy7pyjQeckuPMoVzXQ+8lMZVngcWShqfBt4XppiZmVWRYtfm+irwI0kfAf4F+DJZItogaTlwALgBICJ2S9pAlnC6gJURcTKd5zbgMeBsYEvaIBvcf0JSK1mLpCmdq0PSfcCOdNy9EdExyLqamdkQ8dpcZmbmtbnMzKzynEzMzOpApdcTczIxM6sDlV5PzC/HMjOrYZfdvYXOrlMf/PxkywGebDnAmIZR7F19zbBdh1smZmY1rFrWE3MyMTOrYdWynpi7uczMalxhPbEbG6fx1PYDtFdgEN7PmZiZmZ8zMTOzynMyMTOzkjmZmJlZyZxMzMysZE4mZmZWMieTGlfp9XjMzMDJpOZVej0eMzPwQ4s1q1rW4zEzA7dMala1rMdjZgZOJjWrWtbjMTMDd3PVtGpYj8fMDLw2l5mZ4bW5zMysChSVTCTtl/S6pNck7UyxeyS9nWKvSfpC7vg7JbVK2itpUS4+N52nVdIaSUrxMZKeSfEWSdNzZZZJ2pe2ZeWquJnZcKvn58IG0jK5OiLm9GgGPZBicyLiOQBJs4AmYDawGHhI0lnp+IeBFcDMtC1O8eXA0Yi4FHgAuD+dawKwCpgPNAKrJI0fRD3NzCqunp8LG4oB+CXA0xHRCbwpqRVolLQfGBcR2wAkPQ4sBbakMvek8huBB1OrZRHQHBEdqUwzWQJaPwTXbWY2JEbCc2HFtkwCeEHSK5JW5OK3S/qlpB/kWgxTgLdyxxxMsSlpv2e8W5mI6ALeBS7o41xmZjVjJDwXVmwyuSoiPg1cA6yU9FmyLqtPAHOAw8B30rHqpXz0ER9smQ9IWiFpp6Sd7e3tfVbEzGy4jYTnwopKJhFxKH22AZuAxog4EhEnI+IU8D2yMQ3IWg8X54pPBQ6l+NRe4t3KSGoAzgc6+jhXz+tbGxHzImLexIkTi6mSmdmwKjwXtukrV3HT/Etof6+z3zK1NGDfbzKRdK6k8wr7wEJgl6SLcoddB+xK+5uBpjRDawbZQPv2iDgMHJd0ZRoPuQV4NlemMFPreuClyB6AeR5YKGl86kZbmGJmZjXlkZvnsXrp5cyaPI7VSy/nkZv7f6SjlgbsixmAvxDYlGbxNgBPRcRPJT0haQ5Zt9N+4FaAiNgtaQPwBtAFrIyIk+lctwGPAWeTDbxvSfFHgSfSYH0H2WwwIqJD0n3AjnTcvYXBeDOzelWLA/Z+At7MrMq0HTvB6uf28MLudzjx/inGjh7Fotkf564vfnLIxln8BLyZWZ2pxQF7L/RoZlaFam0hV3dzmZmZu7nMzKzynEzMzKxkTiZmZlYyJxMzMyuZk4mZmZXMycTMzErmZGJmZiVzMjEzs5I5mZiZWcmcTKxu1NK7H8zqjZOJ1Y1aeveDWb3xQo9W82rx3Q9m9cYtE6t5L3/zaq6dM5mxo7P/nceOHsWSOZN5+VtXV/jKzEYOJxOrebX47gezeuNuLqsLtfbuB7N64/eZmJmZ32diZmaV52RiZmYlKyqZSNov6XVJr0namWITJDVL2pc+x+eOv1NSq6S9khbl4nPTeVolrZGkFB8j6ZkUb5E0PVdmWfo39klaVq6Km5lZ+QykZXJ1RMzJ9andAWyNiJnA1vQzkmYBTcBsYDHwkKSzUpmHgRXAzLQtTvHlwNGIuBR4ALg/nWsCsAqYDzQCq/JJy8zMqkMp3VxLgHVpfx2wNBd/OiI6I+JNoBVolHQRMC4itkU26v94jzKFc20EFqRWyyKgOSI6IuIo0MzpBGRmZlWi2GQSwAuSXpG0IsUujIjDAOlzUopPAd7KlT2YYlPSfs94tzIR0QW8C1zQx7nMzKyKFPucyVURcUjSJKBZ0q/6OFa9xKKP+GDLnP4HswRXSHLvSdrbx/XVgo8Bv630RQyxeq9jvdcP6r+OI61+l5RysqKSSUQcSp9tkjaRjV8ckXRRRBxOXVht6fCDwMW54lOBQyk+tZd4vsxBSQ3A+UBHin+uR5mf9XJ9a4G1xdSlFkjaWcp871pQ73Ws9/pB/dfR9RuYfru5JJ0r6bzCPrAQ2AVsBgqzq5YBz6b9zUBTmqE1g2ygfXvqCjsu6co0HnJLjzKFc10PvJTGVZ4HFkoanwbeF6aYmZlVkWJaJhcCm9Is3gbgqYj4qaQdwAZJy4EDwA0AEbFb0gbgDaALWBkRJ9O5bgMeA84GtqQN4FHgCUmtZC2SpnSuDkn3ATvScfdGREcJ9TUzsyFQd8up1ANJK1LXXd2q9zrWe/2g/uvo+g3wfE4mZmZWKi+nYmZmJXMyGSaSfiCpTdKuXOxPJW1LS8z8D0njUvwjkn6Y4r+Q9LlcmZ+lZWpeS9ukXv65YSfpYkn/S9IeSbslfS3Fy7bsTiWVuX51cQ8lXZCOf0/Sgz3OVfP3sJ/6Vd09HET9Pq/s2cHX0+e/z51r4PcvIrwNwwZ8Fvg0sCsX2wH8u7T/N8B9aX8l8MO0Pwl4BRiVfv4ZMK/S9emlfhcBn0775wH/DMwC/gG4I8XvAO5P+7OAXwBjgBnAr4Gz0nfbgc+QPWe0BbimzupXL/fwXODfAH8LPNjjXPVwD/uqX9Xdw0HU7wpgctq/HHi7lPvnlskwiYh/JJuplncZ8I9pvxn4i7Q/i2y9MyKiDfgdUNXz3SPicET8PO0fB/aQrVZQzmV3KqZc9Rveqx6YgdYxIn4fEf8b6PYmsnq5h2eqX7UaRP1ejfQMIbAbGKvskY5B3T8nk8raBVyb9m/g9MOevwCWSGpQ9qzOXLo/CPrD1LT+T9XQfdCTslWfrwBaKO+yO1WhxPoV1MM9PJN6uYf9qdp7OIj6/QXwakR0Msj752RSWX8DrJT0Clmz9A8p/gOyG7gT+C/A/yV7Zgfgpoj4FPBv03bzsF5xPyT9EfDfga9HxLG+Du0lVvQSOpVShvpB/dzDM56il1gt3sO+VO09HGj9JM0mW6n91kKol8P6vX9OJhUUEb+KiIURMRdYT9avTkR0RcQ3IlvyfwnwUWBf+u7t9HkceIoq6jqRNJrsf+IfRcSPU/hIajYXuj9KWXanospUv3q6h2dSL/fwjKr1Hg60fpKmApuAWyLi1yk8qPvnZFJBhRkgkkYBdwP/Nf18jrKla5D0eaArIt5I3V4fS/HRwH8g6yqruNTMfxTYExH/OfdVOZfdqZhy1a/O7mGv6ugenuk8VXkPB1o/SR8FfgLcGRH/p3DwoO9fpWYejLSNrOVxGHifLPMvB75GNuPin4G/5/RDpNOBvWQDaC8Cl6T4uWQzu35JNmD2XdIMoUpvZLNeIl3ba2n7AtmrBLaStay2AhNyZe4ia43tJTdbhGyywa703YOF/y71UL86vIf7ySaWvJf+v55VZ/fwQ/Wr1ns40PqR/QH7+9yxrwGTBnv//AS8mZmVzN1cZmZWMicTMzMrmZOJmZmVzMnEzMxK5mRiZmYlczIxM7OSOZmYmVnJnEzMzKxk/x+qftJYVEr3+gAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1996 564901\n",
+ "2019 584066\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFGtJREFUeJzt3XuQJWV9h/Hnxy4oMLggDKgLukbIRGFVZL2gVTqDxhKXaGm8IZpotNYqFTFlyqCoaLytF7zESyobJZB4nShUkDUaDI6oUZQV4oI4amBVlighKjCI4Oovf3QvGadmdmZO95lzOu/zqdraPrfu73mn53v69Ok+E5mJJOn/v70GHUCStDIsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhVq/kwg488MA88sgjV3KRrbn11lvZf//9Bx1j2bqaG8w+KF3N3tXcsHj2bdu23ZiZo02Xs6KFf9hhh3HZZZet5CJbMzU1xfj4+KBjLFtXc4PZB6Wr2buaGxbPHhE/bGM57tKRpEJY+JJUCAtfkgph4UtSISx8SSpEo8KPiLGIuGLWv5sj4uVthZMktafRYZmZOQ08GCAiVgE7gfNbyCVJalmbu3QeC/xnZrZyvKgkqV3R1t+0jYizgW9l5vvnXL8J2AQwOjp63OTkZCvLW2kzMzOMjIwMOsay9Zp7+86b+pBmcevXrrlzuqtjDmYfhK7mhsWzT0xMbMvMDU2X00rhR8Q+wPXA0Zn504XuNzY2ltPT042XNwhdPYuv19zrTt/afpgl2LF5453TXR1zMPsgdDU3LOlM21YKv61dOidSbd0vWPaSpMFqq/BPBj7e0rwkSX3QuPAjYj/gD4HzmseRJPVL42/LzMxfAge3kEWS1EeeaStJhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUiMaFHxEHRsSnIuK7EXF1RBzfRjBJUrtWtzCP9wKfy8ynRcQ+wH4tzFOS1LJGhR8RdwMeDTwPIDPvAO5oHkuS1LbIzN4fHPFgYAvwHeBBwDbgtMy8ddZ9NgGbAEZHR4+bnJxsFHhQZmZmGBkZGXSMZes19/adN/UhzeLWr11z53RXxxzMPghdzQ2LZ5+YmNiWmRuaLqdp4W8Avg48KjMvjYj3Ajdn5mvnu//Y2FhOT0/3vLxBmpqaYnx8fNAxlq3X3OtO39p+mCXYsXnjndNdHXMw+yB0NTcsnj0iWin8ph/aXgdcl5mX1pc/BTyk4TwlSX3QqPAz8yfAjyNirL7qsVS7dyRJQ6aNo3ROBT5aH6FzDfD8FuYpSWpZ48LPzCuAxvuWJEn95Zm2klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqROM/Yh4RO4BbgN8AuzLTP2guSUOoceHXJjLzxpbmJUnqA3fpSFIhIjObzSDiWuDnQAJ/m5lb5ty+CdgEMDo6etzk5GSj5Q3KzMwMIyMjg46xbL3m3r7zpj6kWdz6tWvunO7qmIPZB6GruWHx7BMTE9va2F3eRuHfKzOvj4hDgYuAUzPzkvnuOzY2ltPT042WNyhTU1OMj48POsay9Zp73elb2w+zBDs2b7xzuqtjDmYfhK7mhsWzR0Qrhd94l05mXl//fwNwPvCwpvOUJLWvUeFHxP4RccDuaeDxwJVtBJMktavpUTqHAedHxO55fSwzP9c4lSSpdY0KPzOvAR7UUhZJUh95WKYkFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSIRoXfkSsiojLI+LCNgJJkvqjjS3804CrW5iPJKmPGhV+RBwObAQ+1E4cSVK/RGb2/uCITwFvBQ4A/iIzT5rnPpuATQCjo6PHTU5O9ry8QZqZmWFkZGTQMZat19zbd97UhzSLW792zZ3TXR1zMPsgdDU3LJ59YmJiW2ZuaLqc1b0+MCJOAm7IzG0RMb7Q/TJzC7AFYGxsLMfHF7zrUJuamqKL2XvN/bzTt7YfZgl2nDJ+53RXxxzMPghdzQ0rl73JLp1HAU+KiB3AJ4ATIuIjraSSJLWu58LPzFdl5uGZuQ54FnBxZj6ntWSSpFZ5HL4kFaLnffizZeYUMNXGvCRJ/eEWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCtGo8CPirhHxjYj4j4i4KiLe0FYwSVK7Vjd8/O3ACZk5ExF7A1+JiH/JzK+3kE2S1KJGhZ+ZCczUF/eu/2XTUJKk9jXehx8RqyLiCuAG4KLMvLR5LElS26LaSG9hRhEHAucDp2bmlbOu3wRsAhgdHT1ucnKyleWttJmZGUZGRgYdY9l6zb195019SLM8h+0LP71t0Cl6s5zs69eu6W+YPZjv57wS496P57yUdX2Q6/WenvNi2ScmJrZl5oamGVorfICIOBO4NTPfOd/tY2NjOT093dryVtLU1BTj4+ODjrFsveZed/rW9sMs0yvW7+Ks7U0/ZhqM5WTfsXljn9MsbL6f80qMez+e81LW9UGu13t6zotlj4hWCr/pUTqj9ZY9EbEv8Djgu01DSZLa1/Rl/J7AuRGxiurFYzIzL2weS5LUtqZH6XwbOLalLJKkPvJMW0kqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCNCr8iDgiIr4YEVdHxFURcVpbwSRJ7Vrd8PG7gFdk5rci4gBgW0RclJnfaSGbJKlFjbbwM/O/MvNb9fQtwNXA2jaCSZLaFZnZzowi1gGXAMdk5s2zrt8EbAIYHR09bnJysqf5b995U/OQDRy2L/z0toFG6ElXc0M52devXdPfMHsw3+9VV8d92HPv6ec8MzPDyMjIgrdPTExsy8wNTTO0UvgRMQJ8CXhzZp630P3GxsZyenq6p2WsO31rj+na8Yr1uzhre9M9YCuvq7mhnOw7Nm/sc5qFzfd71dVxH/bce/o5T01NMT4+vuDtEdFK4Tc+Sici9gY+DXx0T2UvSRqspkfpBPBh4OrMfFc7kSRJ/dB0C/9RwHOBEyLiivrfE1vIJUlqWaMdXpn5FSBayiJJ6iPPtJWkQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqRKPCj4izI+KGiLiyrUCSpP5ouoV/DvCEFnJIkvqsUeFn5iXAz1rKIknqo8jMZjOIWAdcmJnHLHD7JmATwOjo6HGTk5M9LWf7zpt6TNiOw/aFn9420Ag96WpuMPugdDX7sOdev3bNgrfNzMwwMjKy4O0TExPbMnND0wx9L/zZxsbGcnp6uqflrDt9a0+Pa8sr1u/irO2rB5qhF13NDWYflK5mH/bcOzZvXPC2qakpxsfHF7w9IlopfI/SkaRCWPiSVIimh2V+HPgaMBYR10XEC9qJJUlqW6MdXpl5cltBJEn95S4dSSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVonHhR8QTImI6In4QEae3EUqS1L5GhR8Rq4APACcCDwBOjogHtBFMktSuplv4DwN+kJnXZOYdwCeAJzePJUlqW2Rm7w+OeBrwhMx8YX35ucDDM/Ols+6zCdhUXzwGuLL3uAN1CHDjoEP0oKu5weyD0tXsXc0Ni2e/T2aONl3I6oaPj3mu+51XkMzcAmwBiIjLMnNDw2UORFezdzU3mH1Qupq9q7lh5bI33aVzHXDErMuHA9c3nKckqQ+aFv43gaMi4r4RsQ/wLOCC5rEkSW1rtEsnM3dFxEuBzwOrgLMz86o9PGRLk+UNWFezdzU3mH1Qupq9q7lhhbI3+tBWktQdnmkrSYWw8CWpEBa+JBVi6As/Ik6IiPsOOsdydTU3mH1Qupq9q7mhvOxD+6Ft/Z08nwB+AfwWODMzvzTYVIvram4w+6B0NXtXc0O52YdmCz8iDo+Iu8266pnApzPz0VRP7uSIOH4w6RbW1dxg9kHpavau5gaz7zbwwo+I+0fEZ4GvAH8VEbu/fO1XwH719CTV90w8IiLm+zqHFdfV3GD2Qelq9q7mBrPPNZDCj4j9Z118MHBdZq4DLgbeWV//M+D2iDggM38GfA84DFi3glF/R1dzg9kHpavZu5obzL4nK1b4EXFQRJwTEd8ENkfEaP2K9EDgqxERmXkB8IuI2Ej1JA4A1tez+D7VN8rdsVKZu5zb7GYvJbfZl559JbfwHw3sAp5I9S2brwbuVme4R/7fp8fnAs8GvgHcQvXHVcjMrwEnADevYGbobm4wu9mXp6u5wexLy56Zrf6j+k6dFwFfovoe/EPq6yeBl9XT9wU217c/lGof1ar6thHgv+v5rAWuBl4K/D3wQWC/tjN3ObfZzV5KbrM3z96PLfyTgCcBbwCOB95eX38R8Mh6+sfAl4ETM/ObVK9qEwCZOQNcCjw0M3cCz6XaP/UT4DWZ+cs2w876oOOPupR7jk6NOTjug8jumLuu9/RtmfU+pYyIh1K9xfgysDUzbwd+H7gmMy+OiGuBd0TE44FtwFMi4pDMvDEivg/cGhH3Bt4HPCciDqX6Tv3/oXrbQmZeBlzWS8495N8AvJDqbdE7gBuA3xv23HX2To55nd1xd11fSuZO90v9HIZy3Je9hR8Rd6t/GOPA2VSHCD0OeGt9l98C34uIfTPzWqq3HQ+sn/j1VMeQAvyG6q3JXsCnqb4e9BTgOGBLZv52udkWyT0SEXeNiHPr5V0LvDczb4iIvaheSYcud5394Pr/RwLn0JExrzMfFNVxxFuA8+jWuB8aEQfXv7zn0pFxj4hDIuIhEfF+4Hy6Neb71P3yGKpdFZ0Y8zr73hGxb0Scw7B2zBL3Pe0H/Cnwb1QH/AP8OfCSevog4NvAsXXozcC6+raT6sCH1NPbgTVUHzJ8Fthn1nL2arKPbA+5LwY+WV/3NuBFs+6zuv7/pcCbhiT37jOgn061D28KGANe3oExn539q8AXqFbqoR/3ep77A8+jept9E7CxI+O+O/cXqLYCn9qhMd8beDHwGeBvgCOB04Z9zOdkv5Bqa/zoOt9QjvuiW/gRsTdwFfA04B2Z+cf1Tcfuvk9m/hz4Z+BlVL8ohwL3r2++BHgMcEdmXgh8GPgU8AGqraZfz5pPa6+6c3K/PTN3v3puBx4QEW+tX4n/LCLuDnwOuMegc9fzy4hYAzwDeE9mjmfmNNUr/O77DN2Yz5P93Zn5uMz8Nh0Y94g4kmr3wWOB1wA7gR9RfZC2ql7m0I37nNxnUO3T/WGdZ/0wj3ntJVQl9x6qv4n91Pryb+plDt2Yz5P93VTryFOo1pmxiNg8dOO+xFex84BT5lz3TODSWZfvBVxfT7+E6pTfg4B9qV657z3rvoe0/Uq7jNz3rrN9EjiZaiX73DDlrpf1YuCN9fTureanDvuYz81eX94XuGedb3JYx53qF/Yusy6fTbXB8ORhHvd5cn+Iamv/0I6s658B/qSefgFwat0v3xjWMV8g+/OBV9Ud88lhHPelPqmTqA72P4tq98LrgPtQnfF16Kz7XQQ8vJ5+E/CvVG8v/3KlfgB7yP1F4PVUH3ysnXWfvevndEJ9+c2Dzl3neEad6xTgW1Sv+E+m2s1wyKz7DdWYz5N9G/ARqiMUZq/YQznus/IdTLUP+XFU+1J/RnVM9NCO+5zcj68vd2FdfzHV7uJ/ojpK5UNUu0Z+DowO85jPyf4jqo2E+wNHDOO4L+eJfZ7qhIAjqF65TgO+RlX+Ady9/kHde9aTPAa466B+GPPk/ijV6clHzbr9HlQfhD5wyHIfVY/vX1NtDTwbeBfVcbivrEtoWMd8bvanU23Znzjs4z7neVwOPLWe/gjwtnp6KMd9Tu4n1dN7zbp+aMec6oiWs6n2Z78eOBOYrn93h3Zdnyf7GcDfAY8YxnFfzlE6T8nMt2Tmj4G3UB0e9T6qtyUXUL3KrcrMHwFk5q8z88rM/NUyltEPs3O/lWrwD4yIB0XEGVS7fX6Z1X7mYcr9I6pTpVdntQ/zwvq6C6k+jB7mMZ+bfSvwHeDYiPiDIR936iMqoPrA/Mh6+s3VTfEZhnTcF8i9V33EzqsZ4jEHHgBMZeaNVO9QVgEfZ/j7BX43+7nAbcD9IuLoYVvXl3wcfv7uQf2/oCr812bmxyLiOcBVmXl52wGbmpP7FqoTFa6meiXem+pIgGHMfXtEbKZ66wrVVs7xwObMvHzIx3xu9n2o3ua+keqoqX0Y0nGH6gOyiNj9bYQ/qK+7GnhlRJwCfGcYs8/JvaO+bldEPItq/RnKMY+IVcB1VF8x8A/ArVRnmb44M68d5nV9nuy/onqH+3aq3T13YYjGfcl/ACUi7gI8gersrqOpDp/6YGbu6l+85ubJvSUz3z3YVEsXEW+mOmHjWKr9fmfWW81Db072LwCvzP6ehdmqiJgGXpeZn9x9MtCgMy3F7NyDzrJUEXE/qkMU76BaZ84H3pTV2aVDbZ7sFwBnZOaKfxHbYpb1F68i4kVUJz7845C8lVqSrubeLSLGgB+afWXMOtPzwVSH9u7qQtl3Nfdu9ZmlRwH/npm3DTrPcnQl+9D+iUNJUrsG/hevJEkrw8KXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhfhfHCg3qEW8+c0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +2327,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-