{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#toy_notebook_fr" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "March 28, 2019" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#À propos du calcul de π" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##En demandant à la lib maths" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Mon ordinateur m’indique que π vaut approximativement" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.141592653589793\n" ] } ], "source": [ "In [1]: from math import *\n", "print(pi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##En utilisant la méthode des aiguilles de Buffon" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Mais calculé avec la méthode des aiguilles de Buffon, on obtiendrait comme approximation :" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.128911138923655" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "In [2]: import numpy as np\n", "np.random.seed(seed=42)\n", "N = 10000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Avec un argument \"fréquentiel\" de surface" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }