From c11a63b714d2b737920a6d3492261f95829247ec Mon Sep 17 00:00:00 2001 From: ef1d331e1cf47607d5b91843ecc46a5e Date: Tue, 22 Oct 2024 13:22:12 +0000 Subject: [PATCH] =?UTF-8?q?exo=205=20avec=20temp=C3=A9rature=20au=20carr?= =?UTF-8?q?=C3=A9?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module2/exo5/exo5_fr.ipynb | 125 ++++++++++++++++++++++--------------- 1 file changed, 75 insertions(+), 50 deletions(-) diff --git a/module2/exo5/exo5_fr.ipynb b/module2/exo5/exo5_fr.ipynb index 26ad6d9..a635ade 100644 --- a/module2/exo5/exo5_fr.ipynb +++ b/module2/exo5/exo5_fr.ipynb @@ -261,30 +261,30 @@ "" ], "text/plain": [ - " Date Count Temperature Pressure Malfunction\n", - "0 4/12/81 6 66 50 0\n", - "1 11/12/81 6 70 50 1\n", - "2 3/22/82 6 69 50 0\n", - "3 11/11/82 6 68 50 0\n", - "4 4/04/83 6 67 50 0\n", - "5 6/18/82 6 72 50 0\n", - "6 8/30/83 6 73 100 0\n", - "7 11/28/83 6 70 100 0\n", - "8 2/03/84 6 57 200 1\n", - "9 4/06/84 6 63 200 1\n", - "10 8/30/84 6 70 200 1\n", - "11 10/05/84 6 78 200 0\n", - "12 11/08/84 6 67 200 0\n", - "13 1/24/85 6 53 200 2\n", - "14 4/12/85 6 67 200 0\n", - "15 4/29/85 6 75 200 0\n", - "16 6/17/85 6 70 200 0\n", - "17 7/29/85 6 81 200 0\n", - "18 8/27/85 6 76 200 0\n", - "19 10/03/85 6 79 200 0\n", - "20 10/30/85 6 75 200 2\n", - "21 11/26/85 6 76 200 0\n", - "22 1/12/86 6 58 200 1" + " Date Count Temperature Pressure Malfunction\n", + "0 4/12/81 6 66 50 0\n", + "1 11/12/81 6 70 50 1\n", + "2 3/22/82 6 69 50 0\n", + "3 11/11/82 6 68 50 0\n", + "4 4/04/83 6 67 50 0\n", + "5 6/18/82 6 72 50 0\n", + "6 8/30/83 6 73 100 0\n", + "7 11/28/83 6 70 100 0\n", + "8 2/03/84 6 57 200 1\n", + "9 4/06/84 6 63 200 1\n", + "10 8/30/84 6 70 200 1\n", + "11 10/05/84 6 78 200 0\n", + "12 11/08/84 6 67 200 0\n", + "13 1/24/85 6 53 200 2\n", + "14 4/12/85 6 67 200 0\n", + "15 4/29/85 6 75 200 0\n", + "16 6/17/85 6 70 200 0\n", + "17 7/29/85 6 81 200 0\n", + "18 8/27/85 6 76 200 0\n", + "19 10/03/85 6 79 200 0\n", + "20 10/30/85 6 75 200 2\n", + "21 11/26/85 6 76 200 0\n", + "22 1/12/86 6 58 200 1" ] }, "execution_count": 1, @@ -453,7 +453,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFYRJREFUeJzt3XuQpXV95/H3Zy7AIBMhsJm4MxBBCFlKAXG4GEx2IokLbgmxiBHcDS5ZMqGE3TK7m8BariHGVEWM2WiJjiOLCqmERFEgu+MiJNUaExCQTIaLgcwiQjMGBFFoHObW3/3jnHlyprun5/TQzzlM9/tV1TXnufa3vz6cj8/l/E6qCkmSABYMuwBJ0kuHoSBJahgKkqSGoSBJahgKkqSGoSBJarQWCkmuSfJkkvt2szxJPppkY5INSU5qqxZJUn/aPFP4DHDmNMvPAo7p/qwGPtFiLZKkPrQWClX1VeB706xyDnBtddwBHJzkFW3VI0nas0VD/N3Lgcd6pke7874zccUkq+mcTbBkyZLXHX744QMp8MUaHx9nwQJv2/SyJ5PZk6nZl8leTE8eeuihp6rqX+xpvWGGQqaYN+WYG1W1FlgLsHLlyrr77rvbrGvWjIyMsGrVqmGX8ZJiTyazJ1OzL5O9mJ4k+XY/6w0zhkeB3v/LvwLYNKRaJEkMNxRuBi7oPoV0GvCDqpp06UiSNDitXT5K8qfAKuCwJKPAbwOLAapqDbAOeDOwEfghcGFbtUiS+tNaKFTV+XtYXsAlbf1+SdLMeWtfktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktQwFCRJDUNBktRoNRSSnJnkwSQbk1w+xfKXJ/mLJH+f5P4kF7ZZjyRpeq2FQpKFwFXAWcBxwPlJjpuw2iXAA1V1ArAK+HCS/dqqSZI0vTbPFE4BNlbVw1W1FbgeOGfCOgUsTRLgIOB7wPYWa5IkTWNRi/teDjzWMz0KnDphnY8BNwObgKXA26tqfOKOkqwGVgMsW7aMkZGRNuqddWNjY/tMrYNiTyazJ1OzL5MNoidthkKmmFcTpv8NsB54I/Aq4NYkf11Vz+6yUdVaYC3AypUra9WqVbNfbQtGRkbYV2odFHsymT2Zmn2ZbBA9afPy0ShweM/0CjpnBL0uBL5QHRuBbwE/1WJNkqRptBkKdwHHJDmye/P4PDqXino9CpwBkGQZcCzwcIs1SZKm0drlo6ranuRS4BZgIXBNVd2f5OLu8jXA7wKfSXIvnctNl1XVU23VJEmaXpv3FKiqdcC6CfPW9LzeBLypzRokSf3zE82SpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5M8mCSjUku3806q5KsT3J/kq+0WY8kaXqL+lkpyaur6r6Z7DjJQuAq4BeAUeCuJDdX1QM96xwMfBw4s6oeTfJjM/kdkqTZ1e+ZwpokdyZ5V/eNvB+nABur6uGq2gpcD5wzYZ13AF+oqkcBqurJPvctSWpBX2cKVfWGJMcAvwrcneRO4NNVdes0my0HHuuZHgVOnbDOTwKLk4wAS4GPVNW1E3eUZDWwGmDZsmWMjIz0U/bQjY2N7TO1Doo9mcyeTM2+TDaInvQVCgBV9Y9J3gvcDXwUeG2SAO+pqi9MsUmm2s0Uv/91wBnAEuD2JHdU1UMTfvdaYC3AypUra9WqVf2WPVQjIyPsK7UOij2ZzJ5Mzb5MNoie9HtP4XjgQuDfArcCb6mqe5L8S+B2YKpQGAUO75leAWyaYp2nqup54PkkXwVOAB5CkjRw/d5T+BhwD3BCVV1SVfcAVNUm4L272eYu4JgkRybZDzgPuHnCOjcBP5NkUZID6Vxe+uZM/whJ0uzo9/LRm4HNVbUDIMkC4ICq+mFVXTfVBlW1PcmlwC3AQuCaqro/ycXd5Wuq6ptJ/i+wARgHrp7pU06SpNnTbyjcBvw8MNadPhD4MvDT021UVeuAdRPmrZkw/SHgQ33WIUlqUb+Xjw6oqp2BQPf1ge2UJEkaln5D4fkkJ+2cSPI6YHM7JUmShqXfy0fvBj6XZOfTQ68A3t5OSZKkYen3w2t3Jfkp4Fg6nz/4h6ra1mplkqSB6/vDa8DJwCu727w2CVN9+liStO/q98Nr1wGvAtYDO7qzCzAUJGkO6fdMYSVwXFVNHKZCkjSH9Pv00X3Aj7dZiCRp+Po9UzgMeKA7OuqWnTOr6uxWqpIkDUW/oXBFm0VIkl4a+n0k9StJfgI4pqpu6w5et7Dd0iRJg9bXPYUkvwZ8Hvhkd9Zy4Ma2ipIkDUe/N5ovAU4HnoXOF+4Afp+yJM0x/YbClu73LAOQZBGTv0VNkrSP6zcUvpLkPcCSJL8AfA74i/bKkiQNQ7+hcDnwXeBe4NfpfEfC7r5xTZK0j+r36aNx4FPdH0nSHNXv2EffYop7CFV11KxXJEkampmMfbTTAcDbgB+d/XIkScPU1z2Fqnq65+fxqvoj4I0t1yZJGrB+Lx+d1DO5gM6Zw9JWKpIkDU2/l48+3PN6O/AI8MuzXo0kaaj6ffro59ouRJI0fP1ePvov0y2vqj+cnXIkScM0k6ePTgZu7k6/Bfgq8FgbRUmShmMmX7JzUlU9B5DkCuBzVXVRW4VJkgav32EujgC29kxvBV4569VIkoaq3zOF64A7k3yRzieb3wpc21pVkqSh6Pfpo99L8iXgZ7qzLqyqv2uvLEnSMPR7+QjgQODZqvoIMJrkyJZqkiQNSb9fx/nbwGXAf+/OWgz8cVtFSZKGo98zhbcCZwPPA1TVJhzmQpLmnH5DYWtVFd3hs5O8rL2SJEnD0m8o/HmSTwIHJ/k14Db8wh1JmnP6ffroD7rfzfwscCzwvqq6tdXKJEkDt8czhSQLk9xWVbdW1W9W1X/rNxCSnJnkwSQbk1w+zXonJ9mR5JdmUrwkaXbtMRSqagfwwyQvn8mOkywErgLOAo4Dzk9y3G7W+yBwy0z2L0maff1+ovkF4N4kt9J9Agmgqv7zNNucAmysqocBklwPnAM8MGG9/wTcQGfAPUnSEPUbCv+n+zMTy9l1FNVR4NTeFZIsp/O46xuZJhSSrAZWAyxbtoyRkZEZljIcY2Nj+0ytg2JPJrMnU7Mvkw2iJ9OGQpIjqurRqvrsXuw7U8yrCdN/BFxWVTuSqVbvblS1FlgLsHLlylq1atVelDN4IyMj7Cu1Doo9mcyeTM2+TDaInuzpnsKNO18kuWGG+x4FDu+ZXgFsmrDOSuD6JI8AvwR8PMkvzvD3SJJmyZ4uH/X+3/ejZrjvu4BjumMkPQ6cB7yjd4WqasZPSvIZ4H9X1Y1IkoZiT6FQu3m9R1W1PcmldJ4qWghcU1X3J7m4u3zNjCqVJLVuT6FwQpJn6ZwxLOm+pjtdVfUj021cVeuAdRPmTRkGVfUf+qpYktSaaUOhqhYOqhBJ0vDN5PsUJElznKEgSWoYCpKkhqEgSWrMq1B4emwLf//Y93l6bMuwS5GkGXl6bAubt+1o/f1r3oTCTesf5/QP/hX//uqvc/oH/4qb1z8+7JIkqS8737++9d3nW3//mheh8PTYFi67YQMvbBvnuS3beWHbOL91wwbPGCS95PW+f+2oav39a16Ewugzm1m8YNc/dfGCBYw+s3lIFUlSfwb9/jUvQmHFIUvYNj6+y7xt4+OsOGTJkCqSpP4M+v1rXoTCoQftz5XnHs8BixewdP9FHLB4AVeeezyHHrT/sEuTpGn1vn8tTFp//+r3S3b2eWefuJzTjz6M0Wc2s+KQJQaCpH3GzvevO2//Gn9z9htaff+aN6EAncQ1DCTtiw49aH+WLF7Y+nvYvLh8JEnqj6EgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkhqEgSWoYCpKkRquhkOTMJA8m2Zjk8imW/7skG7o/f5vkhDbrkSRNr7VQSLIQuAo4CzgOOD/JcRNW+xbwr6vqeOB3gbVt1SNJ2rM2zxROATZW1cNVtRW4Hjind4Wq+tuqeqY7eQewosV6JEl7sKjFfS8HHuuZHgVOnWb9/wh8aaoFSVYDqwGWLVvGyMjILJXYrrGxsX2m1kGxJ5PZk6nZl8kG0ZM2QyFTzKspV0x+jk4ovGGq5VW1lu6lpZUrV9aqVatmqcR2jYyMsK/UOij2ZDJ7MjX7MtkgetJmKIwCh/dMrwA2TVwpyfHA1cBZVfV0i/VIkvagzXsKdwHHJDkyyX7AecDNvSskOQL4AvArVfVQi7VIkvrQ2plCVW1PcilwC7AQuKaq7k9ycXf5GuB9wKHAx5MAbK+qlW3VJEmaXpuXj6iqdcC6CfPW9Ly+CLiozRrmi6fHtjD6zGZWHLKEQw/av/Xt5jJ7Mnwbn3iOZ364jY1PPMfRy5YOu5x5pdVQ0GDctP5xLrthA4sXLGDb+DhXnns8Z5+4vLXt5jJ7Mnzvu/Ferr3jUf7ra7bzG//zq1zw+iN4/zmvGXZZ84bDXOzjnh7bwmU3bOCFbeM8t2U7L2wb57du2MDTY1ta2W4usyfDt/GJ57j2jkd3mXft7Y+y8YnnhlTR/GMo7ONGn9nM4gW7/s+4eMECRp/Z3Mp2c5k9Gb71j31/RvM1+wyFfdyKQ5awbXx8l3nbxsdZcciSVraby+zJ8J14+MEzmq/ZZyjs4w49aH+uPPd4Dli8gKX7L+KAxQu48tzj93iDdG+3m8vsyfAdvWwpF7z+iF3mXfD6I7zZPEDeaJ4Dzj5xOacffdiMn5jZ2+3mMnsyfO8/5zVccNorufcbd3Dbb5xmIAyYoTBHHHrQ/nv1Bra3281l9mT4jl62lNEDFxsIQ+DlI0lSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDUMBUlSw1CQJDVaDYUkZyZ5MMnGJJdPsTxJPtpdviHJSW3WI0maXmuhkGQhcBVwFnAccH6S4yasdhZwTPdnNfCJtuqRJO1Zm2cKpwAbq+rhqtoKXA+cM2Gdc4Brq+MO4OAkr2ixJknSNBa1uO/lwGM906PAqX2ssxz4Tu9KSVbTOZMAGEvy4OyW2prDgKeGXcRLjD2ZzJ5Mzb5M9mJ68hP9rNRmKGSKebUX61BVa4G1s1HUICW5u6pWDruOlxJ7Mpk9mZp9mWwQPWnz8tEocHjP9Apg016sI0kakDZD4S7gmCRHJtkPOA+4ecI6NwMXdJ9COg34QVV9Z+KOJEmD0drlo6ranuRS4BZgIXBNVd2f5OLu8jXAOuDNwEbgh8CFbdUzJPvcJa8BsCeT2ZOp2ZfJWu9JqiZdwpckzVN+olmS1DAUJEkNQ2EWJXkkyb1J1ie5uzvviiSPd+etT/LmYdc5SEkOTvL5JP+Q5JtJXp/kR5PcmuQfu/8eMuw6B2k3PZm3x0mSY3v+7vVJnk3y7vl8nEzTk9aPE+8pzKIkjwArq+qpnnlXAGNV9QfDqmuYknwW+Ouqurr7FNqBwHuA71XV73fHxDqkqi4baqEDtJuevJt5fJzs1B0e53E6H3S9hHl8nOw0oScX0vJx4pmCWpPkR4CfBf4XQFVtrarv0xne5LPd1T4L/OJwKhy8aXqijjOA/1dV32YeHycT9PakdYbC7Crgy0m+0R2aY6dLu6PAXjOfToGBo4DvAp9O8ndJrk7yMmDZzs+jdP/9sWEWOWC76wnM3+Ok13nAn3Zfz+fjpFdvT6Dl48RQmF2nV9VJdEZ/vSTJz9IZ+fVVwIl0xnT68BDrG7RFwEnAJ6rqtcDzwKQh1OeZ3fVkPh8nAHQvpZ0NfG7YtbxUTNGT1o8TQ2EWVdWm7r9PAl8ETqmqJ6pqR1WNA5+iM3rsfDEKjFbV17vTn6fzhvjEztFwu/8+OaT6hmHKnszz42Sns4B7quqJ7vR8Pk522qUngzhODIVZkuRlSZbufA28CbhvwlDgbwXuG0Z9w1BV/wQ8luTY7qwzgAfoDG/yzu68dwI3DaG8odhdT+bzcdLjfHa9TDJvj5Meu/RkEMeJTx/NkiRH0Tk7gM4lgj+pqt9Lch2dU70CHgF+fT6N75TkROBqYD/gYTpPTywA/hw4AngUeFtVfW9oRQ7YbnryUeb3cXIgnWH0j6qqH3TnHcr8Pk6m6knr7yeGgiSp4eUjSVLDUJAkNQwFSVLDUJAkNQwFSVKjtW9ekwat+wjjX3YnfxzYQWdICeh8kHDrUAqbRpJfBdZ1P78gDZ2PpGpOeimNTptkYVXt2M2yrwGXVtX6GexvUVVtn7UCpR5ePtK8kOSdSe7sjkH/8SQLkixK8v0kH0pyT5Jbkpya5CtJHt45Vn2Si5J8sbv8wSTv7XO/H0hyJ3BKkt9JcleS+5KsScfb6XwQ6c+62++XZDTJwd19n5bktu7rDyT5ZJJb6QymtyjJH3Z/94YkFw2+q5qLDAXNeUleTWdIgJ+uqhPpXDY9r7v45cCXuwMZbgWuoDP0xNuA9/fs5pTuNicB70hyYh/7vaeqTqmq24GPVNXJwGu6y86sqj8D1gNvr6oT+7i89VrgLVX1K8Bq4MmqOgU4mc4AjEfsTX+kXt5T0Hzw83TeOO9OArCEzvABAJur6tbu63uBH1TV9iT3Aq/s2cctVfUMQJIbgTfQ+e9nd/vdyj8PewJwRpLfBA4ADgO+AXxphn/HTVX1Qvf1m4B/laQ3hI6hMxyEtNcMBc0HAa6pqv+xy8xkEZ03753GgS09r3v/+5h48632sN/N1b1h1x3D5mN0RkN9PMkH6ITDVLbzz2fwE9d5fsLf9K6q+kukWeTlI80HtwG/nOQw6DyltBeXWt6UzncrH0jnG8H+Zgb7XUInZJ7qjqR7bs+y54ClPdOPAK/rvu5db6JbgHd1A2jnd/oumeHfJE3imYLmvKq6N8nvALclWQBsAy4GNs1gN18D/oTOF5xct/NpoX72W1VPp/O9zPcB3wa+3rP408DVSTbTuW9xBfCpJP8E3DlNPZ+kM3ro+u6lqyfphJX0ovhIqrQH3Sd7Xl1V7x52LVLbvHwkSWp4piBJanimIElqGAqSpIahIElqGAqSpIahIElq/H/IxmFZztFAcQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -512,22 +512,22 @@ " Dep. Variable: Frequency No. Observations: 7 \n", "\n", "\n", - " Model: GLM Df Residuals: 5 \n", + " Model: GLM Df Residuals: 4 \n", "\n", "\n", - " Model Family: Binomial Df Model: 1 \n", + " Model Family: Binomial Df Model: 2 \n", "\n", "\n", " Link Function: logit Scale: 1.0000 \n", "\n", "\n", - " Method: IRLS Log-Likelihood: -2.5250 \n", + " Method: IRLS Log-Likelihood: -2.4223 \n", "\n", "\n", - " Date: Sat, 13 Apr 2019 Deviance: 0.22231 \n", + " Date: Tue, 22 Oct 2024 Deviance: 0.016976 \n", "\n", "\n", - " Time: 19:11:24 Pearson chi2: 0.236 \n", + " Time: 13:21:01 Pearson chi2: 0.0175 \n", "\n", "\n", " No. Iterations: 4 Covariance Type: nonrobust\n", @@ -535,13 +535,16 @@ "\n", "\n", "\n", - " \n", + " \n", + "\n", + "\n", + " \n", "\n", "\n", - " \n", + " \n", "\n", "\n", - " \n", + " \n", "\n", "
coef std err z P>|z| [0.025 0.975] coef std err z P>|z| [0.025 0.975]
Intercept 37.2263 85.388 0.436 0.663 -130.132 204.584
Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953Temperature -1.2238 2.705 -0.452 0.651 -6.525 4.077
Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240Temperature2 0.0096 0.021 0.453 0.650 -0.032 0.051
" ], @@ -551,19 +554,20 @@ " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: Frequency No. Observations: 7\n", - "Model: GLM Df Residuals: 5\n", - "Model Family: Binomial Df Model: 1\n", + "Model: GLM Df Residuals: 4\n", + "Model Family: Binomial Df Model: 2\n", "Link Function: logit Scale: 1.0000\n", - "Method: IRLS Log-Likelihood: -2.5250\n", - "Date: Sat, 13 Apr 2019 Deviance: 0.22231\n", - "Time: 19:11:24 Pearson chi2: 0.236\n", + "Method: IRLS Log-Likelihood: -2.4223\n", + "Date: Tue, 22 Oct 2024 Deviance: 0.016976\n", + "Time: 13:21:01 Pearson chi2: 0.0175\n", "No. Iterations: 4 Covariance Type: nonrobust\n", - "===============================================================================\n", - " coef std err z P>|z| [0.025 0.975]\n", - "-------------------------------------------------------------------------------\n", - "Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n", - "Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n", - "===============================================================================\n", + "================================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "--------------------------------------------------------------------------------\n", + "Intercept 37.2263 85.388 0.436 0.663 -130.132 204.584\n", + "Temperature -1.2238 2.705 -0.452 0.651 -6.525 4.077\n", + "Temperature2 0.0096 0.021 0.453 0.650 -0.032 0.051\n", + "================================================================================\n", "\"\"\"" ] }, @@ -577,8 +581,10 @@ "\n", "data[\"Success\"]=data.Count-data.Malfunction\n", "data[\"Intercept\"]=1\n", + "data[\"Temperature2\"] = data[\"Temperature\"]**2\n", "\n", - "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n", + "\n", + "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature',\"Temperature2\"]], family=sm.families.Binomial(sm.families.links.logit)).fit()\n", "\n", "logmodel.summary()" ] @@ -603,6 +609,13 @@ "cette température à partir du modèle que nous venons de construire:\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On va à présent estimer la probabiliter de défaillance du joint, sachant que la température est de 31°F" + ] + }, { "cell_type": "code", "execution_count": 5, @@ -610,7 +623,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd81FW+//HXJ5PeKSGkAKH3EJJQFAtYqCI27Fh+66JXXd29q3t17xa96t7dZb26a11XXduuiIiIiAJSrJTQQwepaQQCqaTP+f0xA8ZIkkkyyXdm8nk+HvMgM3Nm5nPyhTffOd/zPV8xxqCUUsq3+FldgFJKKffTcFdKKR+k4a6UUj5Iw10ppXyQhrtSSvkgDXellPJBTYa7iLwuIvkisr2B50VE/iYi+0Vkm4ikur9MpZRSzeHKnvsbwORGnp8C9HfeZgMvtb4spZRSrdFkuBtjvgRONtJkBvCWcVgLRItInLsKVEop1Xz+bniPBOBonftZzsdy6zcUkdk49u4JCQlJ69GjR7M/rKzacLy8bc+qFUDE8T+fn5y5CTYBmx9n//QXwd/P8XxL2e12/Px849CH9sXz+Eo/QPtyxt69e08YY2KaaueOcD9XtJ0zfY0xrwCvAKSnp5sNGzY0+8PKKmv4ZMWXjB49BvPPqZiSPAyCcZZhR7CHx2O/dQF2Y7AbQ639+1uN81ZdY6e61k5VrZ3KGuetupbTVWduNZRW1lBcXkNxeTWnTldx6nQVJ8uqsJvvO1kNRIcG0C8mnH7dwhkaH8mwhCgGx0USHGBrsj+rV69m/Pjxzf49eCLti+fxlX6Ab/SlutbOjpxidm/bxI3TLmnRe4jIYVfauSPcs4C6u+CJQI4b3vecwoL86RbqR1LXMJh0H3z8AFSXf98gIAQmPwbxkW3y+bV2Q0FpJXnFFeQUlnP0ZDkHC8rYn1/K0h15zM1wfIkJ9PcjpUc0Y/t04ZJB3UhOiMKvNbv4SimvY4xhR04xq/fk8/X+E2w5WkhFtZ1Jvfy5sY0/2x3hvgi4X0TmAmOAImPMj4Zk2kTy9Y4/V/wPFGVBVCJc+rvvH28DNj+hW2Qw3SKDSU6M/sFzxhhyiirIzCpi4+GTrD1wkudX7uNvK/YRGxnE5KHdmZneg6HxkYho0Cvli4wx7MotYeGWbBZtySGvuAKAofGR3DS6J6OSOlOVs6vN62gy3EXkXWA80FVEsoDfAwEAxpiXgSXAVGA/cBq4s62KPafk69s0zJtDREiIDiEhOoTJw7oDUHi6ipW781m24xjvZhzlzTWHGdQ9gv83rjczRsZbXLFSyl2qa+0syczlta8Psi2rCH8/YfzAGB6aNJCLB8QQExF0tu3qgj1tXk+T4W6MuamJ5w1wn9sq8jHRoYFck5rINamJFJ2uZtG2HP697gi/+mAbTy/fwyXxhvNr7AT6+8aBIqU6mppaO+9vzOJvK/aRW1RBn5gwHr9yKNNHxNM5LNCyutwxLKNcFBUawKyxvbh1TE++2neCl1Z/x7u7C/j2mS/49dTBTBwSq8M1SnmRlbuP8eQnuzhwvIzUntH84erhXDwgxiOOr2m4W0BEuGhADBcNiOG59z9n0VE/7n57I5cO6sb/XjucbhHBVpeolGpEQWklj3+8k0Vbc+jXLZxXZqVxuYftnOlYgMWGx/jz6YMX8ptpg/l6/wkmPfMln2a2z/FopVTzfbH3OJc/8yWfbs/lF5cNYMkDFzJxaHePCnbQcPcI/jY/7rqwD588cCE9O4fyH//axB8/3U2tXS+BqJSnsNsNf/18H3f8cz3dIoJY/LMLefCy/h57vMwzq+qg+nULZ/5/nM8tY3ry8hff8dO3NlBcUW11WUp1eBXVtdzzzkae+XwvV6ck8OG94xjYPcLqshql4e5hAmx+PHX1cJ64ahhf7j3OLf9YR+HpKqvLUqrDKqmo5vbX17N81zF+P30IT18/gpDAps8+t5qGu4eaNbYXr9yWxp5jJdz4yloKSiutLkmpDudUWRU3/WMtGw+f4tkbUrhzXG+PG1tviIa7B7tkUCyv3pbOoYIybnxlLafKdA9eqfZSVlnDnW9ksPdYKf+4LZ0ZKQlWl9QsGu4e7qIBMbx+xygOF5xm9tsbqKiutbokpXxeVY2de97ZyLasQp67aSQTBnWzuqRm03D3Auf37crT148g49Apfvn+Vuw6i0apNmOM4Vfzt/LVvhP88ZpkJg3tbnVJLaInMXmJ6SPiyS0q5w9LdpPUJZSHJw2yuiSlfNJrXx9k4ZYcfnn5AK4f1fxrTngKDXcv8tML+3DgeBkvrPqO9KTOTBjofV8VlfJkaw8U8L+f7mbS0Fjuv6Sf1eW0ig7LeBER4bErhzI4LpJfvLeFnMLypl+klHLJseIK7v/3Jnp1CeUvM0d4zayYhmi4e5ngABsv3DyS6ho79/97EzW1dqtLUsrrGWN4eP42yipreWVWGhHBAVaX1Goa7l6oT0w4f7hmOJuOFPKPrw5aXY5SXu/f64/w5d7j/HrqIPp18+wzT12l4e6lZqQkMGVYd575fC/780utLkcpr3W4oIynPtnFBf26csuYXlaX4zYa7l7s8RlDCQ208av5W3WRMaVa4MxwjE2EP1+X7BHrsLuLhrsX6xYRzO+nD2HTkULe/PaQ1eUo5XU+3JzN+oMn+fW0wcRHh1hdjltpuHu5q1ISuHhADM8s38sJXX9GKZcVV1TzhyW7GdEjmhvSvXc+e0M03L2ciPC76UMor67l6WVtf9FdpXzFs8v3UVBWyRMzhvrUcMwZGu4+oG9MOLefn8TcjKNszy6yuhylPN6evBLeXHOIm0b3JDkx2upy2oSGu4944NL+dAoN5H8W78QYPbiqVGP+9NluwgJtPDxxoNWltBkNdx8RFRLALycOYP3BkyzfeczqcpTyWOsPnmTl7nz+Y3w/OoUFWl1Om9Fw9yE3pPegd9cw/m/5Xl05UqlzMMbw58920y0iiDvOT7K6nDal4e5D/G1+PHhpf3bnlbBke67V5SjlcVbtyWfD4VM8eFl/r7hUXmtouPuY6SPi6d8tnGeW79UTm5Sqw243/PmzPSR1CeV6H5z6WJ+Gu4+x+Qm/uHwA3x0v46Mt2VaXo5THWLE7n915JTx4WX8CbL4ffb7fww5o8tDuDI6L5PmV+3XvXSkcY+3Pr9pPj84hTE+Ot7qcdqHh7oP8/IR7x/flwIkylu/Ms7ocpSy35rsCth4t5J6L++LfAfbaQcPdZ00Z1p2enUN56YsDOu9ddXgvrN5Pt4ggrk1NtLqUdqPh7qP8bX789MLebD1ayLqDJ60uRynLbD5yim/2F/DTC/sQHODbM2Tq0nD3YTPTe9AlLJC/f/Gd1aUoZZl/fHWAyGB/bhrT0+pS2pWGuw8LDrBxx/lJrNpznD15JVaXo1S7yy4sZ+mOY9w0uifhQf5Wl9OuNNx93K1jexHk78ebaw5ZXYpS7e6tNYcwxjDrPN+5wpKrNNx9XKewQGakxPPhpmyKTldbXY5S7eZ0VQ1z1x9l0tDuJHYKtbqcdudSuIvIZBHZIyL7ReSRczwfJSIfi8hWEdkhIne6v1TVUredl0R5dS3vbzxqdSlKtZsPN2dTVF7NneN6W12KJZoMdxGxAS8AU4AhwE0iMqRes/uAncaYEcB44GkR8d3l1rzMsIQo0nt14u21h3VBMdUhGGN445tDDI2PZFRSJ6vLsYQre+6jgf3GmAPGmCpgLjCjXhsDRIiIAOHASaDGrZWqVrnt/CQOF5zmi33HrS5FqTa3/uBJ9uWXcvv5SThiqeORpk5wEZHrgMnGmLuc92cBY4wx99dpEwEsAgYBEcANxphPzvFes4HZALGxsWlz585tUdGlpaWEh4e36LWepr36UmM3PPRFOT0j/fjPtOA2+QzdLp7HV/oBzevLy1sr2Hq8lmcnhBJk87xwb812mTBhwkZjTHqTDY0xjd6AmcCrde7PAp6r1+Y64BlAgH7AQSCysfdNS0szLbVq1aoWv9bTtGdfnl662yQ9sthknzrdJu+v28Xz+Eo/jHG9LydLK03/Xy8xv1uY2bYFtUJrtguwwTSR28YYl4ZlsoC662MmAjn12twJLHB+9n5nuA9y4b1VO5rpXOZ03gY9sKp81websqiqtXe4k5bqcyXcM4D+ItLbeZD0RhxDMHUdAS4FEJFYYCBwwJ2Fqtbr0TmUC/p15f0NWbpapPJJxhj+vf4IqT2jGdQ90upyLNVkuBtjaoD7gaXALmCeMWaHiNwjIvc4mz0BnC8imcAK4L+MMSfaqmjVcjeO6kl2YTlf79fNo3zP+oMnOXC8jJvHdLyTlupz6XxcY8wSYEm9x16u83MOMNG9pam2cNmQbnQOC+S9jCNcPCDG6nKUcqv3Mo4SEezPtOFxVpdiOT1DtYMJ8rdxzcgElu88xonSSqvLUcptSiqqWbI9l+kj4n3++qiu0HDvgG4Y1YPqWsPCzXoZPuU7Ps3Mo6LaznVpHWfN9sZouHdA/WMjGJEYxYJNGu7Kd8zfmEWfmDBG9oi2uhSPoOHeQV2TmsjO3GJ25RZbXYpSrXa4oIz1h05ybWpihz0jtT4N9w5q+oh4AmzCgk1ZVpeiVKt9sCkbEbgmNcHqUjyGhnsH1TkskAkDu7FwSw41tXary1Gqxex2wwcbs7igX1fiokKsLsdjaLh3YNekJnK8pFLnvCuvtv7QSbILyzvUxa9doeHegV0yqBvRoQF8oAdWlRf7aEsOoYE2Jg6NtboUj6Lh3oEF+vsxPTme5TvzKK3UFZqV96mqsbMkM5eJQ2IJDexY10htioZ7BzcjJZ6KajvLd+ZZXYpSzbZ6Tz5F5dXMSNEDqfVpuHdwqT07kRAdwkdb6i/0qZTn+2hrDp3DArmgf1erS/E4Gu4dnJ+fMH1EPF/tO0GBLkegvEhJRTWf7zzGFclxBNg0yurT34hiRko8tXbDku06NKO8x9Idx6isseuQTAM03BWDukcwIDacj3VoRnmRRVtzSOwUQmpPXW7gXDTcFSLClSPiz84XVsrTFZRW8s3+E0wfEa/LDTRAw10BcOUIx1fbxVt17115vs925FFrN1yRrOu2N0TDXQHQs0soIxKj+CQz1+pSlGrS4q259IkJY0hcx76UXmM03NVZ05Lj2JZVxOGCMqtLUapB+cUVrD1YwBXJOiTTGA13ddZU56XJdO9debIlmbkYA9N1SKZRGu7qrMROoYzsGc3irRruynMt3pbLwNgI+sdGWF2KR9NwVz9wRXI8O3OLOXC81OpSlPqR3KJyNhw+xfQRutfeFA139QNnrhr/yTbde1eeZ0mm40S7M0OIqmEa7uoHukcFMyqpE4s13JUHWpKZy+C4SPrEhFtdisfTcFc/Mm14HHuOlbA/X4dmlOc4WWFn4+FTTBve3epSvIKGu/qRKc6vvJ/qrBnlQTbk1QI6JOMqDXf1I7GRwaT36qRTIpVHycirYVD3CB2ScZGGuzqnqcPj2J1XorNmlEfIK6pgX6H97AF/1TQNd3VOU5zjmkt07115gE+3O/4eTtUTl1ym4a7OKS7KsZTqmalnSlnp08w8EsOFvjok4zINd9WgqcPj2JlbzKETutaMsk5+cQUZh08yqrteALs5NNxVg6boWjPKA3y2Iw9j0HBvJg131aCE6BBSekTzmV5+T1loSWYu/buFEx+ucdUc+ttSjZoyrDuZ2UUcPXna6lJUB3S8pJL1B0+e/RapXKfhrho1ZZjzhKbtOjSj2t+ynXnYDUzVs1KbzaVwF5HJIrJHRPaLyCMNtBkvIltEZIeIfOHeMpVVenYJZVhCpM6aUZb4NDOPPl3DGKjL+zZbk+EuIjbgBWAKMAS4SUSG1GsTDbwIXGmMGQrMbINalUWmDItjy9FCvXi2alcny6pYc6CAKcO76xWXWsCVPffRwH5jzAFjTBUwF5hRr83NwAJjzBEAY0y+e8tUVpoyzPGVWA+sqva0fKfjIthnhgZV84gxpvEGItcBk40xdznvzwLGGGPur9PmWSAAGApEAH81xrx1jveaDcwGiI2NTZs7d26Lii4tLSU83DdOZvCWvvz2m3KCbfDfY0MabOMtfXGFr/TFm/vx9IYK8srs/PmiEETEq/tSX2v6MmHChI3GmPQmGxpjGr3hGGJ5tc79WcBz9do8D6wFwoCuwD5gQGPvm5aWZlpq1apVLX6tp/GWvvz1870m6ZHFJq+ovME23tIXV/hKX7y1H4VlVabvo5+YPyzZefYxb+3LubSmL8AG00RuG2NcGpbJAnrUuZ8I5JyjzWfGmDJjzAngS2CEC++tvMTU4d0xRodmVPtYvusYNXbDVB2SaTFXwj0D6C8ivUUkELgRWFSvzUfAhSLiLyKhwBhgl3tLVVbq1y2C/t3CdSEx1S4+zcwlITqE5MQoq0vxWk2GuzGmBrgfWIojsOcZY3aIyD0ico+zzS7gM2AbsB7HMM72titbWWHq8DjWHzrJ8ZJKq0tRPqy4opqv9p1gyjCdJdMaLs1zN8YsMcYMMMb0NcY85XzsZWPMy3XazDHGDDHGDDPGPNtWBSvrTB0e5xia2aFDM6rtrNyVT1WtXc9KbSU9Q1W5bEBsOH1iwvTye6pNfZKZS/fIYEb2iLa6FK+m4a5cJiJMGx7H2gMFFJTq0Ixyv5KKar7Ye5zJw7rj56dDMq2h4a6aZcqwOOwGlu44ZnUpyget3J1PVY2daXrFpVbTcFfNMjgugt5dw3TWjGoTn2zLJTYyiLSenawuxetpuKtmERGmDu/OGh2aUW5WWlnD6r3HmTIsTodk3EDDXTXbtOHx1NqNDs0ot1qx65gOybiRhrtqtjNDM59k1j9RWamW0yEZ99JwV812ZtbMmu90aEa5hw7JuJ+Gu2qRqcMds2b0hCblDmeGZKbqiUtuo+GuWmRwXAR9uobxyTadNaNa7+OtjhOX0nvpkIy7aLirFhERpiU7TmjStWZUaxSVV/Pl3uNMS9YhGXfScFctdkVyPHajF89WrbN85zGqau1cobNk3ErDXbXYwO4RDIgN5+OtOmtGtdzHW3NI7BRCiq4l41Ya7qpVpifHk3HoFDl68WzVAqfKqvhm/wmuSI7X5X3dTMNdtcoVI+IB9MCqapHPduRRYzc6JNMGNNxVq/TuGsbwhCg+3qZDM6r5Pt6aQ++uYQyNj7S6FJ+j4a5abfqIOLZlFXGszG51KcqL5BdXsOZAAdOT43RIpg1ouKtWm5bsGJpZl1djcSXKmyzamoMxcGVKgtWl+CQNd9VqCdEhjErqxNqcGowxVpejvMSirTkMS4ikX7dwq0vxSRruyi1mpCSQU2bYkVNsdSnKCxw4Xsq2rCKu0r32NqPhrtxi2vA4bAILN2dbXYryAh9tyUHEcSKcahsa7sotOoUFkhxjY9HWHGrtOjSjGmaMYdHWHMb27kL3qGCry/FZGu7Kbc6L9ye/pJI13xVYXYryYJnZRRw8UcZVI3WvvS1puCu3SYmxER7kz8ItOjSjGrZgUzaB/n5MHqonLrUlDXflNoE2Ycqw7ny2PY+K6lqry1EeqKrGzqKtOVw+OJao0ACry/FpGu7Kra4emUBpZQ3Ldur1VdWPfbH3OCfLqrg2TWfJtDUNd+VWY/t0ISE6hPkbs6wuRXmgDzZm0TU8kAv7x1hdis/TcFdu5ecnXJuawNf7jpNXVGF1OcqDnCqrYsXuY8xISSDAptHT1vQ3rNzu2rRE7AYWbNa9d/W9xdtyqK41XJOqQzLtQcNduV2vLmGMTurM/I1ZuhyBOmv+pmwGdY9gaHyU1aV0CBruqk1cl5bIgeNlbD5aaHUpygPsySth69FCrktLtLqUDkPDXbWJqclxhATYeH+DDs0oeC/jKAE24ZpUDff2ouGu2kR4kD9Th8fx8dYcyip1KeCOrLKmlgWbs5g4pDudwwKtLqfD0HBXbebmMT0oraxhsV6lqUNbtuMYhaeruWFUD6tL6VA03FWbSe3Zif7dwnl3/VGrS1EWmrfhKAnRIVzQr6vVpXQoLoW7iEwWkT0isl9EHmmk3SgRqRWR69xXovJWIsJNo3uy5WghO3Wd9w7p6MnTfLXvBNen98DPTy+l156aDHcRsQEvAFOAIcBNIjKkgXZ/Apa6u0jlva5JTSDQ34+5GUesLkVZ4L2Mo/gJzEzXA6ntzZU999HAfmPMAWNMFTAXmHGOdj8DPgDy3Vif8nLRoYFMHdadDzdnU16li4l1JFU1duZmHOGSQbHER4dYXU6H4+9CmwSg7qBpFjCmbgMRSQCuBi4BRjX0RiIyG5gNEBsby+rVq5tZrkNpaWmLX+tpOkJfBgfWsrCihj/PW8nFid6xEqCvbBcr+7E2p4YTpVWMCC10Sw2+sk2gffriSrifa6Cs/mmHzwL/ZYypFWl4XM0Y8wrwCkB6eroZP368i2X+0OrVq2npaz1NR+jLxcbw4ZGvWFcg/O6WC2js74in8JXtYmU/Xnj5W3p1sXHftePdMt7uK9sE2qcvrgzLZAF15zAlAvXntqUDc0XkEHAd8KKIXOWWCpXXExFuOy+JnbnFbDpyyupyVDvYlVtMxqFT3Dqmlx5ItYgr4Z4B9BeR3iISCNwILKrbwBjT2xiTZIxJAuYD9xpjFrq9WuW1rhoZT0SwP298e9jqUlQ7eHvtYYL8/fRAqoWaDHdjTA1wP45ZMLuAecaYHSJyj4jc09YFKt8QGujP9ek9+DQzl/xiXQrYlxWVV7NwczbTR8QTHapnpFrFpXnuxpglxpgBxpi+xpinnI+9bIx5+Rxt7zDGzHd3ocr7zRrbi1pj+Nc6nRbpy+auP8LpqlruHJdkdSkdmp6hqtpNUtcwJgzsxr/WHdFrrPqo6lo7b3x7iPP7dtGlfS2m4a7a1V0X9uZEaSULN2dbXYpqA0syc8ktquCuC3tbXUqHp+Gu2tV5fbowLCGSV746gN2uF/LwJcYYXvv6IH1iwhg/oJvV5XR4Gu6qXYkIP72wDweOl7Fyt57M7EsyDp1iW1YRP7mgt05/9AAa7qrdTR0eR0J0CK98ecDqUpQbvfzFd3QKDeCakTr90RO4coaqUm4VYPPjznFJPPnJLp5dvpf3N2aRU1hOfHQID08ayFUj9QLK3mLh5mzmLN1DdmE5AFOHdSck0GZxVQp0z11Z5MbRPQkNtPG3lfvILizHANmF5Ty6IFMPtnqJhZuzeXRB5tlgB1i5O1+3n4fQcFeWCA/yx+Yn1D+mWl5dy5yle6wpSjXLnKV7KK83pbWixq7bz0NouCvLlFSc+9qqOXX2BJXnamg76fbzDBruyjIJDazxrWt/e4eGtpNuP8+g4a4s8/CkgQT7//CvYEiAjYcnDbSoItUcD08aiK3e8s26/TyHzpZRljkzK+a3C7dTUllDTHgQ/z1tsM6W8RJD4iOxG0N4kD9llTU628nDaLgrS101MoFLBnfj4j+vYlBchAaDF/m/ZXsJC/Lny19NoHOYrv7oaXRYRlkuMjiA+yb046t9J/h2/wmry1EuyMwq4rMdefzkgt4a7B5Kw115hFvH9iI+Kpg/fbYbY3TNGU9mjOGPn+2iU2iALhDmwTTclUcIDrDxi8sHsDWriCWZeVaXoxrx+a58vtlfwM8vG0BEsHdc8Lwj0nBXHuOa1EQGx0XyhyW7KK/S9d49UVWNnT8s2UXfmDBuHtPT6nJUIzTclcew+QmPTR9CdmE5f//yO6vLUefw1ppDHDxRxm+uGEKATePDk+nWUR5lTJ8uTEuO46XV35F16rTV5ag6Ckor+duKfVw0IIYJA3W9dk+n4a48zq+nDkYE/rBkl9WlqDqeWrKL8upafjttsNWlKBdouCuPkxAdwr3j+7EkM49VekEPj/DtdydYsCmb2Rf1oX9shNXlKBdouCuPdPfFfejfLZz//jCT0spzLzCm2kdlTS2/+XA7PTuH8rNL+ltdjnKRhrvySEH+Nv54bTK5xRX8RZeQtdSLq77jwIkynrhqGMEBeiEOb6HhrjxWWq9OzBrbizfXHGLj4VNWl9Mhbc8u4oVV+5mREs/FA2KsLkc1g4a78mgPTxpIfFQIv5y3hTIdnmlXFdW1/Oe8LXQOC+TxK4daXY5qJg135dEiggN4+voRHD55mic/2Wl1OR3KM8v3svdYKX+6LpnoUF0/xttouCuPN7ZPF+6+qC/vrj/Ksh26NEF7+Pa7E7zy1QFuGt1T57R7KQ135RX+8/IBDImL5L8+2KaXcWtj+SUVPPDuFvp0DeM3Oqfda2m4K68Q6O/HczePpKrGzr3/2kRlja490xZq7YYH391CaWU1L96SRliQXvLBW2m4K6/RNyacOTNHsOVoIU8u1rNX28Izy/ey5kABT8wYxsDuerKSN9NwV15l6vA4Zl/Uh7fXHmb+xiyry/Epi7bm8Pyq/VyfnsjM9B5Wl6NaScNdeZ1fTRrI+X278OiCbaw9UGB1OT5hy9FCHn5/K6OSOvHEVcOsLke5gYa78jr+Nj9eujWNXl3CuPvtjXx3vNTqkrxadmE5P31rAzERQbx8axpB/noWqi/QcFdeKSokgH/eMYoAm3DHP9eTX1xhdUle6URpJbNeXUdFdS2v3T6KLuFBVpek3MSlcBeRySKyR0T2i8gj53j+FhHZ5rx9KyIj3F+qUj/Uo3Mor94+ipOlVdzy6joKSiutLsmrFFdUc/vr68kpKuf1O0bpAVQf02S4i4gNeAGYAgwBbhKRIfWaHQQuNsYkA08Ar7i7UKXOJaVHNK/dMYojJ08z67X1FJ2utrokr1BaWcNP3shgT14JL92axqikzlaXpNzMlT330cB+Y8wBY0wVMBeYUbeBMeZbY8yZlZ3WAonuLVOpho3t04W/z0pjX34Jt7y2Vvfgm1B0uppbX13H5iOF/PXGkXoGqo8SY0zjDUSuAyYbY+5y3p8FjDHG3N9A+4eAQWfa13tuNjAbIDY2Nm3u3LktKrq0tJTw8PAWvdbTaF/cZ9vxGp7fXEmXEOGh9GC6hLT8kJLVfXGX+v0orjL8JaOCnFI796YEkRrrPScp+co2gdb1ZcKECRuNMelNNjTGNHoDZgKv1rk/C3iugbYTgF1Al6beNy0tzbTUqlWrWvxaT6N9ca91BwobS759AAAR70lEQVTMsN99Zs7/3xVmd25xi9/HE/riDnX7sT+/xFz4p5VmwH8vMat2H7OuqBbylW1iTOv6AmwwTeSrMcalYZksoO4ZDYlATv1GIpIMvArMMMbo5GNlidG9O/Pu7LFU19q59qVv9TJ9TmsPFHDNi99SVlnDu7PHMl6HYnyeK+GeAfQXkd4iEgjcCCyq20BEegILgFnGmL3uL1Mp1w1LiOKj+8fRq0soP3kzg5e/+A67vfHhR19ljOG1rw9y66vr6BoeyML7xpHas5PVZal20GS4G2NqgPuBpTiGXOYZY3aIyD0ico+z2e+ALsCLIrJFRDa0WcVKuSAuKoT37zmPKcPi+OOnu/nJmxmcLKuyuqx2VVJRzYtbK3li8U4uGdSNBfeOo0fnUKvLUu3EpaMpxpglwJJ6j71c5+e7gB8dQFWqvS3cnM2cpXvIKSwnPjqEhyYOICTAxvxNWaQ+sZwuYYH89oohXDUyoc0/++FJA9vkc1xx15sZfL4rH8EgCDERgUSFBFhSi7KG9xwqV6oJCzdn8+iCTMqrHcsBZxeW86v520C+b1NQVsUv523ldFUNN4/p1aaf/eiCTIB2DfjiimpmvvQte445lmS4sW8t737nz7/WHUVEePKq4e1Wi7KWLj+gfMacpXvOhusZ1XZDde0Px9trjeE3C7czd/0Rat00Fn+uzy6vrmXO0j1uef+mGGNYuDmbS5/+4mywA8TXGYV5d93RdqlFeQYNd+UzmnOFJruBRxZkcuXzX/PF3uNnpvK6/bPb46pR3+4/wdUvfsvP39tCfFRwg+1qW9lH5V003JXPiI8Ocb1tVDB/vTGFwtOO9VVmvryGL1sR8g19dnNqag5jDN/sP8Etr67l5lfXcay4gj9dO5wP7x2HTeScr2noceWbNNyVz3h40kBCAn64XG2AnxBg+2GohQTY+NXkQcxISWDlQxfzxFXDyDpVzm2vr2fSs18yd/0RKmuaF/Ln+uyQABsPTxrYss40oLyqlg82ZjH9+a+55dV17Mkr5TfTBrPqofHcMKonfn7CTWPOfaGNhh5XvkkPqCqfcebAZf0ZK+d67EzbIH8bs8b24vr0RD7emstrXx/kkQWZBNtgRuE2rklNID2pMza/xvd6G/psdxxMtdsNG4+cYtGWHBZuyaakooY+MWH87zXDuXpkAsH1/lM5c9D0zBi7TRyBrwdTOxYNd+VTrhqZcM5AbSpkg/xtXJeWyLWpCWQcOsVzizP4eFsO7204StfwQC4bHMv4gTGc16crUaHnnlLY0Ge3RGllDd/uP8GX+46zfOcxjhVXEuTvx+Rh3blxVE/G9umMNDLM8uRVw3nyquGsXr2a724Z75aalHfRcFeqDhFhdO/O/GR4EC+fdwGr9xznsx15LN6Wy9yMo/gJDImPZERiNCN6RDO4eyR9u4URGtjyf0oV1bXszy9ld14JmVmFbDpSyM7cYmrthtBAGxf068q05DguHRxLeJD+k1Wu0b8pSjUgLMifaclxTEuOo6rGztasQr7ed4KMQydZtCWHf607crZtXFSw8xZC5zDHCUPhwf74+wn+fkKtgcqaWiqqajl1uppTp6s4VlxB1qly8oorOHMcNzTQRkqPaP7j4r6M69eVtF6dCPTXQ2Oq+TTclXJBoL8fo5I6n72ohd1uOFhQxr5jJezPL+XgidPkFpWzM7eYwtNVFFfUNDiHPjo0gM6hgcREBDGuX1cSO4UwIDaCAbERJHUJxd+mYa5aT8NdqRbw8xP6xoTTN+bca3IbY6iotlNtt1NTa7D5CUH+fgTa/PBr4uCsUu6g4a5UGxARQgJthGBrurFSbUC//ymllA/ScFdKKR+k4a6UUj7Io8bcq6urycrKoqKiotF2UVFR7Nq1q52qalvt2Zfg4GASExMJCNB1vZXydR4V7llZWURERJCUlNTo2XclJSVERES0Y2Vtp736YoyhoKCArKwsevfu3eafp5SylkcNy1RUVNClS5dGg121jIjQpUuXJr8VKaV8g0eFO6DB3ob0d6tUx+Fx4a6UUqr1PGrM3RPYbDaGD/9+adSFCxeSlJRkXUFKKdUCGu71hISEsGXLlgafr6mpwd9ff21KKc/msSn1+Mc72JlTfM7namtrsdmaf1r3kPhIfj99aLNf98Ybb/DJJ59QUVFBWVkZK1euZM6cOcybN4/KykquvvpqHn/8cQCeeuop3nrrLXr06EFMTAxpaWk89NBDjB8/nr/85S+kp6dz4sQJ0tPTOXToELW1tTz88MOsXr2ayspK7rvvPu6++25Wr17NY489RteuXdm+fTtpaWm88847iAgZGRk8+OCDlJWVERQUxIoVK5g6dSrPPfccKSkpAIwbN46XXnqJ5OTkZvdXKeX9PDbcrVJeXn42IHv37s2HH34IwJo1a9i2bRudO3dm2bJl7Nu3j/Xr12OM4corr+TLL78kLCyMuXPnsnnzZmpqakhNTSUtLa3Rz3vrrbeIiooiIyODyspKxo0bx8SJEwHYvHkzO3bsID4+nnHjxvHNN98wevRobrjhBt577z1GjRpFcXExISEh3HXXXbzxxhs8++yz7N27l8rKSg12pTowjw33xvaw23JueEPDMpdffjmdOzuWe122bBnLli1j5MiRAJSWlrJv3z5KSkq4+uqrCQ0NBeDKK69s8vNWrlzJzp07mT9/PgBFRUXs27ePwMBARo8eTWJiIgApKSkcOnSIqKgo4uLiGDVqFACRkZEAzJw5kyeeeII5c+bw+uuvc8cdd7TuF6GU8moeG+6eJiws7OzPxhgeffRR7r777h+0efbZZxucbujv74/dbgf4wVxzYwzPPfcckyZN+kH71atXExQUdPa+zWajpqYGY8w5PyM0NJTLL7+cjz76iHnz5rFhw4bmd1Ip5TN0KmQLTJo0iddff53S0lIAsrOzyc/P56KLLuLDDz+kvLyckpISPv7447OvSUpKYuPGjQBn99IBLr30Ul566SWqq6sB2Lt3L2VlZQ1+9qBBg8jJySEjIwNwfIupqakB4K677uKBBx5g1KhRZ79lKKU6Jt1zb4GJEyeya9cuzjvvPADCw8N55513SE1N5YYbbiAlJYVevXpx4YUXnn3NQw89xPXXX8/bb7/NJZdccvbx22+/nby8PFJTUzHGEBMTw8KFCxv87MDAQN577z1+9rOfUV5eTkhICJ9//jnh4eGkpaURGRnJnXfe2XadV0p5B2OMJbe0tDRT386dO3/02LkUFxe71M5qv//9782cOXMabePOvmRnZ5v+/fub2traBtu4+jtuiVWrVrXZe7c3X+mLr/TDGO3LGcAG40LG6rCMj3jrrbcYM2YMTz31FH5+ulmV6uh0WKYNPfbYY+32Wbfddhu33XZbu32eUsqzedwunuNbh2oL+rtVquPwqHAPDg6moKBAQ6gNGOd67sHBwVaXopRqBx41LJOYmEhWVhbHjx9vtF1FRYXPhFR79uXMlZiUUr7Po8I9ICDApasErV69+uzZod7Ol/qilPIcLg3LiMhkEdkjIvtF5JFzPC8i8jfn89tEJNX9pSqllHJVk+EuIjbgBWAKMAS4SUSG1Gs2BejvvM0GXnJznUoppZrBlT330cB+Y8wBY0wVMBeYUa/NDOAt5xz7tUC0iMS5uVallFIucmXMPQE4Wud+FjDGhTYJQG7dRiIyG8eePUCpiOxpVrXf6wqcaOFrPY32xTP5Sl98pR+gfTmjlyuNXAn3cy1zWH+uoittMMa8Arziwmc2XpDIBmNMemvfxxNoXzyTr/TFV/oB2pfmcmVYJgvoUed+IpDTgjZKKaXaiSvhngH0F5HeIhII3AgsqtdmEXCbc9bMWKDIGJNb/42UUkq1jyaHZYwxNSJyP7AUsAGvG2N2iMg9zudfBpYAU4H9wGmgrdecbfXQjgfRvngmX+mLr/QDtC/NInqqv1JK+R6PWltGKaWUe2i4K6WUD/L4cBeRYBFZLyJbRWSHiDzufLyziCwXkX3OPztZXasrRMQmIptFZLHzvrf245CIZIrIFhHZ4HzMW/sSLSLzRWS3iOwSkfO8sS8iMtC5Pc7cikXk517al184/71vF5F3nTngdf0AEJEHnf3YISI/dz7W5n3x+HAHKoFLjDEjgBRgsnNGziPACmNMf2CF8743eBDYVee+t/YDYIIxJqXOfF1v7ctfgc+MMYOAETi2j9f1xRizx7k9UoA0HJMbPsTL+iIiCcADQLoxZhiOiRw34mX9ABCRYcBPcZzpPwK4QkT60x59ceVafJ5yA0KBTTjOkN0DxDkfjwP2WF2fC/UnOjfkJcBi52Ne1w9nrYeArvUe87q+AJHAQZyTC7y5L/Xqnwh844194fsz3jvjmNG32Nkfr+qHs86ZwKt17v8W+FV79MUb9tzPDGVsAfKB5caYdUCscc6ld/7ZzcoaXfQsjg1rr/OYN/YDHGcgLxORjc5lJcA7+9IHOA780zlc9qqIhOGdfanrRuBd589e1RdjTDbwF+AIjiVMiowxy/CyfjhtBy4SkS4iEopjyngP2qEvXhHuxpha4/iqmQiMdn7V8SoicgWQb4zZaHUtbjLOGJOKY0XQ+0TkIqsLaiF/IBV4yRgzEijDC77uN8Z5suGVwPtW19ISzvHnGUBvIB4IE5Fbra2qZYwxu4A/AcuBz4CtQE17fLZXhPsZxphCYDUwGTh2ZuVJ55/5FpbminHAlSJyCMfKmpeIyDt4Xz8AMMbkOP/MxzGuOxrv7EsWkOX8NggwH0fYe2NfzpgCbDLGHHPe97a+XAYcNMYcN8ZUAwuA8/G+fgBgjHnNGJNqjLkIOAnsox364vHhLiIxIhLt/DkEx4bfjWPJg9udzW4HPrKmQtcYYx41xiQaY5JwfGVeaYy5FS/rB4CIhIlIxJmfcYyHbscL+2KMyQOOishA50OXAjvxwr7UcRPfD8mA9/XlCDBWREJFRHBsk114Xz8AEJFuzj97Atfg2DZt3hePP0NVRJKBN3EcMfcD5hlj/kdEugDzgJ44/jLMNMactK5S14nIeOAhY8wV3tgPEemDY28dHMMa/zbGPOWNfQEQkRTgVSAQOIBj+Qw/vLMvoTgORvYxxhQ5H/O67eKc8nwDjiGMzcBdQDhe1g8AEfkK6AJUA/9pjFnRHtvE48NdKaVU83n8sIxSSqnm03BXSikfpOGulFI+SMNdKaV8kIa7Ukr5IFcukK1Uu3JOE1vhvNsdqMWxRADAaGNMlSWFNUJE/h+wxDlvXinL6VRI5dFE5DGg1BjzFw+oxWaMqW3gua+B+40xW5rxfv7GmHY5FV11PDoso7yKiNwujvX9t4jIiyLiJyL+IlIoInNEZJOILBWRMSLyhYgcEJGpztfeJSIfOp/fIyK/cfF9nxSR9TjWNXpcRDKc63O/LA434FiO+j3n6wNFJKvOmdVjReRz589PisjfRWQ5jsXK/EXk/5yfvU1E7mr/36ryRRruyms4F4y7GjjfuZCcP46lHACigGXOxcyqgMdwnLY+E/ifOm8z2vmaVOBmEUlx4X03GWNGG2PWAH81xowChjufm2yMeQ/YAtxgHOupNzVsNBKYboyZBczGsaDcaGAUjkXYerbk96NUXTrmrrzJZTgCcINjyRFCcJxqD1BujFnu/DkTxzKxNSKSCSTVeY+lxphTACKyELgAx7+Dht63iu+XWgC4VEQeBoKBrsBG4NNm9uMjY0yF8+eJwGARqfufSX8cp6Qr1WIa7sqbCPC6Mea3P3hQxB9HCJ9hx3EFrzM/1/17Xv8gk2nifcuN88CUc92W54FUY0y2iDyJI+TPpYbvvxnXb1NWr0/3GmNWoJQb6bCM8iafA9eLSFdwzKppwRDGRHFcMzUUx5rh3zTjfUNw/Gdxwrkq5rV1nisBIurcP4TjUnfUa1ffUuBe538kZ66DGtLMPin1I7rnrryGMSbTuVrg5yLih2OVvXuAnGa8zdfAv4G+wNtnZre48r7GmAIReRPH8saHgXV1nv4n8KqIlOMY138M+IeI5AHrG6nn7zhWBtziHBLKx/GfjlKtolMhVYfhnIkyzBjzc6trUaqt6bCMUkr5IN1zV0opH6R77kop5YM03JVSygdpuCullA/ScFdKKR+k4a6UUj7o/wO7VTpMV2usXAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -623,11 +646,13 @@ ], "source": [ "%matplotlib inline\n", - "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n", - "data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n", + "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121) , 'Intercept': 1})\n", + "data_pred[\"Temperature2\"] = data_pred[\"Temperature\"]**2\n", + "data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature','Temperature2']])\n", "data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n", "plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n", - "plt.grid(True)" + "plt.grid(True)\n", + "plt.scatter(x=31,y=logmodel.predict([1,31,31*31]))" ] }, { @@ -705,7 +730,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.6.4" } }, "nbformat": 4, -- 2.18.1