{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# toy_notebook_fr\n", "\n", "## March 28, 2019\n", "\n", "## 1 À propos du calcul de p\n", "\n", "## 1.1 En demandant à la lib maths\n", "\n", "Mon ordinateur m’indique que _p_ vautapproximativement\n", "\n", "In [ 1 ]: frommathimport *\n", "print(pi)\n", "\n", "3.\n", "\n", "## 1.2 En utilisant la méthode des aiguilles de Buffon\n", "\n", "Mais calculé avec la **méthode** desaiguilles de Buffon, on obtiendrait comme **approximation** :\n", "\n", "In [ 2 ]: import numpyas np\n", "np.random.seed(seed= 42 )\n", "N= 10000\n", "x= np.random.uniform(size=N, low= 0 , high= 1 )\n", "theta =np.random.uniform(size=N, low= 0 , high=pi/ 2 )\n", "2 /(sum((x+np.sin(theta))> 1 )/N)\n", "\n", "Out[ 2 ]: 3.\n", "\n", "## 1.3 Avec un argument \"fréquentiel\" de surface\n", "\n", "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n", "sinus se base sur le fait que siX \u0018U(0, 1)etY \u0018U(0, 1)alorsP[X^2 +Y^2 \u0014 1 ]= _p_ /4 (voir\n", "méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :\n", "\n", "In [ 3 ]: %matplotlib inline\n", "import matplotlib.pyplotas plt\n", "\n", "```\n", "np.random.seed(seed= 42 )\n", "N= 1000\n", "x= np.random.uniform(size=N, low= 0 , high= 1 )\n", "y= np.random.uniform(size=N, low= 0 , high= 1 )\n", "```\n", "### 1\n", "\n", "\n", "```\n", "accept =(x*x+y*y) <= 1\n", "reject =np.logical_not(accept)\n", "```\n", "```\n", "fig, ax =plt.subplots( 1 )\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')\n", "```\n", "Il est alors aisé d’obtenir une approximation (pas terrible) de _p_ en comptant combien de fois,\n", "en moyenne,X^2 +Y^2 est inférieur à 1 :\n", "\n", "In [ 4 ]: 4 *np.mean(accept)\n", "\n", "Out[ 4 ]: 3.\n", "\n", "### 2\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }