Inverted x and y axis

parent 12d8e7c9
......@@ -54,19 +54,32 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 53,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXeYHNWZ7t8zWROVRkJ5RBTBIgiMCQYMxiAZL9h4nXnYxSzYu3cd19nXgHfXeXcv3sUJmwUcsI0NakDYRhYwYCREFEgIRSZHjTTSRE08949vjru6+lTq7urqqvp+zzNPd1eHOae76q233pOElBIMwzBM+CkKugAMwzBMbmBBZxiGiQgs6AzDMBGBBZ1hGCYisKAzDMNEBBZ0hmGYiMCCzjAMExFY0BmGYSICCzrDMExEKMnnP5s/f75saGjI6L2HDx/G7Nmzc1ugEBDHesexzkA86x3HOgPe6/3iiy/2SSnrHV8opczb35o1a2SmrF+/PuP3hpk41juOdZYynvWOY52l9F5vAC9IFxrLkQvDMExEYEFnGIaJCCzoDMMwEYEFnWEYJiKwoDMMw0QEFnSGYZiIwILOMAwTEVjQGYaJNQcPAkNDQZciN7CgMwwTa/7v/wXuuivoUuQGFnSGYWJNWxswPBx0KXIDCzrDMLGmowMYGwu6FLmBBZ1hmFjT2QkcPRp0KXIDCzrDMLFlYgLo7WWHzjAME3q6uwEpWdAZhmFCT0cH3bKgMwzDhJzOTrrlDJ1hGCbkdHYC9fXs0BmGYQqeO+4A+vqsn+/oAFauZEFnGIYpeH78Y2DHDuvnOzuBY49lQWcYhil4Bgfpz4qODhJ0ztAZhmEKnKEhe0Fnh84wDBMShoaAgQHr5zlDZxiGCQGTkxSlWDn0oSFgfBw45hgWdIZhmIJGzXFuJeidncCSJUBFBWfoDMNEjMFB4KKLgi5F7lBCbifoixcD5eXs0BmGiRi7dgHPPht0KXKHcuhWGXpHBws6wzAhREr6s2P3bpp9cGoqP2XyGzcOfckSEnSOXBiGCQ2bNwPveY/9a3bvptuouFU3GfrixZShR6XOLOgMEwO6u4GuLvvXKEGPilsdGgJmz7YW9I4OcuglJcD0dDSuTFjQGSYGOA2wAaIn6IOD5MCdHLoQ0cnRWdAZJgY4Cfr0NLB3LzBvXnQEfWgIWLTIvlF0yRK673eO/uyz+bkCYEFnmBjgJOhtbcCcOdGaStbOoUtJEdTixfTY7xz9ootY0BmGyRHDwyRsVj1ddu8GTjopWoNshoasBf3gQaCyEpg1ix77GblMT9Oo1dJSfz7fCAs6w8SAoSFyiFZiHUVBHxykCGl6Ol2sVX6u8FPQJyaAsjLK6v2GBZ1hYoBTF74oCvrQEFBTQ3/mehvzc8DfDH1sjAQ9H7CgM4yGPXuA1tagS5E7hofp1knQozTIRgl6bW16vc0O3c8MfWyMvtd8wILOMBpuvx34xS+CLkXuKESH3t4ONDXV5uSzHn44vX1gcBCortY7dDVKVOFn5FJQgi6EWCaEeEII8boQ4jUhxCdnts8VQmwUQuyduZ3jf3EZJj/09ESntwdgL+jDw8CBA8CKFfkT9Olp4H3vAx588PisP0tK4L3vpcFTRpwil3xl6AUl6AAmAXxWSnkygLcA+CchxCkAvghgk5TyBACbZh4zTCTo7o5O9ACQaFuNmty7FzjuOKC4OH+C/sMfAtu3AyMj2Xf9GB2lec37+1O32zn0nh5g4cLkYz+jpvHxAsrQpZRdUsqXZu4PAngdwBIAVwO4Z+Zl9wC4xq9CMky+iaJDX7RIL+gqbgHyI+htbcAttwDf+Q4wOlqS9ecdOpR6qzA6dPPgor4+6nOviGWGLoRoAHAmgK0AFkopuwASfQALcl04hgmKqDn0oSFamcdK0Fetovt+D7CREvjHfwQ++Ung3HOBkRH/BF05dF2jaF8fMH9+8nFUIhfX36YQohrA7wF8Sko5IFx2qhRC3ATgJgCor69HIpHIpJwAkNV7w0wc6+1nnR99tAHnndeFOXP0R/DYWDGGhq7Cnj2tSCRe9q0cOvyq96FDV2LFil5s2XIY9fVvpDy3adNZOPPMA0gk2tDWdgoOHZpAIrHXl3I899wxePXVk3H99U/iuecqMTJyXtZ13r59HoAL8ec/vwQp2/66vb9/HZ56aiMOHDgJmzePYP78ZL07O6/E888/jr17xwEAPT1n4tlnD6KqKvddm157bR6GhlYhkXgmZbsvv7WU0vEPQCmAPwH4jGHbbgCLZu4vArDb6XPWrFkjM2X9+vUZvzfMxLHeftf5rLOk/NOfrJ9/4w2aPfz97/e1GGn4We+KCik/+1kpb7st/bk1a6R89lm6f8st9OcX//ZvUn7pS3S/t1fK2tqjWX/m739Pv9d//Edy2/S0lMXFUo6PS/mVr0j59a8nn5ucpOcmJpLbbr5Zyh/8IOuiaHnsMSkvuyx1m9ffGsAL0oVWu+nlIgD8DMDrUsr/NDz1EIDrZ+5fDyB+NpIJJYOD9vOaqN4SUcnQJyepYa6+Pr3eUlKf+3xl6Mb4obbWv8jl6FGaFre0ND1DP3yY/neJ4V/7GbmMjxdWhn4BgOsAXCqE2Dbztw7AtwBcLoTYC+DymccMU/AMDlrPwAdQg2hZWXQy9OFhoKpKnyV3d5OIz55Nj/0eWGQUdHWb7f/r76c5WYy9XFSDKJBeb3N+rsoSiwxdSvkXAFaB+WW5LQ7D+I8bh758ebQE3ar7Xm8v9X5R5NOhA0Bl5SQGBopRUZH5Zx46RN0ujQ5dNYgC6fWOsqDzSFEmVkxPJ2cetKKnhwbZREXQh4bIoesE/dAhYO7c5ON8C/qsWZO2V0tuOHQIOP74VEE3OnQ3gu5nvVnQGcYnnIbAA+TQV6yIToY+NGTt0A8eDFbQKysnfBF0O4d+8GB+HXpBDSximCjhtBI8EE2HbiXoQTt0ilyy+0wrh24UdOP/4MiFYSKCEjQ7EenuBhoa8ivo554LHD6c/VH/y18Ct92Wus0uQz90iOYMV/g9sMgvh27O0DNpFOXIhWFChheHnq/IpasLeO653Aj6vn3UDdFIIWfouXDo/f3AypVUN7XMm9dG0VgO/WeYsDM4SCvHFFLksnUr3eZiXpODB9MnqSrkDD1XjaLz55MTP3KEtnltFPU7cuEMnSkYsj3gConBQWDBAmtBHxqinjDz5+dP0J97jm5zNVGVeU4TFblUVwMjI1Q/4+uDduhKhK2w2/8mJqhOtbVUD1V3o0OvqqLXKPeeb0EvtIFFTIwZGKDL2aigVoK3EomeHprEKp8LPWzdSoKUK0HXOfSqKqCoiAbgqNWL1OuNGXo+BxYBwKxZ9hn6a68Ba9ZYP9/fD8yZQ1ddRkE3OvSiIhJ31cOJM3QmtjQ10UGi3E3YUYJu5dC7u2me7JISEonJSX/LMzUFvPACcPHF/jl0c48PY90LwaHbCfquXdQuoMTYjLH8c+boHTqQWm/O0JnY0tREt1Hpwjc4SEuPWQm6ceGDfLj03btpjpWGhtw6dONybHaCHnSG7tTLZd8+ut25U/+8UdCtHDqQrPfkJN2qqQ4UXiKXiQmgpcXdawEWdKaAaG6m2ygJ+qJFFDuY16AEyKEfcwzdz4egb90KvPnNJDi5ahSdmkoVbZWhA6mCLmXhO/R9++hqaccO/fMqcgHSBV3n0A8dotcXmZTPi6A/9hjw4Q+7ey3AjaJMAaEc+uhosOXIFYODQF0dCZcxS1YYHbrfeTJAgn7uuSQ42c48OD1NvTwWL06fqKqqiu4bBX10lGKlWbOSry00Qd+/n+Ko117TP2926KreushlYEAftwDefuu2Nm8OnRtFC5TmZvox40QUIxerZcmAZKMo4P8gG4B6uChBP3o0O0E/coRErL7eftSkEnRzgyiQdKq6q5dc4LVRdN8+4Oqr3Qu6VeSiBhdZCbqX37q9HejspOjFDRy5FCi33w7cdVfQpcgvTU10eRpGQX/ssdQuekBS0HVTyQLJRlHAf7c6MkIZ+hln5CZyUeI2Z06qQ7eKXMxxC0ALRZeUuBcrr3jptnj0KM0GuXatd0G3ahS1c+huBb2jg/arjg53r2dBL1A6O6MzYRNADnXTJuvnpSRBP/bYcEYu114LtJpWFDM6dJ2gmx26n4L+0kvAKafQ/8mFoB88SI7bGD0A1pGLuUFUkc+ZB+0il6Ymmsb42GOpPjrht+rlYtUomitBF8J97MIZeoHS1RVOp2rFM88AX/2q9fMHD9KKL8ccE756j4/TQa1bONhO0I0O3e8MXcUtQO4dutvIJZ+CLmX6zIN2vVz27aNJt4qKgJNP1vd08eLQc5Wht7cDp52Wbhas4Ay9QOnsDJ+w2TEwYD8Kr6mJBhXNmhW+eqsD++DB1O12GbqU6d0W/bwiUz1cAH8jF6+C7teJbHycDIKxh0lp6TSmp/XfsxJ0ADj1VH3s0t+f/wy9owM4/3z3gs6RSwEiZfQilyNH9JexCiXoFRXhi1yUkFsJui5DHxxMjioE/I9c/HLoRmED0jN0dSLTNYoC/tVbJ2xCWLdn7N9PsygCJOi6rouqGyKQrPfUFJW/sjL5OqfIpayM2g3MbS5mBgfpdaef7i1yYUEvMAYGSNTC5lTtOHLE2aE3NOR3GHyu0C0cDFB9rSIXozsH/K93Tw+wbBndz5Wgz5und+iFkKFbCVttrX4/dOPQzRl6f39yDVVhWDjTSdCFIFEfH7evQ0cHsHQpTd7GDj3EdHbSbdQcunHKUTPGyCVqDt1K0FWDKOBvhi4lfbY60HMxl4sSaKNDn5ig31f9nyAzdL8FvbycRLm7OzU/B5wFHXBX744OGmm8fDk3ioYaJehhc6p2GKca1dHcnIxcwlZvnUMfHydxU71KzIJubBAF/M3QJyepi2BxMT2urgbGxkqy6v+ty9BV3KLcaqEKujn6m5igxseGBnq8fDntp8Yrj+lp4PDhZOQC0P2WlnRBVycNO0F309PFKOitre7663OjaAHS1UUDNsImbHaog8iu21hYBV2tG2l06MqdC6FvFDU79Hx23ysuBkpLp7SjV92iy9CNcQvgXtD9OJF5ceitrfRbqNcLQV08jS59YIDqVmK4sJk7l95rbBAF3Dl0N4Le3k6RS20tuW5zpKeDI5cCpLOTxC1qkYvx1sj0NDmdhobwRi4nnKAXdEDfEGd26H5GLsa4RTFr1qTtwhtO6DJ0qzlNgGS/dTP5duh1demCboxbFObYRXdCmjtX79Braqi+R4+mi73Ci0MH3McuLOgFSFcXDXAIm1O1w86hd3XRgVZZGU6HfugQCbp5JXirVWyA/DaKjo3R5xvJhaDrHLqVoBdS5GLeB/fvdxZ048RcCjuH3tJC7tzYWGrETb3b25OC7rZhlDP0APjMZ6yHFwPRdejz5+sduopbAP/7oScSwFvfCnznOzQUPhc4OXSdoHd10UyMinzPkZ2toKtG0dpays4nJ1O7LALhEfR9+5JdFhXmrotWDr2tTe/QJyas4xbAvUNfupTuqxzdjqkputotyX4iTVewoM+wZQu5AiuUoIfNqdoxMEA7pc6hqwZRwP9+6Hv30kHd0gK87W3AL35xctafefAgcOKJ9oJurrdO0MMSuRgbCIuK6Ps8fNg6Qx8dpQY940yLCi9R0w03ANu3u3utV0E3O/Q3vQl49dVkryydoKtGUZ1DB3Ij6F4iF9UganVVkGtY0GcYHrbu7QHQwR41QT9yhPpB6wTd6NDzMaXqGWcAd9wB/PCHQEuLRcjpgUOHyOEdOZIcLOKUoZsF3e9lyXIZuQwMkCtVTlDN52KOXGbNIufe3U2v0QmNl9970yYSWTdkK+iLF5M73rKFHntx6KWlVK9sBH1ighpVVSznJnLJZ34OsKD/FTtBV6NEoxS5SJkUdDeRi58O3Ti/R10dMDJSmvVnHjxIi0FXV5NTBewjl6kpmtkvnxl6Lh26WdzUfC7myEUIetzSom8QBdzXW3UtdDultFtBn55OTgpn5j3vAR54gO5bCfr4uL7hs6bGXtCd6t3VlVyeEHDn0POZnwMs6H/FTtCPHKEfMZ8rwfvN6GiyTlYOXfUB9tuhG/vp1tUBw8PZCbqUyR4c8+alTthkJeh9ffS/jQefnxm6LnKpqMhc0M2jPo0O3Ri5AMkGQl1+TuVw93u3tpL4ZivodXWppqKjg05I5nIDSUHXrbYEJB+bHTrgLOhODt0YtwDuMnR26AExPGy9zmRXF13ueZlis9A5coQOJPPBpDBn6H5HLqkOPbsWJLUST2UlCbrK0XUZuhoY0t2dGrcAhdfLZXzceiCLlUM3Ry5Asr0iW0FvaqLvOdsh8GaHvmdPetyiOPVU2ldefjl1Yi6FnaDX1mYn6KoPumLRIiqD3XeVz0FFAAs6ADpI7Bx6Zyf9eOXl9gdVmDhyhHZwXX45OUl1Xr6cHoctcjG61blz9YJeXk6Nh+oANufn6jWFFLn8zd9YL7BinmjLKkMH3Dl0N8alqQlYvTr3kcv27dQAqkOIpEs3TsylUHXKJHJx+r3NDr2oiB7b1Z8degAcPUoibSXoyqELQY0rUXDpyqHrBL2zk3Z8JbL5iFzU/6qtJYee7RB4JW5WkQuQGrvoBN1LvaengQMH3JfRay+XvXtpBaYHH9Q/7zZDB6jezc3ZZ+jNzcBFF/kj6KtXW3+OUdB1vVwAvUO/9FLrEwXgfCIzCzrgHLuwoAfAyAjdOjl0ID/rTOaakRHKiI3YRS4HDlCDoiKfGXppKc2Rnc0QeDcOHXAn6G5/68ZGWvvSLV4jlzvvpC6CTz2lv1oyi1s+MvSmJuDss2n/cvN7uRX0V1+1F96zz6bfbds268hF59BvvdX+c71GLgD1dLFrGOVG0QBQO6PVwdTZSQ4dCOeoyXvuAT7/+dRtdg69r4/mrVH4HbmYd3q7dSbdYBzSni+H3txsP47BjJfIZWws+RuecQbw5JPprzE3iqrh/1aRS1tbbgT92GOpp5Qbl+5G0KemaGWi006z/pyiIuDd76bfzlwH1XVT59Cd8NooCrBDL0iUoDtFLkA4G0Z7e6kORgYG7B26MWvMZ+QCAFVV9ivBO2GOXOwcuvo/2WbobW30Pbs98XmJXNavp8bAE08E3vlOYMOG9Nd4jVzGx60F3W29VdfWbAV91izqAjkxQSfFhQtJ5O14z3vo1lwHIWib1XwtdnjN0AFnQedG0QBwEnRz5JIvh/7ss84rqLihr4/mKTHixaHnM3IBSNjsHPr0NC3fZoXbyMU4uCjbyKW9nW69zJHtNnL5yU+Am2+m++vWkaCb2xi8Noqq1+hw83uPjFD//kWLshd0tWrRwIBz3KK48ELgy1/Wj3T9zGeSXW69YPd7S6kXdDeRCwt6nhkepp3bTtCNDt1vQZcS+MY3gPPOA1pbsx81efCgN0E3O/T8Ry4TtoL+l78A73iH9ckuk8iluzt16lzA24msvZ2mwM1mWTKdoO/dS/OXXHMNPT7tNIoldu1KfZ1dt0Vdhg5k1yja0kLutKjIXX9swF7c1H7o1CCqKCkB/v3f9c994Qv6PuxO2F19HzxI3WCNy9oBdELr7rb+TM7QA2B4mC7zdO5IylT35nejqJS0Q/7qV8BJJwGjo7kZNdnbmyqAStCrqqg+ExPJ54Jw6ObIxU7QGxvp4G9u1j/vJXIZHEz/jRVeI5ezzrIukxm3kcuddwLXX586L/i6dcCjj6a+zq5R1A+HbhxJnK1DB7w7dD8wC3prK3D//XSsGGdZNGI1jkPBDj0AlKDrHLoaJZqvhYM/+UkSrMZGumzMdlkygARtcjI5BB5ICrpa7MEoJLoMXU3m5AfmyMWpUbSxkcq8bZv+eS+9XAYG6K+4OF34vDr0Cy5wL+huI5enn6b+50Z0ObquUdQuQwcKV9DdOHQ/MJ/Af/1r4FOfovpdd116DxfAWdALLkMXQtwlhOgVQuwwbLtVCNEhhNg287fO32L6i52gGxtEAf8bRX/+c5pOdt48OvCyHTUJ0MFeVpYauyhBB9KXADM79OJiOqkZXXwu8RK5jI9Tfv53f0ejBXXo+qFLaZ2h69w54P5qbGiIXnfWWbmPXNQiI0YuvRR4/vlkVDY9nT5qsrKStvf16SOXsrL0+EDhpt5GQc9V5NLZSfGF1ShRvzHXu6sL+PSnKTu/5Zb0nmKAOkat1+UtRId+N4ArNdv/S0p5xszfo5rnQ4PK0Ken01f9NubnQH6GwasW/lwsHAyQoJ90krWgm1eMMTt0wN96e4lcXniB5jm/5BJ3Dl3NDT44qPq4J1+nrkzsBN1NndUc2Q0N2UUu5eVTGBujqymA9oW+vvSyVVXR1cCf/kSPBwfTl2ITglz60aN6h2410yKQuUN3uoJzEvTNm4FVq/I3d7gZs1lT00HU1ADvfS9N7WymqIi+X6teWQUn6FLKpwC4WDkvvAwP0wFRU5Pu0o09XAD/G0XNoyazFfTxcYpLTjghXdCNJw7jDml26IC/DaNeIpfGRuDii6k/tp2gK4deVGQ/R7adoJeUkEgpgbWirS0p6Nn0clEzIap9sKODzIRaSNrIRz8KfPvbZEKsFqqYO5dOYOZGudpa6wZRwJ2gNzcnrxxqauj/GBdw1mEnbnV1wDPPBBe3AHpBNzeU69Atcq0IU6Po/xFCvDoTycxxfnnhogTdeDApzJGLn42iU1MkIMqh0OVcdo2iar6LY46xd+hqh5ya0k965PdEVW4jFyXoDQ3JVdyNSJle/nnzMhN0wP2yZEuX0n7S1+du/7ASN2Pf+JYW6han49pr6fZ3v7MW9Dlz9ANs1qyxnhMG0Nf5m99MbWcxOnQg+5kHa2spQguqQRRIN2tuBd0uR8+3Q8/U/v0QwL8CkDO3/wHgBt0LhRA3AbgJAOrr65FIJDL8l8jqvYrf/OZEXHPNfpSXJ0OvV145FbNnj0HK5XjooeexbFlyz3366dNQXz+KRIKGAfb0nIEtWw6hutrlFHMeGBsrQknJOiQSjwAA2tqOw8hIRVb1bm2tQXn5Oejvb8df/lKEFSuov9uBA1diy5YnsGvXGAYH1+Dxx7sxNdWBgYEyVFZehg0b/pDyOZOTl2HDhq1YssRmFZAMGRi4Ak880Yi5c+loqqpahK1bu5BIPGcqg8DTT6/FRz6yEQ8/PIGlSy/AD36wG6efnlT14eESlJRcgT/8wdhq+FY89FA7pFyBROLJv27dufMY7N27AiMjQ6irG0MisS+tbMXFa/Hgg39Gba11A8LGjSdibKwYjzzyOubMeTv+93+3YNEi+7HwTU3n4JVX2lFVlTriS4hBJBLPY/nyQTz++DIIUY9E4iXtZ7zrXfX49KdX44YbtmNq6jgkEltSnh8fPxdFRXVIJB7Tvt9qtxoZKcHQ0BVIJOg7lBK49dZ3Yu/eXbj66v0YHi7B6OgVeOaZDX+NbcrKzsX99zejpaVH/6EAurouxHPP7cTwcOoFfyKRQEfHiZiePhlDQ5uRSHiYFCeHvPLKfHR0nIhEYjMAoK1tLV566c/Yt8++8Whq6kJs2LATzc3pQcb27atQUjKNRGJP2nO50LM0pJSOfwAaAOzw+pz5b82aNTJT1q9fn/F7jcyeLeXrr6du+9jHpLzjDinPOUfKrVtTn/vwh6W8997k449/nF7rB/39UtbVJR//+MdSXn55U1af2dgo5QUXSPmjH0l5443J7eXlUo6M0P2bbpLyBz+g+zt3Snniiemfc/rpUr78clZFsWTePCkPHEg+/vrX/yIvuST9dc8+K+Xq1cnHn/iElN/9bupr9u+XcsWK1G1XXSXlZz9L34ORJ56Q8qKL0n9jI4sXS9nebl9+4/f3trdJuXGj/eullHLdOikfeSR12/r16+U550i5ZQs9/vrXpfzyl+0/57LLpLzkEinf//705667TspVq5zLYmZsTMqSkuTjwUEpi4qkXLZMyvFx2g9OOy31PTff7HxcnH12+vGljuvbb5cSkLKnx3t5c8XTT0t5/vl0f3RUytJSKaemnN+3dq2UDz+sf+5zn5Py299O3+5VzwC8IF1obEaRixDCeIH6bgA7rF5bSExP06WR+fLImKGbexmYVxbPZ+NgTU32GbrKkxcsSEYuY2P0XagM19goqsvPgfyu3mMVuai4RaHL0c0jJgF3kYvVpbWbNhPjpE1OIwcVdpGL2gftIhfFN79Jc7t4iVycKC2l6E21HfT2UqRy/PHAb36THrcA1DCabeSyYEHqpHD5xpih9/RQz7ciFwrpFLkUVIYuhLgPwBYAJwkh2oUQHwXwHSHEdiHEqwDeBuDTPpczJ6hBJFaCrsvQzXlsPufIpqlks58bfP582jmVoBv7oKv/owRd18MF8LZQ9Ne+RhMsuSW9l8uktteAG0E398cG6HFzs/8ZOuC+p4uul4uxTAAJpJqT3opzzgH+9m/1Qjh3bmYjJoVIbStS4vb5zwPf/W7qalaK5cud+6LbCfr8+cCZZ3ovay4x/ta6BU+sCFWGLqX8oGbzz3woi++oVngvgm6eRN/PRlGzsOWil4ty6DpBN/4fNXzZyqHPmuX+RHb//eTgTjnF+bVSUr2N3QlnzUp36FNT1Avi7ruT2045BXjjDTrRqDk9jD1cFPPmkciae1CoBsjxcXtBd/q9zQ590yb71wP6Xi6qTF4cOpD6nRjJ1KEDSXGrqiKHvmABcMUVJOp33UW9bIy4GVxkJ25r19L8LEFidOhuG0SBwhL0WI0UVSMlze5vZIQGWVg59HxFLuYfP5eRy8KFdGCqKxSjoBsjFzuH7qbeUpJ4NjW5K9/kJIm58dK2qoq6LRr7Ne/YQaJrPNmUl9MMhDsMgZ9V5NLXl+7Qa2vp9SMjmY+aHBmhP/Wdue266BS5SEkOfdky58/SzTEC0FB13cnZDcYTmRJ0IYB/+Rfgtdf0kUs2gl5cDMyenVlZc4Ufgl5wI0WjhJNDN2foaiFao6D7OVJU59CzHSmqBL26mg7IoSG9Q1ffiZ1DdxO59PSQAHoZAm/OGEtLp1FUlCqkzc36EYTm2MUqcgHSBV2NpjzmGOtBNk4Rm5rjQ70/V5FLX1/SZGTKu99NMzVmgvFEpgQdAD7wARLzVasTrAp0AAAfhklEQVRSX790KY3ZsBoxCeTfrXqFHXrIUA7dbeQyPExiY/xB8unQcxG59PUlHauKXfx06E1N5LbcOnTzScxYJuPvZB6xqzALupVDB9IFXQ3ksctKneptXsVmyRL6jp2mSXCKXNzGLXYUFaVGWV6wEvSyMpoB0izo5eVkfMyzehopdEE31tmuodxMqBpFC4HJSeDoUc1wOY94FXTdgA0/G0X1vVxKs5oUy5gpq54uOoeeq14uTU3Am9/sTdB1B7n5INHNRQ1k59DVNidBt7siU6NEFaWlJARqfnQrnCIXNw2ifmIl6IB+5CrgHLsUuqCzQ88TDz4IfP/72TeB9/frv3wrQTfn54C/jaLmH5/uy6z+n1HQVY5uF7lYOXS3kUtTE80z4mXEZDYO/cwzqUfN9u302KpRFMhM0N1ELuac203XRafIRc03HhTGevf0uOtOuGQJnXh1TE1RvBXUPC1uUIIuJWfovpKLxkGAHPry5e4zdJ1Dz2c/dIDmNbFa69QNZkHv6SE3blziK5f90JuaKOteutRd46DbyEXNa6J73X//N+XF/f3eIheAvge7A9dr5AK4y9GdIpfW1uwjl2wwO/SFC53fU1trvUiMMitWbRWFQFERnXDGx711W9QtEqNgh64hV4Le308Hm1EoJifpr7zcnUP3s1HUakrVTNfXNM9rYpWhu+2H7mWdSbeNg14ydF3kAgAf+QjNGf7BD1L5zSfhykr6H5lGLl4FfcUK+7pLGe7IxYqqKmdBL3TUFXh3t7uTGMAZumeqq3Pn0FesSP3ylTs3z3QHFIZDz0bQjxyhqER9ppWgV1QkJ+WSUj8YxW3kombhW7nSXY5udaC7jVwU3/kONUQ2NaU7dCGS88ubufRS4OyzrT/Xa4YOOHddnJykHFo3CjGXjaLZoPZztV/Yzc6oqK5Ors9rJiyCXl5Ox0h5ufV88WY4Q/eInw5dCTpQmA69snIi48jFnCdbNYoKQY/37yd3rrssdnMim5oix7pihXtBd+PQR0fpd9FdOShKSmhY+g036Pszf+hD6X2nAVpo2G6EYqYZup1DP3pUH7cAyUU3CsWhHzxI36eb7LuqKhqC3tLiPj8Hkr+Zbo1bFnQNuczQrRy6+j9G8bRqFA2LQzcLulWjKEA75f791gNR3Az9b2+n95eX51bQ1dB8p/x1/nzgZz/T98L43vfsTwhW2P3eo6O0v5g/d8kSKrMVdgd5TQ39RgMDwc5roq5M3MYtQDQil/JyOhl7EfSSErqC1dWdG0U11NQAR4/6L+hBRy56h55bQdc5dCDVoetwM/TfOGlTQ0P2kYuqt1WXxXxg93urQUXm6EQ34tiIk6AfOECu383EUH6h6u22hwsQjcilosK7QwesYxd26BrKy4HpaZH1mpb9/eT0pEwepIUUuVg5dKvIZWwMeOwxEgAdXgS9tpbmRbFz6F4EPVuHbuxK6ZSf+4ldhq5rEAXsowfAussikMz5g4xbgOTv7baHCxAdh55rQedGURM0+1t23fcAcuhz5qS6v0J36LrIZcsW4H3vowPt7/+eliLTYRb02bMpJujpsY5crBy6m8jFKOgLF9J3a+dUAXeRS5AO3S5Df/RRmu3QjJ1TBay7LAL0XZSVFZage4lcwu7QlaC77bKoYIfuETun6obxceoFUVmZ+uUbBb2sjE4eypEVgkOvrJxIE/SvfpWGXu/ZA2zcCNx3n34ODbOgC0EH5+HD1pGLlUN3E7k0NycFXQj3/bGderkE7dB19T5yhGYd/MQn0p8rK0vOIqnD6SCvqQm2hwuQPJF5EfQoRC6ZZOiAXtDtuqf6RWwE/fBhcqiqR4dO0IFUl14oDt1c7+5u4P3vpwPtlFPotrEx/fN0oyYXLqRGQ3OXrNpaihDsHLqbyMU4T7ab2KXQHbpVvX/8Y+DKK62F107c7CIXgAQ9rA497JFLRQXtb7kQ9KkpagexmirBD0Il6HaX7+PjNLOc1QrtStAB94JeqL1czMOSP/xh4Je/TP88K0E3Lm6hqKsjR2Hn0L1ELoC7hlE3gh60QzdfkY2PA7ffDnzuc9bvcxI3q8gFKAyHHtdG0fJyEuJMBN18nOY7PwdCJuh2Dv3554Gbb6ZsWReJ9PfrBX1kRC/oU1PUJc0cTZSU0HN204RmipteLmNjVD7jieaDH6T5bswnmr6+dMe9cGHqsH+F2papQx8bo8ZZYyNhLh16UIKuy9B/9Su6MjrjDOv3ZZMn/9d/Aeef772suSSuDl2VMRcOPYg6h0bQKyqmbAX9xRepgbCoCHjXu9IPJtUgCtg7dNUX/cgRum++XDIvz5VLrDJ0Y73VAWbs0rZkCYnLhg2p77Vz6GaUoGfaD72lhcTc+H2tXJl9hi5l8A7dKOhSUp92O3cOZBe5XHZZcgWmoMi0l0sUHHpRkfeFQYy9shQs6DY4OfQXXwTOOw/49a9JWN75ztTnrRz68HBqnqwcunktUSN+NYy66eViNU+zLnbxIuhqW6b90HULB2fj0CsqaORdby9dFemG7ecDs6Bv3Egnrcsvt39fNpFLIZDJwKIoRC4VFSTmXnNvnUPP96AiIGKCfvbZdPD/9KcUwRhfb3ToxrOpVYZuXqnIiF85upsM3Wpaz2uvpbUs1apMgF7QjzlGX6/aWrr6yHQpNmMPF4USdLv53K0EXTVev/56cA2iQPrJ+/nnaf1Lp1GrYRe3igraf6am3K+apBy67vcOQ50BKqPXLouAdeTCGboFdoI+PEyDYk49lR4XFaXPSW3n0HWCrmsQVfgl6FYZurHeVoI+ezbw9rfTFQpA5ZuYSD8Yr7kG+P73099fW0v1tZqzwyly0Tl09X0bTzJm7A70ujqa6zyouAVI/63dTppl59CdIpdCoKKCJh5Ta4m6obiYFvjQHRthEnSv+TnAGbpn7Hq5bNtGYm48G5r7QLvt5aIydF2XRYXbyKWpCfjSl5xfp8jGoQO0gO83v5mcVGnevPSDcdYsfZe4efOcF3qYmNBPQASkd1kE6H87xS5WDh0oDIduFnQ1m6QTTnlyGCKX1lbv88lYTXvAgp4fQiPodiNFX3wRWLMmdZvZobttFM2lQ3/4YeDee51fp7Drh64uY+0m3j/vPOCss4A77tDHLXacdhpFNlYIYX0i27YNeOYZ4IQT0p9zGlxkJ+i1tSToQTt0Y53dOvSwRy7l5XRF5lXQrU5kYagzQNpgnj3T7fsKQdALeEGoVOwilxdfBN761tRtZiHxGrmMj2fv0BsbqYfGyIi7uZV14lZcLFFRkexe2d1N0YoV3/gGcMklwHHHeRN0IZx7M6jYRfXAGB4Gbr0VuOce+r+6ecXnzLGeKxpwjlyefx64+mpXVfAFY7fF6Wn3KwlFIXIB3PdwUVidyMbG9I3xhcanPmXf5mMFN4p6xE7QX3ih8By6lMBTT5GovvGG/WsVdqvYqNjFaTXyU04BrrqKpgfwIuhuMPd0uewyOmHt2AHceKM+a3WaqMopcgmyyyKQvnJPTY1+ARAzTg49DJELkJlDD3PkUlGRWZdRbhT1iJWgDw9TRqsaRBVODl03ORdAB6JThu5G0HfupIP//POBffvsX6uwm3lQ1d3N4rW33kr/M9eCbmwYnZ4GXn6Z5h+3O+izFXSgcDL05mb3IzjDPsgmG0EPc+SSKUpTjO6eIxcbrAR92zbKf82ioHPobhtFh4ZIuKwcupvIpbERuPhi+gy3gm61A6g1P9Vq5E6XwcuXA5/5jH5EaDYYxa2vj74rJ6fpJOh2LkYJepAOvaSEvvfJSdqf3DSIAvb1DlPkkkmjaBwFvbSU9mPjyHMWdBsqKvS9XHQNogCJ3sBAMr/2GrkcOZKdQ29spP7Kw8MUSbjByq2qyGVggHYcN5f83/iGu//pBWPkohZ3cKKqiobuW2GXMypBz6TXQa4wNgZ7cegcuaQSdUEHkroSpKCHPnLR5ecA9UVftoxclZSpU8ZWVlIXvImJzDJ0J4cuJQn6JZcAxx+fG4c+OOgubvETY+TS0aFf3MFMtpHLggX5zyHNqBO4V4fOkUuSMNQ5W8w5ut2+7RehF3Q1QlSHWn19eDi5cABArqu2lkR+dDR96P/goP3QfyeHvmcP7bwNDd4E3S5DHxgIXtCNDt3tlLbZRi5Bxi0K9XvnyqGHIXJR5cukl0tcHbp5Phd26DboBH14mA4yc4OoQq2+rnPbdXUkkBUVqRNdqQw9m6H/Kj8HKM/u6rJe7MCIUy8Xuz7o+cBYby+Ri5NDt9rpTz6ZYqugUX3Rc5WhhyFyKSoC3v1u7wtrs0NPPuYM3YbS0mlMT6e62F27aDBLaan+PcqhGxtEFapLnDmPrq6mQTkTE9ZZtVPk0tgIXHqpKjdFE83NwIkn2tfRyq2qyGViorAilwsvdH5PNpHLm95Ef0GjBtnEqZcLADzwgPf3xNmhF4Kgh8ahC5Eclq/o7ra/JHdy6FaCfuAAvd5qDgs7h67yc+XQARrk4yZ2sXKrUY5cgsgZvaJWsSkvd99zKOyRS6Zwo2jyMQ8scsB89ndaTcXOodfWWgs6YB23APYOff9+EvXjjktuO/542m7H9DQ5cN3VhjFyCdqhe41crBybIgwHekUFsHu3+7gFCP/0uZnCkUvyMQ8scsDs0Ht67Btt1OAiq8ilqytd0EtLacezahAF7B36pk0UtxjdvZuG0YmJ5CLVZuLay6VQKC8nQfeyLFzY53LJFI5cko85cnHALOhOq6ksWkR5eHe3+8gFoJ3SzqHbCfqGDcC6danb3EQudmfzQotcVJ5vPknqiIKgV1RQe40Xh66+K93slFGPXOLs0M3LRbKg2+DVoRcXk4t89VX3jaIACbqdQ7eKXI4eBZ58ErjiitTtbiIXu7ytkCKX0dFkfu5mnmw33RYL/UBXkYsXh15UhL9OqmYmypFLXEeKAuzQPaMTdKeBDytW0PQAVg5dNwtipg69sRFYvTr9ZHDssRT92C0s7eTQ+/vpasPrWoe5RNXbbdwC2K9iA4THobe3e3PoQDzFjRtFk495YJEDukZRp4EPDQ10uew2QwfoxJGJQ9+wIX0tUyC5TmFbm/Vn2jn02lpy+HPnWq8olA9UjOC2hwtA5S0psW5EDoOgq9/Fi0MHrMUtrpFLVK9KFKFw6EKIu4QQvUKIHYZtc4UQG4UQe2dubfxs7vCaoQN0EE5N6QV9cjJ3GbqU+vxc4RS72Dl0FbkEOagISEYubnu4KJwG2RS6oCsh8urQ4yhucbwqUYRC0AHcDeBK07YvAtgkpTwBwKaZx75jFPTJSYohnEayqYNQF7kAuRP0PXvIba5erX+PU08XJ4cOBJufA6kO3W3kAlgL29QUNRoGedXhhooK+g3cNAIbiaO46a5KpAzHlVi21NVRjzpFQQq6lPIpAIdMm68GcM/M/XsAXJPjcmkxCnpfH4lucbH9e9Rlss6hA3pBv+024F3vsv5MXeTy6KPkzq0aCp16utg51aoq+tygBV2dyHLl0O26ahYSFRW0H3ktp5W4RV3Qzb/1xASdtItCFfB6Z/lySg2USy9IQbdgoZSyCwBmbj3OyZYZRkF3k58DmTn01au9O3S7uAVwjlzsHHpREbm9QhB0Yy8Xt9hFD2FwbWqiNa/oHHrUxa2iguo4OZncFuUTmJHycuCcc2h9XSCYqxLfL3aFEDcBuAkA6uvrkUgkMv6svXtfxmuvzUMi8TJefrkeRUUnIJHYbPueqSmBkpKrsHnzH7BtW3Iv6+urAHAF9u17BYlEs6dyvPFGHXp7z0Ai0QgAGB0twTPPXIEbb/wjEgl9V5a2tjq89NKZSCSe1D7/6qvzMTBworY+iUQCZWXvwIED+5BIuFzPzge2batHa+vxaGmpxWuvNaK728VK2QCOHr0Af/rTLnR0HEzZfuRIGYS4FInEH9Pek81+kmtaWo6HlBVIJFxObD9Df/9ZaGzshRDtf902OlqC4uIrkEhs0L6nkOqdKeXl6/Db3z6Gqio63gYGrH9nIBp1VixceBJ++tNiTEzsRHf3Rdi6dTsOH+7XvtaXekspHf8ANADYYXi8G8CimfuLAOx28zlr1qyRmbJ+/Xr5299Kee219PjnP5fyQx9y9949e9K3DQxICUh5773ey7Jzp5SrViUfJxJSvv3t9u9pbZVyyRLr5//wBymvuCJ9+/r166WUUp58spT33ee9rLnkySelfMtbpCwpkXJiwv371q6V8pFH0re3t0u5eHH6dlXnQuHQISkPHPD+vn/4Byl/9KPUbb29Us6bp399odU7UxYtkrKjI/nY6neWMjp1VjzxhJTnnkv3Tz9dypde0r/Oa70BvCBdaGymF34PAbh+5v71APJyis0kcgFoRkYz1dWUibpZ/ceMOXLZuRM44wz797iZ08Tu8mzePG8NkX5QUUHrty5Y4K0h0ypyCUtD2Zw53qeRBfSRS5R7uCjMbQdxiVwA4NxzaYWyoaECzdCFEPcB2ALgJCFEuxDiowC+BeByIcReAJfPPPYds6B7XU3FiFrkIhNBNzeKNjUBK1fav0ft5HYDbOx+/AceAC64wHtZc8msWfS9ez2xxHU4uK5RNOp1BtJ/7zjUWTFrFnDWWcDmzQWaoUspP2jx1GU5LosjZkE/+eTsPq+uLjcOvbkZuMahn09ZGTWEWQm3k0MPcoSoQjlLLw2iQPgdeqZUV9NCKUaiPKhIYb4ajZOgAzR1dmNjgTr0QkItDwd4i1ysWLIkM6HMxKED9rFLEHMne4UF3RtWDj0OkUtcHTpAawk/+SSvWOSI0aG7GSXqxNNPO/dj11FeTk6LmlWB1lZ3w8KVoM+bl/5cGLrwzZpFt7mMXAq9ztmgq3ccxC3ugn7eecArr9DAOXboNqj1PoHsM3QgMzEHkv2IJydpgq85c5JiZwc79FTCUOds0DWKcuQSfSorgdNPD+a3DpWgl5fTUPGxMVomLltBz7YsY2Pu4xYgOnOacOTiDo5ciLgJOpBcgpJnW7RBrSva2ko7TZA7iWoY9SLoYXfopaXJOea9ENfIxarbYqH/ztkSd4cOkKAHMSI4VIIO0M6yb1/2+Xm2ZOLQ7QQ9LOK2di2wbJm398Q1ctE59DhELuzQqYuxeaGbfBA6Qa+pIUEPMm4Bkg69udn9PB92kUtYxO3hh71HBnGOXOI6sCjugl5dDTzySP7/bygFff/+4B16riOXsDj0TLBbxSaqdQY4clHEoc6FQigFPYqRS1gceiZYzQse5ToDHLkoWNDzRygFvVAc+uAgLdzsNlOOs0OPc+RinO4hDuLGgh4coRT0N94IXtDLy4G9e2lZuNJSd++JQoaeCXHt5aIW7xgfT26LQ4bOkUtwhE7Qq6vpACmERtFdu7wtfMAOPZWoO3Qgve4cuTB+EjpBr6mh26AduhJ0t/k5EN8MXRc9ANGus8LcfhAHcTPv5y0twS9wHhdY0DOkvBx4/XVvgh72kaKZUlqanGnSSFwcujl+iHrkYt7Pn3kGOP/84MoTJ1jQM0Qt9sAO3R1WfbKjLuhmhx63yKWrCzh8GDjppGDLFBdCKeiVlZnNY55LysspQuAM3R06QY/6SQyIZ55s3M83byZ3HtVFsQuN0H3N1dXBu3MgednMDt0dVoIe5ZMYEN/IZWSEDA/HLfkldIJeW1s4gl5WBixe7P49cc3QAY5cFHGIXIqL6XcdHSWHHvTSiXEidIJ+8cXAnXcGXQo6KFes8HYpGXeHbq571OsMxHfB5KoqoK8P2L4dOOecoEsTH0In6BUVwGmnBV0KKoeX/ById4auG/4fh8hF120x6pELQIL+5JPAqadSmxeTH0In6IVCdTVw/PHe3mPVHxuIvluNa+QSx4FFAB0fjz3GcUu+CdWaooXERz8KTEx4e09JCfXJPno0fcm6qIsbN4oScYpcNm4E/ud/gi5JvGCHniFVVcDs2d7fZxW7xNGhR73OQLwjl95eduj5hgU9z1gJehwdetTrDKQ79DhFLg0N3nqBMdnDgp5ndMImZfTjh7hGLnGcywWg35v7n+cfztDzjM6hT05S98fi4mDKlA+qqoCentRtcYhcdCNF4xC5LF1KPVyY/MKCnmd0gh4H18aRCxGXyOV73wu6BPGEI5c8oxP0OEQPHLkQcTh5M8HBgp5nrJxq1A9yHimabCuJep2Z4GBBzzPs0JPEpd69vcAXvgCsWgWsXs0zDzL+wbtWnuEMPUkcMvSFC2mqirIy4Fe/Al5+OegSMVGGG0XzTFydalzncqmqAh5/POhSMHGBHXqeYYdOxKHvPcPkGxb0PMMZOhGHvvcMk29Y0PMMO3QiDicxhsk3LOh5Jq4Zuk7Qo34SY5h8w4KeZ+Lq0NUJa3ycbuPQw4Vh8g0Lep6Ja4YOpLr0uNSZYfIJC3qeietIUSBd0ONQZ4bJJ1n1QxdCNAMYBDAFYFJKeXYuChVl4u7QVd05cmGY3JOLgUVvk1L25eBzYkFcM3SAIxeG8RuOXPJM3B06Ry4M4x/ZCroE8JgQ4kUhxE25KFDUqawERkaA6enktjg6dI5cGCb3CCll5m8WYrGUslMIsQDARgD/LKV8yvSamwDcBAD19fVr7rzzzmzKGwne97534t57/4iKiikAwP33n4CjR0tw3XWvB1wyf/nWt87BRRe14/zzu/DKK/X43e9OwL/+6+agi8UwBc8111zzoqs2SillTv4A3ArgX+xes2bNGpkp69evz/i9hUZ9vZTd3cnHX/ualLfcon9tlOp93XVS3n033d+wQcorr9S/Lkp19kIc6x3HOkvpvd4AXpAudDjjyEUIUSWEqFH3AbwDwI5MPy9OxHUYfE0N0DfTfM4ZOsPknmwy9IUA/iKEeAXAcwA2SCn/mJtiRRtzw2hcMvR164Df/pbuc4bOMLkn426LUso3AJyew7LEBrOgx8WhX3kl8PGPA9u2xafODJNPuNtiAMTVoRcXAzfeCPzkJxy5MIwf8IpFARDXDB0AbriB1tVcuTI+dWaYfMEOPQDi6tABYOlS4K1vBe69lwWdYXINC3oAxDVDV9x0E7BjR3xOYgyTL1jQA8C8YHKcHDpAjaPLlsXrJMYw+YAz9AAwzjoIxM+hFxcDX/4yUFsbdEkYJlqwoAdAdTXQ05N8HDeHDgAf+1jQJWCY6MGRSwDEPUNnGMYfWNADwNxtMY4OnWGY3MOCHgDs0BmG8QMW9ACIcz90hmH8gwU9ANihMwzjByzoAcAZOsMwfsCCHgDs0BmG8QMW9ACorqaFHp5+GpiaYofOMExuYEEPgAULgK9+FfjnfwYWLQJGR9mhMwyTPSzoASAE8PnP00IPW7cC69cDpaVBl4phmLDDQ/8DZuVK+mMYhskWdugMwzARgQWdYRgmIrCgMwzDRAQWdIZhmIjAgs4wDBMRWNAZhmEiAgs6wzBMRGBBZxiGiQhCSpm/fybEAQAtGb59PoC+HBYnLMSx3nGsMxDPesexzoD3eq+QUtY7vSivgp4NQogXpJRnB12OfBPHesexzkA86x3HOgP+1ZsjF4ZhmIjAgs4wDBMRwiToPwm6AAERx3rHsc5APOsdxzoDPtU7NBk6wzAMY0+YHDrDMAxjQygEXQhxpRBitxBinxDii0GXxw+EEMuEEE8IIV4XQrwmhPjkzPa5QoiNQoi9M7dzgi5rrhFCFAshXhZCPDLzOA51ni2E+J0QYtfMb35e1OsthPj0zL69QwhxnxCiIop1FkLcJYToFULsMGyzrKcQ4ksz2rZbCHFFNv+74AVdCFEM4A4AawGcAuCDQohTgi2VL0wC+KyU8mQAbwHwTzP1/CKATVLKEwBsmnkcNT4J4HXD4zjU+XYAf5RSrgJwOqj+ka23EGIJgE8AOFtKeRqAYgAfQDTrfDeAK03btPWcOcY/AODUmff8YEbzMqLgBR3AmwHsk1K+IaUcB/BrAFcHXKacI6XsklK+NHN/EHSALwHV9Z6Zl90D4JpgSugPQoilAN4J4KeGzVGvcy2AiwD8DACklONSysOIeL1BK6TNEkKUAKgE0IkI1llK+RSAQ6bNVvW8GsCvpZRjUsomAPtAmpcRYRD0JQDaDI/bZ7ZFFiFEA4AzAWwFsFBK2QWQ6ANYEFzJfOH/Afg8gGnDtqjX+VgABwD870zU9FMhRBUiXG8pZQeA7wFoBdAF4IiU8jFEuM4mrOqZU30Lg6ALzbbIds0RQlQD+D2AT0kpB4Iuj58IIa4C0CulfDHosuSZEgBnAfihlPJMAMOIRtRgyUxmfDWAlQAWA6gSQnwk2FIVBDnVtzAIejuAZYbHS0GXapFDCFEKEvNfSikfmNncI4RYNPP8IgC9QZXPBy4A8DdCiGZQlHapEOIXiHadAdqn26WUW2ce/w4k8FGu99sBNEkpD0gpJwA8AOB8RLvORqzqmVN9C4OgPw/gBCHESiFEGagB4aGAy5RzhBAClKm+LqX8T8NTDwG4fub+9QAS+S6bX0gpvySlXCqlbAD9ro9LKT+CCNcZAKSU3QDahBAnzWy6DMBORLverQDeIoSonNnXLwO1E0W5zkas6vkQgA8IIcqFECsBnADguYz/i5Sy4P8ArAOwB8B+AF8Jujw+1fFC0KXWqwC2zfytAzAP1Cq+d+Z2btBl9an+lwB4ZOZ+5OsM4AwAL8z83usBzIl6vQHcBmAXgB0Afg6gPIp1BnAfqJ1gAuTAP2pXTwBfmdG23QDWZvO/eaQowzBMRAhD5MIwDMO4gAWdYRgmIrCgMwzDRAQWdIZhmIjAgs4wDBMRWNAZhmEiAgs6wzBMRGBBZxiGiQj/HxQy2a6SNr4AAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"i = 0\n",
"yAxis = []\n",
"xAxis = []\n",
"\n",
"for element in dataset:\n",
" yAxis.append(i)\n",
" xAxis.append(i)\n",
" i += 1\n",
" \n",
"plt.plot(dataset,\n",
" yAxis,\n",
"plt.plot(xAxis,\n",
" dataset,\n",
" color='b',\n",
" linewidth=1)\n",
"\n",
......@@ -75,20 +88,6 @@
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment