diff --git a/module2/exo5/exo5_fr.ipynb b/module2/exo5/exo5_fr.ipynb index 26ad6d94fa840f788a57621b06dc6af83a848391..b4cb85ba8cf55525a50f4c7cf0404ede1252475d 100644 --- a/module2/exo5/exo5_fr.ipynb +++ b/module2/exo5/exo5_fr.ipynb @@ -261,30 +261,30 @@ "" ], "text/plain": [ - " Date Count Temperature Pressure Malfunction\n", - "0 4/12/81 6 66 50 0\n", - "1 11/12/81 6 70 50 1\n", - "2 3/22/82 6 69 50 0\n", - "3 11/11/82 6 68 50 0\n", - "4 4/04/83 6 67 50 0\n", - "5 6/18/82 6 72 50 0\n", - "6 8/30/83 6 73 100 0\n", - "7 11/28/83 6 70 100 0\n", - "8 2/03/84 6 57 200 1\n", - "9 4/06/84 6 63 200 1\n", - "10 8/30/84 6 70 200 1\n", - "11 10/05/84 6 78 200 0\n", - "12 11/08/84 6 67 200 0\n", - "13 1/24/85 6 53 200 2\n", - "14 4/12/85 6 67 200 0\n", - "15 4/29/85 6 75 200 0\n", - "16 6/17/85 6 70 200 0\n", - "17 7/29/85 6 81 200 0\n", - "18 8/27/85 6 76 200 0\n", - "19 10/03/85 6 79 200 0\n", - "20 10/30/85 6 75 200 2\n", - "21 11/26/85 6 76 200 0\n", - "22 1/12/86 6 58 200 1" + " Date Count Temperature Pressure Malfunction\n", + "0 4/12/81 6 66 50 0\n", + "1 11/12/81 6 70 50 1\n", + "2 3/22/82 6 69 50 0\n", + "3 11/11/82 6 68 50 0\n", + "4 4/04/83 6 67 50 0\n", + "5 6/18/82 6 72 50 0\n", + "6 8/30/83 6 73 100 0\n", + "7 11/28/83 6 70 100 0\n", + "8 2/03/84 6 57 200 1\n", + "9 4/06/84 6 63 200 1\n", + "10 8/30/84 6 70 200 1\n", + "11 10/05/84 6 78 200 0\n", + "12 11/08/84 6 67 200 0\n", + "13 1/24/85 6 53 200 2\n", + "14 4/12/85 6 67 200 0\n", + "15 4/29/85 6 75 200 0\n", + "16 6/17/85 6 70 200 0\n", + "17 7/29/85 6 81 200 0\n", + "18 8/27/85 6 76 200 0\n", + "19 10/03/85 6 79 200 0\n", + "20 10/30/85 6 75 200 2\n", + "21 11/26/85 6 76 200 0\n", + "22 1/12/86 6 58 200 1" ] }, "execution_count": 1, @@ -453,7 +453,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFYRJREFUeJzt3XuQpXV95/H3Zy7AIBMhsJm4MxBBCFlKAXG4GEx2IokLbgmxiBHcDS5ZMqGE3TK7m8BariHGVEWM2WiJjiOLCqmERFEgu+MiJNUaExCQTIaLgcwiQjMGBFFoHObW3/3jnHlyprun5/TQzzlM9/tV1TXnufa3vz6cj8/l/E6qCkmSABYMuwBJ0kuHoSBJahgKkqSGoSBJahgKkqSGoSBJarQWCkmuSfJkkvt2szxJPppkY5INSU5qqxZJUn/aPFP4DHDmNMvPAo7p/qwGPtFiLZKkPrQWClX1VeB706xyDnBtddwBHJzkFW3VI0nas0VD/N3Lgcd6pke7874zccUkq+mcTbBkyZLXHX744QMp8MUaHx9nwQJv2/SyJ5PZk6nZl8leTE8eeuihp6rqX+xpvWGGQqaYN+WYG1W1FlgLsHLlyrr77rvbrGvWjIyMsGrVqmGX8ZJiTyazJ1OzL5O9mJ4k+XY/6w0zhkeB3v/LvwLYNKRaJEkMNxRuBi7oPoV0GvCDqpp06UiSNDitXT5K8qfAKuCwJKPAbwOLAapqDbAOeDOwEfghcGFbtUiS+tNaKFTV+XtYXsAlbf1+SdLMeWtfktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktRoNRSSnJnkwSQbk1w+xfKXJ/mLJH+f5P4kF7ZZjyRpeq2FQpKFwFXAWcBxwPlJjpuw2iXAA1V1ArAK+HCS/dqqSZI0vTbPFE4BNlbVw1W1FbgeOGfCOgUsTRLgIOB7wPYWa5IkTWNRi/teDjzWMz0KnDphnY8BNwObgKXA26tqfOKOkqwGVgMsW7aMkZGRNuqddWNjY/tMrYNiTyazJ1OzL5MNoidthkKmmFcTpv8NsB54I/Aq4NYkf11Vz+6yUdVaYC3AypUra9WqVbNfbQtGRkbYV2odFHsymT2Zmn2ZbBA9afPy0ShweM/0CjpnBL0uBL5QHRuBbwE/1WJNkqRptBkKdwHHJDmye/P4PDqXino9CpwBkGQZcCzwcIs1SZKm0drlo6ranuRS4BZgIXBNVd2f5OLu8jXA7wKfSXIvnctNl1XVU23VJEmaXpv3FKiqdcC6CfPW9LzeBLypzRokSf3zE82SpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5M8mCSjUku3806q5KsT3J/kq+0WY8kaXqL+lkpyaur6r6Z7DjJQuAq4BeAUeCuJDdX1QM96xwMfBw4s6oeTfJjM/kdkqTZ1e+ZwpokdyZ5V/eNvB+nABur6uGq2gpcD5wzYZ13AF+oqkcBqurJPvctSWpBX2cKVfWGJMcAvwrcneRO4NNVdes0my0HHuuZHgVOnbDOTwKLk4wAS4GPVNW1E3eUZDWwGmDZsmWMjIz0U/bQjY2N7TO1Doo9mcyeTM2+TDaInvQVCgBV9Y9J3gvcDXwUeG2SAO+pqi9MsUmm2s0Uv/91wBnAEuD2JHdU1UMTfvdaYC3AypUra9WqVf2WPVQjIyPsK7UOij2ZzJ5Mzb5MNoie9HtP4XjgQuDfArcCb6mqe5L8S+B2YKpQGAUO75leAWyaYp2nqup54PkkXwVOAB5CkjRw/d5T+BhwD3BCVV1SVfcAVNUm4L272eYu4JgkRybZDzgPuHnCOjcBP5NkUZID6Vxe+uZM/whJ0uzo9/LRm4HNVbUDIMkC4ICq+mFVXTfVBlW1PcmlwC3AQuCaqro/ycXd5Wuq6ptJ/i+wARgHrp7pU06SpNnTbyjcBvw8MNadPhD4MvDT021UVeuAdRPmrZkw/SHgQ33WIUlqUb+Xjw6oqp2BQPf1ge2UJEkaln5D4fkkJ+2cSPI6YHM7JUmShqXfy0fvBj6XZOfTQ68A3t5OSZKkYen3w2t3Jfkp4Fg6nz/4h6ra1mplkqSB6/vDa8DJwCu727w2CVN9+liStO/q98Nr1wGvAtYDO7qzCzAUJGkO6fdMYSVwXFVNHKZCkjSH9Pv00X3Aj7dZiCRp+Po9UzgMeKA7OuqWnTOr6uxWqpIkDUW/oXBFm0VIkl4a+n0k9StJfgI4pqpu6w5et7Dd0iRJg9bXPYUkvwZ8Hvhkd9Zy4Ma2ipIkDUe/N5ovAU4HnoXOF+4Afp+yJM0x/YbClu73LAOQZBGTv0VNkrSP6zcUvpLkPcCSJL8AfA74i/bKkiQNQ7+hcDnwXeBe4NfpfEfC7r5xTZK0j+r36aNx4FPdH0nSHNXv2EffYop7CFV11KxXJEkampmMfbTTAcDbgB+d/XIkScPU1z2Fqnq65+fxqvoj4I0t1yZJGrB+Lx+d1DO5gM6Zw9JWKpIkDU2/l48+3PN6O/AI8MuzXo0kaaj6ffro59ouRJI0fP1ePvov0y2vqj+cnXIkScM0k6ePTgZu7k6/Bfgq8FgbRUmShmMmX7JzUlU9B5DkCuBzVXVRW4VJkgav32EujgC29kxvBV4569VIkoaq3zOF64A7k3yRzieb3wpc21pVkqSh6Pfpo99L8iXgZ7qzLqyqv2uvLEnSMPR7+QjgQODZqvoIMJrkyJZqkiQNSb9fx/nbwGXAf+/OWgz8cVtFSZKGo98zhbcCZwPPA1TVJhzmQpLmnH5DYWtVFd3hs5O8rL2SJEnD0m8o/HmSTwIHJ/k14Db8wh1JmnP6ffroD7rfzfwscCzwvqq6tdXKJEkDt8czhSQLk9xWVbdW1W9W1X/rNxCSnJnkwSQbk1w+zXonJ9mR5JdmUrwkaXbtMRSqagfwwyQvn8mOkywErgLOAo4Dzk9y3G7W+yBwy0z2L0maff1+ovkF4N4kt9J9Agmgqv7zNNucAmysqocBklwPnAM8MGG9/wTcQGfAPUnSEPUbCv+n+zMTy9l1FNVR4NTeFZIsp/O46xuZJhSSrAZWAyxbtoyRkZEZljIcY2Nj+0ytg2JPJrMnU7Mvkw2iJ9OGQpIjqurRqvrsXuw7U8yrCdN/BFxWVTuSqVbvblS1FlgLsHLlylq1atVelDN4IyMj7Cu1Doo9mcyeTM2+TDaInuzpnsKNO18kuWGG+x4FDu+ZXgFsmrDOSuD6JI8AvwR8PMkvzvD3SJJmyZ4uH/X+3/ejZrjvu4BjumMkPQ6cB7yjd4WqasZPSvIZ4H9X1Y1IkoZiT6FQu3m9R1W1PcmldJ4qWghcU1X3J7m4u3zNjCqVJLVuT6FwQpJn6ZwxLOm+pjtdVfUj021cVeuAdRPmTRkGVfUf+qpYktSaaUOhqhYOqhBJ0vDN5PsUJElznKEgSWoYCpKkhqEgSWrMq1B4emwLf//Y93l6bMuwS5GkGXl6bAubt+1o/f1r3oTCTesf5/QP/hX//uqvc/oH/4qb1z8+7JIkqS8737++9d3nW3//mheh8PTYFi67YQMvbBvnuS3beWHbOL91wwbPGCS95PW+f+2oav39a16Ewugzm1m8YNc/dfGCBYw+s3lIFUlSfwb9/jUvQmHFIUvYNj6+y7xt4+OsOGTJkCqSpP4M+v1rXoTCoQftz5XnHs8BixewdP9FHLB4AVeeezyHHrT/sEuTpGn1vn8tTFp//+r3S3b2eWefuJzTjz6M0Wc2s+KQJQaCpH3GzvevO2//Gn9z9htaff+aN6EAncQ1DCTtiw49aH+WLF7Y+nvYvLh8JEnqj6EgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkRquhkOTMJA8m2Zjk8imW/7skG7o/f5vkhDbrkSRNr7VQSLIQuAo4CzgOOD/JcRNW+xbwr6vqeOB3gbVt1SNJ2rM2zxROATZW1cNVtRW4Hjind4Wq+tuqeqY7eQewosV6JEl7sKjFfS8HHuuZHgVOnWb9/wh8aaoFSVYDqwGWLVvGyMjILJXYrrGxsX2m1kGxJ5PZk6nZl8kG0ZM2QyFTzKspV0x+jk4ovGGq5VW1lu6lpZUrV9aqVatmqcR2jYyMsK/UOij2ZDJ7MjX7MtkgetJmKIwCh/dMrwA2TVwpyfHA1cBZVfV0i/VIkvagzXsKdwHHJDkyyX7AecDNvSskOQL4AvArVfVQi7VIkvrQ2plCVW1PcilwC7AQuKaq7k9ycXf5GuB9wKHAx5MAbK+qlW3VJEmaXpuXj6iqdcC6CfPW9Ly+CLiozRrmi6fHtjD6zGZWHLKEQw/av/Xt5jJ7Mnwbn3iOZ364jY1PPMfRy5YOu5x5pdVQ0GDctP5xLrthA4sXLGDb+DhXnns8Z5+4vLXt5jJ7Mnzvu/Ferr3jUf7ra7bzG//zq1zw+iN4/zmvGXZZ84bDXOzjnh7bwmU3bOCFbeM8t2U7L2wb57du2MDTY1ta2W4usyfDt/GJ57j2jkd3mXft7Y+y8YnnhlTR/GMo7ONGn9nM4gW7/s+4eMECRp/Z3Mp2c5k9Gb71j31/RvM1+wyFfdyKQ5awbXx8l3nbxsdZcciSVraby+zJ8J14+MEzmq/ZZyjs4w49aH+uPPd4Dli8gKX7L+KAxQu48tzj93iDdG+3m8vsyfAdvWwpF7z+iF3mXfD6I7zZPEDeaJ4Dzj5xOacffdiMn5jZ2+3mMnsyfO8/5zVccNorufcbd3Dbb5xmIAyYoTBHHHrQ/nv1Bra3281l9mT4jl62lNEDFxsIQ+DlI0lSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkZyZ5MMnGJJdPsTxJPtpdviHJSW3WI0maXmuhkGQhcBVwFnAccH6S4yasdhZwTPdnNfCJtuqRJO1Zm2cKpwAbq+rhqtoKXA+cM2Gdc4Brq+MO4OAkr2ixJknSNBa1uO/lwGM906PAqX2ssxz4Tu9KSVbTOZMAGEvy4OyW2prDgKeGXcRLjD2ZzJ5Mzb5M9mJ68hP9rNRmKGSKebUX61BVa4G1s1HUICW5u6pWDruOlxJ7Mpk9mZp9mWwQPWnz8tEocHjP9Apg016sI0kakDZD4S7gmCRHJtkPOA+4ecI6NwMXdJ9COg34QVV9Z+KOJEmD0drlo6ranuRS4BZgIXBNVd2f5OLu8jXAOuDNwEbgh8CFbdUzJPvcJa8BsCeT2ZOp2ZfJWu9JqiZdwpckzVN+olmS1DAUJEkNQ2EWJXkkyb1J1ie5uzvviiSPd+etT/LmYdc5SEkOTvL5JP+Q5JtJXp/kR5PcmuQfu/8eMuw6B2k3PZm3x0mSY3v+7vVJnk3y7vl8nEzTk9aPE+8pzKIkjwArq+qpnnlXAGNV9QfDqmuYknwW+Ouqurr7FNqBwHuA71XV73fHxDqkqi4baqEDtJuevJt5fJzs1B0e53E6H3S9hHl8nOw0oScX0vJx4pmCWpPkR4CfBf4XQFVtrarv0xne5LPd1T4L/OJwKhy8aXqijjOA/1dV32YeHycT9PakdYbC7Crgy0m+0R2aY6dLu6PAXjOfToGBo4DvAp9O8ndJrk7yMmDZzs+jdP/9sWEWOWC76wnM3+Ok13nAn3Zfz+fjpFdvT6Dl48RQmF2nV9VJdEZ/vSTJz9IZ+fVVwIl0xnT68BDrG7RFwEnAJ6rqtcDzwKQh1OeZ3fVkPh8nAHQvpZ0NfG7YtbxUTNGT1o8TQ2EWVdWm7r9PAl8ETqmqJ6pqR1WNA5+iM3rsfDEKjFbV17vTn6fzhvjEztFwu/8+OaT6hmHKnszz42Sns4B7quqJ7vR8Pk522qUngzhODIVZkuRlSZbufA28CbhvwlDgbwXuG0Z9w1BV/wQ8luTY7qwzgAfoDG/yzu68dwI3DaG8odhdT+bzcdLjfHa9TDJvj5Meu/RkEMeJTx/NkiRH0Tk7gM4lgj+pqt9Lch2dU70CHgF+fT6N75TkROBqYD/gYTpPTywA/hw4AngUeFtVfW9oRQ7YbnryUeb3cXIgnWH0j6qqH3TnHcr8Pk6m6knr7yeGgiSp4eUjSVLDUJAkNQwFSVLDUJAkNQwFSVKjtW9ekwat+wjjX3YnfxzYQWdICeh8kHDrUAqbRpJfBdZ1P78gDZ2PpGpOeimNTptkYVXt2M2yrwGXVtX6GexvUVVtn7UCpR5ePtK8kOSdSe7sjkH/8SQLkixK8v0kH0pyT5Jbkpya5CtJHt45Vn2Si5J8sbv8wSTv7XO/H0hyJ3BKkt9JcleS+5KsScfb6XwQ6c+62++XZDTJwd19n5bktu7rDyT5ZJJb6QymtyjJH3Z/94YkFw2+q5qLDAXNeUleTWdIgJ+uqhPpXDY9r7v45cCXuwMZbgWuoDP0xNuA9/fs5pTuNicB70hyYh/7vaeqTqmq24GPVNXJwGu6y86sqj8D1gNvr6oT+7i89VrgLVX1K8Bq4MmqOgU4mc4AjEfsTX+kXt5T0Hzw83TeOO9OArCEzvABAJur6tbu63uBH1TV9iT3Aq/s2cctVfUMQJIbgTfQ+e9nd/vdyj8PewJwRpLfBA4ADgO+AXxphn/HTVX1Qvf1m4B/laQ3hI6hMxyEtNcMBc0HAa6pqv+xy8xkEZ03753GgS09r3v/+5h48632sN/N1b1h1x3D5mN0RkN9PMkH6ITDVLbzz2fwE9d5fsLf9K6q+kukWeTlI80HtwG/nOQw6DyltBeXWt6UzncrH0jnG8H+Zgb7XUInZJ7qjqR7bs+y54ClPdOPAK/rvu5db6JbgHd1A2jnd/oumeHfJE3imYLmvKq6N8nvALclWQBsAy4GNs1gN18D/oTOF5xct/NpoX72W1VPp/O9zPcB3wa+3rP408DVSTbTuW9xBfCpJP8E3DlNPZ+kM3ro+u6lqyfphJX0ovhIqrQH3Sd7Xl1V7x52LVLbvHwkSWp4piBJanimIElqGAqSpIahIElqGAqSpIahIElq/H/IxmFZztFAcQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -524,10 +524,10 @@ " Method: IRLS Log-Likelihood: -2.5250 \n", "\n", "\n", - " Date: Sat, 13 Apr 2019 Deviance: 0.22231 \n", + " Date: Mon, 23 Jun 2025 Deviance: 0.22231 \n", "\n", "\n", - " Time: 19:11:24 Pearson chi2: 0.236 \n", + " Time: 11:06:16 Pearson chi2: 0.236 \n", "\n", "\n", " No. Iterations: 4 Covariance Type: nonrobust\n", @@ -555,8 +555,8 @@ "Model Family: Binomial Df Model: 1\n", "Link Function: logit Scale: 1.0000\n", "Method: IRLS Log-Likelihood: -2.5250\n", - "Date: Sat, 13 Apr 2019 Deviance: 0.22231\n", - "Time: 19:11:24 Pearson chi2: 0.236\n", + "Date: Mon, 23 Jun 2025 Deviance: 0.22231\n", + "Time: 11:06:16 Pearson chi2: 0.236\n", "No. Iterations: 4 Covariance Type: nonrobust\n", "===============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", @@ -610,7 +610,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGzdJREFUeJzt3X+UVOWd5/H3t6tBGhohoGGAJoHM4cA6UX41jUriNkYBc+KvWQ2io4k7LHEnJJPdIxs5J7OaWT1n57S7h0zWiIwyTOLR1nEVNcsG1E3HiauxQRAEhh9riDadBDGj0Noo3f3dP+6t6qrqbrq6qO6qevy8zulD3VvPfe7z7aI+dfupW7fM3RERkbBUFHsAIiJSeAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA9RvuZrbBzI6a2Rt93G9m9rdmdsjMdpnZ3MIPU0REBiKXI/eNwNLT3H8FMD3+WQncf+bDEhGRM9FvuLv7i8AfTtPkauDHHnkFGGtmEws1QBERGbjKAvQxGXg7bbklXvfb7IZmtpLo6J6qqqp5U6ZMyWuHXV1dVFSE8XaBailNodQSSh2gWpIOHDhwzN3P7a9dIcLdelnX6zUN3H09sB6gtrbWt23bltcOm5qaqK+vz2vbUqNaSlMotYRSB6iWJDP7TS7tCvEy2AKkH4LXAK0F6FdERPJUiHB/BrglPmvmQuB9d+8xJSMiIkOn32kZM3sUqAfOMbMW4E5gGIC7rwM2A18GDgEfArcO1mBFRCQ3/Ya7uy/v534HvlmwEYlIWTh16hQtLS2cPHlySPY3ZswY9u3bNyT7Gmy51DJixAhqamoYNmxYXvsoxBuqIvIJ1NLSwujRo5k6dSpmvZ1XUVgnTpxg9OjRg76fodBfLe7Ou+++S0tLC9OmTctrH2GcVyQiQ+7kyZOMHz9+SIL9k8bMGD9+/Bn9VaRwF5G8KdgHz5n+bhXuIiIB0py7iJStRCLB+eefn1retGkTU6dOLd6ASojCXUTKVlVVFTt37uzz/o6ODiorP5kxp2kZEQnKxo0buf7667nyyitZvHgxAA0NDcyfP58LLriAO++8M9X2nnvuYcaMGVx22WUsX76ce++9F4D6+nqSl0c5duxY6q+Bzs5OVq9enerrgQceALovJ3Ddddcxc+ZMbrrpJqKzxKG5uZmLL76YWbNmUVdXx4kTJ1iyZEnGi9LChQvZtWtXQX8Pn8yXNBEpqO8/u4e9rccL2ud5k87mziv/5LRt2tvbmT17NgDTpk3jqaeeAuDll19m165djBs3jq1bt3Lw4EFeffVV3J2rrrqKF198kVGjRtHY2MiOHTvo6Ohg7ty5zJs377T7e+ihhxgzZgzNzc189NFHLFy4MPUCsmPHDvbs2cOkSZNYuHAhL730EnV1dSxbtozHHnuM+fPnc/z4caqqqrjlllvYuHEja9eu5cCBA3z00UdccMEFBfitdVO4i0jZ6mta5vLLL2fcuHEAbN26la1btzJnzhwA2traOHjwICdOnODaa69l5MiRAFx11VX97m/r1q3s2rWLJ554AoD333+fgwcPMnz4cOrq6qipqQFg9uzZHD58mDFjxjBx4kTmz58PwNlnnw3Atddey8KFC2loaGDDhg18/etfP7NfRC8U7iJyxvo7wh5qo0aNSt12d9asWcM3vvGNjDZr167t83TDyspKurq6ADLONXd3fvjDH7JkyZKM9k1NTZx11lmp5UQiQUdHB+7e6z5GjhzJ5ZdfztNPP83jjz9OvlfIPR3NuYtI0JYsWcKGDRtoa2sD4MiRIxw9epRLLrmEp556ivb2dk6cOMGzzz6b2mbq1Kls374dIHWUnuzr/vvv59SpUwAcOHCADz74oM99z5w5k9bWVpqbm4Hok6kdHR0ArFixgm9/+9vMnz8/9VdGIenIXUSCtnjxYvbt28dFF10EQHV1NQ8//DBz585l2bJlzJ49m89+9rN88YtfTG1z++2389WvfpWf/OQnXHrppan1K1as4PDhw8ydOxd359xzz2XTpk197nv48OE89thjfOtb36K9vZ2qqiqef/55AObNm8fZZ5/NrbcO0rUW3b0oP/PmzfN8/fznP89721KjWkpTKLUMZh179+4dtL57c/z48UHt/8477/SGhoZB3UfS8ePH/ciRIz59+nTv7Ozss11vv2Ngm+eQsZqWEREZYo888ggLFizgnnvuGbSvDtS0jIgIcNdddw3Zvm688cYeb/AWmo7cRSRv7r1+XbIUwJn+bhXuIpKXESNG8O677yrgB4HH13MfMWJE3n1oWkZE8lJTU0NLSwvvvPPOkOzv5MmTZxR2pSSXWpLfxJQvhbuI5GXYsGF5f0tQPpqamlKfMi13Q1GLpmVERAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEA5RTuZrbUzPab2SEzu6OX+8eY2bNm9rqZ7TGzWws/VBERyVW/4W5mCeA+4ArgPGC5mZ2X1eybwF53nwXUA//NzIYXeKwiIpKjXI7c64BD7v6mu38MNAJXZ7VxYLSZGVAN/AHoKOhIRUQkZ9bfN5eb2XXAUndfES/fDCxw91VpbUYDzwAzgdHAMnf/X730tRJYCTBhwoR5jY2NeQ26ra2N6urqvLYtNaqlNIVSSyh1gGpJWrRo0XZ3r+2vXS5fkG29rMt+RVgC7AQuBf4YeM7M/sndj2ds5L4eWA9QW1vr9fX1Oey+p6amJvLdttSoltIUSi2h1AGqZaBymZZpAaakLdcArVltbgWe9Mgh4NdER/EiIlIEuYR7MzDdzKbFb5LeQDQFk+4t4EsAZjYBmAG8WciBiohI7vqdlnH3DjNbBWwBEsAGd99jZrfF968D/guw0cx2E03jfNfdjw3iuEVE5DRymXPH3TcDm7PWrUu73QosLuzQREQkX/qEqohIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0NmdkcfberNbKeZ7TGzXxR2mCIiMhCV/TUwswRwH3A50AI0m9kz7r43rc1Y4EfAUnd/y8w+PVgDFhGR/uVy5F4HHHL3N939Y6ARuDqrzY3Ak+7+FoC7Hy3sMEVEZCDM3U/fwOw6oiPyFfHyzcACd1+V1mYtMAz4E2A08AN3/3Evfa0EVgJMmDBhXmNjY16Dbmtro7q6Oq9tS41qKU2h1BJKHaBakhYtWrTd3Wv7a9fvtAxgvazLfkWoBOYBXwKqgJfN7BV3P5Cxkft6YD1AbW2t19fX57D7npqamsh321KjWkpTKLWEUgeoloHKJdxbgClpyzVAay9tjrn7B8AHZvYiMAs4gIiIDLlc5tybgelmNs3MhgM3AM9ktXka+KKZVZrZSGABsK+wQxURkVz1e+Tu7h1mtgrYAiSADe6+x8xui+9f5+77zOxnwC6gC3jQ3d8YzIGLiEjfcpmWwd03A5uz1q3LWm4AGgo3NBERyZc+oSoiEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIByinczWypme03s0Nmdsdp2s03s04zu65wQxQRkYHqN9zNLAHcB1wBnAcsN7Pz+mj3N8CWQg9SREQGJpcj9zrgkLu/6e4fA43A1b20+xbwP4GjBRyfiIjkwdz99A2iKZal7r4iXr4ZWODuq9LaTAYeAS4FHgJ+6u5P9NLXSmAlwIQJE+Y1NjbmNei2tjaqq6vz2rbUqJbSFEotodQBqiVp0aJF2929tr92lTn0Zb2sy35FWAt81907zXprHm/kvh5YD1BbW+v19fU57L6npqYm8t221KiW0hRKLaHUAaploHIJ9xZgStpyDdCa1aYWaIyD/Rzgy2bW4e6bCjJKEREZkFzCvRmYbmbTgCPADcCN6Q3cfVrytpltJJqWUbCLiBRJv+Hu7h1mtoroLJgEsMHd95jZbfH96wZ5jCIiMkC5HLnj7puBzVnreg11d//6mQ9LRETOhD6hKiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzOlhEZLJt2HKFhy35a32tn0tgqVi+ZwTVzJhd7WJIjPX6lS+EuRbNpxxHWPLmb9lOdABx5r501T+4GUECUAT1+pU3TMlI0DVv2p4Ihqf1UJw1b9hdpRDIQevxKm8Jdiqb1vfYBrZfSosevtCncpWgmja0a0HopLXr8SpvCXYpm9ZIZVA1LZKyrGpZg9ZIZRRqRDIQev9KmN1SlaJJvuulsi/Kkx6+0KdylqK6ZM1lhUMb0+JUuTcuIiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgPQdqiKSoavL6XSns8txhy6Plru6onVdyXVdTpdHbTq7utt0xcvpbaKf7vVdXaS173ubzi5Sbfa9dYq3X/lNarm7PXGfcT/ueHx/97hJG0e0nN0muW16ne6Zv4vM9k6nkzEeT+/D02qNl5P7rJ8E9fWD+zgq3KVkZD8hkqHicRBET55kG9KehJlP8vQnWXKb04ZH6knXHQxvHDnFse0tWWPKDLfsfWYHTPc2PYOlOxy6t+m+Py18soIlo413B1SX9+yz050PPzzJWS+/EPeT2Wdv++3yYv8v6MfeN3JqVmFQYUZFhZEwi5YrjES8bPG6RIVRYfH6CsMMEvFytH3cT2pdtDy8siJubyTifsBIVGT22b0tGcuf+uh3g/t7IsdwN7OlwA+ABPCgu//XrPtvAr4bL7YB/97dXy/kQAdD8kmf+YSnO0RSr7ZpbdJDp7cnd3/bpx21uDu7ftfB8ddb+36SZh0Z9NwHWUcSWUHQ1d1PakwZYdMzJLt6CZLMcfUMlU532to+ZETzz+Px9AzAjPBLO5JJLpec3fn9F06GQPTETwuF7Cd7HDLpwVIRbxMFUWawGFEflRUVnFVpcX+k2ifDKn2/R3//eyZNPKc76LL67G2/6X2mB1oqsNLWRTWQ6is7BLtDMnus3WNJtkn1k94mDthEhfHKyy/zhYULM+usyBpDfNvMCvt/ocCamo4N+j76DXczSwD3AZcDLUCzmT3j7nvTmv0a+Nfu/i9mdgWwHlgwGAP+xYF3+N4vP6TqtV9kBFnGEVp6qPU4ius+qvJSyZOdO864i+wndnqYdB8xdD+Zsp8MmUcZWdvHbXo7WrG0J+CxinYm/tHYVD+ZT0LSjpjiJ3bqqCrtyCrtiZ1ZU+YTurfwSMT9ZuwjOzxS9VtakKSHV7T9tldf5eKLLszpd5PcPjn2UtLU1ER9/axiD6MgPjWignNHn1XsYZSNXI7c64BD7v4mgJk1AlcDqXB39/+b1v4VoKaQg0xXfVaCCaMqmPDp6h5BlgqKrCd1X0FD9vanOUrp7jvz6Cc9ELqDI3P/GUdyWcG0fds2Llwwv8f22WPv3nd32Gb3XWxRkMwp9jAK4u1RFUwZN7LYwxDJm3k/h69mdh2w1N1XxMs3AwvcfVUf7W8HZibbZ923ElgJMGHChHmNjY15DbqtrY3q6uq8ti01qqU0hVJLKHWAaklatGjRdnev7a9dLkfuvR0S9vqKYGaLgD8HvtDb/e6+nmjKhtraWq/P8+3i6Agxv21LjWopTaHUEkodoFoGKpdwbwGmpC3XAK3ZjczsAuBB4Ap3f7cwwxMRkXzk8iGmZmC6mU0zs+HADcAz6Q3M7DPAk8DN7n6g8MMUEZGB6PfI3d07zGwVsIXoVMgN7r7HzG6L718H/GdgPPCj+I29jlzmhEREZHDkdJ67u28GNmetW5d2ewXQ4w1UkaG2accRGrbsp/W9diaNrWL1khkAPdZdM2fykOx7MPaTi+9t2s2jv3qb73z+FH++ZjPLF0zh7mvOL8pYpDj0CVUJxqYdR1jz5G7aT3UCcOS9dlb/4+tgcKrTU+vWPLkboKDB29u+B2M/ufjept08/MpbqeVO99SyAv6TQxcOk2A0bNmfCtekU12eCvak9lOdNGzZP+j7Hoz95OLRX709oPUSJoW7BKP1vfZBaXsm/RV6P7no7OOzK32tlzAp3CUYk8ZWDUrbM+mv0PvJRaKPTyv3tV7CpHCXYKxeMoOqYYmMdcMqjGGJzFCrGpZIvdE6mPsejP3kYvmCKQNaL2HSG6oSjOQbl8U4W6avfRfjbJnkm6bJOfaEmc6W+QRSuEtQrpkzuddAHYqQ7WvfxXD3Nedz9zXn09TUxP+7qb7Yw5Ei0LSMiEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISoJzC3cyWmtl+MztkZnf0cr+Z2d/G9+8ys7mFH6qIiOSq33A3swRwH3AFcB6w3MzOy2p2BTA9/lkJ3F/gcYqIyADkcuReBxxy9zfd/WOgEbg6q83VwI898gow1swmFnisIiKSo8oc2kwG3k5bbgEW5NBmMvDb9EZmtpLoyB6gzcz2D2i03c4BjuW5balRLaUplFpCqQNUS9Jnc2mUS7hbL+s8jza4+3pgfQ77PP2AzLa5e+2Z9lMKVEtpCqWWUOoA1TJQuUzLtABT0pZrgNY82oiIyBDJJdybgelmNs3MhgM3AM9ktXkGuCU+a+ZC4H13/212RyIiMjT6nZZx9w4zWwVsARLABnffY2a3xfevAzYDXwYOAR8Ctw7ekIECTO2UENVSmkKpJZQ6QLUMiLn3mBoXEZEyp0+oiogESOEuIhKgkg93MxthZq+a2etmtsfMvh+vH2dmz5nZwfjfTxV7rLkws4SZ7TCzn8bL5VrHYTPbbWY7zWxbvK5caxlrZk+Y2T+b2T4zu6gcazGzGfHjkfw5bmbfKdNa/kP8fH/DzB6Nc6Ds6gAws7+M69hjZt+J1w16LSUf7sBHwKXuPguYDSyNz8i5A3jB3acDL8TL5eAvgX1py+VaB8Aid5+ddr5uudbyA+Bn7j4TmEX0+JRdLe6+P348ZgPziE5ueIoyq8XMJgPfBmrd/fNEJ3LcQJnVAWBmnwf+HdEn/WcBXzGz6QxFLe5eNj/ASOA1ok/I7gcmxusnAvuLPb4cxl8TP5CXAj+N15VdHfFYDwPnZK0ru1qAs4FfE59cUM61ZI1/MfBSOdZC9yfexxGd0ffTuJ6yqiMe5/XAg2nLfwX8p6GopRyO3JNTGTuBo8Bz7v4rYILH59LH/366mGPM0VqiB7YrbV051gHRJ5C3mtn2+LISUJ61fA54B/j7eLrsQTMbRXnWku4G4NH4dlnV4u5HgHuBt4guYfK+u2+lzOqIvQFcYmbjzWwk0SnjUxiCWsoi3N2906M/NWuAuvhPnbJiZl8Bjrr79mKPpUAWuvtcoiuCftPMLin2gPJUCcwF7nf3OcAHlMGf+6cTf9jwKuAfiz2WfMTzz1cD04BJwCgz+7Pijio/7r4P+BvgOeBnwOtAx1DsuyzCPcnd3wOagKXA75NXnoz/PVrEoeViIXCVmR0murLmpWb2MOVXBwDu3hr/e5RoXreO8qylBWiJ/xoEeIIo7MuxlqQrgNfc/ffxcrnVchnwa3d/x91PAU8CF1N+dQDg7g+5+1x3vwT4A3CQIail5MPdzM41s7Hx7SqiB/6fiS558LW42deAp4szwty4+xp3r3H3qUR/Mv8fd/8zyqwOADMbZWajk7eJ5kPfoAxrcfffAW+b2Yx41ZeAvZRhLWmW0z0lA+VXy1vAhWY20syM6DHZR/nVAYCZfTr+9zPAnxI9NoNeS8l/QtXMLgD+gegd8wrgcXf/azMbDzwOfIboP8P17v6H4o00d2ZWD9zu7l8pxzrM7HNER+sQTWs84u73lGMtAGY2G3gQGA68SXT5jArKs5aRRG9Gfs7d34/Xld3jEp/yvIxoCmMHsAKopszqADCzfwLGA6eA/+juLwzFY1Ly4S4iIgNX8tMyIiIycAp3EZEAKdxFRAKkcBcRCZDCXUQkQLl8QbbIkIpPE3shXvwjoJPoEgEAde7+cVEGdhpm9m+BzfF58yJFp1MhpaSZ2V1Am7vfWwJjSbh7Zx/3/RJY5e47B9BfpbsPyUfR5ZNH0zJSVszsaxZd33+nmf3IzCrMrNLM3jOzBjN7zcy2mNkCM/uFmb1pZl+Ot11hZk/F9+83s+/l2O/dZvYq0XWNvm9mzfH1uddZZBnR5agfi7cfbmYtaZ+svtDMno9v321mD5jZc0QXK6s0s/8e73uXma0Y+t+qhEjhLmUjvmDctcDF8YXkKoku5QAwBtgaX8zsY+Auoo+tXw/8dVo3dfE2c4EbzWx2Dv2+5u517v4y8AN3nw+cH9+31N0fA3YCyzy6nnp/00ZzgCvd/WZgJdEF5eqA+UQXYftMPr8fkXSac5dychlRAG6LLjlCFdFH7QHa3f25+PZuosvEdpjZbmBqWh9b3P1fAMxsE/AFoudBX/1+TPelFgC+ZGargRHAOcB24H8PsI6n3f1kfHsx8K/MLP3FZDrRR9JF8qZwl3JiwAZ3/6uMlWaVRCGc1EX0DV7J2+n/z7PfZPJ++m33+I2p+Lot/wOY6+5HzOxuopDvTQfdfxlnt/kgq6a/cPcXECkgTctIOXke+KqZnQPRWTV5TGEstug7U0cSXTP8pQH0W0X0YnEsvirmv0m77wQwOm35MNFX3ZHVLtsW4C/iF5Lk96BWDbAmkR505C5lw913x1cLfN7MKoiusncb0DqAbn4JPAL8MfCT5NktufTr7u+a2T8QXd74N8Cv0u7+e+BBM2snmte/C/g7M/sd8OppxvMA0ZUBd8ZTQkeJXnREzohOhZRPjPhMlM+7+3eKPRaRwaZpGRGRAOnIXUQkQDpyFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJ0P8HfLcy7/zjy3oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -686,6 +686,13 @@ "analyse et de regarder ce jeu de données sous tous les angles afin\n", "d'expliquer ce qui ne va pas." ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -705,7 +712,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.6.4" } }, "nbformat": 4, diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5b58a3ae26346460dd39e62a39c55243d7..7fb3e7cadd6300f950112811799dcb4699e33e14 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,15 +28,29 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" ] }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "#Si le fichier n'existe pas en local alors je le telecharge\n", + "\n", + "data_file = \"syndrome-grippal.csv\"\n", + "\n", + "import os\n", + "import urllib.request\n", + "if not os.path.exists(data_file):\n", + " urllib.request.urlretrieve(data_url, data_file)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -61,11 +75,978 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020252432281617621.028011.03426.042.0FRFrance
120252332456419382.029746.03729.045.0FRFrance
220252231875514333.023177.02821.035.0FRFrance
320252132376018671.028849.03527.043.0FRFrance
420252032026515814.024716.03023.037.0FRFrance
520251931626412394.020134.02418.030.0FRFrance
620251831811513975.022255.02721.033.0FRFrance
720251732215017291.027009.03326.040.0FRFrance
820251632856422550.034578.04334.052.0FRFrance
920251533572129592.041850.05344.062.0FRFrance
1020251433757931232.043926.05647.065.0FRFrance
1120251333967333686.045660.05950.068.0FRFrance
1220251235254345627.059459.07868.088.0FRFrance
1320251135946952154.066784.08978.0100.0FRFrance
1420251036033453048.067620.09079.0101.0FRFrance
1520250938453174994.094068.0126112.0140.0FRFrance
162025083136020124824.0147216.0203186.0220.0FRFrance
172025073208952195988.0221916.0312293.0331.0FRFrance
182025063273519258159.0288879.0408385.0431.0FRFrance
192025053334395318416.0350374.0499475.0523.0FRFrance
202025043350043332885.0367201.0522496.0548.0FRFrance
212025033252772238917.0266627.0377356.0398.0FRFrance
222025023257247242991.0271503.0384363.0405.0FRFrance
232025013231549214627.0248471.0345320.0370.0FRFrance
242024523201726185870.0217582.0302278.0326.0FRFrance
252024513201697187843.0215551.0302281.0323.0FRFrance
262024503136694126369.0147019.0205190.0220.0FRFrance
27202449310848799037.0117937.0163149.0177.0FRFrance
2820244838738178687.096075.0131118.0144.0FRFrance
2920244737628667626.084946.0114101.0127.0FRFrance
.................................
209019852132609619621.032571.04735.059.0FRFrance
209119852032789620885.034907.05138.064.0FRFrance
209219851934315432821.053487.07859.097.0FRFrance
209319851834055529935.051175.07455.093.0FRFrance
209419851733405324366.043740.06244.080.0FRFrance
209519851635036236451.064273.09166.0116.0FRFrance
209619851536388145538.082224.011683.0149.0FRFrance
20971985143134545114400.0154690.0244207.0281.0FRFrance
20981985133197206176080.0218332.0357319.0395.0FRFrance
20991985123245240223304.0267176.0445405.0485.0FRFrance
21001985113276205252399.0300011.0501458.0544.0FRFrance
21011985103353231326279.0380183.0640591.0689.0FRFrance
21021985093369895341109.0398681.0670618.0722.0FRFrance
21031985083389886359529.0420243.0707652.0762.0FRFrance
21041985073471852432599.0511105.0855784.0926.0FRFrance
21051985063565825518011.0613639.01026939.01113.0FRFrance
21061985053637302592795.0681809.011551074.01236.0FRFrance
21071985043424937390794.0459080.0770708.0832.0FRFrance
21081985033213901174689.0253113.0388317.0459.0FRFrance
210919850239758680949.0114223.0177147.0207.0FRFrance
211019850138548965918.0105060.0155120.0190.0FRFrance
211119845238483060602.0109058.0154110.0198.0FRFrance
2112198451310172680242.0123210.0185146.0224.0FRFrance
21131984503123680101401.0145959.0225184.0266.0FRFrance
2114198449310107381684.0120462.0184149.0219.0FRFrance
211519844837862060634.096606.0143110.0176.0FRFrance
211619844737202954274.089784.013199.0163.0FRFrance
211719844638733067686.0106974.0159123.0195.0FRFrance
21181984453135223101414.0169032.0246184.0308.0FRFrance
211919844436842220056.0116788.012537.0213.0FRFrance
\n", + "

2120 rows Ă— 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202524 3 22816 17621.0 28011.0 34 26.0 \n", + "1 202523 3 24564 19382.0 29746.0 37 29.0 \n", + "2 202522 3 18755 14333.0 23177.0 28 21.0 \n", + "3 202521 3 23760 18671.0 28849.0 35 27.0 \n", + "4 202520 3 20265 15814.0 24716.0 30 23.0 \n", + "5 202519 3 16264 12394.0 20134.0 24 18.0 \n", + "6 202518 3 18115 13975.0 22255.0 27 21.0 \n", + "7 202517 3 22150 17291.0 27009.0 33 26.0 \n", + "8 202516 3 28564 22550.0 34578.0 43 34.0 \n", + "9 202515 3 35721 29592.0 41850.0 53 44.0 \n", + "10 202514 3 37579 31232.0 43926.0 56 47.0 \n", + "11 202513 3 39673 33686.0 45660.0 59 50.0 \n", + "12 202512 3 52543 45627.0 59459.0 78 68.0 \n", + "13 202511 3 59469 52154.0 66784.0 89 78.0 \n", + "14 202510 3 60334 53048.0 67620.0 90 79.0 \n", + "15 202509 3 84531 74994.0 94068.0 126 112.0 \n", + "16 202508 3 136020 124824.0 147216.0 203 186.0 \n", + "17 202507 3 208952 195988.0 221916.0 312 293.0 \n", + "18 202506 3 273519 258159.0 288879.0 408 385.0 \n", + "19 202505 3 334395 318416.0 350374.0 499 475.0 \n", + "20 202504 3 350043 332885.0 367201.0 522 496.0 \n", + "21 202503 3 252772 238917.0 266627.0 377 356.0 \n", + "22 202502 3 257247 242991.0 271503.0 384 363.0 \n", + "23 202501 3 231549 214627.0 248471.0 345 320.0 \n", + "24 202452 3 201726 185870.0 217582.0 302 278.0 \n", + "25 202451 3 201697 187843.0 215551.0 302 281.0 \n", + "26 202450 3 136694 126369.0 147019.0 205 190.0 \n", + "27 202449 3 108487 99037.0 117937.0 163 149.0 \n", + "28 202448 3 87381 78687.0 96075.0 131 118.0 \n", + "29 202447 3 76286 67626.0 84946.0 114 101.0 \n", + "... ... ... ... ... ... ... ... \n", + "2090 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "2091 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "2092 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "2093 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "2094 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "2095 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "2096 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "2097 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "2098 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "2099 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "2100 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "2101 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "2102 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "2103 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "2104 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "2105 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "2106 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "2107 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "2108 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "2109 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "2110 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "2111 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "2112 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "2113 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "2114 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "2115 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "2116 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "2117 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "2118 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "2119 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 42.0 FR France \n", + "1 45.0 FR France \n", + "2 35.0 FR France \n", + "3 43.0 FR France \n", + "4 37.0 FR France \n", + "5 30.0 FR France \n", + "6 33.0 FR France \n", + "7 40.0 FR France \n", + "8 52.0 FR France \n", + "9 62.0 FR France \n", + "10 65.0 FR France \n", + "11 68.0 FR France \n", + "12 88.0 FR France \n", + "13 100.0 FR France \n", + "14 101.0 FR France \n", + "15 140.0 FR France \n", + "16 220.0 FR France \n", + "17 331.0 FR France \n", + "18 431.0 FR France \n", + "19 523.0 FR France \n", + "20 548.0 FR France \n", + "21 398.0 FR France \n", + "22 405.0 FR France \n", + "23 370.0 FR France \n", + "24 326.0 FR France \n", + "25 323.0 FR France \n", + "26 220.0 FR France \n", + "27 177.0 FR France \n", + "28 144.0 FR France \n", + "29 127.0 FR France \n", + "... ... ... ... \n", + "2090 59.0 FR France \n", + "2091 64.0 FR France \n", + "2092 97.0 FR France \n", + "2093 93.0 FR France \n", + "2094 80.0 FR France \n", + "2095 116.0 FR France \n", + "2096 149.0 FR France \n", + "2097 281.0 FR France \n", + "2098 395.0 FR France \n", + "2099 485.0 FR France \n", + "2100 544.0 FR France \n", + "2101 689.0 FR France \n", + "2102 722.0 FR France \n", + "2103 762.0 FR France \n", + "2104 926.0 FR France \n", + "2105 1113.0 FR France \n", + "2106 1236.0 FR France \n", + "2107 832.0 FR France \n", + "2108 459.0 FR France \n", + "2109 207.0 FR France \n", + "2110 190.0 FR France \n", + "2111 198.0 FR France \n", + "2112 224.0 FR France \n", + "2113 266.0 FR France \n", + "2114 219.0 FR France \n", + "2115 176.0 FR France \n", + "2116 163.0 FR France \n", + "2117 195.0 FR France \n", + "2118 308.0 FR France \n", + "2119 213.0 FR France \n", + "\n", + "[2120 rows x 10 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "raw_data = pd.read_csv(data_url, skiprows=1)\n", + "raw_data = pd.read_csv(data_file, skiprows=1)\n", "raw_data" ] }, @@ -78,9 +1059,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
18831989193-NaNNaN-NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1883 198919 3 - NaN NaN - NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1883 FR France " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +1139,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020252432281617621.028011.03426.042.0FRFrance
120252332456419382.029746.03729.045.0FRFrance
220252231875514333.023177.02821.035.0FRFrance
320252132376018671.028849.03527.043.0FRFrance
420252032026515814.024716.03023.037.0FRFrance
520251931626412394.020134.02418.030.0FRFrance
620251831811513975.022255.02721.033.0FRFrance
720251732215017291.027009.03326.040.0FRFrance
820251632856422550.034578.04334.052.0FRFrance
920251533572129592.041850.05344.062.0FRFrance
1020251433757931232.043926.05647.065.0FRFrance
1120251333967333686.045660.05950.068.0FRFrance
1220251235254345627.059459.07868.088.0FRFrance
1320251135946952154.066784.08978.0100.0FRFrance
1420251036033453048.067620.09079.0101.0FRFrance
1520250938453174994.094068.0126112.0140.0FRFrance
162025083136020124824.0147216.0203186.0220.0FRFrance
172025073208952195988.0221916.0312293.0331.0FRFrance
182025063273519258159.0288879.0408385.0431.0FRFrance
192025053334395318416.0350374.0499475.0523.0FRFrance
202025043350043332885.0367201.0522496.0548.0FRFrance
212025033252772238917.0266627.0377356.0398.0FRFrance
222025023257247242991.0271503.0384363.0405.0FRFrance
232025013231549214627.0248471.0345320.0370.0FRFrance
242024523201726185870.0217582.0302278.0326.0FRFrance
252024513201697187843.0215551.0302281.0323.0FRFrance
262024503136694126369.0147019.0205190.0220.0FRFrance
27202449310848799037.0117937.0163149.0177.0FRFrance
2820244838738178687.096075.0131118.0144.0FRFrance
2920244737628667626.084946.0114101.0127.0FRFrance
.................................
209019852132609619621.032571.04735.059.0FRFrance
209119852032789620885.034907.05138.064.0FRFrance
209219851934315432821.053487.07859.097.0FRFrance
209319851834055529935.051175.07455.093.0FRFrance
209419851733405324366.043740.06244.080.0FRFrance
209519851635036236451.064273.09166.0116.0FRFrance
209619851536388145538.082224.011683.0149.0FRFrance
20971985143134545114400.0154690.0244207.0281.0FRFrance
20981985133197206176080.0218332.0357319.0395.0FRFrance
20991985123245240223304.0267176.0445405.0485.0FRFrance
21001985113276205252399.0300011.0501458.0544.0FRFrance
21011985103353231326279.0380183.0640591.0689.0FRFrance
21021985093369895341109.0398681.0670618.0722.0FRFrance
21031985083389886359529.0420243.0707652.0762.0FRFrance
21041985073471852432599.0511105.0855784.0926.0FRFrance
21051985063565825518011.0613639.01026939.01113.0FRFrance
21061985053637302592795.0681809.011551074.01236.0FRFrance
21071985043424937390794.0459080.0770708.0832.0FRFrance
21081985033213901174689.0253113.0388317.0459.0FRFrance
210919850239758680949.0114223.0177147.0207.0FRFrance
211019850138548965918.0105060.0155120.0190.0FRFrance
211119845238483060602.0109058.0154110.0198.0FRFrance
2112198451310172680242.0123210.0185146.0224.0FRFrance
21131984503123680101401.0145959.0225184.0266.0FRFrance
2114198449310107381684.0120462.0184149.0219.0FRFrance
211519844837862060634.096606.0143110.0176.0FRFrance
211619844737202954274.089784.013199.0163.0FRFrance
211719844638733067686.0106974.0159123.0195.0FRFrance
21181984453135223101414.0169032.0246184.0308.0FRFrance
211919844436842220056.0116788.012537.0213.0FRFrance
\n", + "

2119 rows Ă— 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202524 3 22816 17621.0 28011.0 34 26.0 \n", + "1 202523 3 24564 19382.0 29746.0 37 29.0 \n", + "2 202522 3 18755 14333.0 23177.0 28 21.0 \n", + "3 202521 3 23760 18671.0 28849.0 35 27.0 \n", + "4 202520 3 20265 15814.0 24716.0 30 23.0 \n", + "5 202519 3 16264 12394.0 20134.0 24 18.0 \n", + "6 202518 3 18115 13975.0 22255.0 27 21.0 \n", + "7 202517 3 22150 17291.0 27009.0 33 26.0 \n", + "8 202516 3 28564 22550.0 34578.0 43 34.0 \n", + "9 202515 3 35721 29592.0 41850.0 53 44.0 \n", + "10 202514 3 37579 31232.0 43926.0 56 47.0 \n", + "11 202513 3 39673 33686.0 45660.0 59 50.0 \n", + "12 202512 3 52543 45627.0 59459.0 78 68.0 \n", + "13 202511 3 59469 52154.0 66784.0 89 78.0 \n", + "14 202510 3 60334 53048.0 67620.0 90 79.0 \n", + "15 202509 3 84531 74994.0 94068.0 126 112.0 \n", + "16 202508 3 136020 124824.0 147216.0 203 186.0 \n", + "17 202507 3 208952 195988.0 221916.0 312 293.0 \n", + "18 202506 3 273519 258159.0 288879.0 408 385.0 \n", + "19 202505 3 334395 318416.0 350374.0 499 475.0 \n", + "20 202504 3 350043 332885.0 367201.0 522 496.0 \n", + "21 202503 3 252772 238917.0 266627.0 377 356.0 \n", + "22 202502 3 257247 242991.0 271503.0 384 363.0 \n", + "23 202501 3 231549 214627.0 248471.0 345 320.0 \n", + "24 202452 3 201726 185870.0 217582.0 302 278.0 \n", + "25 202451 3 201697 187843.0 215551.0 302 281.0 \n", + "26 202450 3 136694 126369.0 147019.0 205 190.0 \n", + "27 202449 3 108487 99037.0 117937.0 163 149.0 \n", + "28 202448 3 87381 78687.0 96075.0 131 118.0 \n", + "29 202447 3 76286 67626.0 84946.0 114 101.0 \n", + "... ... ... ... ... ... ... ... \n", + "2090 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "2091 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "2092 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "2093 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "2094 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "2095 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "2096 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "2097 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "2098 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "2099 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "2100 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "2101 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "2102 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "2103 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "2104 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "2105 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "2106 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "2107 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "2108 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "2109 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "2110 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "2111 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "2112 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "2113 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "2114 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "2115 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "2116 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "2117 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "2118 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "2119 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 42.0 FR France \n", + "1 45.0 FR France \n", + "2 35.0 FR France \n", + "3 43.0 FR France \n", + "4 37.0 FR France \n", + "5 30.0 FR France \n", + "6 33.0 FR France \n", + "7 40.0 FR France \n", + "8 52.0 FR France \n", + "9 62.0 FR France \n", + "10 65.0 FR France \n", + "11 68.0 FR France \n", + "12 88.0 FR France \n", + "13 100.0 FR France \n", + "14 101.0 FR France \n", + "15 140.0 FR France \n", + "16 220.0 FR France \n", + "17 331.0 FR France \n", + "18 431.0 FR France \n", + "19 523.0 FR France \n", + "20 548.0 FR France \n", + "21 398.0 FR France \n", + "22 405.0 FR France \n", + "23 370.0 FR France \n", + "24 326.0 FR France \n", + "25 323.0 FR France \n", + "26 220.0 FR France \n", + "27 177.0 FR France \n", + "28 144.0 FR France \n", + "29 127.0 FR France \n", + "... ... ... ... \n", + "2090 59.0 FR France \n", + "2091 64.0 FR France \n", + "2092 97.0 FR France \n", + "2093 93.0 FR France \n", + "2094 80.0 FR France \n", + "2095 116.0 FR France \n", + "2096 149.0 FR France \n", + "2097 281.0 FR France \n", + "2098 395.0 FR France \n", + "2099 485.0 FR France \n", + "2100 544.0 FR France \n", + "2101 689.0 FR France \n", + "2102 722.0 FR France \n", + "2103 762.0 FR France \n", + "2104 926.0 FR France \n", + "2105 1113.0 FR France \n", + "2106 1236.0 FR France \n", + "2107 832.0 FR France \n", + "2108 459.0 FR France \n", + "2109 207.0 FR France \n", + "2110 190.0 FR France \n", + "2111 198.0 FR France \n", + "2112 224.0 FR France \n", + "2113 266.0 FR France \n", + "2114 219.0 FR France \n", + "2115 176.0 FR France \n", + "2116 163.0 FR France \n", + "2117 195.0 FR France \n", + "2118 308.0 FR France \n", + "2119 213.0 FR France \n", + "\n", + "[2119 rows x 10 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +2134,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +2164,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 8, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +2189,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,10 +2217,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmYHMV5/7/vHHvq2F1d6EQCiUuYUwgwYGMwV3yAYxPjYCNjEn52SOzYcRJIQrCNsSF2jE0MxNjcdgwYYyNzWoj7RgKBEJKQQNdKQlppV9Jq75mp3x9d1VPdXX3MTM+xq/fzPPvsTHXXMdXd9dZ7VDUJIcAwDMMwpZKodgMYhmGYkQELFIZhGCYWWKAwDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEQqraDagk48ePFzNnzqx2MxiGYYYVS5cu3SGEmBB23j4lUGbOnIklS5ZUuxkMwzDDCiLaEOU8NnkxDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTC6EChYhuI6LtRPS2ltZGRIuIaI3836odu4KI1hLRaiI6S0s/loiWy2M3EBHJ9Hoiulemv0JEM7U8C2Qda4hogZY+S567RuatK70rGIZhmFKIoqHcAeBsV9rlABYLIeYAWCy/g4gOA3ABgLkyz01ElJR5bgZwKYA58k+VeQmALiHEbADXA7hOltUG4CoAxwOYD+AqTXBdB+B6WX+XLINhGIapIqECRQjxLIBOV/K5AO6Un+8EcJ6Wfo8QYkAIsQ7AWgDziWgygDFCiJeE9c7hu1x5VFn3Azhdai9nAVgkhOgUQnQBWATgbHnsNHmuu/4Rx2vrO7H6g+5qN4NhGCaUYhc2ThJCbAUAIcRWIpoo06cCeFk7r12mDcnP7nSVZ5MsK0NEuwGM09NdecYB2CWEyBjKGnGc/78vAQDWX/uJKreEYRgmmLid8mRIEwHpxeQJKsvbIKJLiWgJES3p6OjwO41hGIYpkWIFyjZpxoL8v12mtwOYrp03DcAWmT7NkO7IQ0QpAGNhmdj8ytoBoEWe6y7LgxDiFiHEPCHEvAkTQreiYRiGYYqkWIGyEICKuloA4EEt/QIZuTULlvP9VWke6yaiE6QP5CJXHlXW5wA8Kf0sjwM4k4hapTP+TACPy2NPyXPd9TMMwzBVItSHQkS/BXAqgPFE1A4r8upaAPcR0SUANgI4HwCEECuI6D4A7wDIALhMCJGVRX0NVsRYI4BH5R8A3ArgbiJaC0szuUCW1UlEVwN4TZ73PSGECg74VwD3ENH3Abwhy2AYhmGqCFkT/n2DefPmieG22/DMyx8GwE55hmGqBxEtFULMCzuPV8ozDMMwscAChWEYhokFFigMwzBMLLBAYRiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEAgsUhmEYJhZYoDAMwzCxwAKFYRiGiQUWKAzDMEwssEBhGIZhYoEFCsMwDBMLLFAYhmGYWGCBwhTM/z7zHmZe/jCyuX3n1QcMw4TDAoUpmOsXvQsAGMzkqtwShmFqCRYoNcy+9PIzhmGGPyxQGIZhmFhggVLD1KqCQlTtFjAMU4uwQGGKRqBGJR7DMFWBBUoNU6vDNYFVFIZhvLBAYYqmVk1yDMNUBxYoNQxHeTEMM5xggcIwDMPEAguUGqZW9RMV5VWr7WMYpjqwQGGKhk1yDMPosECpYWp1vFYxXjXaPIZhqgQLFKZoalXgMQxTHVig1DC8cJBhmOEEC5RhzOZdfTjgioexcuue6jSA5R3DMBolCRQi+iYRrSCit4not0TUQERtRLSIiNbI/63a+VcQ0VoiWk1EZ2npxxLRcnnsBiIrjoiI6onoXpn+ChHN1PIskHWsIaIFpfyOWiXMpLRoxQfICeC3r26sTIMk8vKwBsUwjIOiBQoRTQXwdQDzhBCHA0gCuADA5QAWCyHmAFgsv4OIDpPH5wI4G8BNRJSUxd0M4FIAc+Tf2TL9EgBdQojZAK4HcJ0sqw3AVQCOBzAfwFW64NpXoCrv0sg+FIZhdEo1eaUANBJRCkATgC0AzgVwpzx+J4Dz5OdzAdwjhBgQQqwDsBbAfCKaDGCMEOIlYcWh3uXKo8q6H8DpUns5C8AiIUSnEKILwCLkhRBTZjjKi2EYE0ULFCHEZgA/BrARwFYAu4UQfwYwSQixVZ6zFcBEmWUqgE1aEe0ybar87E535BFCZADsBjAuoKwRRa1rALwOhWEYnVJMXq2wNIhZAKYAaCaiLwZlMaSJgPRi87jbeSkRLSGiJR0dHQHNYyLDK+UZhjFQisnr4wDWCSE6hBBDAB4A8GEA26QZC/L/dnl+O4DpWv5psExk7fKzO92RR5rVxgLoDCjLgxDiFiHEPCHEvAkTJhT5U6tDVKc3KwoMw9QCpQiUjQBOIKIm6dc4HcBKAAsBqKirBQAelJ8XArhARm7NguV8f1WaxbqJ6ARZzkWuPKqszwF4UvpZHgdwJhG1Sk3pTJm2T1HtNyeyIGMYRidVbEYhxCtEdD+A1wFkALwB4BYAowDcR0SXwBI658vzVxDRfQDekedfJoTIyuK+BuAOAI0AHpV/AHArgLuJaC0szeQCWVYnEV0N4DV53veEEJ3F/pZapdYHbA4bZhhGp2iBAgBCiKtghe/qDMDSVkznXwPgGkP6EgCHG9L7IQWS4dhtAG4rsMkjkkoP7LZixPKEYRgNXilfw4SN19V+ES/LE4ZhdFigjAAqbRqzV8qzRGEYRoMFSg0Tus6j2l55hmEYDRYoTNGwU55hGB0WKDVMrQ/XxZi8OroH8Fe/eAk79g7E3yCGYaoKCxSmYEp5p/ydL67Hq+s68X+vVHaHZIZhyg8LlBomqgZQLU2mlL282PvDMCMPFijDmGoNyvZuw7Vuk2MYpqKwQKllRuCAzY58hhm5sEAZAQxHTYEjnhlm5MECpYap9dn8cBRkDMOUDxYowxiq0qZapbxTnoUQw4xcWKDUMKEL5ascK1WKcCC2eTHMiIMFClMw/E55hmFMsECpYXjAZhhmOMECpYYpZeFgJSimfbX9ixiGKQUWKCOAaskdFg4Mw+iwQKlhQl+wVSW/tr2XF0sUhmE0WKAwJcBhwwzD5GGBUsPU7uBb+hsbOWqYYUYeLFBGALUreBiG2ZdggVLDhK1Ep4jnlYtiaq317WQYhikeFijDmGqbjVgzYhhGhwVKLVOjA3b+jY2lvGCLnSgMM9JggcIUDWsoDMPosECpYWp1vC7pjY0heXb3DaG7f6iIghmGqTYsUArgyVXb8OamXdVuhofhqCn4+X+O/O6fceR3/1zZxjAMEwupajdgOPGVO5YAANZf+4mK1Ffz29eXSYfKDUMByTAMayhMCRSjGbGsYJiRCwuUGqZW12zEEa7MMV4MM/JggcIUzXD03TAMUz5KEihE1EJE9xPRKiJaSUQnElEbES0iojXyf6t2/hVEtJaIVhPRWVr6sUS0XB67geT7YYmonojulemvENFMLc8CWccaIlpQyu+oVUIHbHs9SGVRvpta1aAYhqkOpWooPwPwmBDiEABHAlgJ4HIAi4UQcwAslt9BRIcBuADAXABnA7iJiJKynJsBXApgjvw7W6ZfAqBLCDEbwPUArpNltQG4CsDxAOYDuEoXXPsKJYXvxkBRPhRWaxhmxFK0QCGiMQA+AuBWABBCDAohdgE4F8Cd8rQ7AZwnP58L4B4hxIAQYh2AtQDmE9FkAGOEEC8Ja7S5y5VHlXU/gNOl9nIWgEVCiE4hRBeARcgLoRHDSB56q71tDMMw8VOKhnIAgA4AtxPRG0T0KyJqBjBJCLEVAOT/ifL8qQA2afnbZdpU+dmd7sgjhMgA2A1gXEBZTAUZyQKPYZjCKUWgpAAcA+BmIcTRAHogzVs+mOakIiC92DzOSokuJaIlRLSko6MjoHm1R62bh4p6p3xt/ySGYUqgFIHSDqBdCPGK/H4/LAGzTZqxIP9v186fruWfBmCLTJ9mSHfkIaIUgLEAOgPK8iCEuEUIMU8IMW/ChAlF/Mzap9LOcYohGKDaizIZhomfogWKEOIDAJuI6GCZdDqAdwAsBKCirhYAeFB+XgjgAhm5NQuW8/1VaRbrJqITpH/kIlceVdbnADwp/SyPAziTiFqlM/5MmTaiCF0pX2VHBGsbDMPolLr1yj8A+A0R1QF4H8DFsITUfUR0CYCNAM4HACHECiK6D5bQyQC4TAiRleV8DcAdABoBPCr/AMvhfzcRrYWlmVwgy+okoqsBvCbP+54QorPE38JEJC/GijB5xdkQhmFqipIEihBiGYB5hkOn+5x/DYBrDOlLABxuSO+HFEiGY7cBuK2Q9jK1A0d5MczIg1fK1zC1blKq9fYNFz5784v49M+fr3YzGKZkeLfhkUC1FjYWk4eFkIelG7qq3QSGiQXWUGqYsOgtFbZb8a1XpL2quN2G9y2JsqmzF8vbd1e7GQxTEVhDGcZUe2guZZ1MtSPUKsUp//UUgMq9Q4dhqglrKDVM6HhdZYlSbYHGlMZTq7ZjIJMNP5FhIsICZRgzHM1H1fSh/Pjx1XjxvR3Va0AN8eq6Tlx8x2v47z+/W+2mMCMIFig1TNSxt1pbtJRSbTUMXj9/ai3++pevhJ+4D7BtTz8AYHNXX5VbwowkWKAMY6odMTUcNSTGYiibAwCkk8PLlzXz8ofxzXuXVbsZjA8sUGqYMM2jWsO57U+vQXnSP5TF9u7+ajej5lECpS41/IaAP7yxudpNYHwYfncTY1N9DaV4yhXkdeGvXsH8axaXp/ARxGBGaSg8BDDxwXdTDRMe5FUdiWLvNlyDGkqtLhKstVcRZHNWe5KJ4WXyYmobFijDGDVGVXqoqrGxcViQ4z5j9gFYoNQwUQfuqr1TvpjdhoepNNq+px9vbtpVdP5cjf3ufWVhKVNZWKAMY6o9RA23sOFSOOP6Z3HujS8UnT9bJhXljY1dWP1Bd9H5a0zOMcMc3nqlpgl52qs8GuxLY9HuvqGS8pfrUn3mphcBFL61S/6tm/vSVWTKDWsoMSGEwA2L12DzrsotFKv2UFDUO+XL0I7hQLbGVIFqaogf/8kzuO+1TVVsAVMuWKDExHsdPfjJonfx1buXxlZm2BhUrTEqlnfKV9iGX23fTa35UBTVaNba7XvxL79/q/IVM2WHBUpsWE9mz2CmSjVXsL7aHBsDqXabRa669XuoklO+2oKdKS8sUIrA/FDEMG131xOxHVV7SIfR2BBXU4vt61o1eZlatXPvAD7YXZ7dBmqsG5iYYad8EeQE4N4CKQ4zUKFU+9ksLmy4DA2JVG88FZuufbR81b5aToIWpx77/ScAlOcdLrXVC0zcsIZSBKYQ0IR8QuMcOGrVhxJH/ZW2uMTVVZlccbarHK9sBMAmr5EOC5QiMAmNvPmpcu0Qrv+Vopa3XvEjrrYWu56kduVJZRtWu/3AxAELlCIwCRSVFmdcf+SyhpELpVLrHtwz4bjqHcqOFB9KlZzybPQa0bBAKQLTLFXuBo4iLSJFUW3zQUnvlI+xHSbcTYurq4r9zbVm8qqWllljcpWJGRYoRWASGuXYWiPyXl4VnvUNh0HBrUXGJ1Aqm69c2FFew0igVHsCxYTDAqUITOaLckTx6EWaHqZqP19Fmbwq1GZ3NXEJ3WKvc61FeVWLUq5DjSl5jAEWKEVgNnlZaZWMXqq2PbqWx8hymbxG2qBW6XuolP5jDaX2YYFSBKYbW2ktcQoU/WEPepYq/Zzlf2PxFZe7ye6BMraFjUWWVGtDYfV8KKyhjGRYoBSB0eSlNJQKRs/YL9iq2mLBePPGOQN1FxWXyal4H0ptjYbVi/IqJW9t9SHjhQVKEVTK5OXwoZiOx1dVURQXNhxwLM5ta8pm8qp2r8dLpX9NKXuajbCuH5GULFCIKElEbxDRQ/J7GxEtIqI18n+rdu4VRLSWiFYT0Vla+rFEtFweu4HkVrREVE9E98r0V4hoppZngaxjDREtKPV3FIIxykuZvCrYjvwrgIdflJcxyKD0YrWy3BIlpnKL1VDiqT4+qrR/fSn3KguU2icODeUbAFZq3y8HsFgIMQfAYvkdRHQYgAsAzAVwNoCbiCgp89wM4FIAc+Tf2TL9EgBdQojZAK4HcJ0sqw3AVQCOBzAfwFW64Co3xoWNUsgkyuSVNw/Aw9cpb8pazm1rqh3lVasMp7Dhkdb3I5GSBAoRTQPwCQC/0pLPBXCn/HwngPO09HuEEANCiHUA1gKYT0STAYwRQrwkrFHzLlceVdb9AE6X2stZABYJITqFEF0AFiEvhMqOyYdip1Vh5lctp3zcm0PGavIqU9kjbh1KxaO8ajeQgymdUjWUnwL4FwC6EWiSEGIrAMj/E2X6VAD6a9raZdpU+dmd7sgjhMgA2A1gXEBZFcG06jnvlI+PUB+KTPzzO9vQ2TMYY83RiN0pH+e2NZ6tV+IqN6aCqkylX3CmKKX7WEOpfYoWKET0SQDbhRBRX1FouoNFQHqxeZyVEl1KREuIaElHR0ekhprQByijhmI75ctl8go+fv2id8tSbxClRewY0mIcL9wyP67BqPhyamswtO/nCjerJA2lil34xzc2Y9mmXdVrwDChFA3lJACfJqL1AO4BcBoR/RrANmnGgvy/XZ7fDmC6ln8agC0yfZoh3ZGHiFIAxgLoDCjLgxDiFiHEPCHEvAkTJhT3S+G8mY1RXuVYKR/ytFc7FLW4+v3zxPpzyhTlVVtioXiq9juG6cLGf7x3Gc678YWq1T9cKFqgCCGuEEJME0LMhOVsf1II8UUACwGoqKsFAB6UnxcCuEBGbs2C5Xx/VZrFuonoBOkfuciVR5X1OVmHAPA4gDOJqFU648+UaWVDv5WD1lCUy5BgEi7Dcf1JvozyBhl4FzZWV0OJkq0aA2bFw4ZLyTtSpPkIphzrUK4FcAYRrQFwhvwOIcQKAPcBeAfAYwAuE0JkZZ6vwXLsrwXwHoBHZfqtAMYR0VoA34KMGBNCdAK4GsBr8u97Mq1sOExeAbsNl2sdShiF1pvJ5vC7JZtqahfcOJtSa7sNRyHuSyGEwOZdfT4H8+dUklJMXuxDqX1ieQWwEOJpAE/LzzsBnO5z3jUArjGkLwFwuCG9H8D5PmXdBuC2YttcKPqtHBTlVa4VyGYndvHc9sI6/OCRVcgJgc8fN6OgvHFs21H2lfIR6iuq3DKuQ8kJgWSM989dL23AVQtX4OGvn4y5U8a62lOdwTnuUHOmtuCV8hHRH4TAKK9Y9/KK3qZC6eodAgDs2Ft8dFjsYcNFt8RUj7O0+JzysRRjJO4J+Mvv7wQAbNjZ61tXpQdp1lBGNixQIqIPngMZ71L5crwPJYxSZpnphCX5hrLF74VRzPMdtLq/lG053NRalFeUbHEPmDlbaza0J0L+cpjDSiqS5UnNwwKlCHoHs560/G7D8akoYQ+0frjQWtNJ69JXWqAE5S2rU17on2szdDXusu21tgE3Ry3tYh1GjTWHMcACJSL6w9U7mPEcL8fCRr/64yAlBUqmiHekl2YHL1/YsENQBGgopSiTRWsoEYbDuDUUVZppkhPF5FUOExObvEY2LFCKYGDIYPKyNZT46gn1oZRQdjqpTF4lzNZLqN+Ut9QBI+cvT4aFhhK7QAk0eYXXVZa1VTFrtYyZbXv6Me/7i7B2e3dF62WBEhHHwkbj5pDxCxRH/aYBoIQnTG1iWcwglo/yindgLnW80NvjLj8uDaXoF2xFyBb3eJk3eQVoKAENK8cAXkqRrKFE58/vbMOOvYO47YX1Fa2XBUpE9IEkE/Q+lBiNXs5ZtalNxROH4Cum/kCnfInjhX5Z3INP0LFi64ibOIMSAM3kFeEcE7Vm8mJ5Ep3GtLWRe/+Q199bTligRCQsbDhrzwYr1CC4nPJFVlxSJE/cTuQSC9QHK6/Jy197KYRi+6saUV62yctwawjPBy/liFxkk1dlYIFS4+j3sklDKY9T3n+ALJW8yav4MuJ+WVLpTnn9s7+GUkq7y6mhlMspb3xHT4S6yvFbnYK9sAqqtRizlnaTiEoqBh9pMbBAiYh+85s1lPhVlLDnrZQHrEq7lwdSusmrAj6UMkZ5xf3o278zSENxp5cw4EdBL7HQ6+CYFFRQXRmOvhs1iaj01josUIogcPv6YsvMCXR0D/geN26mGMO9UulXsgZlidqWvsEs/ubOJdjU6VwBHlh2TD6U+B3nuqCrYJSXjy/LEXxSZpNXob83LrNloQxDBQVy3XLF284CJSL6dTE9aKVGeV332Cocd80Tjhdlhd0LpTnl1Qym+DJKqd8kIKPe/ItXbcMTK7fh2kdXufJH01BKcX4Xa/7w6+ewwIs4CPKvuessRYOIQq4EARoUFl5OhqOGEkckZjGwQIlI2MwtGzAbjMITK7cBADp7zFqK6bYo5V7JvwK2eGJfKR+xQNX/yYSzt3VB4R4EnGsea8eH4hzA49ZQgo4J4zlOoWwuYOGbW3Ds1YvQZ9gxopA2Ff5zy6fNBTE8BYqcMFa4XhYoUdGuTJBTvliS8gbQd0KpxH1crlXvxdQXtS1KoKRcAiUoyqva61B8y4upXcayZVtNA6K/DyX/2a89Nz21Fjt7Bv23xg8gLg3FL++vnnsfn/qf5wtuVxDV2KcvLtjkVaPoA0mQU97vAm7c2eux+euo2bbfzWteh1L83ZK3glTWhxJUa9TylEBPBAkUT5RXPLPbuIV8KY7mMAd6Lud/zK8qvW/8VsoPyllPJlfawplCB7so2s33H16J5Zt3F1RuR/cAzrr+Wd/nc1jKE+UjY5NXbeIweRmd8uo88wX8yI+ewin/9ZRv+SaBErQ3lW9aRNQCzOr5UEzlFWbycmsowuez+3s19pPy9aHooeExD7C2hmIY94XrHBN+WrfSpocypWmohWso5TF5LXxzC1Zv68ZtL6wz1zsMJYrqn0pb61igRES/LkanfIiGEoYaHAvZP0k/s9BggCgvydqwswdvte8qrOCIlLJS3s+HEuSUDxXOEYn7AS0p6snnc7688HKDfSjmPKrfhwI0lEeWb8X27n5Dm7TyC1RwyhXAYPsTI2htwwV17Su9docFSkTCXwEsZwRFXkD1kGY0J4pzwDANwMXPbvNOef+MH/3R0/j0z1/wL6SIBy1wRlyqUz7AfOS0v0eqxkjcuw1H8Vn4lhlxzYjRh+JzfpgmDmgCxfBeIADoGcjg737zOi669VVv+SHtCqIQDaUQrSIsImoYKiisoQwnggRKsWblRIWjMqq1l5ed12ii0Y/7l56JoqG48ugDjN9g9B9/XI4Hl232rddqV+DhgnGavAodYM2ftcJ9j6n71b2KPsqgrZKfebfDeFwJovYur9M+rnU3YYN8kPbkJuzZG44aiurnSredBUpEopu8SruAfmq9OczWW38p9VUkr3D88y0vaMB4Y2MXAFOUl3/bokQI/frljfjGPcv8K0bxGqi/OcX8OVKZjq15Crsn1aCfcI0AUYT6qPoUAGDRO9uC22cKFChJIwtvm6KQLUfCzL/DUaDYJi/WUGoT/cIE7TZc7AUsZiGS8+Evrt5Kb0MSnCPYrAhYm9099NZWAEDSNRo6TECeFeDFmwd1Sgxs8lDS3lZhEw7539SV+b3ngtbymOs9bMoYAMBxs9qMx4PNTaVoZNGvYcb1JtKBTBa3PPseBg1mujDz73AMG2aTV40TFjYcl4bit4lh2Iy+0JmzylvMjNuOECs4pzaIhM5eg80tgCHKK2CAjUP4BrUrDL9cenrcYbT5QcU0AbL+u02fIoJQz5t3g4+bjpay2t3ZVyFTE9fhXz23Dj94ZBV+t3ST51wK2Sh1GCoo7JSvebTrErSXV7EDjhqkC8lfUshpYaf71lt4Xv/6HQ5hv/U4Ws5CorxiW4dSdE6f8gJW9wPWTPv+pe3GwTvM5KWKM5q8pKrl3pYlilBX6b4CJ2B2XIqZtpDFqe6ylT/H1OZwp/zwkyjrOnoA8MLGmkW/LmYfivN/wdibuZmncGHmgcJ3brWnMEVTzHMWlMcxO44QceMVKPpnEflYIRT/PpRwAWk65a6XNuDbv3sT97zmnVmH+ZxUUtZgpssP+s6MUUyDqi4/gRJkFixlZ4BCfCjusvcOZAAAdUnvkBe2Jms4mryuf+JdAMCevqGK1ssCJSJhs2c1gyz15vOfmQe3qVDJEDR7jVxGyPE7XliHz978ojGP0USjz9b9BistY5CGEpSvJO0s5rEl7L5SA+EWwzYnoftuBTnlc45TtDKD2wNo97pPZ9jCyhgo4C0nKoUII/dvVj4VU5sToU756G2Mkyv/+DbuM0wkonDGYZMAALMnjoqzSaGkKlrbMCbMtqxu1GIFihoaix34ymnyEkL4vJc8uJTv/Okd3zxGE00E+71uIirIh1KC81unkMsrIlxL/XqbQl2b6qw37/UMZrzlh7QrL7xNA7v5Ojh8hUWavJSgMAcKhGtAfgjH5zANxXk8yO9DJutAQFmV4u6XNwAA/uq46QXnndrSCMC7PVG5YQ2lCAIXNoY6C0MeBJ/NIc0T0BIeTntACSfOt74FaSiO2XqEh9vjUA6M8tLLiNTU0Pp1Xl3XicdXfOBbpx/6KRlDP6elicZ0TDhHWA9Buzf4rZuK0k9hJi9TFKS5/MIuhHMtUci5Hs3LXwiGBZkMRx+K2m+t0tvGsIYSEf2eMu42rG7YkJsvmxP26zmNxwMGRU+bDPVHJSDYykMml0OdNvcoaR+wgDyOwcbHDh/kmC11HUoU/HL+1S9eAgCsv/YTxnP9qnTcVwZnRyJo9qz/3oKd8j4aiqMPfbTEMKd8mQSK434PGSjdx9VXo7ALM3nFHCpeCVR4dKX9P6yhRCRs8FYXzuQAdZznc9faarfPLKwQ4RKFODSUoravh3+9hTrlvY53f3ON45jhGkWdyRW0TijCufo5gyaBkvAPaQ2LesoLFO8xv3VTjt2GQ6K4wkxEYde46EAShE9m3MeDojDzK+XDteLhAguUGid8Ly/rf9jN53eB82HD5jrNbTJ/jkJ+JW14RvfMOW9zLqxOqz7nf9MxwH+ADzLzBfmfgsxh7rxBFBbW7f/NlGoyawW9G9ySsno1AAAgAElEQVSpAfkfL+R1C86Jk6nF+XvYz7Rl3+NGIajVVYITpVAfSt7k5T033Ck//ATKUEAQQjlhgRKRsGicMEdlUF7Hcb9B0WjxCB4kAWDH3gEsfHOLIa9vsR7cA4cpgCAIfUCzBUrIoO43WAUNSEECNsgcBkR/8Ap5PiP5ULRzhgo0eYVFPQXt55S/JsIn3X/AD12HEnCPZzX1sHANxfzZfK5f27x9nJ/khN9ztcTmXX14evV247Fhp6EQ0XQieoqIVhLRCiL6hkxvI6JFRLRG/m/V8lxBRGuJaDURnaWlH0tEy+WxG0iGFBFRPRHdK9NfIaKZWp4Fso41RLSg2N9RDMGbQ4bMnHxMYiaTV9hoH+aUBYBL7lyCr//2Dce76q28/rNIN+6BLlHg++hNfiHzQj0tT4SwYc/sOkACh9nuo9rJC4ryihDR5Izy8p5Ehjd5mtoS7EPx5s2bgPzb4xsWHLKI1y+CDHCaTwv3oUTP63dvmPtRtdevrNqUKJ+84Tl8+fbXjMeU+XTYCBQAGQD/JIQ4FMAJAC4josMAXA5gsRBiDoDF8jvksQsAzAVwNoCbiCgpy7oZwKUA5si/s2X6JQC6hBCzAVwP4DpZVhuAqwAcD2A+gKt0wVUOwiKQom69EupD8THNmHI5zRPmcjd3WW+hc79dL0hTcOMxxZiEXwBZg4YSZPO3jkcRKGazhqn8MH9DVA2lkG3TI2ko2mezUz7I5BU8+bD9VSafnzAfi6IFqGaaTHTWcVW2/zGrfO8J727rxszLH8ayTd738ISZy/R9ujzaq+wL03UOuieB8Pt8255+/Oq590sKRy+0TgDo6rUWLQb1xbARKEKIrUKI1+XnbgArAUwFcC6AO+VpdwI4T34+F8A9QogBIcQ6AGsBzCeiyQDGCCFeElbP3OXKo8q6H8DpUns5C8AiIUSnEKILwCLkhVBZCHNW2k75In0opuN+IcTm9gUfd5MfbMLPdQujvMkrWl3OQUT9Nz3YwX1snZP/HCg0PFE++kDvPyEIJeQ0v23T/bLpbTGZvBTm/tKPm8r2z2uvFXGlhw341jm5wONBfan/RtNpyoTzkMlMGzIpeG5Nh+/xIAuCn3ANqkvnst+8ju8/vBLv7+gJPrEAgkKvo5yrBPKwESg60hR1NIBXAEwSQmwFLKEDYKI8bSoAfdlnu0ybKj+70x15hBAZALsBjAsoy9S2S4loCREt6egwv78hCvplKeV9KH4PmykUVz8z7A2H/gOWs3xT3jDcUV75zfSiFaLf8HZ0mXFGnSeKyStodu0W7GGDb1Rtq5Cgi8J9KP6CzqQM+Gmz7uOmn6auidc0FCx49bb4+1BUmwz1hpi8UnIHadMg6XgeDIXr65L8FjYGhfwX65TfLbc38dPYiqEQQWDaQTlZxBtg46BkgUJEowD8HsA/CiH2BJ1qSBMB6cXmcSYKcYsQYp4QYt6ECRMCmhdMmIYSdR1K2Mwj6/NAm2+w8Iffb8fZfJRXYHMAeB8U4VOmH/pgHRRyGsXkFTSDDuqvMA0l6gMcdpouFKL4UPR0k8krl/PvrzDzlEoKul/dfZF19KG5zWHbDAUt8g0TuGm5RsukrRXyci7P1itB/SiP+WmIYXXZm0sWEUbvRyEvCDMJFMWw0lCIKA1LmPxGCPGATN4mzViQ/1UYQjsAfQ+BaQC2yPRphnRHHiJKARgLoDOgrLLh8KEEmbxMM6sAU4xC3ZSOB047brq/Imkoqn0+NuUoWob75lY5ot6rGYcQkO0J6Sd/DcX8WW+Xu86wfH5pJsIGjYI1FK08s4Yi/5uEQlhElvA/5rsOJWT3Yz1vlN0M3Aw5ory856l33ITtDGDK2zeole16XoKeT5VkWgdkKsuN8nMVuwByU2cvvnLHa+jVttfJFqDtDBgEStDvLSelRHkRgFsBrBRC/EQ7tBDAAvl5AYAHtfQLZOTWLFjO91elWaybiE6QZV7kyqPK+hyAJ6Wf5XEAZxJRq3TGnynTykbY7Ei//n6rdIHwC+y3ziLImWh98SvPXK9Kj3K7+anyxazdyM+4TeeFlx10HRyakI9W5f4cVl9QG03oWobj8kSwz5sGtCCNLmyhX5Dgz5ul3PdqiJBC+CLeoPehOE1e3uNBW085nfLe43sHhrRzXZpXoECx0vxm+uVYo6Rz7aOr8OSq7XhyVT4EuBANxe3j1NtSaYFSytYrJwH4EoDlRKTem/pvAK4FcB8RXQJgI4DzAUAIsYKI7gPwDqwIscuEEFmZ72sA7gDQCOBR+QdYAutuIloLSzO5QJbVSURXA1Axc98TQnSW8FtC0a+L0Q7rMsUkNKucflELcdqXouK7y/Du2SQc/4PwmGLUrLkIDSXIHOLcHNJcVtCgEuRDCY3yiqyiBJ835HP9/IvzClvT8TABbBQoEYSRtw/Dr0F+I1TzCUHvQ+kfytqfg/rH7DMMFqA9A/myCxEoKq1nMOs5ZirLTcIO7S5u8DYtFC6kLNOEr1oaStECRQjxPMy+DAA43SfPNQCuMaQvAXC4Ib0fUiAZjt0G4Lao7S0VdYOnEmSOFHEJDb1jg6KPPOXog4RehtFJGfyA6WX4Oamj3HDu9RHqWzE+lMDw6ggPVNAMOshkpg+O5dRQsg4fCoyf4ZMeJOjC2mwagP1Ww+vlun+32i7fdMyd19eHEmCu6R8KXtho2NTaeL6pbZmARZNqUhOk6bd39hrrDbs11Juog6L0giBDaHghDn73BFcIkTctF6k1FQuvlI+IuldTSQqMFNHPVUTRUEw3VSEmL1/bvo/gUN+eWm2OfHPe3O41LAFCwUDGKFC850UxeUXdHNJ9jbIB+YDo9u+w36ybKiL5UETwvWH7UIxtjvabCvGh/Ovv39LKDL4GfsI1aBDrz/hrETrmQ977SMcUTWi3SQnQgGfX5IvQ8/qhIij9fDBh2O+0D7h/g/BbYwYMIx/KvoYasNOJRKDaDHgfqKxjcA7RUBxOef8Zt3U8j999I+zjzhP075sMMzO9PrezOF+muc6gsoKczJHehxIgdBwrqd1+LJ9+teuLKBzDTnO0W//od3303xNgSg2L8goSGsGvW3Cmb+rMv8grTEMx2e71NpsYcGgohQ12oYEVAQJWtdU0UGdtgVKsyUvWUWTYsGl7HT9zogl3vc5IPRYoNYm6RulUwscp738Rw94bDuRnKc6wYW/9pjYBwEfmjPdpt3lQCXuW9QfPd+CIOCA4hG3AABmmkbnzuU9xttk8Q7XKCG5jEKEaisMpH15mmFYW5Fx1mry8+K01ATQ/R0Ab/ca0sDVXQcJ5MKv7UAx1BnSZ83kI1lC8ARvqv/99N5QVPqbF4HqVdaF0k1c+rZB3EAXe6yxQahN1g6YSPiavgIsYZcZgx7KbJ7i++dRbC1W4pRuVy8/k5Yd+vncdiretUcsKNnmFPwhBA/CQZrJwz/CCtmwBovuDCtFQopgkw7bsD3JwR139bzzmo6H4le9oU5gPJWAQ0yOpgsxWphLCBKjJV5cv13/3XT1f0OJS67O3XvXsFitQ3OUA4ROcnOP59L/XCzGdxQELlIioa+TrlA8YsKJsZ2E6N8y+LiACnZh6uz3ZQ4RcxvGQudeh+GsZJswCxfR7zHl0ggSDPhgEzdpMA6yf/dzbxjANJXjQcxM2m1RNNS/I856nowaaII26cD9GPq//jtD+ZQ6FhA2bFneayjX1VcZHmAMh5j/t5L4hr9krbDKiorwGizR5me7HMOH09Xve0M4tfryJGxYoEVEXJp1K+Ggo+c9BIat+94lt8vJ5KIwzdqGpyz7Dl98K/iAHtrsd3igSZ9lhmFZfh0V5RVuH4jymP4RBWqKpaPXGxTDCJny+D7NPPudCQv/ywtahBAU5BPkb3McuOXlWvm4/s2NAm6w2G5MBhGsoQTPzsDUsQZO6TIBA0ZO27ekPPG4WKNb/oBXrQagSHSbfkBvtobe22p/dJmn9K2soNcjGnb14Si46ihI2HBjl5edsVv8dan3wAyTgH7ftLtdr8tIFhv9KW8AU5eXfJhNZR+STHIwCthG32uQnIPV2OM/RH2jPSvkQH0qvzxqEoDaa0Psqil8mzByai9hfxkCDgIHftBXJGxu7cOvz64zlm/L6apFBJq+s914wlW0iTMvMBgicwIWNWtqfV3zgOe5cK+Rtl4ryCtKuglDFBwXCBOEX0ZigYbQOZV/i49c/Yw9WqUTC19adTBCyOeGN8oogUEzbWYTNWIQQ4e8m8dEm9K9BC6OAgFcARzZ5ecsNdcpHGKzcD/dgwGCedWgCxT9kRsXKRxA6TDA+5YWZU3KG+yJ/fnC7gkJl1TFdCOsrtd3lG9vkdy8HmrxySJBVtmlw9os+A8L70+GU9zF5hml6rc11vm3yy4+YfCh6yHkpCxuVYGtIJ9kpX4voD10qSb6zHOUgD9o6PeylRc4FeOYydEJ9KDA//GEmL11r8Q8PDa7blD9osZ2e5L8GQj/feY7+QAetQynlvRVhGx46fmuEWaZju5gAc4xp9hu+HZB/X9vbjWjlNtYlneeECIxinfL1qaRvm4MG5SCTljvNz+RlXkOW/9yjLew0HTfVqx7BQrQKHZXLMYkrKGzYea7yBzamk2zyqnVSCfJ9eOuSVnd6Z8f+MyeFHd3i81D4rUMh7bMJ2zwVYPIyxbwHrkOJ4NDVMTmPjVuvRPA1BZ0zmPGf4RX64iu/Oo2OZId50CxcfB3cIaY41cfb9gwE1usuXwgROCtXx/QBvCntEighPpKiNofM5lCfTsjzTGUHtFn3kYVch4JMXtqzq6/k148H1RtXlJf+nBWyOaRbaCiB0lSfZKd8rZNMkOemyuUEdvUOISW33vY4yUIEg57uXNhoLsM+LvIRJmGjpOfh1zWUEJOXJ2zYblNglfn8BlU+zIRTVNhwkMkrZFAIIkxT9AtgKNSHEhQ92LF3wHf1t7uNVjvN57mPD2Xyx5rqUsZzvHlL1VDUsGPSUPw1iaB1JoDbT6b3TbBwzeUE0klCOknGKK+wjUWVD8UkjKKQXyuWz1+IcHKPN2qBZlM6xRpKrZNKelfKP/DGZgD5V3K6Z/SOhzvE0ekoOmQgywmBRND2rDCr0+7ywqO8zE75yHt5GQSq+T7Xzosw+3W3ezAgbDhojUIYYRMCvxBr/T7oNwxUVrvyn4O218nmhCe02elT8Bc2Qdub6yYvpTnk6/a5V0PeVx4oULJCM3kZjsu2mkx8YU55v61XwoR8Tk7MGtJJ43Vy+t+8bVZzuuufeLcoc6rKod8vUcPY3fmAfB821iUhRGkm3kJhgVIgyk+iXyR3qKFnK4QIs1bTa1XDdt/NyUAA61wzfuYph1M+ZJB071FU6DoUvT+CdjmO5JR3DO7Odg1mcqhLJmRwhPNYKbH5+kBvspP7XV/98z/f/2Zo2WHaz16XfT8bYFJzChTTIGkdHwowE/pfA+1zyGTEzWAmiwbb5GXSUMK3SAF8Fnr6mLzCnr+csNZzWQIl2ORlXMeipW3d7Q07jopeTlgIcipB+Owx04xtsk1e0idWyUgvFigFYr9aM8Av4naoRRMo3uNhA2wup5m8fMhrKOZ0IHw26P8+lMCqjWUFv99D/2wuPCg6bSibQzpJUqC42lDCLC0ohBpwBTD4+FCU9uomaIcFd93uQca5SNCZV6/bNEiaNJSgl5L5tSlsMuJmqAQNRTfPhftQzFqjn0BJJggN6YRRQwkzefmZqaOirrv+mwcCTF5D2RwyOYHRDSlPPkDTUKRPrJJmLxYoBZIyvKvZbe90D3SDDmdidA1Fvw/8ttZIhLhQbKe8cA8W0QcF/3Uo0W5Uk//CHGSQT9vtNwAHzBaHsjnUpRJIGTSUUkxeYQOoflzfTTeSD8UhbL3H9XvLLVCCBjLdZGLUULQoL/d+bwdOaAYQcK8WoFW5heRgJmdrKEErxE397Oxbg5AUIvTdIqY+zuas8PtGH5OXc6Ljza+/3mGoiMWNJr/RgNaOHzyy0nG+aqMSKG6tOe+UT8k2s0CpWcY0pgE4B/B+t23bNQAHmRXsPAanYdg+T7rJKwxPlFeI9uMMYXTlNZQRhGmAMXWDXt7mXX3eE7R8acNrBAYzOaSTCSTJe8zp/PaW22ZYf2A63+Qs1ScQuzRBGGVmGLYORS/bbXoM2q69T1uoOWAy48i8QuSvjyrv139zvOMcN9mcf0Sj1WZvmLhiKBscNqxm5iatWB/sjX6hrEBatsux15XDQmAyaVk7TjSkk0anfJi5VC+zmC3sTTsh6+Xc8uz7jvNVG0dJgaG37z/+uBxf/fVSAPmoPdZQapgWKVDURbx/abvngrsHYEc4oM/FVQNVFHu8QjkTgXDHW9DeVqZBUp/VFqOh+L0sKL/ZoVlAKrr7vesB9HanDcERg1kpUJLe3QzCFjbqQt8TTeXzW9xtAoCu3kFjuh9hIeXBGoq/D0W/fv0BGopVh9RQZF1KWASZvOpkpJZpsBoKuG8Hs3kNxSTY1W809V2YQMnkhB1B5liT5Hj+vHUKIZBMwNcpH0XoUwnbr6j2OSYPAeWoCcIopaFoHfnrlzfafafWFVVycSMLlAKZ3NIIIP9A3vfaJvvYdZ/9EACDTTMb/lIhNbPVr32QjVylRdVQ3JFaYZEv+gzXO4h6tSk3flFiQRqKYkxDCnv6zSYvVW5DOun5TVt39WMwmzPuCO18H4qXgQAtUq/HtOBMr6tQDWXIFpDmBbP6TNU9iHb25Oty5+wbzAsHk4Zi8s2o9qaS/k7znNZe/btOJqDNg5kc6u2Zs8FPIvOa+rl/KGc7mgd8Bn6T38B0/+kok5efU17vBtMtn8kJWxsoZi3KoG3m85886Lg1FD8f5xjX5LcSsEApgL89ZZY9e1PvONEH9JnjLNuz26b5vT+9Y3822oaHsvaM3G9bar9tKsKivPw2rnPW482t723lMXnZGopPpXCr77pgVP+9mVXSmMa0r4aiHrr6VMLT7pfe34mO7gF7CxydoJXyQgip3ah1RG5hpNVfkIYSPrgozag+lTQ7mgNmrVc/lL+v3AOlGnTGNqXNGoo2mx90acfpJIHIxwEt8hqi/t3xm/TwV9fAP5TNYUyDNdCZtIy8U948yRnb6J83kxNoMAzspqAQHaXpN6TMTvmw/dYy2ZytDRSnoXhNXu7ft2Fnj/1ZtbG5zuyUV7itKZWABUoBzJk42h6g1U2mC5Rmg00TANbvzL8R0TRDuvGptfZnh3kl5EEQAqFOefLZWjuTy28VYxJySkNpTCd937cQZGZzrMcw7DAb9CrWMQ1pdIdoKPU+uz4DMPpQ1OI1qx7n+erhHdto+VHcM3rnNQmO8tqurWiP8gY/XUCGbUUSZJ/3aChy0GlpTPtqKGoQdDvCkwlCgsi8Z508R5m8zOty8vXpPolMNoecsDRQwLw2J8wpHyRQsrm8OU0XamEmZyEEEgnLRGRqk2NiZ+iT/qEcRkshWej2K0PZnD15ywSYN3+y6F0AQFfPID798xcAWO1NJ8kz4VPYYcPslK8tTpFvQzx/3jRP2LC+sFA9oH57XwHmG26DJnAyjgchWFWPYvJSg747+sR6+Pzb2ztoaQhjGlOehyzoTYD2OT6/I2hhoyq3tTlAQ8kqgZI0Dg4nzR5n9qEIgVTCbMrp6LaEwNhGa6DrGXTWHfYCJtWOKWMbsGZ7tydqSrXLhBL0DWnz79E1J/cgo6J8TL9JXbPWpjrj4JsTAg0p56xa1Z9KWIENJvkVSaBofeTQdGX6aFugBGko3mN9g1mMaUyDyGzyGszk7NX+pnuuLuXz+m4hTV4ps1PeueW+5zAGMllbSBZq8vry7a9i1QfdAFxaveuaKVOqHqzSkE5iVH0Ke32eFTU2Fftq4mJggRKBaz97BJ7551NBRLZ9WQ3C+kCdTnhnR2ow+vKHZwIAvqeZKQDrwVn45hYAwGGTx/ja8k3bqyvbLxC0my1km7w+FGXyMJq85IM1cXQD2rucEVfq/MA9m3y2kbA1lIDZb0tTnWcRn95uwFrV7Z7FNtclcch+Y5BKeI/pGpm76isffBsA8F6HZVbodQmUoBBq/fi0tiYMZYVmE7fSx4+q8525qvL8NJRMVtiar/sazp44yh7Y3TdAv27y8olc8tNQEmRtgmpcnyTbGBTlpdenD9D5FdwppBJkbJcSMn7lNqaTqE8lzOayrEBzvZwkOdbXyD42BHKoupJEUkMxBKiEbLmvayiFRnm9sHZnvp2OlfJZzGhrwhmHTZJ1WH2lPxeN6STamuvQ2ZM3s+ok5dgQ9dUMccACJQJTWxqxv/SPKDWyZ8C6SErFvujE/fN7eWk3lbJfqxvdzTVajHldKuGIzhnK5jWQ3X1eE5AQsIWCyV6v3/zuwSgn8vZmP6c8EXDQpNGeHViDt0/Jt12hZuFCCDvd7C+w2tjWVIfewazPgksrrSGV9PzmAbnGIZUgz+/NZoW9tYi7XHffqmvrrhMIXoeifAMqv0pvqkv5bqWh2lkXYPJStnL3rLVvMGvfj+5mKZNlS2MaA5kc3Ivzctq9k/ehWAENRIS6VMI4OKoJUpCGoguRfm0wU+XVJf0d4GrA9HPKN6QTqE+ZTVNDmZztlHdsw6O02rRZoAxmrPVL9T4LG3WToTu7EAL9maytdRX7ki3AFSgh11Rd//mjAOStH/q92pBOoK25Djt7BjCUzeE27V02ALD/uCYAwPsde4tuU6GwQCkQ9XCrWeyL71kzjCs/eZgtUHSbproBJo5uMJb36HLrhT6nzBmP+lTCcUMOZKwZ2Yy2Jqz6YI8nb07kwzdNM2DToK7IZLUQS8PDu7NnEG1NdWiq85oB1IwvyIeiD9omu/jAUBYzL38YP3p8lae9rU3WwGzSUvw0lIxcPVyfShrbPKg5g90DpRokVX/8Qe7Nptg7oAt5b1+prXfGKJOZbLcynY1tTPsONCoaq7k+ZRzshrL5yCZ3GQOZnB1d5N7L6z05iKj3ewwYzDaqXDWwZ7QgD/e9qNep5zWZS/uGcnY5+nXQhWdDOmEMFlB9Ztptty9EQ1ELW9Mu7cq+Z1JJoz9hQAqUhlQSA5mcdzFmgA/FWhiqLzKMLlC6XJqFyjuYyeGR5R8glSCMqk/hwweOs81aezSB0lhnaShdPUO49fl1HuvHzPHWJNj0FspywQKlQJT5Yd0Oyzyibux0MmGH8ekO5a4eJVDq8ZWTZtkPIgD88Y3N+EBe7P6hrNRQrPK27u7D7S+sx96BDA6aNNrhZwGsWceSDV359QCGB/Dk6560P5tWWduzTEPeju4BTBhdL7ejcPpy/MxoOroPZMi2i+fr2Skfphufes/RJsAyebnLUOR9KM7Zpuq3+lQCTXUp9Lq0jMFMztd2r4pRkUt3vLjecXzVVkuY1yW9kWUA8Pf/Z73fu022W5kYdu61fuN+YxuMq9UBa0NBq27vLtaAJWTVPefejqN/KJs3tbiu7y+fs2arysy3WtrpgfwgP35UPYC8AMxoGnGdz6CthLzK6+5LIQSefbfDvja6QFGTsPpU0lfL6LE1FLNAaUgnUZ/2M3lZ65DSyYRrHYqmBfpoKPWphK0FuMvWtQL3MfX7x9hO+egCZadLoKg+e3i5ZQJXvpXm+pTd73pbWhrr0NZcj509g7j20VVwowIY9vj4WMoBC5QCUaarb9yzDA+83g4AGC0f+Ka6FFqb0lizLa9ivra+E4A1SLY1p9E7mLUf/n+8d5l9HhGhXs6QAODSu5bax8YawmhP++9nAFgO1ASZZ4rbu/MRR+4bvXcwawtAb1iwwNrte6VASaI/k7W1EV0rcJuGdN7T1Gx75qX5C0wmPKUpqVXrJoFib81dl3LZnKUpLJ1Ec33S41gfyGTRJG33+uC+u3cIyzfvBgBc85nDjb/l8geWAwAmjqlHZ6/ZXg0A49QALevesXcAYxqse8LPcapIJRIeU9z27n68s3WPPSv2mLyGspg4xqrTL4jhhbU7AAA/eny1naYG9kljLK15l7wWSgMA5PoVkwbhEihuTXCXa8sc3X6/qdPyxU1vazQ6kwcy2fwiS9c92TuYQUf3ACaPbZTPidssKbB1Vz8mjKqXJk/hOAbISYhBQ1HmpQY5wXL/pg7tOXKbf1VwQN6Hki//0eVbHeG+brpc95J6DvX6AGt8UQJFaSgXnzRTaihpTzmKdNLSBP0iJssBC5QCUbNYAPjWfdYOsheesL+ddtT0Fntm0TuYwVULVwCwIpfGyhnsrj7vDZAkkmYG6wadN7MVADCttRGj6pO+TmrAWojmZ8ZRuAfw3X1DaGmqQzpJnoFqU2cf1u3owUfmTEBD2toC271WAUDgjfqNe/LCUj1kSrCowQhwhl0rAdEiTV7u8jd19uLHf7Zm9I2uqCg1wNgayqBXQ6lLJSxziTar1k2JHz1oAi48fgbG+WzDMn9mG9bv6PE1X40bJTWUgbyGMn50Pdqa69HVO+gxEeqDYlNd0tPmG5+0wsnfat9t/wad/qEsJoxWAsV8LS6YPwMAcOT0sXaaat+hk8eACFizzbpfewYytjY0rbUJ73d4B8O8hlJnt0FnU5elSZ/pciYD+YFy4ugGTBrb4DHFqAlKgrwTIPWCsWmtjZ5rCFjP2mA2h0ljGlCXcmoo9hsM65JGbXwgk0V9KmlrKO7f1NE9gAOk+cgtuJdt2gUgb+5U12gwk8PXfvM6zvnZc576FL9f2u74vnR9Jz501eNYubXbkT6qIWXX29k7iJamNK761FwAQFtzvdFUqh6rWeNH4Y2Nu3zbEDcsUApkRluTJ03dTACw/7hmbNzZAyEEFi7bYqdPb22yFxrt7h3yPDCJBBy24cZ0EkTAM//8MTTXp9AzkDH6LHoHM0gnyGOK2e6a5dyv3bxLN3Tina17MLYxjZamOuzSZjiZbA6fuMF6CA6ZPNr2KyjVXhdcfqr006vz7ybfb0yDPfPOC5T8gG3aAlImTksAABlESURBVEaZvNxCVN8kL5V0Ot7VYNxYJzUULe/za3ZgY2cv6lMJ1EuNy/QbkgkyDuyKQyaPRk4AW7TQTX2QV4O7avfDy7fi/Y4eO8rL3V9vbtptfx6lzUIB6zqo8//ymKmeuoQQ6B/K2XW6y25pSuOLJ8zAWXP3A+AU4nm/Xj3GNqaxq3cIHd0DeHDZFvtaHbLfaKz6oNtzz6lBf5yPyUutkfjM0Vab9R0XdvQMyLx1Rq1babWTxzZ6Bskde628utaso0zCDXVJpF2mSX1luUlD6e7PYFR9yg5ScUf5dXQPYJYUKG4N5dK7LUtCsytcuV0K1qAIqydWbnN87xnMonsggz/JqM//+cLRAKzAit19Q8jmBDZ39WGq3K0DAOZMHOUp92MHT8AT3/ooAOD4WW1YuXVPxd6JwgKlQJrrU/jUkVPsBxlw3mQz2prQM5jFzp5B+90ICbLyqZn3n97cgs2uUNwEEerTeUdoz0AGYxrSSCYIzfXWm9dMduPewSzSqYRH7d28q9dzruKzN78EwJrVjmuuw469+byrPuhGt/w9M8c123WqQVQNEK1NaezpGzLeqF++/TX7s27vVrPKCVqAwiH7jbY/d/dnMKYhZfs63AOOMscA1mr6Pf1W/T0DGXs3gtamOo+G8sVbX0FX75Bt1tBnt7rmlk5ajv6+oaz9EF5wi9VXo+tTOGJaC4D8LFz1IQAcOW0sZslIwN7BjD0wtzalbdOSms0CwJ9XfIC/+oVV9hdPmIFRDSnHfXTeTS/YwQE/+tyRSCcJvUP54/nFmGnUpRIOZy1gaSGj6tO2z07vDzU4jx9dj4mj67FuRw/ueNHyuWyR9+wz73YAcE5EAGDvgFWPn8lLsd/YBs/xHd2DaKpLoqkuhVH1Kfs+U6gJ2PGz2lz7bwm8JINfxo+qx+iGFPb0OfP+5c0vWvUNZpBKkmPio+5Zv+CI7v4MxjSm0KosCJrZrncwg70DGVuguCc5ykc1d+oYAHl/4aNvf2Cf81b7Lnzmphdw90vr7bRdvYPYsXfQnizoZHICx89qw6eOnAIgv93Tqg/2oL2rD9Na8wLl+APaPPn/9iMH4IAJlqCZ1tqInsEszrvxhYoIFRYoRfDRgyY47Jxzp+TNCSpUb8POXnsQfud7ZwOAfcPe8ORaXPirVxxlWttnp7C7b8jaimUgY/s41H+1v5U+8HziiMnY1TuEB17fjMVyxrNmW7ctNJ769qn2Ghg3vYNZjBtVh86e/G/RzRBTWxqxXgYfqLKXbLB8QrPGNyOTE553nevmgj/83YfR2pSPk3/oLWvA0IWxLjR29Q5ibFPaFihvtucH4Pc69tpvxjxwQjPGNVuz/qff7cANi9fYA2CrjEzrGczIMGVtVg+gPp10CGZdO0smCEdMs67lH5dtxk+fWIOX37d+72eOmYoD5UO6SjNJ/PrljQCAv/vYbNtc1DOYtX/zt848GHOnWIPNgttetfOpmS0AXHHOoQ7H6+ZdfXh7c94Ul0wQprc2YcMOS5AJIXDIlY8BsMKnp7Y0YmNnXsjdv7Qdg9kcmuusiKgEOTUFde+OH1WHw6eOxXsdezFBCojzjrIGsYMmWYJeDwbp7h/CN++1zLyTpcDQr/flv3/L/nzo5DGoTyVsgfLgss247YV19qRgVH3S4UMRQuDulzcAsDTBwWzOfn4eXr7VXik+fnQd2pqcay9e39hlC4oEEUbXO3daUD6iCaPrkckJj6bX3T+E0Q1p23enl71e9rkaoN0+oiktjfj4oZMwd8pYJCi/TED3WX365y/gjY27cOWDK+y0k697yvqt+43GqqvPxiUnz3KUqwQyABy7v2X+/vXLG9De1YepLXkrSX0qaS98VRwzo9X+PK3VOvfN9t14s303ys2wFihEdDYRrSaitUR0eaXq/YhcOa/4iw9Ntj8rgfKr597Hlt19OGp6i61KT9fMZWrF619K00CCrNDhgUwOL72/Ez2aQFGazfxrFmPl1j32gPAfnzgUX/vogXaZahanVGYAmDmuyR7A39zktKV+99y5GNdc71h9q7aJ+f3XTkQiQfibUw5wtF1FNB0305oZqaADALhvySZ7oPvup+fi6BmtyORyeH7tDvQPZW3/x4kHjkNLUxqN6SS27u6zZ/NPv9uBoYzAuGarvbe/sN7WIE6XQQgAsPifTrUf/otvfw3vbM0Pvq3NaTTVpSCEZY7RZ+aPLt+KBAHPrenALc++ByGEY2afTibwmaOnYdKYetz54nr8bPEa+9iUlkZMGF2PqS2NuOaRlfjFM+/hPx98247SOmzyGDtgo3cgg7e3WA/vhFF1mDw2P6PUo60UzfXWjH0oKzCQyWKHNlk5eoalFc0c34wNUmjobwWcNKYBU1oa7GjBgUwW3/6dNeiPakiBiDwam/LxjR9Vj+mtTfhgTz9ufsaKtvuXsw8BAFz32SMAOHeCUMJT1Qs4F9zdo22U2pC2fBJKkCmfmopsGlWfRp8MHd/dN4RfaDt2n3iA9Xyp+/X1DV32sbamOrQ2O820f3nTi/bn84+djnGj8lp3V88grn7oHYyuT9mDqzJpDWZyuOTOJRjKWps7qhBrXdtfKidQR0wbi8ljG7Bec7Lv6R/Cxs5eHLO/dY2mtTY5tlkykc0JZLI5e/IwtjFtRa6lnEPxFM2spczsv311E/qGspjS4lyCoLYM+t1XT8QPPvMhe7wBgAPku20Ay79bboatQCGiJIAbAZwD4DAAXyCiwypR98QxDfjmxw8yHlM37aNvf4AX1u50zHZUGJ+OUlmPntGKY+RM5OLbX8PjK7bZ21OrmTEAnPOz5+xB7KBJo0FEeOwfTwFg3eCvvL/TnpGddshEEBFOmm09oOfe+AI2yhv+inMOwYETRmHi6Hps2zOAx6SK/lb7LrQ2pe1ZjtIWfvT4asdg+I2Pz0FdKoHn1nSgbzCLgUzWLgMAviCdwUpBeOD1/NqOQ/YbjWX/eSa+8+nDkBPA6m3d+OEjK7Grdwgf7Ol3OOp/t2STUVXX31/y3BorkqkxncR+YxowSg7su/oG8YOH836XnLBWw3f1DuEHj6zCjU+ttQXWE9/6iH3eUdNbPL6B2fIajJfC+YePrsJdL22wj09tabRn37949n3bETp74mjb2QsAZ/30Wfzkz6ttO7jakmU/OUA/++4Ou00TRtfjp3JhW30qgZVb96B/KIvnZeQWAJw1dxLGNdfj/Y4evNW+yw5VBmCbTEY3pLCxsxdD2RxeXLvDDotuSCcxva0JQuSd3kqLbqxL4oAJzXjm3Q50dA/g1XWdDjNqa1MarU1pvLbeGuz1e+PlK04HYL2PY+9AxrhAVV/o+1b7Ljvs9TufOgzT26y+Wda+C7mcsNv7xRNmIJW0FvP1DGbRM5DBSm0yccuXjsXYpjTGaavH1TXqHshgkoyIU/fpO1v34MlV2+3fq8K+1S7OPQMZXPngCjSmk5g7ZQxmTxzliF48V/qLlNn2oEmjsXLLHmRz1nb2umlKcdvz6zD73x8FYGmI6hqdMmeC4zzdT9KQTuL8Y6fZ3+fPcpq57r5kPr776bk4bmYb/vr4GY5jB00ajVu+dCyW/ecZnraUg1T4KTXLfABrhRDvAwAR3QPgXADvBOaKiX84bTauf+JdfELTTgDr4o/W7MO6jwAAfnnRPPztXUvs7586cgqOmNaCgyeNRiJBjp1y1VqXw6eOxbfOOMhW+x9c5jQdHbLfGDSmk7hvSTvuW9KOKWMbcOCEZty6YB4A58zkIz+yVO2p8mb/6qkH4lfPr7NfygNYYZ1qU0klBNu7+nDWT58FYD24TXUpNNfl69RZ+Pcn2Wtcbr7wGJz646fxb3+wQm9v//JxtjlFPUSfuOF5O+/NFx4DALjpwmPwd795Hd9/eCW+rwmFr58+BwBsLUbxoalj8buvnohUMmHvanDiD590nPPvf3EoHnhjsz0IKY0JsAZ+RZ9LmHz9tNk4/dCJAIC0Ye+05/7lY46ZfGfPIP5HRmiptx/+7IKj7Fn6DfLYP5w2G/905sEALDMPAMe9sfDvT7K1GyWgDrnyMcyfqSYhLUglExgrnbbKIQ4AN/71MbafY0pLI55YuQ1z5EAGAB8/1IrCOvHA/B5jx8xocQi/Ew4Yh/97ZSOOu+YJx+/9/LzpSCUTOGvufrjntU0OjRjIm2sSCcIDr2+2JxMN6QRWXX0OAGvbGMWXbs2bAj9/3Ax794lfPPM+fvFMXnP5/nnW6yGUuW3uVY/joElWObcumIfTDrGuUUtTHTZ29mLm5Q/bee++ZD4Om2yZHi9/YDmeebfD4ef47DHT7N9+3WOrsG7HXrvPj57RAiLCgRNG4Y4X1+Pulzdgb3/Gfj6Pmm5Nvo7dvxVPrNyGA//tEQDAJSfPQu9gFifPHo+25jqc8l9POXbGePLbp9p7j5144Dj8/msfxrJNu3D1Q+/YplfF9849HBs7e3H41LG2L09x6OQxOFT+NhNnysCMSjBsNRQAUwFs0r63y7SKkEgQ3vrOmfjpBUd5jj39z6fan7/z6bmOY2ccNglfPMGaRfzyonloqkvh0Mlj7AHpuX/5mH3u/V890f789dPn2JEbgGVX19XZOZPyD+iW3f04clqLLRQA4Olvn4pmbbBQD/T4UfW4+KSZjjZedups+3NzfQrHzWx1HP+w1Hi+dYZXSzvzsEmOG37/cU04Ugq0BDmF25SWRtu/AFh9c44U0Occvp9tO1b84e8+jG9+3BIoB+83Ghdqs7G/PGaqrerrZSrW/fAv8LcfOQAP/cPJOF0OPAq1Ml/h7o9vfPwguy+VSUjxhfnTHaZM9wRD5Tv3qKn4/LzpjmOfPGKK/Xm2IVpHaS0AcPV5+TUyr67vxNSWRjzwtQ8DAE52mWCBvOnV9HsA4JcXHQvAmgnfcfFxOOGANtxz6YmOc77runcB4L8+dwSu+5xlDjvf9XsOnTwG73zvLPv7qQc7Z91/+vuT7c/zZnqdyS9dcRoa65IgIrjl9u0XH2d//shB+XLflWu+Tj90kt3XXzpxf0feL394Jk6ZMwHjRtXbA7USJmMaUnjpitNsc5fiviXtWLN9L+bParO1RKUZXPnHt3HdY5ZG9fS38+bXs+ZOcpRx6sETcdnHZuPI6S2Y3taEyz5mmacvPmkmXr7idHsxpOLY/Vtx8Ydn4sXLT/MIjca6JO79fyfiyk9WxAhTNFSpcLK4IaLzAZwlhPgb+f1LAOYLIf7Bdd6lAC4FgBkzZhy7YcMGT1nlYOmGLuzYO2CHberkckK+uc68v1cQO/cOYOXWbs8g0jeYxa3Pv4+Obuv4DV842uHYAywH5J0vrscR01scjjvAClNNygVhdSnvPGPvQAZbdvVhzsRRDkG1dyCDK//4Nrr7h/D10+fg8CljHbN19XvvfGk9jpvZhsOnOmdefYNZPPTWFjy3Zgeu+ItDHP6G7v4hrN2+F0+s3IbTDpnkETAAsH1PP97eshsfO3iio10DmSzSiQSeX7sDJ80e79mVWQiBc372HA6aNBrXfOZwe2Ga3q5v3/8mPj9vumMAU3mfWr0da7btxReOn+EYGLI5gfc69mLJ+i7MGt/s0AD0Plu/o8fTFwOZLNq7+rBw2RZ8/rjpDju6KvsLv3wZr67rxOJ/+qjDFNrRPYAHXm/HT59Yg6+fPgdf/egBjv54dV0nXnxvB+bPasOs8c2Ofg5iT/8Q3u/owRsbrV0ZLjzeOVjv6h3Ec2t2ICcEPnXEFMe17x/KYu32vcjmBGa0NXkG7RfX7sBAJofNu/pw9IwWR3CLEMJ+t01nzyBmu+47ANi4sxcPLd+CAyeMMj5nL67dgY69A452rdiyG3e/tAH7jW3AJ4+Ygolj6h3Xb1NnL25YvAZnzt0POSHw8UMn5d85JAQeXLYFb2zswtjGND568ETPPfn8mh3ICoGZ45psTVknlxOe52M4QERLhRDzQs8bxgLlRADfEUKcJb9fAQBCiB/65Zk3b55YsmSJ32GGYRjGQFSBMpxNXq8BmENEs4ioDsAFABZWuU0MwzD7LMPWKS+EyBDR3wN4HEASwG1CiBUh2RiGYZgyMWwFCgAIIR4B8Ei128EwDMMMb5MXwzAMU0OwQGEYhmFigQUKwzAMEwssUBiGYZhYYIHCMAzDxMKwXdhYDETUDeADAEH7OI8NOD4DwEafY2F5g46VmjeoXeWsl/sqnrzcV9GPc19FPx5XX40H0CyEmOBzbh4hxD7zB2AJgFtCzvE9DqCjhLyl1BuW17ddZa6X+4r7ivtqhPcVgCVB5eh/+6LJ608lHA97OXNQ3lLqDcsb1K5y1st9FU9e7qvox7mvoh8vZ18Z2ddMXktEhP1oypW/XNRiu2qxTUBttqsW2wTUZrtqsU1AbbYrrjYVUs6+pqHcUuX85aIW21WLbQJqs1212CagNttVi20CarNdcbUpcjn7lIbCMAzDlI99TUNhGIZhysQ+L1CI6DYi2k5Eb2tpRxLRS0S0nIj+RERjZHqaiO6U6SvVO1jksaeJaDURLZN/E031laFNdUR0u0x/k4hO1fIcK9PXEtEN5H5DUfXaFWdfTSeip+T1WEFE35DpbUS0iIjWyP+tWp4rZJ+sJqKztPRY+ivmNlWtr4honDx/LxH93FVWVfoqpE3V7KsziGip7JOlRHRaDfRVUJti6ysHUcPBRuofgI8AOAbA21raawA+Kj9/BcDV8vNfA7hHfm4CsB7ATPn9aQDzqtCmywDcLj9PBLAUQEJ+fxXAiQAIwKMAzqmRdsXZV5MBHCM/jwbwLoDDAPwXgMtl+uUArpOfDwPwJoB6ALMAvAcgGWd/xdymavZVM4CTAXwVwM9dZVWrr4LaVM2+OhrAFPn5cACba6CvgtoUW1852hh3gcPxD8BMOAfJPcj7l6YDeEd+/gKscLoUgHHygraV4wIV0KYbAXxRO28xgPny5lulpX8BwC+q3a5y9JWrfQ8COAPAagCTZdpkAKvl5ysAXKGd/7h82MvSX6W0qdp9pZ33ZWiDdzX7yq9NtdJXMp0A7IQ1Qah6X7nbVM6+2udNXj68DeDT8vP5sAZKALgfQA+ArbBWoP5YCNGp5btdqo9XFqvWFtGmNwGcS0QpIpoF4Fh5bCqAdi1/u0yLm0LbpYi9r4hoJqxZ2SsAJgkhtgKA/K9U+qkANmnZVL+Upb9KbJOiWn3lRzX7Koxa6KvPAnhDCDGA2ukrvU2K2PuKBYqZrwC4jIiWwlItB2X6fABZAFNgmSb+iYgOkMcuFEJ8CMAp8u9LFWrTbbBu0iUAfgrgRQAZWDMSN+UI6Su0XUAZ+oqIRgH4PYB/FELsCTrVkCYC0qvZJqC6feVbhCGtUn0VRNX7iojmArgOwP9TSYbTKtpXhjYBZRqvWKAYEEKsEkKcKYQ4FsBvYdm0AcuH8pgQYkgIsR3ACwDmyTyb5f9uAP8HS/iUvU1CiIwQ4ptCiKOEEOcCaAGwBtZgPk0rYhqALXG2qch2xd5XRJSG9YD9RgjxgEzeRkST5fHJALbL9HY4NSXVL7H2V0xtqnZf+VHNvvKl2n1FRNMA/AHARUIINWZUta982lS28YoFigEV8UBECQD/AeB/5aGNAE4ji2YAJwBYJc0642WeNIBPwjIFlb1NRNQk2wIiOgNARgjxjlR9u4noBKnOXgTL5horhbYr7r6Sv+1WACuFED/RDi0EsEB+XoD8b18I4AIiqpemuDkAXo2zv+JqUw30lZEq95VfOVXtKyJqAfAwLF/YC+rkavaVX5vKOl7F7ZQZbn+wZtVbAQzBmk1cAuAbsBzu7wK4Fnmn8ygAvwOwAsA7AP5ZpjfDimJ6Sx77GWSUTgXaNBOWU24lgCcA7K+VM0/eKO8B+LnKU812laGvToZlQngLwDL59xewgiYWw9KKFkMGT8g8/y77ZDW0iJu4+iuuNtVIX60H0Algr7zmh9VAX3naVO2+gjWZ6tHOXQZgYjX7yq9NcfeV/scr5RmGYZhYYJMXwzAMEwssUBiGYZhYYIHCMAzDxAILFIZhGCYWWKAwDMMwscAChWFqBCL6KhFdVMD5M0nb+Zlhqk2q2g1gGMZabCaE+N/wMxmmdmGBwjAxITfsewzWhn1Hw1rseRGAQwH8BNbC2B0AviyE2EpET8Pa4+wkAAuJaDSAvUKIHxPRUbB2HWiCtSDuK0KILiI6FtY+ab0Anq/cr2OYcNjkxTDxcjCAW4QQR8Da2v8yAP8D4HPC2u/sNgDXaOe3CCE+KoT4b1c5dwH4V1nOcgBXyfTbAXxdCHFiOX8EwxQDaygMEy+bRH7fpF8D+DdYLzdaJHcIT8LavkZxr7sAIhoLS9A8I5PuBPA7Q/rdAM6J/ycwTHGwQGGYeHHvZdQNYEWARtFTQNlkKJ9hagY2eTFMvMwgIiU8vgDgZQATVBoRpeX7KXwRQuwG0EVEp8ikLwF4RgixC8BuIjpZpl8Yf/MZpnhYQ2GYeFkJYAER/QLW7q//A+uVvjdIk1UK1gvHVoSUswDA/xJRE4D3AVws0y8GcBsR9cpyGaZm4N2GGSYmZJTXQ0KIw6vcFIapCmzyYhiGYWKBNRSGYRgmFlhDYRiGYWKBBQrDMAwTCyxQGIZhmFhggcIwDMPEAgsUhmEYJhZYoDAMwzCx8P8B/0M4gYy5PVIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ + "sorted_data['inc'] = sorted_data['inc'].astype(int)\n", "sorted_data['inc'].plot()" ] }, @@ -215,9 +2257,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYXGWZ9/+5a+19TXfSSSdkJyRAEhJDWBVQQGcYUEGDjjAjIzOI76jj/N4R3wVH5XrF0UGZGVEURnRQZBAEF8QAKltIyEZCEkL2pNNJL+l9qf35/VHnVFd3V1dXd1d3LX1/rquuOnnqnNPnnFSd77mX577FGIOiKIqipIIj0wegKIqi5A4qGoqiKErKqGgoiqIoKaOioSiKoqSMioaiKIqSMioaiqIoSsqoaCiKoigpo6KhKIqipIyKhqIoipIyrkwfQLqZMWOGmT9/fqYPQ1EUJafYtm1bqzGmZrT18k405s+fz9atWzN9GIqiKDmFiBxLZT11TymKoigpo6KhKIqipIyKhqIoipIyKhqKoihKyqhoKIqiKCkzqmiISIGIbBGRN0Vkj4j8szX+ZRE5KSI7rdcH4ra5S0QOish+EbkmbnyNiOy2PrtfRMQa94rIz63xzSIyP26bW0XkgPW6NZ0nryiKooyNVFJu/cCVxpgeEXEDr4jIs9Zn9xljvhm/sogsBzYAK4DZwPMistQYEwYeAG4HXgd+C1wLPAvcBrQbYxaLyAbgXuCjIlIF3A2sBQywTUSeMca0T+y0FUVRlPEwqqVhovRY/3Rbr2Q9Yq8HHjPG+I0xR4CDwDoRqQPKjDGbTLTH7I+BG+K2ecRafgK4yrJCrgE2GmPaLKHYSFRoFEVRsg5fMMzjb5wgEsnfNtopxTRExCkiO4FmojfxzdZHnxGRXSLysIhUWmNzgBNxmzdYY3Os5aHjg7YxxoSATqA6yb6GHt/tIrJVRLa2tLSkckqKoihp5+UDrfzPX+xiy9G2TB/KpJGSaBhjwsaYVUA9UavhXKKupkXAKuAU8C1rdUm0iyTj490m/vgeNMasNcasrakZdRa8oijKpNAXCAHwTlN3ho9k8hhT9pQxpgP4I3CtMabJEpMI8ANgnbVaAzA3brN6oNEar08wPmgbEXEB5UBbkn0piqJkHYFQBJjmoiEiNSJSYS0XAu8F3rZiFDYfBN6ylp8BNlgZUQuAJcAWY8wpoFtE1lvxiluAp+O2sTOjbgRetOIezwFXi0il5f662hpTFEXJOgJhSzRO94yyZu6SSvZUHfCIiDiJiszjxphfi8hPRGQVUXfRUeBvAYwxe0TkcWAvEALutDKnAO4AfgQUEs2asrOwHgJ+IiIHiVoYG6x9tYnIV4E3rPW+YozJX2ehoig5TczSaO7GGIM1qyCvGFU0jDG7gNUJxj+RZJt7gHsSjG8Fzk0w7gNuGmFfDwMPj3aciqIomcYWjY6+IC09fmpLCzJ8ROlHZ4QriqKkCVs0IH9dVCoaiqIoacKOaUD+BsPzrgmToihKpgiEInhcDkq8rrwVDbU0FEVR0oQ/FMHrdHBWdREn2vsyfTiTgoqGoihKmgiEByyNvkB49A1yEBUNRVGUNGG7pwrdTvpVNBRFUZRkxETD46Q/qKKhKIqiJCEQiuBxOijyONU9pSiKoiTHjmkUul3qnlIURVGSY7unopZGiGgJvfxCRUNRFCVN2O6pQo+TiImm4OYbKhqKoihpwh8esDSAvHRRqWgoiqKkiUAogtdKuQXyMoNKRUNRFCVNBELhWMotkJcZVCoaiqIoaSIQtlNuo2X91D2lKIqijEh89hQM9AzPJ1Q0FEVR0kT8jHCAPo1pKIqiKCMRTbl1avaUoiiKMjoDM8KncSBcRApEZIuIvCkie0Tkn63xKhHZKCIHrPfKuG3uEpGDIrJfRK6JG18jIrutz+4Xq+u6iHhF5OfW+GYRmR+3za3W3zggIrem8+QVRVHSRSRiCIbNIPfUdE259QNXGmNWAquAa0VkPfBF4AVjzBLgBevfiMhyYAOwArgW+K6IOK19PQDcDiyxXtda47cB7caYxcB9wL3WvqqAu4ELgXXA3fHipCiKki0EI9HZ315XfPbUNAyEmyh2h3S39TLA9cAj1vgjwA3W8vXAY8YYvzHmCHAQWCcidUCZMWaTiRZk+fGQbex9PQFcZVkh1wAbjTFtxph2YCMDQqMoipI1BKySIR7nNHdPAYiIU0R2As1Eb+KbgZnGmFMA1nuttfoc4ETc5g3W2Bxreej4oG2MMSGgE6hOsi9FUZSsIiYaLgdOh+B1OaZvINwYEzbGrALqiVoN5yZZXRLtIsn4eLcZ+IMit4vIVhHZ2tLSkuTQFEVRJodAeEA0gLztqTGm7CljTAfwR6IuoibL5YT13myt1gDMjdusHmi0xusTjA/aRkRcQDnQlmRfQ4/rQWPMWmPM2pqamrGckqIoSlqId08BFLqnqWiISI2IVFjLhcB7gbeBZwA7m+lW4Glr+Rlgg5URtYBowHuL5cLqFpH1VrziliHb2Pu6EXjRins8B1wtIpVWAPxqa0xRFCWriHdPARR6nPjyMHvKlcI6dcAjVgaUA3jcGPNrEdkEPC4itwHHgZsAjDF7RORxYC8QAu40xthX7g7gR0Ah8Kz1AngI+ImIHCRqYWyw9tUmIl8F3rDW+4oxpm0iJ6woijIZ+END3VOuvCwjMqpoGGN2AasTjJ8Brhphm3uAexKMbwWGxUOMMT4s0Unw2cPAw6Mdp6IoSiYZGtMo1JiGoiiKMhK2e8rrHAiET9fJfYqiKMooDI1paPaUoiiKMiJDRaPA7Zy+8zQURVGU5CSap6HuKUVRFCUhQ+dp5Gv2lIqGoihKGhg2T8PtxBeMEIkMK2KR06hoKIqipAF/AvcU5F95dBUNRVGUNDCQchsVi4E+4SoaiqIoyhASZU9B/rV8VdFQFEVJA8PnaViNmNQ9pSiKogwlEA7jdAhOR7Sjw4B7Kr8yqFQ0FEVR0kAgFIml2wIDfcLVPaUoiqIMJRCKxFxToIFwRVEUJQmB8AiioTENRVEUZSj+Ie6pgewpjWkoiqIoQwiEIngHWRrR7Cl1TymKoijDGCmmoSm3iqIoyjCGxjS8Lgcimj2lKIqiDCEcMcNSbkWEInf+NWJS0VAURZkALx9oYdU//55DLT2DLA2AQo9r+omGiMwVkT+IyD4R2SMin7XGvywiJ0Vkp/X6QNw2d4nIQRHZLyLXxI2vEZHd1mf3i4hY414R+bk1vllE5sdtc6uIHLBet6bz5BVFUSbKnsYuuv0hmrr8CUTDkXfZU64U1gkBXzDGbBeRUmCbiGy0PrvPGPPN+JVFZDmwAVgBzAaeF5Glxpgw8ABwO/A68FvgWuBZ4Dag3RizWEQ2APcCHxWRKuBuYC1grL/9jDGmfWKnrSiKkh6aunyx5Xj3FECRexpaGsaYU8aY7dZyN7APmJNkk+uBx4wxfmPMEeAgsE5E6oAyY8wmY4wBfgzcELfNI9byE8BVlhVyDbDRGNNmCcVGokKjKIqSFTR3+ZlfXcTFi6pZPrts0GeFedjyNRVLI4blNloNbAYuAT4jIrcAW4laI+1EBeX1uM0arLGgtTx0HOv9BIAxJiQinUB1/HiCbRRFUTLO6S4fsysK+emn1g/7rMjjnL7ZUyJSAvwC+Jwxpouoq2kRsAo4BXzLXjXB5ibJ+Hi3iT+220Vkq4hsbWlpSXoeSu4TCkfY8OAm/vB2c6YPRVFo6vIxs6wg4WdFnmmaPSUibqKC8agx5kkAY0yTMSZsjIkAPwDWWas3AHPjNq8HGq3x+gTjg7YRERdQDrQl2dcgjDEPGmPWGmPW1tTUpHJKSg5zpLWX1w+3sfNER6YPRZnmGGNo7vKPKBqFHlfeuadSyZ4S4CFgnzHmX+PG6+JW+yDwlrX8DLDByohaACwBthhjTgHdIrLe2uctwNNx29iZUTcCL1pxj+eAq0WkUkQqgautMWUas/dUFxCdTKUomaS9L0ggHGFmmTfh54VuR97100glpnEJ8Algt4jstMa+BNwsIquIuouOAn8LYIzZIyKPA3uJZl7daWVOAdwB/AgoJJo19aw1/hDwExE5SNTC2GDtq01Evgq8Ya33FWNM2/hOVckX9jZGRcMfVNFQMoudOTWyeyr/sqdGFQ1jzCskji38Nsk29wD3JBjfCpybYNwH3DTCvh4GHh7tOJXpw4ClkV8/RiX3OD2KaBR6nPimm3tKUbIJY0zM0rB7MitKpmiOiUZi91SR20kwbAjmkStVRUPJKVq6/ZzpDQDR/gWKkklOd/oBqC0d2dKA/CqPrqKh5BR7LNcUqKWhZJ6mbh/VxZ5h5UNs7J4a+TRXQ0VDySls19RZ1UUqGkrGaer0UTtCPAOitaeAvMqgUtFQcoqWbj9lBS6qij2acqtknKZuH7NGiGcAFLrzr3ufioaSU/QHwhR6nHhdDk25VTJOU5d/xHgG5Gf3PhUNJafwhcIUup14XE78amkoGSQSMbT1BqgpHdnSiImGWhqKkhn6A2EK3E48TofGNJSM0t4XIBwxzCjxjLiOZk8pSobxhSIUuJ143Q78ofz5ISq5R2tPNPV7RlJLw8qeCmogXFEygi8QdU951dJQMkxrT3SORnVxskC4WhqKklH6g2EK3A48LhUNJbPYolFTOrp7SmMaipIhfMG47CkVDSWDxNxTJaMHwtXSUJQM0R8MU+ByqqWhZJzWHj9up1Be6B5xHbfTgdspmnKrKJnCFwxT4LFEQ1NuJ40ef4gntzcQiQxrlKlYtHb7qS72Em0PNDKF7vxq+TqmHuGKkml8wUg0EO5yEo4YQuEILqc++6STYDjCHf+1jZcPtLKopoSVcysyfUhZSWuPnxlJ4hk20Z4amj2lKBkhPhAO2r1vMrjnN/t4+UArAKc6fRk+muyltSeQNHPKpjDP+oSraCg5QzAcIRwx0RnhlnWhcY3088LbTVwwL2pdNHeraIxEa48/aRDcJt/cUyoaSs5gBxPtyX2gojEZ9PhCnFNXhtMhsXamymCMMZzpCaTonlJLQ1Eygi8wIBq2paFpt+mnxx+irNBNTYmXpi5/pg8nK+nyhQiEI9SkYml4nPRp9pSiTD0+q6pttGChisZk4A+FCYYNJV4XM8u8ammMgD2xLxX3VIHbiX86iYaIzBWRP4jIPhHZIyKftcarRGSjiByw3ivjtrlLRA6KyH4RuSZufI2I7LY+u1+sXDUR8YrIz63xzSIyP26bW62/cUBEbk3nySu5xSD3lCs6aUrdU+mlxxfN8inxuqgtK6BZLY2EtHanLhqFbie+6SQaQAj4gjHmHGA9cKeILAe+CLxgjFkCvGD9G+uzDcAK4FrguyLitPb1AHA7sMR6XWuN3wa0G2MWA/cB91r7qgLuBi4E1gF3x4uTMr2wRaPQ48AbszTy58eYDfT4B0RjZpmXJg2ED8MXDHOktReA6iQVbm0K3I6YlZwPjCoaxphTxpjt1nI3sA+YA1wPPGKt9ghwg7V8PfCYMcZvjDkCHATWiUgdUGaM2WSMMcCPh2xj7+sJ4CrLCrkG2GiMaTPGtAMbGRAaZZphP63ZM8JBLY10ExONAhczSwvo6Avm1VNyOrj22y/xxSd3AzAzSatXmwK3M69mhI9pcp/lNloNbAZmGmNOQVRYRKTWWm0O8HrcZg3WWNBaHjpub3PC2ldIRDqB6vjxBNso04yYe8rjjM1U1nka6SXePTWzPHpDbOn2M7eqKJOHlTUYYzjW1seVy2r5xPqzqCoe3dKYju4pAESkBPgF8DljTFeyVROMmSTj490m/thuF5GtIrK1paUlyaEpuYwdTBwUCM8jsz8bGOyeioqGBsMH8IciGANr51dyxbLa0TcAvG6ntV1+lGRJSTRExE1UMB41xjxpDTdZLies92ZrvAGYG7d5PdBojdcnGB+0jYi4gHKgLcm+BmGMedAYs9YYs7ampiaVU1JykPhAuM4InxwGuafKokFeTbsdwJ6kZ/fJSIUCd35l+qWSPSXAQ8A+Y8y/xn30DGBnM90KPB03vsHKiFpANOC9xXJldYvIemuftwzZxt7XjcCLVtzjOeBqEam0AuBXW2PKNKQ/MJByq9lTk8MgS6NULY2h2A8udsnzVLAFJl9mhacS07gE+ASwW0R2WmNfAr4OPC4itwHHgZsAjDF7RORxYC/RzKs7jTH21boD+BFQCDxrvSAqSj8RkYNELYwN1r7aROSrwBvWel8xxrSN81yVHCcWCHc7CFumvmZPpZf4mEaRJzqJUjOoBuiLm2CaKva6vjz5ro4qGsaYV0gcWwC4aoRt7gHuSTC+FTg3wbgPS3QSfPYw8PBox6nkP/HuqWDYCoSrpZFWev0hRKJP0iJCbZlX52rE4YtZGqnnENnuqXxJu9XS6ErO4AuGEQGvy0Egz/zE2UK3P0SJxxXrETGjxBub/awMWBpjiWnkm3tKy4jkEf2BMH/zyBscbO7J9KFMCj6ra5+IDFS51UB4WunxhSgpGHiWLC1w0e3Ln14QEyV+gmmqePPMPaWikUccaO7m+X3NvHqwNdOHMin0W/3BgYGChXli8mcLvYEQJd4B0Sj2uOj1q2jY9FvNlArdY3BPWUkb+TJXQ0Ujj7B9zy3d+elOsLv2ATgcUWtDLY300u0LURwvGl4VjXgGLI0xuKc8KhpKltJi+Z7ztXFOfzAc66MBRPuEa0wjrfT4Q5TGuadKvM5YGq4yENMYS8ptvgXCVTTyiLy3NALhQQFIj8uhKbdpptc/xD3lddEbCOfNbOaJ0j+elFt1TynZim1hNOeraITCg36sXrU00k7PEPdUSYGLcMRolppF/zgsDds9lS9FC1U08gjbwshXS6M/gaWhopFeuodYGvayuqii9AfDuByC25n6rXPA0siP76qKRh5hWxitPX7CkfxzJ/QHI4MsDY/ToU/AacQYQ++QmEaxNYlNg+FR+gLhMQXBgVgcTt1TStZhWxgRA2d688/a8AfDsaAiqKWRbvqDYSKGYdlToJaGjS8YHtPEPoi6UUVUNJQswxhDS7ef+dXRvgf56KLqH/KD9bo05TadxNedsrGXe/35ccObKH2B8JjiGQAiQoErf3pqqGjkCZ39QQLhCMtnlwH5GQz3BQcHwj0uh07uSyO2NTHIPeWNXm91T0XpH/IdTJV8avmqopEn2CKxYnY5kMeWhideNJz41dJIG7ZoFHs0ED4SvuDYYxqQX937VDTyBHuOxgrL0sg30TDG4BsSCNeU2/QSc08VDI9pqKURZTzuKcivPuEqGnlCS090jsa8qiJKva68Ew07S2poIFwn96WP+AZMNhoIH8zQtO9U8bqd6p5Ssgvb0qgp9VJT5s27UiKxmbiuOEvDqZZGOkkoGh47pqHiDLaLdOwdJQrd+fOAo6KRJzR3+yl0Oynxuqgp8eadpWGX544P0nrdKhrppL0vCEBlkSc25nI6KHA76PEHM3VYWUXU0hj7bbPA7dR+Gkp20dLtp6bUa3VbK8i77KkuX/SmVV7ojo1pldv00t4bwOmQQcIMUcujRy0NAPoCoTF17bMpcDu1n4aSXXT2B6ksit5QywtddPbn15OhfT5l8aKhKbdppa0vQGWRG4djcHdnLY8+wNBkjFQp1JiGkm10+4KxrJd8/JF32aJRMCAaXpdTLY000t4bGOSastFGTFFC4QiBcGRc2VNet2P6uKdE5GERaRaRt+LGviwiJ0Vkp/X6QNxnd4nIQRHZLyLXxI2vEZHd1mf3i9WEWES8IvJza3yziMyP2+ZWETlgvW5N10nnIz3+EKXe6A21xOMiGDZ55e+PuaeKBkSj0OO0KrDmx48x07T1BqgsHi4aUfeUikasAdO4Jvc58+Z7moql8SPg2gTj9xljVlmv3wKIyHJgA7DC2ua7ImJf4QeA24El1sve521AuzFmMXAfcK+1ryrgbuBCYB1wt4hUjvkMpwndvoFCc/mYW9/VHz2Xsjh/e4UlIB19+eWKyxTtfQGqElgaJQUuegP5810aL7alMP7JffnxEDeqaBhjXgLaUtzf9cBjxhi/MeYIcBBYJyJ1QJkxZpOJdnP5MXBD3DaPWMtPAFdZVsg1wEZjTJsxph3YSGLxUohOzLLdU/k4i7ezP4hDBs9Wtm9wbb2BTB1WXtHWG0xoaUTdnfnxlDwRJmZpOHRyH/AZEdllua9sC2AOcCJunQZrbI61PHR80DbGmBDQCVQn2dcwROR2EdkqIltbWlomcEq5SSRi6AmEKLX8/TFLI4+eDrt8QcoKBwdpq4pVNMZCOGI42trLTzYd5T9fPTLoM2NM1NIodg/bTlu+RumbgKVR4Iq6UoN5EIMbe+5YlAeArwLGev8W8ElAEqxrkowzzm0GDxrzIPAgwNq1a/OvkcQo9ARCGAOlXts9lX9F5rr6g4OC4KCiMRae3N7AXU/uHtR/5CNr58YeMLp8IcIRo4HwJMQsjfG4pzwDLV/H0sApGxnX0RtjmowxYWNMBPgB0ZgDRK2BuXGr1gON1nh9gvFB24iICygn6g4baV/KEHqGTHwbcE/lhzkMUfdUWeHgZxzbldLep6IxGq8caKXQ4+TrHzqPv79yMTBYbNut5aoR3FN9gTCRPGzsNRZiMY1xlhGB/Gj5Oi7RsGIUNh8E7MyqZ4ANVkbUAqIB7y3GmFNAt4ist+IVtwBPx21jZ0bdCLxoxT2eA64WkUrL/XW1NaYMYWC29BD3VB49HXb5QoMm9gFUWP9WS2N0Gjv7WVRTwoZ18zivvgIYLLZt1vJI2VOQX+7O8TCe/uA2Ba7orTYf5hWN6p4SkZ8B7wFmiEgD0Yym94jIKqLuoqPA3wIYY/aIyOPAXiAE3GmMsaX1DqKZWIXAs9YL4CHgJyJykKiFscHaV5uIfBV4w1rvK8aYVAPy0wq7xEM+B8K7+oPUlpYMGnM5HVQUuVU0UuBUp4/z5kTL5idy68UsjUTuqbhGTKUFw2Me04W+CQTC491Tuc6oomGMuTnB8ENJ1r8HuCfB+Fbg3ATjPuCmEfb1MPDwaMc43eka4p7KR0ujM0FMA6I3ORWN5BhjONXp49oVs4DEotGW1D0VveHl00PIePBNMBAO5EXabW5HZBQgzj2Vz4FwX3DQxD6bymKPxjRG4UxvgEAoQl15AZA4Vbk9FfdUHn2fxkOf5Z4b7+Q+mMYxDSW76BkS0/A4HbgckjeBcH8ojC8YGTSxz6ayyMOZHhWNZJzqiJbJr6soBKCs0IXTIYNjGr1BPE5HrBR6PPb3yp6VP13pt6yE8RQsLPREb7X54J5S0cgDuq0fs+2eEpG8qj8Vmw1eONzSqFZLY1QaO/sBmF0eFQ0RoXKIW6+9N0BlsRurus8g7Lkb7dN85n1nfxCXQwY1AksVtTSUrKLHH8Ihg7M6Srz5U/rBfsJNFNOoLPbQ3hskmnCnJOJUR1Q06ioKYmPVxYNFI1rhdrhrCgb6a7T15Fe5/bES335grNiVDPLhQU5FIw/o9oUo8boGfZmLvc68+ILCQIXboSm3EH0KDoQj9OZJBdHJ4FSnD4/LQXVcvKKy2D3M0kgUBAeoKPIgAm3T3NJo6YmKxnjIp+QUFY08oMsXHJYKmU/1guzssKGT+yD+KVhdVCPR2Omjrrxg0ENFVSJLYwTRcDqEikJ3LC13utLS7ad2nKJhu47zIc6oopEH9MRVuLXJp3LWnQl6adhUl1iioXGNEWns6I9lTtlUFXtiMYq+QIiG9n5mD1knnspiz7S/xrZ7ajx4XQ6cDlFLQ8kOuhOIRj7VC0rmnrItjen+FJyMUx39sSC4TVVRNIEgHDG8fKCVQCjCFWfXjriPqiLPtLbmwhFDW6+fmpLxiYaIUOzJj8KPKhp5QI8/FMult8mr7Cnf8FavNlq0MDnhiKGp2z8oCA5Ry8GYqBW3cW8TZQUu3rWgasT9VE3zLLUzvX4ihnFbGpA/1r+KRh7QnSCmkU/lrDv7o3MIvK7hX9dKFY2kNLT3EY4Y5lYWDRq3xba1x8+LbzdzxbLapNVXh8ZAphst3dHMsYmIRr48yKlo5AHdcQ2YbIq9LnoD4bxIRe2yKtwmSnUs9bpwO2Xa+9tHYvfJTgDOtepO2dii8fy+Jtp6A7z3nJlJ92PPvM+H79N4SIdolBSopaFkCd3+BDENr8vqn537tW5auv3MGMGXLCKUFbhjcQ9lMLsbOvE4HSydWTpo3BaNh185SqHbybvPrkm6n+piD8GwoTsPbnrjwRaN2tKRkwVGo0QtDSUb8IfCBEKRYZlF+VTp9nSXj1lJMnvKCt2xtFxlMLtPdrKsrhTPENdevHvqlovOSpiZFs90TzhosSY2jvTwkgrFHrU0lCzArjuVKBAO+TGZ6HSnn1llSUSjwKWWRgKMMew+2TnMNQUDIlDodvKpyxeOui9bZM5MV9Ho9lPqdY2rwq1NvsydGm+7VyVL6B5SFt2mJFbpNre/pMFwhDO9fmYmEY3SAnes/pYywLEzfXT7QpyfQDQK3E4W1hRz3fmzU3p6tkVj2loaE5ijYVOaJzENFY0cp3sES8OuxJnr9aeau/0YwyjuKRenu3xTeFS5wUhBcJvnP/9uUi2jNN1Tm1u6/cyYoGjYpX2MMeOqX5UtqHsqx7GzhobWDSrOk5jG6c6oGCRzT5V61dJIxFsnEwfBbRwOSfnmNd1Tm9NhaRR7XYTyIDlFRSPHaR+h41q+NM5psiyIZO6pskJXrHy6MsDxtj7mVhUOC4KPh2KPE4/TMW1Tm1u6xz8b3CZfklNUNHKcMyOIRr5074tZGsncUwVu+oNhguHcfoJLN83d/gmliMYjItFZ4dPQ0uj1h+j2h5I+uKRCvpRHV9HIcdp6/TgdkiTlNrcD4U1dPjxOB5UJWr3a2EkA3Zp2O4jmbh+1ZRN7Oo6ncprOCj9p9SOprywcZc3klBRME0tDRB4WkWYReSturEpENorIAeu9Mu6zu0TkoIjsF5Fr4sbXiMhu67P7xXKmiohXRH5ujW8Wkflx29xq/Y0DInJruk46n2jrDVJZ5MbhGOybzpeU26au6I0vme/drkmlabcDGGNo7hp/Ke9EVA3pwTFdaGjvA9IgGrHfZG4/yKViafxrncWnAAAgAElEQVQIuHbI2BeBF4wxS4AXrH8jIsuBDcAKa5vvioid2PwAcDuwxHrZ+7wNaDfGLAbuA+619lUF3A1cCKwD7o4XJyVKW68/YfMct9OBx+XIedE43eVLGgSHgR7WamkM0OUL4Q9F0uaeAqgq9k7Llq8N7balUTTKmsnJlwe5UUXDGPMS0DZk+HrgEWv5EeCGuPHHjDF+Y8wR4CCwTkTqgDJjzCYTLV7z4yHb2Pt6ArjKskKuATYaY9qMMe3ARoaL17SnvTc4Yse1fKiq2dTlZ2aSeAZEJ/fBQDVcBVq6o7GgdLqnqorcnJmGLV9PtPXhdTmYUZL4d5Yq9typXC/FMt6YxkxjzCkA690uxD8HOBG3XoM1NsdaHjo+aBtjTAjoBKqT7GsYInK7iGwVka0tLS3jPKXc5MwIlgbkfstXYwynO0e3NNQ9NZzmronXShpKZbGHLl9o2iUcNLT3U19ZOOG5FdPG0hgjia6qSTI+3m0GDxrzoDFmrTFmbU1N8sJr+UZ738iWRrTWTe76T7t8IfqD4RTcU4kD4cFwhG/87m3W3fM8x8/0TdpxZiPNdoG9NFoado/xjmnmompo72du1cRcU5A/afDjFY0my+WE9d5sjTcAc+PWqwcarfH6BOODthERF1BO1B020r4Ui3DE0N4XoKpoZPdUXw7PCG/uSs3FErM0hrinPvfYTr77x0M0d/t5YntDok3zlmbbPZXGQPh0neDX0N434SA4DKTc5rrLeLyi8QxgZzPdCjwdN77ByohaQDTgvcVyYXWLyHorXnHLkG3sfd0IvGjFPZ4DrhaRSisAfrU1plh09AUwZvgcDZtcb/piVxYdzcVS4nEhMtw99dKBFm5aU88li6t5ZufJadULoqnLT6HbOay8zESwH06mk2j0+EO09wUnHASH6Az8Ik9uu4whtZTbnwGbgLNFpEFEbgO+DrxPRA4A77P+jTFmD/A4sBf4HXCnMcb2j9wB/JBocPwQ8Kw1/hBQLSIHgX/AysQyxrQBXwXesF5fscYUC7v9ZmWeBsIHGt8kD0A6HEKJ1zWoPHpnX5BuX4izZ5Vy/co5HD3Tx66Gzkk93myiuds/aqryWKmyAsG51vb1m8/t54b/eJXbf7yVzjHGvdKVbmtTnOO/SUihYKEx5uYRPrpqhPXvAe5JML4VODfBuA+4aYR9PQw8PNoxTlfO9ER/vNXFiV0Q0aea3I1pxESjZPRgblmBe5B76kTsx17ExYur+d9Pv8Uvd55k5dyKyTnYLKO5y5dW1xQMWBq5Vh79F9sbCEUMO090sG7rCf7mstFLwds0tEXTbYe2yx0v0Qe53P1Ngs4Iz2naRyhWaJMP7imP00FZ4egultIC16BA+PG2qGjMrSqkrMDN+oXVvH54+hiqLWksIWJTkaONmNr7Atywajar5lbw2BsnxuSmTLelkQ/d+1Q0cpiR6k7ZlHhd9AZCOevLb+0OMKPEk5KLpaxwcMvXEzHRiD4hnju7jANN3fhDuf2UlyrNaajKOhSPy0Gp15VTMQ1fMIwvGKGiyMPH1s3jYHMPW4+1p7z94dZeij3OEX9jY6XY68x595SKRg7T1mPHNBLXZSr2uogY6A/m5o2ypSf1G19ZweCYxon2PsoL3bGaXCtmlxOKGA409UzKsWYTfYEQPf5QWtNtbapKPDkV04jF/Yo8/PnKOkq8Lh59/VjK22892s6qeRVpiw2ppaFklLa+ACVeF15X4haU9gzUXH2yGUsPg7Ih3ftOtPUzt2rApbBidhkAexrzPxh+0ip7UTfKTPrxUFmUW0UL22LWuJsij4uPrJ3Lr3adilmiyejsD7LvdBfvml+VtuMpL8yt65cIFY0cpq03kNRsLs7xAmljEo2h7qn2vkHBy3lVRZR4Xexp7Er7cWYbO050AHDeCB37JkJVjlW6tSci2vGYT12+AIfAgy8dHnXb7cfaMQbWLUifaNSVF9Dc7SccyU2XMaho5DRtvYER020ht8sWhCOGtl5/Sv2rYaD/ciRiiETMsFm8DodwTl3ptBCN7cfaKS90s3BGSdr3nWs9NeLdUwB15YXcuKaen289EZsAORJbjrbhdgqr56avTmpdRQHhiKE1h2t4qWjkMB19waR9JnK5U1hbb4CIIWVLo7zQTcRAR3+Qlh4/gVCEuUMyXlbMLmffqa6cfspLhe3H21k9r2JYufx0UFXs4UxvIGeSK+yqvPG/k1sumk8gFOHld1qTbrvlSBvnzSmn0JPY/TsebJfhqc7c7WmvopHDtPcFYk9QibAtjVwsJTIwRyM10bDnX7x2qDXmr64fUi9o+ewy+gJhjp7ppaXbz5//28v88OXDRPJIRLp8QQ4093DBvMnpIlBZ5MEfiuRMcoVtFVXE/U7OnllKaYEraRaVLxhmV0MH70qjawpgVln0QeZ0Z39a9zuVpK/GgDLldPYFqUhqadiB8Nz4gcdjlxBJ1dK4YF4lVcUent/bxJqzojfMeUNEYyAY3oVD4K2TXbx1sovf723iWzetTEtRukyz83gHxjBpolEdV3+qyJP9t492K1kkvk+6wyFcMK+S7UlE43hbH8GwYXldWVqPx7Y0GjvU0lCmmGA4Qrc/REVhfsY0Wi1LI9WYhtMhXLmslhffbuYHLx/h3DllLJxRPGidJbWluJ3CnsZO9jZ24XII/+9D57GvsYtrvv0Sb53M7syqt093jZr1s/14OyKwcm76g+CQe0ULO0Z4sFp7ViXvNHePWFbEroo89MFjolQUufG6HJzuUtFQphg7K2SkORqQ26IxVksD4L3nzKTLF+J4Wx+fu2rpsNx6j8vB0pml7G3sYt+pLhbXlnDzunn87vOX4xDh0c2p5+9PNeGI4S9/uJkb/uPVpMLx1skuFtWUxLoZppsq6/tml7DJdtr7EmcYrjmrEmNgx/HE1oZdUeCs6uKEn48XEaGuvEBjGsrU09k/3Fc7lFwuxdzS7afI44wJXypcvnQGXpeDc+eUcdU5tQnXWTG7jD2NXew91RVzPcypKOS959Ty7Funs7bB0I7j7bT2BGjrC/DJH71BfyCxy7GhvS/tT8fxLK4pRYSst8ps2vuCCX8jK+dW4BDYNoKL6nhbHyVeV9JEk/Eyq7wgp2MaKhpZxp7GTu74r238dvcpQkluYHZWSEXhyF9qp0ModOdmKeaW7tTTbW2KPC4evGUt39mwesQZvCtml9PWG6Cpy885cf7qPzt/Nh19QV47dGZCxz1ZPL+vGZdD+JcbV3KguYeXDyTuUNnY0c+civTUSUpEeZGbs2eWsuVobtTxau8NJLzxF3tdnFNXxvYklsbcqqK0Vgm2qSsvVEtDSR/P7Gzk2bdO8+lHt/PPv9o74np2Vkiy7Cmwa93kXiD8dKePWeOY0fzupTUsqhl5foIdDIdoNpXNZUtmUOp18Ztd2dnn6/l9TVy4sIrrVtbhdTkSFl/s9gXp8oWYk6bieiOxbkEV2461J32oyRaSZRgunVnK0dbErr7jbX3Mq5qc6zirvICmLl/OZu2paGQZ+5u6WTarlI+unctjbxznZEdiM7aj357pmtx8ztVKtyc7+qmfhCfmc+rKsB8e4y2NAreTK8+p5cW3s6/H/NHWXg4293DVspl4XU7WnFXJ64eHW0T2d2UyLQ2IikZfIJz1EyVD4QjdvtCIolFfWcjpLt8w8YtEDCfaJs/NV1deQDBsaO3NzQl+KhpZxv7T3ZxTV8bfv3cJxsCDfzqUcL2OPjumMYpoeHJPNELhCKe7fMyehJtfsdfFgupiZpUVDAuQnju7nNYef+zaZguvHopOQrtiWTROs35hNftOdw07Trvm1KRbGlYtpi1HsttFZT9YjZQsUl9ZSDhihrmKWnr8+EORSRMNu+f96Rx1UaloZBGd/UFOdfpYOrOUORWFfOiCOTz2xomEaYHtfUFcVse6ZORi9z67Ns9kiAbArRfP55OXzh82vqg2milzqCW7KuHubeyirMDF/OroTeyiRdUYA5uH3LSnytKoLStgwYziYX8/20g0sS8eu4VrQ/tga97OnJqX5swpG/t7/YttDTTlYOqtikYW8U5TNwDLZpUC8P7z6vCHIrHxeDr6AlQUuUcN1BV7nfTm2Izwxo7JfWK+9eL53H75omHjdizkUHPvpPzd8bKnsYvls8ti/9fn15dT4Hbw3J7Tg/ziJzv68TgdKc+inwgXLqhi85EzWR3XSFRCJB67sZLdaMnm2CTN0bBZVFPC6nkVPLLpGDf8x6tZm7E3EioaWcT+01FxWGqJxgLrSedI6/CbWMcIqYRDKfa66MuxQPjAE3P6S3sno76yCI/LwcEssjTCEcPbp7tYXjcwWc/rcnLd+bN5cvtJPvjAazFL9GR7P3UVBZNSc2ooly6ZQbcvxK4sTr0dWqxwKHXlhYgktjREJs9iK/Q4eerTl/Ddj1/AqU4fL77dPCl/Z7KYkGiIyFER2S0iO0VkqzVWJSIbReSA9V4Zt/5dInJQRPaLyDVx42us/RwUkfvFeqQSEa+I/Nwa3ywi8ydyvNmKMQZfMMz+092Uel3MtrKG6isLcTmEowlEI5oVMnoOeS66p2zRmCz31Eg4HcLCGcUcas4e0TjS2osvGBmU9QVw74fP52s3nMubJzp4YV8TEL1uk+2asrlk0QxEGLXoX7o4fqZvzNlG9gTE6pLEouFxOagrKxgmGnsbu5hXVTSo9MhkcPXymdSWevnvrScm9e+km3RclSuMMauMMWutf38ReMEYswR4wfo3IrIc2ACsAK4FvisidvnIB4DbgSXW61pr/Dag3RizGLgPuDcNx5t1fP+lw6z6yu95bs9pls4qjbkhXE4H86qKRrQ0ypOUELEpK3TT2R/MmaqkEHVPVRa5M1LbaFFtSVZZGntPRTOUlg8RDYdDuHndPEq8rthcg5PtUycalcUezp9TPuJ8kXSy71QX7/nmH/j17lNj2q6xox+nQ5L2Sq+vLBrknvIFw7x6sJXLl9SM+3hTxeV08OE19fxhfwvNORTbmAwpvR54xFp+BLghbvwxY4zfGHMEOAisE5E6oMwYs8lE72w/HrKNva8ngKtkMmbbZJBgOMJDrxwhYqIB4KUzSwd9Pn9G8YiikYqlMbeyEH8oQlNX7qT3NXZMTuZUKiyqKeFEWx++LKniurexC4/TkXDuidMhrJ5XwbZjHfhDYZq7/ZOeORXPZUtq2HGigy5f4vpN6eLnb5wgYuBNq7lUqjR29DOrrABnEnddfWXhIEtj85E2+oNhrlyWuKJAurlpTT3hiOE3YxTETDJR0TDA70Vkm4jcbo3NNMacArDe7as/B4i3wxqssTnW8tDxQdsYY0JAJ1A9wWPOKn6/p4mWbj//8bEL+NePrOTOKwYHaBfMKOZYAtO8vS95Ayab+VbRvqNnsiu4m4yT7f0ZE43FtSVETPZcr72nulgys2REV8nqeZXsP90V630+VZYGRCdEhiOGTZM4i94fCvP0zpNAtGDjWDjZ0c/sUeJi9ZWFnOrsjwWj//B2MwVuBxctmprbzMKaEmaWeccsiJlkoqJxiTHmAuD9wJ0icnmSdRPJvUkynmybwTsWuV1EtorI1paW7JuclYz/ev0Y9ZWFXLmslg9dUB9LA7SZP6OY/mCYprguY/2BMP5QhPIkJURi21vB9ERxkUyyu6GTK7/5R+75zV5ODanDM9mlMJKxqCZ6vQ5mQVzDGMNbJzuTlue+YF4FEQP/+5dvIQIXnDU5JdETsXpeJcUeZ9pdVIFQJJaV9cK+Ztr7gsyrKmLfqe4xuVlPdY5usdZXFhEx0TkTxhhefLuZixfNoMCdvsZLo3F+fQW7GrI3oWAoExINY0yj9d4MPAWsA5oslxPWu50a0ADMjdu8Hmi0xusTjA/aRkRcQDkwLDncGPOgMWatMWZtTc3k+yLTRVtvgE2Hz/CRtXNHNKHt8t7xLqqO/tRKiEA0mOxxOjiSJU/ONj985TANHf08/OpR/uLfX43NjejyBen2hzIoGiV4nA52Z8GP+FBLD229Ad41f+RGQKutvhk7T3TwodX1SUuopBuPy8H6hdW8fCC9wfA7/msb13z7JY6f6ePbz79DXXkBt1x0Fm29gVhzrtGIRAynOke3WO202xNtfRw708fxtj6uOHtq7yEr68s53No7Ypn2bGPcoiEixSJSai8DVwNvAc8At1qr3Qo8bS0/A2ywMqIWEA14b7FcWN0ist6KV9wyZBt7XzcCL5pciuiOws4T0QDmhUm6g8XcS3E1ctp7k+efx+N0CPOqi7LK0mjrDfDs7tN8bN08fvv3l2GM4WM/eJ3WHn+sj0Gm3FMFbier5lYkLNMx1dj1pdYl+X6UF7pZUhsVus+/b8lUHVqMy5bMiN5szyTv85Eq+0518cLbzRxq6eW99/2JQy29/MuNK1kxO5pyvO/08DlLiWjt8RMMjz5B1E5v33WyM1aEcapcUzbn10e7TuZK5eCJWBozgVdE5E1gC/AbY8zvgK8D7xORA8D7rH9jjNkDPA7sBX4H3GmMsaONdwA/JBocPwQ8a40/BFSLyEHgH7AysfKFncc7cDqE8+pHbphTV1aA1+XgSOuAu6RtlJmuQ5lfXTxiYbZM8OT2BgLhCBvWzeXsWaX84Ja1NHX52bi3KZYJdH6SazLZrF9Yxe6TnXRPcoB3NDYfaWNmmZezqpNPMvv/rjmbb9x4/jDX5lRw2dLoU/nLB9PjovrPV49Q4HbwjRvPxynCV68/l0uXzIhNeH37VGpxjVja9ihFL2eUeFlSW8KmQ2d440gblUXuKbXWYOC7nisuqnHnNBpjDgMrE4yfAa4aYZt7gHsSjG8Fzk0w7gNuGu8xZjs7TnSwdGZp0tRSh0NYVFPCvlMDT1i2K2dhTWplDuZXF/HygRYiETMlE7+SseVIGw/88RAXzKtg2ayor37V3ApmlRXwysFWIhHDnIrCjLZeXb+wmvtfPMjWo+2xek9TjTGGzYfPsH5h9aiz/q9eMWuKjmo4C2cUM6eikJffaeXjF541oX219vj55c5GblpTz0fWzuWDq+fgdkafayuLPcwqK+DtFC0Nu51qKhbr+oXV/GJ7A9UlHtacVTUp5dCTUVHkYV5VEbsaciMYrjPCM0QkYth5ooNVcytGXfdd8yvZfrw9luGxv6mbsgIXtSl2tZs/oziadtud2VzwN462cfMPXqes0M29Hz4/Ni4iXLy4mk2HzrD5SBvrF2Y2QW71vEo8TkdGXVTHzvTR3O1P6prKBkSEd59dw5/eaYnVehovP3j5MMFwhL++ZAFATDBszqkr5c2GjpQm+TWOYYLoRYuq6QuEOdHWz7vmT10iQTzn15fzxtH2nChiqKKRIQ639tLtC7E6BdFYt6B6UCnqA03dLJ1ZmvIT0YIEwfRM8Ozu07gcwtOfuYQlQ+ajXLp4Bm29Adp6A6xfmNkbZaEn83ENu7Jtpq9FKvzVxfPpD4b5z9eOjnsfLd1+fvzaMa5fOZvFtYndQ+8/r47DLb1847n9o+6vsbOfEq+LsoLRnSnxMcW1SZIOJpOPX3gWfYEQH7j/Zf6wP7vLiqhoZAi7N/GqeSlYGguiTz+bD5/BGMM7TT3DbrrJSBRMHwtP7zzJL7Y1jL7iKLxxtI3V8yooS9C/+pLFM2LLmbY0ANYvqmb3yc6MlUl/fGsDi2tLpty/Ph6WzizlmhUz+dGrR8YVBzLGcN/z7+APhfn7q0YO5t+0pp6PXziP7/3pEH8YpV5TozVHI5UHq+oSL2fPLMXrcnDenMzE0i5aVM0zn7mU2lIvf/2fb/Ct348ujJlCRWMKOHaml3fd8zw3PvAaX/v1Xu56chf/5+m3qCn1pnRTqC0tYGFNMVuOtNHS7aezP8jZM1O/mdRZvSO2HBn7k7MvGOb//PKtCX+Je/wh9jR2xnoxDGVmWQFLaksyHs+weffSGUQMvHpw6q2Nt0528uaJDj5+4bwp96+PlzuvWEyXL8Q3U7AC4vGHwvyPn+3gp5uPc8tF81mY5PcgInz5L1ZQUeTmt6PMoG7s8FFXnnoG3u2XL+SO9yya9HpTyVhcW8Iv77yED66ew7+9eDBhdetsQEVjCvj6s2/T6w/RHwzzk9eP8csdjVy7Yhb//bcXJS1xEM+FC6rYcrQtlnI4tNxIMhwO4apltbzwdjOB0NjKMP961ym6fCEaO300TyAmsu1YOxED70rio//aDecOinVkkpX1FZQWuHjpnamfLPro5uMUuB18aHX96CtnCefXV3DbpQt4ZNMxHn8j9QJ8v919il/vOsUX3reUu69bPur6bqeD9Quqee3QmREn+nX7ghxs7on1H0mFD6+p53PvXZry+pNFgdvJ//qzc3A5JC3W/WSgojHJbDnSxrNvnebv3r2I3/z9Zez/2vvZ99Vr+faG1TG3USqsX1hNty/E961OfmNxTwFcs2IW3b4Qm8bop//p5mMUWrNjd50Yf0rgG0facDqEC+aNHGi8cGE1ly6ZMeLnU4nL6eCSRTN46UDLlBZ7bO3x88sdJ/nz82dTnsI8nGzirvcv49LFM/ifv9jFFx5/M6UGQ1uPtlPqdXHnFYtTtqouXlzNyY5+TrQlboX8xLYG+oNhPnRB7ohuPDNKvLzn7Bqe2nEyK/uVqGhMMvdtfIeZZV4+ddnCCe3n/efWcd6ccl47dIaqYg8zRij3PBKXLplBkcfJc3tOp7zNvlNdbD/ewZ1XLMLpEN6cQErglqNtrJhdRvEonQazicuX1nCq0zelJUX+/cWDBMIRPv2e4U2ish2X08GDt6zhjvcs4pk3T3L5N/7APb/ZS1+SJmDbjrWzal7FmFLBL7Ym3206PHwmeiRi+PGmY1wwr4KVKSSZZCsfvqCe5m4/rxycmtLzY0FFYxJ5+3QXmw6f4a8vWUChZ2K1bDwuB/9282pKvC6WzUo9c8qmwO3kPWfX8Ps9TSn3Jfjp5uN4XA4+fuFZnD2zlJ3jLKrW1htgx/H2KZ9pO1EuXxq1eu786XZ+/sbxSf97De19/HTzcW5aU5/Ut5/NFHlc/NO1y3jhH97DdStn88NXjvBn978SazAWT7cvyDtN3Umtz0QsqimhptTLa0MKJb55ooMvPrmLI629/JWVtpurXHlOLZVFbh7bkn29NlQ0JpFHXjuG1+Xgo2vnjr5yCsyfUczjf3sRX7th2DzIlLhy2Uxae/zsTyHA1hcI8csdJ/mz8+qoLPawcm45uxo6x+Wq+c2uRoJhw/Ur54y+chZRX1nEN29aiUOEf/rFbg42T25g8j9fPYrBJM0gyhXmVUev3U//Zj3dvhCf//lOwkMeVt480UnEwJoxFlkUES5aWM1L77TE4mzN3T5u+v4mnt7ZyF+snM21GZzwmA68LicfWTuXjfuaUpq7MZUtY1U00kCiG2lnf5Bf7jjJDavmpFTCPFWWzy4b91Oo/aQ/9AktEb96s5Fuf4iPXTgPiAaGO/uDHB1HjaEnd5xk2azSYY2EcoEb19Tzk9suxOkQnth2ctL+TjhieObNRq44uzZjdbcmg4sWVfN/r1vO3lNdPLFt8FPz9uPtiKSWdj6UT122EF8wwi0PbaGzL8ijrx8nEIrw7Gcv4/6bV2c0CypdfOzCeUSM4Wdbhlu5pzt93LfxHXr9Id442sby//s7vvTU7ikpfZP7VzbDbNzbxMVff5Ftx9qGjfcHw9xs3XSzgTkVhZxVXTRq/4O+QIjvv3SYJbUlrLWeAi9cWI1D4J9+sWtM7WOPtPay43gHH1ydW1ZGPDWlXq44u4andjQMe1pOF68fPkNLt58bcvg6jcR159ex5qxK/uW5/bHmVuGI4ZWDrSytLU04b2c0zqsv58Fb1nC4pZePP/Q6j24+xpXLanPWrZeIs6qLeffSGn625figpmCBUIQ7Ht3Gd144wA9ePsy/v3gQl8PBY1uOc9P3No25Le5YUdGYAKc6+/nH/36TU50+7viv7YNaNv7urVPMqShkZQYL7yXiooXVbD5yJunN7+6n93CktZf/e93yWOxkwYxivrNhNduOtfPpR7en/Pee2nESEfiLVbMnfOyZ5MY19TR1+Xlpktqb/nLHSUq8rinrGDeViAhfeN9SWnsCPLfnNGd6/Nz8g9fZcqRtQt+Ly5bU8P1PrOGdph5aewJ8MsfjGIm4/fKFNHf7uf+FA7Gxb/zubXYc72BhTTHf+9Mh/vROC3desYgn7riYz79v6aTXl1PRGAf+UHS+xSce2kIwHOF7f3kB3b4Qn31sJ8YYevwhXjrQyjUrZmXd5KyLFkVTd/c0Dk+fDUcMX3/2bf57WwOfuWIxlw3pk3zdytl88dplvPROS6wabTKMMfxyx0kuXlQ9polW2ciVy2ZSW+rl7qf30Noz0NPBGMNze04nvJ6p0tkX5HdvneaaFbOmtPnPVLJ+YTX1lYX899YG7vntPnYe7+BbN62ccJbYFctq+ckn1/H59y7lksW5lWiRChcvmsFH1tbz/ZcOs/NEB68fPsMPXznCX66fx4OfWEMgFKHQ7eQv15/FBfMquWYKYjm5k/+YJYTCET7z0x1s3NvEslml/PvHVnPlspm09Qb50lO7eXzrCYq9LgKhCNeem33BODuu8fEfbKa2zMuTn76E8kI3wXCEO/5rO8/va+LmdfP47AjB2I9dOI9//8NBHvzTYb73iTVJ/9a2Y+0cb+vLi8Cux+Xg+59Yw80/eJ2//OFm/uri+RR7XfzqzUZ+v7eJmlIvGz9/ecrl6uO57/l36A2E+OSl89N/4FmCwyHcuKae77xwAGPg7969iA+vSc88igsXVnNhFpSemSz+158t5+UDrdz84OuUFrg4q7qIL33gHIo8Lr70gXMo9DjH9b0bL2ppjJG7n9nDxr1NfPm65fzuc5dz5bKZAGx411zWLajiK7/ay5ef2cOMEs+Ys0KmgtrSAv7x6qW8b/lMDrX08pNNR4lEDP/zicG0sW4AAAnwSURBVF08v6+Ju69bzv/70Hm4nIm/GsVeF59YfxbP7T09agruUztOUuB2ZKV4jofV8yr57scvoKMvyBef3M3/+NkO/vhOC5+6bAHtvQG+8qu9Ke+rob2Pzz62gy/+Yhc/ef0YH7/wrFijoXzlwxfUYwzMKPFw5xW5Nw8lU5QXunnq05ewdn4lZ3oD3Pvh82PtFP7msoUTLkk/VtTSGANPbm/g0c3H+bt3LxqWB+5wCN/48Pl88cldVBR6+ItVs1MuETLVfObK6JN/e1+Ah145wpHWPp7acZJ/vHpprCx1Mm69eD6Pbz3BjQ+8xm2XLuAv1581rF5Uly/Ir95s5JoVsyjJoQl9o3HlsplsuquWQy09hCPRdqHFXheFbif3v3iQdQuq2LAuefLDS++08NnHduC3SrpUFnn4wtWZL2Ex2cytKuKfrl3GsrpSSscR/J7OzCov4MefXEdbb4DqktRaIkwWkkfdUwFYu3at2bp1a9r3u7exi5u+9xorZpfz009dOOKTeC6x7VgbH35gEwB/f9USPv/eJSnHYNp7A3z113t5amc0DfXbH13F9asGMn/u/d3bPPDHQ/z6f1zKuRmqHDqVBMMR/uaRrbxysJVvfPh8blg9Z9hDQzhi+M4LB/i3Fw+wtLaU731iDXMrCwmGzYQnfyrKRBGRbcaYtaOup6KRnHDE8MOXD/Ot379DWaGbZz5zSV7l0X/zuf3Mqy7iI+OcgHiyo59PP7qdk+19/OEf30NpgZvGjn6u+OYf+cB5ddz30VVpPuLspdcf4mM/3MybJzqYW1XIrRfN5z1n1+IQ6OgP8s3n9vPaoTPcuKaer15/rgqFklWoaIyDvkCIrz/7Nq8ebGVZXRlzK4t442gb2461c+2KWXztg+cyI8OmYTby5okOrv+PV7lpTT3rF1bzzd/vp603wAtfeHdG+lZnklA4wu/3NvGjV4+y5ejguTsFbgdfuf7ccQu0okwmKhpj5ERbH7c+vIUjZ3q5ZNEMjrX1crrTR7HXxZevW8H1q2ZnXfpsNnHXk7v4mVUnZ3FtCd+6aWVOF4xLB3sbu2I9EUq8LpbVlU47EVVyh1RFIycilCJyLfAdwAn80Bjz9XT/jdoyL/NnFPO1G87lYquLnDGGiCFrA9rZxD03nMctF80nEIqwrK4Ur0tdL8tnl+Vk6RRFSUbWi4aIOIH/AN4HNABviMgzxpjU8xtTwOty8vBfvWvo38apepESDodwTp3eIBUl38mFFKB1wEFjzGFjTAB4DLg+w8ekKIoyLckF0ZgDxJfHbLDGFEVRlCkmF0QjkYNoUPReRG4Xka0isrWlZep7OiuKokwXckE0GoD4HMV6oDF+BWPMg8aYtcaYtTU1g4vsKYqiKOkjF0TjDWCJiCwQEQ+wAXgmw8ekKIoyLcn67CljTEhEPgM8RzTl9mFjzJ4MH5aiKMq0JOtFA8AY81vgt5k+DkVRlOlOLrinFEVRlCwh78qIiEg3sH/IcDkw/tZqw0n3/mYArWncXzqPT69dfu8P9BpOlHy4fjOAYmPM6JlExpi8egFbE4w9mOa/ke79DTvmbDk+vXb5vT+9hnr9xnoO08U99ass31+6Sefx6bXL7/1NBtl+ztl+DbP6fPPRPbXVpFCpMZvIxWPOFvTaTRy9hhMjH67fWM4hHy2NBzN9AOMgF485W9BrN3H0Gk6MfLh+KZ9D3lkaiqIoyuSRj5aGoiiKMkmoaEwCIjJXRP4gIvtEZI+IfNYarxKRjSJywHqvtMbfJyLbRGS39X6lNV4kIr8Rkbet/aS9+VS2ka5rZ332OxF509rP96zeLHlPOq9h3D6fEZG3pvpcMkGav4N/FJH9IrLTetVm6rzSRjpTu/QVS1+rAy6wlkuBd4DlwDeAL1rjXwTutZZXA7Ot5XOBk9ZyEXCFtewBXgben+nzy4VrZ/27zHoX4BfAhkyfX65dQ2vsQ8BPgbcyfW65dv2APwJrM31Oab0+mT6A6fACnibaeXA/UGeN1QH7E6wrwBnAm+Cz7wCfyvT55Nq1A9xE0w4/munzybVrCJQAr1g3zWkhGmm+fnknGuqemmREZD7RJ5HNwExjzCkA6z2RqfphYIcxxj9kPxXAdcALk3m82UQ6rp2IPAc0A93AE5N8yFlHGq7hV4FvAX2TfrBZSJp+v/9puab+j4jkfANpFY1JRERKiLpFPmeM6Uph/RXAvcDfDhl3AT8D7jfGHJ6MY8020nXtjDHXEH0q9ALDfPX5zESvoYisAhYbY56a1APNUtL0Hfy4MeY84DLr9YnJONapREVjkhARN9Ev3KPGmCet4SYRqbM+ryP6BGyvXw88BdxijDk0ZHcPAgeMMd+e/CPPPGm+dhhjfER7sEyb3vJpuoYXAWtE5ChRF9VSEfnj1JxBZknXd9AYc9J67yYaF1o3NWcweahoTAKWCfoQsM8Y869xHz0D3Got30rUV2q7nn4D3GWMeXXIvr5GtODY5yb7uLOBdF07ESmJ+4G7gA8Ab0/+GWSedF1DY8wDxpjZxpj5wKXAO8aY90z+GWSWNH4HXSIyw1p2A38O5HwGmk7umwRE5FKimU67gYg1/CWiftHHgXnAceAmY0ybiPxv4C7gQNxuriaaMXWC6M3O9pH+uzHmh5N+EhkijddOgF8TdUs5gReBzxtjQlNxHpkkXdfQGBP/JD0f+LUx5txJP4EMk8bvYC/wEtFEDCfwPPAPxpjwVJzHZKGioSiKoqSMuqcURVGUlFHRUBRFUVJGRUNRFEVJGRUNRVEUJWVUNBRFUZSUUdFQlClG5P9v7/5BqozCOI5/H7wtgtjSGm0iiBBNEdHc7hKRZpMQtDY2tVVELrcGpXSJtqbESZBwD2mqpcElUPu3Pg3vuXC5mL3vi+WF+/2MD4eHc5b7cA68vxtLETHfYP2FUUmY1fDrnPYGpFESEZ3M7J72PqS2HBpSQ+VDt3dUH3tdpIrOngemgSdUybBfgduZuVeiN94DV4C3ETEB/MjMRyXfqUsVg/8JuJOZ+xFxCVihCgrc/n+nk47n85TUzhTwIjNngW/AXWAZmMvM3g/+w771ZzPzWmY+HujzCrhf+nwAHpT6KnAvMy//y0NITXnTkNr50pcztE4VMzEDbJb06zFgr2/968EGETFJNUy2Sukl8OaI+hpw/eSPIDXn0JDaGczf+Q7sHnMz+NmgdxzRXxoKPk9J7ZyPiN6AuAHsAOd6tYg4U/5f4Y8y8xDYj4irpXQL2MrMA+CwBOcB3Dz57UvteNOQ2vkILETEc6p002VgA3hWnpc6wFNg9y99FoBuRIwDn4HFUl8EViLiV+krDQVTbqWGRikmXBrk85QkqTZvGpKk2rxpSJJqc2hIkmpzaEiSanNoSJJqc2hIkmpzaEiSavsNV4hRQRAGXe0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +2317,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 14, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +2337,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +2361,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAD8CAYAAABU4IIeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG35JREFUeJzt3X+Q1HV+5/HnCweHjYsKCC4/1OFqORN07zROoVveD3HDj81tqXvn7rEa5SpWYVy3ypypU6hw5Z6Si1xdrTnirdFa3bjrD/Q2S0likCBCnZcQYCg1ikoGbwkSWWfIoGCq4HbkfX/0Z7Snne7p6f729LdnXo+qru7+9Ofz6c98GPo9n1/fVkRgZmaWlQnNboCZmY0tDixmZpYpBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFNtzW7AaDrnnHOio6Oj2c0wM2spe/bsORIR06vNP64CS0dHB11dXc1uhplZS5H0dyPJ76kwMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObDkQM+xE3zz4R30HD/R7KaYmdXNgSUH1m3tZveBPta92N3sppiZ1W1cnWPJmwtXb+Jk/6lPnj+x8yBP7DxIe9sE9q35ahNbZmZWO49YmujluxZyzSWzmDSx8M8waeIErr1kFi/fvbDJLTMzq50DSxPNOHMSk9vbONl/iva2CZzsP8Xk9jZmTJ7U7KaZmdXMU2FNduSjk9x4+QXcsOB8ntp1kF4v4JtZi1NENLsNo6azszN8rTAzs5GRtCciOqvN76kwMzPLlAOLmZllyoHFzMwy5cDSAnwy38xaiQNLC/DJfDNrJd5unGM+mW9mrcgjlhzzyXwza0UOLDnmk/lm1oocWKrQzMXzgZP5G759JTdefgG9H50c9TaYmY2ET95XYfWG13ly10FuXHA+a77+pQa0zMwsv0Z68t6L9xV48dzMbOQ8FVaBF8/NzEauqsAi6YCk1yW9KqkrpU2VtEVSd7qfUpR/laT9kvZJWlKUflmqZ7+kdZKU0tslPZPSd0rqKCqzPL1Ht6TlRelzU97uVPb0+rtjMC+em5mN3EhGLAsj4pKiebaVwNaImAdsTc+RNB9YBlwELAW+L+m0VOYhYAUwL92WpvRbgKMR8UXgAWBtqmsqcA9wObAAuKcogK0FHkjvfzTVkTkvnpuZjUxVi/eSDgCdEXGkKG0fcFVEHJY0E9geERdKWgUQEb+f8m0GvgscALZFxC+n9G+l8rcO5ImIHZLagJ8D0ykEqKsi4tZU5mFgO7Ae6AW+EBH9kr6cyn8yOhqKL5tvZjZyjbpsfgB/IWmPpBUp7dyIOAyQ7mek9NnAu0VlD6W02elxafqgMhHRD3wITKtQ1zTgg5S3tC4zM2uianeFXRkR70maAWyR9HaFvBoiLSqk11KmUl2DG1MIhCsAzj///KGymJlZhqoasUTEe+m+B9hAYb3j/TQFRrrvSdkPAecVFZ8DvJfS5wyRPqhMmgo7C+irUNcR4OyUt7Su0rY/EhGdEdE5ffr0an5cMzOrw7CBRdIZkiYPPAYWA28AG4GBXVrLgefS443AsrTTay6FRfpdabrsuKQr0m6wm0vKDNR1PfBSFBZ/NgOLJU1Ji/aLgc3ptW0pb+n7m5lZE1UzFXYusCHtDG4DnoqIFyTtBp6VdAtwEPgGQETslfQs8CbQD9weER+num4D/hj4HLAp3QAeBX4saT+FkcqyVFefpPuA3SnfvRHRlx7fDayXtAZ4JdVhZmZN5ku6mJlZRY3aFWZmZlYVBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFjMzy5QDi5mZZcqBxczMMuXAYmZmmXJgMTOzTDmwmJlZphxYzMwsUw4sZmaWKQcWMzPLlAOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZNVXPsRN88+Ed9Bw/0eymWEYcWMysqdZt7Wb3gT7Wvdjd7KZYRtqa3QAzG58uXL2Jk/2nPnn+xM6DPLHzIO1tE9i35qtNbJnVyyMWM6uoUVNVL9+1kGsumcWkiYWPoUkTJ3DtJbN4+e6Fmb6PjT4HFjOrqFFTVTPOnMTk9jZO9p+ivW0CJ/tPMbm9jRmTJ2X6Pjb6PBVmZkMajamqIx+d5MbLL+CGBefz1K6D9HoBf0xQRDS7DaOms7Mzurq6mt0Ms5bQc+wEa/78Lf5i78858YtTTJo4gSUXfYHf/Te/4lHFOCNpT0R0Vpu/6qkwSadJekXSn6XnUyVtkdSd7qcU5V0lab+kfZKWFKVfJun19No6SUrp7ZKeSek7JXUUlVme3qNb0vKi9Lkpb3cqe3q1P4uZDc9TVVarkayx3AG8VfR8JbA1IuYBW9NzJM0HlgEXAUuB70s6LZV5CFgBzEu3pSn9FuBoRHwReABYm+qaCtwDXA4sAO4pCmBrgQfS+x9NdZhZhgamqjZ8+0puvPwCej862ewmWQuoaipM0hzgceD3gDsj4muS9gFXRcRhSTOB7RFxoaRVABHx+6nsZuC7wAFgW0T8ckr/Vip/60CeiNghqQ34OTCdQoC6KiJuTWUeBrYD64Fe4AsR0S/py6n8J6OjoXgqzMxs5Bo1FfYHwF3AqaK0cyPiMEC6n5HSZwPvFuU7lNJmp8el6YPKREQ/8CEwrUJd04APUt7SuszMrImGDSySvgb0RMSeKuvUEGlRIb2WMpXqGtwYaYWkLkldvb29Q2WxFudLgpjlSzUjliuBayQdoDAFdbWkJ4D30xQY6b4n5T8EnFdUfg7wXkqfM0T6oDJpKuwsoK9CXUeAs1Pe0roGiYhHIqIzIjqnT59exY9rrcaXBDHLl2EDS0Ssiog5EdFBYc3jpYj4DWAjMLBLaznwXHq8EViWdnrNpbBIvytNlx2XdEXaDXZzSZmBuq5P7xHAZmCxpClp0X4xsDm9ti3lLX1/GycuXL2JjpXP88TOg0QUzll0rHyeC1dvanbTzMa1ek7e3w8sktQNLErPiYi9wLPAm8ALwO0R8XEqcxvwA2A/8A4w8AnwKDBN0n7gTtIOs4joA+4DdqfbvSkN4G7gzlRmWqrDxhFfEsQsn0Z08j4itlPYlUVE/APwlTL5fo/CDrLS9C7g4iHSTwDfKFPXY8BjQ6T/XwpbkG2cqvacRc+xE3zn6Vd48IZLc3kGI+/tMxspXyvMWlo15yzyvgaT9/aZjZQv6WJjVum1rgbk5bLseW+f2YCGXdLFrNXkfQ0m7+0zq5UDi41Zeb/WVd7bZ1YrXzbfxrS8X5Y97+0zq4XXWMzMxrAsdh16jcXMxhVf0qeyZuw69FSYmbW04g/ONV//UrObkxuj8Q2g5XgqzJrOBwStFt6uXVmW3wDqqTBrOT4gaLXwdu3Kmrnr0FNh1jTNHKqPJo/IGsPbtYfXrF2HHrFYw5VbXB0vf3F6RNY4/urkyh6+qZM1113M/Flnsua6i3n4pqpns+riEYsNq96/uMstro71vzjHy4ismYo/KNdc95nr21qTOLDYsGrddVPNB+tYPiD48l0Lyy6emo1lDixWVr1/cVfzwTqW/+Ic6yMys3K8xmJl1bsG4g/W1lgD8AFDy5pHLFZWFoFhLE91VaMVRmQ+YGhZ8wFJq+jWH3cxffKkQYFhtHaWWGP5gKFVa6QHJB1YzMapLE9m29jmk/dmVhWvgVmjeI3FbBwb72tg1hieCjMzs4o8FWZmZk3lwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFrNh+CKNZiPjwGI2DH8DpNnI+OS9WRn+Bkiz2njEYlZGvd9HYzZeObBY7jVrjcMXaTSrzbCBRdIkSbskvSZpr6T/ktKnStoiqTvdTykqs0rSfkn7JC0pSr9M0uvptXWSlNLbJT2T0ndK6igqszy9R7ek5UXpc1Pe7lT29Gy6xPKmmWscrfANkGZ5M+xFKNOH/xkR8ZGkicD/Ae4A/i3QFxH3S1oJTImIuyXNB54GFgCzgBeBfxoRH0valcr+NfDnwLqI2CTp28A/i4jfkrQM+HpE/HtJU4EuoBMIYA9wWUQclfQs8NOIWC/pj4DXIuKhSj+LL0LZWvxFVGb5kPlFKKPgo/R0YroFcC3weEp/HLguPb4WWB8RJyPiZ8B+YIGkmcCZEbEjCtHsRyVlBur6CfCVFNCWAFsioi8ijgJbgKXptatT3tL3tzHCaxzZ8HZpG21VrbFIOk3Sq0APhQ/6ncC5EXEYIN3PSNlnA+8WFT+U0manx6Xpg8pERD/wITCtQl3TgA9S3tK6Stu+QlKXpK7e3t5qflzLCa9xZMPbpW20VbXdOCI+Bi6RdDawQdLFFbJrqCoqpNdSplJdgxMjHgEegcJU2FB5LL/8RVS183Zpa5YRnWOJiA8kbQeWAu9LmhkRh9M0V0/Kdgg4r6jYHOC9lD5niPTiMocktQFnAX0p/aqSMtuBI8DZktrSqKW4LhtDHr7p02ndNddV+nvGSr1818Ky32lv1kjV7AqbnkYqSPoc8GvA28BGYGCX1nLgufR4I7As7fSaC8wDdqXpsuOSrkhrJDeXlBmo63rgpbQOsxlYLGlK2nW2GNicXtuW8pa+v5kxelOJeV/DyXv76pXHn6+aNZaZwDZJfwPsprDG8mfA/cAiSd3AovSciNgLPAu8CbwA3J6m0gBuA35AYUH/HWBTSn8UmCZpP3AnsDLV1Qfcl953N3BvSgO4G7gzlZmW6miKPP7DmsHobJfO+xpO3ttXrzz+fP7O+wys3vA6T+46yI0LzmfN17+Uef1meZT37eB5b1+9RvPnG+l2YweWOoz1X1yzSnqOnSi7hpOHnXt5b1+9RvPny/wci5VX7TkLT5VZI/mSN0PLe/vqleefz4GlDtX+w+ZxDtTGDl/ypry8t69eef35PBVWp1t/3MX0yZMGnbMY2CLrqTJrJP9+2WjxGksFo32tsFaZ4+05doLvPP0KD95waa7aZZW1yu9Xq/P/D6+x5Eqe50CLeaquNbXK71er8/+PkfM3SDZYni9J4kt+tL48/361Ov//qJ2nwsYxT6WYlef/H5/yVJhVzVMpZuX5/0ftHFjGgUrnHPK6XdEsD/z/ozaeChsHfMkZM6vHSKfCvHg/hnnxsTreTmqWLU+FjWH+at/qeDupWbY8YhnDvPhYmUd0Zo3hEcsY58XH8jyiM2sMj1jGOH+1b3ke0Zk1hgOLjWs+uW6WPW83NjOzinzy3szMmsqBxczMMuXAYpZz/mrrxnL/Zs+BxSznfICzsdy/2fPivVlO+auHG8v9Wz0v3puNET7A2VhZ9a+n0j7LgcWsTo36YPEBzsbKqn89lfZZPiBpVqfiD5asv5bABzgbq57+9bXmyvMai1mNPEdfnbH6tQTj6auLvcZiNkq8BlKdsTpV5KnK8jwVZlYjf7BUNh6mijxVOTQHFrM6+IOlvJfvWlh2qmis8NXDh+bAYlYHf7CU5xHd+OU1FjNrGH/RXP1a8ZyMd4WZmeXY6g2v8+Sug9y44PzMt7NXK/NdYZLOk7RN0luS9kq6I6VPlbRFUne6n1JUZpWk/ZL2SVpSlH6ZpNfTa+skKaW3S3ompe+U1FFUZnl6j25Jy4vS56a83ans6dX+0GZmo6XWEceFqzfRsfJ5nth5kIjC5oeOlc9z4epNDWppdqqZCusHficifgW4Arhd0nxgJbA1IuYBW9Nz0mvLgIuApcD3JZ2W6noIWAHMS7elKf0W4GhEfBF4AFib6poK3ANcDiwA7ikKYGuBB9L7H011mJnlSq3brVt5O/uwi/cRcRg4nB4fl/QWMBu4FrgqZXsc2A7cndLXR8RJ4GeS9gMLJB0AzoyIHQCSfgRcB2xKZb6b6voJ8GAazSwBtkREXyqzBVgqaT1wNXBD0ft/l0LgMjNrunq3W7fy5ocRLd6nKapLgZ3AuSnoDASfGSnbbODdomKHUtrs9Lg0fVCZiOgHPgSmVahrGvBByltaV2mbV0jqktTV29s7kh/XzKxmWYw4WnXzQ9XbjSV9HvgT4Lcj4lhaHhky6xBpUSG9ljKV6hqcGPEI8AgUFu+HymNmlrUsRhytup29qhGLpIkUgsqTEfHTlPy+pJnp9ZlAT0o/BJxXVHwO8F5KnzNE+qAyktqAs4C+CnUdAc5OeUvrMjPLhVYdcdRr2BFLWut4FHgrIr5X9NJGYDlwf7p/rij9KUnfA2ZRWKTfFREfSzou6QoKU2k3A39YUtcO4HrgpYgISZuB/1q0YL8YWJVe25byri95fzOzXGjVEUe9qhmxXAncBFwt6dV0+3UKAWWRpG5gUXpOROwFngXeBF4Abo+Ij1NdtwE/APYD71BYuIdC4JqWFvrvJO0wS4v29wG70+3egYV8ChsF7kxlpqU6rAla8QCXmTWOD0ha3fJwgMvMGmekByR9rTCr2Xi4eq2ZjZyvFWY1a+UDXGbWOA4sVrNWPsBlZo3jqTCri7+PxMxKefHezMwq8nfem5lZUzmwjAE+R2JmeeLAMgbUelluM7NG8OJ9C/M5EhsPeo6d4DtPv8KDN1zqHYctwiOWFuZzJDYeeETeejxiaWE+R2JjmUfkrcsjlhY3Xi/LbWOfR+StyyOWFjdeL8ttY59H5K3LgcXMcstXdmhNPnlvZmYV+eS9mZk1lQOLmZllyoHFzMwy5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDLlwGJmZplyYDEzs0w5sJiZWaYcWMzMLFMOLGZmlikHFjMzy5QDi5mZZWrYwCLpMUk9kt4oSpsqaYuk7nQ/pei1VZL2S9onaUlR+mWSXk+vrZOklN4u6ZmUvlNSR1GZ5ek9uiUtL0qfm/J2p7Kn198VZmaWhWpGLH8MLC1JWwlsjYh5wNb0HEnzgWXARanM9yWdlso8BKwA5qXbQJ23AEcj4ovAA8DaVNdU4B7gcmABcE9RAFsLPJDe/2iqw8zMcmDYwBIR/xvoK0m+Fng8PX4cuK4ofX1EnIyInwH7gQWSZgJnRsSOiAjgRyVlBur6CfCVNJpZAmyJiL6IOApsAZam165OeUvf38zMmqzWNZZzI+IwQLqfkdJnA+8W5TuU0manx6Xpg8pERD/wITCtQl3TgA9S3tK6PkPSCkldkrp6e3tH+GOamdlIZb14ryHSokJ6LWUq1fXZFyIeiYjOiOicPn16uWxmZpaRWgPL+2l6i3Tfk9IPAecV5ZsDvJfS5wyRPqiMpDbgLApTb+XqOgKcnfKW1mVmZk1Wa2DZCAzs0loOPFeUvizt9JpLYZF+V5ouOy7pirRGcnNJmYG6rgdeSuswm4HFkqakRfvFwOb02raUt/T9zcysydqGyyDpaeAq4BxJhyjs1LofeFbSLcBB4BsAEbFX0rPAm0A/cHtEfJyquo3CDrPPAZvSDeBR4MeS9lMYqSxLdfVJug/YnfLdGxEDmwjuBtZLWgO8kuowM7McUGEAMD50dnZGV1dXs5thZtZSJO2JiM5q8/vkvZmZZcqBxczMMuXAYmbWRD3HTvDNh3fQc/xEs5uSGQcWM7MmWre1m90H+lj3Ynezm5KZYXeFmZlZ9i5cvYmT/ac+ef7EzoM8sfMg7W0T2Lfmq01sWf08YjEza4KX71rINZfMYtLEwsfwpIkTuPaSWbx898Imt6x+DixmZk0w48xJTG5v42T/KdrbJnCy/xST29uYMXlSs5tWN0+FmZk1yZGPTnLj5Rdww4LzeWrXQXrHyAK+D0iamVlFPiBpZmZN5cBiZmaZcmAxM7NMObCYmVmmHFjMzCxTDixmZpapcbXdWFIv8HdlXj6Hwtce55XbVx+3rz5uX31avX0XRMT0aisbV4GlEkldI9mnPdrcvvq4ffVx++oz3trnqTAzM8uUA4uZmWXKgeVTjzS7AcNw++rj9tXH7avPuGqf11jMzCxTHrGYmVmmxmxgkfSYpB5JbxSl/XNJOyS9LulPJZ2Z0idKejylvyVpVVGZ7ZL2SXo13WY0oX2nS/phSn9N0lVFZS5L6fslrZOkLNqXcRsz70NJ50nalv699kq6I6VPlbRFUne6n1JUZlXqp32SlhSlZ96HGbev6f0naVrK/5GkB0vqanr/DdO+PPTfIkl7Uj/tkXR1UV156L9K7Rt5/0XEmLwB/wr4VeCNorTdwL9Oj38TuC89vgFYnx7/EnAA6EjPtwOdTW7f7cAP0+MZwB5gQnq+C/gyIGAT8NUctjHzPgRmAr+aHk8G/haYD/w3YGVKXwmsTY/nA68B7cBc4B3gtEb1Ycbty0P/nQH8C+C3gAdL6spD/1VqXx7671JgVnp8MfD3Oeu/Su0bcf9l1tF5vAEdDP5QPMan60rnAW+mx98C/pTCF59NS/8IUxv1S1lD+/4n8BtF+bYCC9Ivz9tF6d8CHs5TGxvdh0Xv9xywCNgHzExpM4F96fEqYFVR/s3pP3PD+7Ce9uWl/4ry/QeKPrjz0n/l2pe3/kvpAv6Bwh8Rueq/0vbV2n9jdiqsjDeAa9Ljb1D4YAT4CfCPwGHgIPDfI6KvqNwP0xDwP2cxTK2hfa8B10pqkzQXuCy9Nhs4VFT+UEprpJG2cUDD+lBSB4W/uHYC50bEYYB0PzBsnw28W1RsoK8a3od1tm9As/uvnLz033Dy1H//DnglIk6Sz/4rbt+AEfXfeAssvwncLmkPheHh/0vpC4CPgVkUpiF+R9I/Sa/dGBFfAv5lut3UhPY9RuEXrgv4A+CvgH4Kf1mUavQ2v5G2ERrYh5I+D/wJ8NsRcaxS1iHSokJ6JjJoH+Sj/8pWMURaM/qvktz0n6SLgLXArQNJQ2RrWv8N0T6oof/GVWCJiLcjYnFEXAY8TWEeGwprLC9ExC8iogf4S6Azlfn7dH8ceIpCEBrV9kVEf0T8x4i4JCKuBc4Guil8kM8pqmIO8F6j2ldjGxvWh5ImUvhP82RE/DQlvy9pZnp9JtCT0g8xeAQ10FcN68OM2peX/isnL/1XVl76T9IcYANwc0QMfPbkpv/KtK+m/htXgWVgN4OkCcBq4I/SSweBq1VwBnAF8Haa1jknlZkIfI3CVNCotk/SL6V2IWkR0B8Rb6ah7HFJV6Th6c0U5lIbZqRtbFQfpp/3UeCtiPhe0UsbgeXp8XI+7Y+NwDJJ7Wmqbh6wq1F9mFX7ctR/Q8pR/5WrJxf9J+ls4HkK62h/OZA5L/1Xrn0191/Wi0R5uVH4a/ow8AsKfxXcAtxBYWH+b4H7+XQR+vPA/wL2Am8C/ymln0Fhd9PfpNf+B2mnzii3r4PCottbwIsUrjQ6UE9n+od+B3hwoExe2tioPqSwAyhSva+m269T2HyxlcJoaStpE0Yq87upn/ZRtPOmEX2YVfty1n8HgD7go/T7MD9n/feZ9uWl/yj8EfaPRXlfBWbkpf/Kta/W/vPJezMzy9S4mgozM7PGc2AxM7NMObCYmVmmHFjMzCxTDixmZpYpBxYzM8uUA4uZmWXKgcXMzDL1/wERgRmeflUJDAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +2400,59 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2021 743449\n", + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2010315\n", + "2022 2060304\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2023 2873501\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2024 3670417\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +2467,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFJlJREFUeJzt3XmUZGV5x/Hv4wzCQLOZkUYHZNxiREZAGhWJ2IM74M4RFRA86miiQHA8CXJUooaIC+aoccm4Hxf6KJi4YFwCaXALMoPLiCh4YBQGAVl1gIgjT/5474RyYOjuquq+XW99P+fMmapbt+q+z1vVv7r3vffWjcxEkjT47tN2AyRJ/WGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiqxcC4Xtnjx4ly6dOlcLvLP3HrrrWy33XatLb9tw14/2AfWP5j1r1mz5vrMvP9U881poC9dupTVq1fP5SL/zOTkJOPj460tv23DXj/YB9Y/mPVHxK+mM59DLpJUCQNdkiphoEtSJQx0SaqEgS5JlZgy0CPi4xFxXUT8tGPa/SLiWxFxWfP/zrPbTEnSVKazhv5J4BmbTTsJOCczHw6c09yXJLVoykDPzPOBGzeb/BzgU83tTwHP7XO7JEkzFNO5pmhELAW+mpl7NfdvzsydOh6/KTPvcdglIlYAKwBGR0f3m5iY6EOzu7NhwwZGRkZaW37bBqH+tetvmdXXH10E195+9+nLluw4q8udLwbhMzCbBrX+5cuXr8nMsanmm/UzRTNzFbAKYGxsLNs8S2tQzxLrl0Go/9iTzp7V11+5bCOnr737x37dkeOzutz5YhA+A7Op9vq7Pcrl2oh4AEDz/3X9a5IkqRvdBvqXgWOa28cAX+pPcyRJ3ZrOYYtnAN8HHhERV0XEy4HTgKdGxGXAU5v7kqQWTTmGnpkv3sJDT+5zWyRJPfBMUUmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ilegr0iDgxIi6OiJ9GxBkRsU2/GiZJmpmuAz0ilgDHA2OZuRewAHhRvxomSZqZXodcFgKLImIhsC1wde9NkiR1IzKz+ydHnACcCtwOfDMzj7yHeVYAKwBGR0f3m5iY6Hp5vdqwYQMjIyOtLb9tg1D/2vW3zOrrjy6Ca2+/+/RlS3ac1eXOF4PwGZhNg1r/8uXL12Tm2FTzdR3oEbEzcBZwBHAz8AXgzMz8zJaeMzY2lqtXr+5qef0wOTnJ+Ph4a8tv2yDUv/Sks2f19Vcu28jpaxfebfq60w6d1eXOF4PwGZhNg1p/REwr0HsZcnkKcEVm/jYz/wh8EXhCD68nSepBL4H+a+DxEbFtRATwZOCS/jRLkjRTXQd6Zl4AnAlcBKxtXmtVn9olSZqhuw8mzkBmngKc0qe2SJJ64JmiklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVaKn30NXnWb7up6SZodr6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklSJngI9InaKiDMj4ucRcUlEHNCvhkmSZqbXS9C9F/h6Zh4eEfcFtu1DmyRJXeg60CNiB+Ag4FiAzLwDuKM/zZIkzVRkZndPjNgHWAX8DNgbWAOckJm3bjbfCmAFwOjo6H4TExM9NbgXGzZsYGRkpLXlt2269a9df8sctKYdo4vg2tvvPn3Zkh3nvjGNuezvzvrbrLktg5oBy5cvX5OZY1PN10ugjwH/AxyYmRdExHuB32Xmm7b0nLGxsVy9enVXy+uHyclJxsfHW1t+26Zb/9KTzp79xrRk5bKNnL727hum6047tIXWFHPZ3531t1lzWwY1AyJiWoHey07Rq4CrMvOC5v6ZwGN6eD1JUg+6DvTMvAa4MiIe0Ux6MmX4RZLUgl6PcjkO+GxzhMvlwMt6b5IkqRs9BXpm/giYclxHkjT7PFNUkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekSvR6gQupCjVfR1XDwzV0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ileg70iFgQET+MiK/2o0GSpO70Yw39BOCSPryOJKkHPQV6ROwGHAp8tD/NkSR1KzKz+ydHnAm8HdgeeH1mHnYP86wAVgCMjo7uNzEx0fXyerVhwwZGRkZaW37bplv/2vW3zEFr2jG6CK69ve1WtKez/mVLdmy3MS0Y1AxYvnz5mswcm2q+ri8SHRGHAddl5pqIGN/SfJm5ClgFMDY2luPjW5x11k1OTtLm8ts23fqPrfiCySuXbeT0tcN7bfTO+tcdOd5uY1pQewb0MuRyIPDsiFgHTAAHR8Rn+tIqSdKMdR3omfmGzNwtM5cCLwLOzcyj+tYySdKMeBy6JFWiL4OJmTkJTPbjtSRJ3XENXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoM78UVB8DSPl/bc+WyjVVfL1Saytr1t7T2N7DutENnfRmuoUtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1Ilug70iNg9Iv47Ii6JiIsj4oR+NkySNDO9XIJuI7AyMy+KiO2BNRHxrcz8WZ/aJkmaga7X0DPzN5l5UXP798AlwJJ+NUySNDORmb2/SMRS4Hxgr8z83WaPrQBWAIyOju43MTHR8/K6tWHDBkZGRmb8vLXrb5mF1sy90UVw7e1tt6Jdw94H86X+ZUt2bGW51914S2v191Lz8uXL12Tm2FTz9RzoETECnAecmplfvLd5x8bGcvXq1T0trxeTk5OMj4/P+HlLW7pKeL+tXLaR09f2Mso2+Ia9D+ZL/etOO7SV5b7/s19qrf5eao6IaQV6T0e5RMRWwFnAZ6cKc0nS7OrlKJcAPgZckpnv6V+TJEnd6GUN/UDgaODgiPhR8++QPrVLkjRDXQ8mZeZ3gOhjWyRJPfBMUUmqhIEuSZUw0CWpEga6JFXCQJekShjoklQJA12SKmGgS1IlDHRJqoSBLkmVMNAlqRIGuiRVwkCXpEoY6JJUifavRTVN/bgM3MplGzm2ksvJSdLmXEOXpEoY6JJUCQNdkiphoEtSJQx0SaqEgS5JlTDQJakSBrokVcJAl6RKGOiSVAkDXZIqYaBLUiUMdEmqhIEuSZUw0CWpEga6JFXCQJekSvQU6BHxjIj4RUT8MiJO6lejJEkz13WgR8QC4APAM4E9gRdHxJ79apgkaWZ6WUN/LPDLzLw8M+8AJoDn9KdZkqSZiszs7okRhwPPyMxXNPePBh6Xma/dbL4VwIrm7iOAX3Tf3J4tBq5vcfltG/b6wT6w/sGsf4/MvP9UMy3sYQFxD9Pu9u2QmauAVT0sp28iYnVmjrXdjrYMe/1gH1h/3fX3MuRyFbB7x/3dgKt7a44kqVu9BPqFwMMj4sERcV/gRcCX+9MsSdJMdT3kkpkbI+K1wDeABcDHM/PivrVsdsyLoZ8WDXv9YB9Yf8W63ikqSZpfPFNUkiphoEtSJQx0SaqEgT5NEbEkIpa03Y62RMRDIuLEiDi47ba0YdjrB/tgEOo30KcQEUsj4jzg68C7IuKJbbdprkXEXwPfovxmz6sj4m9abtKcGvb6wT4YlPoN9HsQEdt03H0McGFmLqMconl8RCxr5runs2UHXkQcHBEPbm4HcDBwSma+EjgdOCQixjser8qw1w/2waDWb6A3ImKHiPhwRFwKvDsi9mgeeh7w6+b2BPBL4BWbnjbHzZxVEbFnRPwE+EfgExFxcJbjWvcEdgXIzAuA7wEv2/S0Nto6G4a9frAPBr1+A/0uzwC2obxxdwBvjohFlM2sZwFk5h+AM4EnNvfvbKep/RERu0XEDh2TjgDOysyDKF9eL4mIhwOfo+mDxr8De0XE1oPcB8NeP9gHtdU/VIEexcKIeHlEfDsiToiIhzYPPwy4IzM3Av8C3AQcBXwTeEBE3K+Z71Lgyog4YM4L6JOIeGREfA34DvDWiNj0s8f/C2zb3P48cA1wKGVt5C86tlpupPxq5t5z1+r+Gfb6wT6otf6hCvRm0+lJwEuBdwJbAx9pHr4GuK75xr2S8mY9lPIG/4y7fgJ4K+CGZvrAiIjtOu7uA1yVmUuBc4F3N9NvBP4QEdtn5o3AZcADKbV+D3hdM999gT8B62a/5f0x7PWDfTAM9Vcd6BFxQES8IyKObe4H8Ejg65n5lcx8J7BHRDwBWE/5Zn5k8/RLgJFm2r9SdoI8i/JlMAr8eE6L6UJE7BwRn4yIC4HTIuL+TR8sA74bEZGZXwZujohDKVsf2zeP09zfBbiTstWyS0R8BDgD2JiZ1811TTMx7PWDfTBs9Vcb6BHxKOBDwO+BF0bE6yj1LgF+37Fn+pPASygBvRF4QjP9Isqe7dsy83zgJOBY4EDgbZl553zau70FB1FqOoSy4+ZkYAfKj6ntmnf9kM+nKH3wA0p/PRMgM7/fvMbCzLwEeBVwMfDPmfky5r9hrx/sg+GqPzMH/h9lTfoVlM2ohc209wAnNLfHgPcBhwNPAb7R8dzdKZteUAL8h5QrK+0LfAl4QMe80XatW6h/AeWDdh5laGhxM/3zwPHN7QcDpzWP708ZO1zQ0X+/bV5nCWXr5LXAJ4APAtu1XaP12wfWP/W/gV9Dj4i9KTsunwOcAryxeWg95bqnUL5Rvwu8ADgH2DUiHh0RW2UZL18fEU/MzHMpP6/5DuCLwBmZ+ZtNy8rmnZ+HDgOeDbwFOICyfwDKETqbtjiuBL4NPDMzL6SsrSwHyMwNwAXA/pm5HjiaMqx0DfDGzLx1juro1rDXD/bBsNcP9HYJulZExL7ArZl5aTPpscClmXlsRDwGODUixoBJ4OkRsW1m3hYRPwZeSDmW9HPAK4H3RcTtwFrgiub1Pgx8LjNvmbuqptaM9WVE7E/ZNPw2cHaWQyn/Erg8M8+NiCsoZ7Q+DVgDPC8iFmfm9RFxGXBrRDwIeD9wVETsQrna1A2UzU0yczWwes6LvBfDXj/YB8Ne/3QMzBp6RDwsIr5DGfN+c0S8tHnoTmBds7Z9EWVT6QDgNu465Ajgj5RNql0pa+E/bV7rPOD6zLwKylr4PA7zg4CPU/a4PwV4ezPLncClEbEoM6+g9MGjKWOBV1OOrYWyV34B5X0/i9IPRwL7AatyHh1P2ykiFjT1P4myCTxU9QM0tWWUsxOH8TOwwzDXP21tj/ls6R+wHXBAx/3DgPc2tx9H+fbcAziGspm1pHnscMp4+abHzmumb0MZblnc8Zr7Avdtu9Yt1L8t8Gru2prYCvg74DXN4zsDP2lqOIIyNri0o69WUa5wfhhlC2RHyj6Cr3XWDNyn7Vrv5f1/BeWPbiVlR9bQ1N/Rvu2BsylXBAM4cVj6oPkbOKb5uz1r2Orv5t+8XEOPiJOBy4GvRcRoM/nplGPDyXLq7Q+A4yjHkO5OOWYcylj5PpSjUz4F3BQRn6bs7PwF8P9jYZn5w8y8Y/YrmpmI2BX4KjAOfJqyE+f5lC2PjQCZeRNlp+3xlHHCXbjrkMvzKcfb35GZXwU+RjnD9QOUvfl/3LSsnIdrJM3xwudQ/vg+AjyNsv9jf8qaWNX1b2YR5XyJh0bEYsrnfAHU3QcRsRVl39fhwLsy8wXNQ/tumqfm+rvW9jfKFr6ZxymbSx8FVjbTXkcZL9s0z57Alc3tU4G3djx2IbBvc3tryiFL+7dd1wzqXwQ8ruP+sZSdPMcAP+iY/kDg6ub2ayinKu/cPP8rwIM65l08F23vYx/s1HH77yl/tEcOS/0d7T4GeBfwJuDllNPPLxyGPqAcmHDkZtOOAC4Yhvq76rO2G7CFN3LToURHcNeQyU7AzcA2HfNdSPnG3gn4AmUT6z8p38Bbt11HD/XHpn/N/cd09MMNlONnN837rU3hD/wT5YifG4B/aLuOPvTDDpT9HNcCb23u3wCM1l5/x3v/MsrQ2/OBzzbTrh+SPjiMcmLP6ZSDHN5MGUq9Edil9vq7+Tcvh1wy80/Nzf8Cto+IvTPzZsq4+as6Zr0I2L557DjKsMp/ACuy7PkeSNnomHQCZW0FyvjfiQBRfl/mV8CmQyvfQtmSWZKZ75ij5s6azPwdZWjt8ZSd2S+kDJu9Kopq6+94/w+hDDudA+wWEW+k7OxfAXV/BrIMlVxBCeejgUcBz6V8Bl5d+2egG/HnuTH/RMQHKePhr2+O8vhbSrDvTDlh6JCOL4DqRMRulPG/4zLz0ig/JraC8uFeAvwo5+MZa30WEftQvsy/Txkn3YtyqFm19UfECGW4ZWtKzX9FORnmZMqa+8Opvw+2zczbmtt7Uz7736Wcml/9Z2CmBiHQ96EctfJkyof6Nspp+LcDH87Mi1ts3qyL8vsxTwLeQBlPvYqyiXkE8PMsh2pWLyJ2p3yxvTgzb4iIo4CLM/OHLTdt1kS50Mq/UXbgnUE55O7kzHxa83j1fdApyi8dfhQ4IjNvHLb6p2MQAv1FlEP3bgPeRtnjXc9e6SlExHeBh1B+1e1q4C2Z+ZNWGzVHImJHyhf5Syg7wVcBH8jMP97rEyvVnAzzfGAiM69puz1zISK2plyrYNOQy4eAD2b5mWttZl4HekQ8mnIa/pmUHUID9ZO1vWoO3TqFMo74mUHeL9CNiFhIGWb5A6X+oXr/N4mIBcCdOZ//WGdRRLyKcrjqp4f1MzBd8zrQJUnTNy+PcpEkzZyBLkmVMNAlqRIGuiRVwkCXpEoY6JJUCQNdkirxfxo0Erf7i0deAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -341,9 +2500,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } @@ -364,7 +2521,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4,