{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Concentration de CO2 dans l'atmosphère depuis 1958\n", "\n", "On s'intéresse à la concentration en CO2 au cours du temps depuis 1958; les données sont disponibles sur le site web [scrippsco2.ucsd.edu](https://scrippsco2.ucsd.edu/data/atmospheric_co2/primary_mlo_co2_record.html)\n", "\n", "Commençons par importer les bibliothèques nécessaires à l'analyse" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import isoweek\n", "import os\n", "from urllib.request import urlretrieve" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Chargement des données\n", "\n", "Chargeons à présent les données. On vérifie si le fichier existe avant; si il n'existe pas on le charge avec `urlretrieve`\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/monthly_in_situ_co2_mlo.csv\"\n", "data_path = \"./monthly_in_situ_co2_mlo.csv\"\n", "\n", "if not os.path.exists(data_path):\n", " urlretrieve(data_url, data_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notons qu'un entête est présent qu'il faut supprimer (jusqu'à la ligne 60), ainsi que deux lignes 62 et 63 qui précisent le contenu de la colonne et son unité mais ne sont pas utiles ici" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def skiprows(x):\n", " return x < 61 or x in [62,63]\n", "\n", "data = pd.read_csv(data_path,skiprows=skiprows,skipinitialspace=True,na_values=\"-99.99\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
YrMnDateDate.1CO2seasonallyfitseasonally.1CO2.1seasonally.2Sta
019581212001958.0411NaNNaNNaNNaNNaNNaNMLO
119582212311958.1260NaNNaNNaNNaNNaNNaNMLO
219583212591958.2027315.71314.43316.20314.91315.71314.43MLO
319584212901958.2877317.45315.16317.30314.99317.45315.16MLO
419585213201958.3699317.51314.69317.89315.07317.51314.69MLO
519586213511958.4548NaNNaN317.27315.15317.27315.15MLO
619587213811958.5370315.87315.20315.86315.22315.87315.20MLO
719588214121958.6219314.93316.22313.96315.29314.93316.22MLO
819589214431958.7068313.21316.12312.43315.35313.21316.12MLO
9195810214731958.7890NaNNaN312.42315.41312.42315.41MLO
10195811215041958.8740313.33315.21313.60315.46313.33315.21MLO
11195812215341958.9562314.67315.43314.77315.52314.67315.43MLO
1219591215651959.0411315.58315.52315.64315.57315.58315.52MLO
1319592215961959.1260316.49315.84316.30315.64316.49315.84MLO
1419593216241959.2027316.65315.37316.99315.70316.65315.37MLO
1519594216551959.2877317.72315.41318.09315.77317.72315.41MLO
1619595216851959.3699318.29315.46318.68315.85318.29315.46MLO
1719596217161959.4548318.15316.00318.07315.94318.15316.00MLO
1819597217461959.5370316.54315.87316.67316.03316.54315.87MLO
1919598217771959.6219314.80316.09314.80316.13314.80316.09MLO
2019599218081959.7068313.84316.75313.29316.22313.84316.75MLO
21195910218381959.7890313.33316.35313.31316.31313.33316.35MLO
22195911218691959.8740314.81316.69314.53316.40314.81316.69MLO
23195912218991959.9562315.58316.35315.72316.48315.58316.35MLO
2419601219301960.0410316.43316.37316.62316.56316.43316.37MLO
2519602219611960.1257316.98316.33317.30316.64316.98316.33MLO
2619603219901960.2049317.58316.27318.04316.71317.58316.27MLO
2719604220211960.2896319.03316.70319.14316.79319.03316.70MLO
2819605220511960.3716320.03317.20319.70316.86320.03317.20MLO
2919606220821960.4563319.59317.45319.04316.93319.59317.45MLO
....................................
77420227447572022.5370418.71417.91418.94418.18418.71417.91MLO
77520228447882022.6219416.75418.30416.77418.36416.75418.30MLO
77620229448192022.7068415.42418.91415.04418.55415.42418.91MLO
777202210448492022.7890415.31418.92415.15418.74415.31418.92MLO
778202211448802022.8740417.03419.29416.71418.95417.03419.29MLO
779202212449102022.9562418.46419.38418.25419.15418.46419.38MKO
78020231449412023.0411419.13419.06419.45419.37419.13419.06MKO
78120232449722023.1260420.33419.55420.40419.61420.33419.55MKO
78220233450002023.2027420.51418.97421.39419.83420.51418.97MLO
78320234450312023.2877422.73419.96422.89420.10422.73419.96MLO
78420235450612023.3699423.78420.38423.77420.37423.78420.38MLO
78520236450922023.4548423.39420.81423.23420.66423.39420.81MLO
78620237451222023.5370421.62420.82421.73420.96421.62420.82MLO
78720238451532023.6219419.56421.12419.67421.27419.56421.12MLO
78820239451842023.7068418.06421.56418.06421.58418.06421.56MLO
789202310452142023.7890418.41422.02418.28421.88418.41422.02MLO
790202311452452023.8740420.11422.38419.95422.19420.11422.38MLO
791202312452752023.9562421.65422.57421.58422.48421.65422.57MLO
79220241453062024.0410422.62422.55422.85422.77422.62422.55MLO
79320242453372024.1257424.34423.56423.85423.06424.34423.56MLO
79420243453662024.2049425.22423.65424.91423.31425.22423.65MLO
79520244453972024.2896426.30423.50426.41423.58426.30423.50MLO
79620245454272024.3716426.70423.29427.25423.84426.70423.29MLO
79720246454582024.4563426.63424.06426.65424.11426.63424.06MLO
79820247454882024.5383425.40424.62425.10424.36425.40424.62MLO
79920248455192024.6230422.71424.30423.00424.63422.71424.30MLO
80020249455502024.7077421.60425.12NaNNaN421.60425.12MLO
801202410455802024.7896NaNNaNNaNNaNNaNNaNMLO
802202411456112024.8743NaNNaNNaNNaNNaNNaNMLO
803202412456412024.9563NaNNaNNaNNaNNaNNaNMLO
\n", "

804 rows × 11 columns

\n", "
" ], "text/plain": [ " Yr Mn Date Date.1 CO2 seasonally fit seasonally.1 \\\n", "0 1958 1 21200 1958.0411 NaN NaN NaN NaN \n", "1 1958 2 21231 1958.1260 NaN NaN NaN NaN \n", "2 1958 3 21259 1958.2027 315.71 314.43 316.20 314.91 \n", "3 1958 4 21290 1958.2877 317.45 315.16 317.30 314.99 \n", "4 1958 5 21320 1958.3699 317.51 314.69 317.89 315.07 \n", "5 1958 6 21351 1958.4548 NaN NaN 317.27 315.15 \n", "6 1958 7 21381 1958.5370 315.87 315.20 315.86 315.22 \n", "7 1958 8 21412 1958.6219 314.93 316.22 313.96 315.29 \n", "8 1958 9 21443 1958.7068 313.21 316.12 312.43 315.35 \n", "9 1958 10 21473 1958.7890 NaN NaN 312.42 315.41 \n", "10 1958 11 21504 1958.8740 313.33 315.21 313.60 315.46 \n", "11 1958 12 21534 1958.9562 314.67 315.43 314.77 315.52 \n", "12 1959 1 21565 1959.0411 315.58 315.52 315.64 315.57 \n", "13 1959 2 21596 1959.1260 316.49 315.84 316.30 315.64 \n", "14 1959 3 21624 1959.2027 316.65 315.37 316.99 315.70 \n", "15 1959 4 21655 1959.2877 317.72 315.41 318.09 315.77 \n", "16 1959 5 21685 1959.3699 318.29 315.46 318.68 315.85 \n", "17 1959 6 21716 1959.4548 318.15 316.00 318.07 315.94 \n", "18 1959 7 21746 1959.5370 316.54 315.87 316.67 316.03 \n", "19 1959 8 21777 1959.6219 314.80 316.09 314.80 316.13 \n", "20 1959 9 21808 1959.7068 313.84 316.75 313.29 316.22 \n", "21 1959 10 21838 1959.7890 313.33 316.35 313.31 316.31 \n", "22 1959 11 21869 1959.8740 314.81 316.69 314.53 316.40 \n", "23 1959 12 21899 1959.9562 315.58 316.35 315.72 316.48 \n", "24 1960 1 21930 1960.0410 316.43 316.37 316.62 316.56 \n", "25 1960 2 21961 1960.1257 316.98 316.33 317.30 316.64 \n", "26 1960 3 21990 1960.2049 317.58 316.27 318.04 316.71 \n", "27 1960 4 22021 1960.2896 319.03 316.70 319.14 316.79 \n", "28 1960 5 22051 1960.3716 320.03 317.20 319.70 316.86 \n", "29 1960 6 22082 1960.4563 319.59 317.45 319.04 316.93 \n", ".. ... .. ... ... ... ... ... ... \n", "774 2022 7 44757 2022.5370 418.71 417.91 418.94 418.18 \n", "775 2022 8 44788 2022.6219 416.75 418.30 416.77 418.36 \n", "776 2022 9 44819 2022.7068 415.42 418.91 415.04 418.55 \n", "777 2022 10 44849 2022.7890 415.31 418.92 415.15 418.74 \n", "778 2022 11 44880 2022.8740 417.03 419.29 416.71 418.95 \n", "779 2022 12 44910 2022.9562 418.46 419.38 418.25 419.15 \n", "780 2023 1 44941 2023.0411 419.13 419.06 419.45 419.37 \n", "781 2023 2 44972 2023.1260 420.33 419.55 420.40 419.61 \n", "782 2023 3 45000 2023.2027 420.51 418.97 421.39 419.83 \n", "783 2023 4 45031 2023.2877 422.73 419.96 422.89 420.10 \n", "784 2023 5 45061 2023.3699 423.78 420.38 423.77 420.37 \n", "785 2023 6 45092 2023.4548 423.39 420.81 423.23 420.66 \n", "786 2023 7 45122 2023.5370 421.62 420.82 421.73 420.96 \n", "787 2023 8 45153 2023.6219 419.56 421.12 419.67 421.27 \n", "788 2023 9 45184 2023.7068 418.06 421.56 418.06 421.58 \n", "789 2023 10 45214 2023.7890 418.41 422.02 418.28 421.88 \n", "790 2023 11 45245 2023.8740 420.11 422.38 419.95 422.19 \n", "791 2023 12 45275 2023.9562 421.65 422.57 421.58 422.48 \n", "792 2024 1 45306 2024.0410 422.62 422.55 422.85 422.77 \n", "793 2024 2 45337 2024.1257 424.34 423.56 423.85 423.06 \n", "794 2024 3 45366 2024.2049 425.22 423.65 424.91 423.31 \n", "795 2024 4 45397 2024.2896 426.30 423.50 426.41 423.58 \n", "796 2024 5 45427 2024.3716 426.70 423.29 427.25 423.84 \n", "797 2024 6 45458 2024.4563 426.63 424.06 426.65 424.11 \n", "798 2024 7 45488 2024.5383 425.40 424.62 425.10 424.36 \n", "799 2024 8 45519 2024.6230 422.71 424.30 423.00 424.63 \n", "800 2024 9 45550 2024.7077 421.60 425.12 NaN NaN \n", "801 2024 10 45580 2024.7896 NaN NaN NaN NaN \n", "802 2024 11 45611 2024.8743 NaN NaN NaN NaN \n", "803 2024 12 45641 2024.9563 NaN NaN NaN NaN \n", "\n", " CO2.1 seasonally.2 Sta \n", "0 NaN NaN MLO \n", "1 NaN NaN MLO \n", "2 315.71 314.43 MLO \n", "3 317.45 315.16 MLO \n", "4 317.51 314.69 MLO \n", "5 317.27 315.15 MLO \n", "6 315.87 315.20 MLO \n", "7 314.93 316.22 MLO \n", "8 313.21 316.12 MLO \n", "9 312.42 315.41 MLO \n", "10 313.33 315.21 MLO \n", "11 314.67 315.43 MLO \n", "12 315.58 315.52 MLO \n", "13 316.49 315.84 MLO \n", "14 316.65 315.37 MLO \n", "15 317.72 315.41 MLO \n", "16 318.29 315.46 MLO \n", "17 318.15 316.00 MLO \n", "18 316.54 315.87 MLO \n", "19 314.80 316.09 MLO \n", "20 313.84 316.75 MLO \n", "21 313.33 316.35 MLO \n", "22 314.81 316.69 MLO \n", "23 315.58 316.35 MLO \n", "24 316.43 316.37 MLO \n", "25 316.98 316.33 MLO \n", "26 317.58 316.27 MLO \n", "27 319.03 316.70 MLO \n", "28 320.03 317.20 MLO \n", "29 319.59 317.45 MLO \n", ".. ... ... ... \n", "774 418.71 417.91 MLO \n", "775 416.75 418.30 MLO \n", "776 415.42 418.91 MLO \n", "777 415.31 418.92 MLO \n", "778 417.03 419.29 MLO \n", "779 418.46 419.38 MKO \n", "780 419.13 419.06 MKO \n", "781 420.33 419.55 MKO \n", "782 420.51 418.97 MLO \n", "783 422.73 419.96 MLO \n", "784 423.78 420.38 MLO \n", "785 423.39 420.81 MLO \n", "786 421.62 420.82 MLO \n", "787 419.56 421.12 MLO \n", "788 418.06 421.56 MLO \n", "789 418.41 422.02 MLO \n", "790 420.11 422.38 MLO \n", "791 421.65 422.57 MLO \n", "792 422.62 422.55 MLO \n", "793 424.34 423.56 MLO \n", "794 425.22 423.65 MLO \n", "795 426.30 423.50 MLO \n", "796 426.70 423.29 MLO \n", "797 426.63 424.06 MLO \n", "798 425.40 424.62 MLO \n", "799 422.71 424.30 MLO \n", "800 421.60 425.12 MLO \n", "801 NaN NaN MLO \n", "802 NaN NaN MLO \n", "803 NaN NaN MLO \n", "\n", "[804 rows x 11 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Le fichier indique qu'à cause d'une éruption en 2022, la station MLO n'a pas pu faire de relevés et sont alors relevés par MKO. Nous nous intéresserons ici qu'à MLO et allons donc supprimer les entrées correspondantes à MKO. De plus, des NAN sont présents dans le jeux de données, on va donc supprimer les lignes correspondantes." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "data_MLO = data[data[\"Sta\"]==\"MLO\"].dropna()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Un premier affichage des données\n", "nous allons à présent pouvoir plotter les différentes courbes:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,'CO2 (ppm)')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4ZGd58P/vPeq99y5t72uvd9cN18XGNjYQigMYJ0AMxHkJJKE4mF/ivHGAQHghIQ44lBdeiu3ggo1xr7tre3uvaqteRhrVGWkkzTy/P86ZM6NFu5btHZXV/bkuXTpzzpnRPbZ2bj3tfsQYg1JKKXU612wHoJRSam7SBKGUUmpKmiCUUkpNSROEUkqpKWmCUEopNSVNEEoppaakCUIppdSUNEEopZSakiYIpZRSU4qd7QDeidzcXFNZWTnbYSil1LyyZ8+eHmNM3pvdN68TRGVlJbt3757tMJRSal4Rkabp3KddTEoppaakCUIppdSUNEEopZSakiYIpZRSU9IEoZRSakqaIJRSSk1JE4RSSqkpaYJQSql55LF9bexs9MzIz5rXC+WUUmoh2dvcxxce3A9A4zduQESi+vO0BaGUUvPEi8e6neOuQX/Uf54mCKWUmif2tfQ5x3Xdw1H/eZoglFJqHggEDfub+7mkJgeAXq+2IJRSasHqGBhh1ylrQLqp14t3LMDVy/IB6B0ei/rP1wShlFJz1F/9eh8f+uHrNPf6aPb4AFhTmkmMS2akBaGzmJRSao7a02SNOew65cE3HgCgPDuZrOR4PN7otyA0QSil1Bw0EQg6x619I/T5xkiMc5GflkBhRgITARP1GKKeIEQkBtgNtBljbhKRbwPvBcaAeuDPjTH99r13AZ8CAsDnjTHPRDs+pZSai3ojWgitfT6Odw6xriwTl0t44q8ui/oaCJiZMYi/Bo5FPH4OWGWMWQOcBO4CEJEVwK3ASuB64D47uSil1ILQNThKMGic45Bmj4+TXUOsLskAmJHkAFFOECJSCtwI/Dh0zhjzrDFmwn74BlBqH98CPGCM8RtjGoE6YGM041NKqbmitmuITf/yAl995CAAnQNWgqjOTWFfcz/+iSDlOSkzGlO0WxDfA74MBM9w/ZPAU/ZxCdASca3VPqeUUue9F45bq6RfPO4G4GjHICJw6aJcxuzxiIrs5BmNKWoJQkRuArqNMXvOcP1rwATwq9CpKW77o1EYEblDRHaLyG63233O4lVKqdl0tH0QgEDQSgZvNPSysjid5UXpzj0VOedJggAuBW4WkVPAA8DVIvJLABG5HbgJ+JgxJpQEWoGyiOeXAu2nv6gx5n5jzAZjzIa8vLwohq+UUtFz1yMH+eT/3UUgaNjT1MfjB6yPuz7fOAO+cfY197OpKofSrCTnOcWZSWd6uaiIWoIwxtxljCk1xlRiDT6/aIz5uIhcD3wFuNkY44t4yuPArSKSICJVwGJgZ7TiU0qp2TLsn+A3O1t48Xg3J7uGePJgx6TrTx/pwD8RZHP15AQRFzOza5tnYyX1D4A04DkR2S8iPwQwxhwBHgKOAk8DdxpjArMQn1JKRdWh1gHnuGNghKZeLwD3fewCAB7d14YIbKzMpiQridzUeL547ZIZj3NGFsoZY14GXraPF53lvnuBe2ciJqWUmim1XUN85eGD/Pj2i8hOiedwWzhBtPWP0tjr5T2rCllhjze80eBhRVE6GclxAOz62rUzNrU1ktZiUkqpKPuPF+vY29zP4/vbAHi11k1FTjKxLqG1z0eLx0dFTgqFGYnOc9aWZTrHs5EcQBOEUkpFnX/C6i2vd3sJBg17m/q4ckkehRmJ7D7Vx3jAUJmTTGJcDJl2q6F8hqe0TkUThFJKRVlTrzUfp71/hLb+EbxjAZYWplOckeQU5KvOSwUgPVEThFJKnbf++9UGXq/vBcAY45Tqbh8Y5XjnEABLC1Mpygx3KVXnWauk//WDa7h8cS4bq7JnOOo/ptVclVLqHBoPBLn3D1b5uVPfvJG67mF8Y1YXU3v/CEfaBxCBZYXpzrqGtIRYclLiAdhcncPm6pzZCf402oJQSqlzqMUTXt5ljOHBXS3Ex7j49GVVDIyMs7PRQ3VuCikJsRTbg9LpSXGzNhB9NpoglFLqHKp3e53jXu8Yr9a62VyTw+pSqxLra/W9rLKrsmbZrYbQwPRcowlCKaXOoQb3sHPc1jfCqR4fywvTKIkok7Gs0FrvsKEim5yUeP7plpUzHud06BiEUkqdQyfsQWiA/S39jAWClOckUxFRqjs0Q6kwI5E9X98y4zFOl7YglFLqHWjq9fLrHc0ADPjG+f2hDq5YYhUSfaPBmslUnp1Mbmq885zI+kpzmbYglFLqHfj7Rw+xva6X6rwUuof8jE0E+fw1i3m9oddJEBXZKYgIly7KYdepPipzZ3bjn7dLE4RSSr0FXv8EyfExzqyjFs8IYHUnDY9OEOMS1pZmUJSRSFOvjxiXOOsdfvHJTYyOB0hJmB8fvdrFpJRS0+TxjrHyH57h/lcbAKtsd2tfeJV0s8dHSWYSsTEuZ1C6JDPJKdMd45J5kxxAE4RSSk3bXrssxn++VAfAwZZ+gvaWZ+39IzR5fJRlW4khNCg9F0pmvF2aIJRSapqO2NuCxsdaH52hOkobKrJo8YxwsnOIJQVpAFTlWokhLy1hFiI9NzRBKKXUGQyMjNM77Hcet/ePOOcDQcMDu1pYW5bJsqI0TnQNMTIeYGWxtQjuxjXFXFSZxc1ri2cl9nNh/nSGKaXUDJoIBLn0my+SmRzH1i9fhYjQPmAliPGA4VDbAG39I3z2imqG/BPO8ypyrJZDSWYS//PZS2Yl9nNFWxBKKTWFXu+YPQg9wpH2QQJBw8muIRLjrI/N7XU9ANTkpU5aJV2Ynjjl681HmiCUUmoKvcNjznFb/wjPH+uia9DPHZdXA/BavZUgqvNSqYxYJZ2fPn/HHE6nCUIppabg8YYThHvIz7NHushJiecTl1QCsL2ul+T4GArSE6jKCyeIhNiYmQ41anQMQimlptDrDQ9O9wz7aewZZklBGjkp8STGuRgdD1KVa62QTk+M46Y1RVyzPH8WIz73NEEopdQUTvVYC+BiXYJ7yE9jj5f3rC5CRCjOSKKhx0tVRMmMH3z0gtkKNWq0i0kppYC9zX0s+dpT1HVb5bq31blZW5pBdV4Ke5v76fONs7zQWuOQYxfeC+0jfb7SBKGUUsC/v1DLWCDIS8e7AajrHmZFcQa5qQkc67AWyF1QkQXA0Kg1rXVRviYIpZQ6740HggC09PkY8I3T5xunKjd50kroUPmMz11Zw0WVWbx7RcGsxDpTdAxCKbUg7W3uIz0xlkX5VrdRR/8oAMc7hjjQ2g/AkoI0ugatweqU+BhS7UJ7t6wr4ZZ1JbMQ9cyKegtCRGJEZJ+I/N5+nC0iz4lIrf09K+Leu0SkTkROiMh10Y5NKbUwjY4H+MB9r3Htd1/FGIMxhja7jMbxzkG21fUQH+tiU1WOU2wvVN57IZmJLqa/Bo5FPP4q8IIxZjHwgv0YEVkB3AqsBK4H7hOR82dCsVJqzjjQ0u8c93rH6BgYxT8RpDInmcHRCQ63DVCenUxSfAxL7YHpiWBwtsKdNVFNECJSCtwI/Dji9C3Az+3jnwPvizj/gDHGb4xpBOqAjdGMTym1MBhjnDEGgGaPzznuHBjlRJe1j/TFNTkAHGwdcMpnrC3N5NJFOfz6LzbPYMRzQ7RbEN8DvgxEpt4CY0wHgP09tLKkBGiJuK/VPqeUUu/Ib3a2sPhrT9FjV2Zt6RtxrnUOjPLYvjbSEmJ512JrL+lh/4Szb3RSfAy/+vRmLijP+uMXPs9FLUGIyE1AtzFmz3SfMsU5M8Xr3iEiu0Vkt9vtfkcxKqUWhgd3W397HmodAKDF4yMuxvrI6RgcZXtdD1tWFFAWsblPSVbSH7/QAhPNFsSlwM0icgp4ALhaRH4JdIlIEYD9vdu+vxUoi3h+KdB++osaY+43xmwwxmzIy8uLYvhKqfNFeqI1++iovZ6hxeNjfVkWMS5hX3MfPcNjrCvPnDSlNbJC60IVtQRhjLnLGFNqjKnEGnx+0RjzceBx4Hb7ttuB39nHjwO3ikiCiFQBi4Gd0YpPKbVwuIesrqXWPh8DI+McahugIieZvNQEXq/vBWBxfhp5qeEEUaotiFlZKPdNYIuI1AJb7McYY44ADwFHgaeBO40xgVmITyl1HhkZC1Brl89o8Yzw1KEO/BNBblhTRGFGIh0D1vqHytxkXK5wT/fSwvRZiXcumZEEYYx52Rhzk33ca4y5xhiz2P7uibjvXmNMjTFmqTHmqZmITSl1fjHG8M2njrO32dov+qUT3QSChtSEWFr7fNS7h0mIdfGuxXkUZVib+8THuihIs44/fVkV1y7PdxbFLWRaakMpdV55vb6XH75Sz1cfPgjAS8e7yU6J56ObymnrH+Fk1zBVuSnEuMQZZyjPDrce7r5pBT++/aJZi38u0QShlDqvHOu01jSESmSc6BpieVEa5dnJjAcMrzf0UmMX2QvNVEpL1NbCVDRBKKXOK50D1hqHwdFxvP4JTnQOsaww3Rl0HpsIUmOX6a7Isaa1bqrKmZ1g5zhNm0qpeS0QtFZJJ8ZZlXk67ZaDMfDyCTf+iSBLC9MmTVutsbcIvWJJPr/+i01s1gQxJW1BKKXmtXueOMKyrz8dLtft8TnrHp472gnA0oI0Cu0BacBpQcS4hEtqcifNXlJhmiCUUvNKW/8IxoSLLPzi9SYAttX14J8IcKxjkGvtfRp2NlqTJCtzUkhLjHOeU52XgnpzmiCUUvPGkfYBLv3mi/xqRzNgjTOEHGjp58FdLfgngty8tpiEWBftA6OkJ8aSkWwlh49tKufL1y8lOV5716dD/ysppeaN0KrnF4938/HNFew+5Syj4ljHIMnxsRSmJ3Ll0nxKMpNo6PFSnhOur3Tv+1fPeMzzmSYIpdS8EaqlNDBitRyeONBBemIsywrT6R7yMxEYZXGBNb5QmZtCQ4+XsqzkM76eOjvtYlJKzRv1dsmMtr4RRscDPH24k5vWFlOalUT3oJ9697AzAF2Va40zaE2lt08ThFJqXpgIBDnZZSWIrqFRjnYMMjIe4PJFueSmJdDWP4JvLMAiexHcDasLyUyOY3O1TmF9uzRBKKXmrB+8WMt3nzsJQG33sJUQFudiDGw92QPAovzUSVVYQwniwops9v9/7+aa5QUzH/h5QhOEUmpOGhkL8J1nT/LvL9TS5x3jpL0t6BZ7CusrJ7uJcQkVOSlOUgAmHat3RhOEUmpO2t/S7xyf7Bqiwe1FBC6pyQVgb3M/FTnJxMe6WFEcLs2dkxI/47GerzRBKKXmhJNdQ1z73Vc41eMF4EBrOEE0e3w09HgpyUyiIieZ0MLnRfaAdEF6Il+/aQX/+32rENFV0eeKJgil1Jzw3NEu6rqH+d7z1phDXfcw2SnxuMQqn3G4bYAVRenExbjIscccIruTPnVZFbdtrpiV2M9XmiCUUnPC0OgEAL4xayPJpl4vi/JTKcpI4mjHII09XtaUZgBWRVbQ8YZo0wShlJoVrX0+vP4J53FLnw+AriE/3UOjHGgZYFVxBhU5ybxaa81YCq1xWFaYBsBFldkzHPXCoglCKTXj6rqHuOxbL/Gl3x4AYHQ8wJMHOwBrP4edjR7GAkHev76E8uxkp8VQkWMtfvs/H1nHY3deSlm2rpKOJi21oZSacftbBgD4w6FOxiaC/GRbIwDZKfF0D/k50j6IS2BxQeqkJBDa4Kc4M4niTF0hHW3aglBKRd3htgG+88wJp0x3W9+Ic63Z4+Wl493kpibwN1uWYAxsq+2hMjeFxLgYJykApCTo37QzaVoJQkSyRGSliFSLiCYVpdRb8v77tvODl+o41WuNM7T3hxNEvdvLsY5BblpT5NRNOtQ2wNICa5yhOlcHomfLGdOxiGQAdwJ/CsQDbiARKBCRN4D7jDEvzUiUSql5bTxgtRx2NXqoyk3haMcgi/JTqese5mBrP96xADV5KZO2BV1sJ4jlRWn8xeVVVOdpophpZ2uv/Rb4BXC5MaY/8oKIXAjcJiLVxpifRDNApdT8NhSxqU+Tx8vQ6DhH2gf43JU11LuH2dFg7elQk5fqVGAFnBaEiPC1G1fMbNAKOEuCMMZsOcu1PcCeqESklJr3jDHOiua2iO6kFs8Ie5r6CBqrZMZvdrawu6kPsNY0xMa4yE9LoHvIz9JCbTHMtmmN+IjIGqAy8n5jzCNRikkpNY+d6Bzi4z/ZwUc3lvPFLUucfaFzUxNo7fOx65SHWJewvjyTnJR4PN4x0hJiyUuzVkc/8b8u4+nDnc6aBzV73nTAWUR+CvwU+BPgvfbXTdN4XqKI7BSRAyJyRETusc+vE5E3RGS/iOwWkY0Rz7lLROpE5ISIXPe235VSatY8eagD95Cfn79+CoDf7W9naUEaVy/Lo7VvhF2NfawqySA5Ppb8dCsp1OSnOi2OgvREbr+kUmsqzQHTaUFsNsa8nQ5AP3C1MWZYROKAbSLyFPBPwD3GmKdE5AbgX4ErRWQFcCuwEigGnheRJcaYwNv42UqpGTIRCDIRNCTGxQDQYXcp9fvG6R4cZU9TH5+/ZjGxLqF7yM+wf4Jb1pUAsKY0k+11vbrgbY6azpTV1+0P77fEWIbth3H2l7G/QrV5M4B2+/gW4AFjjN8Y0wjUARtRSs1ZgaDhim+/zId/9LpzrmNg1Dl++YQbgCUFqZRlWzOUfGMBKu21DdevLKQqN4UbVxfOYNRquqbTgvg5VpLoxGoVCNbn/5o3e6KIxGANZi8C/tMYs0NEvgA8IyLfwUpQl9i3lwBvRDy91T6nlJqjeob9tPWP0NY/wsDIOCnxMRzvHKIqN4XGHi9vNPQCUJmTwsh4uDMgNFtpbVkmL/3dlbMRupqG6bQgfgrcBlxPePzhvdN5cWNMwBizDigFNorIKuBzwBeNMWXAF4HQNNmpOhzN6SdE5A577GK32+2eThhKqSjpjGgtHOsY5EDrAD3Dfj5xsVV2+3U7QVTlpjiL4ABW21VZ1dw2nQTRbIx53BjTaIxpCn29lR9ir6N4GSvJ3A6EZkD9D+FupFagLOJppYS7nyJf635jzAZjzIa8vLy3EoZS6hyIXNfQORhOEK19IxzvHATgmmUFxLiEjoFR8tMSSEmIpSAt0bm3MD18rOau6SSI4yLyaxH5UxH5QOjrzZ4kInkikmkfJwHXAsexPvSvsG+7Gqi1jx8HbhWRBBGpAhYDO9/i+1FKRdH+ln5W/+Oz/OiVesBKCiFtfSMcbR8kNSGWsuwk8u1pq5V2d5LLJfz0zzbwypeu1BlK88R0xiCSsMYe3h1xzhBuBZxJEfBzexzCBTxkjPm9iPQD3xeRWGAUuAPAGHNERB4CjgITwJ06g0mpueUPhzqc75+5ooYjbQNOImjr97GvuZ8LK7IQEQrSE+kYGKUqJ7w6+uplBbMSt3p73jRBGGP+/O28sDHmILB+ivPbgAvP8Jx7gXvfzs9TSkXfsQ6rC8k95GciEGRrXQ8XlmfROThKg9tLnXuYG9cUAZCSYE17rcpLOePrqbltOgvlqkXkCRFxi0i3iPzO7gJSSi0wp3q9ALQPjLK3uR/3kJ8b1xRRkpXE7qY+jLFmLAGIPe9kjQ5Iz1vTGYP4NfAQVpdRMdbA8gPRDEopNTd0DozSPWQNRHcPjdLWN+JUXH31pDWLcE1pBqURVVjL7TUOd9+0nLtvXM7F1TkzHLU6V6aTIMQY8/+MMRP21y+ZYvqpUur8Yozhwz96nY33voDXP8EzhzsJGvjUZVYHwqu1bpLiYijLSqYkYgprhb0qellhOp++vFoHpOex6SSIl0TkqyJSKSIVIvJl4EkRyRYR3TFcqfNUvdtLs8fa4Keue5gdjR6KMhK5dFEuAAdbB1hSkIrLJZP2cchOiZ+VeNW5N51ZTB+xv3/mtPOfxGpJVJ/TiJRSs6JzYJSH97by2StqiHEJR+0BacDat6HRwyU1ORRlhtcwLC209myI3B9aWwznj+nMYtIBaaUWgH9+8ii/P9jBmtIMLl+cx8nOIefajgYP7iE/GyqzSU+Mc84vLbTKqtXkpfKBC0p475riGY9bRc90ZjElisjfiMgjIvKwiHxBRHQZpFLnmWH/BGBtC2qM4ZkjnawvzyQ9MZa9zdamPjX2lNXQ2ofQrm/xsS6+++F1XLUsfxYiV9EynTGIX2CV4P4P4AfACuD/RTMopdTMCgQNh9sGAGt19P6Wfmq7h7n1ojJy0xKo7bYKM5dlWQPQ975/NbdtrmBDZdasxayibzpjEEuNMWsjHr8kIgeiFZBSKvqGRsf52qOHuaQmh1s3lrOvuY+e4THAShAHWqxt6K9als/De9pocHtxCRRmWJ0HW1YUsGWFroo+302nBbFPRDaHHojIJmB79EJSSp1rTx7sYNcpj/P4sf3tPH6gna8+cghjDC+d6CbWJbx7RQGtfT4aerzWNqCpCeTZu74VZSQRFzOdjwx1vpjO/+1NwGsickpETgGvA1eIyCERORjV6JRS79hEIMidv97Lh374Ol57nOFw64BzvWd4jCPtgyzKT2VZYRqdg6Oc6ByiOi8FEWFjpTWb3T+hpdEWmukkiOuBKqwKrFfYxzfwFvaFUErNnsiKq1trrdXPh9vDCaLZ4+Nw2yDLi9IpzUomaGBHo4fqvFQA3rPK2u2tQEt0LzhnHIMQkVRjzPDZ9n4QkdTohKWUeif2NHlYW5pJbIyLxh6vc/5A6wBXLMnnZNcQ1y7P5/lj3Tx7tJOeYT8X1+RMKplRbZfpzk9P5H8+ezFFGZogFpqztSB+JyL/JiLvEhGnHKNdvO9TIvIMVutCKTWHHGjp50/+63X+8YkjgNUaiHUJ5dnJHO8Y5Nc7mxkPGD6+2dr1LVTCe1NVNqX2LCXAaUEAXFQ5+ZpaGM6YIIwx1wAvYK2gPiIiAyLSC/wSKARuN8b8dmbCVEpN1wvHu63vx6zvu095WFuWyaL8VLoG/exp8lCencyVS/PJS0ugxTNCfKyL0qxkZ5YSQLWW6V7wzjrN1RjzB+APMxSLUuocCO3Z0DPsxz8R4FjHIB+8sBT/RJBDbQN4xyZYVWKtgC7LSsI95Kc6N4UYlzhfgaChKlcTxEI3nXUQSql55IRdImM8YNhW24N3LMDK4gxa+3y4h/wAvG9dCQBl2cnsbe6nJqI76dG/vIQYl5AYFzPzwas5RSc1KzXPfeW3B7n7sUMA+MYmaPb4uHSRtQfDc0e7AFhRnE6eXR4DoCbfSgildpnuytzw+MKa0kxWFusmP0oThFLzWs+wnwd3t/DLN5oxxnCyyyqJcdVSqybSs0e7iIsRlhSkkZcWMb5gdx+9Z1URW1YU8NFNFTMfvJrzNEEoNY8M+yf48dYGZ9FaU294Cmvn4Cg7GnoBuH5VIS4Bj3eMxflpxMe6yE8PtyBCA9CrSjL4709smLSfg1IhZ0wQIrJaRN4QkRYRuV9EsiKu7ZyZ8JRSkX66rZF/fvIYP912Cpi8CO5I2yC7m/qozkuhNCvZWdi2stgakM5LDSeI5HgdflRv7mwtiP8C/hFYDZwEtolIjX0t7kxPUkpFz2v1PQDsb7HKb0cugjvaMUhjj5dF9oBzjMvauCeUIEItiMsX585YvGp+O9ufEanGmKft4++IyB7gaRG5Dd2TWqkZ8aNX6llRnM7li/MYHB1nZ6NVcC9UfntbbQ+rStLpHvTT7PHR3OvjmuXW+IO1sc8IG6usAeuE2Bhe/dJVk3aEU+pszpYgREQyjDEDAMaYl0TkT4CHAd2LWqkoO9DSzzeeOg5A4zdu4Gj7IEEDK4rSOdk1hMc7xt7mPv7qqkW8fNLN3uY+xgJBqnKs8YV/+/BaaruHWWG3IADKc3Q1tJq+s3UxfQtYHnnCGHMQuAZ4JJpBKaXgRFd4y0+Pd8zZ0OfaFQVMBA2P7G0laODKZfkUpCfS4La6myrtGUrLi9K5ea1uAarevjO2IIwxvw4d20X5jDHGa4xpBv5iJoJTaiGLHICu6x7mSPsghemJzpjCw3vbyEyOY21pJgURM5R0BbQ6V846zVVEPicizUAT0CIiTSLyl9N5YXsv650ickBEjojIPRHX/peInLDP/2vE+btEpM6+dt3bfVNKzUeP7G3lhu9vdaawtnp8zrWmXh+H2wZYVZLuVFU91jHIkvw0YlxCoT1jKcYlzn7RSr1TZyv3fTdwCXClMabBPlcNfF9Eso0x//wmr+0HrjbGDItIHNYsqKeAJOAWYI0xxi8i+fZrrwBuxdr/uhh4XkSWGGN0lxK1IPzNQ9ZOvm80eLhiSR77W/q5dFEO2+t6afJ4qXcP857VRU4yAKiwxxRCU1qT42IQkZkPXp2XztaCuA34QCg5ANjHHwY+8WYvbCzD9sM4+8sAnwO+aYzx2/d12/fcAjxgjPEbYxqBOmDjW3w/Ss0bTx/uoM9r7QM9bO/0BrC/uZ/uwVEaerxcsSSPtMRYttb2EDSwqjidnIj1DKHxhuyUeAAyU3QGujp3ztrFZIwZneLcCBCczouLSIyI7Ae6geeMMTuAJcDlIrJDRF4RkYvs20uAloint9rnTn/NO0Rkt4jsdrvd0wlDqVnX3j/iDDIDnOrx8tlf7uWvfrMXCBfYA2joGeYNezrr5uoc8tISOGhvEbqqJMNZ3wA4M5RCtZP+6eZV0X0jakE5W4JoFZFrTj8pIlcDHdN5cWNMwBizDigFNorIKqxurSxgM/Al4CGx2sRTtYv/aL2FMeZ+Y8wGY8yGvLy86YSh1IzqHhrltp/soL0/PMj8Zz/byU3/sc2ppvpavVUSI7Su4XinVaK7Oi+FBreXNxp6SUuIZUVRurMCOjM5zhl/CJXrXluaCUBhRiKnvnkjVy3Ln4F3qBaKs62D+DzWrnLbgD1YH9YXAZdidQdNmzGmX0RextqBrhV4xBhjgJ0iEgRy7fNlEU8rBdrfys9Rai74ybZGttb28KsdTXzpumWTiujta+7j3SsLnT2h42JcGGPY29RPWmIsm6qyeeZIFxNBw/qKLGJjXFTmpLCj0UNFdrIzvvCj2zYQDBqna0nZNESvAAAgAElEQVSpaDjbjnJHgFXAq0AlUG0fr7KvnZWI5IlIpn2cBFwLHAceA662zy8B4oEe4HHgVhFJEJEqYDGgNZ/UvNPeb/XMhloL9e5wOYyuQeva0XarxeAbC9DnG+epwx1cv7KQ0qxkPN4xjnUMOiUzFtmlueNjw/9cSzKTKMvWRW8qus42i2kRUGCM+elp5y8XkXZjTP2bvHYR8HMRicFKRA8ZY34vIvHAT0XkMDCGtXWpwdrW9CHgKDAB3KkzmNR81NhjtRZaPFYX0+5THuda5+AogaDheKe1pqFzcJTdpzz4xgJsqMwiITa8SU+VvUfDZXbtpBVF4RXRSs2Es3UxfQ/4+ynOj9jX3nu2F7ZXXa+f4vwY8PEzPOde4N6zva5Sc80H/+s1SrKS+P6t6zHG0Gi3GDrt1sKuU31kp8QTH+Oic8DPsY5BRseDXH1BPr/e0eyMR1RH7OoGk1dEP/vFdznjD0rNlLMNUlfaH/KTGGN2Y3U5KbXgef0T7G7q43f72zHG0D3kxzsWICHWRcfACMYYdjd52FCRRWFGIp2DIzy8t5XEOBcftzfp2VZnVWitzk2ZtC9DZU54RfSSgjTSEnUKq5pZZ0sQZ/tzRXcXUQvS4Og4L53oxuoVhT1Nfc61tv4Rpx7SpYtyGR0PUts9TFOvj4sqs60upYFRjrYPsqIonSUFqbjEKqORnhhLdkr8pFXQxbqJj5plZ0sQu0Tkj2ouicinsGY1KbXg/MXPd/PnP9vF6/bObTsae51rDW4vxzqswefLFlnjBr8/YE3Eu7DSakF0Dfo52TXE0sI0YmNczgro6rxURITYGBd337ic//zoBZPWOyg1G842BvEF4FER+RjhhLABa9bR+6MdmFJzUYO9Qc8Lx7q5pCaXNxo8lGUn0eIZocE9zJ7mPooyEllbZq1PeOpwJ/GxLlYVZ7Cz0eOsmF5SkAZAUUYiHQOjzh7RAJ++vHqG35VSUzvbNNcuY8wlwD3AKfvrHmPMxcaYzpkJT6nZY4zhCw/s48mD1rrQiUAQj10a40TnECNjAQ629nPj6mISYl2c6Bri+aNdXLUs3xlQru0epjo3hfhY16QaSkvtBJGeZI0rhPaIVmouedONaY0xLwEvzUAsSs0ph9sGeWx/O4/tb+fGNTfS2jdCIGiNPdR2D7GvpY/xgGFTdTbPHunk5RNu/BNBrl2eT15aAi6BoAmvYyiISBArS6zSGFnJ1kK3CyqyUGquOWstJqUWsj1N4fULA75xnjxktSRuWlOEe8jPgRZrNfTa0kyKM5PoGLCmtVbmpBAX43JmHYUSRGHENNUMu+XwpeuWct/HLuCSGt0nWs09b9qCUGqhCAYNY4EgiXHWYrU697Bzrb5nmJ9tb+SyRblcUpPL7w92sLXWTUF6Atkp8RRnhvdjCK1wHhmz1nmGEkR5djJ/fmklH7koXFGmODNJZyupOUtbEErZvvHUMZZ9/Wn8EwGMMexs9JBj1zra39xPz/AYVy7Nc8YXXqvvZVmhtbq5KMP6kC9MTyQuxvpnddOaIgBW291JMS7hH9670nmOUnOdJgilbP+9tRGAbbU9NHt8nOwa5o53WTOKXjlplZavyU+d1FW03C5/EWpBJMaF/0n9ywdWs/frW6jI0QFoNT9pF5NasJp6vZTbFVInAuEtTmq7h7HXwXFRVTY5KfFOglicn0pqQvifzfIiazZSjV0m48bVRc61xLgYp7tKqflIWxBqQTrWMcgV336ZH71qbZgYqsAKVuKo7bbGHxblp1KaZXUfpSXGUpKZ5AwwA0530YUVWbz4t1fwxS1LZuotKBV1miDUgvTicWun28f3WyudG3vDJbmben3Udg1RmJ5IemIcJXaCWFaYhoggItTY6xZC6xdExFkNrdT5QruY1ILw+d/swzc2wY9vt3a4rbdnKA2MjAM424FetTSPk13DDI1OsLjA6jYKDUAvLUxzXu/Bz1xMQqzLGZBW6nykv93qvDfgG+fxA+08f6ybnmFrE58Wjw+A9oERRscDvHLCTU1eCmtKM2nrH+FoxyCL862EEJqF9K7F4S1uc1MTtLqqOu9pglDnnT7vGN97/iSj49Y6hMiCeie7hjDG0OD2Eh/rwhhrX+idpzx88MIyKnKsNQyBoHFaELesK2bv17fw7pWFM/9mlJpFmiDUeecfnzjC956vdcYXDrT2O9daPSMc7xyi1zvGhy4sBeAJu+LqxqpsJ0GANWMJrPEF3ftZLUSaINR5p63P2upze721Ec+pHh8lmUm4BFr6fM6U1dsvqQTg6cOdiFhbepZnh9cshFZAK7VQ6SC1mveePtxJSWYSq0utsYJWO0GENu9p7PE6H/YtHh9dg36WF6WzpCCNjKQ4BkbGKc9OJik+ZtJCt8xkbTWohU0ThJrXRscDfPaX1nYljd+4Af9EkK4ha01DY4+X0fEAJ7uGuGJpHqPjAerdXo53DvLJS6sAqMxJ5kDrgJNARITtX70az/DY7LwhpeYQ7WJS89ohe3oqgHvIz97mPoyBjZXZDPsn2Fbbw0TQsL4sk7LsZA61DTAeMKyyZyaV2oX1Fkd0J0W2RpRayDRBqHnlQEs/dz92iKC9L8OpnvACt4YeL1tre4h1CbesLwbggV0txMUIF9fkUJYVHoAOtRhCq6TTk3TKqlKn0y4mNa/cev8bjIwH+PCGMmfNQkhjj5ettW4uqMhyaiO9dKKbFUXppCXGOckAoMre4vNzV9TQOTDKhzaUzuwbUWoe0BaEmrOCQcMPX6mnyS6DMToeYMRe2/BGg7W2ocUzQm5qAvGxLnaf6uNw2yDvWpzr7N4WCBqnHEZonwbAKaKXmRzP929dT35auEKrUsqiCULNWS8c7+abTx3nrkcOAVb3UsjJLqtUxr6WPlaXpFOVk8JTh60d39aXZ5GfluDcG2pNhFZEb1lRMCPxKzXfaReTmjOMMQSChli7vtH2OmsdQ6M9zrDfThDLCtOo7R6me2iUBreXj2woY9cpDye6hgBrXCEloiR3qAWRFB/D4XuuI9alBfWUmo6otSBEJFFEdorIARE5IiL3nHb970TEiEhuxLm7RKRORE6IyHXRik3NTf/85DGu+PbLDI1aBfRCM5S6h/wEgoaDrQOUZSextjSTjv4RdjRYe0Zvrs4hNzXcYojc0AegOjc8Qyk1IVb3aFBqmqLZxeQHrjbGrAXWAdeLyGYAESkDtgDNoZtFZAVwK7ASuB64T0T0X/ICEQgafrKtkbb+EV6r72UiEORI+wCJcS4CQUP30Cj7W/pZU5pJYUYi7mE/2+t6SE2IZWVxOjmp1qK2gvQEEmKtX5sPXljK8qL0SVVYlVLTF7UEYSyhXd/j7C97ny7+D/DliMcAtwAPGGP8xphGoA7YGK341Nyyt7nPOW7tG6He7WV0PMj1doG8Ay0DtPWPsK40k6KMRIyBp490sr48k9gYl9OCKM4Mz1T69gfX8IfPX0aMdikp9bZEdZBaRGJEZD/QDTxnjNkhIjcDbcaYA6fdXgK0RDxutc+d/pp3iMhuEdntdrujFruKrtHxAP/1cj3t9jTVyAHo1j4fB+0Ce9evshLE0/YA9NqyTKcLqd837uwJHRqIvmFVeMvP0OY+Sqm3J6qD1MaYALBORDKBR0VkDfA14N1T3D7Vv2TzRyeMuR+4H2DDhg1/dF3ND7/b38a3nj7O9roefvnpTbT1j5ASH0NJVhKtfSMEgoaU+BguXWQNUYV2gFtWlEZHxPagoRXQly/OZefXrtHpqkqdQzMyi8kY0y8iL2N1I1UBB+y/7EqBvSKyEavFUBbxtFKgfSbiU9EXDBpEcP6if/6Y9YHfbddNau71UZKVRFlWMq19I7iH/KwsySAtMY7M5Dj6feMUpCeQnhiHiaiCsaTAGl8QEU0OSp1j0ZzFlGe3HBCRJOBaYJ8xJt8YU2mMqcRKChcYYzqBx4FbRSRBRKqAxcDOaMWnZo5/IsD779vOTf+xjdHxAMYYdp+yZiA1e3x0D43yykk3F1ZkU5qVxKkeL8c6Blljr1sosccVQuUx0hPDf9doSW6loieaLYgi4Of2TCQX8JAx5vdnutkYc0REHgKOAhPAnXYXlZrn9jX3c6DVmrJa2zVMblo8fb5xlhSkcrJrmFdOuJkIGm5ZV8yh1gFntXSoYF5RRhJH2gdZlBeuuPqDj66nqdc3ab2DUurcitq/LmPMQWD9m9xTedrje4F7oxWTmhmHWgf45tPHuO+jF5KRHMfxjkHnWp17CPewVRjv2uUFnOwadsYXFuWn0ucNl9kOrXzOsAvpLSoIT1e9aU1x1N+HUgudltpQ59x3nzvB9rpeHthlLXM53jlEWmIsLoHGHh9PHOggLTGW9661PuRfONZNZnIcOSnxlEZUXK3MsVZA/9kllXzi4gret06TglIzSdvn6pwL7eh21G45HOsYZHVJBo09Xtr7R9jb3Mdli3KdqaljgSBr8jIQESpyk0m2Zy+57PULq0szdH8GpWaBtiDUO2KM4Tc7m6nrtuogTQSCnLKrr9Z1D3Oqx8vh9kEuKM+iODOJ2q4hmnp9LC9KJz7WRU6KtQI6PAAdx567t3D/bRfOzhtSSjk0Qah3ZFtdD3c9cog//7+7AGjy+BgPGNISYmnx+Nhe30MgaPjQhlKKM5OcwepldvmL+FjrVzByNlJSfIwucFNqDtAEod6Sn21v5Jp/CxfUe70+vC/D6HiAWrsM96WLchkcnWB/cz+pCbGUZyc701UBZwV0gp0ganS6qlJzjiYIdUbBoOGxfW1OMgC454mj1Lu9PHukC4ADreESGY09Xg7bFVgvWZQDwNbaHpYUpCIilGSGF7KFksU3PrCGj24qZ1NVdtTfj1LqrdEEoRynerwc7wxPSX36SCdfeHA/33++FgCvf8K51uTxEQwaDrYMsKEiC4B69zC/O9DG5YtznRLbnYOjTjXVUCG9hFiXMwB9cU0O//L+1STH63wJpeYaTRDK8b77tnP997Y6LYattVYxxGN20jhpb8gD0Orx0dAzzJB/ghvXWAXyTnYO0eIZ4eKaHGeTHoCl9vqFzdU5bKrK5ivXL5uR96OUemf0zzYFwHggSL/PSgwHWga4bHEuR9qtxHC4bRBjDK/b+0BX5iTT7PGxv8XqTrp8cS5pibG8ctJKKIvz0yiK2LRnid2CSEmI5cHPXDxj70kp9c5oC0IBcLwj3Dqodw/j9U9wtH2QrOQ4BkbGae0bYevJHlYWp3NRZTYtfT4OtFgD0NW5qZREzFAKjTmEVkIvK0yflfeklHpnNEEsYF2D4bLZkRv21HUPc6Cln4mg4cMXWQV2m3p9HGjtZ0NFFmXZyXQN+tnZ6GF1SQYul0waXwithv7NHZt58I7NZNtrHZRS84smiAXqZ9sb2fQvL3DI/qt/X3Mf+WkJrCvLpN49zAl7vGHL8gIAXj7RjW8swPryLMqzrQRwomuItWWZQHhWUk1eqrODW2pCLJuqc2b0fSmlzh1NEAuExzvG6Hi4OO6j+9oA2NFojSvsbe7ngvIsFuWnUtc9zInOITKT45wSF78/aO3otr48k7LscL2ktfb1UAsiKyUu+m9GKTUjNEEsEO/615e4+jsvO4/HJoIA7G/pp2fYT7PHx/ryTCpzkuke8vPMkU42VmaTEBtDXloCnYOjZKfEU56dTFl2eMFbqAVx9bJ8AC6q1PUMSp0vdBbTeejbzxyno3+Ub31wDXExLvp9Ywz7Jxj2T9A9NEp+WiIdA9b4w77mfvY1W4vdLqjIos0utNfnG+dmu3pqSWYS7iE/F5RnIiLkpSYAVhdSaLbS0sI0tn75KgrSdVc3pc4XmiDOA4/ta+OSmhzy0xMJBA3/+VI9AJctzuUDF5Sy61R4APpE5xDHO4YYGBknJyWetv4RttW6iXUJq4ozJm0M/u4VhQCk2Tu4rS+3FsSJCAf/8d14/ROTaiZFdj0ppeY/7WKa5+rdw3zhwf187ld7AWsGUsjhNmsdw4P2vgwA9d3DPLa/jZT4GL76HmvB2pOHOlhckEZSfIxTI6kqN8UppPfetcXkpsZz1dJ853XSE+Moygh3NSmlzj/agpjnttqL0/Y292GMcWojxce6ONVr7b/w4vFuPndlDT/Z2kj7wChba3u4enkBK4qtZNAzPMaV9od/SkIs275yFXEx4b8dPryhjA9vKJvhd6aUmm3agphnPN6xSfWSDturnY2Bhh4vB1v7SUuI5eql+TT2eHn2SCdBAx/ZUEZhRiKvnnTjHvJz+aJcKnLC5TBWFIUXs5VmJetYglJKE8RcZoxhe521n0LI5365h+u/t5Vj9m5tR9sHnT2bT/V4Odg6wKqSDGryU2j2+Nh1qo+C9AQqc1MoykjkeKe1vmFtWSapCeEG5PIiXe2slJpME8Qc9sTBDj724x38eqc1huAbm2BHoweAnY0exiaC1HYPcdXSPABaPD6OdQyypiyDqtxUAkHDk4c6WGdPRQ3NOIqLEaeYXihJrNEtPZVSp9ExiDnkv19tIDHOxW0XVwKwvbYHgIMt/bC5wmk1ABzvHOTlE92MBwzXrijgdwfaeeWkm/GAYW1pJgXpCc6968qs2UdFEaudQ2MMj915KYGgISVBfxWUUpPpp8Ic0drn494/HAPgulWF5KclUu+2ZiQ19Fh7PId2byvNSqLFM8JThzvJTU3g+pWF5KQk8NIJa8B6dUkGSfExzmuHWhCF9rhCXlo4eSzSndyUUmegCWKOCE1JBajtGiYnJcHZf6Gp1wdY5S42VGRRkJHIsfZBOgdHWVeWQWyMi+rcFHqG/WSnxFOaNXn6aahcxrqyTPLSEvjclTUz9K6UUvOZjkFEQb17mN/uaZ107sFdzc52nGCtV3h0XytBewD6ROfQpGu/eP0Ug6MTrC7JoGfYz8HWfo53DnHTmiJKMpNo9vhocA87pbSXFFotgVUlGYgIIsIvPrmR//rYBc44w9qyTHZ97VouqcmN5ttXSp0nopYgRCRRRHaKyAEROSIi99jnvy0ix0XkoIg8KiKZEc+5S0TqROSEiFwXrdii7bYf7+Dv/ueAU067e3CUrzx8iJv+Y5tzz98+tJ8vPniAX+1oAmB3k4fF+akkxcXQ7PHx8N5WlhSk8unLqwD4762NiMANq4sozkhkImgIGijPsVYvX2Cvcg6tegZ415I83rO6aEbes1Lq/BPNFoQfuNoYsxZYB1wvIpuB54BVxpg1wEngLgARWQHcCqwErgfuE5GYKV95DjHG8NShDmebToB2u87Ra/XWIPMzRzqda0Oj4wSDhlp7xfPDe9sIBA17m/rYXJ1DcWYiLR4fdd3DXL44z9nb+alDHVRkJ5OfnuhUTgWosMtb3LC6iI9sKONvtyyJ7htWSi0YUUsQxhKq+xBnfxljzLPGmAn7/BtAqX18C/CAMcZvjGkE6oCN0Yrv7Xr+aBf/s7vFefzKSTef+9Vevvzbg4A1FTWkudcqfPfU4XCCaOr1caR9EN9YgLTEWE52DdHYM4x3LMDaskxKspLZecrD6HiQJQWpTgthImhYYu/tHJkgQl1MiXExfOuDa6jO00FnpdS5EdUxCBGJEZH9QDfwnDFmx2m3fBJ4yj4uAVoirrXa52aNxzvGVx8+iMc75pz79C9286XfHmQiYJXLfvZoFwBvNPRijOFUj8+5t7XPh8c7xo5Gj7NWodnj44mD7cTHuLhtcwW+sYAzO2ltaQYlmUnO3tDVealkJMWRbM9IWmrv7Vxm79iWlRxHRrLuv6CUio6oJghjTMAYsw6rlbBRRFaFronI14AJ4FehU1O9xOknROQOEdktIrvdbnc0wnb84VAHD+xq4Z+eOAKA1x9uHRy11yQcaLFqH/X5xukcHHXKYKQmxNLaN8Lzx7oIBA2fucKaOdTU62NvUx+rStKdKabPHesmOT6G6rxUSjLDJS6qc63FbBMB6z/DYrsFkZEcx6N/eQm/uWNz1N67UkrNyCwmY0w/8DLW2AIicjtwE/AxY0woCbQCkRXhSoH2KV7rfmPMBmPMhry8vKjG3dRrrT8I7Z0QKoQHcKxjkNHxAMc7h5xVyK19I/zhUAeZyXFctSyf1n4fB1r6SU+MZVNVNtkp8RxuH2B/Sz+bqnOc9QivnnRzUWU2MS6hJGKKamgv5z/daP1n2VQV3oxnfXmW072klFLREM1ZTHmhGUoikgRcCxwXkeuBrwA3G2N8EU95HLhVRBJEpApYDOyMVnxT+flrp3goYnwhVLeo2WOFubcpcl+FYfY29xEIGmff5kOtAzx/rJuPbSqnPDuJjv5RDrcPsqwoHRGhPDuZJw92MBE0XLU0n4rscLG861Zaey9EFtAL7bVw900rOPnP79ECekqpGRXNFkQR8JKIHAR2YY1B/B74AZAGPCci+0XkhwDGmCPAQ8BR4GngTmNMYOqXfue6h0Y51Dow6fE/PH6EL//2IAMj1hhAKEF0DIwyOh5gb3M/NXkpLCtMo6XPxx8OdZAcH8P7L7CGSkKzla5ZXkBpVjITQcOBln6nUmqx3X0U6xLWlGZM2rozVBtpbak16/emNeHpqXExLmdvBqWUmilRW0ltjDkIrJ/i/KKzPOde4N5oxRTpfT/YTvvAKG/cdQ2FGYnOQDFYRe9642NwD/lZU5rBwdYBWvt87Gz08N61xbiHRmntG6HBPcymqmxKMpOIj3Wxo9FDrEtYUZQ+abwilCBCG+ysLE4nMc4aeC7OSKR9YJRKu+UQ4xKO/dP1xMZMNSSjlFIzZ0H+WWqMcdYqvN5grVUIzUYCK0GEpqbebhfOe3x/O8P+Ca5elk9pVjLHOgapd3vZWJWDiDhJYFF+KolxMZRmhbffDG3ME6qmuqk6x7n26J2X8s0PrKYwI9x9lBQfM2nDHqWUmg0L8lMoctrq6/W9eLxjPHmwg/esssYBWvp8PHe0i7Vlmawvt7p8frOrhfhYF5cuyqEkYh3CJTXWh31oJXNoKmpxxGyk0GylP7mglLtvXM5fX7PYuVaQnsitG8uj8TaVUuodWZAJoqXPWsAW4xJeq+9lZ6PVvfSpy6rITI5jT1Mf+1v62bI83/nL3j3kZ2VxOsnxsZOK4a0qsWYwVeZaLYYku+soITaGu29czm2bK5zupKyUeD59ebWW1lZKzQsL8pOqKieFH912IUfaBvj3F+v47Z42EuNcrCnNpCwrmWeOWN1N164oIDk+loykOAZGxp1d10LdR9W5KcS4rLGCW9aW8MoJN3deFR5i+fTl1TP8zpRS6txZkC2IjOQ4rltZyJXL8gF4/lgX68oyiY91UWPPJspNjWepvTAttFQjNM6wsjidv79hGQ9+5uJJr/mTP7uIsuxklFLqfLAgE0RIWcRAcigZXFhhjSWESmZDuPZRqAXhcgl3vKtm0sY7Sil1vlnQCSI3Nd45XmQniGtXWIveIgvi/eJTG/nSdUudndmUUmohWJBjECEiwj03r6Rn2M8t64oBa63Crz69iarc8Irm/LTESWMLSim1ECzoBAFw+yWVf3Tu0kW645pSSi3oLiallFJnpglCKaXUlDRBKKWUmpImCKWUUlPSBKGUUmpKmiCUUkpNSROEUkqpKWmCUEopNSUJFaKbj0TEDTRF8UfkAj1RfP1omY9xz8eYQeOeaRr3uVFhjMl7s5vmdYKINhHZbYzZMNtxvFXzMe75GDNo3DNN455Z2sWklFJqSpoglFJKTUkTxNndP9sBvE3zMe75GDNo3DNN455BOgahlFJqStqCUEopNaUFlSBE5Kci0i0ihyPOrRWR10XkkIg8ISLpEdfW2NeO2NcT7fMX2o/rROTfJbQ36RyIW0Q+JiL7I76CIrJuHsQdJyI/t88fE5G7Ip4zl+OOF5Gf2ecPiMiVsxG3iJSJyEv2f7sjIvLX9vlsEXlORGrt71kRz7nLju2EiFw3H+IWkRz7/mER+cFprzWX494iInvs+PaIyNWzEfdbZoxZMF/Au4ALgMMR53YBV9jHnwT+t30cCxwE1tqPc4AY+3gncDEgwFPAe+ZK3Kc9bzXQEPF4zsYNfBR4wD5OBk4BlfMg7juBn9nH+cAewDXTcQNFwAX2cRpwElgB/CvwVfv8V4Fv2ccrgANAAlAF1M/G7/fbiDsFuAz4LPCD015rLse9Hii2j1cBbbMR91t+n7MdwIy/Yag87R/+IOGxmDLgqH18A/DLM/xiHI94/KfAj+ZK3Kc951+Ae+dD3HY8T2Al5hz7H1z2PIj7P4GPR9z3ArBxtuKO+Hm/A7YAJ4CiiN+BE/bxXcBdEfc/Y39Izem4I+77MyISxHyJ2z4vQC9Wcp7VuN/sa0F1MZ3BYeBm+/hDWP/4AZYARkSeEZG9IvJl+3wJ0Brx/Fb73Ew7U9yRPgL8xj6e63H/FvACHUAz8B1jjIe5H/cB4BYRiRWRKuBC+9qsxS0ilVh/se4ACowxHQD293z7thKgZYr45nrcZzKf4v4TYJ8xxs/c+f2ekiYIq7vgThHZg9VUHLPPx2I1ZT9mf3+/iFyDlf1PNxtTwc4UNwAisgnwGWNC/ehzPe6NQAAoxury+FsRqWbux/1TrH/Uu4HvAa8BE8xS3CKSCjwMfMEYM3i2W6c4Z85yPqreQtxnfIkpzs25uEVkJfAt4DOhU1PcNmemlsbOdgCzzRhzHHg3gIgsAW60L7UCrxhjeuxrf8Dql/4lUBrxEqVA+4wFbDtL3CG3Em49gPV+5nLcHwWeNsaMA90ish3YAGxlDsdtjJkAvhi6T0ReA2qBPmY4bhGJw/qw+pUx5hH7dJeIFBljOkSkCOi2z7cyudUZim/Gf0/eYtxnMufjFpFS4FHgE8aY+tmK+61Y8C0IEcm3v7uAu4Ef2peeAdaISLKIxAJXYPU7dwBDIrLZnm3wCaz+x7kSd+jch4AHQufmQdzNwNViSQE2Y/XNzum47d+PFPt4CzBhjJnx3xP7Z/wEOGaM+SMDXkIAAALaSURBVG7EpceB2+3j2yNieBy4VUQS7K6xxcDOeRD3lOZ63CKSCf9/e3cPGkUUhWH4/ewURRERQRDBTgJKiBGsBMUijQgiIoKFKey0sVIhWshixEosbQI2KRRUJJoUggERi0DUEEFJZyH4AxHRSI7FvdFRLoaBsJOY74GBZHZnOJufPXvvmTmX+6S6z2hTcdfWdBGknRvpE/U7YIaUuU8Cp0kF0ddAi1yIzM8/DrwkzT9fqezvyvveANerxyySuPcCTwvnWbRxA6uBwfzzfgWcXSJxbyUVJieAYVKXzLbHTZoGDdKVd2N56yEV/EdIo5oRYH3lmHM5tkkqV84sgbingA/AdP79bF/scZM+VHypPHcM2NjE33edzXdSm5lZ0bKfYjIzszInCDMzK3KCMDOzIicIMzMrcoIwM7OiZX+jnFmJpLnLFQE2ke7yfp+/746I78UDzf4jvszVbB6S+oDpiLjadCxm7eQpJrOaJJ2Q9ExpvY0bklbkZn2fJPXn5o5DknZLeizpraSefGyvpNv58UlJ5/P+NZIeKK0p8ULS4WZfpZkThFktkjqAQ8CeiNhJmqY9mh9eCzyMiE5SM78+YB+p7cmlymm68zGdwDGlBZ16gKmI2BERHcCjNrwcs39yDcKsnv3ALuB5XvhrJb/bZn+NiLk39nHgc0T8kDROaskxZygiPgJIukNq2zACtCS1gLtR6ddj1hQnCLN6BNyMiAt/7EwNHauF61ngW+Xr6v/a34W/iIgJSV2kkUS/pHsRcXlhQzerx1NMZvUMA0ckbYBfayRvqXmOA5LWSVoFHARGJW0mFcIHgGuk6SezRnkEYVZDRIxLuggM59bfM6T1kev08H8C3AK2AQMRMZaL2C1Js6SRyKkFDt2sNl/matZGknqBjog403QsZvPxFJOZmRV5BGFmZkUeQZiZWZEThJmZFTlBmJlZkROEmZkVOUGYmVmRE4SZmRX9BLyw3+8HOuRrAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(data_MLO[\"Date.1\"],data_MLO[\"CO2\"])\n", "plt.xlabel(\"Temps (Année)\")\n", "plt.ylabel(\"CO2 (ppm)\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Le fichier propose aussi directement les données de la quantité de CO2 dans l'atmosphère en enlevant la composant saisonnière ; nous allons donc dans un premier temps afficher ces données déjà traitées" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,'CO2 (ppm)')" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xd8lfX5//HXlbCHYQUkQFgCykYiIC7EgXvWiqta67Zftd+2Kl9ta7VWrf6stq5aq7U4qThwoOKgStkoW1CQFaasMEL29fvj3MQDHkKiOec+J3k/H4/zyH1/7nGuQE7eue/PfX9uc3dERET2lhZ2ASIikpwUECIiEpMCQkREYlJAiIhITAoIERGJSQEhIiIxKSBERCQmBYSIiMSkgBARkZjqhF3AD9GqVSvv1KlT2GWIiKSUWbNmbXT3zP2tl9IB0alTJ2bOnBl2GSIiKcXMVlRmPZ1iEhGRmBQQIiISkwJCRERiUkCIiEhMCggREYlJASEiIjEpIEREJCYFhIhICikqKWP01BXkF5XE/b0UECIiKeTteWv4zevz+eWYOXF/r5S+k1pEpLYoLXPuemsh/5y8HIDT+mbF/T11BCEikgLm5G4tD4cLBmVzat+2cX9PHUGIiCS5/KISrnvuMwAeuXAAw3q0Tsj7KiBERJLc3z9ZxrptBVw8JDshp5Z2i/spJjNLN7PPzeytYP5+M1tkZnPN7DUzaxa17igzW2Jmi81sRLxrExFJdnn5xTw16WtO7NmGP5zVJ6HvnYg+iBuBL6LmJwC93b0v8CUwCsDMegIjgV7AScBjZpaegPpERJLS9oJirhw9kx2FJfzihO4Jf/+4BoSZtQdOBZ7a3ebu77v77gt4pwLtg+kzgZfcvdDdlwFLgEHxrE9EJJk99ekypi/bzK9O7MEhbQ9I+PvH+wjiIeBmoGwfyy8HxgfT7YBVUctygzYRkVqntMz55+TljOjVhuuPPSiUGuLWSW1mpwEb3H2WmQ2Lsfw2oAR4fndTjN14jO2uAq4CyM7OrrZ6RUSSwdb8Iq54dib5RaXk7SrmpN4HhlZLPK9iOgI4w8xOARoAB5jZc+5+sZldCpwGHOfuu0MgF+gQtX17YM3eO3X3J4EnAXJycr4TICIiqWzUq/OYuWILAPXqpDGoc8vQaolbQLj7KL7tgB4G/CoIh5OAW4Bj3D0/apNxwAtm9iCQBXQDpserPhGRZPHOvLXc/vp8Du/akvHz13FGvyweHtmf/KJSGtcP726EMN75EaA+MMHMAKa6+zXuvsDMxgALiZx6ut7dS0OoT0QkYdyd656P3AT39ty1ANxy8sGYWajhAAkKCHefCEwMpvfZ2+LudwN3J6ImEZFkcPZjk/eYH3vtUNo1axhSNXvSndQiIiFwd2au2MLsVVvpmtmYnI4tGNK1BQM7Ng+7tHIKCBGRBJu8ZCOvfJbLq5+tBuCZywaR3bJRyFV9lwJCRCSB3pi9mhtfml0+f885fZIyHEABISKSMM9PW8Ftr80H4IbhB3H5kZ1p1qheyFXtmwJCRCQBNu4o5A9vRYalu+vMXlxyeKdwC6oEBYSISBwVlpTy5py1/OrfkUeEvn3DkfTKygi5qspRQIiIxElJaRnnPDaZBWu2AXDzST1SJhxAASEiEjfj5qwpD4eHR/bnzP6pNf6oAkJEJA4Wr9vOba/N55C2B/D2/xxJWlqs8UiTmwJCRKSa3fXWQv4xaRn10tO479w+KRkOoIAQEak2X63fzk0vzy4/rXTl0Z3p277ZfrZKXgoIEZFqkLermBP+/En5/O2nHsLFQzqGWNEPp4AQEakGHyxcD0BGw7o8cuEAjuqWGXJFP5wCQkSkGrw1dw2ZTesz5dbh1EmP99OcE6NmfBciIiGam7uVjxd/w8WDO9aYcAAdQYiIfC/uzuuzI6Ox/uLlyF3SFw3JDrOkaqeAEBH5Hp6ftpLbX59fPv/rET1o1aR+iBVVPwWEiEgVjZ66gt+8Pp/mjerSr0MzLh7ckeN7tgm7rGqngBARqaS1ebs4/a//ZeOOQgA++uUwmjdO3uG6fygFhIjIfqzclM/R939cPj+ocwvuOL1XjQ4HUECIiOzXox8vKZ/umtmYMVcfHmI1iaOAEBGJobTMuea5WRzepSUzlm8G4J8/PYxD2h4QcmWJo4AQEYlhzdZdTFi4ngnBHdJ3ntmLYT1ah1xVYtWcOzpERKrR5KUb95g//pCad5XS/ugIQkRkL8WlZdwydh4QGXTvwIwGZDVrGHJViaeAEBHZy9WjZwFwcu8DueKoLiFXEx6dYhIRibJ66y4+WrQBgLvO6h1yNeGKe0CYWbqZfW5mbwXzLcxsgpl9FXxtHrXuKDNbYmaLzWxEvGsTEdnbxMWRcPjwl8fUuKEzqioRRxA3Al9Ezd8KfOju3YAPg3nMrCcwEugFnAQ8ZmbpCahPRIRxc9Zw0kOfcNtrkSE0urRqHHZJoYtrQJhZe+BU4Kmo5jOBZ4PpZ4GzotpfcvdCd18GLAEGxbM+ERGAguJS7hu/iEXrtgNwUu+2mKXmc6SrU7w7qR8CbgaaRrW1cfe1AO6+1sx2X1jcDpgatV5u0LYHM7sKuAogO7tmDa0rIom3eN12RjwUeVRol8zGnNW/Hdcc0zXkqpJD3ALCzE4DNrj7LDMbVplNYrT5dxrcnwSeBMjJyfnOchGRythZWMKc3K3cMW4BAMN6ZPLwyAFkNKwbcmXJI55HEEcAZ5jZKUAD4AAzew5Yb2Ztg6OHtsCGYP1coEPU9u2BNXGsT0RqqSUbdnD8g/8pn3/6shyGH1z7boTbn7j1Qbj7KHdv7+6diHQ+f+TuFwPjgEuD1S4F3gimxwEjzay+mXUGugHT41WfiNRO81fn7REOt596iMJhH8K4Ue5eYIyZ/QxYCZwH4O4LzGwMsBAoAa5399IQ6hORGmrlpnzOeGRS+fzXfzyFtDR1Ru9LQgLC3ScCE4PpTcBx+1jvbuDuRNQkIrXHph2FPPD+Yl6cvop6ddLo1z6Da47pqnDYDw21ISI12qrN+Vz01DRWbs4H4E/n9uWsAd+5QFJiUECISI127fOzysPh418No7NugKs0jcUkIjXWi9NXMn/1NgDuOaePwqGKdAQhIjXS/NV5jHp1Hgcf2JTXrjuChvU0ck9VKSBEpEZxd77ZXsitr84F4Hen91I4fE8KCBGpUcbPX8d1z38GwMMj+3N415YhV5S61AchIjXGv2euKg+Hcw9tzxn9skKuKLXpCEJEUl5pmfPzFz5j/Px1AJzRL4v/9+N+IVeV+hQQIpLyfv3vOYyfv46cjs355Yk9GNix+f43kv1SQIhISiopLeNP7y0mK6MBr36+GoB/Xj6IJvX1a6266F9SRFLOtoJihvzxQ/KLvh2ubfyNRykcqpn+NUUkZbg7c3LzGDsrl/yiUg7v0pLWB9RnRK8DOaTtAWGXV+MoIEQkJbg7f3pvMY9PXArAyMM6cO+5fUOuqmZTQIhISpi8dBOPT1xKo3rpHJrdnFEnHxJ2STWeAkJEkl5xaRkvz1hFvfQ0Zt1+gu6MThAFhIgktQ3bChj0xw8BuGxoJ4VDAikgRCQpuTtlDr8btwCI3Px2xxm9Qq6qdlFAiEhSenDCl/z1oyUA/N8pB3PlUV1Crqj2UUCISFK5dexcXp65CvfI/G9P68nlR3YOt6haSgEhIknj40UbeGnGqvL50T8bxFHdMkOsqHZTQIhI6Oas2sobs9fw9H+XAfDExYfSs20G2S0bhVxZ7aaAEJFQfbZyC+c8Nrl8/o3rj6Bfh2YhViS76XkQIhKaGcs3c94TU/Zo69s+I6RqZG+VOoIws+ZAFrALWO7uZXGtSkRqtNwt+Zz16GQ27igEYPr/Hce4OWsoLCnDzEKuTnbbZ0CYWQZwPXABUA/4BmgAtDGzqcBj7v5xQqoUkRqjtMw58r5vf3Uc0z2T1gc04Apdxpp0KjqCeAX4F3CUu2+NXmBmA4FLzKyLu/8jngWKSM0xeuoKfvP6/PL5T28+lqxmDUOsSCqyz4Bw9xMqWDYLmBWXikSkxpn01UY++GI9/5y8HIgMmfHb03qSlqbTScmssn0QfYFO0eu7+6v72aYB8AlQP9juFXf/nZn1B54gcrqqBLjO3acH24wCfgaUAje4+3tV/YZEJHmUlTm/+vec8ie+ZTatzwf/ewwZDeuGXJlUxn4DwsyeBvoCC4DdndMOVBgQQCEw3N13mFldYJKZjQfuBH7v7uPN7BTgT8AwM+sJjAR6EekQ/8DMurt76b7eQESS2zvz15aHw/+e0J2Teh+ocEghlTmCGOLuPau6Y3d3YEcwWzd4efDa/einDGBNMH0m8JK7FwLLzGwJMAjY8xo4EUl67s494xfx5Cdf0611E974+RE0qqfbrlJNZf7HpphZT3dfWNWdm1k6kb6Kg4BH3X2amd0EvGdmDxC5D2NosHo7YGrU5rlB2977vAq4CiA7O7uqJYlInOUXlXDL2Hm8OSfyt98D5/VTOKSoytwo9yyRkFhsZnPNbJ6Zza3Mzt291N37A+2BQWbWG7gW+IW7dwB+Aey+CipWb5XH2OeT7p7j7jmZmRqjRSTZ/OQf0/cIB90VnboqE+tPA5cA8/i2D6JK3H2rmU0ETgIuBW4MFv0beCqYzgU6RG3Wnm9PP4lICnhs4hJmrtgCwPNXDOaIg1qFXJH8EJU5gljp7uPcfZm7r9j92t9GZpZpZs2C6YbA8cAiIr/0jwlWGw58FUyPA0aaWX0z6wx0A6ZX8fsRkQR7d/5aNmwrYP7qPP707mIAxl47VOFQA1TmCGKRmb0AvEnkyiRg/5e5Am2BZ4N+iDRgjLu/ZWZbgYfNrA5QQNCf4O4LzGwMsJDI5a/X6womkeS2YVsB1zz3GQBZGQ1oWr8OY68bSvc2TUOuTKpDZQKiIZFgODGqbb+Xubr7XGBAjPZJwMB9bHM3cHclahKRkO0sLCl/HCjApp1FPHv5IIVDDbLfgHD3nyaiEBFJHS9MW8mdby2goLiMbq2bcN2xXemdlUE3hUONUpkb5boADwNDiBw5TAFucvdlca5NRJLQv6Ys5/dvLuSwTs25+piuHNapBU3q6zLWmqgy/6svAI8CZwfzI4GXgMHxKkpEktOcVVu5882FDO3akkcuPFR3RddwlQkIc/fRUfPPmdnP41WQiCSf/KISLvnHdGYFl7DecUYvhUMtUJmA+NjMbiVy1ODA+cDbZtYCwN03x7E+EQnZzsISjn1gIhu2Ry5ifPHKIXTNbBJyVZIIlQmI84OvV+/VfjmRwNBTPkRqsKc+XVYeDsvuOUVPfKtFKnMVU+dEFCIiyWf2qq38+YMvAXjrf45UONQylbmKqQFwHXAkkSOGT4En3L0gzrWJSEjW5u3iyU++5v0F6wG49PCO9G6XEXJVkmiVOcX0L2A78Ndg/gJgNHBevIoSkfAUFJdy9ehZzM3NA+Dnxx7Er0b0CLkqCUNlAqKHu/eLmv/YzObEqyARCU9JaRm3vz6fubl5/P6MXnRq1Ziju2lMpdqqMgHxuZkNcfepAGY2GPhvfMsSkUQpLi3jky+/4d7xi/hqQ+QZXzce141Lh3YKtzAJXWUCYjDwEzNbGcxnA1+Y2TwiD47rG7fqRCSuSsucnz4zg0lLNpa3PXHxQEb0ahNiVZIsKhMQJ8W9ChFJuNIy5843FzBpyUZ6ZR1AdotGnNKnLSf1PjDs0iRJ7DMgzKyJu++o6NkPZqa7ZURSzISF67n77YUs35QPwBVHdub206r82HmpBSo6gnjDzGYDbwCz3H0nlA/edyzwY+DvwCtxr1JEvjd35753F7N+WwFfrN3GonXby5dlNq3PbaceEmJ1ksz2GRDufpyZnULkDuojzKw5kQf5LAbeBi5193WJKVNEvo+Vm/K55OlprAiOFgDqphuPXzSQrzbs4NiDM3Xzm+xThX0Q7v4O8E6CahGRavTP/y7jjjcX0qheOi0a12NrfhEtGtfjnnP6cnzPNhzfUx3RUjEN4i5SA81fnccdby4E4IUrh9CvfeQuaB0tSFUoIERqmJLSMu58ayH16qQx/sajNPKqfG9pYRcgItXH3bnwqWlMX7aZO8/opXCQH0QBIVJDuDu/fWMB05dt5rZTDuH8wzqEXZKkuH0GhJn1MbOpZrbKzJ4MrmLavWx6YsoTkcqak5vH6KkruHBwNpcf2Vn9DfKDVXQE8ThwB9AH+BKYZGZdg2V61qBIkthVVMqKTTu57JnpNK6Xzi0nHUx6msJBfriKOqmbuPu7wfQDZjYLeNfMLiHyXAgRCVFZmTMndytnPza5vO2cAe30rGipNhUFhJlZhrvnAbj7x2Z2LjAWaJGQ6kTkOxasyePut79g8tJN31l2xVF6ArBUn4oC4j7gEGDq7gZ3n2tmxwG/iXdhIrKnaV9v4qrRs8jbVVze1rPtAVw2tBNdMhuT00l/t0n1qmiojRd2TweD8rm773T3lcCViShORCLydhVzxbMz2V5YAsBfLxjAkC4tyWxaP+TKpCar8DJXM7s2eA7ECmCVma0ws+sqs2Mza2Bm081sjpktMLPfRy37HzNbHLT/Kap9lJktCZaN+L7flEhN4e6MnZVLv9+/z/bCEq4+ugvv3nQUp/fLUjhI3FU03PftwFBgmLt/HbR1AR42sxbu/of97LsQGO7uO8ysLpGroMYDDYEzgb7uXmhmrYN99wRGAr2ALOADM+vu7qU/8HsUSUkrNu3kmPsnls8ffGBTfj2iB3XSdfuSJEZFfRCXAP3cvWB3g7t/bWY/BuYAFQaEuzuwI5itG7wcuBa4190Lg/U2BOucCbwUtC8zsyXAIGBKlb8rkRSXX1RSHg5N69fhnnP7cErvtqTp8lVJoAr/FIkOh6i2XUBZZXZuZunBMyU2ABPcfRrQHTjKzKaZ2X/M7LBg9XbAqqjNc4O2vfd5lZnNNLOZ33zzTWXKEEkpOwtLOP2vkwA4s38W834/gtP6ZikcJOEqCojc4IqlPZjZcGBtZXbu7qXu3h9oDwwys95EjlqaA0OAXwNjLHLLZ6yf/u/cb+HuT7p7jrvnZGZmVqYMkZSxs7CEm16ezbKNO7n/R315eOSAsEuSWqyiU0w3EHmq3CRgFpFf1ocBRxA5HVRp7r7VzCYSeb51LvBqcApqupmVAa2C9ujBY9oDa6ryPiKp6qv12/nfMXNYuHYbZe789rSenJejsZQkXPs8gnD3BUBv4BOgE9AlmO4dLKuQmWWaWbNguiFwPLAIeB0YHrR3B+oBG4FxwEgzq29mnYFugMZ8khpvR2EJJ/z5E+atzqNji0Y8fdlh/PSIzmGXJVLhVUwHAW3c/em92o8yszXuvnQ/+24LPGtm6USCaIy7v2Vm9YCnzWw+UETk0aUOLDCzMcBCIo82vV5XMElN9s32Qhzn7598DcB1w7py80kHh1yVyLcqOsX0EPB/Mdp3BctOr2jH7j4X+M4JVHcvAi7exzZ3A3dXtF+RVLRhewGPfrSEnw/vRqN66dwz/guem7qyfPlpfdvy6xE9QqxQ5LsqCohOwS/5Pbj7TDPrFLeKRFLcrqJSPly0nhN6tqF+nXQWrMnj1L9Erkp6dsqKPdbNaFiXY7pn8ufz+2t4bkk6FQVEgwqWNazuQkRqip+/8BkfLtrAz489iKLSMl6ctpLG9dIpdaegOHKFeIO6aUy6ZTitmuhuaEleFQXEDDO70t3/Ht1oZj8jclWTiERxd96et5YPF0Xu/Xzk4yUAHHFQS2496RD6tM/A3XFH9zRISqgoIG4CXjOzi/g2EHKIXHV0drwLE0kl7s6/Z+Zy89jIWdmx1w5l+rLNtGpSjx8NbF9++sjM0JkkSRUVjea6HhhqZscSudwV4G13/yghlYmkgImLN/Dxog28OGMVRSWR00fXDuvKwI7NGdix+X62FkluFR1BAJEHBQEfJ6AWkZRRVua8NW8tN7z4eXlb18zGPHfFYNpmqItOaob9BoSIRBQUl7JgzTYe+egrPl4cGQesSf06nN4vi3MPbacH9kiNo4AQqYSdhSWc8OB/WJP37fiVNww/iKuP6Urj+voYSc2kn2yR/Xh5xkp+8/oCikojfQy9sg5gzNWHKxikxtNPuEgFXp6xklvGzqNrZmNuOK4bw3q0JqNh3bDLEkkIBYRIDFt2FjHgrgkAHN6lJc9dMZh03bsgtYyeXSgSwzvzI4886dGmKX+/NEfhILWSjiBEony5fjs/enwy2wpK6JLZmHdvOkpjJEmtpYAQCeRuyefEP38CQKsm9fm/kw9ROEitpoAQITJUxi9eng3Ajwa254Hz+oVckUj4FBBSqz34/mL+8tGS8vl7zunDyMP0qE8RUEBILbWzsIRnpyzfIxxO7dOWH+d00GklkYACQmqdnYUl3PfuIv41ZQXZLRox/ODW/HpED934JrIXfSKkxluXV8Db8yKXrT4+cQkbdxQBcFb/LB4a+Z2n4opIQAEhNd4D7y/mlVm55fPd2zRhcOeW3HBctxCrEkl+CgipkfKLSpibm8fLM1bx2uerOfCABtx5Zi/6ZzejddOKnqYrIrspIKTGufvthfz902Xl843qpfPEJQPp36FZiFWJpB4FhNQIn6/cwq7iUiZ9tbE8HBrUTaN3Vgb/vuZwXZkk8j0oICTlFZaUcvZjk8vnszIa8MKVQ2jfvCEOCgeR70kBISnvjnELy6ebNarLp7cM1+B6ItVAASEpberXm3hx+kquProLw3q05rBOzRUOItUkbsN9m1kDM5tuZnPMbIGZ/X6v5b8yMzezVlFto8xsiZktNrMR8apNUldRSRmFJaXsKipla34RI5+cCsCNx3fj8K4tqZOuEexFqks8jyAKgeHuvsPM6gKTzGy8u081sw7ACcDK3SubWU9gJNALyAI+MLPu7l4axxolhcxYvplL/jGNguIy6tdJo7Ak8gjQCwZl06ieDoZFqlvcPlXu7sCOYLZu8PJg/s/AzcAbUZucCbzk7oXAMjNbAgwCpsSrRkkd81fncdNLsykoLqN5o7rUq5PGgA7NOa1fW07t0zbs8kRqpLj+2WVm6cAs4CDgUXefZmZnAKvdfc5eV5e0A6ZGzecGbVILuTv3v7eYacs207d9Bq/MzKXMnTeuP4J+up9BJCHiGhDB6aH+ZtYMeM3M+gK3ASfGWD1Wz6J/ZyWzq4CrALKzs6uxWkkWq7fu4v0F63hs4lIAZq3YQvNGdXntuiPp1KpxyNWJ1B4JOXHr7lvNbCKR00idgd1HD+2Bz8xsEJEjhuiB+NsDa2Ls60ngSYCcnJzvBIikpoLiUj5etIHRU1cweekmAJrWr8O0245ja34xGQ3rarRVkQSL2yfOzDKB4iAcGgLHA/e5e+uodZYDOe6+0czGAS+Y2YNEOqm7AdPjVZ8kl39MWsb97y0G4Ix+WXTNbMJxh7SmUb066oAWCUk8P3ltgWeDfog0YIy7v7Wvld19gZmNARYCJcD1uoKp5vtmeyF5u4rLw+Gus3pzyZCOIVclIhDfq5jmAhUOtu/unfaavxu4O141SXKZvGQjFz41rXz+rP5ZCgeRJKJjdwnFU59+zR/e/qJ8/unLchh+cJsQKxKRvSkgJGHeX7COGcs38868dazeuguAJy4+lCO7ZdJEHdAiSUefSom7nYUlPPGfpfz1oyV7tL//i6Pp3qZpSFWJyP4oICRudhaWsHVXMUfc+1F52+MXHcqG7YWcf1gHGtRND7E6EdkfBYTExYZtBQz644d7tD1wXj9O1rAYIilDASHVbtnGnZz/t2+H0LrrzF6cO7C97mcQSTH6xEq12l5QzPl/m8Ku4lLuOL0nlw7tpCe6iaQoBYRUi7Iyp6TMGXrvR2wvKOGFKwcztGur/W8oIklLASE/yAcL1/P4f5Yya8WW8raDWjdhSOeWIVYlItVBASFVtnJTPs9MXkZ+YSkvz1wFQJ00o80BDbhwcDbXDeuq00oiNYACQvarsKSUeulpuMM789fy8xc+L192Rr8srjyqC9ktG5HRsG6IVYpIdVNAyB5GT1nOv6as4N5z+9KnXQaL1m3jp8/MoEHddNydNXkFADx20aEMP7i17mUQqcEUEFJua34RD074ki35xZz7+GSa1K/DjsISABrWTWdXcSnDD27NXy8YoGcziNQC+pRLuT++8wXbC0q455w+jHp1HjsKSzhnQDsGdmrORYM7krermAMa1FH/gkgtoYAQIBIOY2bm8rMjOzPysA58+tU3FBSX8eD5/cvXUR+DSO2igKjlFq3bxuXPzGBNXgHnDGjHr07sgZnx2EUDwy5NREKmgKjFCopLuWXsPNbkFXDtsK7ceFw3dTqLSDkFRC1UVFLG78Yt4MXpKwH4ywUDOKNfVshViUiyUUDUEtsLirn06el8tnLrHu0DOzZXOIhITAqIGqiwpJSNO4q4Y9wClmzYQYcWjfhmeyFfrN0GwKBOLZi+fDMn9z6Qe8/pG3K1IpKsFBA1xIpNO1mwZhvd2zTl9L9OYldxKQBmkeG3Ac4e0I7bTz2Elk3qs2F7AS0a1aNOelqYZYtIElNA1AAzl2/mR09Enr/QrFHd8nB44Lx+nDOgHQvXbuOn/5zB1cd0oWWT+gC0btogtHpFJDUoIFLchIXrufGlb8dGql8njYdH9qdRvTqc0LMNAL3bZTDjtuPDKlFEUpQCIgWVlTml7jzz32X88Z1FAPzhrN5cNDhbdzmLSLVRQKSYguJSzntiCvNW55W3jb12KAM7Ng+xKhGpiRQQKcDdeerTZSxat50GddOYtzqPQ7Ob0aBuOg+d35/WB6g/QUSqnwIiST3w3mJmLN9Mn3YZvD57NRt3FJUvO7FnG/52yUCdThKRuIpbQJhZA+AToH7wPq+4++/M7H7gdKAIWAr81N23BtuMAn4GlAI3uPt78aovGU1espH/N+HLPR7fOW3ZZgCuG9aVCwZlk55mZDVrGFaJIlKLxPMIohAY7u47zKwuMMnMxgMTgFHuXmJm9wGjgFvMrCcwEugFZAEfmFl3dy+NY42h27ijkA3bCpny9SbuemvhHsuuP7Yr/do3o0XjeuR0ahFShSJSW8UtINzdgR3BbN3g5e7+ftRqU4EfBdNnAi+5eyE+LU4uAAAJ70lEQVSwzMyWAIOAKfGqMWzvL1jHVaNnlc83qpfOUz/JYeuuYtpmNGBAtjqeRSQ8ce2DMLN0YBZwEPCou0/ba5XLgZeD6XZEAmO33KCtRsjLL+aWsXN5d8E6/nX5IOatzuP+9xbvsc7kW4fTrFG9kCoUEdlTXAMiOD3U38yaAa+ZWW93nw9gZrcBJcDzweqxelx97wYzuwq4CiA7OzsudX8fm3YUsmZrAX3aZzB56UZemZXL0d0y2bijkMcnLmXTzm87mX/y9PTy6f4dmvHkJQMpKC5TOIhIUknIVUzuvtXMJgInAfPN7FLgNOC44FQURI4YOkRt1h5YE2NfTwJPAuTk5HwnQMLw+cotnP3YZAB+PaIHj09cyo7CEl79bDUA6WnGkC4tOG9gBw7MaMBLM1bxyZffUL9OGo9ddKguUxWRpGTf/n6u5h2bZQLFQTg0BN4H7iNy1PAgcIy7fxO1fi/gBSL9DlnAh0C3ijqpc3JyfObMmXGpvyLrtxVw9ehZHN2tFQvXbueDL9Z/Z51RJx9M22YN2bSjkDP6ZZWPgSQiEjYzm+XuOftbL55HEG2BZ4N+iDRgjLu/FXQ+1wcmBNfxT3X3a9x9gZmNARYSCZHrk+EKphWbdrJ6yy6GHtQKgJemr+TWV+cBMHvVt89WeHhkf4pLnUVrt9GvQzNO1zMWRCTFxfMqprnAgBjtB1Wwzd3A3fGqqarydhUz4qFPKCgu49LDO7KjsJSxn+UCcO2wrpSVOS0a1+OyIzpRv44e1SkiNYvupN7LZyu3cM5jk2mb0YAumY0pKC6jeaO6PDtlBRAZTnv05YPp0z4j5EpFROKrVgfE/NV5/PhvU7h5RA8O69yCklLnnKCzeW1eAWvzCjhnQDvuPbcvU7/eRKk7Rx7Uirp6yI6I1AK1NiAKikuZsHA9+UWl3PHmnncwXza0ExcPyWb5xnwGd2lBvTppHN09M6RKRUTCUWsD4sj7PtpjADyAhnXT+e3pPblgUOT+ioNaNw2jNBGRpFArAyJ3S355ODx/xWA6NG9Eu+YNSU/T6KgiIrvVyoDYVVTKCT3bcO2wrhyq8Y5ERGKqlQHRrU1T/v6T/d4jIiJSq+lyHBERiUkBISIiMSkgREQkJgWEiIjEpIAQEZGYFBAiIhKTAkJERGJSQIiISExxe6JcIpjZN8CKOL5FK2BjHPcfL6lYdyrWDKo70VR39ejo7vsdgTSlAyLezGxmZR7Ll2xSse5UrBlUd6Kp7sTSKSYREYlJASEiIjEpICr2ZNgFfE+pWHcq1gyqO9FUdwKpD0JERGLSEYSIiMRUqwLCzJ42sw1mNj+qrZ+ZTTGzeWb2ppkdELWsb7BsQbC8QdA+MJhfYmZ/MbO4PoquKnWb2UVmNjvqVWZm/VOg7rpm9mzQ/oWZjYraJpnrrmdmzwTtc8xsWBh1m1kHM/s4+LdbYGY3Bu0tzGyCmX0VfG0etc2ooLbFZjYiFeo2s5bB+jvM7JG99pXMdZ9gZrOC+maZ2fAw6q4yd681L+Bo4FBgflTbDOCYYPpy4K5gug4wF+gXzLcE0oPp6cDhgAHjgZOTpe69tusDfB01n7R1AxcCLwXTjYDlQKcUqPt64JlgujUwC0hLdN1AW+DQYLop8CXQE/gTcGvQfitwXzDdE5gD1Ac6A0vD+Pn+HnU3Bo4ErgEe2WtfyVz3ACArmO4NrA6j7ip/n2EXkPBvGDrt9cHfxrd9MR2AhcH0KcBz+/jBWBQ1fwHwt2Spe69t/gjcnQp1B/W8SSSYWwYfuBYpUPejwMVR630IDAqr7qj3ewM4AVgMtI36GVgcTI8CRkWt/17wSyqp645a7zKiAiJV6g7aDdhEJJxDrXt/r1p1imkf5gNnBNPnEfnwA3QH3MzeM7PPzOzmoL0dkBu1fW7Qlmj7qjva+cCLwXSy1/0KsBNYC6wEHnD3zSR/3XOAM82sjpl1BgYGy0Kr28w6EfmLdRrQxt3XAgRfWwertQNWxagv2evel1Sq+1zgc3cvJHl+vmNSQEROF1xvZrOIHCoWBe11iBzKXhR8PdvMjiOS/nsL41KwfdUNgJkNBvLdffd59GSvexBQCmQROeXxSzPrQvLX/TSRD/VM4CFgMlBCSHWbWRNgLHCTu2+raNUYbV5Be1xVoe597iJGW9LVbWa9gPuAq3c3xVgtaS4trRN2AWFz90XAiQBm1h04NViUC/zH3TcGy94hcl76OaB91C7aA2sSVnCggrp3G8m3Rw8Q+X6Sue4LgXfdvRjYYGb/BXKAT0niut29BPjF7vXMbDLwFbCFBNdtZnWJ/LJ63t1fDZrXm1lbd19rZm2BDUF7Lnsede6uL+E/J1Wse1+Svm4zaw+8BvzE3ZeGVXdV1PojCDNrHXxNA24HnggWvQf0NbNGZlYHOIbIeee1wHYzGxJcbfATIucfk6Xu3W3nAS/tbkuBulcCwy2iMTCEyLnZpK47+PloHEyfAJS4e8J/ToL3+Afwhbs/GLVoHHBpMH1pVA3jgJFmVj84NdYNmJ4CdceU7HWbWTPgbSL9Pv8Nq+4qC7sTJJEvIn9RrwWKiST3z4AbiXSIfgncS9ARGax/MbCAyPnnP0W15wRtS4FHordJkrqHAVNj7Cdp6waaAP8O/r0XAr9Okbo7EemY/AL4gMgomQmvm8hpUCdy5d3s4HUKkQ7/D4kc1XwItIja5ragtsVEXTmTAnUvBzYDO4L/n57JXjeRPyp2Rq07G2gdxs93VV66k1pERGKq9aeYREQkNgWEiIjEpIAQEZGYFBAiIhKTAkJERGKq9TfKicRiZrsvVwQ4kMhd3t8E84PcvSjmhiI1iC5zFdkPM7sD2OHuD4Rdi0gi6RSTSBWZ2aVmNt0iz9t4zMzSgsH6tprZ/cHgju+Z2WAz+4+ZfW1mpwTbXmFmrwXLF5vZ7UF7UzMbb5FnSsw3sx+F+12KKCBEqsTMegNnA0PdvT+R07Qjg8UZwPvufiiRwfzuAI4jMuzJnVG7GRRscyhwoUUe6HQKsNzd+7l7b2BCAr4dkQqpD0Kkao4HDgNmBg/+asi3w2bvcvfdv9jnAXnuXmJm84gMybHbe+6+BcDMXicybMOHwL1mdi/wpkeN1yMSFgWESNUY8LS7/2aPxsiAjtEd12VAYdR09Gdt744/d/cvzCyHyJHE/Wb2lrv/sXpLF6kanWISqZoPgB+bWSsof0ZydhX3caKZNTOzRsCZwH/NrB2RjvDRwINETj+JhEpHECJV4O7zzOz3wAfB0N/FRJ6PXJUx/CcBLwBdgdHuPjvoxL7XzMqIHIlcU82li1SZLnMVSSAzuwLo7e43hV2LyP7oFJOIiMSkIwgREYlJRxAiIhKTAkJERGJSQIiISEwKCBERiUkBISIiMSkgREQkpv8Pl1i8U0y1wD4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(data_MLO[\"Date.1\"],data_MLO[\"seasonally\"])\n", "plt.xlabel(\"Temps (Année)\")\n", "plt.ylabel(\"CO2 (ppm)\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En soustrayant les deux nous pouvons alors en déduire les variations saisonnières" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,'CO2 (ppm)')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEKCAYAAAASByJ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXuwbslVH7Z6f9+5dwQixoQp2zFUxrIpbCMDJhMgIcZGGEemKqZMygkQiwQThG0oA3YVHgdIMBDFgCVjsJ1kgjCWQAhhSQg0eg3SICH0nNFbM3qMRtLoPVcajUajeZzv2935Y+/VvR6/Xt8+d+53zgzn66pb95x9eve71/qt31rdO5VS6JAO6ZAO6ZAOaTjrBhzSIR3SIR3SIyMdFMIhHdIhHdIhEdFBIRzSIR3SIR3SnA4K4ZAO6ZAO6ZCI6KAQDumQDumQDmlOB4VwSId0SId0SER0UAiHdEiHdEiHNKeDQjikQzqkQzokIjoohEM6pEM6pEOa0/qsG3CS9MVf/MXlmmuuOetmHNIhHdIhParSLbfc8slSytW78j2qFMI111xDN99881k345AO6ZAO6VGVUkofXJLvQBkd0iEd0iEdEhEdFMIhHdIhHdIhzemgEA7pkA7pkA6JiA4K4ZAO6ZAO6ZDmdFAIh3RIh3RIh0REB4VwSId0SId0SHM6KIRDOqRDOqRDIqKDQjikQzqkQ3rEpLs/d0wPbcf6+30Pben5b/7wqdV/UAiHdEiHdEhXOH3kngfo/Z/8XP0950JPfdm76a7PPlif/fIf3EF/9edvUu99zU/fSE9+xi3195/47XfQj/zmW+mtH7pn/42mg0I4pEM6pEOq6Xfe+lG6694mtG/+wN305GfcTGMu9dlPv/BWeu4tDbW/8j2X6JrrbqBbP3pvffYN/+IV9E3/8vfr72/8wN30S6+4nX70P76tPvuZG26jD37qfteGV77nUv35I/c8QERE9x+PLt8+0kEhHNIhHdIjNuVcaDNm9WwzZspCQB9vM736vZ9UeV7wlo/Qjbd+ov7+obvvp2uuu0Eh7Z9+4a30LU97Zf39voe29I9+48303b/yhvrs+595C73s1k/Q3Z87rs+e/ur30z/5rbfW32+89eNERHTLB+/u9mM7t/ehTe7mgWnu5pBO9trlpoNCOKRDOqQzSffcf6wolAc3I337v/tDevuHP1Of/dPnvo2+7MderN77sh97Mf3j57yl/v6UF91Gf/fpr1fv/dCz30Lf94x279nvv/suIiJ6zs0fqs+e/ur303vvuq/+Po6T9P24sBBY7aRAIJcFmTgPylLmP0olxynPf0tRA65gOiiEQzqkQ+qm7ZjpwY2mK17zvk/SPfc3xHz7XffR//Xi26pgIyL6xp+7if6poEfe+qF76JrrbqDbhQD+mp++kb72/3x5/f3tH/kMvenOe+gnf/ed9dlv3YIdqr/9lo+q+omIPi3aZBO3bAgE6zZP6F3m4D4VL6td2ZHILsSCHdU7/W0ElSxRSFcyHRTCIR3SOUifeWBD17/qfUpo/8F7L9Hr7vhU/f1T9z1Ef+3nb6Lb7/psffZdv/x6+vM/8ZL6+4Obkb7r/3s9fc+vvrE++1/+/Rvo/33lHfSJex+qz+68+376TYHGf/stHyEizY9bQFxRNGh/E8xIaE7PImEfIXROm9Gjca5tBOjdtm2JFZFA77hsVAeXfaCMDumQDoned+k+xXuPudCPPf/t9AERwfK0G99D11x3g3rvmutuoJ954a3195/8nXfSU170Lnr17Y1rf9LT30Dfcf3r6u833voJ+sCn7qfrX3VHffaG92tenPn893z8s+7ZMoEY5ekL9m0gNGdgHwrNKrSD+rkfshymcawfQ5dNc9mBQpr/R2PEZW8hZaTr2Hc6KIRDOqSHme65/1iFGBIRvfvjn6XPPbStv3/0ngfol//gDpXnyc+4mf717723/v7+T36Ovuanb6QPf7pFnnzzU19J3/Zv/7D+/vaPfIZ+/fV30g89+8312S++vJUh0y+/+v31Z6ZTjreBYJv/jwTbFqHoBcJqEYrmH0AeVgRYaO7WNk0g9zM1od+3EKCFssD6QO9xCi2E+X/U732kM1MIKaWrUkpvSCm9NaX0zpTSPz+rthzS+Uz33K8PAT24Gen5b/6w2ry/9roP0rPfcGf9/YHjkX7wWW+ij3+mOR6/5V+9SoUYbsdM/+0vvIr+/q+1ePL/9T/cTD9zw201jJCI6GW3foL+1e+9p/7+G2+4k+7+3DH97ls/1m3zEsGC35v+f/i0CuDZ5/8jobWIZw/kOtd7DJD6Ev/AEqXVKCNfeGShNMqqX3akkMKy54azIt53OksL4SEiekIp5auI6KuJ6Ikppa8/w/Yc0qM0feLeB+mOS81ZWUqhX3z5e+ljn2nC99lvuJP+m599hXrvq3/qRvrup7cQw3/x4nfRj/zmW+kPb2+8+o//9jvouue9vf7+ord/jF74to/Rz77kXfXZpc827pyobXDJz3/mgQ0R4UgS2W6iZSgaCRYWmnG0SlT27jzHgB7ido+B0GrKJqJV+vWzsNwACydSkq1srh+1TdNCUrA3ZZfnPIGFsMSyCv6GFYKuf9/pzBRCmRLv4qP53ykxZYf0SEh33fugQuif/twxvWB2PnJ63D+7gb7j+tfW32/+wN10zXU30Jvv/HR99nVPeTk94aktnvw9n7iPnnbje+gHn9Voleue93b68KcfcMLj9YIj/+iM3u97aNNt8xLB+tCWUbSkVZY7Hhdx4ZHQBMJjkUCOOJs5Qcfr/B6qlxOPW9w3rh0pu4gymv9fomwDp26zfvy8sdCGY8s/LLGsYJRRVu3QZfeVxT7SmfoQUkqrlNJbiOguIrqxlPL6s2zPeU+lFNoak3zMRW207egPAb3kHR+jl7zj4/X3u+59kK657gZ64weasH3aje+hJwhapZRCX/uUl9MPP7vFk//gb7yJfujZb6EP3d049FyIXndHK+emOZ78Ne9r6Nsm3nzodCdCeLIuol0ods4TCk2Aovn/YF/nqhAW0Drgb1VoIRR7IloD1bsbRS/hwiONGAlNLhP5QGrbFlBmUdgnj1vUN2Sh5AUWSuSU3lZlB8rOuo37TmeqEEopYynlq4noS4joa1NKj7d5UkpPTindnFK6+dKlS76QQ4JJUihERPc+uFGHgIiInvPGD9Gn7mt0x0+98Fb6cz/2YoWi/+z/9iL6h7/+pvr7L73idvq7T389veZ9TSn8/V97k+LLXztTJb/6mg/UZ7/48vfSHcLxypvvxUKRfOTTD8x/2x3RsSRBoTnvMOwcZIGwxPPZT01oAhQd9W1B4ZHSYvQKhdb8KFJkVFG0T1YgawtBKwvUxyXWD+Tw69/6kThNaO8e26hvTSG1XCzsI8qIGxCh+KZs+j4E1HyrkPadHhFRRqWUe4jo94noieBv15dSri2lXHv11VefettOM425KAqFaLoDRR6bv/NT99NTXnSbQu3f+q//QJ3cfOk7P05PeOor6SXvaM7Jb/y5m9QhoA9+6nP0o899G/3As5qw//d/+AEi8pvuJe9sQvv2WdF86r7+ISBOkWCNnIOLEHogWCo9AVb3JkTRc9n9okOeuwrGrc+zxPRf4vhFh6c4WcGG2o0OP7U8U4pR9G4LAc5tQNnUOoAi5RT1jYd0CRcP+zYG41YW5OFyQqfw7nlDFoJVtvtOZxlldHVK6Qvnnx9DRH+diN4Vv/XoSPcfb+n6V71PCe3X3fEpeo2IAb/3wQ098RdeRbd9rF2I9f3PvIW+/MfbIaBSCv2d/+e19J0iVvwf/PotdP2r7lBH7m/92L30vDc17v2d8yVbt32sxYrfc7/mxR+c71T5JBDsUUTDyQ7h9BOjWCVYFoCgRTHfQZ5tgGIjRWLLRkiXp/sYCDb+GysixHcvGdvtAhSNqBNud4iio3EztIoKzTR9w47fbrU1IUXS6p+jjFDYbEXxu4U2jvLR6F/Ov6OMAmU3jt76bH6d3fMWgYXzYCH8KSK6KaX0NiJ6I00+hBeeZgM48oPT8TbTA4Z3vuldd9G9D7Z817/qfXTNdTeoCXr8//FS+onffkf9/ede8m56yoveRS8SCP07rn8dfdcvNxfJa27/JL3r45+lXxBhh793W7uMi6gt8Hd/ogn2h4I48poWCBZOMMQvcg7WQ0CXFy3CCQtNRngLTP+g7DHof7yxp/8jZZODPDU0cuvRoI0WiZyTSw5PIcEWR+Lw+5en7K0iVYe3DArGtE5/bq3jNgrNjJzKkUKIELp9D85tUL+1EGSerZuT4KQy0Jq59OvdRzrLKKO3lVL+cinlK0spjy+l/NQ+6/uR33wLPfVl766/v/Z9n6Kv+ucvq05KIqK/9W9eTX/hf28I/RP3Pkjf86tvVI7Pn3/pVIZcdPc9tKVnvu6D9XdWIFa5yBQJFk4RGlkUmhienIw2f2B6B1xsayN18zAyPt56hbBMaPXL5rQBArn+LaA1ePNFXP6SO2mwc1Qj7Ch8cQiIdnQOoP1tAWUUnfgNxnZrxm3QfJgqEzt+dTmo7KhvEWVjgQQa22hNhfNmLKslfZNtbEpid5QRssyzGdt9p0eED+E00vPf/BH6pVfcXn9/0xy2+EYRdvgucRyfqEWpyGsCLBq53LTkEBBcfPP/iwRyhKLZhA1oFVT/okicIE91fPKmCRQScvyyQllyJw3K1JBuXyAvUkjI+jBCSwp2u7GjaBXUNR6L49A52T+81SirPmXWhBYaN91uFEG1AQLR1o/mdgmtEtJBpmwbKSffQ4LVrglktbZIoMBC4HK2om8GAJz0HIJt477TuVEINi0RLOhIvHUSXW5a4pyEnOoChbQk5juM6FjgHFwUvgj+xou/IU1f9iY6BFTL3o2iURtDnpv05kep/aWv7I5DpBtE4nCeCEUDgdzKjqwPLXRQ/TGK1nSQtux2I3Qe240pR/4cWXaRIre0Clq3EeUUWQh2TiILxVoD8ufIKRxRRtyUP/KU0VmnZTHfXqtb5+CSU5K47Ol/fOJUm95wgS4QWkvubcFocLd5HKXobpmGNL2FYvsW8vwLFGkUdhoizTkPcvxuA2VjBTIMzQyVrS4Hlx05XhcgdOccbik8PLUgyiairCr1AvI030OwJgPLyuaR41fXxFbXod6zloUYmmKEPRxbQ8ONwPrh/5Fc35g8MvFQHCijPaclXDja2Jwi83xJiugBG/WgnZMaaUWXbUUpRGMnQEMwVX0QoeiJjtNXIMz1hyg6QrEW6fWpj8iHEJ1KXXLi9BhFUNX6I8pKj62c2+aM9gi95qmUxW7HLbYQAkVo+yYjcVjYL1g3G6CQrJKKLMvoCodx9ELfovYqmLMf23qBnSiT19BYQQKo17Rf5rHCHrV/DHwIvIcOFsKeU91rC1D0EjSI0pKvHKGNbS0EFL4Yc5qsyHx9LBgeGv3G5hQ78Khbb21/3j1ux1sv2BqtsBtFI6W3tZYVaFuEkFvfdjsnse+lr5By1vMVc+Ge7444fNu36IzHCCykbMYEha1G41bnLVB2TTAGfVsQdorWHY8zjPKp/DyptkkUX/PUtdX+xmsYvcfJOrWVhWDewz4Mth76FsLBh7DnxEMfceFNsPhMvOmi64SjFN2JYykbdMApQtERQvd87e7wSdTubYAmI6Flb62MLYTdSgc9i6mPiDIyQhv0H81JLdvWL8uu9WulJdMyFB0IzUp99IUWinKyZSPhszWCTcouayHgKxh025RCMBQdErqR45X3MLo11JUN82irQVkIlFR+tN7t1dzI+oi+qxD5N6yy23c6vwohODlpeceTcqq2HJT4/ego+zFAmjUSpgqt/uaP4/ADhRQgTdt+lCdE0UbYagtBv7+E+igAjR0H9S85PIXmNhthFzkn4bpx1kdfMFQUHzgnIxoTCeQhacE2grKtYNOUlRGaovtcdkW6Aa1Sy0E8e4SiwXucLM8u67eKrNJiykLQyF5VESib6kw360bmaeOt88jUIqB2r/d9p3OhEE56lD06gs8pQtFLUuT4XHTAySBtAnnQ5mkIfezWvySiw4WPioTQvy8bWQha6IZoChyCsnf5hDz/gigfmcdSJuiqZ0vjRQ5zpFAaQgdIM3jP5kHL1karyDwbI8ggijc0llQWyQrN6IAVoMM2pt3QqV6VFuqbVkhjoMiQc9c7ftsfq/VhlIbKb5SdzFP9CvWMSz+hvvF7Sy7QuxLpXCiEyDkZHsIBKNblAWXzAq2LAAlmViQLrA8U4hcfQtLlwLLrfTu7fRiq7LlIa2noZxFlpMcNHUyLFLK9nkFHq/THreYJuPBWjhbM03taSUUOZyRYmtD0ApGTpXVQaGY2/+u+9S2ESj0AgWzbuwVceCTYqoUAorOssEURNb36Vd+AkuTk2o0cxmZsQ8pIVNHAFbn6+adWlm9j8y+Y8Ssoj+83cnTvM50LhYCue4gsBMtzY8frbgshOpXaLIQggimKVglOTjakN/1NLj4XK7+AC5fJc9Etjz30FCG9kEMPxq0KS2AhOMoDbKOGfhGtwm30ArmHotEBq4bqWtk8zNFdRpbO0YLVCra+9RQ6JxGHbuYLUT9WsJegb1ggz+UAB6pVpNFnMpH1EdFRFmQgoV0FO6Ba61ugftsmHq8R1W/WhOxidMV1y386KuFcKIQoWgZZ4C5aJOKiQ57dC1aLrMPDUwGKXhI+iO5f8X1D7Z7yhMf0gUK06BvTIn2k5FFsX9khwWoFC45EWk49QJ7Z+BJkF71AbH/kU8sR9VAjYQLqYQyER0QZWR+IKtvUB6kP8x4SUMgpXBG2EdZSadhnaN68YBf1ln7ZxeUh18b6NyQMjEDWPgTcN7lsGZTUdR60EfUtGpN9pHOhEDCKZlQEBKpBsUtizlGy1BPRMt+D+36sqL+h6D4XbqNFFPURhEbadiOh0+iBBUgTCi2N7GWOGuJnUDiRP2mL6YHdggUJ21oH9cu26D9Ew4Cnthy+tj5YuXC/l9A6YGwDOskJ++zHtlEmPk8VjKDspv58/VaQI8RrfV7F/C//hhRRbSdoY6PYTDmg/zCCinS75d9sm1Df8oL+I2Vj+3a5B2BPms6FQoiO6W/AgDeee/o/RNGh41kLXyLve4hQdHhQxyBl1DYUOx1dC9He7/PcLS4alG2QNQxfNEJLbkxnIQDnoHN8htQD4qI9HcPJWh/K8enq10JctgkJLxs+GPHMPGzqgFPg1OWEaI3WN86j65TPxvo3rh+1cfod+bUi9N2ErS5Hl22FpuwbqTwyWSG7hLKBVkwV+n1lhSyEen4BfPPCjhsuh9drf06R8bKPdC4UAkLjLJDZuatpFYPioeN1gYUAULwVttFVvVGIH7qsywqEiliBhWDNXNU3gCI5LXHg2YNdS2mdiqIjDjtA6DZPhKLR31r4IEDoho6xyG96pstGJ8yRYLNloY/Z8E+XTasYRYTabePwI8Gq6jXlRGXjPCbvAlpJJqtIwr5F9QPLjn9E/fdl+zze+gnyBJbdwYdwBROkVYwiQGFw0elA9B4ne+IWl63/h2WDxWBPTmrnnK4vRNEB8kAInRMLaUiZOJ4bIP3apul3WUOqlJFWLLLdkWCxCghtIkuPyMQ0IhKInh7wY2sFCzpjgayHHocOaR3z/2JaxdIakUICY2QjYaTD3go7SJkEtIoV0jAP+We1b7lfv51LxPP3IoFk25BF6+kgn8f3rV8OBCnGstt3OhcKAaKKijT7SNeauTJF1+laWkELLU01RE5hxLNbWgWFRkbUh1VkyHEbhfhV9A3HTb9nI1OIvGCRiYc52tg2kkQXY+t1VUDKoPYt4Jkt+keoztID6BQ2okyKiU5Bgt0qCUirkM4jU0P/XpFZyzJSdtZCkj+jvlleP3L8NuEXrRvXNWBZ+L+1MwPk+uZ8CL75eN2YdRpaf2EeP9/2bwcfwhVMWPOyYCsuT0Wxo55EmZCwte9jx6t+hnwYEa1jwwdDCwHeG6OfoQ0WnRiNQ/ywYMFOtrk/omzOFQnNyPT2m6+/wUKhGWxsK1jluok4/CU8u6UspLK3qDkWmmDeFggt64CNLBQ1tkY5QSUZzZtV8pH1FVoIQNn0LDuVR7cj8iEsOWOAlE2okOf/EVuAAhT2mc6FQogdiN7J6GkVJPT7tIqNx0dOXXvidmm0iu0TEkhxiB2psk8qNO2zLRAsDo0FbSSAom05qE2QZ844j+4bdf8WIWRn+lfHb6A0pMx0Y9MXmktopUjZxnSMf88jZN3H6Zluv9YHkSDn+vXvMfVCLk8s7KP+43YvorV21N9TdpqOwn3TayPom1Ek+07nQiFEFgKK1bdIG1oBJ/hbjEbm9gSLGH2IHqMxXf9JUI1M0Dwm3aaT8KWRAxVHqwSbb8nGDgQLcqo6njhqd6A0rFMbCXQUUeLaafqh28Rt9nlwBI8uG9MquqzIikHrxgrk2GELxp/wuMGIHrSXjCLD9eN+6Gfmd6g06qNGJ0Xof4GFEp3fiHx9+0hnphBSSl+aUroppXRbSumdKaUf2lddkYWAEJMV5JFzEikEtgzQIu6iQbRB57/Jg3Gx6WuFJhI+un7QtfrwpKa3bXfU/+g0amTZ2PrRWQWXJ1AssmzrH4ijVXbnkV1chD5DCwX3H1Ev0j/j11vQbqO04kgg0TcDe7Xvp1M/6ptT9q2OZVYT9fNE+4bznmBuYdlGoaj+Bsqef4qenZYPYX0qteC0JaJ/Ukp5U0rpC4jolpTSjaWUW694RYHwicy1SDujjVVKoZSSi0dfgnS3aBMDCyEW9vj9CGktpVVKmfwXW7P5IIq0/VcCYs4LFrrtm75eQPc39k9YwRJs0PnvK0qLBEvk1I7G1iFU2CadJ7LsrBAl8s5Z/Z5uY0Sr4Pm3whe1UZeD2lnAuJ2EDosF+e79FvatAyhU/VCR6TLRuh1Nvahs7TOa1iRnOyV9cHYWQinlY6WUN80/f5aIbiOiP72PuuD96rxAAM9dJ3/BhVoYaWb1uzYP9TNsIeiy1YdWLNIEC7spJJ9niWBB6Nsj5GDzdZCTeq/o+lF7I8ESId0lh4CikFLo1O5s6OgQlqR9I4Q+mrGNBOsiOg4JLdO3yGqKgEw2fYtoJfXM9h8IxEXWb4T+oc8K9/+k1t9JlE1MmQVlR307JY3wiPAhpJSuIaK/TESv30f56KriaPE7gQYmw/LFMp+9T36Jc1RaCHZBykgc/15/Y6G71HubLypHPlu0+cziR9YPiqAKFalTJH78+Sf7Va5d99YsE7b6WasLjBHom7N+ZJuyXgOhgAgstPj8gK436j8WiLhvEa2k2hnWb9q4YG3BdhvnNm43aKMJRY2smCgCiUD9ft1EbezLAIBJ95LOXCGklB5LRM8loh8updwL/v7klNLNKaWbL126dFl1RE7lJrR2bz64GAJkHaLIYGM7xAr6YpGHqj9a/K6NPs9JFFnE18KNVQ+t+b6djFbp978eeoN5dDmoLxDFZ9t//a6qf8EcYRRr+0YuTxQJFI3bIsvKrHOs7GxbRT+qU1e2WyuA0Pox9eOx9f318+bzWIGs2ki6TZEVc9L6rSXVlJ0vZ2vGBCm/faczVQgppSOalMGvl1Keh/KUUq4vpVxbSrn26quvvqx6IoSPFp/dEEhL9yaRSB4+03WpZyEaIVU2QpNLTF/kQ3ALNBL+AdJqm8i326HIUGgKocs/o3GrfTEoGiDNRTdrgs1uxzuiNZD1tcypDfpmhVYwbvasgLa+SOVBfYFzS/q9JSAlVmxI2J+gb8G+idF/ULYTyCfr25I9EdYf7ltSefg9ZP3tO51llFEioqcT0W2llKfts64tFCxm06oPvZDKgyYRHd7yCD1YWM5CWUarLArNCwWSFT4E8szlSGFHeNy0mWvy1HH0prBFVaWU0Prwm0//rusLxj/7djvFCTboknh+2yYkIE+yJkYg7CMgYceIiOqBvm3Qt2W0klk3/K6y/qK+6d8XXQGxYNxKKQ2ooXmj3WV3+wbW3xKqDZ5NMesdWu2m3Wgc953O0kL4BiJ6EhE9IaX0lvnft+6jIjlB3j8w5wlRLKnfifDmq8I9CjvtKCTkeLXUD2wTWljmhPVJOd1lCJnLIZfHC2SZx2y+4vvYxtG3ybYjdsRRtx8xrYGEj+lbgDRrRA+Ii7dKG/UJjVvvvp/QqU1+fjHS1X+DisXUh5G+f8/1bcHVEWiOONn69LpB463LjPomwUmvHGx97K4/uhG19s2sJU3HnU46s7DTUsqrCd/sfMWT/arW0QpYCAvQIIz5BgvEXjwXOx65jQANGqEJ2xSiEZSn4Dw70FDX+gmQ1kn6H7URlRUp5MiyC5F9qEis0OoLRMcpBwIatTPqW0zZ+LJ7SnIJQj+pLwI7TJeviZBWyb5vVOIxerh9Q+UsCQVeNG5IlsixzERZfQeFTiWd5TmEU0vKQsidSUQbxG4+SSuBZ8Xwukusj8iBhmiVCOn0TH8kNKxTGVoxxfctdpiSem9J/5fQQ0SXZ/pbNN/tr0GvMa1DKkWnoJHwb23zbeopa9S3QuTyYAU0vVtMHdF8N0Ag23h58+aFvW+3Rd/4pDcqu4RrC7VpiUWMrHZY9vy/dfSXaN6Kz9NTrsiy3nc6FwpBWQgLFrYTKJ2N5p9ZYVtc/V2kucCpDE3R4Fl0xiKbhQmpLyg0d/ctyuM2UdH+A9XfRUiTWh7bDjBHkdXQwj7J5WlCsj8ntt24b75NJ7F+eE7jSLD6yNXfxp/cs4dLK4XztmC9WytgV9m52zewJoN2dy20HfvdUY0ggsiuyVa/zIP2ElGSSuB09MH5UAiReWaFuHy2BGlHtAo2fcmUTfM73jkrUVUpBS/QJZZNIHxixBwJuyV5fNlYkXWUJjg/ER3wWjJvPWQrra+QsgqUDbKaSomFiCw7PoXdqT9QWpxv8VkFh5CBsDVzuXvd6Pdw2Z11U3z9l923yLIxeVHfcNm6ncv2G1qTqG9aAxwshCuYRqGOK/o3Gysyfe3/8mcUndO+eEbuve4C3RGtUUrHhEVoaEFExzLrg9x7zvoA4xZ9ShL2rdPGyw3fW4K0rQISv8Ixaf3ePW5LokU0SOH/++22AjmilVzfwDkQ7DPCdcm2jWqvw/9WAAAgAElEQVSceuPf8li/QqRIo0gk65zlsgvqW3jCXNep+mb6EilkfibpuJ5Clu9heYPnTVoFp6UQzvxg2mkkuYi8D8FPRtfPgBYxmNhNIDTcRkblmHZw/sjxTNQ2hPVhhFdkGwUp34s47CV9C9GQ2Vg7kZ47Tap/X9zG7Mses0WD5N6ryi5UNqDdDkX334tDijvzdsKxjebNUWZoTdi+IcUClJ3dbxH6jsYosr4wZaXLihE6iffwvElFUor5HUaV6Xb3LGT7jArux77T+VAIMubcCY3p+aLDPOAQEqI1tuHBtHnzuUikfsw5P4N3AkHrQ/8enabGqEYLCK5f0yqob/rZEguJn8H4brTZrfWxYN4g0rPWF0Ss/fdw2bjdu5yTXcsuaHcxz7tl53iOuP/TM9ueBeOGULx5D62bmA7zgr03J8iKWnQpIAJgpr7LVfaQbQiATE9JobL3nc6JQpA/442NThw7VLEDjbBg46Jg7LLb9L6NvY21axHZxR7SE7xA5+fYQmltcpsvVEgF/i7buMSHAOfEjRvoW4g0fX8n6wv0DSFku7F3RaKUGLGiNiHLziNtVD/um76cMVBIwbrpCbIlCF1W30P68ln7nVwefw5h17zpMY0pUjNuO+bNA4lgbE9A43I+UbSKStpnOh8+BIl0O07dULABpDsa4cPvbRSqRpOvhR1G41iwwGsKwIK8HB9GdLMpP4uiN6Y26g0ZKtIlSCtEekHZpv27zgEsRYOy/iUKGfctGDeL/pcIbYWQl8ybb6MVdlD4gbKLGzff7il80uexvojpWaSQUP02NBPUb/obCm0jdHf5fmz/e0pLlsV/QWOrTvQTjs7bdzonCqH97D5Pmf0C4QldcgWFRbHoZtHo61gIDfWUFKIeYNin2QQRQscCas5jkd6ONtq+YMHOZeuyMNJqeYr5GxY+pN6L0Kiuv+A2otPMxkJQ7QZryfeNcJ4diNUKknDegrJjFBv0DQo7vSa79e8Q7F06bolA3gE2/JUr/b5ZUITyLLlvCFHLcRAHzX2rjyjnQuhDR/tO50QhAPQdotj5/3AS/YbMpYThq8vrx2XjyJC+sImQXky94HYjWim6uK0bPeHabSkbnVf+7C0rJEj7TvVs8vB7u+lA3Tc0t80yqY/6oZnB3Lb6dTmyHdG8WQG8+/yMaT9QyFC5khXQeC3vBlK67AhseFqHXJ6YakP1o7LbjQOy3Ru7bgEA3MCygzVZ95u+82sDyt53Oh8+BLFA68V19vpnsEDlXUJ2Y1crwkxa9F2DKY9+DwsoUvVz2SNYoPpqby2krANd9rc5lft5HBeObvYMNns8tqK/uVeOFtr6xK3O22+3Rf+4vxnsOAQkYqtxfs+0aQlfjXwhMNCAf4gEu2kTupF1GYr1a9IKSQi2TH+j0GxZtlUS+D07tmiO9DNZVs8aICJH98J5Uxc+mjUKqB9Hyda+anpoek+WXeC87TudC4UAQ0pLHzFYFDjli1EV549OJcv3LPWh0BhA6Ff6YJqvf1e7lzgQsbCMYt6JZp4Z9o3Us6VObSnbc2/eDPq1yA/VP7W7P27tWhBjfYC1ZREq6gdCqC2CzQga+WyB9RVZdgjFQhorYxSrBZkeD4y0cZt2+9WKqr+g+l25PLb+IKhtt8yDrhsv1kLgPKZ+2bdo3pwiBwp53+lcKASErGO+klQezoeuerbodwMWP7rvxp9m3uUwxsjDcthSADXhG23+QLBbCwWg2EVlw82v+4sd33JDYsG2u2yjpLMve8xFC626sbN7b2PGFgktKyRRMIAVCPJ32S7fNytYsnvPrkEkkJH1ZdcNpkNs2Uj46f7ieUPjFpQNUbwVvkjZWusLKRYCzzD96+Z2gUKenuVuHqykMbjcdzofCkEM5tYsiKVoaBJaokyA9PwC8WVbJdFDrER+sSEnp61fo2O/iNG9Lb1DON6E71Mout36gNMiFIsoDCdY4w2K3puEfVz/hAYXbuzaNywgpvf0OME2GoWEotO2esJVm5qARm1c0DfTbtRGBG6cIovokdp/3Vffxt3vVWVj3lPjhhR5sdbAnAes983YV2QQJOZCCMXb+qUl0/qxC1z6eTyNdE6cysX97B1osXnqnWM6L/+M7iRahPTAex4xxIvfWihNaQGk68z6vvDjdqMFCjfWgr4dby2KB3y1Q2w7UGW3bx6hW2GHEKMVEPKMCR4jLJAh0l6SZ4fQ6o6JWTdSmMD6aYmyJ9ff4vqK699Fh/FPYy6UEoOUHo2227LsOX7XQ+paI1y/7AuPyYX1AJVkIQMsyNdPpa2Z1reG/lPaDcBWot37TufCQhhSu1g8lzJTK9PvbfNLpTH9HwpkhBA7nGrIBQPEhDYfdYW2fg9/0nMXGip0DIVmCfJ4wW459J6ZTbQQoTukBxQSQpEWoe9A0RZFdpEuon7QeBsFuAv9WzR8ImXTEdpDEn2DYKM/tnj9dYTtDpBCouxJsJKvnxV5znS0GtqY7EDohdq4sbAlmiji1TwAcoyOVoMqh8WCFPbr+T2pbC6uBqUkW55W/6RsWv0Xaj/a2uJnEgBcEGV7HwK3Ox18CFcy/eTf+gp61vd9HRFNg44EGxb2fYTc0Gif94Qbuy7+6X+4QVjYhkKLVDmt/t2CbarPLL4FlAEuR+dRKBqa8EsE4ty3BfQEdE46fj62Pnp87SY3wbqLUx5SX7lrhDq3MWuhsVSRO/9Ihw6UghVadmMxfcu1H9ZClSh2FAJRKvLVkBSHLwUrt9kK1qOVFr6lTHnauDVBKtt0YT3nyVqwtvqzKFsjfTlvR8Mw9ZfIlS1pnqP1oObtSAh2FuJHom+bnFsbhYV0Qc6JeAaVlIgyOhJ923c6FwqBiGg1j/SYO5t/h0D0imT63yO2XfSEftYT/lPZC7joIA+OqEBt2k0ZlI5CslEWEA1D6mO3QrKhebusKDlvUti0jSUog20WiM0oDWp9axu7lSPRaBVaQmhsBEKVCslSD1JobBXSbP2XbWQhtQLCdj0kNbdSsOk24vqr0JIoflYalmpRyiY3oS3nBCkkWf92zEpAbkQb7XsSIW/GLJSGFrZI2So0Lvo25kzrVaIhJdJKan6PtEKS7ea1JRXi0appllEoO1n/0dqXPT0Dijzb+ulU0vlRCINQCCCiRAv/6X8rpBBCtNaGNvMQii0VDU2/c10n9CF0hD3/vhpS7QemLKyw362QkOPdKiD+/aLY/Mewb7kJtqxNf6lsGvVRVN+kIpfCl8dNClKu/+J6pZC2FPYbJbREHkVhzJtYINZNnW9p+tv3kEDsoNGVFsi7kOYGCdtc6KLsm6I+qOaRwmejBGtDuuvVQCklNSdQ2In1rlC82hODLmfdxM9WjBERUcmCMjHjJt/bCMEKx5YsGtfrRq83q+ywkrywXrU8VZGtdBs7StOPSRIhrYWOJJAAa2vf6UwVQkrpV1JKd6WU3rHvugZWCB2kvRmzEyzH6hlBgdSjPtTi22I0JOtCzzQ/33dOJiE0lQktFqjsB5E3q+vGEij6eDSmv8rD9QvEJMZDCVaIEJtgmdqDNq1Buln2rfVDUi/TkX+L7FkhDIrWYaE5WY2N1pDKrm3+1g8lWGfeWa8JKzTFmqhK2lJGHVpDlmOFZumPdy1bAKCjtaFeEBo25RwNiRJpRa4EYm3TSq1JiLTXWpHKPTEKhVjLBghZU02YelFWTLZ9a/04qsquUZ0XwbqRe2Jab63+pqT1nlBzVBWbnMtJtkgLZcyF1iupJOW40amks7YQfpWInngaFa0FGu3FhR+t0kwHCKQBBPkkWKb3Nk5oClQjNH9daFkL3yI2ET/rIdTjzsJWDiwgWLZjFgu9UQ8XOptP0iES6R0DZWdpDWkh8DNNh3B/+5QBMv0nh70cN48GJYq/OAstSREqYZv1mPRoDTRvFo2vV4lWYmNvhNDUKNpQJrLdHVrjSM5t7X+Pi/aKVFo/R6ukwh5R/baN69VAQ5re4/m9iBSSmpOs5h9ZX65vYt22uQRtMpadUpJCsMKxNXz9ekiTBSqF9krKCans2nwfif7XNoo1MWYsN6TvYTty/UlFWSGqTa73faczVQillFcR0d2nURdHGm2zHmhpDUxOJi2QLx5JgdCEXR/FAgthFOUIAaG5SbSxi0EsDaFWRbItSrAppTXnOTb0hDTFiSYUJx1oEkUeraRg90JrY3l2Zx5Pm+ZoFpoN2XfQt6x/1Gi0jv+RRqMaMXOenkDyiqQIYXuhp8g7FMJmXjeWVkHvXVTC3jtVedykwxxx6hfVvAlho8YWrMmAslJolFo5LDRlsIC2LJGwF33L1NkTBStk41ReD4mGRrM7kAat1owdv5aiWwuEzm3k97j/U5v03DbLCgMpVT9R16k8WSia6lS+L0C17TudtYVwagnx1doRVmYn00QrWTTkzfrpvY1C35qL5uTQMKPYoxVJpTEkovVKCxvNxQJaQaHRPtK16IT7T8R8rR8Tb/pi6wMKrSOB0MfsFr8eN70hpbJBJnxkofQEi+8b5rn7jtcO9SDWDTt+Pa3R3htV2bOyE7ROb2xl+Kod72ndpG67lbIRfiU9Ri1PcX1L0EKxwlavScCXK8pOr0nrVObDkpZW2XTWsrVsjoTQbr4fTX+uVwMlwvtW+wckSDJ0lBDa8taBnvUny2YfBq/3XKbx5v4rIHGIMppSSunJKaWbU0o3X7p06bLLWQkfgkZ6eqE1xOAnkTn9i8aERALRCg0WkD0Tlh14g0QMBsVx/dbJpRUS4MsNXw3Nc9DuSNlpod2Q/rGoX5Y9Ib2komX6tIIQ9iCPtH5sJNAu6qGAspGwQ+Ov562Vw7SKFBCIsrmo+mYsO0FZyLntCW2iSZFvZP0KoaO5jRyfHulvcqb1MBAln6e12ytyWXYhbNl6KwaP2xHo20XwnrW+UHSYVVKVshGKTdJYPWd4f7/P42Z8P7bsQs0amOr3ikwCkCOhyPedHvEKoZRyfSnl2lLKtVdfffVllyOjjBAXLBefRCyIi764xqa3jSholE3GSFcKm+20+S0a0hbKLqEt2yhpFcyXI6rJR1Sg97Rlo0Mc9ebjsZQb25rwTpGJOek5XlX4JuBdLRprjl/RN/SepWxAtMgUF85jOzleWZH7/lv0j8YWO3UlZaTQ8Fo4NWdlmyyQmNs9OqTL7TbWX8f6YaE1/W6VLRECQBujSKOyuZxR7Bs53utVmlG8tL78mlDnAEbt+JWRQHK+16s2btKKbO2erC8d1SYsUtKWdT0HoawY7TMkmi3yUVo/05yMeTobIeu3fdt3esQrhCuV1DkEqNXzvPhZaWihKTfNxSMr7L0DscfXKi7c0FHTAp0WCC9+ZMJe7GzsXKaIJls/C2R2mG/cBmkL1MacQ8fvSiNdGdFiT2XKzTcESLM3Jyp8sGPFNAFJrv5SmuN3MJRVn2ened76oamlNGEnQzMlYp7arRW5VGTWiuJ2Kx8KUEiWi17XSKB53HKuFmkR1seFVTs8NmZs/Sikb6xW2cY6biJgoCF06zD2c7tdQKtMluW8bs04ovekhYCQ/gWB2qdxG6rVunFlB9bXWtA6QknLPNjxLViC2fpiZUc0Ke9KGYn+yjDbfaczVQgppd8gotcS0ZenlD6cUvrefdWlziEAJ1dd/LNAlMKXaKaMJIrMuzet3FhSsaBDOM1CsaYw88w2Vl4IZMUz+w3S44ItP70e/EGdXrtb2UHUB5nFb+uXEURq3JAiJaOQeGw74yZ8GNLxKy8lbNZfZ2ydhWTHbRJ269Xk+MQ+jN2KNHL8MopVwQBC2Ujriz9XWYoeW0U9iHGD1pdByMjx2pR0CxhQ68Y4jMfcELK1yHkcHR02Ww2N1tGIub2HLIQ2bwTa7a0PEmGvTdiPwvrD4bLGQoCWbRHWTxP27HhnZUekw06VX+kULYQzvdyulPKdp1UXn0OwnGpD2pYyQih2siLswSgZQYQEy/FY6AsuTkNtLZTWpkxHM6UhQyxtHiIjWDpRFxfXwoE5LzRLa+hrAjjqwUbLoJhzvfm+4Cp0UMeWnWibvSlM5NE/j6FzGHcosxYd5k3/OrbrYbpeoTSH5U7rS9VPJClDtSaGgcZccP9nemCiHmS4snVYtzUpUfTnrdddRa6tr6TWza6QWn9S2iNktqz48JadtzyP43oef1a28k4ivZfafmMUX63WjsNc9s0pJKMkWWQqx6+o/8is9xb2WbqW3eT41WcFjsCakJbVmKVzGNVfFGWkz4agKKNH2F1GKaU/nlL6ipTS41JKj0qaqVFGPd6zUUZS+F5UYY8S6YqNBQRyFIljHa+MdGLznAj5B45lSKsSCCtdv6CjEGLajNlFyxx3omykU9dy0c6pzAhd+Efs5l+C9OScqBDLUQstSMeNInwS0BP20Bu0ECAdpq2vsTR6RDuM44CByIqQHLoLOy0krK8eHWetrzZu+goGrEh5vcv1Z8+GRD6Mrn+Go2yIfQio3To0E0eQtTGRQluOrXcYs4XQAJCvX67bqa8MJI6AIpXnENoJ7/YOqr/2LVO9cHMtfQh8eO0UbzvtWggppT9GRD9ARN9JRBeI6BIRXUVEfyKl9Doi+nellJtOpZVXIDXKKLewT7P5WWhJx7ONsqlKAyA9J1hkHhA9YGPsj1aJxpy08D0CQmM90P3H27ndludvG4TRMG9sFvbHWyC0TEQH3iB+8+kTr9rxLN+TIX7QQlLUA7W+CaQ9kq9/kwt93koKLUCHKeunUQjSQsKUUfMPjRBFl2p9pTR2aSU+8cvW5zRuZk3U8W4cAnPofHgJUh+jHjdkIY2obyJcWQlN224BErz1p1F8Ie/7snMyinUjqSYb5cXhyusZoRfCEWTbnCnNjl9p7Usg5SjS3BSy86sJZcdIP9U2FrNuhJyQdNzYTnhLy65GsJXms6NM6ouB1odg/UP7ThFl9B+J6BlE9FdKKffIP6SU/gsielJK6XGllKfvs4FXKqkoI+V4nf5+POYaGtnlwmfEsBoSbcfsj7sbLtrHc5M+AakE0lT28ZhdiKOsfwWiZbSZC3jusdBVRwEXPAsSFS1j2qid0X2nthdabMKnJrQRPTE2pKv4WoD0rONX8rx23MaKBpsitxaCvN9KnYPIZRLQxPNmaAUxbquU1OFFTYexf0qfcZHWx7YgC4XHDVuNPLYSjaJrEthqWUdC063JedwEHWf7RqTr76Lx2m4ZUpu1sjPWD813EK0GqZC4bC00+dZSO26+/jYnDCSG5INB+L2mkKmuEzv/6LZT9gUwHYXWOwOJXLIGYGbc7GnmfaeuQiilfEvwt1uI6Ja9tGhPqVJGQtjbU7Gff3EtUDQIO1Uousd7ovDBCQ2uhkSjpIyO5OYzZQdcvIqWsRElI9W+Tf1t5mnjov3i31akq/lqSUf1aBUYLWNR5NAcr92zCiuDosd2s6USWsDx6nwIBunyxhop+zzUytbx9FlFuTiqiXT4okLDJsqmKUR54ldYluJZ8yEIwSKElg5p1EID+2dmOtTcwbXLYb7NEkj0qMZm/ThLh/SYqP4y+k1N+Ux59B1QfPVzz2rlA17a+tIWyij2O8+JdFhLAOSVXaJEer9XZUtGAQuQtEZjou5AmvJsSNNK65rH08inkRY5lVNKX0lE18j8pZTn7alNe0kzNQfupJmey42lzhwYfp5NyFEIVnkwC94ts22mp9zYVdiJsu0iuriWwr64axJsrH6G6L8opOlphdlCWvWRtjXrkXNSIS1jsq+FsquUjaJ18nwOY6qLra8ljl8ZGhhZdn6DCgE18lkFzYVLJYWsn03O9NijdYAGCyk0LJWtElBe2XGgAVuWPd/L0Ur6npCFVrDQBFeEXzDIWn4Mxgu2hoa71AsACVVJC0XqgUTzoYxZl+0U4irVw3PcN3Uwzygki74l1WYP660qkJFjJCP/cn2mLYQkDvR5h/VGgaS2JtdQaT4CfAicUkq/QkRfSUTvJKKZFadCRI8qhaDvp8ebTwkW6/ilUp1cw0zqwcMsyhE01S3juSUXa/0DR8I5iDe2d/z6aBkvyI9F3+TicxFUIFrnSNY/tmsSGvUgeX7BqZq+fd6FtRhb20YpIHA8v31P+X6G1B23IgRLf2xLzaMOBmYrbP3YsmBxIbXSr8R9IyNY115ooXDhZMdt7YVWWyMGbIi1NXSEpoyy8YEGQ71LqBcdh078QpBguP+2JjHVxO1mWsUr8hb1w/XXPSFpVGdZeaWBnPHbMQsAJgS7PBiYOYKMBEhrPjtClk2e3nvM0aqutwz6ZpXmaaQlFsLXl1L+4t5bsufEpy2V6bvSjtcL8+KXtIZCg1uOREoVVRORu7iOI1psXDJP/jFAUdtxCl/to0gQrQMiaqBANEJTfh9gyjPTYWsRvmgWKM1Cw4Wm5tIQk2z3ygvbrkDO7ayC5YsvrLHQktSHVHYoxM9FywABsVGbf+6bEfYuyidLIOFDY+uYCCBRyKNRrquuSfHlr4q+5UVqgEaczh/Ejl+mPiyQgGNC3vFr2y2FllWaOjR1ek/eCmypJov+Wdiuh4GGHIMk9jP0lK19xuPE6F/edtoOr5XmVDZjJJWNdvw3ZSvpKOdXmpXN6uJaRP4VM0ZsIbS1fRpp2J2FXptSetQrhFkf9E3YrDeNj9WXTrY+GtfROsL6UOYpEBqjLtsLex8JZJWGvu9Hnw1AXLRzcsl7a1CU1VYfAiNq0RptjJCw1QsbHbDS0TKduHhl2U3z2fh53O6qEGW0DHJ8KzTWrknQwh5bFheqUxVTZtsxQwGB6LD1Sitbib7lh27smrSRMBoNN6QvlaZyaluhyVE24gZge5q3uPqBv0DNUePep4vrfEipPgipBXLvA0FTRE9f2csbUXm+pc8KKbuaB/hnHNUorLg6b4BtcL4XYTU2H4Kdt6ROM+87LbEQ/gNNSuHjRPQQEX8vo3zlXlt2hRNbCD0UNaF/FsjSqWo4/DU4cetMYRs+Ob8n8hAB/8DKUzaWL9b3r4CNjfqWtTNa3mGv+y8jcbyFovsmzirI07SddqMzHj0KQVlfBtURTQe85DPFz+fi2s20lnWq+76JqBNWWoNwKkLKqI2JUhpGaNUDTjl2PMvvKmxFlEsPoXME2XTorxPlVS3EnnO4J7RyDXtEa7Ii/Sq0d/tQWruzeM+3iZ/JU9jyinY1/7Oyg3x9KcTfmZLWJt8b1EJDQdnm/EijjKSF0pzjMkBFjVsFQC06qt3kOrWNw06VD8cAgtNISxTCrxDRk4jo7dR8CI+6pCmjnlnf0AAK8ZNOPoTGiRoaZqHNQvNoaFzgsds0bYO03zEa0ogRCxYii4Y01eORHgmkRzRShk4+ifSzQGxSkEcRTD3036wIH3Uild3xTL2tlGApJHl+KLRyCzHE9dtomZZHKQnjV+F1ohAy6P+Ys7KsIqHJtFbl/gOriYXW0Wqgh7YZWmh6/HHAgP3MZGuTsJrIc/iV1gH+KXt+h8vRbWo34PZO81bLKnuqrVr2gNaT85/BPtnmTCux3+GNpIoyxNavBRIcDKEiz5CjXQGgdlZkLdvIinR4ZFkId5ZSfmfvLdlzGsRiRAdMtlVo9gWSCzuFfG3bxNLM5XuSJNLFmzZVYUBE5lqMbIRfMXla/exobHfSeKe2NWGvOprajDZWEWW3MeK+JYei7AnvoxVAqGD8Ha1lN8gqmbk0ZXfMeomQkSKVtJrMow59IaGZY+unCi11mtoGI2gKo/eeF/baZ9Wbt4b0I3rEUz3W8dvzvTAXj60Y9gXIefN0VO+K6DVYb4jqm8rGzvExT5+ZrdfXZEE1Rfs9F7rqaKiCvXt1CAhflde920vq6olnrl9YjRx2SiKkmaixDftOSxTCu1JKzyKi36WJMiIiokdb2Cnzl8g8bgjVC2S5+I7HTF9w5KNl5ME0e7Om3MS99yakybHixoQ2SgMqJLNBpXkurQ/7nrqldT4rcTzmimBs/RsjtKsQGYZZ2ODwweqwJWtZGdMbOJ7t1d680ex7Ff0G/gFG3v0Tx56Ok1ZLz2GvQ1NB2SKCS6FxgPQZRY+lOVX5/ELvypF2wl6cseg4fiUaVoe+Ms3RMoJGlFaTpLpUu1loLvBhzJ3jg6H6OhEMrqq1nX0ElfKhkFEszoHd6iei6sOwyu6iBQkX1w7cyQgu3pMW7KiT+ciyGNmHkuZzFgAAKUX6yLEQHkOTIvgb4lmhR1nYKRGJi7Sm312Im4yyQUhzFppVQHScjPJ053FFTG3xuwimrIWGsmKUD0M4sLJELPaaiI55HtE683vbbJTWkYi5tsqubn6mFZDQbGU3p6a3Io63xkIAtFajvlrfRjPe8PDWLJDGsRgno/FzSMf32DZ2s+zmsFslNPU1xr37ji6EvieN9IkkYmehHdFxwvpAKFo6fnNRtKJEtlJoswCUp5DhSelZaPZ8AVKxcNqIsWX0i0/Gi3uixIFCGfbZIqGMIud1woqla1lqhK6utmY6inT/5XXrHK3EvdsIIMEAAB2M05aljDLq+9VOI+1UCKWU7zmNhpxGapq+fTCFSKM4h1D527zUDphVhLxFiDFDTlOhCBTlNE5hn+EV0aPhojubn+simja1vFlSO5W19bNeDTRsMxUo2IoSmnKMbATTkNrJcE11RVx4M8/7iFHTKg9tPa3TPeE98CnhgqNlRq3spNCsjkeDdHkjS4oQUjZZXpPQu+ys8dVEVE/Ka99LB/0rpIud2rqNjNBbdJS86rm9Z9eydaqasgn75yQd5+eNiFRIraTM9HfO4dUZymGvHbiS6mNLj9vEIaXOYW19CGDcNNjQa7LuicHvZSXsud2UqJQsFJnov/GrnUYadmWYbzj93ZTSpZTSXSmlF6SU/sxpNO5KJ0njMNImmgY+F0zrWEeQ4vCd5mdUIx14jRuU4YtDko7f+fAYCmk1AlGdg6jXa4j6t0VstJYnQt+1bBUa2adHrHO6RSdJZ9lUP1Mk0eEtdkqDjKYAACAASURBVBiq0FSwQeVZBdm3tRGsut0tEiVZwWrDbkEeGWPOY8RwkP1KEkX77wqw9eFvZEXf+B2sQhi0YHNzkrMZW6Rs8U266vS8sAZqm4RFSMrxnOqcyGgZtW5FPL+mPrTQbHSUVZJz2SvA8xvLvt0b1IS2PptgFfnUJqZsJNXk7nISEUw+DytSvCaZkaggqfr1BEiarWZPGWnL/pT0waJzCM8ioucQ0Z8iov+MiH6LiJ69z0btK0mBpCZRCu1BC/L2LWSPdP2dPNIUNAduDI3kFqhBcQjp8lmBFmKH0Kj2IRyrzWdM/57QzDhaRn5XoQChWekRYaFwWUdrr0jtUX5l+kPHM4c4ejTWTtPOc7LS46bHtpg8RQltmUefFNbzRjSfZh582T3LxgYVMK2xUcJXz5uzmkAkUM/6qEhXKCQZmimBizwrwKdp9dwCOshEy4SH1wa9JlcmQKLnw+heUZ3Nh2bkvAm/gowWkuuGbyRV12KAkFKmtSoAMuHKK2F9bMx+k8pWWl/N0W6c0dJCyDpi8TTSEoWQSinPLKVs53+/Rqfl4bjCqQkybeYdO+phwTUFQmhetN9qBYip+icEhaEc3b1rEtY8Re2sROVde/QIsBB0aKhXZPI0rY4WEnm27cyBQrprTfVYvpbDbq3p7c4hAB+KQ8MCxVrrB72HeP7oYFqzooDQzHpsN2OmUkihSGx94PuW7F06TFlOZbOAaFEuVWjK8yPsVyEt7PUtrZoekQ5zSeMhIKGVNO8Jc8Jd7Anvw5CO37lv801+NvJrcsRKkCSszc6e3GR2DmsUL/1aW7G2Zf3ysB6+36oIi9TTcTxPUpFaGrU5x8XBvHm/tXnU0YhTbeI9emRZCDellK5LKV2TUvrPU0o/SkQ3pJS+KKX0Rftu4JVMTRtrWuOh7XRFqOb5jQ+BN9/a00EuxG/V4sklfyiFJpdDpKmm6M5+6YgiwXvaA1bSh8B87QVpehsU1z5i0wSiPyuhhbZCVYOOJ5eCRW8Q7JxU9/10/Cw5T99xYOFPZCy7Kmxz5ZRru0d9dQS8JM3SgTbKyNBatv4a0omoBxPiiMZkF0iRznEWrBLFeiAjv5eNP2EqFckma0WuHL8dOqqOiaJHvH/KCs3jcaxlV6FtfBhUaTytNIn0ORC27Gr/s6SMGgBhvl7Nm3gP3sFkrH10xqNRZjxvQiG5OeKutYNx9hxEPZiWTXTYKWmEJVFG/+P8//eb53+Ppjl53BVt0R6TdE5JhP7QFgmtRvUQUY08OhoSbStCRpTR5Bz1DjQZrmnQmBDaQyK1+fQZgwKRvnIOb3W0iLUQNNKVHLaho6wDk9qpWCu07TF9Dp/V9Sen7CyK1mg8ouN02TIYwEbrsAKA1p/1jwAfirQ+2gdTcP08RkRkPjSDrw45qopE+zDUuBk67kgInxarLu9p6kT5AFpJCk2mMKqFwih6aO/5KyDaWhpzUU5lSatEQlMKbY7o4vmW5xdUMIBQ5PJmUT22HK4K6Di3JjXVw+1uDuueX48EAJzHTfgw5Eeb5J7kQA8Z9lstBBtlNAzqosx9pyVRRn/mNBpyGkkiZBT1cEHyzCw0Z8EmzXM+Fdq7k2Y9f1dBlm2vjpCC7SEjtMechbAXPgxzCErGPNdN2xGaGOlOeSyH3I8EakKbyCJ07QhraFD6UIyyAwd8Ks/tkK4Q9oNV5JrDl1ZEMW3SVJ93TrrLxkQETaPVrLL1KFaFTzLPTWbeBomQs0LIDUWn7rpFa8KeVCci0nSc9Y94sKHql0gb+CdYsJVincqSVukLTbVuhha+Kc9hMEU6IjrOBiNYC4Ga4xfROnVORg4p1mXb8xRybHlMJgDI8yYU+SCpp1SDEWRQgT0F7b6YJtbNaaQlUUZXpZT+cUrpeSml56aUfjildNWVqDyl9MSU0rtTSrenlK67EmVGSQp7iBjk5XIiLp5I8sx8mKTD4WcttHoc/hFEg0CwSDpqK76HkEW0iOOCk9vY9k4Y6eSr7VYK0UYCgbIVQtYOe97YCo1R/9DfZpTWj3TytXtipNAm0lSftOyk9TNmeSq2KTY0byy0iTDV17jguW+jV8gbIzQlZTMM9kZWHa6KQ2oHciBFCNZSSAtE5J8Zixb+0j8ytDmRPDeympmOk6fgq39GUHZu3eSOX8tc+SGBxMYAKXXiF0biGJ+d6W/k+CXSDlzuGys7ZyGY+lfC2peH7iSNKGWJpQxLIXD9dfNhsLw5jbTEh/AMIvoKIvolIvo3RPQXieiZD7filNKKiP4tEf3Nuczv3PetqgqhA8pmbTS2FH6NZ05u82MufKqzIWTBIWe9+ZsDDxwCshw+iHlv73k0hsxji/S3OSuhiRe/Pgch261Cao1gU4t/aFRASs0815aNRqPtYJCmEKayZZ6kNije/P2Q4tFubIGiZZsk9YEUcjvjQmLetGCxJ4X585xr1e6WhxHiOBblH0FIH4VGyrBfObYrMSZj1iCpP7aaapRUE7reItdxAwhdvifWn8yzUuhfWz+8B1Zq/At8D63JlZk327dmteiTyvpaDq1IWwRVo3/HXGgYyO2bVZJ7kufShN0OLRjmNNISH8KXl1K+Svx+U0rprVeg7q8lottLKXcQEaWUnk1E30ZEt16BsmFSKHqFEEOjNazjeZunU65qE1nnrOT9DGJonGKhnDU6kXnkBh2SOOCVtXNKIj3JV/I9903ZeC6YkQ/bsMqBSqQWKHKgWRSHBDKuP4nNrx2/LOxaXVogcNmPkQJZjS2frtUofiM2qBWavPmm+c3dOZHvKaFp8+SmNHhsbYihVnY6Dl6O7dYosirYhNLYGsHGNAOeN7GW3Xz3ka4aW0HrkXxvlWjYkhGaei611SqFZjssqtaWAAT2HAC6JykRqf6vzbzJm0XlmpTzJvvGhxhXQ/vWBN9Iuq59myxQeVLZRnBVWi01pzbnGbjdYr2v5bgVCSToVNISC+HNKaWv519SSl9HRH94Ber+00T0IfH7h+dnKqWUnpxSujmldPOlS5ceVoXyQNUamHDNyVbaRPMGzXKD8oRN5aqbFQupxScvrRrmxTdNdKvfls2LT25+tbGHNNcFhL1YRERNaAxJK5tV8m0cBGLKbvNRLdu2e6j107yJSAgfj4ZyLnN75r7xmCQpIKi+xxuLN2jdfBDpkm4jI+25/kLkN3aelPSQGo1WlS0YN7smZNnZCB8WkhLp89gOA1UfQhtbmtekEBrzesuFkaa2EKb6jfUhUHRDmlrZDLLdpdDsm4VjW+c/6b7lXMQYNaFZaSWa5mRIwj+QW7vlXlL7Zmxri8FGFsKeaBbIpSlSqZAGsZZyKXNfuX4DpGgCeymJa/KJQVmq+806frn/QxLrXdRf56SUukdU/amBVF7v8kBj2yfp1CyEJQrh64joNSmlD6SUPkBEryWiv5pSentK6W0Po+4Enrlel1KuL6VcW0q59uqrr34Y1clzCLMDjyNhRr34MyMWsfg56mIY2DmJvgTV+EqLkOvE1o+DtI/2HIvNL03fYWg3NMqNzQtt69rtIzq2ivrQFAaiPpLY/EQa6eVMUGjJk7LtwydGIAMLxW4+6WS0QrP2LXUU0tBQnRSa2sloDm8N3jxPpm8NIXPZftx02aTayBeXqbktet5YAQ6gb0gh9RQ5CxHZNwkS6rzl/pw4ZScQes6lrn9eExIkSKHJ7Szze6uhfdd8q+iwJuylQG6KnJUmeWXDbRLj5ug4sW4s1cagRFpoTWhPtxcwimeFTIRRvAUSVdly/0H96nvNRpZocPcIijIioifuqe4PE9GXit+/hIg+uqe6iGjWxtk78LaG02SNrYSmQvEaxa6VVjeWhQlD0xvb5GEUnf3mb0pCIx8iqUj8exuzQBmhI6QPw+DMOQjZ7o20PgYhWARiOnZ8baNVvPWTiHJTWtN4D2K8S0XM07hp87zRM5KL1go5C6EJN7ZVNspqWWBZGaVh55KVH8+3VIDasrJCoyFNp2xT848hWoOFJr83ZjMnWaBhU38bNz9GuUzIWv7u16R/T69JYVkKFI/OE2SxJrhvVtm1tUzE0Uk5kwIJ1ooYc3aWNfdDWZZi3oi0QnLWj7CarbKR6yaJdTPNmwYpsuxSSp3DfaWuQkgpPbaUcl8p5YNRnodR9xuJ6Mvme5E+QkTfQUTf9TDK25l402xypsfO11gTCcFmLQS5iLdSQGieu11AV4TQnOpcgpARird5mCKS1oikVSSKhkJD1l9ILX4kNDEXTFAgQwuFEZMa2yY0lIUghAbTbmMVLPO8Zc3FE2HnHPtekEKWFpIct4ZivfVjkSbsfx1/6QuY8oxFI02syDUaVGsyaRStlL0DG82yapcLehpRzncSc4IiYZpfx1M/dv7lB+XlmLDQ5GTPQeQyVSAPj1WhLUEa90M47KvQNH1LdZym92TkW6PDyLXRo3hS+7bNW7NakKOfKboKEhLYk6mtCRvooNck75Nmwe4rRZTRC1JKT00pfWNK6fP5YUrpcSml700pvZQehvVQStkS0Q8S0UuJ6DYiek4p5Z2XW96SpELckOmf+kJTcapD46uJvJNJIkSEkL2Tq4NGDWLZWr4WoCgrNFFEhbMQpEIyDry1oB6af0AjPdW3olGNFr7YQhozVaQpaYY2J6LsITnqQSobO7aa+knzF63aB1MSiUiY5B1/ktZoETVsRUjBkhqKT00hjqYfdr05gTSPm0Oa5B3PVmiWQk74V8sq+fmWzminyAyKLkTCirH91+Pf2tSxEKTQlFRf8nOr13sTotw3XjfO+uH3Muq/3W8IpEkU3wCZHDdIY4qyiTAdtc1y3WrrQ8kSY/1w/ftMXQuhlPLNKaVvpemE8jeklP44EW2J6N1EdAMR/c+llI8/nMpLKS8iohc9nDJOkuTFdSqCKApDG/QiVrRSac+IGtJS8c2jXKAWsQEUOxDcRNU8lygabciiHVgbu7GyoH4GzuNppRrlJBCi/GDJ1G4pbBv1wXf/E2mhWYW9aaOkrLbZ902WjXwI7LBlgajQmCmnCr/579OGlPy4b1NF/5ZWQop8bFEvem5bpIgWNkkJ8qZstbJhgSRpnZpHAYmmfFPH+tHO8ObUlUIT+hkMraP6PyQgNKlaDT2hycqWigkG6NBKkvqR/rhISTWLFK1bDWT6Y4sscgLrxijbQtPYov1uZAKR8dmV1v/pGe09hT6E0xbY+04s7OshJIdY+hy+pZWmzddC5Xjz1XtToEBqwvboSIe06jzeWSYVEuffmkULheZoBVujfrAVYRxa89jJBereEwKphYaSqd9cAQHNbM3F1/Eekm6Tea+hWCD8QBtZabY1oaOcVJvEezY66lhaVgkr8ta3YSKzxbyhUOCGkDVFKSPfEIqVwo/LUH0bvPXDwpX7pixiocjk2uL50H2jdlbCRIdpZzTpdSusH0mryTx6v+k5klajBSnNQkHRYdqylEqzUlbA99fWJGlFnvx6Y2unOZXJ9X+oyt6H1BK1CCZudzmF42lLooz+yCTeIPbqho1xqiKnso4LF3mSFizZIJ1jJGyzphWOO4IV3SEvBXndWCuNdFQcPkAsLjS0o1gkOmk0FngPojHum0S6jZ7RvK8JAywmnpwYjTUBKedEOUc7SFsJTWEhNCWJFckgaI1dFkJDjHKMmmC1/oGIetBnY5h66fhwki+HqAlpHrfk2qSpHkQr8XtybFloS1pJhq/yuPG8eaGp3+NxWyXp+0HKRgv/0K/CII2Q70fkqW3EFLGiPxG1nEmjfwnuqIEbObZ63LQPQX7bw663U2CMzpdC4M1vP2jOIaWai9fH3W34qKSVpufM82cjWPx7nlYCgrUuYmxmTu3Wz0qZDnh10f8ghZ84Odo5GGetHx/l4qNsQnogJULOMht1I59J9N8OIenNhw4hRUiXlT2X3+iIpqT9GYfSnKrIsiOxiQUatVaMXRNVIOWO9cOKNDeh2ZQdoLWytn4KsSAX75mzGYx+Vditi9X3CN0CKXVxXjLjpoQmfg8qZAGSGGwokGKVtEDf6j3VbrPfmTJMBKwfuU69Ii9mbJH106IDCZbNbSRq34KWfjWpAPedzpVCaOh7vrqCzXPpiKocvkHjMHy0CZaGdDCtUi9AyyRuUfRlWzMfLSJ7mpMXvz3gJcuWfO3oBIssWziwhWBhYYOc8eqg0EJOVffNWz8+gma2LNB7Qmj4swoejUpFPglbFKvuUSQ7VZ3juSo7v/mtsp/G21tErJAcGq0C2V9vYekRKTRr35SSRu/hyLcRoGHn+4Hnd/Ra0hapF7bS8Twkv7YdkBFzm3MRQhODC2T9jVmDlEoRK+tH03FyLSWpyLnd9T1eb9r3IwMWpOObgYQ9YT4apUl0sBCueKoovl5dMY30sRM+/ri91fxEWrBUpGMpG3Ca1JqQx6PeRFIgY55fC3t5B9GYqV7ToOrnDUog6gH4R6RgURsrRQJZWj+o3cL6SYAeSOSFjRFIknqxsfqIVrCX1Enqh9suqT4rkHG0zJzHndQubfMDVMltGscmNPT5DYBGq2AjF09vaUxZDvdtFP3oncIuUrBVpSWpNm39OQvRrO00z231/fB789g2gcz7hpzvR4evCqe6XFvGQrPrLYm57YVLV6Vp9uRWCXaqz6xl2ehfXX+jg7zVKk+hy3KIWpQRslDO1EJIKf2llNLrUkofSildP0cZ8d/esPeW7SHxwpafwiQCYXgKaU7v2vDR6ZleIGPWh8emsjuhoSsgkMUG9RE1AGmObWMp9Cs2tr4Ww1ofumztH5E8ezIx2KBN9cQlFsj2xC304YibTDdZKyno6Bf8vKTjtIVURB72hTShmpKlMHT9ktqrTuUBb1pJ/bQ2AspIKEQlbNF7dd30TxxbOpLbN/VNCFaiWn8rW3DxnXWbkg6plgKy5dH7htvFlpUMF9bnIHqhqSISi6zSJNfGndZPkj4cvSZoLn9IvhytAL3vqRfCjaKM2vwDRsJZCG2MOOUzthD+byL6SSL6S0T0HiJ6dUrpz85/O9pzu/aSJPUAQ0PVBtH0jEVj/GwQi99y2kR9Dh+hEXQwjcs53gKhNQrBMmDT38bqI8RyvNUKSTqHp+c+7Fb1Tb7nkC62fhTS2xZVDj9bi/pVlIvtW0VQPp7enjhum5jqc3sIzY9bi05D62ZQG1tTGJZq5HGrtA5xjHvnPaNIe2VbWo/bZU/FujaREMgQIQvfT4cvZ6TP8z2ovnm/ig+XbsrWoXgGSdQoWncOQyhpGyBR6Ti1Jv2a4HVDdd0gAJSrUpPnTngu7bgpZWssDe5//RyuembHlrUW7T1FYaePLaW8ZP75X6aUbiGil6SUnnQ6TbvyiQWi/xiIR3rbnOnCeu3NPLkhxeZLCdM60PQuRiC7aBUg2E3sOD/jg2NNkHulwe/JsrVCAny9sX5glJNyfMa+D09HEahfUEY5C6RrQkNNaGa93oI8GvN8dSuH14S10GTZ7oDToOefy64fcTFBBfbQI4+bBBKNxiP/nlCkNoJLIl0irZCmcfOI1bYppXblSnQKHVnNljLksqVlKSlKZ6GkNF8tLa+O8GM7iP43gezDXtW8DY2frwEacx7rVM4IxY9+v8m+DWkOl82ddVPXW98/k6oibQEqK1BOtVBPgTKKFEJKKf2xUspniIhKKTellP57InouET2qvqXMiSefv2vQFn9D/7z5muOzoToicoJcCk0bqmfLJiIlbPuLyAtWi1iJJhRtY85dlJMV9pkoJxuJIzZWajy7tn60mSvHRPowunc5CcTUuGguB4ybpB5m64evWm6+n6aQWNlbH4aN1ScyKDYlgVhllI0Q9lIgi81/bPo2XZNg/DwSoROXbZzaPN6995KgoxJyYM7vCYXEz6FCqmXrgAGUR85bdXwbQGDXm/WrWe7fHsQsY6PxnPVV1633j9iL5HjdyDFh/0j3NLFB8RFFOwqQosEdfm9SSNJCIVC2DlBJJo/s21lHGf0sEf0F+aCU8jYi+mYiet4+G7WvNMwovpSGKoniQ2dWIFtBrmgVw9fL99oC7fPc1jkokcexUVpEs2ARaFDHnHtFJgUyvLpDfA+CuVEuGzm5NkogtwguzfPbxb9DQICxZVojOnTXrB8tWOSJUxal/HWwNm+A53cHw0AkCrAs/QEvwVcPbb7VSWnRN37PheLymkBWo5zbQmredLSMEeRJUI1G2Nu5VQoJCDYpkHnspWXV94dpGs/lSTpaqVo/1FuT1vcB7uAy9ZOYW2f9mHHTihyNibGaRLttHnVSPOsP7di5JTodWia6uuJZ/HOaLrErpZTPlVLuJKLvO4W2XfGUUnLfwSWyx9TJCBYsWIkQrQJQvEEabEKrT3iiA05FRythhQSiHoo90IZN/94CZQE1FtJcNODCEYp0p6DNB4LYQlp3NmiCfTMXic3z6SJRMgoNRb4fbSFYxIrGe6QMolywsoUnnuWV4DnX7xVUodmhg6RAbhFMZm7TxKE3Lp5q2W1tk+PHQ4EMqJdewIS1iK31kysdw+3WyF5axDy37jwBtSgjfheFZsqwTzVuwvrTlpWOMmqhoW1sOW2EhcJWy9TGDnAcpjmyZ0ystT8BKUtjtjzcgrO2ECil9A9SSncS0QeJ6EMppQ+mlP7h3lu1pzQk+blKb57aDRKd+OVnXIYULP27jDSH3zO9OTSWEVtKFnnMZWftnIyinIYZDUL/BPIFKPPYcNpE6j3Jl/Ycj4zY1AVwgbK1dNyYW8y5VbYyWsbeiKk2HyN0YVnJvqFDb1KwODSoqLaZ1ph5bqxs57VkolXG0r7Gl+C6MfM2mLlVaFgr0p71lZKPp0eRSPKMRbNsTZ4ApCjBagQyryV1jbRVSLb/YtwQRSsDLep6c5al9j0oy85EQsm1bPcEonVUuGo9qRz5tQRltRIgxVhIRGd8DiGl9ONE9N8R0V8rpfynpZQvIqJvIqK/Of/tUZcGaSGob7xawSa5eIN0zaJtTl0TKieEXUqSCwX+AcfzN1qptVsILdFutfmKtHR039pHbPohfjIUVIfYJW8Kz+/x5ps2bQspbRvUUy/+viHfbul4lZtfv6cpOi4bKQ0pbO24ab6+zQnPhxW2juevwkf2zQsfKZChhdJtt46nr4pFCVZ9noDL1lZrew85flFIMYpOc1Rr0mXLeZOX9DmByGuC4oOYig4U82bHiOeE66mWRYdqqzQu+T0BAZih+nrKlsctJRInvKmVY+sHFsIIxu1MFQIRPYmIvp2/eTw1qNxBRP8DEX33vhu2jyQVgrQQ0OVuuWDnoOUZ1QIFDjwbmYAEi41yYlpnvWrv2Y+xEHnzvApI8L1od0nYgPqvkb1CQ9CBaCkraf3MeZR/xEZZmc1nlKQMDbVK0/atCm3njAcRREZo2PBZIqLjraEHWCCnRis5Oo6oa/1MdIQYtyTnFlCNkmojE09fL2DT1Ie83I9oQr/6jIlXSHW9O+vHWrYtEofTaBTS9MwGWoB165zaAMWLNUGpOWd5TaRkD+8JICH6psNeqeap7U6NarRzJPPwM+6+HFv4nhy3zFFOyZdN3rJLYk0y2CJ6BFBGpZQHwbMHiCjvrUV7TCkJ52zwTWVtIdCcB1BGo46Vt4fAiGzURed6hY55LJGePbnL9UvEAu/NMT4MeOLUcKo8Jmu5QMEG2YhzGCnJcwDkNjZyvPK4WSsG9e0YKCR3Iyk1ysIjdDNuQrChCC4Zcz5MEnkK8wVf2pNctL9qejetgiLY4JUfFelyHj+29hQ25vn12GKrsUNrJID0ZXSWtewA9THmjkAeQB5ey2LftHEDHL6gA0kIZDX/Zr2jiwutsuU50ZadQPHA95QquDQBA7Xsqe0VAEpFLkODZ0Vy1grhwymlb7YPU0pPIKKP7a9J+0uaMgJCQ21szQ0inntjTH/53eWKIrdigxoO3yGWVWqCtWikV0McpTNcIr1BI32L9ORJ5WwEiz3u78pO5C7S43Y7C8E6XqVzLIlrOQBCtwK5capGaQ5e2VShZR2v6t6YJsjlnGhUJ/qmhGaLOUcoUglWpGyVsJcHnKxzXJfNFonumxHIHSBhLTvZJuX4ze0cgr3fq96TRF6w2gNebmyTpVXmOTFKCo0bvPKkSIFs7w0S82atHxNB1T2FnfQcyf67vg2WMtRrUtJBzveTQf+VRZ7I+t6ITocyis4h/COavpr2aiK6hSY67L8kom8gom/bf9OufJJCU9EqDrHwRWI7NtZY6OJalC0sBHkFg6YewElh6HimrnNOCo0VWESastBmLW8+qBAtip3rsZSNVEjSzK3oP2nEJvsmkW4tG1k/Wy2Q7Ylr2ze7+Zrw5/f0SVG+IsAKrZ5ClDHnKBiAaQ0dweSpF263XBMoOg0dcNpmc+WJoF6U41dZdiA6LudGfVhFBqJslGCVwt9Yn/xM0ZjI8QqsthadRnre1J7AQEJZe4LW6Vrk1vqidmupVciWaqrzRkZoE4GydZQVysO+H3nIdUiGRs3T8zP1Icyfs3w8Eb2KiK4hosfNPz9+35+63Ffq0So6NFLcd9Mx6+t75qRw79ZOGWLIjj9lnmYptMQ5CIX0dgvkjbIGpj5b7l1TDxiNTX0LQmoHlKcdHlPx1ObwmES6U7t1+KZG0Q2NNaRPhJCeRZEWjepzJ33qgeu3nG5WgkWX3RRSOxjHz20YoutbkkpTUG2WDmPLDih7a22qCKYOSFDzRp6Oamu5WUhdy9YIeymQo9P7EgBlq2wdz24PFOq+qZBe0bcxA4GMwl7N2NqPCMF56wAp/jufXp8UKZjbofl+PNXnFdKZnlROKf05IvoTpZRfMc//Skrpo6WU9+29dVc4dWPOqwlHaoHKjb1RSHd6b0KRVPMgpKuph2mhc4ihFcgc5dM+DdjqPwaCxTqsH9xKAeEXKAvt3klhhWK3mR5ztJ7HjZSyUSa0RPHKOdrGqPXN3BtD0cY2aKzSav5j6XLe+miQxJxomPkylwAAIABJREFUygb5flQkDpGJOTeCjTe2s36aIhuStlqQ9aMVsqAsyITUin7YeeOvAXLZ+J4me5oZRdBpgSRPU+8OBmjjJi9F5HkbFR1DUNmiDwtNe1Jadq1vXI86PEY48q4bCo1AkmpTh+pM+r0hNWcwupTPvpfL5Feolk7S/eeyT8FACH0Iv0BEnwXPH5j/dtkppfR3UkrvTCnllNK1D6esk6RpgwLhN7aolyGx6W8jeDq0isgD0VCPUwULREYm5EKmfhzi1o/omMrmeP4kF1/WForl4vkZQiwWRUHEhFCsQGOyb1JoqcOCBsWiSCA5bzWk16FYsfkGoWyE0NJ9a+/pEEcU0WKdunN0WkXoWmi1sdX1o3BleDAvm1h9RNmMGiHrj75Pz7WfQYKkpjTdCfOsvzQ3zYkHINKprBRS6u2bdu4H3pMF5rvWj3wYWTu1e36G1iYRLmyEf+0bib4poR3PrbLshoTPYSSp7Juy4zwc9kx09k7la+arKlQqpdxME4X0cNI7iOjbaaKgTi31hObGIN1C7fvB/AxFgkzCXlJGfoFsrNJQTka9sSWtogTyoP0DyDk4iAVq/QO1b+5gWmsjt1sJe7n5UdhttpFIGvkRWTqMaSWMUK1AlkJDI32hEMXm1ze5pllJe55XRkcpYW8UebUQB0khBOGLxVBNtAwkdP1Doo0ogmmJQMbXpnd4flGORfGFQAQTFMgGSCmk38Zf9k1e78DJ3ojKZeMon771Y88FcDk8r9WydKHQiEa0odBA2eRSy1DC3igtogaSbJSRUrZiv5czVghXBX97zMOptJRyWynl3Q+njMtJiSZ0SqQHGjlHOcSQyKMhzUVTzWMjeohmpAnQGPqEJh+Wm1CFVkg6Omp673ir222vsSbiTUSqb9275xMW9tJCsB+/kUpD5ulHi+i+JTFufaFped953LK83M8LrUSdSJCxx/NrFNnaaB3PbYyIOIJpSg59Z6xstWXp6ShNa+HrLfCYtHHrUQ/yHEYvpBn7MPSahNaPiTxDp4lHM28o7FUDIFF265oCCfqsQFPkPbAjn4VrMnXAVcJRVtr3F99cnJKwyEzEIlKIZ+pUJqI3ppTcnUUppe+lKeroVFJK6ckppZtTSjdfunTp4ZZVf+5t0CHxQR27+IHvwVgIx2Bjb3I7YDYhRr9A611G6jRnhlEHdmEpgQyon+OtPk0t+4aQLi9KGS47CS2AtIJ4emR6T4KFNwiJ9zxC7lIPVmk4FK3nbUQC2aBYGGhgrJhjoBCl9aPL5r5pwSIRMrI+12bcpPCR8+aQphGkMDoryXWLqRcEEqTDXs6bokySbrcSrKCNKsqKNEiQApLfwxZxcMaiAgJtfSFlQ+T71lV2Av3bPD1lX6jdwcTSR5Ut/EraQvABKvkUFEIUdvrDRPT8lNL/RE0BXEtEF4job+8qOKX0e0T0J8GffqyU8oKlDSylXE9E1xMRXXvttQ9rSHixEQHKSCy0aeDttw56vgea85gromXZaV3LhmZ2x6+AzGNNq0QRLW3xr1Xf5Gc+NWJZy0XrTvMKoS1OXF515PMowWqu/JAWCs+JNeG5fkRPaIUMIoEKVjb2wj+N4oXwERv0qqOpoES9mHuMrJF/hOlAIk0rqXMQ1voS60/2TSqW9l6rv3cHVZmy0/GYTdgtQOOGopQovs6bADIwVt8CKQlkRJ4WZUN+bLvWdmfcrLIHNKZrU4ktSwkAqvVFun45bpyFLas47JXf61Ckqe3JM40yKqV8goj+65TSN9EUfkpEdEMp5RVLCi6l/PUr0L4rmnhCiLxgf8yFhqJlZAT/D2PVs6U1PKerNqjgoter5C5gU4J8lIKN6EF1fmLKc2wcn8cdAXFxrZ1VLhJG8eMejaUkOWUSZff4Yr1BfZvwnf0yNNSGT3YtBGPZ2QvQ8DXGut3yGmvec3pjWwFFtX47b8ejPr3du3JDR1DFSLcKTRMdhkJKt6Oh+gRIGec4lTGL8zMJCEiya5lU2Kudtx76V2urh+KTviIbK6T2TL4HI4FGHWXVlLY/Y8Dgqjq1Rd+s78vO21T2qMrh8Zdrq55DSCT2uw90OB4LfZ4CILL+Kc9ZH0ybG1FuIqKb9t+U/adh0D+3BZJpNXCIZVMaGllPzyynpykj4HgdteMVHR47FqFqdfGZMw69KB8p/NBx90lpHdU89lpfheJs2cD60BfX6QNWPU45JQ7DQ+1OdLwd5/c0pwrpqKTH9oJQdg15gdDElGqUx0YpRB1BxELTKS1wcpUvLpTzZoUdirySvo9kkG6zvvS6kSBFCt823jzfIhKGxDUJQ6oHnKYrVxr30ztNPfVdIN2OU1miWOuzQneA2UNYKjQ1tf63+ue+9CKIBq0kq2Un1/ugkT6XPQltYyFIAJI0SKq+j6Ez/mbfoLBbOd+ctmOm9VWeSZDr/ayjjPaWUkp/O6X0YSL6r4johpTSS0+p3vpz7+SosiLEopXPtKVBNU/POSrNXE6OLx50/RGtIc3M9SrOMyktqnk4ykm+V0MMzTcalMMahSaO5noLSA9oxEg0Kan+ASM/Jnbz4/BJQU8Jy0oKcmUhiPd6XHATPrvPmKROm9DZjMjxKs+YqL5BxYKd2ipWvud7GnwbLSBgkMIoWglk0nPC7V50xsTQYbL+aE5k2Ke1UNQJc9l/6fsiEnkaSGHrq6dsIPoX/onBjL+yENG8dZ4htkEqyUeEhbCPVEp5PhE9/7TrtcJ+l/CXAkHmE1kqGmUO25adCzlhT6QF1JgLHR01yoqfyZsdNReOlAZGLERkTHgZlz6Vba/OIAJCUyx+Xpdb64gD4ZNybFWMfWfzQ6qtI5A32aBxQ/VxxFabE6pzAq22IdEw5z8es7ltltvY+rExgpWfScuyWj9Jo281b0hoj5k+78JK9B8cAgP+CWVZyXBZq8iUn8WHhh4b4SfDXqdx6/vVdtJK1vEtlHabE3A2I2cNwHacQ+gqO7NucrEXLlqE3isbK1v2zyRjfVkfgps3IW9Q5F85haNpZ2IhnFVSwl5sLCIhtMXDtdns089G2Ao0Wp91BKL1YSTzjssjqA/Z7l1l274pB14VkASeyUMw+r2e6d0UokVVSNmKDaksFOx7qCGGgdDUfL1GmnZ87RhN9ds81NoIypEbVMeONxSneO7slV02eeScSGUH+2bQcB2TQShSJWzxe/JsSvfQoRB+hQxlNHS+otcJF+aP0fC4QVoNIGRl/QiQkFIynzCl1jc5/siHZAR7ETw/j0Pvg1C67AYSeiANRf7JAAV+Zp3hiG04jSijc6YQrED2QkttfiBsJdUj31tifciy5alcWdcSZYPLtm30ik2aNojGGhJ+z/ZXt0eXx+22bUb94PcQipeC1edpG0RSX1Jp2TZJn5Gs31l/QtnB+V9JwdpRGkAgWiW5C2y4aB2g7Pp3+UzliaKdM7quN9LjJoW2tKLQOQT7xToijf6lQpRry55DkP4hfg8eqMtZ9R/dZKv7Zm6SVeHirRz2IaBLCb2F0uYNnSbWfcN3EvUoyjV0hqc6kX9kfQhnlSyy3iXYLfpr73mB7PKIkUXof5HwBe95HwZ+D6PhuG9r026spHZTbfL7wboccu9FKL7nw0GC3QpW+0xGMMk2eYHsy05u3sQ7aIzEvDGqs0CiR0ciqlEKf6gkFEIuECTokN6CBaux0Oy62Rhlo4TtLoHcmTel2MR7cpx05J0XmjryrSiQsgVIPxcLSPS1HIks1dTeQ7SWpQNVoAfwYan7rSq4wNaunLezPpj2Ry5FAhkKFiO0hjQ7ooCw98pmt2DbbWk0Okbm2yVYh6GhoV7feu8tUTbqHaS0zHtI+aD3FtFhQkDwOzaPRFrtPTuONPdfv7eTVlowt0gBuvXWAQBaGLZ3d7+Hxta227dRWl+yjdpCo/ZMKDJ9MG/KY53a6FoOW38Tvri/OsqntQnSYdn4UNSpYD+38GzMkJRA7vnjusEIgx8jeJOtUeQwXFjkOeurK/7IJbdBdggWi9AR8kI8/zJhrykrvInJv2dRbA/pQyEC+jtEfcPvIeGLqS5dBy5b9MUIzT6K1u/YPBJpcR0pLQAACZdt39ul2HqWnRL2C8Y2Vjb2PQLv2XUT93/VARJYkOt8cG6NtblkjFx/k6e+iMgpQKm0BpEHBXqguuR7VpHp8ad5THAIuY2qU2d85jLUHUjzM3kvWkraQuE3Dz6EK5winnsNNpqlceDmF3HJ9Vlng0QbEtUPldQq1Xdl2Va5YWsA9U0rhF2CxSqbni9Cld0RPqhvuy2rjmIL+tujtVz9HaFhBSKyNJAiV/k6AlnmWQ/Y+orWTc+KQu3eNf7WitlFh8myetaHzrN7bOV7UJF3rK9d/sCeZSsVS4uqIvUMjq3Jg0Cab6P8ndmGWZHIWw+o0UMc9kt0sBCuePJccCxY7IaAjsDLFmxm8XeE71S/eC8Zy2YBisXIywiWALHZhb1TacgbyDp5+j4E/bt/b3BCFJUj+4YtDf03fg9t7DAPKBuj/1hp8XtybuEYVaGRTP1x2VYh1XrMe0rQgfGHdNhglR25ZNcNFMhJtylet32F1LNsdyvyzlzuWhPDsjZK57Ota6K6MEiR0Wn7TudKIdjJR8I3EshLnbPOzAyEbYTQMc+O0Sha2PZ3ZFlEKDpa2LKv/fdam10bl5RdrR/9Hlbk/WcRZaYF2wKlZRHjAoVU31ukyPU7rt1WkQfK1q932UYC7y0rZ1e7exYCFqz99y7XIof0qwVJBoj13rPAUYbryjy7qFbpsCZq+45/twdIdd84z8FCuKLJbqxdm9gu0CVolChSNjrPVIf9PRaIaxPBs4j6AIvfbsgKGHdtvg4aizbEunKjOwR5RyD2omWmvrV3OfXoMFF0N+x0l39g1xmL3rMh2QON/Fz3dxcd1wUSRkAtb7d+zypI17c6bv12nyjybei/V4EN2JPKh2BDijtrUo6/rLflId+3jrKzVBMqO4H3PI0q160PIlFRRq7FVz6dM4XQfl4NSSFp6SziZAV5FAnkBDIQvhQIDbxAkGDBiMlvUNHvDtKVZa9XqB/LeXYsEKzS8YLctVvNCRa2O1G06S+0NJCSdgqJXJ7+ORT/zPYN8twtiwcpgbJJdUwJ5CFfvxX2EH1jwR4JtqXt7inySJD3nPqy36jdQ6fdS5Q2ajeitexYwr4ppaHriNcNXu+HcwhXOEVocA2EX890xZtPLxpsaZB4zyiERSa0djJxXajdkYBGz3pmNu4bEtq+b04gyzxAAU3KDvVNP1tCD6j6QT8W0WHIQkmYMltCGVg0jurHwh+0e0jdPJj77ymW3esW+QdCgbwAoUeKvCq5pUKzq8h1HqwQ4zYtocPsfutRT1PDSf0NK1LxTLT74EO4wilCmksWX+xUFu+trLLBi2gqW9cVoSGktBqKb/XbaBV5J49rd6Ws9HP1zLxnkad/r6NsBtA3QZklK2w7QmNAfYPt1n9bQuOhTRxt2uVIE68JS9EtQcOy7AhInFSRLzqHAvu7oN0LhKZVrkt8KLDdsG9Wsery5M92vnfeHjBYqi3aE/r3Xes9pUSff3FNX/WlX0iPvbj/q+fO5HK7s0oR0oycyhaxoPck/bQEjXR57mDzDZAe0nXwexzRYOOre/XHyka/Jxc68qtYYYMOijkTuoOYbdm9sFc83rZs30ZSXPQS/0CrQ34HWBTt2g0BARJaDunuFoit/lggTye1CeSx62ZH/aZvQwJWa+e9BCg7RKvwkyVzy31Zkofba0+B277JelPqACCryAHYCdfkCUDKn/+T/wm94Ae+gU4jnS8LYUjuZ7exggXSu39G/k+ETH+ay0bCJi5HPluZxaTaCPtmlU0/D4wE6igbbCGhDREIZJMH148F4m6hredycSSOLTtot9vYwVUlUSRShEYv+4yF+GRrKytef9xeKQAjFB+ureTHZEg9yoj8e7Vs/bz3rKfII/S9S2mgvnJdqL9wjuDpcfu/7z+BNp1WOlcKAaEf/v8kFsIuFLsa7OGx3f6J3r1JsuylqKLvDBdtNAKp54uw7zmBjITGgnGzNFbsw9FlY8SG6jdCi9B7erx3IWTn1I3QP9NhHeGP+qvniOb3kEBs77g8XZDSyobvXQ6QgOM/t9tYLdiyQ/X3+9ELkNipyDt9iwBQz4pD9SdCY6TzyPdiq122m041nSuFEKJYgPTson24kUBKaBvuO1p84SIOBLltt6K1nIWwTGh1+dIAoS0xoblpun6dl8vG1EsgWCLBZuYbHgwjnUf+HwttO29IsPX7tsQ/sTRaxVtWurypL7q/sfVn2jigvpF41puj/pj0rsmwZVvKKHXyyM5Flk3NEypyUu8hRR6NNwSSkFqVq2//6ZwpBPGzRVonEiyyHJ8nJc2XLkG/yDlblY05q7DzeosFAtHmCS0kJTS1GYudo7rsk7QxUtr8dywgkGAz7QCbNronqSe0cbvFe6ZNFs3LNiqQYJUtzKPX0lLHaz+CSfZXv9+LKJJ9s0pE903Xt6tvFn0v8atxuyOkj+rrjZH8W0iHub711wjqGwpzjyjK00rnTCGgwZ/+jwVbX6s753CI2PvvwRs6u2YuEsit7CWRKEs4VSsQeeFHgh2V1TvNbct2eToRVCpPEEEVoVgOe5XbbUjxGkF9qXNLMo9udxQJZMd7N4om1bemdMm9F6HoSCC6cYNrUv++5OJCvUb1+5xH1rc4XDgtiU7T7y8BSW2MZR707DLouHD8/Xunlc6VQljmZKJunvAa5yESvuTeW1R/Z4PsEiyW6ohQZOic7Nbvy0HXYkQKqefU34n0hiVRH5cxtoN2qO5qN+dDIb2L6AEAEpzQDt4LUWxHkEegAZWNgEyv/ggQcP3LLZR+P3pWwy4A5vZEsJbd2LZilh1MC8e237c1qO9cWAgppZ9PKb0rpfS2lNLzU0pfeBr1Ss1vecbLvctoEfUBkG4XxQboN+J0I2EXKzvbVyRY+Pfpfx0+qPPqskjVH4X5Lqmf240uCYMCyVBtBEIc67xFAgKhWNP+6LAcRoz6b1zmLgvF0XEdxCyfLQEEuk+2rv649SgU19+EhXZoNS4AQLyXIyCny9JrI0LokVNb96WnWFrZaUHf8DzRqaazshBuJKLHl1K+kojeQ0T/7DQq5YE+Eva1pRMipLNkEu1GmfKQqoNo4TkEU/8SegiVBT8GYy0a0P8lZxWie1tCoW3HLbBQogiaJcpmCYqF9/aA3XESOi48YLUA6S4Zt8gireO/QLGgfIsCLULrV7dbyrZ43HBfdRv7fUMCeQkAc3s43JO63RIkxQEaui54L5lQVvLvp5HORCGUUl5WStnOv76OiL7kNOqtaHjlF0F4ViBw6tpn7U6gVm/Mheo8EdJaEtGj28196zu1w3tjHNLX/xPF/oEIofaiVSRnGnPBnIdcniWUWR8NksjTV4B23kLLCpR9oltygYWyRLCd9IyHn+/dimRJBBm/tyuPV3bkyu5/fGlH3+yYgHb3eH4MdnS7pdiOIs9qoINZo0R9IHOa6ZHgQ/h7RPTi06jIIjYioSQ6F7nJZwjVLPuIDlAS3bJ3bz4kNFcKxem2rKpCQ/XPeYFA7nGquygrH62iBRPs/wlRbJtLQMedQNl5NOg3cVR/ZNlUy6oeFANCu73mDo9dbqBDX2ijuZX16z4t8U9gkNL6U58lfOhNppOgfwtSoCM2GpP/v70rj7KrKPO/r5d0Z+l09qSzkQQCBLKnCQhh38OMwCiyOaLIADMwojNHB0Qd90H0OC7ocTiKx1EcHWfGERBF4KhnhBFMRlYhYCJgJIEQQhbI3jV/3Kp7a/nq63oN/V4nXb9z+rx+dWv56r663151E37vFKFp6OzdreSPj7COrwDW2ToA+vHoCiK6B8Ak5tL1Sqkf6TrXA9gD4Fahn8sBXA4A06dPf100lS4jizP6N583YeMM0WeavFtHj8W8nUkORtfy8Fd1/HTHlMCr7I7y70dVhw+ONTn1WMbi31NpfNZqMN/d/rg6Ut+hpm3VYbVYOPVS7q2Yz85o/03kvtCdtRqShJ3PtO3xoWnixnc/bbbUF7eSfb2JSL+/2K1r92WeE3Y/QYJll2R9MO1Kej0FhvPp+3TbB5GmZBBxSlJsQ2k90W8CQSl1inSdiC4B8GcATlbCmx+UUjcDuBkAuru7X9d5f5U1EP7AXNpn2vHXxH6mHkEgaSy+fzvFFLazfXwtOi2fvve5SePbZZIWGe5UZh5iRhv0BTjPbMHWkdxa0nlDvjbo9M0JSZ9uQbDFhHtPb0zT71u4bylB1qIv09606338mi07oU4S3RFhz1oo3Pglz5fuCd/Gru/T3WO9rUBUHL14Iut+9trUEw053I6IzgDwDwCOV0q9Vq9xOQvBX9CS9itpetUDGo6b4mfn/Ia+y0AKTlamsz1fQ6P73Z0LTwdXh3342X0A3viEsE7K+BELyamfYLVJlk0t8wdC16Kceebft3D+9rpzaVERTdNtL2qj8OvE1w0337RgfO/jh/dEBe3DOr0x5PhvKwk7PxgeE8i9zS34vXssGnsR9jEag/HrLw8aFkO4CUAHgLuJ6CEi+lo9BjX33g4ql8FgTouNadHCIm5hJAInbIJgdMLiS3FrsA8PK0hMHX6u3Hgp/nKebik+w3+3y3hfsjc+szNc0qIDbVAQGpywqzRkBO3StFjDNF16OLrZQ9Kk3evEj++kCwsM2ZRwrh/fRZQSn7CFXXnfWA3Zn7/bnzO+wFhZ7Tvye/OKRHxu/P1OfybKe+t95/rer1xGEpRSBzViXE7TDB4+hqGKm7f8h5/5DWsxfVk/u7BAfdcLt8A5LTKm6UoBzJRjKuyy6jt0O6ssommmPMR2fe78F59ppwjbFAuFK5OFnamj6amGj7qenDJBkahFi5WZJoIyUQGJZPnwbiV3fHu8mOuFH99lvk4/CcKe60v6vYNMpKqbQPFqIjjBcrcfux0/7xQFtJ4YCFlGdYO5v62MFp/iC03xxXIWQuxMILudeACe8PD7QotbQvymL2/8lIeIWaCsFpnwYMeEDTc+x1hqM725+bsPLcf85OPOTTs4/dg0+XSnbALjyjghb0rEg9SC2JNFI2N91JblE1+3MWFvlyUpSSlCg6vD9O0/H7Kwi/eTQqMv9Oz/pfUWZHDZi6pOGFwCQd9w22VkwtllaqDAEKVAoJ+GyI3LLVBTXToAT3Jr+TRyG1lKbZph2uECFRYx0zf/8htzL9x+eG3M7Zv3c4f3vRYhHXs3slund+bH1ePjOu54KVk+nLBr8u6jPV5K5hvgtk/VooOUWiFdOSU+wQpyQdjCq8O7bHianbKq66hyQcz44bqJr60Uy9adb/x5jT2T9cSgEgj+5jEbKS4DSRvlcv0NOA3dp0ke3x8rXodTKiQ/u5hBFGF+NngNyW3Ha/9e+wSm5d4//75ZNCUwjZjGxgt7q8xr19d1E7Rz7p8//+pibN8Lr8jwNAO8kuL/FnJ8wGWINvyd+Y6L1utHzHwTflufVk5Z4I8cca+Jwj7hvrnCzu1Hum+yRRr+NvXC4BII+rPV+hVMxmvKWUa1+JRtcEzLb8+5HqInazIMitOKzNzKN2ixWqzXXmIs7MMfX7y+pinu1DZ1OG2UoQ06zY97+GL3TdLYZLdOvEzMcgmYT1UnCHxbF8X7lmChxOMMNoM0Y6G2djGmbd1czs9ezc30E847Nr6oRQvC1mXkenwp88qnm30m/Hkwa1q4bwHdtrAMxkfdMagEQqmxWi6jHu0yStoEJNSpTNFwXIlpVgxROCZB/0ryW9XCh8fMLWmnLrNAUywETosK5pbAkFPcSvYQxtUn+WJlQe7SyGq6giCXhI3PyPhgvDs+d//Y+xbR0FmBJDBNc/y3yxDducVeKK8pdsYXha3NNI0CZNaNNd9ASUhZNwnjc32J6bKekiBZdhwvqMUdZ88/pqTUE4NMIBSf9j4EZTTN8sEUpDqnjXpZPrIWHdLkB+ccdxDxi0hm7FXfytOiJUHGunX88ZkFKgs7itbx72WSW8lqr8o60sPvjk/C/PmD7ODUsSGtiXhQPT6+PUJp2YnHG/BjcTSxAVSGaQWpoSJDFMb36zALX4yPwKe7xvGThBR6bSdlHrJzC4RN73RLSgKnpPQ3BplAcJkPYGmazKF0ocYkPVjuYrbBMQ1/DFkbSqkTjhFq0dW12PuiHZ9o5GwXbm6ceRv0zVofcRr9h8i+fT2GaVI4fkrgM2bCu/SH7fxrtWXLcHWk362WM7As2ry58f56ty43t6QNVhzT9LV4bm6CICnp7uv4TN/VsRT8WEV9t30twtZGszcWRzd34KBv5WcLoZ9h7m+LYyEU4H78wKeXqI344PoO6gjHS5RxAi4W4DNNq88eTyDIDxaCvmOva7TBaUMGRjiy5yR594SNjwR9h4xFik9ImTgx14ON6lC6EGEGVZxuPhPJX1tV+8r6QTC3ID7BMfuIheLQz7SrrvH9sOMLFhrHNI0g5+MjLm1SSm1KMgY/N/f3FrV40bIMaRMtO/I/pfvmjl9PDCqBIFkInH8+1o5lWsy1oA5zrWLaCOrE8tlttHhCwq2iHPrdDULEXmNdNoz14NPICjth8fsugxS3kj1E+fCxTMOdi6xpuvOw4Wtz3DXp4MJQQ7fGD+53yFj4+8aPL1mWfCZQfE3KgkxTKzJtcmbkrA0h9hPctxqYNstYw6kxLhtufO+Zjh7B0ZuSFJalpAtLlml/Y1AJBNZCCDSWsF2aWyNFIDAXg6C2tfi8HP8WbvEFiycUdr7QslFpI/F9EBVj6dvcxIdW0NiCtNOw64h/3qWfffgTtOiUDKpmL1vIrh9aX/G+GZ4puihTGEtfEx3KfgSmneKyEufGCbskJSUmNGS6DWqJT/ifRTv/Wvi8JWn/zL0J96+E9Pc3BpVAMNq4k3aqPzkzz0DyV0pHR5TtOY5Wjh9Pe41lRtjwH8gs89UgAAAahklEQVRUxlLSFmia1vj+gy3ER7i+paC2fyheyvESzq0N/OzVxdi5ObzLRhAIHmPl0Ncd7j7TdlxGkiBN6DuWDGGDc3X512RBys+Dq2O3911GErPnXD+h0EBQR4qPkFdfEtJJWUYWB/WFndR3LQfg1RODSiDs2VscSejuVDZMSzMW5o6IvugEC0FyR/laBasxCC6bMOe+uuYHXiV/MXsAmiBsqjrmWnxuSZk4DI0+07DvX4/nr+VoE/3MpZBzabQhaZqBv5g7OE4a33Or2MJWea4+e24xV5/LWODWERQJKYOqtn0QsOp47TmrlWPkvpBMYJqSAifFEGrbBxGOz7lxfW+D6OoShI106kF/Y1AJhN3aREgNKvtICWCxWrSgjQVavFUpeNEMY/sHi9cav6fH19DjTK/WPQ7B+Mzcgkwg6cFO0NDtGua+pTAG34rjxufQLPymQVDbPpHU97Oz2jCcslQLoZqbOz63Mcy3Itz26fOXXB9yUBnOJ8BZjZywEcaPuIwcuiWXUQJDDjORwrmxLqOyjjuWS7f7e/ECwR2rnhhUAmGvsRBsl5EQ5Krgu3WqKylatJSJ0xPslLbaeYuODeq+US4jjmn71k/YnD2DyR9f1phS5hY+mDUxTYaxh/etNsZS7V/pfU3wOefGImXmBredGMMQxi/f3yvMjftNq3uLoO/Y0Q2yqzHsW7K+ROsjZd2kKHfisyyM791b53kT1qQv+DlFILiWLYT+xR5jIVj2feV6CB9MAzHFscldPBy47KRY33wmEKJjSCZ0CtP05yFpbLywcz9t+O4Bu+/gqF/G+ulrfKKkzXMPiMdihM3Z37scX3CHhUHlONNi4xNJTNObh+SeYNeNGSM6fNrRFczaDtcNsyYpbOfPTbLIRetHWjfB+FbfvvbP/LYpigQ3vu9BSEoFzxZC/2L33mI1tNrMJyHt1E9NteEfSyC5ZSQtWvbzC4xFFDbx9MWqjj9+dS3lsC2J7uosJSYTx2PIaRZCSLfkL05xD3BuDQPOaouNL1oILNOCU8ceP4yPxNdErX7uoL30uzH3PSk+IliWZXxEELYomSaC8QNhIQlbztVn+mEFmds3/6Y/rz1DvfgsC/tHUhSJ/sagEghcUFnKevDrpGRryIxFePhqMKFtSEHtMD4R9l1q2uyLZjymGTYXrY/gLCWG/pJpC/fW1OGsH4lp+/Oo1a0iMk2vH96HLjAtYfwwPsLMyWP2osuGaS9ZxLF+irnAaSel1Pq7gwF5p3I1NzNWXJBXfv443ZKSlJKdleLn563m3teUnPkW77u/MagEwm7GZWQgLVD/AbWRokVLD3Y5fsIi4pqHGkd1LYxPcAJJj89okykZVGluHUTriNaHZCHAF+S9z43XYuO0JVlfosskvKex8V3rx2NaHHE1Ma3ex3fn5vYj3bcUl5U9hK9cvV5hxykSnALhz42bf5/iWjUmkaScL+W7leqJQSUQ9vYwQWX9KT38JWNN8HNzP2FKfCIlOMq1r4K6Znxrbgm+aJ/5cJpe1a73B8TtG841aW7SeySqo4vDvpsFxhAe/22NG6QdcnPz6wg0inNjrgWMpUJPDdZPSlCbay67MYX9IxEFSKrDBczFI0+8+yatSVGRECzivu6CTlHuuHd7VO39foi5psdvgInQEIFARJ8gokeI6CEi+hkRTa7HuHv2hmmnocbCcU1Er0kpmQbSgx0Etdl9EO6nDd+Ed7XoAqKf39RhhJYpk4SlZD2Egdd4e/Y9EgmMRRbkug6jzfkpvbXOLdzjwbQX1lSYmskxD2FteZlAUj5/rZadfyS83Xcs0YHbGFbOzSY7Iajsa/iOIPe1+FrdqME+CKtdZL1JrkZp3XCSOEh0sOfmWYSDKcvos0qp+UqphQDuAPCRegx67uIpAIAz504qy4boX0bUdPWnZMLJgSSh7wSfqgF3xdeQnToJ1od/AB7XN7cPoKxTw32TBCp7/LQkyIRNQPHxq2uBqy0cPs36SdJ04333/d7GY1/h3GoTNn5QWXJ9iC5OoU6K9SX7+eNM0xdkdg1JAfTdd6ywDfz83NyENVGOxQhST4A1wkJoqfuIAJRSW6yvw1E9u/2KQyeNxDM3nOWUTRzZji07tpWLYczwIUG70cOKsi3bd0f7bmstVs/OPXuDa0nxCdGtg2h732Vk10nx1xqwD7bgw6/Gl5hmwsY4hu5qfLeOXcPct5TxJV94ioUgCxuB/gSmxcUQYnWc8QVFIngbW41nUKUc+FgxTYkhunVtiPe2XO8I6kgbw+LjV3Ukl1Xs+GkpzsAKclGQ+v3E+25EDKEhAgEAiOhTAN4BYDOAExtFx6TOdjz94jZsem0XAGBIS/j0TBk9FADwp1e2R/uZMXY4AGDtprCO+WFHD28NrrXp8cwi4gLePYK4DPyV1hry0xdTmDY7hsi044tf2qnsQ3qwOPeClPbp10nJ+WaFLRN7qPqOHy9hIPmCY+mbUh13fH4eACdIpb7dukCan19iWtKcyvET1k2a9RPCt4ycOrXsgxDcqGmCvG+/mylpgIHQfy4jIrqHiB5j/s4GAKXU9UqpaQBuBXC10M/lRLSCiFZs2LDhDafz0mNmAgBmT+goy+ZP7cSCaaPK7wundQIAJo8aGu1nxrhCIOy1uHdHeyFvzQ/b1Rm2n6L73LZzDwBeIHUOLfp5WQstG2ZhlRbK7p7ymn8iJ6epprjDxCwj0fUAZ1ypDtd5penG24sBeyHn3fcPp/j53b798cM6UsA7dD0w7YW+pfOOAkHCMi147S0tOuGcqL5q6NX4va8Jfoe3y+S5ZSsFnlPSzJOywxJ+91rXzX5tISilTkms+l0APwbwj5F+bgZwMwB0d3e/4a6lEw+dELiRbrt6mfN9yQFjcPvVyzCnqxIad77nWDz+/Oby+4i2Fnzq3Lk4cubYsuzdy2biC/c8jWFDitvM/cBTtfXx4tYdURpnjR8BAFj94rbgmunTWCi2FTN+RBvWb9lRLtAxw0J32Mj2wmrZvit0dRmYxd/TE16T004LiBu8zBgi0yo+ucdDSmn1GQsHLle+Gt99QJ1uaoj9yG4VV5t1xu+jhVBLfIKbvp9mLbl8+hwfEfr2+2HdKoJACQSJQH+tG0ErAR7/3WR3nODG9OY7aGIIRDRbKfW0/vpmAE82go5aMG9qp/P9sMkjcdjkkU7ZxUce4Hy/5uTZeNfRM9E5rHIV3Xb1MRjeVt32q046CBtf3YXzu6eXZWfN68KqF7aW3xdOL6yVC5dWdTqHtmLz9t3lopk0sh2A+/BMGT0U67fswKu7Cutj6JDmYF5TE9xhpu8XGKFlFvEoRtiYd1ebh7eV4R7mAUl5sCTGxAfM3X0YHNJ8wWGdFLeKtH8lJYZRSzKAXcVnxCnuKM4dl5QMIDBU0bKs4b7xwk7TEXYdKBJc35Ib1RTVetx8NX7vc2v23EN2/UaedtqoGMINRHQIgB4AzwK4skF09CuIyBEGADB/6ijn+8j2VnzuvAVO2VcuXhzU8a2YO/52Ge5f/VKZQtvURPjyhYtwoLYmAOCipdOx8tlNmNDRZvXVgvbWSjAcroXa8CHxpTBzfGF9/PHl18qyIc1N2LW3p3xApjDutMmd7Xhi3Rbs3F1YH/a4BiO0cHxle+gOMw9Iq3ajmaNHbIiH63kuKw6SW0MMTibER8z4MtMSNF3BZWNYS9r+FW58n7FacwsO7hPu3+sOKofXxL0xCe6w0Pqq0BNo6HHapI1pbHzCo5F1GQl7c3wXV/3FQeOyjN7SiHH3J0wbMwznj5nulP35Anc7x1uWTMUZcyc5FslvPnSK8/CfcMgE3PLObhxz0Liy7IrjZuGOR9aV37tGtqOJgGtOObgsO697Km594LlS65eC8Vyg3WCmjr2s2fBqcM0XNus2W+6wjjZs2LqzZKyc9WOEzV7O1+WN0cNE7n2myQVey01v7Lk5ymnPjSu5wySmFRwLIjF9pu8UC0HMcvKEhth3Xzc0soFX/74J4zMCNcn68cayEfwmgiCWXaRx60cSpP2NhmUZZdQHtjAAgLaWkHGedOhE5/t1y+fguuVzyu9NTYQ1/+RaKB8/ey4uO3aWk6b7rUuXOnGKvz7hQDy5fivOWTSlLJs7ZSSeWl/FQhZNHw0AOHnOhIAu82Abt9YOK2A+ubMdG7buxA5tfYwbEbqsJnVqV9eWncE1g4naHbZha1jHjD+irbDybAul3LTnMR8bpYUguFVSNo+l7MPgD/eTrA/PQuCYptDeP5HVhs+I+bnFr4UbKsM6ohsxiGHYll3vfZc0ilZjXNjKAfP4RlR/LXDCrr+RBUJGn9DcRKV2b3D8weOd712dQ/HvV7zJKfvRVW7AfnxHG5765JnOCbR3vudY/HzVi+WD1d7ajBljh+H8I6w4y/wuPLx2cxkUNw/TECtO0aUFwvot8YC9sWLWbYmnC08bE7rDujrbsWbDq2VW2Yi28FEaobPMNr0azw4z8Y29nIUiuGx8XzQHQYlljs6QmF/YXspOS2KaCbEf2c8fZ5YpZ3CJTNv0I26WhPPp1BGsD398aW7ZQsjY78ExEN/dxAXsf/H+E53vf3XsLJw5twvTxgwryx7+yGlOnXMWTcEvn9qAvznhwLLsqxcvxsNrXym/G3fUQVbs5fTDJ+Kux18omfUwJr5i2j2v3VgcY5k6uqCNC9gbxmJSkW2h1dbShJ17esp9ECPbw/GHaReZCuVICUM/V0d2GSXsAi+TAUIEfSZo2m7fbj+SW4cbP0xNrWql7I0RLbsa9kGkZL4l3b86IguEjH0SROQIAwBBAL+jvRVfv+QIp2z5vC4sn9dVfm9vbcbtVy/DAeOqvr54wSI8/vxmjLbcYZ9/24LSBQUAlx07C3c+ut6xikYPa8Wm16rd7LO0BcUF0w2znT62GPcVq93U0UOx2rI+uN3zk0YWguSlbXF32HidTMDVMYzNCJbtu/da1zx3mMC0UzRkKXCbYn3w7d1+nGuChZISQ/AP97PhH5xX69EVKdZPNWx2GWVk1B1+SnF7azOWHDDGKfuLxVOd7wdP7MBjHzvdKbvv2pOcOMPcKZ348oWLcNzsSmh8//Kj8NPH15ffjavpXcfMKMtOmTMRqzesCTbm2TDusHWb4+6wyWUwnkkX1n2aOrYVMb6jDWs3bS+ZfQdjoZjMLzuu4/ctBexT4iNSnZSNYVXg1+o72KwYtpf2r9RydAWH8MVOYZ1sIWRk7AfgXEt+5teRs8biyFljnTI/pfgDZxyKM+ZOwiGTqo2Q9117kqMpn71wMr7xqz84e1MWThuFh/5YucMMsx9rWRhLDhiNlc9uqo5TGRYep9LV2Y7fAtioYx9c4NgE+p+zUpENTP1y/woT1DfjD2Ec9eY4FylOYJgm5w7z04TtXsLsrN79/BzdPh1uu/g1vx9xH0QWCBkZGc1NVGZfGfj7PCaMbMevP3iyU/b9K45yLJTOoa345ruOwLwplQV0yzuPwANrNpYbCYkIY4cPwQmHVFleyw4ajzsfXY9RQ0NhYWD2u+zcE0/pna5denZ8ZNLIdqzfsqNkdl2j2oN24zuKss3CYZJGyG1kAvaGkZvjXHbtrWhs9Vw+8m7icNwgriG5zKT3MQguM2kXdH8jC4SMjP0EbS3N8JOdTjzETeftHNqK0w6f5JSt/PCpzvcLl07D/KmdmGsJkh9c+SZs3VEx6CNnjsGHzpqDsxdWKcVfvGAhfvjbP5XfR2nr45yFlZU0Ve+e37Kj2D3P7V6fOLKIfWwQssO6RplgfDxgbywU2601vqMNz2/eUTJkzh1mzv7axQi78liJMmDPuMMSYi/ywYFBUd2QBUJGRoYDInKEAQAcMWNMUOeyY2c5ZWcvnOIICCLC7z5+urP35UsXLsJXf/F7zLf6v/Gt8zHUCrx36/iNnzRgY7K2LOzTgZubCHt7VOlysXfoGxTWx2a8og+K5ASStKHSaO/jRhR9b9wWWiimzlAumcDEV4Q4QQPlQRYIGRkZ/Qc/rjJ51FB88px5Ttnbuqc535fNHoe733ccDppQpQL/5JpjnaNTJnS048a3zscya4f9ty9diq//6g/o0HtTWphd9IsPGIV7nniBFQQGM3XGGXe6sEG5f2Vz6A4zTN7OSjMYp4WUeW8KFycx7rxNwvj9hSwQMjIyBhxmT+xwvs/pGok5Xe7eFF+QHH3QOBxtCQgA+PF7lpUvuAKAK487EIdO6nBcaTf/5ZLy+HkAOG72eFx+3CxccvSMsmzpzDF48A8vl98nasZuu5zmTunE+i07SlcTJ3RSNksaQbJeyCDrL2SBkJGRsd/i8Mmu66upiYKjWvyYSktzEz5oHd0CAP966VJnr0hLcxO+9vYlzpH4/3z+Atz+8DocamWH/d2pB2OsdazKAn24pdlhz2Gy3qy4g3n7Yn+DuKDIQEV3d7dasWJFo8nIyMjI6BOUUrh/9UYcNWtsGZh+YM1GPLPx1fJoFqUUvvLz32P5vK7yXSivF0S0UinV3Wu9LBAyMjIy9m+kCoR+e4VmRkZGRsa+hSwQMjIyMjIAZIGQkZGRkaGRBUJGRkZGBoAsEDIyMjIyNLJAyMjIyMgAkAVCRkZGRoZGFggZGRkZGQD2sY1pRLQBwLP91P04AC/1U9/9iUx3fZHpri/2RboHIs0HKKXG91ZpnxII/QkiWpGyk2+gIdNdX2S664t9ke59kWaD7DLKyMjIyACQBUJGRkZGhkYWCBVubjQBfUSmu77IdNcX+yLd+yLNAHIMISMjIyNDI1sIGRkZGRkA9nOBQES3ENGLRPSYVbaAiP6XiB4lotuJaKR1bb6+9ri+3q7Ll+jvvyeiLxH3ItQG0U1EFxPRQ9ZfDxEtrDfdNdLcSkTf0uVPENF1VpuBfK+HENE3dfnDRHRCA+meRkQ/1/fvcSK6RpePIaK7iehp/TnaanOdpm8VEZ3eCNprpZuIxur624joJq+vutDdB5pPJaKVmraVRHRSvWnuM5RS++0fgOMALAbwmFX2GwDH6/8vBfAJ/X8LgEcALNDfxwJo1v8/COBNAAjATwCcOVDo9trNA7DG+l43umu81xcB+J7+fxiAZwDMGOj3GsBVAL6p/58AYCWApgbR3QVgsf6/A8BTAA4DcCOAa3X5tQA+o/8/DMDDANoAzASwuhHruw90DwewDMCVAG7y+qoL3X2geRGAyfr/uQD+VG+a+zzXRhPQ7xMEZngP+xZUsZNpAH6n/18O4DuRxfCk9f1CAP8yUOj22nwawKcaRXcN9/pCALejEMJj9QM2ZqDfawBfAfB2q969AJY2im5vDj8CcCqAVQC6rDWwSv9/HYDrrPp3acbUUNp7o9uq905YAqGRdKfSrMsJwEYUgrjh66S3v/3aZRTBYwDerP8/D8UDDwAHA1BEdBcR/R8RfUCXTwGw1mq/VpfVGzG6bZwP4N/0/wOB7hjN/wHgVQDrADwH4HNKqZcxMGgG4nQ/DOBsImohopkAluhrDaWbiGag0EofADBRKbUOAPTnBF1tCoA/MjQ2jPZEumNoCN19oPktAH6rlNqJgbO+oxiMAuFSAFcR0UoU5t8uXd6CwjS9WH+eS0Qno5DwPhqRmhWjGwBAREcCeE0pZXzhA4HuGM1LAewFMBmF++LviWgWBgbNQJzuW1A8xCsAfAHA/QD2oIF0E9EIAP8J4L1KqS1SVaZMCeX9ihrojnbBlPUr3bXSTESHA/gMgCtMEVNtQKV5tjSagHpDKfUkgNMAgIgOBnCWvrQWwC+VUi/pa3ei8C1/B8BUq4upAJ6vG8EaAt0GF6CyDoBiPg2lW6D5IgA/VUrtBvAiEd0HoBvA/2AA32ul1B4A7zP1iOh+AE8D2IQG0E1ErSgY1K1Kqf/SxS8QUZdSah0RdQF4UZevhWtVGhrrvk5qpDuGutJdK81ENBXADwG8Qym1uhE09wWDzkIgogn6swnAhwB8TV+6C8B8IhpGRC0AjkfhO14HYCsRHaUzAt6Bwoc4UOg2ZecB+J4pGwh0CzQ/B+AkKjAcwFEofKsNp1miW6+N4fr/UwHsUUo1ZI3ocb4B4Aml1OetS7cBuET/f4lFx20ALiCiNu3umg3gwXrT3ge6WdST7lppJqJRAH6MImZzXyNo7jMaHcTozz8UGvM6ALtRSOd3A7gGRRDzKQA3QAcPdf23A3gchQ/5Rqu8W5etBnCT3WaA0H0CgF8z/dSN7lpoBjACwA/0vf4dgPfvC/caRfB5FYAnANyD4gTJRtG9DIW74READ+m/5SiC9PeisFzuBTDGanO9pm8VrOyWOq+TvtD9DICXAWzTv9Fh9aS7VppRKBGvWnUfAjChEeuk1r+8UzkjIyMjA8AgdBllZGRkZPDIAiEjIyMjA0AWCBkZGRkZGlkgZGRkZGQAyAIhIyMjI0Nj0G1My8jgQEQmhRAAJqHYSb1Bf1+qlNrFNszI2I+Q004zMjwQ0UcBbFNKfa7RtGRk1BPZZZSR0QuI6BIiepCK9018lYia9AF3rxDRZ/VhiHcR0ZFE9EsiWkNEy3Xby4joh/r6KiL6kC7vIKKfUPFehceI6K2NnWVGRhYIGRkiiGgugHMBHK2UWojCzXqBvtwJ4GdKqcUoDsD7KICTURwj8nGrm6W6zWIAF1HxAqPlAJ5RSi1QSs0FcHcdppORISLHEDIyZJwC4AgAK/TLrYaiOkZ6u1LKMPJHAWxWSu0hokdRHHNhcJdSahMAENF/ozgK4V4ANxDRDQBuV9aZNxkZjUIWCBkZMgjALUqpDzuFxQGIdqC5B8BO63/72fIDdUop9QQRdaOwFD5LRHcopT79xpKekVEbsssoI0PGPQDeRkTjgPIdv9Nr7OM0IhpFRMMAnA3gPiKagiJw/W0An0fhTsrIaCiyhZCRIUAp9SgRfQzAPfo47N0o3u9byzn2vwLwXQAHAvi2UuohHXS+gYh6UFgaV77BpGdk1IycdpqR0Y8gossAzFVKvbfRtGRk9IbsMsrIyMjIAJAthIyMjIwMjWwhZGRkZGQAyAIhIyMjI0MjC4SMjIyMDABZIGRkZGRkaGSBkJGRkZEBIAuEjIyMjAyN/wfXS/wK5qxzxwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(data_MLO[\"Date.1\"],data_MLO[\"CO2\"] - data_MLO[\"seasonally\"])\n", "plt.xlabel(\"Temps (Année)\")\n", "plt.ylabel(\"CO2 (ppm)\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Zoomons un peu autour de 2020 - 2024 pour mieux se rendre compte des variations" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(2020, 2024)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEKCAYAAAA4t9PUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXl029d94Pu5IACC4A6KmygulrxosyXb8pq4bbxlj5tuSdpmeqZLXvumZ5qZ9860Pe2b12mnM2k7M68zaef1+b3mtE3TNk6TyEmz2ZbtJK4oW7Ql0RJJSSa1cAE3kATABcR23x8//EiYAkGAAH4LcD/n8IjC8vt9dXV/93vvdxVSShQKhUKh2C0OswVQKBQKhb1RikShUCgUBaEUiUKhUCgKQikShUKhUBSEUiQKhUKhKAilSBQKhUJREEqRKBQKhaIglCJRKBQKRUEoRaJQKBSKgnCaLUA+7NmzR/b19ZkthkKhUNiKN998c15K2Vqq69tKkfT19TEwMGC2GAqFQmErhBA3Snl9ZdpSKBQKRUEoRaJQKBSKglCKRKFQKBQFoRSJQqFQKApCKRKFQqFQFIRSJAqFQqEoCKVIFAqFQlEQSpEoFApFiuBajOBqzGwxbIdSJDkwvrDKO7Nhs8UoCyKxBH/4rSH8wTWzRSkLXhqa4SOf/yFr0YTZopQFv/RXZ/nlvzlrthi2QymSHZBS8it/M8C//KuzSCnNFsf2fOein//3h9f4Yn9JE20rhr/4/igXJ0P84Oqc2aLYnpHpEAM3Fjl7fZGZUMRscWyFUiQ78OaNRUamw4wvrHF5Rp1KCuXLZ8cB+N6laZMlsT/vzC4zcGMRgBcuzZgsjf358tlxHEL7/aVhNZ75oBTJDvztmRvUuqsAzYyg2D03AiucGVugr8XL6NwK78wumy2SrfnKwDhOh+CxO/bw8sgM8UTSbJFsy3o8wdfPTfLBuzvpbfHyonrW80IpkizML6/z7ben+ekT3RzrbuLF4VmzRbI1zw1oO74//eS9gDqVFEIskeSrb03w+ME2fvbBHhZXYxunE0X+vHBphqXVGJ840c2Th9o5/U6AlfW42WLZBqVIsvDcwDjRRJKff7iHpw61cWF8idmwsp3uhngiyVcGJvjRO1s53t3Ese4mXlC7vl1zaniW+eUon3igmx+5sxW306HMWwXw3MA4XU01vPf2PTx1uJ1oIskPrii/U64oRbINiaTkS2du8vB+H7e31fPk4XYAXlankl3x/StzzIbX+cQDPQA8fbidC+NLTAeVYt4Nzw2M095QzY/e2UpttZP33r6HF4amVUDILhhfWOW1d+b56RP7cDgEJ3qbafK6lHkrD5Qi2YbvX5llcmmNTz/cB8Bd7fV0NdUoJ9wu+fLZcfbUuXniUBsA7z/SAcALQ8q8lS/TwQivXp7lp+7fh7NKe4SfPtzOxOIaI9MqICRfvvLmBAA/faIbAGeVg8cPtvHy5Vnld8oR0xSJEMIjhHhDCHFBCHFJCPEfzJIlE1/sv0FrfTVPH9FOIkIInjrczmvvzKuY/TyZDUc4NTLLT9y3D1dq4bu9rY4DrbXKT7IL/vHNcZISfia18AE8cagdIVT0Vr4kkpJ/HBjnvbfvoaupZuP1pw61s7Qa4+x15XfKBTNPJOvA41LKY8Bx4ANCiIdNlGeDm4FVXr0yx6ce7NlY+ACePNROJJbkn9+ZN1E6+/G1tyZJJOW7Fj6Ap490cGZsgaXVqEmS2Y9kUvLcwAQP7/fR21K78XprfTX39TSrE16evPbOPFPBCJ9MmVx1dL+TskDkhmmKRGro8Z+u1I8lDLxfeuMGDiH41IPvXvgevM1HfbVTTa48kFLy3NlxTvQ2c3tb3bvee/+RDhJJycsjyu+UK2euBbi5sHrLwgeaeevSVIiJxVUTJLMnXz57k2aviycPt73r9dpqJ+850MKLQzPK75QDpvpIhBBVQojzwCzwopTydTPlAa2Ex1cGJnjyUBudjTXves/tdPAjd7VyamSWZFJNrlwYuLHI2PwKP/NA9y3v3dPVSEeDR5m38uDLZ8ep9zj5wNGOW957OuV3UvlOuRFYXufFoRk+fu8+qp1Vt7z/1OEObi6scmVG5TvthKmKREqZkFIeB/YBDwohjm79jBDiM0KIASHEwNxc6cPxvnPRz8JKdMPJvpUnD7UxF15ncDJYclnKgX94Y5xadxUfvrvzlvccDsHTR9r5/pU55XfKgeBqjO9cnObHj3fhcd268N22p5Y72upUWHWOfP3cJLGE5BMZNjmgPesALypz4Y5YImpLSrkEvAp8IMN7z0opT0gpT7S2tpZcli/232D/nloePdCS8f333dVGlUOoXV8OhCMxvv22n48d30tttTPjZ54+3EEkllS1onLg+QuTROPJbRc+gKcOt/P6NeV32gkpJV8+O87x7ibu6qjP+Jm2Bo9KRM4RM6O2WoUQTanfa4AngRGz5AG4NBXkrZtL/NzDvTj0ojtbaPK6OdHbrPwkOfDNC37WYolbnOzpPLTfR2ONS5m3cuAf3hjnyN4GjnY1bvuZp5XfKSfOjS9xdXY5q1KGzXwnVcQxO2aeSDqBV4QQg8BZNB/JP5koD3975iYel4Ofum9f1s89eag9VchROTWz8eWBce5sr+N4d9O2n3FVOXjiYBunhlXMfjYuTgYZ8od2XPju6WqkvaFaJdPtwHNnx/G6q/josb1ZP/dUKhFZbRyzY2bU1qCU8l4p5T1SyqNSyt83SxaAUCTGyXOTfOzYXhq9rqyf1bPcT6nJtS0j0yEujC/xiQd6ECLz6U7n6SPtBNdivHFtwSDp7MeXz45T7XTwzLGurJ9zOLR8p+9fmSMSU36nTKysx/nmhSk+fHcndduYXHXuaKtTRRxzwBI+Eitw8twka7HEtk72dG7bU8uB1lpOKfPBtnz57DiuKsHH782+8IEWs1/tdCjz1jZEYglOnp/kg0c7dtzkgOZ3Wo0mVL7TNnxr0M9KNLHj6Q5SicipIo7LqojjtihFkuKHV+fpa/Fy977t7c/pPHmonTNjAUIR1ZZzK/FEkpPnJnn6cAe+WveOn/e6nfzIna28oGL2M/Lq5VnCkfhGCY+deHh/C/XVTpXlvg0vDs/Q7avh/t7mnD7/ZKqI4w9VEcdtUYokxdsTQY5lseVv5cnD7cQSUlUIzcDV2WUWV2O3JHll4/1HOvAHIwxOqLDqrZy7uYSrSnCiL7eFz+108GMH2zg1MkNC5TvdwuDEEvf3NO9octVRRRx3RikSYDYUYToU4Z59uSuS+3qaafa6OKVCA29hcGIJgGN5jOcTB7WwalXi41YuTCxxqLMhY9Lcdjx9uJ355SjnbqpaUenMhCLMhNbzetZVEcedUYoENnbB9+Ro1gKocgjed7CNl0fU5NrK+fEgDR4nfWm1oHaiudbNg30+vqfMMe8imZRcnAzlNTcBfuyuVlxVQiUnbmE3zzpoilkVcdwepUiAwckgDgFH9jbk9b2nDmnRRqoz3bsZnFjinn1N2+bibMf7j7Tzzuwyo3OqJIXO2Pwyy+vxvHbQAPUeF48c2MMLl1SPknTenlhKPev5KZLH7lBFHLOhFAnawndHWz1ed/ZQwK08dmcr7iqHCgNOIxJLMDId5lh3fg8qwFOpWlGvqGi4DS6MazvofMyEOk8dbud6YJUbAZXvpHNhIsid7fXUuHM3E4JWxPHRAy28elnNzUxUvCKRUvL2RDDnaK106qqdPHygRWURp3FpKkQiKfPeQQN0NdXQ5HUxOrdSAsnsyeDEEl531S2Vk3PhcKd2wlYnPA0pZeq0nP+zDtp43gisKlN2BipekUwFIwRWohzb5eS6p6uR64FVYmpyAXBhPH9Hezq9Pi83F5Qi0bkwEeTo3kaq8jQTAvS1eAHUiSTFxOIai6uxXW1yAPpaaoknJVNLqlzKVipekQymFr67dzm5elq8JJKSycW1YoplWwYnlmhvqKaj0bOr7/e21KqFL0U0nmTIn7+jXcdX66au2slNVcoH2L2jXadHV8xqo3MLSpFMBnE6BAe3qQC6E3pk0vWAmlyg7aB3u+MD6G3xMrW0RjSuTnhXZsJE40nuySO/KR0hBD0+LzfU3ARgcHIJd5Vj22q/O9GrTnjbohTJxBIHO+sz9nfIBX1yqV2f1i/j2vxK1iKNO9Hj85KUMLmkTngXNvJxdreDBm1+3lBzE4DB8SAHO+vzysdJp73eg9vpUM96BipakWjOtyB3d+1+4Wurr8bjcqhdCtqOD3ZvOgA2+pCrXbS28DV5XfT4vLu+Rk+Ll4mFtYrPcNfycYIFzU2HQ53wtqOiFcmNwCrhSLygHZ8Qgl6fsutDmg26AMWsTnibXJhY4u6uxpxLeWSi11dLNJHEH6zsE961wArh9XhBcxO0YBD1rN9KRSsS3XSwm9DfdHpa1C4FtIit2/bU5lShdjv0E971+cp+WNeiCa7OLu86+k1nQzFX+OKnl+25Zxf5Ten0tHi5ubCqkjy3UNGK5O2JINVOB3e27875pqOFrK6SrHDzwYWJpYJOd7B5wqv0EOBLU8FUPk6BC59PjzSqdEUSpMZVxe2t+efjpNPXUstqNMHc8nqRJCsPKlqRDE4EOby3AVdVYcPQ2+JlPZ5kNly5k2s6mH8xvO3QTniVvfBdSJkJ86lInYm9TTW4qkTFj+fgRJAjextwFvis96gTXkYqVpEkkpKLU0HuydL/OleUgzgtwqjAhQ/UCQ80U0xHg4f2ht3l4+hUOQTdzZWd5BlPJLk0VVhYuk6vT4UAZ6JiFcnY3DKr0URxJpeKL2dwYgmnQ+Rd+DIT6oSn7aALNWvpVPoJ7+rsMpFYsijjua/Zi0MoU+FWTFMkQohuIcQrQohhIcQlIcRvGHn/CwVmuaazt6mGKoeo6IzXC+NB7urYfT5OOj0VfsILrmn5OMU43UHqhBeoXAfx20V81t1OB52NNdys0Lm5HWaeSOLA/yalPAQ8DPwrIcRho27+dqoY3v4CnW8ArioHXU01FbvrSyblRun4YtBb4Q7iYi58oCnm8HqchZVoUa5nNy5MLFFfnV9/nGz0tni5XqHP+naYpkiklH4p5Vup38PAMNBl1P0vTAQ52rW7YniZ6E2FBVYi1wMrhArMx0mnq1k74VWqQ1P3NxWa86BT6Yp5MFXdO9/+ONtRyc/6dljCRyKE6APuBV434n6xRKoYXhEc7Tq9LV6uz1fmcXewSBFGOvoJr1Lrlw1OLNHX4i0oHyedSs4lWY8nGJkOFe20DFpwzcJKlHAkVrRr2h3TFYkQog74KvBZKWUow/ufEUIMCCEG5ubminJPvRheoYmI6fT6aglF4iytVp754Pz4Eh6Xgzt20TNjOyp51zdYYOHLrXRXcKTRiD9MLFF4Pk46KnLrVkxVJEIIF5oS+ZKU8muZPiOlfFZKeUJKeaK1tbUo993YQRfxYe2p4MitwVQpj0Jj9NPpqdBSFLPhCP5gpKgLn8dVRWejpyKDQQYni+tvgrRckgrd6GTCzKgtAfwlMCyl/G9G3ntwIkiDx7lx5C8GuiOv0uzQsUSSS1PFNR2AdiIJrsUIrlaW+WBwvLhmQp2eVORWpTE4voSv1k1XU03RrrmZN1Z547kdZp5I3gN8GnhcCHE+9fMhI26sRxgVUgxvKxulKCrMT3J5Osx6PFmChU9XzJU1noMTSzgERcnHSadSy8m/nar4W8xnva7aSUutu6KTPLdiZtTWa1JKIaW8R0p5PPXz7VLfNxJLcHk6XFT/CECNu4q2+uqKe1iL0TMjE5Wa5HlhIsid7fV43c6iXre3pZa58Dor6/GiXtfKrEbjXJkJF/20DJp5q9ILi6ZjurPdaEamw8STsqgRWzq9LZVnPihGz4xM6NerJDu01h9nqaj2fJ1KHM9LUyGSktI8677KDQbJRMUpks1y0sXfpfS21FacKeZCCcyEALXVTlrrqysqu31icY3F1VhJdtCVeMIrtEd7NnpbapkKrrEeTxT92nakAhVJkJZaN3sbCyuGl4len5eZ0Dpr0cqYXLrp4HgJHlTQxrOSMog3zYQlUCQpn1Ml2fX1wpdtBRa+zERvixcpNeWvqEhFslR055tOpYUFbpgOSrDwQaqJUAUpksGJIO4qB3d1FNYfJxONXheNNa6KOpG8XcTCl1up5CTPTFSUIllZj/PO7DJ3l2jh66uwYoMXxovTdW47en21TIciRGKVccK7ML7Eob0NuJ2leSz7KijJM7gWY2x+pWSKZCOqsEKe9Z2oKEUy5C+d8w0qr9/4hYkgexs9tNUX33QAm+M5XgHjmUhKLk4Gix79lk5PS23FnEgubiQilmbTuKfOjdddVXFRmttRUYpkYwddooe1yeumweOsmBpRF8aLV/E3E5VULWBsbpmVIvXH2Y5en5fJpTViiWTJ7mEVSuloB60ldKVWX8hERSmSc+Olc77p9FbIrm9hJcrNhdWiJyKmU0lVazda65b0ROIlkZRMVoCDeHBiiR6flyavu2T36GupVaatFBWjSGKJJD+4Msdjd+wp6X0qpdjgD69qBTQf2u8r2T18tW7qq50V0UToB1fm2FPn5kAR+uNsR6UoZiklb1xb4P7e5pLep7fFy/jiWkW3hNapGEVy9toC4UicJw+3l/Q+vS1eJhfL33zw0vAsLbVujpfQFCOE0NrElvnCF0skefXyLO+7q61oPTMyodeIKnfFfGVmmcBKlEcPtJT0Pj0tXqLxJNOhSEnvYwcqRpG8NDyL2+ko/YnEV0s8KZlaKl/zwcbCd7C0Cx+kakSVualw4PoioUicJw61lfQ+bfXVVDsdZT+ep0fnAXikxIqk16eKN+pUhCKRUnJqZIZHD7QUvYbRVirBQTxwfVE73ZV44QMtzHJicZVEGZsPTg3P4K5y8NgdxWmTsB0OR8pBXOYnvNOjAXp8XvY1F7dsz1Y2ozTL+4SXCxWhSEbnlrkRWOWJQ6U1a0FllJM3auED7WGNJcr7hPfyyCwPH2ihtrq0mxzQg0HKd+FLJCVnxgIlN2sBdDZ6cDpERVVf2I6KUCQvDs0CGLKD1s0H5WyHPmXkwlfmxQbH5pYZm18xZG7CZjCIlOV5whuaChGOxEtu1gJwVjnY11yjstupEEVyaniGI3sb6GwsXnOb7dgwH5Tp5BqdW+aagQtfuZsKTw1rm5zHDxqnSCKxJLPhdUPuZzRG+Ud0KrFQaybKXpEsrER56+aiIWYtnXJ2EL9s8MLX2ViDu8pRtg/rS8MzHOyoL7k9X6enzPuNnx4NcHtbXcmqLWxFf9bL9YSXK2WvSF4ZmSUpjTFr6fS21Jat+cDoha/KIdjnK0/zQXA1xsCNxZJHa6XTW8b14KLxJGevLxjiH9Hp8XkJR+IsVVhL6K2UvSJ5aXiG9oZqju4tXcbwVnpbvKzFEsyVmfnAjIUPND9JOe6gX70ySyIpDT0tdzXV4BDl6XManFhiNZowVJH0VkBwTS6UtSJZjyf4wZU5Hj/YXvJ8h3R6yjSD2IyFDzYjjcrthHdqeJY9daVN6tyK2+lgb1NNWSrm06MBhICHbjNSkeimwvI74eWDqYpECPEFIcSsEOJiKa7/+tgCK9GEoWYt2NylXJ8vr8llRDZ7Jnp8XlaiCQIrUUPvW0qMymbPhGbXL6+5CdA/GuBwZwPNtaWrr7WVcvc55YrZJ5K/Aj5QqoufGp7B43LwnttLm82+la6mGqocoqzMB7FEku8blM2+lXJsE2tUNnsmtEij8hlLgEgswZs3F3lkv3GnEQCPq4r2huqympu7wVRFIqX8AbBQomvz0vAs7729FY+rqhS32BbNfOApq8mlL3xGn+4grUZUGUVuGZnUuZVen5el1RjBtfJxEL91Y5FoPMmjtxurSEAPrimfubkbzD6RlIyR6TCTS2umLHyg1eEpp12fmQtft68GIcrrRGJkUudWyrFN7OnRAFUOwQN9patGvR3lGgySD5ZXJEKIzwghBoQQA3Nzczl/79TwDGBcvsNWesrMDm3mwlftrKKzwVM2C9+YwUmdW9loE1tGu+jTo/Pcs6+Reo/L8Hv3tniZDa+zFq2MltCZsLwikVI+K6U8IaU80dqa+274peFZju1rLGkTq2z0tZSP+UBf+J4wSSkDZVVO3uhs9q2UW7WA5fU4gxNBQ8N+0+nZML2Wx3juBssrkt0wG45wfnyJJw0OU01H3/WVwy5aX/jMcAzr9PrKp/Ok0UmdW6mrdrKnzl0WcxPg7PUF4knJoweMDarR2WgYVkYWiHwxO/z374F+4C4hxIQQ4peKcd1XRvSFzzxFshFpVAbmA7MXPtB20fPL6yyvx02ToRiYldS5lR6fl+tlsvD1jwZwVzlK3hFxO8oxqjBfzI7a+pSUslNK6ZJS7pNS/mUxrvvS8Cx7Gz0c6qwvxuV2RblMLqssfOXiIDYrqXMrehmfcuD06Dz39jQZHp2p0+R10+BxlsWmcbfkpEiEEM1CiCNCiP1CCEubwyKxBK9dneeJQ+0IYWy+Qzpet5PW+mrbH3cts/D5yiME+JRJSZ1b6fF5mQ5FiMTs7SBeWo1yaSpkmllLR6u+UB6KeTdsG4IjhGgE/hXwKcANzAEeoF0IcQb4n1LKVwyRMg9+eHWetVjC9B00aLZTu+/6vntxmj111RwzeeHratZaAPiD9u2PHYkleGVklg/e3WF4UudWupprkBJmQ+sbznc7cmZsASkxJX8kna6mGkbnlk2VwUyynS7+ERgHHpNS3iWlfG8qeqob+BzwTLF8GsXk5PlJmr0uw7PZM9HZVMO0jRe+UCTGqZFZPnJPJ1UmL3zNXhdup8PW4/nyyCzh9TgfO9Zltih0pKIZ/UF7d548MxagxlVl+kano9Fj67lZKNueSKSUT2V5703gzZJIVAChSIyXhmb4xAPduKrMt8B1NFTzQjCClNJUM9tu+e7b00TjSX78XvMXPiEEHQ0epkP2fVhPnpukrb7asKZL2ehs1BSJnccTNP/Iib5m3E5zn/f2Bg/h9Tgr63FTcq3MJqd/sRDiHqAv/fNSyq+VSKZd892L06zHk3zcAgsfQEdjDevxJMG1GE1e4wrJFYuT5yfpa/FybJ9xJfiz0dHgsa1pK7ga49XLc3z6kV7TT3cA7boisel4AsyF17kys8zH791ntijvUswHWutMlsZ4dlQkQogvAPcAl4Bk6mUJWE6RnDynLXzHu8095upsmg8itlMk08EI/WMB/vXjd1jmNNXR6OHCxJLZYuyKb1/0E00k+fHj1tjk1Fc7qXVX2fpE0j8WADAtETGd9oZNxawUSWYellIeLrkkBeIPrtE/FuA3nrDWwgfaLuVQZ4PJ0uTHNy9MISWWMGvpdDR6+O4le5oKT56bZH9rLUe7rDEPhBC029yu3z86T73HyZG95o9pRxmc8AohF8NivxDC8orkG+dTC59Fdnxg78l18vwkx/Y1ctueWrNF2aCjwUM0nrRdW9PJpTVev7bAjx/vspQC7Gy0t8/p9GiAh25rwWkJf2h5+Jx2Sy7/A3+NpkwuCyEGhRBvCyEGSy1Yvnz93CT39jTRZ6GFr62+GiHsp0iuzoS5NBXiGQspZdhUzHbzk3zj/BQAzxzfa7Ik76a9wb4nksmlNW4EVi1h1gKocVfRWOOy7XgWSi6mrS8AnwbeZtNHYimG/SFGpsP8/jNHzBblXbiqHOypq2bGZruUk+cncQj4yLFOs0V5F7oimQlFOGwBc0auPH9e2+TofVWsQmejh9nwOomktEQAQD70j2r+EStEwOnY/YRXCLmcSG5KKb8hpbwmpbyh/5Rcsjw4eX4Sp0Pw4buttfCB/SKNpJQ8f36K99y+h7Z6cyonb0d68IJdGJnWNjlWMrnqdDR4SCQl88vrZouSN6dH5/HVurmr3bwySFux8wmvUHI5kYwIIf4O+CawMeOsEv6bTEqePzfFj97ZSktdtdni3EJHo4dxG2W3v3ljkYnFNf7Nk3eaLcottNZX4xD2skOfPDdFlUPw4XssuMlp1KoFTAcjG1FHdkBKSf9ogEf2t5heISCdjgYPQ/6Q2WKYQi4nkho0BfI08NHUz0dKKVQ+nLkWYDoUsVR0UTp2O5GcPD+Jx+Xg/Uc7zBblFnRT4bRNsrGTSck3zk/y2B172GPFTY4NT3gA1wOr+IMRS5m1QNs0zi+vE0tY0gNQUnY8kUgp/6URguyWk+cmqat2mtp7JBsdjR6CazHWoglq3OZUJ82VWCLJtwb9PHmonTqLZudqdmh7mGLOXl9gKhjh333goNmiZCTd52QnTo/OA9bIH0mno9Gj1S8Lr9PVVGO2OIay44kkVfH3m0KIOSHErBDieSHEbUYItxORWILvvD3NB452WHaRtlNY4A+uzLG4GrOkPV9Hs0Pb40Ry8vwUNa4qnjpszU1OS60bV5Ww3YmkfzRAe0O1pULTIe1Zt9l4FoNcTFt/BzwHdAJ7ga8A/1BKoXLlpeEZwutxfsKiZi1IK51gg8l18vwUTV4XP3Jn7i2NjabTJkl00XiSb7/t5+kj7ZatveRwCNrqPbY6kej+kUcP7LFUTg7Y94RXDHJRJEJK+UUpZTz187doJVJM5+S5SToaPDy031pH3HTabTK5ltfjvDg0zYfv7jS9AF422hs9hCJxVqPW7pT46uVZgmvWPt2BtvjZqQLwlZllAitRy/lHwL4+p2KQy4rxihDit4QQfUKIXiHEvwO+JYTwCSF8pRZwOxZWorx6eY5nju+1dAy8XSbXC5emicSsUek3G3Y54T1/fgpfrZv33mF+O4NsdDR6mLGJzwms6x8BaPK6qHY6LL9pLAW5nLk/kfrzf9ny+i+inUz2F1WiHPnW4BTxpLT8wldb7aTe47T85Dp5foquphru7zGn73WupBfH22/R4njhSIyXhq3TziAbHQ0eTg3P2KZ+2enRAD0+L/uardeMSwiROuFZ+1kvBblEbVnCsb6Vr5+b5GBHvS2KIWohwNY1H8yF13nt6hy/+qMHLBWXn4lOPffBwopZb2dgtRIzmehs9BCJJQmtxWn0uswWJyuJpOT1sQAfPGq9nByd9gYPMxWoSHKJ2vIIIf6tEOJrQoivCiE+K4QoSvaSEOIDqRoe0/C5AAAgAElEQVRe7wghfivX790IrPDWzSXLn0Z0OiwesvpPg1MkLVbpdzvsYCp8/vwUPT4v9/VYo51BNvQTnj9k3Y2OztBUiFAkbnpb3WxUapmUXM7dfwMcAT4P/BlwGPhioTcWQlQBfw58MHXNT+VaZfjFoRkAPnrMWkXwtqPD4iGrLw7NcFd7PXdaqNzEdtS4q2iwsKkwFInRPxbgI/d02sJUZBefE2z6Rx6xcHCN3sVTSkvEIxlGLj6Su6SUx9L+/ooQ4kIR7v0g8I6UcgxACPEPwDPA0E5fPD0aYH9rrW2SfjobPcyF14knkpYoeZ1OJJZg4MYiP/9Qr9mi5ExnY41lTyRnry2QSErLO9l12m2U+3B6NMDtbXW0WbicS3uq1cHiagxfrb2a2RVCLqvaOSHEw/pfhBAPAf9chHt3AeNpf59IvfYuhBCfEUIMCCEG5ubmiCWSvD4WsGTUxna0N3pISphfjpotyi2cu7lENJ603Xha9UTSPxrA7XRwn8WDFnTabZIwG40nOXt9wfLz1E4nvGKSiyJ5CDgthLguhLgO9AM/WoS+JJnO/becB6WUz0opT0gpT7S2tvL2ZJCVaIJHD9hjxwfpdn3rmbf6xwI4BDy437RI7rzptHD9sv6xAPf1NOFxWbPSwlbcTgd76tyWVcw6gxNLrEYTllcket7YtA18TsUkF9PWB0p07wmgO+3v+4Cpnb6k9yF42MJ20q1YOeP1zGiAo12NNHisHbGTTntacTwrhdcurUYZ8of47BPWq5ycDTuErPaPBhACHrrN2s/95onEusE1pWBbRSKEqJNSLmfrPSKEKCSQ/yxwR6pu1yTwSeBnd/rS6dF5DnbU28r+aNVIo7VognPji/zieywZ4b0tnRYtjndmbAEpsXRUUSY6GjxMLFp7B316NMChjgaaLf7ct9alWh1Y0PpQSrJt554XQvxXIcSPCCE2qqOlijj+khDiexRwWpFSxoFfB74HDAPPSSkvZf8ODFxftJVZC8BX68Zd5bCcHXrgxgKxhORhi5sLtmLV4nhnxgLUuKo4ts/6Yb/pdFg8ZDUSS/DmzUXLm7UAnHqrAwuPZynY9kQipXxCCPEhtIz29wghmoE4cBn4FvALUsrpQm4upfw28O1cP78ajbNuM8cwaBmv7Y3Vllv4+kcDVDkED/TZxz8Cm6ZCK47nib5mS9cqy0RHg4el1RiRWMKSvp23bixqASE2OenZqdVBscjqI8l3oS81y+txXDZzDOt0NtRYb+EbC3BsX6Nle49shxVL888vr3N5JszHjtsjtymd9E6JfRYrzQ6aWctOG572Bg/XAytmi2Eotto6razHuXtfk60cwzpWC1ldXo8zOBG0ZBXVndCL41nJDn1mTAsCsdtpGaypmNM5PTrP3V2N1Nvkue+wWKuDRLL0yZG2UiR2CP/bjo6GavxB62S8nr2uJc49st9e/ibYLI5nJfNB/2iAumond3c1mi1K3ljVVAibGx47PfcdFmt1MGxAH3lbKRKJtcsjZKOjsYb1eJLgWsxsUQBt4XNVCe7vtUfi3FasVnamfyzAA33NlqtckAsbisSCJ5Kz1xeIJ6WtAmysFgyip0yUElvNegGc6LPvwgfWCQHuHw1wb3ezZVsU74SVIo1mQhHG5lZsaSYEqKt2Ul/ttMzCl07/aAB3lcNWGx6rKeb+MRMViRDibiHEGSHEuBDi2VTUlv7eGyWXLANetxOv216OYR0rTa7gWoxLU/b0j+h0NHqYCa5bwlSo7/jsaCbUabeYXV/n9Og89/Y02WrDo28areATjSeSvHFtoeT3yXYi+b+B3wPuBq4ArwkhDqTeM8XrVVttn8m0FSvZod+4tkBSYm9F0uAhmkiysGJ+/bL+0QANHieH91q/N852dDZ68Ftg4UtnaTXKpamQrcxasPmsW8H6cHEqxPJ66X012RRJnZTyu1LKJSnlf0FLHvxuqoCjKdtAu4WpptNWX40Q1lAk/aMBqp0O7rVBv4zt6LTQw9o/FuCh/S2Wbvm8E1ZsyKRXCrDbhsfrdmqtDiwwnnrp/VKTTZEIIcRGCIqU8hXgJ9F6kZhSc9yuZi0AVyrj1QrH3dOj89zf20y1074nvHaLmA8mFle5ubBq2yAQnc5GD7PhCPFE0mxRNjgzFsDjcnC8234bHqvUL+sfDXBne+lbUmdTJH8EHEp/QUo5CDwBfK2UQm2HDfoEZaXDAlVrF1aijEyHy2Dh05LozB7PDf+IzXbNW2lvsF6rg9Oj8zzQ57NdpQBInfBM3uRE40kGri8a8qxv+z8kpfw7KeUZ0Ioz6vW2pJQ3pZS/UnLJypAOCyQlvj5WHgvfnjo3DmH+iaR/LICv1s1dNugumY1NU6E1QqrnwutcmVm2nX9ExwotdwcnlliLJQx51rOqeiHErwkhbgI3gHEhxA0hxP9acqnKFCucSPrHAnjdVdxjs8KCW3FWOWirN3c8pZT0jwZ4eL8Ph439I2AdU6FOv40rBYD2rOtdUc3CyNL72cJ/fxf4KPBjUsoWKaUPeB/wwdR7ijzpaPQQXIuxFk2YJoNWWNCe5oKtmF125kZgFX8wYnszIVgreAGgf3Se+monR2waCad3RZ1bNq/6Qv+YcaX3s60mnwZ+Qu+pDpD6/WeAf1FqwcoRs2sazYYjXJ1dLouFD8zvlNhfJmZCsF6rg9OjAR7a77NlpQAwv+VuJJZg4MaiYXMz6/+SlPKWUZBSrgHWCe2wEWZPrjNjWmJSOSx8oCclmqhIRgO01ldzoLX0UTGlxkqtDiaX1rgRWOURm/pHYNNUaNZ4nru5RDSeNGzTmE2RTAghntj6ohDiccBfOpHKF72fs1nmGL2w4FGbmgu20tHoIbweNyThaitSSk6PBnhkfwvC7uGEKbT6ZeYrEj0Szq7+EdiMKjTrhNc/FsBhYMuNbIkZ/xqtS+JrwJtoSYgPAO8BnjFAtrLD7HpbZ8YCPHibfc0FW0kvjnd7m7GngtG5ZeaX18vmdAdaYdHBiSWzxeD06LztI+GavS7cTod51ofRAHd3NRrWciNb+O8l4CjwA6AP2J/6/ehOLXEVmamtdlLvcZpyIvEH17g2v2LrXd5WzCw7s1lfq4zGs0EzbZlZv0yPhHtkf4utI+GEELQ3mNNydy2a4Nz4oqEttLc9kQghbgfapZRf2PL6Y0KIKSnlaMmlK0O0EGDjY/X1he/hslr4zAte6B8LsLfRQ2+L1/B7lwq91cHSasyQSJ9MXE9Fwhm5CJYKs7qivnljkVhCGrrJyWbj+FMgnOH1tdR7u0YI8dNCiEtCiKQQ4kQh17IbZjVk6h8N0Fjj4nBnefhHIP1EYqxiTiZT+SMHysc/AuZHFUJ5+Ed02k1KSjw9Oo/T4NbE2RRJX6okyruQUg6gmboK4SLwE2imsorCrIZM58aXONHbbGtzwVY8riqavC7DH9YbC6ssrsZ40CY9xHPFChWqT4/O095QzX4L9o7PF7NMhefHlziyt4FaA4vcZlMknizv1RRyUynlsJTyciHXsCudjcZnvEZiCcbmlm1d5nw7zIg00luXltt4mt0zR/ePPHpgT1mc9MzoiiqlZNgfMnxuZlMkZ4UQt9TUEkL8EloUlyEIIT4jhBgQQgzMzc0ZdduSoWe8Glkc7/J0mKSkrMxaOmZ0Shz2h3AIuNPGUUWZ0FsdmBVVeGVmmcBKtGwi4cyI0pwNr7O4GuNgh7HPerazz2eBrwshfo5NxXECcAMf3+nCQoiXgI4Mb/2OlPL5XAWUUj4LPAtw4sQJ89vhFcjm5Frb2AGWGn0HfagMFUlno4eLk0FD7znsD7G/tQ6Py75l+DOx0erAJEWi984ol0i49BOeUc+e/qwf7DB2k7OtIpFSzgCPCiHehxYGDPAtKeXLuVxYSvlkEeQrOzpMSEoc9oeodVfR4yufCCOd9gYP88tRovGkYfXDhv1h7rNRD/F8MLNT4unRAN2+GrrLZJ6a4XMa9mvxUQcN3jTu6I1JNbR6xQBZKgIzjrvD/jB3ddSXlaNdpzNNMRuxAAVXY0wurfFzD/eU/F5m0N7g4WZg1fD7JpKS18cCfPBop+H3LhVmdEUdmQ7R1VRDY42x3dBNSXEWQnxcCDEBPAJ8SwjxPTPkMAOji+OZ5XwzCqPLnw9Pl6+ZEFInEhOiCoemQoQicR69vTzMWmBOV9QRf9hwsxaYpEiklF+XUu6TUlZLKdullO83Qw4zMLo43sTiGuH1eBkvfMZ2StyI2CrT8Wxv8BCKxFmNGlu/rNz8IzpG9iBajycYnVs25Vkvj6JLNsPIjNehMna0w6ap0LATiT+Er9ZNW321IfczGrMqVJ8eDXCgtZa2BmMCUIzCyJa778wuE09KDnZWyImk0jGyIdPQVAghjI/iMIqGGic1rioDTyRhDnXWl0WeQybMyG6PxpOcvb5g27a62TCy5e6I7mg3OPQXlCIxhY6GavwGZbwO+0Pc1lKL121clquRCCEMyyWJJ5JcnglzyIQH1SjMiDQanFhiNZooi7IoW+lo9LC0GiMSK31X1GF/iGqng9tMqAqgFIkJGJnxOjwdKluzlo5R2e3X5leIxpNlPZ5mZLeXY0FRnQ4DG1yNTGvRmVUmRGcqRWICRoUAhyIxxhfWOGSCzdRIOhqNUSTl7m8C8LqdNHichp5ITo8GONxpTG9xozFKMevRmWaZsJUiMQGjJpduMy3X0F+djpTPKZksralw2B/GVSUMb6JlNEYpZtDqwL15c7EszVpgXMvdueV1AitR0zY5SpGYgFF26HIujZJOR4OHeFISWClt/bJhf4gDrXWGZdCbRUdjjWHBIG/dWNR6i5epIjF602iGox2UIjEFozJeh/0hmryuDVNauWKkYi7X/JF09GAQIzg9GqDKIXjwtvIqya9TV+2kvrr0psLNTaMybVUMRmW8DvtDHOpoKNtQVR0jQlYDy+vMhtfL/nQH2olkbnmdmAGtDk6PznN3VyP1BvUWN4N2A0yFI9NhOhs9NHnN8TMpRWISpc54jSeSjEyHy94/AptJdKUs7aEXw6sERdLZ6EFKrSR5KVlejzM4ESxb/4iOEbkkZjraQSkS0yi1Q/N6YIX1Mg9V1dlTV427ysHkUikVibmmAyPZ26SVnZkq4XgCnL2+QDwpyzIRMZ3ORk9JxzIaTzI6t2x4xd90lCIxiX3NNUwsrpYsKXFoYwdd/gufwyHoaq5hfKF0VWuH/SHa6qtpqSvP0ijpdDdriqTUVYD7RwO4qgT3l2lJfp3uZi+z4fWSJSWOzi0TS0h1IqlEenxeVqIJFkoUaTTsD+GqEtzRVv6KBDTFPL5Qul3fkL/8Ezt1upprEALGF0urSE6PznNvTzM17vJqELYVvb3BRInGc2Ta/EKiSpGYhN5k6maJdtFDU5URqqrT4/OWbOHTTQeVokiqnVV0NHhKqpiXVqNcmgqVvX8EoNunnfBKNZ7D/jDuKnNKo+hUxipjQbpLrEgqJVRVp9vnZWk1RihS/LIz78xqpoNKMBPqdDd7S2oqfP3aAlJS9v4R2HzWS7XRGfaHuKO9DmeVecu5UiQm0d2cmlwleFgrKVRVp5TjqZdGOVIBEXA6+3w1JTVt9Y8G8LgcHO9uKtk9rEJrXTUel6NkPqeR6bDpz7pSJCZR466itb66JCeS4QopjZKObioshflAr6ra12Ke6cBoenxepkMR1uOlcRCfHp3ngT5fRZhehRDsay6N6XV+eZ258LrpbSLK/3/RwvT4vCVZ+Ib8QaAych50Nu3QpVDMIe7qqDfVdGA03c1epITJxeLPz7nwOldmlsu2LEomuksUDDJikfymynkyLEiPz1uyE0l7QzW+Mqymuh2NNS7qq51F3/XpVVXLuQdJJjbt+sVf/PrHtLLxleAf0dE2jcUP99cjtiryRCKE+BMhxIgQYlAI8XUhRPkbSjPQ7fPiD64RjRe3FMVwBYWq6ggh6PYV30E8E1pncTVWUY52KO0Jr390nvpqJ0cryPTa7fMSXo8XvQfRkEXym8w6kbwIHJVS3gNcAX7bJDlMpcfnJSmLm0G8Hk/wzuxyRUVs6XT7aoq+g66UCspbaa/34K5ylMSu3z8a4KH9vooyFe5rLo0Pb8QfNjWjXceU/0kp5QtSynjqr2eAfWbIYTalyCW5OrNMPCkrbuGDzZDVYpoP9IgtKzysRuJwiFSSZ3EVyeTSGtcDqzxSQWYtSAsGKaJijiWSvDO7bInTshW2BL8IfMdsIcygFIqkUnfQAD0tXtbjSeaKWGxw2B+iq6mGxpryrU67HftKEAyit9V9pAzb6mZDNxUW81kfm1shmkhawn9XMkUihHhJCHExw88zaZ/5HSAOfCnLdT4jhBgQQgzMzc2VSlxTaKuvxu10FHXXN+wP43GZm+VqFhu5JEXc9VWiv0mnpwS5JKdH52n2ukx3DhtNvcdFk9dV1Gd9w9FugROJs1QXllI+me19IcQvAB8BnpBZbBFSymeBZwFOnDhR2l6qBuNwCLqba4q6SxnyB7mro4EqR3n3IMlE+q7v/t7CGyVFYgmuza/w4bs7C76WHelu3qwW0FCEfiFSSvpHAzxyoAVHBc5PrYxP8U54Q6l6egdazW/9bFbU1geA3wQ+JqUsbWU4i1PMEGAtVDXMYQvsUMyg2A7Ny9NhkrIyzYSQFgJcpPl5PbCKPxipOP+ITrHLzoz4w9zeVo/LAkELZknwZ0A98KIQ4rwQ4i9MksN0un1ebgaK4yD2ByME12IVu/B5XFW01VcX7WGtZH8TFL9agO4fqYRCjZnY56thcnGNZLI4hpWR6RCHLGIiLJlpKxtSytvNuK8V6UmLLy+0Taa+8FVi6K9OdxFPeMP+ELXuqo0FtdLQfU7FKn9+enSetvpq9leg/w608YwmksyEI3Q21hR0rYWVKDMh69TTM/9MVOEUswrw0FRlhqqm091cw0SR7NDD/jB3ddRXpD0foNHrot7jLMrc1P0jjx5oQYjKHM9invBG/NZxtINSJKZTzMk1PB2ix+elrtqUg6Yl6ElVC4glCqsWIKVkeLpyI7Z0imXXvzq7TGAlWlFlUbZSzE3j8LRWY+ugBUJ/QSkS0yn2iaSSSp1nYl+RqgVMLK4RjsQrqoJyJooVaXRhfAmA+3orshoSAHubPFrnySI963vq3LTWW6P1s1IkJlNX7aSl1l2wIllej3M9sFrR/hHYtOsXOp5Dyt8EpMrOFKFawJA/lMpvMj9U1SyqnVV0NniKkpsz5A9xeG9jEaQqDkqRWIBiFBvUbaYVv4NuKY6pcGgqhENYx3RgFt2+4lQLGJoKcbBC85vS2VeEZz0aT/LObNhS1gelSCxAMXJJhpQiAaCjwYOrShS86xvyh7htTy017qoiSWZPitEmVkqZ2kFX9twE3edU2Cbn6myYWEJa6rSsFIkF6PF5mVxaI16Ag3hoKkSz10VHg6eIktmPKodgb1Ph1QKGpqxlOjCL7iIkeW74myy08JlFj8/LTDhCJLb7zpOXpqy3aVSKxAL0+LwkkhJ/MLLra+g7vkoNrUynx+dlogBFElyNMbm0phY+YF9z4cUG1Wl5k25fjdZ5soBgkKGpEDWuKku1flaKxAIUGrkVTyQZmQ6rhS+F1h+7gAdVLXwbFKNawLA/hBDmd/GzAsUoOzPkD3Gos95S/ialSCyA7iDerSIZnVshGk+qhS9Ft6+GhZUoy+vxnT+cARWx9W60EOACFr4pzd/kdVdufpPOZoXq3W10pJQMT1nP36QUiQXQHcS7VSRD/iAAhzuVTR/Skzx3N57D/hB76qotE6NvNt0F9iUZ8oeUUk6ht47Yrel1fGGN8Hrccs+6UiQWoMoh6CrAQTw0FcLtdHCg1To2UzPZdBDvfjyttuMzk+7mml1XCwiuxZhYXFPjmULvPFnwptFi46kUiUUoJJdkyB/iYEd9RfXAzkYhPqdoPMnVWeVvSqe7gGoBqpDorXQ3795UuJnfZC1/k1p5LMJuc0mklNoOWj2oGzR7XdRVO3dVvPGd2WUtRt9iOz4z6S6gHtyQBUNVzaanAFPhkD/EgdY6PC5r5TcpRWIRenyb3ejyYToUYXE1ph7UNITQzAe7OeEpR/utFHLCG/JrNaHa6is7vymdbl8NwbUYwbX8nnXQckis+KwrRWIRdusg3tjxqYXvXXTvMtJoaCpUsT3vt6OQagFDU6qC8lZ268NbWIniD0Ys+awrRWIRdhtfrnqQZEYvRZFvscEhf1DVhNqCHgyS79zc8DdZcAdtJvqznm/DMN3fdMSCFReUIrEIu80lGfKH6Gup7B4kmejx1bAWSzC/HM35Oxv+JrXw3cJugkE2/E1qk/MudmsqvDSlRWwdskgzq3SUIrEIDR4XTV7XrhSJWvhuZTfFBieX1gipmlAZ2U21gKGNHbQaz3Qaa1w0eJx5O9yHpkJ0NHhoqbNefpMpikQI8QdCiEEhxHkhxAtCiL1myGE1tMit3CdXKBLjhupBkpHdmApVhNH29Pi8LKxEWcmjWsCw6kGyLbvx4Vl502jWieRPpJT3SCmPA/8E/HuT5LAU+ZoPRvxau02rTi4z2Y1Dc9gfVjWhtqHbpxVvzGfxG5oKcZfyN2WkJ89nPRJLMDq3YtnTnSmKREoZSvtrLVBY+7UyocfnZWJxlUQyt+EYStlMreh8M5sadxV76qrzMh8M+YOqJtQ2bHSeDOS2+G30IFGn5Yx0p1oYJ3N81i9Ph0kkretvMs1HIoT4QyHEOPBzqBMJoCmSWEIyHcqtnPyQP0RLrZs2VRMqI92+/EpRqIVvezbC03P0k0wFIwTXVH7TdnQ31xCNJ5lbzq3zpNUrUpdMkQghXhJCXMzw8wyAlPJ3pJTdwJeAX89ync8IIQaEEANzc3OlEtcS5LvrUz1IspNP1drgWozxBVUTajuaUtUCcjXHqPym7OTrwxuaClFX7dxYI6xGyRSJlPJJKeXRDD/Pb/no3wE/meU6z0opT0gpT7S2tpZKXEuQT1JiLJHkyvSyelCz0N3sxR+M5NR5Uu95r5LnMpNvtYChKdWDJBv5hgDrp2WHRf1NZkVt3ZH2148BI2bIYTU6mzxUOXIrJz86t0w0oXqQZKPbV5Nz58mNUFWlSLYln0ijIX+Q21pqqVX5TRnpakoFL+Tgw0skJcMWjtgC83wkn0uZuQaBp4HfMEkOS+GqcrC3yZOTIlGmg53JZ9c3NKXVhFI9SLZHLzaYS7WAIX+IQxZe+MzG46qivaE6J8V8I7DCajRh6WfdlO2ClHJbU1alk6tdf2gqRLVT1YTKRj4hwFr7UuVvykZ3s1YtILASZU+WpDjd3/TJB3oMlM5+5Frx2+qOdlCZ7ZYj1/hy1YNkZzobNVPhToo5Gk9ydWbZ0g+qFcj1hDdig4XPCnQ3e3PqlHhpKoTTIbij3bqJnWoVshjdPi/zy9kziDdi9NWDmhVnlSPVeTK7HXrD32Rh04EVyDUYRPmbcmOfz4s/FCEazx4MMjQV4va2Oqqd1upBko5SJBajJ4caUVPBCEurMbXw5UC3b+dII93fZNWsYauwr1mvWptdMQ+n8puUvyk7PT4vMofOk3bYNCpFYjF0RZItl2SzJpTKaN+J7mbvjuW6VU2o3NCrBeyU56Tym3Kju1mL3MpmKpwNR5gLr1u+eoVSJBajJwc7tIrRz51cTIVDflUTKld6fDVZT8sqvyl3cqlQbZfoTKVILEZjjYt6T/YMYhWjnzubTYQymw9UTaj82CmXROU35U673nkyiw/PLq2flSKxGEKIHcMCVYx+7ujmg+0Us1/3N6nxzInuZi9TS9tXC7DLDtoKVDmE1udlB+tDV1MNjV6XgZLlj1IkFqS72cvV2WWCa7Fb3tuoCaUe1JzYyXygFr782KlagMpvyo99zdlNhUP+kC2CQJQisSDvvWMPE4trPPyfTvFbXx3k4mRw4z0Vo58fLbVu9tS5+b9evMLnvjPC9JYFcMiv/E35cGe7Nk6f+eKbfPei/5Yy6Cq/KT96fF6uzIT569PXWY2+24+3sh7n2vyKLZ519b9tQX7+4V6++evv5WPH9nLy/CQf+fxrPPPn/8xXBsZ56+YSoGL0c0UIwV//4oO85/Y9PPuDUR7745f5t8+dZzilkIemQsrflAf39jTzp584TiSW4Ff/9i0++N9/yDcvTJFISpXftAt+6b23cbizgf/zG5d45D+/zB9/d4TZVBuJkekwUtrjtCxyqZtjFU6cOCEHBgbMFsNQgmsxvvbWBH975gajcysA7Klzc/Z3nlThlXlyI7DCF167xnMDE6zFEjx2xx6G/WEeus3Hn//cfWaLZysSSck/DU7x+Zff4Z3ZZQ601vKpB3v4j98a5g+eOcKnH+kzW0Rb8eaNRf6/H47x3UvTOB2Cjx3rosnr4i9fu8Zrv/m+jRye3SKEeFNKeaJI4t56faVI7IGUkjNjC/z9Gze5s72OX3/8jp2/pMjI0mqUL71+k786fZ258Dq/+YGD/NqPHTBbLFuSTEq+c3Gaz798lZFprfXzV3/tEe7v9ZksmT3ZutlprHFx/t8/VfCmUSmSNCpZkSiKz3o8wenRAA/2+ZRpq0CSSckLQzOcu7nI//7+u3ApH0lBLK1G+fs3xmmpdfMzD3QXfD2lSNJQikShUCjyp9SKRG0bFAqFQlEQSpEoFAqFoiCUIlEoFApFQShFolAoFIqCUIpEoVAoFAWhFIlCoVAoCkIpEoVCoVAUhFIkCoVCoSgIWyUkCiHCwGWz5ciBPcC82ULkgJKzeNhBRlByFhu7yHmXlLJkJa7tVhficimzM4uFEGJAyVk87CCnHWQEJWexsZOcpby+Mm0pFAqFoiCUIlEoFApFQdhNkTxrtgA5ouQsLnaQ0w4ygpKz2Cg5sZmzXaFQKBTWw24nEoVCoVBYDSmlIT9AN/AKMAxcAn4j9boPeBG4mvqzOfX6U8CbwAFbWjUAAAYNSURBVNupPx9Pu9b9qdffAf4HqZNVhnv+duozl4H3W1FOoA9YA86nfv7CBDn/EBgHlne4p9njuaOcZo8n4AW+BYykrvO5Yo2n0TKaPZap974LXEhd5y+AKovOzR3ltMJ4pl3zG8DFos3NXP4hxfgBOoH7Ur/XA1eAw8AfA7+Vev23gD9K/X4vsDf1+1FgMu1abwCPAAL4DvDBDPc7nPqPrQZuA0a3m4Qmy9mX7T/UIDkfTl0v2wJthfHMRU5TxxNtkX5f6nc38MNizU8TZLTC3GxI/SmArwKftOjczEVO08cz9dpPAH+3nSy7mpv5/qOK9QM8j6Y5LwOdaQN2OcNnBRBI/cM6gZG09z4F/D8ZvvPbwG+n/f17wCMWlHNXk6tYcm55PdsCbep45iGnZcYz9d5/B36lFONpgIyWGUvABXwT+ITF52Y2OU0fT6AOeA1NWWynSPIeT1N8JEKIPjSt+TrQLqX0A6T+bMvwlZ8Ezkkp14EuYCLtvYnUa1vpQjOD7PQ5s+UEuE0IcU4I8X0hxGP5yFgEOXPF7PHMB0uMpxCiCfgocCrDdwoaT4NkBAuMpRDie8AsEAb+McN3LDE3c5ATzB/PPwD+K7Ca5TZ5j6fhme1CiDq0o99npZQhIcROnz8C/BHwtP5Sho/JTF/N8XNmy+kHeqSUASHE/cBJIcQRKWXIIDlzxezxzBVLjKcQwgn8PfA/pJRjmb6a4bWcxtNAGS0xllLK9wshPMCXgMfR/AHv+mqGyxk+N3OQ09TxFEIcB26XUv6blELa9qsZXss6noaeSIQQLrSB+JKU8mupl2eEEJ2p9zvRNLr++X3A14F/IaUcTb08AexLu+w+YCrD7SbQnFQ7fc5UOaWU61LKQOr3N9HskXcaKGeumD2eOWGh8XwWuCql/NNtbrer8TRSRguNJVLKCJqD+JkMt7PM3MwmpwXG8xHgfiHEdTTz1p1CiFcz3C7/8SzUXpfrD5qW+xvgT7e8/ie822H0x6nfm9AcPj+Z4Vpn0RyvuhP7Qxk+c4R3O4zGyM0BZ7ScrbpcwH5gEvAZKWfad7P5HkwfzxzlNH08gf+I9tA7ijmeJsho6lii2fN1H4AT+DLw61abm3nIafrcTPtuH9v7SPKfmzv9I4r1A7wX7Xg0yGb424eAFjT77NXUn77U538XWEn77HmgLfXeCeAimkb/MzYTKz8G/H7aPX8n9ZnLZIhKsYKcaDbMS6n/uLeAj5og5x+j7UKSqT9/z6LjuaOcZo8n2u5NooVq6q//cjHG02gZLTCW7WibscGUHJ8HnFabm7nKafZ4brlmH2mKpNDxVJntCoVCoSgIldmuUCgUioJQikShUCgUBaEUiUKhUCgKQikShUKhUBSEUiQKhUKhKAi79WxXKEqCEEIPpQToABLAXOrvD0opo6YIplDYABX+q1BsQQjxe2hJj//FbFkUCjugTFsKxQ4IIX5BCPGGEOK8EOJ/CiEcQginEGJJCPEnQoi3hBDfE0I8lCrGNyaE+FDqu78shPh66v3LQojfTb1eL4T4jhDighDiohDip8z9VyoUu0cpEoUiC0KIo8DHgUellMfRzMGfTL3dCLwgpbwPiAK/BzwB/DTw+2mXeTD1nfuAn00Vz/sQcF1KeUxKeZRbC/wpFLZB+UgUiuw8CTwADKSqrdawWWJ7TUqpK4C3gaCUMi6EeButBIXO96SUiwBCiJNoJS9OAZ8TQnwO+KaU8p9L/i9RKEqEUiQKRXYE8AUp5f/xrhe1EuzpDvgksJ72e/qztdURKaWUw0KIE2gnkz8RQvyTlPI/FVd0hcIYlGlLocjOS8DPCCH2gBbdJYToyfMaTwshmoQQXrTy4v8shOhCc+h/EfhvaGYvhcKWqBOJQpEFKeXbQoj/ALwkhHAAMeBXybHfRYrX0HpkHwC+KKU8n3LGf04IkUQ72fxqkUVXKAxDhf8qFCVECPHLwFEp5WfNlkWhKBXKtKVQKBSKglAnEoVCoVAUhDqRKBQKhaIglCJRKBQKRUEoRaJQKBSKglCKRKFQKBQFoRSJQqFQKApCKRKFQqFQFMT/D7jBwS4RS9YTAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(data_MLO[\"Date.1\"],data_MLO[\"CO2\"] - data_MLO[\"seasonally\"])\n", "plt.xlabel(\"Temps (Année)\")\n", "plt.ylabel(\"CO2 (ppm)\")\n", "plt.xlim([2020,2024])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Analyse des données\n", "\n", "Bien que le fichier d'origine nous fournisse un jeu de données pré-traitées; nous allons désormais tenter de retrouver ces résultats en:\n", "- identifiant la composante lente en un polynôme de degré 2 en fonction du temps\n", "- identifiant par la suite la composante périodique en effectuant une analyse spectrale une fois la composante lente enlevée." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Composante lente\n", "\n", "on considère un polynôme de la forme $C(t) = a + b t + c t^2$. Nous allons appliquer une régression linéaire (grâce à [`np.linalg.lstsq`](https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html))\n", "\n", "Commençons par récupérer les tableaux numpy" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "temps = np.array(data_MLO[\"Date.1\"])\n", "CO2 = np.array(data_MLO[\"CO2\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pour que les temps soient de taille plus raisonnable, nous allons soustraire le temps initial à tout les temps afin de commencer à zéro:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "temps = temps - temps[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Construisons ensuite la matrice qui nous permettra d'effectuer la régression linéaire:\n", "\n", "$$ A_{i,j} = t_i^j $$\n", "\n", "Cad,\n", "$$ A = \\begin{bmatrix}\n", " ... & ... & ... \\\\\n", " 1 & 2020^2 & 2020^2 \\\\\n", " 1 & 2020,1^2 & 2020,1^2 \\\\\n", " 1 & 2020,2^2 & 2020,2^2 \\\\\n", " ... & ... & ...\n", " \\end{bmatrix}$$" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[1.00000000e+00 0.00000000e+00 0.00000000e+00]\n", " [1.00000000e+00 8.50000000e-02 7.22500000e-03]\n", " [1.00000000e+00 1.67200000e-01 2.79558400e-02]\n", " ...\n", " [1.00000000e+00 6.62536000e+01 4.38953951e+03]\n", " [1.00000000e+00 6.63356000e+01 4.40041183e+03]\n", " [1.00000000e+00 6.64203000e+01 4.41165625e+03]]\n" ] } ], "source": [ "A = np.column_stack([temps**0,temps, temps**2])\n", "print(A)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous pouvons à présent résoudre le système linéaire: $$ Ax = b$$" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Estimation des coefficients de la régression: a = 314.830 ppm, b = 0.734 ppm/annee, c = 0.014 ppm/annee^2 \n" ] } ], "source": [ "param = np.linalg.lstsq(A,CO2,rcond=None)\n", "a,b,c = param[0] \n", "print(f\"Estimation des coefficients de la régression: a = {a:.3f} ppm, b = {b:.3f} ppm/annee, c = {c:.3f} ppm/annee^2 \" )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous allons désormais afficher le CO2 au cours du temps et y superposer notre estimation. Commençons par définir une fonction qui renvoie la composante lente:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "def CO2_comp_lente(t):\n", " return a + b*t + c*t**2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ajoutons une nouvelle **colonne** à notre jeu de données avec notre estimation:" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "CO2_estimation_lente = CO2_comp_lente(temps)\n", "data_MLO[\"CO2_comp_lente\"] = CO2_estimation_lente" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Enfin, nous pouvons afficher notre estimation:" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,'CO2 (ppm)')" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl4VeW1+PHvyhwSkkAmCAHCPM8IOCtiRZw7WG2rXLXaWturrW1vbXt72/60tdr2dq7XttZWq5Y6VBxwQnEGZIYwBgIhJJA5IYGMZ/3+ePfJPtCAwXJOErI+z5Nnj2eftVvMyjuLqmKMMcYcLaqrAzDGGNM9WYIwxhjTIUsQxhhjOmQJwhhjTIcsQRhjjOmQJQhjjDEdsgRhjDGmQ5YgjDHGdMgShDHGmA7FdHUA/46MjAzNy8vr6jCMMaZHWb16dYWqZn7YfT06QeTl5bFq1aquDsMYY3oUEdnTmfusiskYY0yHLEEYY4zpkCUIY4wxHbIEYYwxpkOWIIwxxnTIEoQxxpgOWYIwxhjTIUsQxhjTUzTWwa+mwd+vi8jX9eiBcsYY06tsegqqdrmflkaITQjr11kJwhhjeoq9K/39im1h/zpLEMYY01MUfwApg9x+zd6wf50lCGOM6QkOV0PlDhg93x0fqgj7V1qCMMaY7mr1w/DoJ6CtFSoK3LlhZ7ttQ/gThDVSG2NMd/XCnRBohZ2vQ1MdACvrM5lIIlp9gKQwf72VIIwxprsKtLpt1S6oLgTg5sVl1EalEtNYFfavtxKEMcZ0R00H/f2aIvYXbaNJsxg+KJvUGd8mvn9O2EMIewlCRKJFZK2IPO8d3y8iW0Vkg4g8IyJpIffeJSIFIrJNRC4Kd2zGGNNtHdzv79fsIaN2EwdSpvDITbPpM3shjLow7CFEoorpdmBLyPGrwERVnQxsB+4CEJHxwDXABGA+8DsRiY5AfMYY0/WaD8HzX/PHOhwsBaAtOgEt30pMw35mnTaH5PjIVfyENUGISC5wCfDH4DlVfUVVvYo1lgO53v4VwBOq2qSqhUABMCuc8RljTLdR8Cqs+hM8eRMAWr0bgHebRyGVXg+m/sMiGlK4SxC/AL4JBI5x/UZgibc/CAgd+VHsnTuCiNwiIqtEZFV5efnJjNUYY7rOnvfcVgOoKuvffYkqTaY+5wz/nn55EQ0pbAlCRC4FylR19TGufwdoBf4WPNXBbfovJ1QfVNWZqjozMzPzpMVrjDERtW81FK1w+031sOIBALT+AHc9uZ708pUc6DeD+WfN8T/TL7IliHBWZp0JXC4iC4AEIEVEHlXVz4nIQuBS4AJVDSaBYmBwyOdzgZIwxmeMMV1DFf4w1+1/vQDWP9Z+SQItbF/3FoNjy9E5FyP9hvqf69M/omGGrQShqnepaq6q5uEan1/3ksN84L+Ay1X1UMhHFgPXiEi8iAwDRgEr/+XBxhjT0wXbFIL7FTvc/sRPAvDQ9N0ASN7ZkDbEXYuK/KiErhgo9xugL/CqiKwTkQcAVDUfWARsBl4CblPVti6IzxhjTq62VihY6koOAKXr/Wu1xbSVbWVz/BTeyboGgLQdT0FiP8gaD8mZcNmv4D/XRjzsiKQkVV0GLPP2Rx7nvnuAeyIRkzHGRMx7v4KlP4DPPgWj5sHeFe2XDlfuoalkOxtaZ5Aan+1ONtbAmAUQ5f0NP2NhFwRtU20YY0z4lW12232r3HbHqzD6YgIJabz33tukaS3Tp07j4lmTICbR3ZM5pmtiDWEJwhhjwq3O629TudP1WKoupDF7KoXNaUxuXgfA6PHTQQQSUty9aUOP8bDIsQRhjDEn2+FqaG3yj71Bb9QWQ7lbCS5+4HhIzSVTaty1dK/2fdi5bpsxOjKxHoclCGOMOdl+kgePfdrttzT6JYi6YvZsXg6ADJjEiBFeNZJE+aOkr/gN3PgKDD2DrmYJwhhjTqZD3jTcu95w2/ynAYWBUwnUlrDinddokCQ0bSikepNFJGVCTLzbj4mHIbNddVMXswRhjDEnU3BMA7jSQ/4/IW0o67MuJ0pbmRu9ntjcaUhUFKR6Y4NjE7sm1g9hCcIYY06miu3+ft0+KFnD9qTp/GLVYQAytJK43KnuelKG246cF+EgO8cWDDLGmJOpMqQEUb4NGspZG92PIcPGugmFADJGue2w8+DKB2DixyMdZadYCcIYY/5dAW/CalUoeB1i+wDQvOttAK6ceyb/fd0l/v3t02dEwdRr/faHbsYShDHG/DtWPQT3ZLvG6dJ1cGAjref/NwBFa14BID5rBDHxIe0MqUO6ItITZlVMxhjz73jrZ9DWDFsWu0FwwO2bhvMDTWFkqzcpX3Adh88sctN8p4/omlhPkJUgjDGmswIBWHavP/BNFZpdUqCmiMayAg5KMksK24hK9RbLTEh1E+8BjL4Izv92t+jC2hmWIIwxprP2b4BlP4Z/3OCOq3a5ifUAaovZsW0TuwNZ/P5zM+if6zVER3iRn5PJqpiMMaazgpPtVe1y2+CsrAlpUFvM2NgD1A2bzKQJA6DUq0YKliR6ICtBGGNMZ1UVHnm841VaY5PZkHgaun8jsXVFpI+c6a7lTHPbHtLe0BErQRhjzLG8/1toa4Gz7nDHtXvdtrEG6svR/Gd4rO1jxEUlM7mpzl3LGu+24y6D65+FgVMjH/dJYiUIY4zpSGMdvPxteO1//PmVava2X359yT8QlIr0GVxx7mz/cyk5bisCw8+DxLSIhXyyWYIwxpiONJT7+6XrXHIoXQ+DXTI4sN6NcbjtkxeTmBlSjdQ3J5JRhpUlCGOM6UhDhb9fXw5rHwEU5rpBcPP7bAUgPmvkke0MffpHMMjwsgRhjDEdORSSIBrKaCleS13fkTB4FgD9mkvdbKxxffypMxLSeswYh86wRmpjjOlIfVn7bkNlCdWF+WxszWVyfYBBSVnQUOaXHKKi4eY3/BHTpwgrQRhjDLi1G1b+AVqb3XHR+5DYn5akgaxcu5bstv1MmDSDQWmJ/kI/wWVCAQZNP6Wql8AShDHGOMt+BC9+HfKfccf7VlOVeRpbGpI5K/ABsdLGkCnnuWsS7bbpo7ok1EixBGGMMQAH8t22Zg+0tUL1bvZGDeJgTD9iaXXXBkxy22AJIu+syMcZQdYGYYwx0D7WQQ9soqQwn0GBVqZMmUFrWhusWwkSBUlZ7t6L74fTPg8DJnZhwOFnJQhjTO/05E3w+t3+ca1b7q28YC1//uvD7tyQ04lJHej2E1Ih2vubum82DDsncrF2kbAnCBGJFpG1IvK8d9xfRF4VkR3etl/IvXeJSIGIbBORi8IdmzGml6raBZuehLfud43TzYegoYwAQnrTXj6eXYomZ7teSllj3Wca67o25i4QiRLE7cCWkONvAUtVdRSw1DtGRMYD1wATgPnA70SCLUHGGHMSlYX8SqrbR3nhBgDeC0wkWpTxuhNJG+quD5jsthOujHCQXS+sCUJEcoFLgD+GnL4C+Iu3/xfgypDzT6hqk6oWAgXArHDGZ4zpJepK4d1f+mtHV+8JuVbC2ndeBGDQdK/iomI7pA12++kj4IYlcOUDEQy4ewh3CeIXwDeBQMi5bFUtBfC2XqsPg4C9IfcVe+eOICK3iMgqEVlVXl5+9GVjjPlXz98Br37PzakE/opwAAdLmdf6Jo1Z0xg27QL/fOpgf3/oGRATF5FQu5OwJQgRuRQoU9XVnf1IB+f0X06oPqiqM1V1ZmZm5r8VozGml2g66LbBrqzVuzmY6BbyOVS6jagDm0gYM9fvpQR+CaIXC2c31zOBy0VkAZAApIjIo8ABERmoqqUiMhAIjmcvBkL/H8kFSsIYnzGmtxDvb+GK7QQCSvXeLaxqGMDZMVXE730HAq2uraHvAP8zwTaIXixsJQhVvUtVc1U1D9f4/Lqqfg5YDCz0blsIPOvtLwauEZF4ERkGjAJWhis+Y0wvoQplmwFoq9rNz//0F9Ibi4jNmUhi+mCii5e7+9JHQnyy/7n+w7sg2O6lK8ZB3AtcKCI7gAu9Y1Q1H1gEbAZeAm5T1bYuiM8Y09PVl/tzKlXtgkOVAJTu2U7bnvcBOP+67yIpA/3PHD3RniWIyIykVtVlwDJvvxK44Bj33QPcE4mYjDGnqPpy+OlIOP3LcNE9sP4JVKKREXPJ2beahaOaoGIgkpwJqa4dguRsv/Rw63vQcviUmrb7o7KR1MaYU8uOl9123d8AKNu+gn0xg2kbcjpRh6sYUL8FMrxJ9oLtDCkhq8BlT4DcmREMuPuyBGGMObXU7gNAmw/x+zcKaCndxM6oPBqTvNJC+VbIGO32U7ye9DGJXRBo92cJwhhzajnoOj9KWxNPv7KUQVLJGWecQ1LWMP+eYILIOxOGngmX/KwLAu3+LEEYY3q24tXwQchkDXV+7/j/N6oAgNiBk/zSAvhVTP3y4IYXIXt8BALteSxBGGN6tr9eDi/cCVWF7rhsC4czpwAwh43uXMaoI8c4BEsQ5rgsQRhjeo7mQ7D4K1DjzcoTCEBzPQDblz/Pn59aDLV7SZx0ubte9L5b/S01160bHdQ3B/PhbMEgY0zPse1FWPNXlyg++Seo2NZ+afX7b5DaJxmNjkNm/AeseAAayl1yiI51N33xXbdudJT9bdwZliCMMT1HcLK9w9UAtG57hRigTNOYklTF6ByQQ2MhKcN1YW0oP3IA3Cm+AtzJZmnUGNNzlG1127p9aCBA6VsPsSYwkpr+UxmX0kRM5Q7IHOPuCbYz9LM5lT4qSxDGmJ6j3KtSqtmLHCxhcMtuYid/ktEjRiBVhVBbBBlegsga57Y26d5HZlVMxpjuq6YINOCqiRoqobaIxvgMEpoqwJtTadLMs2H3O9B62H0m0ys5zLoF4vrA+N63EtzJYiUIY0z39YtJ8MspEAgQKHHtD483zABAC15192SM8edUCh4DxCbAaZ937RHmI7EEYYzpnqp2te827NvEE0uWAqAjLwRACl6DxH4uAWSHND7bLKwnjSUIY0z30NoEm5/1140uXtV+6b7Hl9BavoPm6CRuuPoT7uShSldaEHHtDbF9IHtSr1waNFysDcIY0z2sfxyeux0u+jGc/iUoXd9+6aKcRiYcrCUuZqwrNcT1heaDfntDTDzcubWLAj91WQnCGNM9NFS47d7lqCp7dmziUNpoiE/hjLRaUqvzIWe6KzHE9XH3BtsbABJS3Y85aSxBGGO6h9piANoO1fD1v68lqiyfwkC268G05103pUZwoFuL12Mpa2zXxNpLWIIwxkRea5OrTtq82D9XsR2AfUU7KdrwBoOjyhk397MuQZR71UfBBugLfwhjFsCw8yIadm9jCcIYE3kFS2H1w7DoOlCFohWulABkBMq5Z44CEDX8vCOnyggmiJk3wLWPQ7Q1o4aTJQhjTPgF2txAt6CaIn//UCWs/jMAG9IX0IcmRjflQ0Kam6I7NEHYLKwRZQnCGBN+L9wJ9w+H5gZ3XLu3/dLvnlxCa+E7MP4KJp//KXeyYClkjXcN0v1DVoKzWVgjqlP/a4tIPxGZICLDRcT+HzLGnBivhEDRcretKkSjXPVQyY41RNcVQ9YEf9W3plp/LqWcaW6be1oEAzZwnHEQIpIK3AZcC8QB5UACkC0iy4HfqeobEYnSGNNzBdr8/f0bYcRcmgvfY1nbDD4mK7h9ZAWyW92qb+kj/XuDCSKxH9y+wQ2EMxF1vNLAk8Be4GxVHaOqZ6nqTFUdDNwLXCEiN0UkSmNMz3Ww1N+vKWLZu+8Q11zNtr6zCcQkklm12l3LHANJ6f69wQQBbsru5MzIxGvaHTNBqOqFqvqIqtZ0cG21qt6hqn8Kb3jGmB6nrRU++BNU7nTHXvdVAGqKOD3GHd9y3fVEJWVC3T5AoP8Id89FP3IN1Nm2uE9X61QfMRGZDOSF3q+qT4cpJmNMT7buUXjha+4X/K3vwubFtMUksiVmPOOr9xC/bzkkDyA+a6SbaK+2yJUQYhPc50+/DeZ8yTVQmy71oQlCRB4CJgP5gDeLFgocN0GISALwFhDvfc+Tqvo/IjIVeADXntEKfElVV3qfuQu4CWgD/lNVX/4oL2WM6ULBRX0qtqNtLTRveJpXmqdRrxmMr30FCEDuTJcA0kdCyRp/9bcgSw7dQmdKEHNUdfxHeHYTMFdV60UkFnhHRJYAPwR+oKpLRGQBcB9wnoiMB64BJgA5wGsiMlpV2471BcaYbmDjk9DWAlOvdcfelBm0NfPLh//GHS21VGXM5FPTBhC1dDFUFsC4y9w9Q+bAxkV+9ZLpVjqTIN4XkfGquvlEHqyqCtR7h7Hej3o/Kd75VKDE278CeEJVm4BCESkAZgHvn8j3GmMiqKkenvL6qkz+tBunUFMEUbEQaCGqcBnEwHULLiCqrdH/XHBE9NTPQHwKjJgb8dDNh+tMgvgLLknsx5UKBPf7f/KHfVBEooHVwEjgt6q6QkTuAF4WkZ/iGsnP8G4fBCwP+Xixd+7oZ94C3AIwZMiQToRvjAmb0B5KlTsgPgUtXY9MuAryn2ZhTjGUQVTGCGg66N+b5VVKxCbC5E9FNmbTaZ0Z9PYQcB0wH7gMuNTbfihVbVPVqUAuMEtEJgK3Al/1ust+FQj2hOqo0lE7eOaDXnfbmZmZ1u3NmC5VV9K+21K2jb89/RSCojMWApBa9gHEJLgBcGkhf9BZD6UeoTMliCJVXfzhtx2bqtaIyDJcklkI3O5d+gfwR2+/GBgc8rFc/OonY0x30HQQ3rwPTrvJzZEUUoJ4+MW3OVhThcYKgZyZRMenQFOdq06KioL4ZBhyuhsRHeyxZLq1ziSIrSLyGPAcrooJ+PBuriKSCbR4ySERmAf8BPdL/1xgGTAX2OF9ZDHwmIj8HNdIPQpYeUJvY4wJr43/gPd+Bfs3wPXPQtkWAlGxBAJtxDWUcN3gg0jrKKITkqHvQD9BBN34UtfFbk5YZxJEIi4xfCzk3Id2cwUGAn/x2iGigEWq+ryI1AC/FJEYoBGvPUFV80VkEbAZ1/31NuvBZEw3s9tNyR2cmbVt7wdsDwwmOaqZTw4LkFS8FiZ6a0YnZ0HFNki3Hko91YcmCFW94aM8WFU3ANM6OP8OMOMYn7kHuOejfJ8xJgKq3OjoQNVOtLaE6KL3yJh+O/1rNhBdvsGVGIIN0Ier3TZ0fiXTo3xoI7U3g+tzIlIuImUi8qyIDPuwzxljTjGBQPv0GVEth1j24hOAkjl1AdH9hkCdN/4huH7DpE+67ZgFEQ/VnByd6cX0GLAIV2WUg2tYfiKcQRljuom37ofX7wZVmncug6Y6XmybBcCcwFp3T9Y4SM31PxNcv+HMO+A7+910GqZH6kyCEG/Svlbv51E66H5qjDnFNNW75PDW/RQXbmXxU4/SrNFUjL0OgKSiNyF1CCSkuG1QsDuriBvnYHqsziSIN0TkWyKSJyJDReSbwAsi0l9E+oc7QGNMhKhCS8ho532r23cbS7cwpnEDDRlTuP6S89zJ0EV90kJ6qMfEhz9WExGd6cX0aW/7haPO34grSQzHGNPzrX8c/nkrfDUfUnNpLt1MnHdpZNsuNKoQGX/7ketCZ3sN0sG5lGzVt1NKZ3oxWYO0Mb3BusfcdvvL7BhyNXuXvchUTaZfdBOy510k0AoDp0J0yK+NrAlu2zcbvrwKUgf/63NNj9WZXkwJIvI1EXlaRJ4SkTu8qbyNMaeSVle9tD1/FZ/9zUuc0bKcxtGXI0mZUOxVN/Ub6rbjr3DbQdP9z2eMshHSp5jOtEH8FTcF96+B3wDjgUfCGZQxJgLKt0FjnduvL4fiVQDs2bmV6zJ2kkAzOed+3i312VTr7gs2QH/8D3DndhsEd4rrTBvEGFWdEnL8hoisD1dAxpgI2PM+/Hm+qzL6wpuwfQmgNCTmMD2qjnmT2uDtKBgwEZK8STHjU9xSoOAaovtmd1n4JjI6U4JYKyJzggciMht4N3whGWNOugfOgr9e6R/vXOq2pev46YvrKVz7OvTJIGnSZaS3HEAqC1xpISbeX+0tKdNWeutlOpMgZgPvichuEdmNW8DnXBHZKCIbwhqdMebfd6gK9m+EXW/AAW/dr1K/EmDJ2yuIr9wMAya5pNB80FU3pY9yN4zypmHzptkwvUdnqpjmhz0KY0z4VBX6+4VvoVnjaCxaQ7lmM0QO8LOzo8j5oAAGXeq3MdQWwdhL3P6wc2H4ef4yoabXOGYJQkSSAVR1z7F+gMqIRWqM6ZzGWledVOJNhXFgo3+tdB071iwjsamCNX3PBWBq1RLQNhhxwZGL+mR4k+xFRbmpvU/7fIRewHQXx6tielZEfiYi54hIUvCkN3nfTSLyMla6MKb72fqCq0568kZ3vGsZ9M2hOfcMqN7D6ANLaItO4LJb73OrvRW85u4bMPHIBBGsYjK91jGrmFT1AhFZgBtBfaaI9MOt07ANeAFYqKr7IxOmMabTiryl3b01oLVkHdtjx7CjqIkL00qI1zaiB02DpH4uIVRsh+QBkJDqptsIyrAE0dsdtw1CVV8EXoxQLMaYk6HMa4huKGfX9k0Mry5kcctpzM5W4g6uh8ZKmHKNu6dfnksQwWQgAlM/B21NbkU406t1pheTMaY7K10P+9a4fVUo29I+5cWiR34PwAXnz+Oc6RORlgbXSynYdTXNGxkdPAa48rfwiT9al1ZjCcKYHq2tBf7vHPjD+e64di8017d3Tf14n3UATJ99LvQd4H8u2ACdOcZtB8+KVMSmB7EEYUxPE9pOUOmPTdDmQ7z/ttfgPOZiAEY3bYKkLJcckrP8zwUboKcvhC+8DZM/jTFHswRhTE9StALuGegPdKspar/04788Q8GKFzgc1ceNW4jr6y4MnOy2ySEliJRBbhsT565bdZLpwPHGQUwSkeUisldEHvR6MQWvrYxMeMaYI3zwB2g9DCv+zx3X7Gm/dGjPWualV5CQOxWiY90kewADvAQRWsUUZX8bmg93vH8lvwe+D0wCtgPviEhw6sbYMMdljAE36K212e0HAlD4ttuv2gVA2bbl1GkfGonna9MCDGwtQYIzrNaXuW2wBJHYD2beCDe+EsEXMD3Z8RJEsqq+pKo1qvpT4MvAS97EfbYmtTHhdrga7hsBi7/sjqt2Qf1+kGgCZVshECBz/1vUDDqXuPQh9D+0GxrK/Cm4z7zDJYXgXEoicOn/wpDZXfI6puc5XoIQEUkNHqjqG8AncGtBDA13YMb0ervfgUALbPi7K0WUuh5J61PPI6qxmvLNy5CGMobMvpKovgNgjzfJcnD5z3O/Ad/YBXFJx/gCY47veAniJ8C40BOqugG4AHg6nEEZYziiAZrqQvZtWU4zMfyt3CWAflsfBwRGzoOUnPYV4Ugf6X/O2hrMv+GY/3pU9TFVXQ5u4r7gfEyqWqSqN0cqQGN6jfoyN49SUM3e9t3HX3iVwo3vsSsqj5sudZPsxWxfApljISnjyFHP/W0ZeXNyHPfPCxG5VUSKgD3AXhHZIyJf6syDvbWsV4rIehHJF5EfhFz7iohs887fF3L+LhEp8K5d9FFfypge6c8L4InPQPVud1y+tb07anLzAWbEFTFy8pmMGeUNbms+CP2Hu/1ggohJhNjEyMZtTlnHnItJRL4LnAGcp6q7vHPDgV+KSH9VvftDnt0EzFXVehGJxfWCWgIkAlcAk1W1SUSyvGePB67BrX+dA7wmIqNVte3ffEdjur9AACp3uP2dr1M//lridr/PwbFXk771MS7tX4KUHIRBUzouLaR45yw5mJPoeCWI64CPB5MDgLd/NXD9hz1YnXrvMNb7UeBW4F5VbfLu8/ricQXwhKo2qWohUADY+H9zamo+BL87HbY8545DxjOU7FjH137xZ+ICjayPngRJWciOV93FgVMhPtl/TuZYt+2T4bbDzwt76Kb3OG4Vk6o2dnDuMBDozMNFJFpE1gFlwKuqugIYDZwtIitE5E0ROc27fRCwN+Tjxd65o595i4isEpFV5eXlnQnDmMhShb0rj5wSY+Uf4Mmb/HNF77lZV/9+nTs+kN9+a8HmNZyGm5F17kVXuQFvTbUg0ZA9/sjvCo5xGHI6LPgpXP7rcL2V6YWOlyCKReSCo0+KyFygtDMPV9U2VZ0K5AKzRGQirlqrHzAH+AawSEQE6Gis/7+Mt1DVB1V1pqrOzMzM7EwYxkRW/tPwpwtd99SgF78Om550iQNg7wduG+9Nh3FgE4qwtG0aE/tUc2NuCWSOc8khJdfd02+oX4U07wcw8ybInuSOo6Jg1s1Hli6M+Tcdbz2I/8StKvcOsBr3y/o04ExcdVCnqWqNiCzDrUBXDDytqgqsFJEAkOGdHxzysVyg5ES+x5huITjaef9Gt+5CY51/rbrQDVTb75YB1aaDrNtdxrStL6ADJjElaxb98/8M5W1uLWhwazVsw58/CeCsOyLzLqZXO14313xgIvAWkAcM9/YneteOS0QyRSTN208E5gFbgX8Cc73zo4E4oAJYDFwjIvEiMgwYBdicT6bnCfZCqip02+IP/Gt17m8e3b8BAEH59d9fgP0biJpwJRm5o6CtGQ6W+uMZsidEKHBjjnS8XkwjgWxVfeio82eLSImq7jzGR4MGAn8RkWhcIlqkqs+LSBzwkIhsAppxS5cqkC8ii4DNuKVNb7MeTKZH2PkGxKdA7gx3XFngtnX73LZoOYj3t9jBUor2lTCkdi/vt43n9OjN3D+jBt7BNThLtP/cdK8L67jLYeLLMOXaiLyOMUHHq2L6BfDtDs4f9q5ddrwHe6Oup3Vwvhn43DE+cw9wz/Gea0y3ogqPXOn2v18LLYfdoj3QXlqg6H0YMAlamzhYXsSDD/ycu6MhesonYNNm0g+87+5LHwmBVv/ZwSkzYhPgk3+KzPsYE+J4jdR53i/5I6jqKlyVkzEmZMEemhvaZ1klY4ybOK+5AYpX0ZQzG/oOJLm5nIXZhbSlDGbWpbe4ewvfdCWMfsPalwoF/En3jOkix0sQCce5ZqNxTO+U/wz8YS40VLrjPe/41yp2QMV2tz/sHAAaNy+B1sN8Z3UfGhKykLpSRrGX6IGTISHFVU21Nrq1oWPi3LnUwW4wXLCHkzFd5HgJ4gMR+Zc5l0TkJlyvJmN6n+etzx/LAAAfzElEQVS/CvtWw8ZF7nh3SIKoLHDXouPQEW6N6PcX/wGAjPHnEp06CA6WQMU2yPLmwQz2TMoY5T/n1nfh9n8pvBsTccdLEHcAN4jIMhH5mffzJvB54PbIhGdMFzuQ7xbtCVJvjOi+1a79Yfe7MPZSd65yJ+x4Dc2Zxv+8fRiAMwOraU7M4ltXzyWhf0g31fYE4U2RkR6SIBJSXWnCmC52vG6uB1T1DOAHwG7v5weqerqq7o9MeMZ0ocM18Psz3CR6weNgsjiw2Y1pOFgCI86HpCy08E0o34JMvprEDNeWEEcLcQO8ZNA3x392sOtqcLW4jJApuo3pJo7XiwloXyjojQjEYkz3ssv7Z39gE7S1Qskad9x/hJs7KTgaesjpNCQOICm4YM+AKdw1cyZsToKWBsj0Zl9NCZlkL8M7N+1zbt2H8VeG/32MOUG2mogxx3Jgs79fswfe+YWr/plyDTTXQ9H7aHQc3367iTcPhPTpSB/hlvcMjn3IGO22ad5CjJM/7S/kM/Va+OpG6NM//O9jzAmyBGFMUOl6N6leUFlIgijb4pb0nL6wfQ2GQ5uXsLVtEH9fs5/0HG9QW0Ka/8s+yZthNZgg+vSHr++Aq/4vzC9izMlhCcKYoEc+7ibVq9wJTQeh4DUYc4m7VvimG8SWPaG951Gfw/spTRjB8185i9lTvVlV+6T7z5v/Yzj9yzBkjn8uOcuVLozpASxBGBN0qMJtd78NZVvd+IRpn4XoOPDWY/h9fhRv7o9t/8h555zPuIEpfnfVxH7+88ZcDBfdAzHxkXoDY04qSxCmd2o+BM/cChXevEmHa/xrVYVuuU+ArHFo6mCoLiSA8JtNsWyuT2q/NWrARLeTdxZM/CR8/MEIvYAx4fehvZiMOSVtexHWP+Ym1Fu42J8iA1z31UArxCSw/mAqgYN9mQbsj87hya9c4EoM3ozeZHndVZMybL4kc8qxBGF6h6Llrspo+HnuuHiV2zZ41Url29w2bYhLFs0NkDGKwqpGaMtgGjBw9AxyBqa4+z52D0TFuAV9jDlFWYIwp75AAB66yO1/rwqiov01G2r2uBHRxSshri+BkRfSuvYJWmrKSRp1DldMzaGlcga88xoSXP8Z4IwvR/w1jIk0a4Mwp6bgCGWAspD1rYJrPwcTRHO9m55701OUZ5/JAxuFuLYGkhr3Q+YYRIS46dfCrC/AnFsjFr4x3YElCHPq2fws3J3pJ4M97/nXqne76TIqtsPAqQBUfvAkNNby3zvHUkS2f2+wxNB/GCy4zwazmV7HEoQ59Sz/vduuf9xty7b412r2wK43QdtglluPIX7bswCcc+48fnjDpf69oVVKxvRCliBMz6fqfoJCJ9QD1+icM92tvVBTRGDHazTH9OV/SyeARJNcsQ6NS+YzHzuLuOAynwD98iL2CsZ0R9ZIbXq+P17gRjhf/muXKKr3uPOVO9xx+VYYfj60tVBZvJ220k2sah3HmtImNG0IUl2IZI5xI5xjE+CC70HlLoi2/zxM72YlCNOz1RS5tRnW/NVfD7qlwY1ortnrxjTUH6Cq32RW16UQve8DsrSC4TM/xl9vnIV48yodUZ109p1w5W+75n2M6UYsQZiepa3VJYWg0vX+flUh7PSm6J78aUDR9X8HoHnQHLY19iNNGgAYO2kWIuKW9oQj14I2xgCWIExP8/wd8ItJcKjKHdfs9a9VFsDO16FvDo2Dzwag7L1Hoe9ABoyaztUXnunfG5xhdZzXKB1cwMcY084ShOneWpuObIBe+4jb7nzdbWtDEkT5NnTXMgpSZnHTMyUAZLcU05Y5DkSISR/m39t3gNuOuRi+vBrGXRbGlzCmZ7IEYbqvuhK4OwtWPeSOg43P4FctlW9z8yElD6Bx4z+Rxhp+XZhDn/7+8p7RmV5pIVhqgCOn3M4YaVNwG9MBSxCm+9qwyG3f/Inb7l3pXyvfBm0tsHcFLbmzIX0ECRWbALj2kgt58Ivz/XvTvfWe00fAgp/C1Y9EIHhjej5LEKb7KF4F6x73j4NrQLc2+scxiTD2Uqjayb7N70NzPfduySCQ7I+AnjN1ChLaRTW05DDrZhh/eRhfwphTR9gShIgkiMhKEVkvIvki8oOjrn9dRFREMkLO3SUiBSKyTUQuCldsppt6/Br45xehZJ07Llnrto210FjnurMOnEJ94iCaqvfx6N8fAyB70jwCSd6sqjGJ/pQYEu221gBtzEcSzhJEEzBXVacAU4H5IjIHQEQGAxcC7f0VRWQ8cA0wAZgP/E4k+F+4OeXVl0FDuds/kO96KdUUwcAp7lx1IZSupyxlAr9edYj4wGGuTd1Ea//R3LJgNjF9vRJE2hC/PWHhYrjuGX9taGPMCQlbglCn3juM9X6C3VH+F/hmyDHAFcATqtqkqoVAATArXPGZbiDQ5u8HeyWBSwzB0oPXu2jfymehtZH00aczfqwb1DakYSMxg2e6+4IliNDpMfLOghFzwxS8Mae+sLZBiEi0iKwDyoBXVXWFiFwO7FPV9UfdPggI6bNIsXfu6GfeIiKrRGRVeXl52GI3YbZ/E/w4F1Z4S3RW7QLE/aIPSRCP1bkSRO3aZwCIzp3OFWef5j8nyxsBPeoimHGDm3XVGHNShDVBqGqbqk4FcoFZIjIZ+A7wvQ5u76ifof7LCdUHVXWmqs7MzLTVvHqsdY9ByyFY/bA7rtnrRjWnjyRQvYc9m96liAF8550mWolhPLsgOt6VEFL8LqztU2T0zYbLfmET7BlzEkWkF5Oq1gDLcNVIw4D1IrIblzjWiMgAXIkhdL6DXKAkEvGZCNj6Amx5zj/e/ZbbHq5y02fsXeF+uacNoaVyNzEH1rM3cQxP3noWMWleQTJjlFsNLjjIDWxKbmPCKJy9mDJFJM3bTwTmAWtVNUtV81Q1D5cUpqvqfmAxcI2IxIvIMGAUsPIYjzc9SfUeeOIz8PfPQe0+N6negXyQKDhYSkvRSqjayesJ8yBtCPEN+xgklZxx1jxmDO3nGp7B764aHQv9hrnqKJtDyZiwCWcJYiDwhohsAD7AtUE8f6ybVTUfWARsBl4CblPVtmPdb7qx1mbY875/vG+1v1+2xQ1y0wCBMW4epMcf/SMAz1cNIhDyC18GTXc78SlumznGf85tK+DLH0CUDeUxJlzC2Ytpg6pOU9XJqjpRVX/YwT15qloRcnyPqo5Q1TGquiRcsZkwe+s++PN82LXMHR8IWRO6YjvsfhuAH+4cAcDZrEElmp998Sqi+g317x0w2W2Hnu62w871r8XEuym9jTFhY39+mZOv0Gtf2Obl+AP5kDkWjUvmUHkhbHmOxqwp7E6bA8CwtkKk/3AkJt6vTgJI8EoOs78Id273E4UxJiIsQZh/X1vrkTOuVu50W2++JN23hsLoYRS29GP71k1wYDMJQ2fx8JcugpgEd2+wfaHfMJj7XbjxFf950bGul5IxJqIsQZh/T30Z/O8EeOun7vhQFRxytYaBih0s+ecjSMMBflQ0jprYbCa05kPzQTf9hYg/wC0446oInPMNGDK7C17GGBPKEoQ5MZU7YdPT/vHmZ6F+P7xxt7f+8zZ3fsAk9GApW9e8A8Dnr7+RaZMmEdtc665nT3TblsNumxHSAG2M6RYsQZgT89RN8OQNbuZVOKKH0v6SPTy31Fvyc9i5RGsbNw8uhn55zB47GEkL6ZKaNc5tR85z25xpEQjeGHMiLEGYY6srgV9O9RudAwF/jqTg2gzFqwjEJgHwX7//O0m7X+FQbH8Y7KbRSt6/wi3oA0eOWYhPdtsrfwd3bvOnzDDGdBuWIIzvzfvhudv949UPu1lU3/+dO64t8q9V74bDNVC5g8cbXW+kTwxr4by4LfSZfvWRySBYWsga77aD5/jXjh4ZbYzpNmI+/BbTa7xxt9vO/qL7pR5c1rO60G1L/fkV26p2E+2VJmInXIZuW8blqYWwt9E1QAeTAkC2lxgGTIT/eBFSc8P9JsaYk8BKEMapL/P3D+S7BudgdVLFdhobatn13tPUkczStmnU7y9ob3+4+oqrkJQcKHjV3Z85DmIT/ecFSw4AeWdC6GA4Y0y3ZQnCOKHrPVdsh8oCqD9AYMQFoAFu+vkTULSc/NiJDB09mZTGEpcg0kdCYporFTR6PZSCXVY/swiGn+evCW2M6VEsQfRWdSWuvaGxzh0XfwBRsW7K7YrtHNrtSgcy4SoA5qUdYHjUfuacM5+RoycirYdh+0swaIb7fLDNoW8OJKS6/dEXwfXPuoFuxpgex9ogeqtnvgiFb0Le2TDpk1D8ATpgEtWkcmj7Op7fJHwhKhrxVmS7IW0tVIIMPg2aD7lnaCAkQXjtChmjuuBljDHhYCWI3uLdX8Lmxf5xc4PblqzlUGMjrXtX80zFIJ4s6kNGyz4uTisikD7aLc4Tk+iWBJVoN14htA0hx5txNThVRlxyZN7HGBN2liBORVW7oHy7fxxog1e/B4uuc1NxAzR4jdLFq6goWENMoJGdcWM5bepUEmhmaO0qosde7Ka+CJYOsidAXNKRE+oNmOS2Ez8B06+Hs+8M//sZYyLCqphORX/7lGtkvm2lW0OhYkf7Ja3YxorKPsyp8cY0lK5jSMNGAL5+0+eQ8m2wybt5+vVumzoIKndArrcWdGwiLPgpNJRDrDfZXkwcXP7rCLycMSZSrATR0zUfgvtHujWewU2WV1ng9oNVSpufbb/9Jw8/xbuP/QiALZkXQ2ujWwo0KRNJGwr9R/jP7j/MbftkuG0wQQDMuhnO/3Y43sgY001YgujpCt9yf8k/+2V3XLLGv1ZZgLa1wpq/Upzi5jrKkXIWZu0kMHA64y6+1d23+20YOMVVJ2WMhLO+CvN/4j/nY3fDJT8Dr0eTMaZ3sATR0+1d4bba5hqevcFtVSnj2bp5HeuWPQ11xSSf+xVaE/pz3YjDZNRsIGrkXOg/3H9OsC0BYN73Yc4X/eOUgXDa5/3qJGNMr2AJoqdZ+ygsWuh3Nd2/of3S3vx32br6TQoZyJKqgeS07aNf2QqIjiNtyqXEpA1Ctjzvkknema6HUlBw+m1jjPFYgujODu6Hh+b7K7SpwrO3weZ/wo6X3an9G9vHIvxpyfv0q9lEZcoEzp4zhxQ9SF71e650EBMPKbnQ1uSeNWCymygvaODUSL6ZMaYHsATRnRyq8kc2Ayz/PRS9Dyv/4I5r9rRfOrBjNfcvehWpP0DrCLemwpdG1ZEt1cw8Yx5DRnlVRmWbYdBMt586yG2TsyHJa3g+5xsw4wbX9mCMMSGsm2t30drk1l6IioKv73DTUwR7I1XvBqChcCVJ3u2rV68gSYppi4qibtRV9H/vV2SVLHUXc6ZDYj//2cHRzsEqpdC2h7nfDdsrGWN6NksQ3cW+NdDkTXZXvtVVC5VvBaCtsoBooHHjczRqX4rjhjMr9RAfS6skunky/QePc4PZKne40c4DJh1ZfZTrlSBSQga8GWPMh7AEESltre6XtkjH18u3+PsV29lzUBlSuRMBAlV7iG5uoH/xUuomXMWUhGjYtgTK9sH4K9xnssa5BJE1HuL6uHMj5kJ9uV9iGHsJXPYrmPzpsL2mMebUYW0Q4fDm/fDDDJcUwE118evp8Pwd/j2v3+2qlCq8aqTS9RAdB8CjLyxly1+/RqtG8WLKp4nVZlj9F6SlgdSZ3mptDWVwuBrSvcnxBkx229DFeK57Bm59x09K8ckwY6F1VzXGdErYEoSIJIjIShFZLyL5IvID7/z9IrJVRDaIyDMikhbymbtEpEBEtonIReGKLezeuBsCLf4YhT3vuQbm1Q+7ZAGw9m9QXUjLm/fzwoZSdPe7MPx86mLSyQ6UcVafvbSNu4IFV1zj7l/zV4hPgbyzjkwCwdHOYy5222FnR+QVjTGnvnCWIJqAuao6BZgKzBeROcCrwERVnQxsB+4CEJHxwDXABGA+8DsRie7wyV2ppdGfCRVcFc7vTocd3mpqgYB/bb+b44gtIbOo1u2jtaEaDpYAULXhZe567C2kcgcMmU1y9nAuTK8kuWk/CYMm+dVD5VtcNVJU9JEJIrgYz4CJcPt6mH3rSX5hY0xvFbYEoU69dxjr/aiqvqKqXt0Ly4Hgb7srgCdUtUlVC4ECYFa44uu02n1HHj90EdwXMl/R2kdcV9LnvOqjg6X+tZoilzC2PNe+iM6egnx+/LN7AVjOJDKlhn9c5qqWyJlGVFquP11G5hjXsBzlNRUF13kOdleFI1dr65fnekEZY8xJENbfJiISLSLrgDLgVVVdcdQtNwJLvP1BwN6Qa8Xeua6zaxn873jYsMgdq0LpOmg9DAcPuHPBaqT6A650URkyc2rNHrasWgoHS1kzeCEAOYFSFiRt43DiAGbMv54olDF1y90Hcqb5K7OBa1+IjoEYr80guLZz6hAYdRHM/uKRvZWMMeYkCmuCUNU2VZ2KKyXMEpH2+RxE5DtAK/C34KmOHnH0CRG5RURWiciq8vLycITt2+eW3WyfKbVql3+tZK1LGPtWQ2wf1+ZQuQOKlqMIxUkT2b4tn5eefZw2Fd5IXgBRscTW7mYG20gcfjqxqQPds/KfcVVJif2OXGuhX57bpnh5Mtg9NToGPrsILg6ZUM8YY06yiNRHqGoNsAzXtoCILAQuBT6rqsEkUAyE/PlMLlDSwbMeVNWZqjozMzPz5AbaWOdKAUHl29y2ocJt9670rx3YBLV7oaEcHXupO1dTBCv/wPaESbxZl0OuVPDpIbWQPoI7rzjdrcS25TnX/jBynlv/GVzpY9zlbj+0fSHGq3q65GduRtWhZ57c9zXGmOMIZy+mzGAPJRFJBOYBW0VkPvBfwOWqeijkI4uBa0QkXkSGAaOAlUc/N2wCbfDgefCb0/zuqQc2u21lgSstFK90PYn6DqStooAdb/8DgDs3uzaJhvyX4FAF6ed/mU/MO52kwEFyatcSPcArOKUN8Ushw87x2xTAH8wWXMIz1LCz4YyvHHsMhTHGhEE4B8oNBP7i9USKAhap6vMiUgDEA6+K+4W3XFW/qKr5IrII2IyrerpNVdvCFt27v4SiFXD1X9y0FsUfQJU3KV7dPkjOciOZYxJcm8OhSihaDoNmUFtfz/b16zkUyEeiBtGSdy7s/DGJu14CIGPsme554D4XnEo7ONVFUpZrawj9hR/srdQ3Gy775ZHTYRhjTBcIW4JQ1Q3AtA7OH3NWOFW9B7gnXDEd4dXvue2+1TBkjvvlH1S92w1cC7RwaNJn6bP+YX718KP8Z/lmmHIt8fs2MKpqGckcgsmf5teXnw4/yyHqYIlbfS1lEKQd8J8XHMQWbEsYMttPDvPvhaU/PDIhzPiPcL21McZ0Wu/sE9na5O8XvuWql1Y80N5bSKt3s3nZE9RJXz73QR4Asyq9ZTtHzychYxhpreXEtDYQM9wbmBasIho42f3yTxvqf0ewBDF4lpsracYN/rU5t8K3S9w6z8YY0430zgRRW+zvF77FwT1r4WApb438BkTFIFU7yS1/mzXxp7Hg7DkAzAmscWMSMkZBWkhb+rBz3DbHW0+hr1eN1Cfdv6fvALcdOQ++VwkjLzgyHmtbMMZ0Q71zsr7mBprSx1PdEkP/3ct5oOBBvhED9+0czNmpuciGf5CidZx32ULOGzcbPoh13Vhzprpf5qFjFYLrKgQbl4OJQgS+sdP1gApNAJYMjDE9RO8sQQyczIPj/8p3Ky4kjha+lPgqjX2H8uxdVyP98lw31KhYNxtqVBQketNFBZflzJ7gqooW/NR/5ojz4eY33NrNQUkZkDU2Yq9ljDEnU+9MEMC1s4dw7y1XAZDUUkXC0JlER4kbzQxuOouEFLcfXOUt2F01OQv+uxxm3XzkQwdNtxKCMeaU0WsTREZyPBmDRoWcGOO2eWe5begcTBd5HatyT/PP2RQXxphTXO9sgwiKTYCM0VCx3Z8me/j5bg3n6df798262XU9jY7tkjCNMaYr9O4EAXDz6yBREOet9hwVDTcv/df7LDkYY3oZSxDxfbs6AmOM6ZZ6bRuEMcaY47MEYYwxpkOWIIwxxnTIEoQxxpgOWYIwxhjTIUsQxhhjOmQJwhhjTIfEXxK65xGRcmBPGL8iA6gI4/PDpSfG3RNjBos70izuk2OoqmZ+2E09OkGEm4isUtWZXR3HieqJcffEmMHijjSLO7KsiskYY0yHLEEYY4zpkCWI43uwqwP4iHpi3D0xZrC4I83ijiBrgzDGGNMhK0EYY4zpkCUIY4wxHepVCUJEHhKRMhHZFHJuioi8LyIbReQ5EUkJuTbZu5bvXU/wzs/wjgtE5Fci4V2I+kTiFpHPisi6kJ+AiEztAXHHishfvPNbROSukM9057jjROTP3vn1InJeV8QtIoNF5A3vf7t8EbndO99fRF4VkR3etl/IZ+7yYtsmIhf1hLhFJN27v15EfnPUs7pz3BeKyGovvtUiMrcr4j5hqtprfoBzgOnAppBzHwDnevs3Av/P248BNgBTvON0INrbXwmcDgiwBLi4u8R91OcmAbtCjrtt3MBngCe8/T7AbiCvB8R9G/Bnbz8LWA1ERTpuYCAw3dvvC2wHxgP3Ad/yzn8L+Im3Px5YD8QDw4CdXfHv+yPEnQScBXwR+M1Rz+rOcU8Dcrz9icC+roj7hN+zqwOI+AtD3lH/4dfhN9YPBjZ7+wuAR4/xD2NryPG1wP91l7iP+syPgHt6QtxePM/hEnO69x9c/x4Q92+Bz4XctxSY1VVxh3zfs8CFwDZgYMi/gW3e/l3AXSH3v+z9kurWcYfc9x+EJIieErd3XoBKXHLu0rg/7KdXVTEdwybgcm//U7j/+AFGAyoiL4vIGhH5pnd+EFAc8vli71ykHSvuUJ8GHvf2u3vcTwINQClQBPxUVavo/nGvB64QkRgRGQbM8K51Wdwikof7i3UFkK2qpQDeNsu7bRCwt4P4unvcx9KT4v4EsFZVm+g+/747ZAnCVRfcJiKrcUXFZu98DK4o+1lve5WIXIDL/kfrir7Cx4obABGZDRxS1WA9enePexbQBuTgqjzuFJHhdP+4H8L9R70K+AXwHtBKF8UtIsnAU8Adqlp3vFs7OKfHOR9WJxD3MR/RwbluF7eITAB+AnwheKqD27rN2IOYrg6gq6nqVuBjACIyGrjEu1QMvKmqFd61F3H10o8CuSGPyAVKIhaw5zhxB12DX3oA9z7dOe7PAC+pagtQJiLvAjOBt+nGcatqK/DV4H0i8h6wA6gmwnGLSCzul9XfVPVp7/QBERmoqqUiMhAo884Xc2SpMxhfxP+dnGDcx9Lt4xaRXOAZ4HpV3dlVcZ+IXl+CEJEsbxsFfBd4wLv0MjBZRPqISAxwLq7euRQ4KCJzvN4G1+PqH7tL3MFznwKeCJ7rAXEXAXPFSQLm4Opmu3Xc3r+PJG//QqBVVSP+78T7jj8BW1T15yGXFgMLvf2FITEsBq4RkXivamwUsLIHxN2h7h63iKQBL+Dafd7tqrhPWFc3gkTyB/cXdSnQgsvcNwG34xpEtwP34jVEevd/DsjH1T/fF3J+pnduJ/Cb0M90k7jPA5Z38JxuGzeQDPzD+997M/CNHhJ3Hq5hcgvwGm4a5YjHjasGVVzPu3XezwJcg/9SXKlmKdA/5DPf8WLbRkjPmR4Q926gCqj3/v8Z393jxv1R0RBy7zogqyv+fZ/Ij021YYwxpkO9vorJGGNMxyxBGGOM6ZAlCGOMMR2yBGGMMaZDliCMMcZ0yBKEMT2YiFzmjc415qSzBGF6PG8K6OD05vtFZF/IcVwXxvUbETkj5DhbRFpF5KaT9PxLgTNUNb8T9y4VkdST8b2m97BxEOaUIiLfB+pV9addHEcm8E9VPTPk3H/iRrg3qeq8CMdzE5Chqj+J5Peans1KEOaUJiILRWSlV5r4nYhEeTOv1ojI/d5MvS+LyGwReVNEdonIAu+znxeRZ7zr20Tku975viKyRNwCQZtE5JMdfPWncHP7h7oWuAMYLiIDvGcFY7nXe977IdN6PCoivxSR97y4rgp5r29577VBRL53vPf1Lj2Lm+/KmE6zBGFOWSIyEbgKVw0zFTc55TXe5VTgFVWdjpuZ9fvABbhf7D8Mecws7zPTgc+IW51vAbBbVaeo6kTg1Q6+/kzc4kHBWPKAfqq6Gje1+dUh96biJoacAryPmzk2KMt71pXAj71nLQCGALOBqcAZInLG8d5X3aSTfb05gYzplF4/m6s5pc0DTgNWuXnQSMRfA+GwqgZ/sW8EalW1VUQ24uZXCnpZVasBROSfuDl4lgL3isi9wHMaMvlaiIFAecjxtcDfvf0ncAsN/SoklmBpYzVwdsjn/qmuHniDiATXCfgYcDGw1jtOxq1fknac98WLZyBQ00G8xvwLSxDmVCbAQ6r630ecdLPzhq6fEQCaQvZD/7s4upFOVXWLiMzElSTuF5HnVfVHR913GEgIOb4WSBeR4EyfOd4sqnuPiqXtqO9vCtmXkO3dqvqno97rqx29b4gELy5jOsWqmMyp7DXgahHJgPbeTkNO8BkfE5E0EekDXAG86/0lX6+qjwA/x1U/HW0LMNL73vG49Z4HqWqequYB9+NXd52ol4GbQqYZz/Xe8Zjv67VFZHBkicKY47IEYU5ZqroR+AHwmohsAF4Bsk/wMe8Aj+Gqcx5X1XXAFOADEVkHfBO39vfRXsBNuw6ucfiZo64/xUdsNFbVF3HtGMu9KrFFQPKHvO8s4B1Vbfso32l6J+vmaswxiMjngYmqesdH+KzgksvF+tGW0DypROS3wCJVfbOrYzE9h5UgjAkDr2H567jeRt3BWksO5kRZCcIYY0yH/n/7dSADAAAAIMzfOoEQfomWgwBgCQQASyAAWAIBwBIIAFbxq9U//VId/gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(data_MLO[\"Date.1\"],data_MLO[\"CO2_comp_lente\"],\"--\",label=\"estimation\")\n", "plt.plot(data_MLO[\"Date.1\"],data_MLO[\"CO2\"],label=\"données\")\n", "plt.xlabel(\"Temps (Année)\")\n", "plt.ylabel(\"CO2 (ppm)\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Composante périodique\n", "\n", "Afin d'identifier la composante périodique, nous allons soustraire la composante lente à notre jeu de données et ensuite appliquer une transformée de Fourier qui permettra d'identifier la fréquence de l'oscillation" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmwbtlVH7b2Od93hzd1t1BLoAE3xmCQgyk7CiEhYAdwFcaKkwCuEEIKm0oUXDg2qSREmBKBMAuCiRktpoRRJcysCYSQQFMLdUtC89Bqdas19dz9hnvvN5y988c+a6/fWnudc+/rO7y+V2dVvfre/b4zn73X/u3f+q21Q0qJJptssskmOzvW3OgLmGyyySab7GhtcuyTTTbZZGfMJsc+2WSTTXbGbHLsk0022WRnzCbHPtlkk012xmxy7JNNNtlkZ8wmxz7ZZJNNdsZscuyTTTbZZGfMJsc+2WSTTXbGbHYjTvrUpz413XbbbTfi1JNNNtlkp9buvPPOh1JKt+633Q1x7LfddhvdcccdN+LUk0022WSn1kII9x5ku4mKmWyyySY7YzY59skmm2yyM2aTY59ssskmO2M2OfbJJptssjNmk2OfbLLJJjtjNjn2ySabbLIzZpNjn2yyySY7YzY59skm6+2eh67RGz700I2+jMkmO7TdkASlySZ7Mtrf//HXERHRPT/yj27shUw22SFtQuyTTTbZZGfMJsc+2WSTTXbGbHLsk0022WRnzCbHPtlkk012xmxy7JNNNtlkZ8wmxz7ZZMZSSjf6Eiab7FA2OfbJzpw9eGVB3/uH76FVF5/Q/l2cHPtkp9smxz7ZmbPv+6P30P/7pnvoNe97oHz3/k9dpg/ef+VA+68nxz7ZKbcpQWmyM2eM1JFS+ZqffD0RHSz5aELsk512mxD7ZGfO2J+HwH/7jvoNH3rIdeITYp/stNvk2Cc78/bQ1WX13Rs+9BB98y+9hX7mtXdVv02IfbLTbpNjn+zMGgP1K3ur6rdPXd4jIqJ7Hr5W/baOTyzoOtlkTxabHPtkZ84Yb++tOyIiig4Vw981zNeATYh9stNuk2Of7Mza3iojb0/1yLw7u/UIznzdTY59stNtk2Of7MwZA/S9VUbsHgLnrxixY8B0Cp6ebnvgyh798hs+ogbrg9jrP/Qg3faCl9N7P3G5fPcNP/cm+k9++DVHfYnHbpNjn+xJY7ff/TC97J2fOLLjCWIfoWIa/XfefuLYT7P9m1d/kP6vl72X/vyDD17Xfn/ynvuJiOit9zxSvrvj3kfpk4/vHen1nYQdmWMPIbQhhLeHEF52VMec7NPLvvHFt9O/+M23q+9eesd99Oi1WtUybtlJF8Tucuz5M0yI/czZrRe3iIjoL8FBH8T2k8eeJjtKxP6viOh9R3i8yT7N7a4HrtB3/vt30v/y0ndc137LniPn4Cki9jI9L8HT/GfXTRz7WbGbtudEJAM7EdGnHt+jl/zlR2/UJZ24HYljDyE8i4j+ERH94lEcb7LJiIiuLnLHfNjRoaN93ne/gr7vj95T/mYqZbXODhpplmUfSS2IvQ+fdoqKmRz7aTYOiON7/Ke/8pf0gt99Fz0yMvvj/c7C2z8qxP6TRPSdRDSRk5MdmbGDbptakoi26hL9yhvvKX8z4maHjh1cHLtG7Khdn6iY0238bvE9PnBloX7zjGm5M8DEHN6xhxCeR0QPpJTu3Ge754cQ7ggh3PHgg9cX1Jjs7Jub2t876Hkrjn1v1dF9j+wc6Fj8ieqIhQmocmfG80+I/XQbO2ak15g3H3PsZ8mOArF/GRH94xDCPUT0EiL6yhDCr9uNUkovTik9N6X03FtvvfUITjvZabaUEr3to4+WDrcLfCjbYp2d8KyRZvo//dqd9OUvem3Zzwt0MVJjeqVzqBj+LHJH5NgnVcypNg+x838PEj85Dtd/572P0n/+46+jq4v1MRy9tkM79pTSd6WUnpVSuo2IvpGI/iyl9M2HvrLJTq2llFTgyrM/eMcn6Ot+9k30snd+kog0SrbOfgaInSVsvP3SyT6ySF0pXtix94MGKyHixLGfGePXh7JVblNjjv04VTE/9Ir30Uceukbv/vjjR35szyYd+2RHbj/7ug/TF7zwVfT4bl2jhe3uh3KNlrsfzJ9Il6z6zre7zI7d49jZoa+cjroeoWL4Ny7t27nOf3Lsp9k8xM7/W43MxgKNx3IOYwwkTsqO1LGnlF6XUnreUR5zstNnv3H7vUREdHnEsTcGKXt0yU7v2JGKYWPFi9dhGKl1TvCUnTzvZ/l4vCbe/izomj+dzOPT+b83atBe9NLbMbBzlDYh9skOZSkluu0FL6cffoWkMHh8+aPXlnQN+EXmtrnzKcTeO91CxTiIfdHl37zl7yrEnmrEzo6d+fTO4WNjTPTX//Ur6Edf9YHqHJM9ec3j09nZjy2XKFRM/dthB3eeWT6+Mzn2yU6BMbr+d39xd/mOHTLy33/n+19NX/V//3n5+yCInXn6tq0dO3cUH7En81n/xklMfBxPFXNtmQeiX37jR6pzTPbkNU/myv8bk7KOETF4rHfc99h1r6e70WZX+9ju9WZRPzGbHPtkh7KF41i5Rott/FwDnUhkhhLoAse+1gFOz8o2HmK3OnYnMFoQe8fIvUZ31/oEqdYp7TvZk9f4Va4cem19AIecHF0Mt48P3n+F/qufeSP96Cvff13XtDHLrvby7ilRxTwZ7U/fez/94uvv3n/DyQ5tY+qXMcdcUzGwn5EkrpzjrLph518jdtmmM1NyS9vka8qfLE3bL0FqsieXFdoF2gaP7V6wnY3Hb/b92Ca4nTx0NSc6vfM61S22vR23nUnH/j/86h30Ay+fytachHHCj2fXw2ciql4Zh+4dZwzVC29O6jP/3yJ2h4opiH1y7KfRosOnl+DpmCqmJKvV7W5t8h72E7t/yQ/+Kb34Lz5c/l4WFdbJqGPOpGOf7OSMo/3+b8Nlc7mjRAcxL41D91CWyB2Hg6deYHbdWcSuP4mQipkc+4227/rdd9IPv/L6QFqhYtCx0/46drZVVw8M3KZ4gPDoGrQHrizoh14hdI3Ia/c9/ZHY5NhPua26SN/0C7fTnfc+ekPOvzeK2HWiEZqoUmrHvjJUjMejr0YQe2dQOM4G2NlbHbwnd5yomBtvv/WX99G/+/Pro1XlHdf02tgsUnIa9GwO/88VQ8dEMp6CxitId5x2ph37p4P++KOP7NCbPvww/W+//Vc35Pxe8JSNnS4nGqn9+g62cErrct9broclamNO3w4WHlfK1+0pKBi8syrGk1tO9uS15DhxL2nJWgmkd/W27Oz3+rY85lnGZpgnVa7iTDt2fpgpJfrxP/4A3eusSH/ajZ3OjapvshgJnnLH8hw7O31G/F5K/2qEbhmjaaoiYCbhCPf3HDsj/LHZyGRPXiulJEbajWfrqB26yn8ws88x0Oi210JLjl76kdmZdux7y/wU73tkl376tXfR//ird4xu/0Xf+8f0PX/w7pO4tCO3G5dRtz9i31nVEq+DZH7yNt6YxWjeC0atTeapLvClj+2VFEgG3X06l/F97QceUGuAngYrCWbw2rxib9Y6MyB4iL049pHzj80wr3cd1idqZ9qxy0vQ0+8hu7K3pl99873Hfl1HaScto7I2Knc8AGL3KjBaxO7xksuB+44xqcxRu79VPNht8TuZmn/6Ivd/9itvpa/9t68/9HH+vzfdQ1/xotcewRXtbyVoDu/dq7tvrdQRGqkxxG15jOX1ZpGT3PEIzQvanTXjRnSjnM9BELsX4FwZBIOdyFZu9FQ1FnETZaStBgiPZol6f68CpJ1F3KhB8013PUS3veDl9JGHTj+F+H/+4Xvoo/vU0T+IpZToVe/+5Gh7l5LO8h1LGdHp3nnvo/TRh+Wa+H3bGRsRBE8P4FMsYl93EWYRk2M/tPHoepZn0jcasY/JHa26BY37l0fFWK251xm6gRovXsEvdPbrgtj1b17ZYN6muUGZpy97Vy5p/Ia7Hroh5z8OO6yg4ZXv/hR926+/jX7h9R8Z3MZzogWxQ1v8+p97E33Fj8ksYizozsdiIDMWT7eOfeVQgcdtZ9ux96Mrv8zrlSidBhPEfjLX/7aPPkq/drvQVWMBxjHEbmkSD2lbugTNyw7sYtLI29Gx2w7q6eilzMH+nfg47cLmjIiIru6dTBq6teMoNXtYv/aJx3aJiOiBK3uD23hUjKxtO3xsft9emQuRSyb1t2fWsSOwmTj2IzBGk/wyxpIKTmuAzCbaHLd93c++iV74+xJgtog9pRqdeMGkevk6+U2UK7XTLft7MsWU1HJoklVK1XfLtZ7NeejspBH7W+95hH4IqmSe38iO/doxrLqzWHf7LvpwHOe93uJZ1thJcu0Vz7zgKff9MQA3tlbuWNzntR94gF7wO+8sf1uOHe/5pBZxOdOOnZ3FQRrTYRvcjTLJpDzZgYmfFyN2kV3WVIjHw0vQVP+N//d4dHtsG3TFAc6bDVin7fHodtA5qSf7T37+zfTiv7i7OJ/zmy0R0bEsp/Zrb76XnvdTb6DXf2h4/WHW8R+lHdaxcZvYbIddl7dsIv93jOO2C7Poeu48M64d+z/7lbfSS956XyWltddMNFExR2JF7uag2T9+z6fov/7ZN5YXdtIrnByVeQNSjPsvTefZnfc+Qnfe+4j67o13PeQGqngRDUbsnpyM2/AoFTMSPF0VCm2YUrFI23fQdcdamg6ql1HLn6tYd+KTMB4Iz28eH2Lnge0173tgcBuubnmUdljHxm1pDo79f/6tt9Pf+p5Xlb+Fiqn3H8Nvol+vr7W0SWeGyXa1Hwhrjr0GG8dtZ9qx2yk9PtNv/4230ds/+lhBnF6A7zSY59i/5w/fTV/wwlddd9zg63/uzfT1P/fm8vebPvwQ/Xe/+Bb6udd9uNqWV4Lh51d4cbeSYo3iLZXiTnvtSkiOJNJmjKK0UmgWUvvxv8Hj8Pl4an7CNB0XVuPb3XHkooe1cxt5NjCGoI8DsR9WvbVyqJg/+qtP0DXnvSvETfo7r2/YhDYvaW01EtBnsMM5Fvaa7TGP0860Y7fID41fzE4ZZU8nx+4hoF+//aODv12P3dfL0zy53eMGsUtyRz19XQIPvxoIUHlOm8cIL1A61PnYGZ3faMtvOHvpYto31bwz313vY3zwyoL++a/f+YSXQeN6JF4c4ajMCzBaG6vc+UTtqKiYMfOKv7FnL23SLUUxnI0s1SHr58a1hLjWumUI0NFPjv0IbO04GzZ+vqyc8Wp+nwZjJ+XF9w6rlLnSqzE253UzKY4dOn9KSSEyq0fP16s73ZhyhTuIt4blkCqG6YNL2/Py22Ld0VZ/D11MWqWQ6uPYEq/XO33+qT/7EL3y3Z+i333bx65rPzZ+pl2nZyxHaXy7Y0c+DtrgsGCDqZAxB59G7o1f/VgpijjQtvJ+tVKLV0e6vLdS27AtJ8R+tGYr+XnGU/eTDp52MRXp1mFsTLlxWKXMg1fyogLeAME88N5aN1q9ak3+XK7rhl19uk6b1G8eYl+b75iPvrQ1L9vsrWJRmHQx+dfj1JOxKgnefkxqR0T0WL+u5aWtefnuLXc/TK969ydH92NjxC6lYo/BsR/g2J4T2lt1dMc9Og7zprseole+62D3dlSy3LH+KnSLfMeqmBI8d+v4D1MxsgJTDUQY+ByIipk49idmyXRCInkZ3jNl/nK/cgNHbS961fvpP/2RP6MHLo87if2MG42ntT5sJ+Jn8vC1ep3GonhBmsMgdq98qnWkY3ymTULyEJQNujIVc2l7Vjrq3qorgci1oWLKsbv6/B4V84Mvfx99yQ++ZnRRYp7N8DmJiP6bF99O3/brbxvcB42pI+/ZPFG775EdFRjvHOdnzXNC//K33k7f8PNvVvVjvukX30L//DcOdm+HBRul3Y06dv6s28vYotaded++mqqexTGoKnkz5h5XJeAbJsQ+ZPdf3lOIa2e5phf+/rvLNMiLZI81pkLFnDBi/7P3ZzXCo4dctXxdqBhnwedDdiKkMqrfGA2b5ce8QKmHkG1ikFeBUTqj3hf/b9+3Quzg2DlYGAGxN8FPHy+qCKPKIcpqKiKZdnvGjv2JOjEeUEsm5BH4gi9/0WtVYNzj2D/68I5aUtILGt/R1/1/oosyjzm2GBN96P4ro+cvuRHrkeOYe0spVc7aA3K1jh3bbf5cGeefr2WYmycSxmBr1k6O3bP7Htmh//iHXkPf/puCDn77jo/Rr91+L/30n91FRH7nH+PjhIo5mQfOxo3gsFmNy274OPgsbnvBy+l/v86a7d4iGPbYCxOYXDuqGHz+VlsuaHz4vC5d4jimTMUAxw5UzAUHsW/PWzVzaILv7K+3M9rqlNdrBbGfCBUj333Fj72WfuDl76NH+xmad98cKHyi9zbWz37yNR+if/Bv/oLueiA7d2/GUMBCN1w+V2IypD7x/+OIvW6TdjFsfDZSuVFvW37vn9XWxuTYXXukb3Cvfu/95bvNXvbEjXFM3eDZzg3i2PndHzapsVqLUf2m7/u37xwO5ulkDt2IPeBpVQJETMWkahtviTGbBKKCp8aRS4BVzj+E2Jmf3t5oBbGvO9reaCmEfD5Ga1vztnTedUw0axpqQqiQlxJXHEBNws7vidJ7LCF9ogPLmNl78o7MsxHvHueHdOxj98LJUjzj8er3HCx5Te9jB38iPcDYmb0XULfJR9hfbE4EttOUUjnX9nxy7K55I/i5HomxguOgL4ONqZiT1rHzlfBLv++RHbrtBS+n2+9++LqOw/fWelTMddwTNnSblelXSay/S9HX7CrEPnDMsaqMtlPj/225XebKN9qmdNC9VaTNWUtt77T5/rbmrXLiTZMHSE85UbIZyzMafrbzpqnu+3psTEJ6WOMYhEeBsUlfqvdv296xP8H+MkZPcU2c7bkEutkKPVb6dN0mrCM/iIPG34doQjyWVyuGL8Gte2RmiFOCkmMe58b8FqMMfBm2EXjG097O2WZnuaZfesNHjiVBxQZj3tXX7filN3zkuo5T7m2EijlIUsge8Oj8f+YTvZovNvjJ31mVSj5Ojdj5UF7nG1LOeKjeno//nreCvPdWWe6Y0Tikpc8bpXaYNQ01DQwkqjxB/uTbReXD97/svfTSt95X/h6jKw5CqxS5Y6Edjg50sPP0snnZSl9yrnV2yEFrbPbMpRM8B1nQtAELqsZQsp8eYs+fC4cerFQxDpCwi7igSRvR5ysc+7yZSgp45sqvWBrW6QdPVPNiXoCxcGbOyP8Tf/JB+v6XvZdeMSJTY6TNQbWDmnXsTzm/QUR03RJIW9dc/5a/OwglgHp0cSymMzlV6qwkzEv+8aa94phrlUGMSQW8Yuo18sr56+Px/9cx0qwJ1DSiQLi2WNM5oGIUxw6duW2ComK8QLx9b0R5MP5OKAI1a5mKcdZ6PcC7sAPaUdKEHFweoyk50cZrU2OD1kFohrHZx1Uz6+48NZVpi15iG9ZjTylVbZTIT/OvOfa6vYvCznPsGrTwdwIk2mMBiZ6dLsfuUSk9R84pxh4PWySBzt16PCafhpHLWNnUd34sI+3fe9vHy3ff8ZK3020vePnovVjkx+e///JidD9ropyon01ZgPcAdWPQCe2tdEC5PEdUtzj0TIyaY+d34UkgLW9u5Y7897x3kinVg0i1X8zOv21CoV3WXaSHri7o6Ze2stOO0tG2oKOVAQGoGF33pu/Q/d9jzpbjHZ7zY8e+s1zTV//En1eacHw2x+HYGRV7AyPbFUdhxsbF3rxZxEFQ/Jjzv7LgzE0Psetnkrz25yD0lAyqd56ppXlsxjMeU/j0+vq94mEVkJiomNo8eo6dEDsApco4ABXjOXZ++K1TsbDev+e4W5kN/P47PjF8E73ZwGJZlGJk4QrPxtYFLTpup8Px6jyfejzr6L11QWvkqJ043gcRUzG181cLDdjM0wHOk/flYk9dSq4u2Splui4VBx0T0QNXFhQT0WfetEVtE6qpMVJBTRMKqs/PQa6JT1MG5G540Cw13x3nxwPouz72ON31wFX60Ve9v9rGrrV6lAXq2LF7Ms/teZaEMsd+vYidv3v02pJue8HL6VXv/pQ6F9HBJLhujoLh1MtszqFeFf9Nto3013GdiN3GO9ygLV/TCMd+UusmnCrH7o12rCDgBjeG2MdShT2nUY45MsrytrPr1C3aKaFQSdf34tn5eEEpPubCcT6/0OuVmdt3K9mZ6a4bcDKdZuWg3LFSup4ksouI2JvqO9zPJiitY6JZ2xQq5pP9wPWMm7aL0y6IfdYqdDxrArVNGNC28//19V526sGIFLRWbvB3HMQ8tzEja/Wgd3TOwDomvDYBMsM0x2xE8cOD1gd6Lfov9/Ei9d4OcC/+YtIDzte5RouYPVTvBfRtSV4cl/mQXtlee2wb0JdgfTPqS47SDu3YQwjPDiG8NoTwvhDCe0II/+ooLswzD0Hsliy9/LeHGAUBaXSM//em3aw0GZs+Sj3y63uUlWOP9XV4dt8jO2qBBE7UYB5aIRhTMx3tco/KLm7VCoShoOVCUTGkfuP/KyTkoPGqgxpUujFrDBXTU2ymgw453+Kg+3fHdNql7VmhYvh6tjaQikGOnZ9f3SZkppX/89iIY2dUjzQX/5/19lxz3VugpAx6+1Axz/up19M3vvjNo9vYa/OQa3V+eLZCZ+5PM1lg5DloIqLffMtHVQYrh8DcWfTALNIr94y+M5qZnpcNjbM2ImnbneNL+B5lBuccB88P1N/mKUtQWhPR/5pS+kIi+lIi+vYQwnOO4LiVucHTlZaGjUmbuA17RXm86VrbNGobz9hxeIh9TAHBh+QGxo4Cp6qP767oX/7W2+mxHcny+/IXvZae91NvKH+vFBr2O9GeQ++wVtgGMYlg2mk+PaddLXThdBgveJpKJ5AOszlrMjcO6HyjDeVY3qxKd2x00P251zLwFipmALHzfl5g0U6I+FlccTJQLSrEgZX/v1OqUErilJyrv6aufu6evfvjl+n2u2uu3rOxUg72/Jarzt/lzzHEzvfCQWStVJP9/vXvvYu+9t++vvzNPcjty+Z67fXgb/a6O+c9rkZUMR5/z//fNf4Gz+8llDHYaEIeFE/GrR+BY08pfTKl9Lb+/1eI6H1E9MzDHtczj4opa1c6UzPrkHgERrThLb8miEOfwzOeinvXNjaFtlM7qWQo2/zam++hP/yrTxTaxDO9UG5UHYf/75VfLQtlOJl0Q1l2Q7wkUlalXnbbiIMc0QwX2mIdaWOWnW8X5XsOijPNIsfhe7SdSFQx+HzYaeM1bs2bopxAxG4TtPB++WwSE6nfsR10kIdnUCGIvZ4xHSfHbp02Pj9xrPo+iGrqy7umkljV8WDqIPaRPlEWaxkADXjdh6ZiRhRecmy5tpSyUmvX1PFxaUbz3LokoOGk1lY+Uo49hHAbEf0dInrLUR6Xza0dYZyPVmXo7zzk6aUIS+PPf++MLDjAx/K2Ga8Voq/FGwSYhhgN/qoGqjsR7+chdt7K44GH+ExXxx5TCVyjjnxz1qiFTrBsrt2fKHe0zVlTnG/hdJmKiZpm8jp27J1/2wZRpvSp57M2UOiVMph5mo+V9y1BV8exYd0RovHMR35dWIQMr5FI2st2X8PG4/PHUPX1WDSOBo/pX/8wYhbH6NQPMk7fm/Fa0IDWFOpzBGxYB+8NPoiik5npOW05wuCez8v3owHJYh2rILq+Rv3J28UeNOQYT3Xbx2JH5thDCBeI6HeI6DtSSped358fQrgjhHDHgw8Or7M4Zi4qHnBCuP3SIk9AWR6fZ6fSY0uE8f7eNmMOORTHUw9IbOzYxxCbdbZrh/bAaSc7JqYqbJaj2s/MZhCdIhXDmZYxSYfF5J9VF8GJpmp/vseNtqFZ27iqGIu8imMyVRkzx96U2dZyLeix7Z02pnjzsTJibxQVY2kuNI86854NkaZiLM3F97dWYENvc1jH7hU4c7X65t3Y3AK8Fq8IF+/PZTqKUs3LRvboJabPHAqqXLcBXR4g86gQNv7J1i/Szrh+NjGJtPr8RnugwY9/X8dEbdCzweO2I3HsIYQ5Zaf+Gyml3/W2SSm9OKX03JTSc2+99dYndB6vgdsotTtdtw5KBfNqdCC8r1+G07smNwgF3730rffR3Q9eLX/ztJedLu7PL59pCAnYOAMbOrZOl81debOR/r+t0VqPLebsPTdBNURzoEv4enKgiMqxt2YamdqOsVhH2py31IRA6ygDVKFiUtLT7oGpOFIq+Zp5IBMqRnTsetBoGyqonp+nPLf8fx6QvaC7fX5Yq8ZeNz9uz4lYB7uO6VAOwZ2NDqBSPL/WcfNn/dzZ+Bp3+hmKFzzl3byBgcGGpwYamul51Kty0rGmZrxje5TKY1B5NQINc35z5s6mvPV7C8duAvPHbUehiglE9EtE9L6U0k8c/pKGzZMKSanN/LdGdZq/9pywH3TNn8LfD1/TGKrCglff+TvvpH/8028sv4WCTmrHzg6UnRo7Io/rrxA7XIcnoeTrZAdllQz4f7vmqJegFJNQMdhBNmaNqn1dnOjQoLHuaKNtCg/J77oET6MOYFqJGl8L6tjx2c2apnfa+XqaoGcDjKqy3LF/tjGV91Qce38uoWIcxG4HLQex2+egZ1q63eZj5s8//+CD9E2/cHvRox/EPB5a4h8O4vRmv3Zm7LR3fhW7Pc2EUlV7LQuHyrEc+9oBO1KKor6OYY6dqm2WahZrn0P+fOjqgm4+Ny/HYcd+YXNWYjPa+et7zNeX951BHOok7CgQ+5cR0X9PRF8ZQnhH/+9rj+C4lWldKTsf31Hg9kwhMPLRckcH+ZUptC6f6l7TSMICn4cRG3bGxiI/2J+n7huFYx/mcy314lEx3nSxMYFhj+O1+7uqmJ76INL12DdnjXIeTMXU1R3zu1xC8BS5eu18awe56lJ5TlkVE7Uqpr/mtg3UND1i7/K5hNPNM515Kxw/f7/RCs2E5iVf2WvjT4XYB2Ys+t70tvj7t/zyX9KbPvww3eOsQ8uWUqKX3nGf0GzOIiJDmbvqmpwiaJ7zsvvvLvO1WvkintejFy3HvjSgBX/zrsNVqgxQMVYIgAtfuW26AAAgAElEQVR3c9t8+OqSnnZxsz+2UDHnNiU28/d//HXVvdnzq1nkCSH2OjviOi2l9AZyS1Advdkss3kbnKSCuhFZ5DO2VBuex0Oz1iyqReOOsTuyyrxw7MNR+pJd6pzDSjeR8+X/e2oWS8Ug8rRrxbpUjIfYk6ZQInSizZkfPM3HIOVsY5JngKjPK9y06iJtzhtadrFQMZxoRIRyRykzsFz3ThyS2tZd6h17UAPZRtvQYh2Hq1J6yNXQFZggZpGmr9kepsfYvMQotle/9376zn//Tvrwg1fpu/7hF+r2PzBj8BajGKu46SXS2dWJ1iNt2xsQCz3Z1dvYgPaYJBH9RKIhKka35fseyTWaLm4JzfLwtQU97eIWffD+qwqxc1KZ7Y9DAd0Yk6ICT8JObeapNJrhjuYl/axjNIsrD0fgi2Jk5GWMTU35/DuOY7cKHS1b9JGyXzZgOHjqpT/z/5tCxegiangvlsLytsmqGJQkRgohO1J0XpsQqLT30sVEi1V2/pwdys+g1AACbhyLd+VBQwKzHaOjRs+IMPmIFThcBaLrUfx8lp09v+4uphI/sJ12bIk16zQxeDrUXjXnmz+RwuHnwQHfx0ccOzugjz+6W+6vHLs47fw3D/7YxD2u+EBUjHkm3myU/+sh9mA4dk9uyvuXT4dmwYSwg8gdU0r0sUd3iIjor33GuXLsq3truml7Xu53VWIzWghQXyMMLEmS5prmFHHsJ2n4ggoaHV0XM39qzapx/iPOjxvIGBVjNcdoRW7opPRzo10VKsRBo2ZK6lWgXBmlytpD3mo2QupYnmyv6sRj0/aUiiSRFxWYN0Kp8D1yZ0A0iPp3ROwpyfHnkKDEiH17o1WSQpwNrLu+pAAPXKCpDkE66LxtKv39vNGoat3VVIz9HEPsfJw9B7GPIX9G7IrC6W+YM1XHlubbNEF3N8BXBip9zeraVHsz1+/dt5nZjbUtl4oxwVYvFmbBhk+hav5c0zVUnb+LsojP0y5uqQGZl1TskizUXtqEuQU74+HvOHgaaELsruFDKQ6x0w3Vy+BTUrIYR2tQ5GPlz9IxRt6F5dh1Sn/+/67r2HXjHePGPSRQGr9x5BqxOx0LnBbeo/dMeGByBwhATBut5qpZM45B2M1ZHTzFoCvLHZuQ/xbH3qhtiPoFC8BBbBp1C5YUEE11KIMNDyIcQOaqlJaKWceoZgz4KfdWD7aWNthTywfyc9PP1MsR8BA70wBjiL0xgXEvMGgdvAeIRhG746AszbF0Ebt2/miSIMX71/vZ5efcAdEMpPi3N9PK2+S/z2/Oyja7sAh6dtB5m03TJuw14tddlASlEE5R5ulJmqZZ9AtykY8T4MIAYxMAATg83EGCp3ZgUAlCB6Fi3Km4/i6QOKCyPwwMHHFnKqQ6h4N8xp6b7TQp8ZSynlUgYmdVDjtWfqQ2eFrx50mCp1wPHROd+Hw8gzoHa0eilJIDrJwMgveJtdaZO2fE3jFin4lyJsbMObNjt7JELzt1qCqmGwQsz3gY1XpBV74eduzekobs0LlSqKdusQPVmGbd285D7JKub0CDQ6n4VIzOFnbLPUObrO8tf6rFy5PUl5/hLNIMGgy+tqHi5+6qo615m2dxUaS8drCX+/efW6EHT2vm6XEbPjCrv0ZelG2oCBV3pi3gan0qZv/gaWcGBo/mcRE7U0kjVAwfOwAXbPdHpxkPwLFbByXVIb2BRQ8IvE0I2nlhzfQVq0uafL2c0bcFiJ3vQ6a0qZQUYI6bz438+VJRMXKNm3NRxRTEXoKneTtGTF3MKqlZ26gib8su0rwN1DY6C3FuqBgJ1utnhc/LtgU9aHObIvMenPanELtui2P5BwxIxhVPZD5r0OSBHaFAqDKb2DXKsbuZp/paRmumm5gH7ocUSoyp1PO5+dy8XLelZxf9KlttE0qi23Id1XdFGLAPFaMHyXxdbTilmacnYR4VYVdA8hqjpWcQDY4GT9f62Ckl+sXX300PXNmrrsMrplWqKxrEjgvcesFTzyHk65L/I2Jnjfi6Mzp2z2mbqahHIaHTxkGloMa+DoynXMkcN6LjvA0idos+u96xb87aqp7LptmGjyWIGRB7xAxSHTzlbNTUo/p5KwHWlHpVTIMzhlhdI6N4/RwdNGycn6bZSG3j04XS/mwphtXIwCJF38biTtKW8VPlCLhO079HNKt48a5xjGO397H0nq2dOZjZCA/STFmlJJVMb9qeVyUh+FiCznN2KM8Ot/vvvDZxEFWMRuynLPP0pAwH+bVxiNKIBeXy860Ruzgbl4roN18YKubjj+3SD7z8ffS1/49UV7QUjA7w5v9bxI59YmzaabMavUUFVl3SqNbR6Hv8vUXzFvkxakXHilNRRN6oNV/FmNcO7as0rg0v2QHniQWwluuurxXDKx/pASHG3BnbJuSBpXR+QOxJKxCIJHjaBFLHnoHWPd9bpPmsR/VJnsemSWKy70gvn0blOvB9eXJDW0HSm2kuVl2p/jj03rzENm63SNGxVVTQgIO031n+2KViuL+VxV/qtjWqJioD4TCFIw6+/x4O0xm6jvdjaeil7XkVB+Bt9lYdOHGRKG9vtNKW96FihB7S18SOnWm+k7BT5djxQUpgxjSiTpwNBgqxE6PTcKs7DiB23u+hq7J8XY3YwbE7wSsivzN6pRBsVqOHfDQVkUy0P6rPfJ36GsSxaNoF0bl8J/SIDnBCEbAu9ZQGZ3lqB911UaVmE1GRG24Ax700iJ059g1eRAOcACN2potyEbD+PtexV8RIx1r3gw9y7MueQmp7HtR24pS0g+amqBC7cT42CK2ft3HQzqC9WMeSDIMBXX4e+f7r9sbt1sv8rCoZGiSs74PkO+Ps7eCF39nZoK4Vkz/H1kx1C3XZGYM7IMUSBN0Gx35lb00XNmc0bxryBsSM2GPh07sonPvWrC1t2c40rZP2BsSUdHVH/u647VQ5do+/LgjGTNE2WklpX3ZRUQFlSgXbeIjVcuxezRj7Ml1UPeKgvZICtrN7SgRU02AdFi+r1iJN5JC9AQlLE2wCYkYKq0uS9l+Cp7EP5oK6xVIqMYkc7fyGOC1UxSA6QjS+6BUwbdDT/lFVTBeLA2eaB+kifgaoisFpNw5aHu3iZcOO0SxDzt8GpmNPKdh67TZZTSWkGXmtV6uFL8WiS0UfONdkkbpXqwUrdaprdNQtnmO3z83br6JkzL1JEhEET/dWdGlr1mce522VTDjlZ7Y1b3utucwqt/pF0LsoyX8b7TgVg46b4z5NCCKCOH6/fooduwnQ2GDUvAXZWoeZjyJ3nM+C27DRqRP5XH25DotOnOm6Tc1WKOsAckcbMOLfUo80sZgVdpihAmf7yT0xUMrPbR1j30Czw0C+ed5o5ydrjvrT11Ilr0fsy3WkmPK5WJIoNdOFP2fn3zY6OxQR+6p35LjSD1MSZYHrfmosOnYO+vJi1n4cwKXLnPdtUa0nwa3oGhP05vZn67XL+6J6PyP3c2nGAQfpUjGG5nDv0Tn2qnLs9XPzgqc2sOtJQOW56WvN/4/l3jmRiygHTy9tzxXHvejfdz5W6h275FEU5D9vS5vcj4rhS7HPpNCDE2L3TVExa93QJWFH6AJ+vusuQYlWefDzthls2GoZOKfzsQ1NrdV+6kUblFXuo27EknFadzR2tERAc0RLxTjIJ+qBxXNQXUxFn4/VFbOUkeup6OdYjh2jQr4WsackqIoRO/89RsWUAOtcjs3PSBA7QSeS4GlTEHvoZx5SF4afZS5R0ZTYjHTiVh2bLUHbkneinQ6qsuyiE3amxJ+zftBirpgduy3z4A0IfF6L6j3nW6lcPEDizEYqxO60d0tvuo7do2LKNdWzWK8EAu6Tf5PnsTnTcseLWzNdLmINgKAHG9tAxQidFRQgIKLB+kG2pDB/18W+umMzIXbXPMRuqRhWBJzbaF0qZtVFxcN7oywGYYikw3jSsiF0TYSIXaNoPBc7MLdE6Qhiz7RL7djLCkazBjqYHjRUUtNA5m017ewHREbDShWDzr/i2HsHDZmnC8Ox74FjR7qESHfQZa+cYcTe9bMGTH5ax17KyPXYO6msF4JcIzp/5KR5MeuiwAEd+2rk/fP5+R7xval69Pu0G6a5arqqbyeGY1/F2mnWuRUOXVRoA752qrbB/AteQaj0F8ex2vbO22qaMX/alH68Bk9xZPvpEMfvxX0yFTNXKf0ZEPB6s7I0I1MxfByuCpoHDW7LTXVuvH+tisnfMzWI2x2nnS7HbjhmpiKI5IWXqZhJYtkErXcHnchDHimZUqsGSRDJKvM1YneQvur8uqF7HLvlJj0nsu7E+XqSwPMbragLjENyEbv5Dp8Rf8cOsaxL2u87N5TGjJFv9FCOLn9KJA4ESwrg8nW8nw6e4mxABg1G7CXZZR3LSj7stLPzFyqG28y8lXoytbrCV2mMlYDGmR6qgtRzLwBFBkBE7CzbW3epp99IHcdrp3awtsoRdY0e8u3/qzNm9WIUJcDvSDlZpuhx7HZmra7TUDG4KlkX7Qpa+n7yNhEcuwCSK3uM2LUqR7XtKKUoUpJrypSdzm3gtmzLaPM12UA0t7cGnPtx26ly7PhiV12ih67m+g4ccCPKD3veBpr1aJynQhi8QzTqTVexY+V9aud3rS/BazvIfok+FrHbILA6ptGhV4jdFCXqkqD4cxszlz9Pyc4g6gEJg7CbwF93MVLbO0TsaJqKEcSOznfDoWLYaTHnzjr2buD8EjwNJamJSBQQzIO3Jng6QyomMV0j1R0RsXOgjBHz1gbOhsYHRJzF4DarqGWj+Glng5uzRnHsFzbr2Rg/ayKdnWqFAJ0ZPHA/64R0Uo0gdoxDeLMTH5BosOUNfkuvDRrEi7XO0bHivep+K/c6AyBxGTh2rJGEarIuxn6VIw1sWH+OgIjbOw58T7u4CfRQ+boEwrm6Iz6n47RT5di1jj3RB++/QkREz3nGJSgA1NEWJro4qLaDF+TyiTAVJvL5RF4KT+SWcl1lP6/zGwdRqJgYVSYmEXClpjPmY0oQuCSxdHp1IEli0ue3pX7zfehtbPAwpeygMDDKzxw70boDHTsMNPj8pS5HzbFX+ynEDsHTpDMK+Tl5HHuLVEzvIBUVs/KomH7wmXOii6kS6NBzOItRzxaoGAECvL92gpuzRqkyzgHHrpVL+dOrQ2OzW63zw/Om1JfsdQDJzrIrs6qYUoVEicgVGdjYEP/NsRmiunR2pnr0sR/bWZXzd+b8LjqOsfy9AdnQO8sO9Oj9+UFNxgi9OHFo2/hdqVzaCmggInrh856jsqHtINkl3SaxHx+XnSrHbuV+91/OGaDPvuVceWF7q8ydlYBHcRBYT4QdktQzUZlogAZnjYzyyLEWVFIkhbqD5v9T/5tG2pjBhs4fpX1E4vC8Y6+jOHGkItiRbc5a2E8PWkP16FElYOtidCkPiKwmQeePxbxWPcdeApWGY/cUL4zYN9qaisHkK1w+j6fYREQ3b2+UayyZp8yxr2PpiIWK6eWOjOp5yi8JUuLskYrx0KkFBF4QctUlpa7hZ4x/83NisIGUGm/nUUFIxUTTTsdqvtjCYJqK6dvfci2ONdqBbRiNlwSlfnNcLtFTxWSnXf4UxL67pKec35BrdO5Da+2pQtVWlYKDD2b1xiROPDv6fOAcU+I8Br/WfxtYcaWvn6973fXVHSfE7hu+2FUXlYOQhi4ZjHpKD7VK4AVh50O6pqQUb8janeggba2OmOrponCeetDAmhNK3THTqG53pR26lTuK1lzujWuezNtQKS54m6FALc8YVNq/ybxkCqNL4lhLzeoe1XD6PiJvLL+7No59p1AxTVnlaN1ldISrI4ncMV8vr0h1aXtW7s0i9uU6FgfOTts6f85MvLA5A1WEvH+8/+rd4mDb+VJSVOFY6s++I16gxGbnrs17K1SM4cGJBGyMSRLtrM1z2haxe/JDVXOlzEL0+QsAgQXOFbjozELlgNiLY7czFrdPAMeOgCRKmQk8v6qxFGNx7EQyGLUhAwAeWGdQroKvp21lHQH7vPOgwbViZBZx3HaqHPsXP/tm+uovfDoR5Qe/hGk+Tg235iJbq6iAnp7BhReItHIGg5DnNqRErKc/153G5yprxC7XhFN6y8NyjRlPAaAGNkhQQq23p3ixyBMdzAwaKG8zVwNi7JFu/vvhPsZxa798GKOTGejBMRnMVsnj++WZCZYUWHLCUMPXnZ3t5rymYi5szqRQU9Qa9WUniL0obvpaMezwuZbIha1ZWcwadcx8fi9hx6JodlhYKA2VQtbpdaZt8SxuUVQxs3Ie771pjp3Ku+R3hn975+PrxgArb7+77OjCljh2b6ZnZ7q8Lf7N1Bc7SLvfOmqaBc9/cUtmDHw8XJfWUkglR4Xlpf19CpCjck0I5GJkxC6/87lYKSNB0LwND2qZmxeNfExS0IwpPMyGnnTsxr7hP3wW/cjXfxERZRSEwUPmCjmDjKfd1ZQ+UlnwGDsfTs1yx5IAn4fOuGHqIFCs+HQ+Nn7HzkBTMXXBJ3Z4FoHxNlUST5LU/FkrBc5sh/TXkkwl6IjBI9TsotPsYqKHr+XSCreWdSHzoMnLzuEgMmtxPVM9i9ozOvau32+OvGQ/aG2yRj6mMmO4uDWnNoQyYFSIvR8duEY8U0ocPGXEfn5zVsoNezVH9g2ewjvBmvGSjSurSlVUDDxvpAJxfU2vrjqvL4rv0pai1ty0tDe2lHTbiilz3jtYjzzWKJ/vrT5/qv7GNkFUH8sDRFa5UmI6ONM2oMnGfdbgoBm0XNlb0TomuuXcRjn2moOnTLOgY69qDGkqhr/DWQSWsu5ij9jL86Vjt1Pl2ImEO1t14LTBIe6tpUobRrKRvy4OCkZZOzUrigvooMqxezLFOMQDDqAKRcXoYl5EyLGzM5DnkO8/f48DAq8OhFSMDXCxo9+YNcqxiAJAnANyw0xzMKplxP70S1vl2FhgC50h74fKHT72rpI7cnZuro+O9VwwQalLqSDtS1szCgEW1TCoimkgdtpl8Ok7KNc2v7g5K1SQVdzEWDtxfDf22W7PW+PYZEDk+8HjdPC8kYrBGYOnWXdXZ7KDhnPdqnIiABledpDXkL2I9XycpQm94CkDERQBzPt34nLzJjaBzxazPHlfpWYzMyYURhCJ4y9B/5jok4/n2NyzbtmW/WJewamiYmCmsY5Rrc7F23DyEd9CTElJgEutmIapmAmxV8ad1KMiuiRrZxbEaNAho1HJjqRyPExNX4Byw9OxcyNHbp4j52yejncNgw0u+LyOuq44kTi8QY7dIHbmxrFsLlFGn+igEVWiY5mVQBEmCGmOvW2aguof21lSCCTIp6dZuNY5Bq+ZY05J7ocHMlTFlAWnu6T4zJh0glKMqVBVWxv5Owx4t6UTSc0UdtoYYyESx35+c1YGnz0jybSONcF7k3cijg4rhzI3i1SMBQtlsOsrVyKwKM/fcdB7KpFOO3Jx4kgP1dcdUyp5GRe3ZtRFLPsAJR0gt8Br21W5BOhb+G6Jao4dUawEplM1YyTKogfpN/hMCECTCXAWsJGrtBIRPeuWc+XYMem0/1WF9HtKre8juA3vhxLMohSLqdA8Adrycdupc+yzRqZYS4PGY4QMMsMVY+bfOsZ+lNXO1ybDEBFtb8xg2qkRO6NYqVxokUf+tJl/bhEyJ4ml1PxIusPwMasKiBHT/mXaX63d6Dh2ROyKilEJSrE4xEy7pL4iIqNqDhTK0niFq28lsUmoqLwfqmJCr3hZlDK+VO6NBygekNnRzvvBRpbBkwGBfyciNWPATszrhyoqpuLYSSXj7EvFbLSq3Ug27hBiF5pLtz+R5HmqHJTlyrvU8R/OubgJytZixdMYE13t5bsXt2YUUyoBbVwajstfYLuxa4fm8+t748VX+PkTaaS/jtGVW66NoEBUWI07i/YSlJTz7Z/tg1cyhfj0m7bK/Zf8B6N4Kdx8xMqhWu6IWnd+N6jKKTTPxLEP27xoSPsa2hAEKwG2mcgduTFWNUegLgkRJyxIPZnCcQIVM6TKKXVokl+z2xZqQsSOjV/iAPk7y7Fjg1h3dc1yUQDoQNFi3dG5kj6tte7oWESjLlNYREw7y7zkGKtimDssAc7IVAzrwQkcu1AoqyiSSLzPzbnkH5RkJKZiYs+xz0QVUwJj/aIZSxhE0LHzMdoQYB9x/qyuOb8h599b5+Sc+Uzalpeaj3QBXyNRT+ElWdhj1g8+8rz1cXRAX9Nlcv66bS0UFUPlmnAbvj9G40R9HXso17CzkHhFSqJUUlRMJzMk17GbwQpBk+QI5G2xXEEXjf4/9Ug36aUJ+Xgq/6TTA0sH2/B9EmkpI7cBnA3FlFVTdnm+BgbbHPepF3HB2QA/k+0N3SY2Zs1U3XHMQgg0a0JWCaz1avPMA5ZiUpFKY0TkJUX1xVkuTaBGpuKaK2VbrgUxY+ajzxVqHn5t+FQ+Ng4+KaWKY0fN7jqi3BMqEDKlAoHhxTrCNQq/uuUgdg4wFc4V7m1n2fWoFp04Jl7IYMvnx+lzCJL5ivXQdxwd+2IV+0QzQUcxkSopsO40quI1Pll7zIaqGLu4NVE+V048QZlspgFadW8y2JX31sWyGEd2fnoWxY6EF/jm/Szi5IA+D8ionMrnt05Mz+r4GvE3ROzb89asUaAzL5XzT3UFTqyfw4MWEdH3v+y95fxcT6Z27HWb5FkEPzcrW0T5J18j0iw+FRMLXSqUbf69bXChdL1N7GeanuJFYkMyq7LBU1TOEPXxOkh+kvV8++d0AktanzrHTpRHY5YNYhCM1QRIxVRBsJSlbCXACo1vG+iaxTp39ly7I58XAzXLLkElyZq/5r+JHMQe0UHINqpQ1jpWNbBx0FBFwMx0FZEfUXZc52AlnhU8k4KyOk3hcGCSszpTz8Oe28AiXFJigK+7SMIA5fA7E+Sja7WozNOG7z9LGzngVMoOQEkBzoQNvdxsidNnQOxYUgBRPUoiefvQDywc8ENeFAdkTN/HPILSJvrvEkmwlmuO8LPK7yOW47BSi/X4uY0MqXLy556XoGQ49quLNZ3fnBVJXhd18bSUUsmkvlQQu0hA+Vgy0xNA8KnLskwkHxf/5k/r/HZXXUm+WndabqnoSiVJlNkWX3cXM6XEiYQ2QckO/jjzmRsevAlAxfT7NUHkvRw/Eo69HzSCzAaIDJBKqcxYpszTfWzWhoKYFWKHaY9wlZpj76KuvVyi9KCKKQqMmSTaEB0Asac0mgnI50cqhhvDKkbFleNUmJ2ApWKqyokxFQeBjn1v3amBDSmkUqvGUDgcUOTAaBcT7SzyUm2yGIVG7Bxj8EoK8BSWOy2+t11MUAry3jZngpiL84eSAusOs0px2t0Uh5zbS36uTWN5eCrvvtA1jTwjhbKSfm9YcAtXmeKl+LZmOuhp30ldtjcaSWjvNEpqvK6749WKsQobbnZXF1kP3vazWK942rXlmjZnTY+Gs9SRiFTm6QooDKROyvmBrpr17ajouM39X1t0dHFrXo6t5JZRB5P5OVqaJSbq4yUZAGBineXYcWk6L37Eaf/cblD/LnGnqGg+jvG0rZ6NoMKOFUYbs4ZY72irQh6HnUrHnhF7pmI2YFFiccgid0TOkyi/RL1wbT6mXrCCVy1vFS+Kjn3VxcLf42LKu04moC26VTpoj9gz9YKLWqQyVWVeNCXd+LE0wZYqZuRw7LhqO9AF25Cx28FUNCZZJ1KySnNFy3Obgthj0kt+KTTcd6KCmICKwCqRRNppFyqG32PfQgWxy3tjJEREKniKihf+m0hTMXMVBEsK1bMz1igrmZkWv4eoZlpLAyRkhqJVWDbpDGMcXe9E8BnhjAET8pCKSeWaairm/GYrZYsrxybtne+fFUcXChVD6t4855SSSHLnBVWzSiSUgYUozwg4+WgdTa0aoHOQLpKMbQFykjRnKo5CLI6IVNu2iJ3P10BbLoi9n2kwaNJUjEbsokKT2f8CZvVTdcd9bN6GgljngOpiBD6rCaoxomPfg/UNORkjq2I0FVNkkw4VgogdC1WpFG/DMfKxC6roE5S8RCN2dgrVGD5RAsMQvO0RDE/puaDVOeDKSwfdaAExphI8iikrRS5uzuS6U8+xb8yA406KKy9yQ1gaDzsRUxFlagqIfd4P0IVCg9IQRDo7Fc83RzRutMdsBbEDFaMUEJ0sxsG1t1nJUWYjUQYpRMwYG4kwaCuOvSiFakkiyh1Fa40qJSrPX9dcyd/vrWLZxlJ/UvOlKysBpVRTiExrMfUUIw2sS9sHT+dNhdhnjczG+BnxfiyT5YGFZ6SXoBTFYBIfoHN2nFh0btUnm+Xzk+pb/G7L+zaKL3b+a0OpEOmga8l/6IOnXOtfyx0NFdP3ZV0SWt7lcdupdOyzpqFlF4G7yt+zBJA5dpVUAcFDvb4hVZphpmsK8gcHzbbqojhIUBegA0K5IXeQVZQFG7ikgA2UcaCSiCClW9eYWHWiq94CjtfK5tY977k9x5ofMtPANPCSWBQTXd5d06XtuaJLupjo3KYgZj5XXihaFBrotBcGIZcAL6iZ9lZd6cCoCuFibkRG616O3Wn+HBA7gqMZOG02q24oy+f1gw+XIsCSBphYpWIjMNOSuiiWihGaBe9H8dCAKiU7GhB7h+1GEDtq7fGYJUGo0EosUzWOPUE2bpBrttuUGWqf6c3v9Vu/7HOKvNNSIWUWGaQIG9/7pS2pNW+zelexPr91yGU2UFA1LKLTvzgp1MWDVi3lXcGssoU2QcQySa04C2YbK51eAvW5gNloKI6djt1OpWNnxM4cOzsRDiRhMoTl2GPvtLdmgiC47rNUkkOOXS/D1jaBNtpGZb4iFbLbI81525SgKyLm3IlQFZPUcn58HJafYREmq7ix9djX4DR5QJKBTZKf8LuC2DvNg15drPrpe362Vxb5GZ2bt9QCGh8KTOqUftx2M2IAACAASURBVAlwZkpB13PZW3UFYYmOPdLWzAmeglIGEbtVxXhUTAutHTMBsbSvxAZioYaIdNleFfSOKBvUUtL8HaN/XZuI72fdz6qwxo8kg2ntc6FiQKaaHbvOWC6LdwDny2oiPUBArfcY1eDjBRgXZjbCvPvFrVlx2p1xyOJ8ZWBh0MKI3RMd2KUZ1UzXaMRnbVOCp7wNx154gMDaUFJPRrLY+d2z813Dd6iUmrU1qkcKjb/n988rus1nmtY7bjuljr0pOvINg/yISDTqkUpn11QMcuyJHrmWU+M/48Jm2Uatr9m3uWuL3IlC0MEsdqyp5ya3QQ+drws47mi5WkBQQOnUiN1w7F0tCUPEztdd18rJ190EnejBPGhp/KA95nvI19gWzpHPRZQREQeONT0DqLpktfZ64OJYZekwDl4WVUzf0bDsADvoxUoX+FoC8kI+U7bR3wk6S8qxcye2SgZ8T6V4W6d17F65YVYKhb5N2FhMnjXmGWJZhs2kr6tSyjCwqOQzuKZy7MgS1Dppr1ortsUAo6FUYh0/4P6GCjOLqhHp8sCyA1muRFq6y7kdMqvQORpEpOjBEpjmNpm088cYD7ctybJ20PmA0+ZBCxPyFGIPEizG4OmeQuwy0zhuOxLHHkL4mhDCB0IId4UQXnAUxxyzGSDmWVvroTHRxVOu7K6y8+UA36M72bE/9QIrQHJH25q1ORmmfxM7yzWd35gVVLM0XGU59lwCjER2ukxmSk/VtLeLsvTeRVAlKFVMlHvbAMQiShXLyyIvWad4YynbZI5DZPTfRRUDSLdBjl2QDy+OQUSl89t66MvOLDjdx0G4fABRXQEyH7sDNC4DC5bkJZJsZZWN2uptRO4oWZ7Ii+rgXaOem7c0oaXHUCnE2+C7XRQ1l8wO7OIMWNseFU+WirHlhYtSLAR1jbZcAabG1+iYqvZu30kHtCJSMagRj0mklRw/su0UnzWev1LFRBmQmOPHWRURcuzy/O1sCB20xF2S+g7XOrCoHp+bUJ/GsRuF1XHboR17CKElop8hon9IRM8hov82hPCcwx53zDba0KtiUgm6EUFDgyltlRoea627OHZA7CtZhq2oC5Zd4ZhjklEdpU27q9gnP4HccNWZJCahLIioQv4xSYLIBUjp1glKSTesRuReTEV4CJKTaJjCwmxBLe1KCjFaxYlF7E0Iik9nR4momgfSFR8bWh83ekaMWD6AyCJ2J3gKVBA6RCJS14jfYYC1VdeYeh27zCp4ppHvT2c+4kzLtgmtwsnOyCLWTrVJDEwHCsjxR+38+PlaKsZSdssOqRituOL9pGa8pis2DCDI59cLpOQMYXL5a/4u68F7KeWSi7dlx77qdN0jJZuE4mE2MMrPhAdN1SdMglIpXhepxC+qgl+BwGmbJRWjFHOzfQLpGivWKPRwe/oyT7+EiO5KKd2dUloS0UuI6L88guMOGpekLTr20vn7lXDmsrL4susXbOgbAyf+8NQoJVlb8RYo6r/XT425Y8eYee/zG7MypbZIOx9rmZNBgJtfrKXzpYRTat35veCplE21VEzuaCEAio56MQycDSCCLJwrcL6qumOigsarqSk4COTY2xBKfRMs3rXsZ1VEBM8tl+SVQqaCmLkTl8xPB7GjY8fVkYYSlOZA1+B3ipphVN+IY7NUTJnFNPkZEeVBChcosSUstFIoKMXTBaAiOFjMuRUSTJXpe0HskLGcy01rx77sk+v4O8x8zANLrbiSGItWYEl2Zj5OE6iUWeD72IISHh4Pzhpxdn7XyvklqxUzdnExmgIk8NhAxRRZaKPljtwutQpKqDGriiLKC2ZgQF1mkRLjaoFmROqPAYkVa+x6iP2UZJ4+k4jug78/1n+nLITw/BDCHSGEOx588MFDnXDWhELF8Io6RDaJhXRQCgJuRDqYUcoHYILSSu+Xkzj6Win9gCDBLAlevuvjj9NzPutSQfqcis0LJiDnyE5JtK5yHIvqYkr0IGT5ZV4y0bxPxkG5F6obbIo7o3jp6IzyoqJwitacG7Fxmhaxh2AUMI08W6V4iULFoKNFKqYk58DAsmviJ0RZccAOWTn2qlZMo87B3+HfMmOgMu22EjXmylugK5brKHGQmCWB+d3mc9pZRExUzcYKFWMQ8wySqDRi1lSQ8OD5eS+7SDdDYJJVMTyLtYg98flarp8kDlKtYNXpmieI2LnAF8aPiESCy2UeYsK6NDIbxbpHGrHLNdVyR4mPcN5GxZ9j2j8MPkipFMceMBsZQEuDtWKkTejBR5ddsBw7F0HL7YSO3Y7CsQfnu2pISim9OKX03JTSc2+99dZDnXBjJsFTfGC86EAJeibUo+d9lSQPeGAiu1pQys6/36jrne35fvk0JX/rG9rDVxf02M6KvuCzLvZ0BUgpYe3MxborumY8P047d5aZPxbZHNFffOgh+qJn3kRPvbBZEp0KGm16uRcktkToIJJEo4syaY5dAkWWh7T6b3bsrmNtGmrh3hBV82CDaJh/I8oO1hZXyu9WVDHIzQsaxwFB0zy4TfmuscoZSXRiQIBtiyWwmMQjg68kcclsqH9uZbCT+IUgdnC+ZXUoUs5HBW9BzSKadVgEPaVSqVJKKVOpqcQ0z44zsKwB+aZEVV3zgvzh3mSwlVLK3J6EiiF1L5hV7S27t9UHpkW2KLPRex/eUddUYhEQmK6SiKAtlQS5GAkrgMo2MsCv1npJxdLeW0fuGOribezYF6DUw1nUcdtROPaPEdGz4e9nEdEnjuC4g5aLgPXKBUhQ4o620UrmaQ5KSRCO5UeYsWrrePPyeYhYY8op9WW1c+U09bSbMyYxYQlVMVf21nRpa15xdWUxhr7zsbqGz7+36ugzb9oqRdDWQHMUxNKJ1rZzqAFxWtLQq7TvvjMix4yI3coW+fxqgCr7SYCTz2elhERAxTRBqRSyTFIHoZQqpgRGdftAp42DBn6HdI0O3lJJfivT55RXWrrYL5/XRYIgoE6793hYlKAy73phUy/FyKtD8awK9fgx5XKzFzZnKvNzFXWtmrIObV/jh2MqWO74muG4bfB0SO6IxyHCyp1QvKwMCEiX6NyKUocG4kclNtEPWjhr42N/3x/lgmNqmcsut4HQv6PV2tRVj4CqgVPHv5drAQTotFsATTI7cKgYkHJyEhc7cqYn54ZWO247Csf+ViL6vBDC54QQNojoG4noD4/guIOGckcs5lTkjnNJTedSr0VJoRC7dawcUBUHWaiYKOhfHJRG7MIxC11R1s6EANeVvZxObdEwFuEqCpwgHQS50i5SqYdOlJ0Wl8TlAlspESQx6doVGJvg5zRvm0HkIw5Kgs6MYIiy016u62erA5zA8c+aEhgk0o4VV6/h7xbqHcmxcTbAhtfN74OPU76DhBG9jTho5PjLe9ucl2n31YVF7AIk7LudN+JYJcAmKfVFXtvo5C/U0X/8sV165s3bParPx9eInapSEHgvZTa4qKW0pXgb0B5NkOdS1DXw3FbQbpnCchOUkiRbdUk4flbzYB2erXmrym7we+pioi/4zItERPT5T79Y7hfr8CTSK6gR1Qtt8DNT6pYoiB2ljEWCW/qEpudETUPlvRVZcA84JRv6lHHsKaU1Ef0LIvpjInofEb00pfSewx53zLSOXVClLv/KtWN0ajo/eHZQRFSCQjhdLBFw7ti9tpiPrVYZmnOWG3DDPfJmZ38eqite3lvRRQexs0Pm4Cnz+bxfQXWNpIYjzaB17DqJyaIcXMSi653UhU0o8NVFg3JqVYxC7EGvYCQDqU4iKlylQex8LRZ5E5niXcCDZkqrljJaVcys3R/VY0kBfidWbigDslV36AWfN4GH1oideVg9i2OuHtstc954/o8/ukvPvGW7zOpszXJcLpA59iKJRY7dQczM6QtdIUF43kaAhUW6da0WvUALr7wlkkAinbeB8QMtt2SQktco/ZLbniKzgZjoymIl7yRKVjkbDj5lFtnFQqmEYCSRDe9X5zZIdq4g/3LsoGNa/Jw8jXw8JYidUkqvSCl9fkrpc1NKP3gUxxwznBopVQwgdtSao0Ruz5kaLbtOURrotJgrLivvtEJXSFGmnk/DZIi+ofNAIqoYcRAlCAhItwUe9NymqHJSIhUE485vnSbXOkflCpHOvC2OldFYTKVQlAShdIAJdex87C4CqlFUDNAl606heu0g4J0Cn8mGg0bh+Ft07FgKwCJ2OTYOEOW7ShWjj5OvW/Oil/dWdGl7Xjo6I/ZLwLHzLLI8N1QTGR4WHXtOyNLqEqQUYkr0+O6Kbj43V+CDSC9Gcc3MImyCTBezlHZz1qj6RTyQM6rvYipOjr/joHuF2FuMu4i8j+8ttyVxkFajnhIk0vV1aHDWhslPehZD9Oi1Fd1ybgPWEZCZT77GOhC/XGtAsoRiXoqKgXbDs1/sNwqxm9nYZh9TQR6e4F0et53KzFOeGpWgUH8XthFHiORzB1mgrhSc1hxedEz1YhAdOkQ+v6FicNrHDb0sSgwJUlf2VnRpa14GDcVfN0LF8GIgRJqKYZqHkQcRdxoTqHJUMdz4EDHvLjuKiVRgmAeN4uiQT4UOiqoYjBUU5Kv0wIxqkkJ+/MzycfA7H2njTAcHNtmmMX87VEyjBxbLw2f6AlBWBAqt7+gex16jWqZiRO5XVufaMHLHmUhwJRlGUB6u4KNiPFAawC6QoWITgdVcSWVCqqSxBgcWDRpsuxEKQ+I1LGA4tylBf0l+E+VKAJoHac3NwrFr6i0mWAwDtP2P7Szp5nMbZRtcRIfIqpL43WqNOgZPcYYqYEMGKH0cQexMF5U4W08Hr9SMTQak47ZT6dgbcGzzWVAOiigrQFhdILxgMMEMwwOXWiXAOTZAxQCFIOVndfC0lrY5wdOkHQSR5vhL8NY4PzVdB3RepISNvm50vkQmNZyDzv3bZyXFhX4xZ0Ts1kFhB2VeNn8fyr3yMnBEHMwSxUl+J50aWHn//CnfeUgb9ce4nxokYGDJfzsDBEzF+dqINBXTwn1kKiZXvGS6xC5GwXpsXjAEnxsnZCmOfUOC7jGR4vRXZkBkCmM+w+Sz+t1KHXVdNpYBENexx5lPYqcJVIyWsgYThM33xtQjy/1iSvTYbk72e8p5SfaLSReYw0VFeBtNxdRZnbZcBlGefV9bdnTzuXkp82E59oXSket3m+/NtG2gWbBt67VyNWJvA1eAhCUN21Zx7Fk5Q6WdHLedTsfeo1rRsecnZpdYK3LHuTgWpkbmmOgC6gpFxbQ6eCp1KTRXaBE7I0advi1a58U6J5UgqiUC5USkii6JSMUEXZSI703L5ATlEUmUnmc6qEq5vCucKzuRspyZdVCN5t0FVevM07KfmVXwIgoWsY9SMejIwziFgt+x8WwMB4g5DDb87PE4wsNS//z1YIszNlnBqi73a1UxKcFiHCY7VcV9Or8wmZQmkAxTTJDbM4FJlNsJ0tcaeW7vmFuAVATTigsASXyN/My4TfICLU85h8lPslC0J+XEvsSrM5UlFaEv2YVduMbTLT09lYj6ktwCGnBgQwoJ240uXgf3D20Sg7mVY4caS7hWbQg6NnXaMk9P3HgkjEkjb+TYFZ9bUG0wHHs+HuqheXTuYlKFqrhhzdtGdTQiQUzIA3N2Yo3YSfGZROg0+5ovffIRdr5Vl1dg51rz6ESIgL+MnK4fqmPLgKBXgrnSI3ZePg2Tj2rEHgqq5gBjPr+8H9X41xGQH5Y08NP+g/MdTomxnofeBs5vHPsQqtfHro/TBEH1oplm5ZIkd/GgUFQxjvNDVQyjSHbsNu29frZYmA2TyOrAuGQs9wkya12KQa1VC7NRrO5JRIpm47iLJLZpx4YxnSqLO2FCENYz0oHhjz26Szdtz0vyFRbvwoEMr/FqHyg+tyEUYq7cKohdy2QRkMizXSrn729TCtyh84eAPi7pyO+kbZDmmRD7vtY0QckW+QXsAmJXtb5nMhXXHDt0IgzwgWOTjFUddOWO1gRYEV2pQnhqmL87D5rlVdSKB1VjpXfaa5Zyug0UqCHIqvRQNV83LgLNAwI/N6RiMOjqVbJDpZBCdQYxl3sz6GjNA1TbGieqP/GYfCyZVck2buXGRjdrlFuW72Cw4WuujyPfcTakp/UuC5skLUkl0oi9bGMQu1oMojzbVJdigOXzuB0RaQXKbt/e+RlIe5d2u4LSzrzfOjJ/3183vLcQNBWIyJevm8HO5d0VbcwaKUwWqcgdC8ffReXoYkr03k9epr/1jEul/a1g0GygvSPYWSh0LBy7omJAFSZiiaQAgRIvwPPHtq36ERyHfw+WijGqGBsvOW47lY69bYwztIgdOtZuv2AGUU/FOBx7Dp7K1HzpUAqFwgGt96rwknkbb2pagqew0IV12jxICQ+r+Xw8Pw9aTA1x3Y42BKndAaoAm9WakvCH+IzwubkcO0jCsDyD5xDH0JFk+Woe3KNibB11F3k7AwujcbvN2H5jM4Y2hFK1T1EKycj9Ul3H3S7Fxzp+IqItO9MzszhdhKpPfmqCirEQwSpDMdEuB91BlUQkjgaDgLjyGOckoCSQ74HlhnbQwpkGUjE3bc/LO9NqFl3HHx3dg5f36Bk3b0u5CpgNWJoxVM9WJMh7rIrpr3FP5a3ws+2U4sX2kXxveqbJztifschSkEru2AT1jCbEvo81IZgHmL/fXXZl9Fa1SmaCar0pFeqh2yYUDhSDKV4xJ1QSEGnag+tDiwJC6sDERGpAKIoT6CDW+e7BFK+gmk5iAyEMLEYBA1IZEBidsfNF/X2PPMY4dmzYntPUjZjUNaJyib/jc+Mn/l8Quzc7kHeL50fzSgrgcnnq/LArIlZ+Rhg87wxi7WIt5cTkM6Y0Fn3+gdQMdyR56tmCE4UkOm/t0t2Vzn8QxC6lrNcd14XJ1+gFBnGhcJ6xlFoxxrG1jdSByfEjHfRHIQImtqGj46X5MDCf71fURLaUtNBMrMrJVAjGr/ZWwu+jBBIHTVEu+VSMLiiHWneWO8osbqlmCNKWmgmx72+1bE0Q+6bpsOzs+TtvSoUZjE1Tl6jN2/B+HKUXrtzSFYjgFoZj9wpV6XoiMu2fg2xvD8vWgvPHAanUo0d5J1JIjSB9PP8CnM9BOHbk711na5KP0GnjKlf4nhAd2f3KNm3d0bzOh9eS//Zlk/gdIriyHzg2ThUvgemYSoVHdmzJcX4yG9Od38/g1M8bnQ+iyjHF006/vmlxbPD+eaaBdWGIsKSERuP4/Luoa86o64bZyJpjU+DYU2LnF0AVAxx71KieyMQmGsnGRSCFoCUjdqn/r0GbbkfrgVkkHptnZ7ZN2PvHchkI5LifsimwcxoyT2+EaSciL2N31RUFDG/CS9XxfqoxoIOCAWFpOhERAdKH4GnPQ9upIWZnluBpryvWmnXS30Fi06qnWRrTQSV4qouAtU2oErSItCpAOraeiq+M0+6KlNEvUcqoNiYsBSDvZygwagdW3O8gqhjsRGxughKODgQ8vGk3+J1HxaDz19I+SdAqz40HW6M4Ev2/IH1ORrIOUi/04EvyMNN6pY7NVARzzPkeMDZTVmcyAzvPNLC9qZR6M2gV52vzNpJWwOA1Il1hQYMICpqqv1kKx5tFy7MVmgnRsW1rNrfCKwxIJO0I2yS27VWXVPvhgYXfk6IaJ8S+v2Enxk60u5QSsTjyYtlYdpCaitEJSjZhKG+jufk8FdcIQmW5NayKyeUKqnoyLg8LgTEOFDFihym1VG4UxB5CKLrqrZkgNov0SnZqW8cG+Jmww0KtsaWZ2NysTpMghJQCxir4uvk3/OTj4P5jdE2A/fFa1DWamR5+5yN/GOyrHAWgCxrNsc4d54d67KVx/h4PqxB74y8iYgP6JRtZ1UbCtiXSwlzMKp+LaZZNA1I0YkfFD5nrZqVQXQqhLEbRiHKkcOyQaFSSfwyQwHsTp03m/r3YkLz/jT7G1qh7q9/tECDBYP0GUDH8PvJx6rwZKyh49i3b9D3Pew799aeep+O22bGf4RgMHz6inKxZzy9RrUgPIzYmdSCfiQgO08CrOu6tTLs5eIoDRN4vo9qs/c0IyvLwmJ1pa6wwD4qSTCvbWqyTUvO0AZcGhLK5jEYaQWxYKIyorlltl8HjZ8TfedmhdmELBM2aUuivZ6ZR1FiAk79yVTHGIVtFDH43NIvA/Rvvuht4Jhw8j6nIHbMsUssdhwbtMeUM0lycR8HHXwIgsLMxDmizY8uaaVLbqNWZYr/QiblGHRg1+Qe93HHTCR4WegqkvPYa+ZmkfqaDiD0luV/tfGUR9ASzAU9NlgefSDGlQvuwbRgqBjn2tgkmfjHcRvg9qm0CPiOpTZW/K5tREwI97dIWfet/9jl0EnYqEbvtfK16iexoZBsP6W22rYz8q045fzvFJLLRdet8tfPTVEw0nLeO9hPp881aCHBCI0JuWuiSqGYosph3CzONWBxG20hdEORBbdo1N3S3/Kx53hYNc2ccCoKWY5v9+FNRIYZT952/j+rRcMFra/ydJ5vEmcayohSSRuyNBLQ3oZ6KljtC0tysplTQaelnVKtr8NjzHsWyRh0HX73mZlDbWDWZVjPJAuOs1LI16scKw0l7l4qnJQja6W0QsfOgvQDlCh9bUvrrPhkQsQcNLEQ80b+TTkry4naogtPvH96JLYWhZNISPM/nq/vJSdmpdOzWaeDLKBy781D1C9IOGRN9VGM0yIP5u1hqVwAPveYAmzh/5jw50cVW+5PzCzpZF1VMnXyV5Y5UeHjU3+OCwIhq5uAgVzGnr1tpGz/LoBB77XzsykcSYBp+1jOzjdqvokJkm+o3x3lbrtzrQB5dZK/DC9569URE3ZHfQQgSGGStt5LSAg+ekWddJdHy0HJtQldpdU3+XRddg6B30DQjn79thEJSJTVMjSW+JqSnll1f9sCTO7bOTJP7jcn05vMrjj/V/DnWb0KlTAvO15ZyzuULqEbsJlDPAwR+R0QK7GCb0Ojf5+FbGPzs+fBYJ2Wn0rFbp2EffLWN4d2JcmPgl2urBGKKt00QYv6UU8qtkoGvqSD2taxJ2YagimnpLMOmOj8uw7UwqAqLkvGx2XSCRjeYxFQGFjOLQHSan2XNp+Lzx+ftldFtHSpkZhBTA53YHjsEeTf1scX5EFGlYedrtvuxWSrG5++DQd7gjIJc90o5P4uqc7vpELEbB8mUjn1GTSAj0zVgoxWOf22SjzRiN7X2QSact2nhmmARkyYoVVY90xOaySb2FVVOIxQWO3G+V10XBvoEzKJ1xUv9bLFyJb9LS5/gux5639WSiuC02VhayZthm8TZGO7fBD0TPQk7lY4dX4ZNMRdVjOd8SH0nci89FfeUKwV5NIK81p2uLlkHT7PccRNGcBWEBMeKtANnq2I9G51EpOua22eyCQW+FqsIfLY/aFk9MlJD+BkCo3p4F63exqM9fJrDBC8dKsYGr8bqwohyxuHYR6gY6aDDg0/b1INf6hOUvMDwUGlbfm+M6ipKox2msCxXTSQSWKZ+ctKUnsWWFcNATcUJcuU469ppZ8UHlfNjYh9fIcdmmiABVkshCmIXCquLsVS7xPtH6tPONEdVMTNNIbaNVWkNI+hgtvNno8ODBA7+MWkqxjr/k7RT79iHEbtsb6fr3KnmMBQjOrF8KpE4VlWrw0wpPdniHgR0m6YOlBJlSVxpMA1onxufKy18JgSBsIGqBCU7G4F782SaAWiHeSuNln/Pz9YbNLVjHVLF1PuR+8nPkahGV0POD4+L5l233Z+bghq0RlQxuPACX6PlfIls5m/mYRddrNAxn2/o2aoBuf+eF8woa472ThPfLdIsDEgKqmbQsBwInkJgXA9aeSPMIFV0CQIiVK40LIn0s5rtLBLfra32iPfGAwln4qK0EJ+jCro7ORHD6/DWjr2O++Tf99aSNzMW9zluO5WOXXe+oDozlw/wpvT8Mtj5z2DajuoSL2FBNOJtCYJxrRaLfEtFulKUCBGzo25Yddr5Ku4wXx+WFJAkpuTSTJtzRDU6MKzlbxr5sCoBHQ0+N99p64F0bgZRfP62/C4RyB2dTmRR/PjAoo+LVqb0zm+CvOp78xwrKkAQsYcQVBByiIpJMIsrsRl+3iG4z6hpakkqEekSEsEGJntAgBx7kFpBKHfdc5L2bEp9Ccy32vljbKRktTZ127JVKXUxLT3T5WciYMtXZeG9BSJFxeT31r9j09bUsw1yjzjY4TbW+fP23jZ5ERMtr7R5FSdhp9Kxa1VGoxy0H7jQ380NfZCPUztWDB7umqzOmOpEj8UaG1/OTl3AUl1t0FlufIk2eFvqmjsDC2e0IQ9vn8n5zZk/pW0gMGzqYvAzaILWVedr0s9IDaymgY+rS0YcstMJhoKm3sBiz4/mUXFsMiDw397gY4Kg/fe2AiIPmput5qGbIAE91ror2kOVdPCuW6e9122yLYiZF8jgw6zWuOyjUaA4lA4OSHhvQ4MWXiNTMXhsycQUHb9w7DKI8LPF/TBj1M0GN0HfFSSM4bssDt74DX63/FyJhsCHvBMbw7N0zd5aV5PFbU7STqdjNw8feVXJMpXtPSqGiDQVAwkzks4sDXTHNH6ub8GFu4h8SRwGU0KwCA46iHK+OtpPVFMxS0DZfN1s5+Yo5dSDhpr2NnJ+PrfnWIvixHPapqHbOud8rrwNyX4GRfmqlIEZg3fskU7kXTebnN+h8NzBXnPDuE3hoWcm0Qhothx30ZJIXi0IM53z3/V7w3fEKzhx0StZ0k6ucR2dJd46ndKvCuNBvMgbtGxdczy2JCjVFKINsOrAfP1s7cDiFUqzxbtwgOTnhn+jT7AgYe5QMx6QsHX7LdhZmGqydv+TslPp2C2q2g+xW47NX05NXiwXX1M8pNUDc/AUtrFBIC4pUBB7YyvJ1chHc7VD6gZw/iZp59xGa5K2OnLLJaCOXi3xJc/E1thwA4ymE1m1ZtslbAAAIABJREFUC+6Hz9uW0nWpGHMspCbk2LpDehy7N2Ow5pUrwP2sZptIV0BEusKWmUDNPqfme4k+WRVTP9sQSMU9eL9Cxcx0NjLy0KsuAXLlNqEX6lY5EjAg4DPx2q2iAoPw5xpV44AgiU74bD2wsQClmH3+lSqoYZmwRuw8bZF3NNxuvTjQkHKG34naH96JVcW0zcm72VPp2K1DnjkOQye6aIfEU6U5PHCPP1Y6cpj2hoBV8gDBmQxCi9izQ64X+listbplD5xvUTcgxx6GlSu81iU2/g1nNqAHlq5wjBpV62cijh63sQjG4+Hz5xjHickwZRvTsSxawu+8gYHtQnkm1U+lhKrHp+J0HbMTC9LGDMbgl2hddroOUVFOKD5bJzp5z8i2LSKi3eWaQhDpLJbIlQBnXTN/2S8wLm1L15Pha0L+HJeB4/tXAc4GU/pBJgwVGDEWpQctKH9cZgy6uqXN/C330XDwVstGeT/9t/dszd+uE4f9zLHsbNAWHczHphO3U1pSQP7PjXjWhBKRJxqiAnrHPquDp3MHaaLc0UPsqz5ByXbQNkgFPqJEGLxDxLxu8vaLvqPx/XAQyKViWi4pIANEvu78ecFx7Hh+XQSNynVfT2DSRT7s/EdjHFTvN9AJ8XzVp7eN03m/9794Ds1h0QfP6XM9prHZQB08FQfVqG10ghpRj9hhQCxp57jg8rqmGfQz0nkE7CiuLbuyAHbbyAIxOLCsIYO0OMTOIvZ6gRp7/3YZOL5/fI8xJloRJ9vlYxT9Pcp7VWDWX/B51cVSERWpsJl6/pCgR6BjH0DjYxSeF+j0vhtqi7yJLhPO5zp5z346HXtTv6BZG8o0lGiYKyUSVI9If4hP8zl2Sd/GJKJlF0smojhoXUnOL1egk0HY7LSbM/o4UJaPo6d93BnKbGDVAX9Yp3gT1cjLPhMJOu8vZSzBXIxxjDjkMqUdGTSsKmaoAqO9/n/6ZZ9DaN50mz27p6NH/Tum9HvIkxOU+N61Y5dZpF2UnI/D16eDdz7Hjg6Zab48aKDcsB58sIQFqrKEihnKKtaOlSvRWB6+S4ko6rZt5Y5EmQvX9ZtErMCnz0FfeSdev8EKlCHoWQU/Nz4Hftpny/eIn3yvdj9bzdT2ES4hoo9NJ26nk4pxHISNantTqrY4KB4M6uCpnYpLanSdIMRVEj2uvvDwUS84raed2olX5zdyxw3vGg09wVSMdCwTPHWknEqz7Dy3MR6yCnB601fXIevG7zp/GJDwOHpgMe/dQeVsZRCBbeIIFePxwHmGmH9fQtnWykHxNiYw3sUkJR0cKsabMdlnydvsLCH5rWEqRq+nq2ax/WdMvYPut9HXXZ+/DaHUxUEqxkPsZUlFd9DoB5YRjl3iF3r27Wndbc14vkYBCVR+q58j/0blHPiM8DgHyYbGuIuVO94IxH4qHbsnSeLO41EKWNeaCKgYdKwDAwJ2IpZVMWLmVV+GsiWxcFE+v26g+MI9NIyB2cW6KzSHN5DwJVi0gKV9dfKVzny1HDn+3yoAfEkgD5pjqpjaafM1YPq43a/i7z3nw9dBw+ZxrUzF+Gunet+hTFGrYjwHrZLPgk2fz8e0C7SwuQE9aBPXFmu17COW5OUnsYbgqZ2N1PkX43WA+Dtx7NqxsqAABx+ZIQqFhM+tDozKM8HzY8VVf8Fp0LEb6aoFJvn/BlUbB4//H6NnvHdki4Dhbydlp9Kx+5zXcMBi3uiXUKgY4NitoyES2SKRjnY3gUoZ0apmOEztOtXR8jaYHYcdxgZ4iXQlOasZtvvxeTdNo+L74G1s4SYivfCAR7Pw6XzFi37eY87fo2csYvfWQa1qxYyoYtTFGUMFCxsroGwHHzqfnel4hbqaIO/Wvrclvn/jWCuOfWCw4W32TLkKWflK7iMHT/v7UfdWx4Zs8SxLM8g1ynVjKeWyfJ0RBhDptrwwyU9em0SaJauJ8P550NLPn61y1o6DrWI8Xttqne8a/9h4fpv9PiH2A5rqaI19iPWDttOlknmKiHlAFcOH0asz6TVPieoRnEsKWM1uBE5Xn993fjLtj66DHBq0sBF7SN8u5m1ROf7fImYP1crMSQeO8nfDzr4g5jEduaVrnGss028aNr4m3J+XKfP5e/9+NarsjxnqujBy/45Sq/GokGAG5PqZoGNdmsC4cOwgW+x0oTK2OZxLZ77KuYbq2CvnC88fF9EQKoaLgA0HXZEK0oPm0MBC5br9UhC+03ZVWQbde4i9cb6r8x9km6oI2A2A7KfTsbtUQP/bCKrllyEJSuPoRHF+mFEWRBUzmGLcaPkZXhv/7vHZ1vkWB5igo7moWjtWlQbtnB/vzSba2GuqePCR83sLR3uoigdSnj6POX/7/Nxt+q9GALtPxTBid++Nqu0zFcEOMamOjehfDazObLAJmk8m0jQPXktFoYBDVqDBqVlulTtyHC94qQckj8JACq9ajCPC2qn9RnoR+LxfSugQ7SpTfN11bMDbxh18jPPl3cdmQ0Pnsse27UTiP3JsKQKm+81J2ql07K5jIeN8PFTZf+Xy2YPTXtgGMkhj0kW4PEoIp4/22LVjd9Bhhfzqe5N7MffR1NtoNKwDfLZKI2+D+3lUTI2qh+MAKvOvP5ZIO+vz2zoyY4OPNzBbG6Ni/OxYZ/bTGlTJTsPc777rsqKD4iqJjX1H3jUNZ2dqHTv11zguZW2bUK2gVbZx+kTTkDo2zlA5eOlVbrSVK1U11UFVkN9v/G3kGVXKFWeAqlB9/5Ndp9TuV34rDr3ut1IETB/nJO10OvYRxD4UcMJPdnReSYEKnSDtgYg96iJco6h2IF3ZC94O0SXefajveDbiDhC+mkYcVHIdsm38Y0vMCRVTO8+h2RARIHYT4EaTTuQ9R42OxroQB/I+4/xG+c4mKI1lJ/J2iFiH2htex35UTCkpAEiXiNTSeOW7YAtlyXV7dc3XEeSODj2GC7RYx+5z075yxl63BGZRTeP1Wz94ivdtz+/1bR+xUzmH3cb2Uw8QeO/fXluh4uCialXMKXPsIYQfCyG8P4TwzhDC74UQbj6qCxuzsdWRPNrD1lD2VDGu87GIGRp6vcSbPQ5V+2H7wKl4PpcTPDWNeO44VisvxBribBsuivflZ6McuzerMY58rFaM17G7pBG714ksx+4Ghp1nbO1vPv0iPeX8Bv3YP/ni8p1NUBob2Ph8RZWx9mWi1kG6VEyjKQW+T/v+6/PrJRVFow5cOWSVrlSCkvPcLGJGp+ki3SEqzLRbCB67zwT7EtR42VdNNTD4jAEJn4e3YgvHeTt92f7mAUKrijmN1R1fTUT/QUrpbxPRB4nouw5/Sfub92LZxlQZxbG7fHbtEOsOKo0BuUOietrmJZrYzu+fXztNF52bWQV+N1ZSodLouwgGZzFm0HDRqT72KFfuoCpBzLUTY2uca7PH5vvm4LRnT7u0RW974T+g/+i2p5TvxqgYb0DGBUqWRu6H+1lnPLYNFnQbm43yNnyNrEfnY5fjBEkiwuP4Bcbg2AOo2sZLLIKujgMOWhUvU31LnglWdxwqWyzXbRZ6cQYtG1PwYwW6v48h9jEqxptp1yUFTpljTyn9SUpp3f95OxE96/CXtL+5sjnDZymka5wmOr+SuTrQ+bxkoFwUSaf0e6oYe/5Rjn0gQchd3LkZ/s5LYsJFPHA/b0o7c69J/z1Wa33eetvUnZ9/r4OnVBl/N1aSd7vPwGQncVBjVYwXWB0M3hU07Cs38kIPcg5v0G6CryP39qsGBNf51TXj8Vx5G3L3w+/c4CFuEwboGgNSLMduBw2V1TsUvB0Aaftp/SuaZQTseYNHOb/TJuxvHmgSVYw+10naUXLs30pErzzC4w2aOxUzwdOhxk8kIyqRNLCh/YKSFoqD4qJg2xt6YY/RKb3tRG5Dh5G/tejI7+hEmE1bb+M7CD9jdoyKcDlfs42fhs2fdQO3wVNvG++Z2t+2N/JJ2Lkd1Bjh+4HhcaS9MqoUtY0zsGnkL20Lqzu69JxxyO57C8EMEMPviGgYbHiDr9K/m8HVbzeCvFMiKbPhzkZs5cz62GOzIXdgHWiLHpApbXsEsXttsjrHkwyx71srJoTwp0T0mc5P351S+oN+m+8mojUR/cbIcZ5PRM8nIvrsz/7sJ3SxbF/8rJvpeX/7s+ji1lyCZuXleY2471jmbyLudLEaeblzDDlfVgBsz3VtFk/76lIYIVBs62vUAS5/2qsbf/5jqw/YiHxPtnHLFLeBVl3dQdSqUqbx23gC7ldQ/UAQGo+Dfag41jEqxnQiNN5ve56b8nUjdpOg5AW9LX+Ljn1oIN9v0G4A+XpBT/7b7lcjZnH+Uqir8R10U++nZxH7B4+ra/QS+0wJBTurVsduaDB46wVPhwO8zncw6A1t4wXN62NXP5V78ZRqT4aFNvZ17Cmlrx77PYTwLUT0PCL6qsSEqX+cFxPRi4mInvvc544wofvbLec36Ke/6e+q72RqVD9oG6gbRexBf++pS7CBbsPqSHgutxOZa0rAg47JNO21eh2LpZiI/uw2NsC1aMQJjteK0fcx1rGGkCAeB3+rELvTB0I5v9P5+v145rQeI9ld06qcMcfa9oM9Bj2HauP4airS2/R/6+Jxso09dtNvMzSLG6o50zrP3Qv653vT10ik0WgT9k9iwr7UwW9D7QaVUXobUvfP2+As2p/FmesYmel6AeJyr06fLL8VsNH3mzZUv+GzPWk7VHXHEMLXENH/QUR/L6W0czSX9ASvpf+0dWGI5CXGvgFtVIgdnFijX5jqoM7ozg7FqlLGlDv5OgPF5A0a0PnapjR63gc/8djsPBD9sFkEwdfpDX4+x66dtvds7XHGHCTuwoOt0BV1J7ABTrSKY79OKgYXVbHXZp+3q8cfGLT3U3dYSsdXrugBwQUNMJAuBhQoo6jWUBFjA7K97sFrUsferyS0vpf9ZhUHuTc7+xodWEac9/VQMWOF+U6jKuaniegiEb06hPCOEMLPH8E1PSEbSu3Pv+XbXBt0SCQvZqhKoUfp4IvahtWRcHs3wANPuwnaUXlrl1rO0+MzRZMvToKPb/ez02V/+iwXaaepY4oXu5DwWIwBnVc8QPBUJIl1c7WOnbM4D2qP7a6IiOjiVl2zXZydPpev4ya1nyqm5khZmyCB0ph8JzAo5fWQZxNMoFKuxxtQrQR4DDQouqYxGn3nmiz1NzaLtSDBQ+y2LfvPiGA//7zeTMNq3tHGg6f9cRzqUSjH/vxO0P+47VCIPaX0N47qQg5rFl16jb9M+z0qxoyyLsow2xJB8NR0fi8IhAgoL44A2xhUzad1qSDHsQpir6kYvyqkLy1zdex22umg+li4fX8Qwe+wmcc0TIVYG+XY+/fAi10c1LhNfP7TL1bntwPRQZAvX5OmYvxnsi+qN/uNJYg1gVRJZu/deoNtzTUTbFPPogYDs96xq+cG9z/wLO0A6W2jr7E+vx2svL5UIXavbTkSaHuOMXm1Vx3ypOxULrThmZWUeY2oc6kY/YKCcWIeykEHc86oYsakVZaX89YXraaP+yCowrGPUDE20SWEeko7hM7yp97GQ0e7y7U5x7DTwvNaVYrXwfh9ef3Dcuyr60Tsv/Qtz6UPPXDVXSuXjS/JDXA777tp/MGv4qqdQcTj5odqf9vzY80XvAt38DG0mj9o9Z9js0i3zIU9tsPDO4PdvLErOA1QiM4g4jl761jduFOj90Hz2jIbf+VKkE0/OXWZp08mmxmn6yEITt3WwVOmMnSnRRoimBeEC3RsmeDpmPMVZ11fv6V5sC3w//3p+hAVAx1tpq/Jyw71ELucv9/fCRTy9l/87Jx0/OWf99Rq/3oxjGoTl79n46qaS0fxYqmY5952S32AEfuqL3w6fdvf+9zytzt4VKjWQWd2NuQ6Or2NpSGIxjnuMY4flVqDkkBnsKnoCsexHoTjduMO5rd9ef9qpsH7kdrPo8vchKwKJFG9zYjz9ur/szEg8RRnFpTdiFoxZwax28aLL59f2uXdjCpv2p6X36wj5peoKj+GQOuUqsGDiGBpsjFUZYJgXiMyQVfrPGKnF8yw+33e0zKV8CWf85R6G4OYClrzOMcRx+6luLOz/7q/+yz62i/6rPI81L0ZBzXWiTzEzLU3PI06Pu8//o6voGfdsl1tcz3m3b9dRMRzUBYxqoHZGZCbRkADVjscm2l5A8ugjhyvxwELFdjwtvHuLdiZnjP7NNc0RuHZe3FnMUE/E2/GqIGQcezejMX85tHgY2i+WnnLAZKWrjlJOzOOvaCi/m/PeV7ey4GyW85JESihMnSnqTm75GYQVnUhDtD5vBFcUHR9/aE/v4eO+NjPecYleuMLvpKecdNWf81w7KFCZR5id1q4nTF4nZ+IXKeu96sdRTnOSK0YzuTjZdbUsWH7v/mZF93zX4/5VIw/+I99t59jRXqgS6m8U4XizTMZO79F/26VQqdN2tmoOxuB92azasevidt7fW9eW2obP+6grqnPxpYBsW439rtRHbvzm2wzTAFGmB0N3f9Yfz9uOztUTP8SWD7nvYzHewXEU6C6n6CJ4eCrcMyatiGqO+3Yix6rz1yXn5Xf7LE9xERE9Mybt4WPdagAKe3rcJ7Osdlk2uk8G+9B23szzwQHxqde2CQirIhX78+OfeEERo+603iHq5+//OZy7EFTeH49dP1M3GX/Bnjw/ZQrgwOLg5jH8y/0fkJFjp9/8N6c67azAfs3fqrzWVTu7Feef9Dfe/frZzzrbdGikeB6NI8dNE/SzhxiX8MyX9Yu94795nPzaj9PucJWqAgHsQ/xeV6iyVgyhFXFeDzi2Lqc1nRg1p9V2Nox+Xj1WB9toS6ng46Zbei4x0ue/6V0+90P0+feer46NhvPBBbXqVF/IjaqWXaTkepniyWEE9WOBo8pzl9/T+RQaJ4zHEjI21e5MzAb8GkOf1v8v54xWJBU35u97iZQn6AFA+S+15RcVG+bcKE3vaC3A8TkXGMcO8t0mZ6twd7YbOC47cwh9jXUnbD2FZ9/KxERXdiU8awEFA2K9VCpp4qp0Lir9ebOT9VvbFbH7jkBD/kMIdYxBOVzxcMce6oQu3+eIRtyEEREf+NpF+ibv/Sv/f/tnXmQHdV1h3/nzaoZaUZoGS0zaGeRNJIIElosgWRASIKEnYoBGRxwbLwEYiAuqRxSNouNTSpxJaRs48SUHRKo8pIyBDtUoChXCpsQdrNYGFIgC2MjEEFIoNGMpvNH9+2+ffr0fd3vzVvnfFVT81737e7zum+fe+65555rza5Mns+4u/LmgSkFtysm3fIMrcKMll9SaScbTa4YXRZ7Yuar5IpxKTaxNxg/js/5iJcR5GY9XVcUlsuqF8eLzLskNXbsnkj1jittKaDB7JvYmbR/eS/Wvrf8PVeLvQyM8hoO7rjJnWLzjUtX4u2DQ6I1K1kshrBL1ZJ8UFHrjOD49JdP2hfJL1vV9jaXu4RjX4IvviGFqEndbIPJgCi9/NJAKMcVVcIxllD/5GgQ1Fjzx4+BD70Y0vM327JMhrHrBgWOYKkXFr388fPI12fKT2yQo/KtBYp1i8wjdc1qLYRlrOsyuUPrtEW4vtRDZC4g530ToqIkpc2tf1c0EYXfkZDRlW6An8cekzMYH7sYyin04qpN0yh2Y4WbdDUmrtlmQnsLBtq7YtuiKfnplstoOGPVVOzoLeIPzxVu6VbscWXLfbYAxOXr0ohHzsQrmtild1TCIErUWgmo6OVj8OyGruPN79503PRw28q5U/CTq0+uimKXGh0jEx8oB4RGW1IQQi+MW7EuNx2PY8+zypMtr2vae5ZcOdxtaZ/HNejqmjHN612s0RLuKR9DyuZjd9R3R2U0ZaSggFG2QEzcEDPXjctcTZpGse88czEmd7XjzGWzAMRj1V2YFpfP6rSfxTCb2CR1rfiq5eKAj0N5trGuaMxnmHhBiv8uKY6aNxom6ZO9YEO7cPJodmjxl0Ei6YpJLzt/Wjd+cNW6MC7esGR2T+x7V3sL3j+cb5ZpFiZ1JF8J86JKyw7yVMbS9HE5csP/bzZJZcLrszKuAU4AiTh6V8ZRHgXmCtvjjUCaTDwFc1oIb/ycxa9vw++buOxe8F1yxWR5l1z7nOGOrPGpgV5vHsXeO6ENO7Ydn/s4boXwrh5gzVhtTVrshsiCCL4LFTSsjMKT5nHstvJLzoYtXlOkrnHaRJHRI16okDrbkr/NtSh3FpID0+7jV1krHKXx8PWb8Pv9h3LJkYVCgXDx6qPDfPuAYLFb4id87A6L3zWm4Qr3dIU7prmH5AlKltzhhLj4eWJWLa/Tgs9YnjQVl0mMnAm3xaPS5HVRkcAVrpieCkKQMfgvzVeWchMZeLppafwk7KGmnqVyNI1iLxU+6UiqBAnFLpichVChJ5VvYlapZLE7I2eYxZzJFWOfO+5CsF8UEyNvzt0hjE3wMYa8ip03VmMRJTCjpxMzejrLPo/EV85fHvtu5O0Q0g64JqaZTy2S8mMKydWb4SkdpLS1ieySMdeA1LCw6wplEsaG0DuQGuu0BGOSYuUpPbJa7HxAW3TFhGXj5/Ovlx7xws8DAP/+ZxvC5w8k003zyWdAZBCpxV4D0iYPSX6xdmHwyMDDHJ1dWsliL6Rb1cY6kELb0nD5SmMvfVjp/QtL/kQzXhFaIhljqU5f3IeBo6IxDb4oSqNg7pGUTyaZY0hq9JN1iqdncDXaiVwxjuubcnzmND83d5dIOduzLPjsTILlsKoTYwwpDVTadXmkj6uH7Lr/olu0xc9tb+8b7O+NlTk0LK+gZp/T9AKoBja7KvYCxWbquSwnp8XO3CWu0DJx7U5mDdvKLxyoEULi0rBfkPZW1mMQGxZ/mzTo3MW2ZbW4//Hyk0SZahHXWw6mbkSDp9G+Fu7msp5NmG5Y+N3SQhf2tWz4PIaYEhNXrPLrc2vBzx/jdEWQOSbd8nVlKXSFgLrcTAmLXYiK4ZP/bNm4QSJPmite38N9li9mYkcr3nl/2Nkz/iBQ7CZoQwqBNmNAknuz0jRNHHuptLYU4uFbDuUTKXbBx867tmK3N7omJxl2aVnso+kDNWnY4vOGxd7HF5roFAadzbJzpjJPSEkdUAzTG6hGPPpYYu5NB2sggaSCEGcVC4qVD9a7nilXYuKzFZR2cjaz3bCw+iY0TGmWr/zbrHvCslK6QoAT1r3gQop6esn31OXCORKEc7UJ75vrvpu4ddfgqbHYu9pbY7Lasr3+fx8AAGZPLi9/USk0tcX+4LUbQ2s3Dd9iT4YvSkalccVIkQ+JGHHJnxdsa5cs9lB5BEu8WZkMw8HLHD7uWKw+WzXd3scHRqVGx1jsZkCx1Ljco7r9Gb8mZ0+jELpimMIC0n3VgOXjFXzTiVV2rH0Lp3fj8g/Ni87DlZg4MJo8d1uhgEOQ12VNxKg7UutKFn/y90fbIjnj36XGx/yXEsy5xr14NE88t5P/31jMPcIEIyks2TCxow3AB2JuIoNJD20sdumZvP6Ov6hcvyr2sWVR38SiZdYvmhZbJ9P4HqWlM92uGP+/GNrWIr9ENsaqmDvV90n/9t0o4oMvRpFXsXIXjn04n3wkYRR7ueGFU7s7xuQ81SZbVExgEAjHS+MmaUm4AOCh6zaJ13davoJiaWstAENyLzJxbqFuJAc/BYPEkY+cNzp82UexrKD8zTY5K2jy95tyBw8ns7mGv40d51m+mBOOnowX39gvWvqc7o74Cmr29W88ZxC3PbALJ8yZLB5bSca9K2br4Ex85fxl4feeoBJIyieLK8YVM8ytehuzzbTu9gg8TziUN46cJ++yj+fnlli3cCoAYJk1gLRioFeMeXdhLPZGg/vYpW6/pLwN0rhN2uChROQHN41Beo/BPjcPRZTz4ATnoaT8/Hry4Gly3IePF7gGWPm4kzR/g4T7x88jVcWDQ4HFLij26Pjkti+evQTfu2J1pmyhoStGeO6D/b347hWrxUizStPUFnsp9HQaxT6S2JctKib5EnDLQ7IE7JDEb310JRZM6w738ckQjvBaES6TXQnNTN0Wh5LedFwfnrxhcywr5o8+vT73WL+p4HkbhFpjrLn2lnjufcCOWY5b4DZySGC8TjgVu3l+ogtPUKzBdVyLt3DZJP89N1akxl+KZuGzQ11pg13RQLxBEOutozdxYMh/h12Knc8RAfx6avJKFYMPAtcLqtgZpttmWnsblyvGIFkQyYRHyePbrIq1ZenM2D7uY8/rikmk8rUOz2KxA/FUx6XIYLjzYydhntVoNQJHjsTnMYjKz1ipsBVcUEZQTK6BRY7kruHXj7kwuG/c0dOLrHEkZOTnzjp4yo93ZaXkaS5seEhjTLGb8zju3/tGsQs+dsN7h/wyvH4X46Nr5+KfH30tIWu9oIqdESn2pMVuLCDJ4s6SKIuvxGMj9QIMCR97ieGCZok8TxhQtl+MB689BRPaK1M1Pnx8X0XOW0lG2AQ1yZ8c+YGTx7uWBIyUV3ovJkscuWs2agurfzbOfPDcRy4dHypoQW4mm3TfXBZ7MgVGtI9Hc0nHf+mcQdz60xfR7ajL+w4OAciv2G86dxA3nTuY65hqooqd0TMhHtpnY/zeHUJIYJgoy1VRzQxCS4kXKMjVkkWxMysnb9jhpA6/0ZJG+22LaVFf5ZNtNRJmgQ9p5qnLFRCWESJmDNx/LuEqwy3fmEzcYhetYsTKuFwx8sQ6x7lNw+LwsUdWvTBuxVc1i1ns7J0QZLtw5QAuXDmQ2G6/N/sOBquq5VTs9Y4qdobxr21fMyexz0zekQZDXBa7QYqK+fSmRbj94ZdjrhhO2uDpJEcXEwC+f9U6PLvn3fC7KS+NH5TqWhkPvLnft+qmT/KjenIrdpfF7ohY4WUyz/xMcfO4ru9M7Rsq/+Txrt+fyMAYc0/GewiSYcPHBuxLmHciiyvL5v6rN6BvUpSK4g+Xz8J+Cn6MAAAO3ElEQVTdj+3GxmOy+dQbBVXsAt+7YrW4fWrQqncIM8lcg6e8jD3d+/otx+H6Lcdlksuc83AQ415MsZ80bwpOshJqmUGkD4SIH8liUnx+FyQbm9mTXE+WW6y2YqRgDSVXmgpXKgJeRu4FJpU2d/1EhoAQ9heeW6jTBV5GaliSvRguh6T8Q9mEVMAGV6RZqYnpls6OpwZYv2gaXr31rEzHNhKq2DNwyZo5GBoeDV8wyRXjmkFnyGtdcIxv3kSVrFkwNdfxYSin4GZSiz0d04CaGYSusD0x8sThyuAKToIraBvX3AYeo+52lySvyxt7aWyIz8qVzu2KNXcNfvLGMl4kvgSm1t84qtgz8OXzlsW+S66YLKlpXbHOWTDnnjetGz/81Dos68838SFyxUgWu74Yafz9xSfiidf2Ra4YexCQhS3GHm3w2bUkoisxHC8jDn466luW3oBr8Nace/fb/gzKY4QJf64cQ8lGL92V5E7TYbakW+z1EEG7Y9vxeGr3O7UWA4Aq9pKQLfa4z1CyIFxd6izYL+jKucVzlnMmBtEBZwWLkdi4LMbxzvRJHdg6GN0z+/Hx526HO3a0FnB4ZNS54EIWi9Psciezchxn7Xxkx6lhnhP7nJJiNDKZmZPnnNCfWkYayOf5c2QffTKElB8vTfAKwx1zumIqyVUbF9ZahBBV7CXgiufl8bU2PKlSXqQ8LnkoFAhP3rBZ9M2rxZ4d16xi+9l2tLbgPYwUGVCPn0ci28zLbL0Bnrcki5vo5GOm4+VbtsXqX3d7Cw4ePhL2WKR0z1ksdleVdvWC+QQldcXEqYMOTHNgKriJeZZylrssr0zXGIPKO6W73ekrVYojzio2jbZVroOtkVrquIuUYMwgTcUPj8vgpuALxNjEImTYSfrYIieu3+YOAU4mVuPnpPC9ifYZA6rUNBvNjir2McJUMJOVUapo3UEmuAOHkuGGma5RQXdJloRHio/9aBOuEGunycPtmtIfDV4Wf7ZSiSxx5NlCKYtePsaxM3x/uysDIu8xSGI4G53EBKWkj93V6I1n1BUzRhiLxiyZZay1S614+OkT/cG3vQeGSrqGvRrRWKMWe3ZiYXs83NEqZwbZXYOfWQY4Q2PBFfkiHM5zrku4wh1d3HbRCqxdsAcrBnpTy1DYaKXPmA4tduF4nkLDDjP22KQ9rb9xxkSxE9H1AG4DMN3zvLfG4pyNRmixj5oKV8ALN26JDSqZqIq975Wm2E3u50qgPvbsuJami/nYA0V0+Ig/WCndYrPJZXGa8NRu4fm74sizKD1XdkQXPZ1t+JP1851lomn/SJfRMe5kyr/7gT871E6M57Ey9TB4Wk+UrSmI6GgAmwHsLl+cxqGrvQVLZvWE381LdMRK5N7FclQsntWDWb2duPaMY3Nd61//dE2YrGisKZA/i08tnuy4pt1LPvahYTOhzJ9HsGXpjLAM9xVLmGRWfIlCAIlc/zE3UUu60ue/pZI+6nD5OscYwRFhAQRzb42bMJZxMQx3LG2NgmZnLEzAvwXweQA/HoNzNQwv3Lg19t28GCNH0lds6mxrwS92npb7Wh9aOC33MVlpby3g0PCozjzNgTjtnpL7TKTIUOBKmT6pA4/uPA19Qc8NiFwKLov9wJDLYk+PHGlz+N85titmw6JpYQ7+PCyd3YPJXdHs1ijNRlRm+9o52Lo0Ch11Jd0zv+30xX245xNrsWZ+FOIbWuxm8Fct9hhlKXYiOhvA657nPSP5D8cT5sUYGW2s9TzbWnzFrhZPabiiYm49fzm+/uBLWG81zDN749EkWdImm9w+UpZCHjlinyWMmCn6K+LK966Pr8lwRJL7rz459t3E9NuNxs3nxif7Teny03RIPVI7FcNaNsvaYxlP1S6JU/R2ENGDRPSc8HcOgC8A+KssFyKiTxDR40T0+N69e8uVu+5Yv8iveOtyTvOvNR0Zcswr6Zj7tnhmD5YP9OJTm6JJKjN7O3HrBcvDdL8SUTx2epmDwUzhro7IFWPyFvFF0CVXzLC0zmN4fRS9fqm0txYfGJ4cKHZpHVyXFT7K/PdqmMQparF7nne6tJ2IlgGYD8BY6wMAniSi1Z7n/U44zx0A7gCAVatWuVeYbkBWzZuCXTdvrckyWOXAFYOSD+PjnjO1C/d+dkPu46MJbelljI/dttgf+Nwp+NmuvaErQ8q5blwx9sLoaVQi2jVLCK2ZLCdZ7K46adJqm0gxdcXEKflxep73S8/z+jzPm+d53jwAewCcKCn18UKjKXUgevlGHFadkk65PZ3Q8nQowevOOA79kydg6exosH7axA5cYOUaJ2Hw1ljsrnGf0MdfAcVo6tawo2GZFoQAb14SDShnmU36yY0LsGB6N2aYjJuF4r2D8YTGsY9zpk5sx+5974tRCUpxyu7phL7i9POsWzgVj+w4NZMc0uQpV6PNc66MJUaxH3Yo9gntLXjyhs2x5eu621uwv0gU2M5ti7Fz2+Lwuyuv+3hkzDpggeU+LmPYG5lvbl+JHduOx8LpjbUOab1QbjRRaLGXaTGHUTmWzR6luUhXrHwG51hixhaGR9xGw5Tu9ljKgmtO98OBpfDONMLQSB1FBaAW+7hnRk9nXWWlazTKNtjZylslyyFkeTSNzrDDFePKp14u7UHDYiZoZeXKDfNx5Qb35CdO6IpRix2AKnZFKYtyw3zDtXLLVEhS2gLjk587JT0VxYUrBzAyOoo/WjG7rOtLhBa7o2EZK8IsmZrzCIAqdkWpKXxqfKlIibYuXDmAxbN6MNifns9lsL8XN/cvS91fDqGPfaTyczvMAHGbDp4C0OyOilJTvAyDp1mIfOwRRORU6pUmS1TMWGEGiNsq4FJqRPQuKEqJ2LmCSiVUSGOwiApQvmtoLNm8ZAYmdrRi+9q5Fb/W3ClduHTNHHz7slUVv1YjoK4YRSmBZ794RrioeDmYZeryRIBIGIvfZEKsB2b0dOK5L22pyrUKBcIt51XGpdSIqGJXlBLo6WwrXigDQ4H/ubNMxT7Y34uWAuHjOaNJlOZEFbui1JCxstg721qw66atmhpCAaCKXVFqisnV3tVW/quooX6KQWuCotQQM91+QpkWu6LYqGJXlDqgXFeMotioYleUOsBeG1dRykUVu6LUAa6l8RQlLzp4qig15L7PbsBTv3mn1mIoTYYqdkWpIcsGerFsoHbT/pXmRF0xiqIoTYYqdkVRlCZDFbuiKEqToYpdURSlyVDFriiK0mSoYlcURWkyVLEriqI0GarYFUVRmgwyay5W9aJEewG8VqHTTwPwVoXOXUlU7uqicleXRpS7HmWe63ne9GKFaqLYKwkRPe55XsMtfKhyVxeVu7o0otyNKLNBXTGKoihNhip2RVGUJqMZFfsdtRagRFTu6qJyV5dGlLsRZQbQhD52RVGU8U4zWuyKoijjmoZQ7ET0HSJ6k4ies7atIKJfENEvieg+Iuqx9i0P9j0f7O8Mtq8Mvr9MRH9HRBVdtiaP3ER0KRE9bf2NEtEJ1ZY7p8xtRPTdYPuLRLTTOqae73U7Ed0ZbH+GiDbVUO6jiejh4P49T0TXBNunENF/EtGvg/9HWcfsDOTbRURbaiF7XrmJaGpQ/gAR3c7OVRW5S5B5MxE9Ecj2BBGdWm2ZS8bzvLr/A3AKgBMBPGdt+x8AG4PPVwC4KfjcCuBZACuC71MBtASfHwOwDgAB+CmAbfUiNztuGYD/tb5XTe6c9/oSAPcEn7sAvApgXr3fawCfAXBn8LkPwBMACjWSexaAE4PPkwC8BGAJgK8B2BFs3wHgq8HnJQCeAdABYD6AV2pRv0uQuxvABgBXAbidnasqcpcg8x8AmB18HgTwerVlLvm31lqAHA9lHntp9yMaIzgawAvB5zMB3JXyUH9lfb8YwLfqRW52zJcB3FIruXPc64sB3Ae/MZ0avChT6v1eA/gHANutcg8BWF0rudlv+DGAzQB2AZhl1YFdweedAHZa5R8IFExNZS8mt1XuY7AUey3lzipzsJ0AvA2/Qa15PSn21xCumBSeA3B28Pki+C8uABwLwCOiB4joSSL6fLC9H8Ae6/g9wbZqkya3zR8DuDv4XA9yp8n8AwAHAbwBYDeAv/Y8bx/qQ2YgXe5nAJxDRK1ENB/AymBfTeUmonnwrcT/BjDD87w3ACD43xcU6wfwG0HGmsmeUe40aiJ3CTJfAOApz/OGUD/1O5VGVuxXAPgMET0Bv1t1ONjeCr/Ld2nw/zwiOg1+i8upRUhQmtwAACJaA+B9z/OMr7ge5E6TeTWAIwBmw3cLXEdEC1AfMgPpcn8H/sv4OICvA/g5gBHUUG4imgjghwD+3PO8/a6iwjbPsb2i5JA79RTCtorKnVdmIloK4KsAPmk2CcXqKrywYRez9jzvVwDOAAAiOhbAWcGuPQB+5nneW8G+n8D3vd4FYMA6xQCA31ZN4ACH3IaPILLWAf/31FRuh8yXAPgPz/OGAbxJRI8AWAXgv1DH99rzvBEAnzPliOjnAH4N4B3UQG4iaoOvaP7F87wfBZt/T0SzPM97g4hmAXgz2L4H8V6ekbHq9SSn3GlUVe68MhPRAIB/A3CZ53mv1ELmUmhYi52I+oL/BQB/CeCbwa4HACwnoi4iagWwEb5v9Q0A7xHR2mAE+zL4PrZ6kdtsuwjAPWZbPcjtkHk3gFPJpxvAWvi+x5rL7JI7qBvdwefNAEY8z6tJHQmu808AXvQ872+sXfcCuDz4fLklx70APkJEHYEb6RgAj1Vb9hLkFqmm3HllJqLJAO6HP6bxSC1kLplaO/kzDnLcDd+POwy/tbwSwDXwB+teAnArgkGyoPx2AM/D97F+zdq+Ktj2CoDb7WPqRO5NAB4VzlM1ufPIDGAigO8H9/oFAH/RCPca/iDrLgAvAngQfsa8Wsm9AX43/lkATwd/Z8IfjH4Ifk/iIQBTrGO+EMi3C1Y0RpXrSSlyvwpgH4ADwTNaUk2588oM3xg4aJV9GkBfLepJ3j+deaooitJkNKwrRlEURZFRxa4oitJkqGJXFEVpMlSxK4qiNBmq2BVFUZoMVeyKoihNhip2RVGUJkMVu6IoSpPx/1u/jmT53RTRAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "CO2_periode = CO2 - CO2_estimation_lente\n", "plt.plot(data_MLO[\"Date.1\"],CO2_periode)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "x and y must have same first dimension, but have shapes (396,) and (790,)", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mfourier_freq\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfft\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrfftfreq\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mCO2_periode_fourier\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfourier_freq\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mCO2_periode_fourier\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 3361\u001b[0m mplDeprecation)\n\u001b[1;32m 3362\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3363\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3364\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3365\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1865\u001b[0m \u001b[0;34m\"the Matplotlib list!)\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlabel_namer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1866\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1867\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1868\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1869\u001b[0m inner.__doc__ = _add_data_doc(inner.__doc__,\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1526\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcbook\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnormalize_kwargs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_alias_map\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1527\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1528\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_lines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1529\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_line\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1530\u001b[0m \u001b[0mlines\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_grab_next_args\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 404\u001b[0m \u001b[0mthis\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 405\u001b[0m \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 406\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mseg\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_plot_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 407\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mseg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 408\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_plot_args\u001b[0;34m(self, tup, kwargs)\u001b[0m\n\u001b[1;32m 381\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mindex_of\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 382\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 383\u001b[0;31m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_xy_from_xy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 384\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 385\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcommand\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'plot'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_xy_from_xy\u001b[0;34m(self, x, y)\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 241\u001b[0m raise ValueError(\"x and y must have same first dimension, but \"\n\u001b[0;32m--> 242\u001b[0;31m \"have shapes {} and {}\".format(x.shape, y.shape))\n\u001b[0m\u001b[1;32m 243\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 244\u001b[0m raise ValueError(\"x and y can be no greater than 2-D, but have \"\n", "\u001b[0;31mValueError\u001b[0m: x and y must have same first dimension, but have shapes (396,) and (790,)" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADUJJREFUeJzt3F9onfd9x/H3Z3YN6581oVFLZ6fUG05TXzQjUdMw1i1d2WpnF6bQi6SlYaFgwprSy4TB2ovcrBeDUpLUmGBCb+qLNbTuSBsGo80gSxcZUidOSNFcFmsuxGlLByksOPnu4pxNQpGtx+ccSY6+7xcI9JznJ+mrH/Lbj491nlQVkqTt73e2egBJ0uYw+JLUhMGXpCYMviQ1YfAlqQmDL0lNrBv8JMeSvJzkuYucT5JvJFlMcirJjbMfU5I0rSFX+I8ABy5x/iCwb/x2GPjm9GNJkmZt3eBX1RPAry6x5BDwrRp5CrgqyftnNaAkaTZ2zuBz7AbOrjheGj/2i9ULkxxm9K8A3vGOd9x0/fXXz+DLS1IfJ0+efKWq5ib52FkEP2s8tub9GqrqKHAUYH5+vhYWFmbw5SWpjyT/OenHzuK3dJaAa1cc7wHOzeDzSpJmaBbBPwHcOf5tnVuA31TVm57OkSRtrXWf0knybeBW4JokS8BXgbcBVNUR4DHgNmAR+C1w10YNK0ma3LrBr6o71jlfwBdnNpEkaUP4SltJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaGBT8JAeSvJhkMcl9a5x/d5LvJ/lpktNJ7pr9qJKkaawb/CQ7gAeBg8B+4I4k+1ct+yLwfFXdANwK/EOSXTOeVZI0hSFX+DcDi1V1pqpeA44Dh1atKeBdSQK8E/gVcGGmk0qSpjIk+LuBsyuOl8aPrfQA8GHgHPAs8OWqemP1J0pyOMlCkoXz589POLIkaRJDgp81HqtVx58CngF+H/gj4IEkv/emD6o6WlXzVTU/Nzd32cNKkiY3JPhLwLUrjvcwupJf6S7g0RpZBH4OXD+bESVJszAk+E8D+5LsHf9H7O3AiVVrXgI+CZDkfcCHgDOzHFSSNJ2d6y2oqgtJ7gEeB3YAx6rqdJK7x+ePAPcDjyR5ltFTQPdW1SsbOLck6TKtG3yAqnoMeGzVY0dWvH8O+MvZjiZJmiVfaStJTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJamJQ8JMcSPJiksUk911kza1JnklyOsmPZzumJGlaO9dbkGQH8CDwF8AS8HSSE1X1/Io1VwEPAQeq6qUk792ogSVJkxlyhX8zsFhVZ6rqNeA4cGjVms8Cj1bVSwBV9fJsx5QkTWtI8HcDZ1ccL40fW+k64OokP0pyMsmda32iJIeTLCRZOH/+/GQTS5ImMiT4WeOxWnW8E7gJ+CvgU8DfJbnuTR9UdbSq5qtqfm5u7rKHlSRNbt3n8Bld0V+74ngPcG6NNa9U1avAq0meAG4AfjaTKSVJUxtyhf80sC/J3iS7gNuBE6vWfA/4eJKdSd4OfAx4YbajSpKmse4VflVdSHIP8DiwAzhWVaeT3D0+f6SqXkjyQ+AU8AbwcFU9t5GDS5IuT6pWPx2/Oebn52thYWFLvrYkvVUlOVlV85N8rK+0laQmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqYlBwU9yIMmLSRaT3HeJdR9N8nqSz8xuREnSLKwb/CQ7gAeBg8B+4I4k+y+y7mvA47MeUpI0vSFX+DcDi1V1pqpeA44Dh9ZY9yXgO8DLM5xPkjQjQ4K/Gzi74nhp/Nj/S7Ib+DRw5FKfKMnhJAtJFs6fP3+5s0qSpjAk+FnjsVp1/HXg3qp6/VKfqKqOVtV8Vc3Pzc0NnVGSNAM7B6xZAq5dcbwHOLdqzTxwPAnANcBtSS5U1XdnMqUkaWpDgv80sC/JXuC/gNuBz65cUFV7/+/9JI8A/2TsJenKsm7wq+pCknsY/fbNDuBYVZ1Ocvf4/CWft5ckXRmGXOFTVY8Bj616bM3QV9VfTz+WJGnWfKWtJDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJamJQcFPciDJi0kWk9y3xvnPJTk1fnsyyQ2zH1WSNI11g59kB/AgcBDYD9yRZP+qZT8H/qyqPgLcDxyd9aCSpOkMucK/GVisqjNV9RpwHDi0ckFVPVlVvx4fPgXsme2YkqRpDQn+buDsiuOl8WMX8wXgB2udSHI4yUKShfPnzw+fUpI0tSHBzxqP1ZoLk08wCv69a52vqqNVNV9V83Nzc8OnlCRNbeeANUvAtSuO9wDnVi9K8hHgYeBgVf1yNuNJkmZlyBX+08C+JHuT7AJuB06sXJDkA8CjwOer6mezH1OSNK11r/Cr6kKSe4DHgR3Asao6neTu8fkjwFeA9wAPJQG4UFXzGze2JOlypWrNp+M33Pz8fC0sLGzJ15akt6okJye9oPaVtpLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDVh8CWpCYMvSU0YfElqwuBLUhMGX5KaMPiS1ITBl6QmDL4kNWHwJakJgy9JTRh8SWrC4EtSEwZfkpow+JLUhMGXpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+SmjD4ktSEwZekJgy+JDUxKPhJDiR5MclikvvWOJ8k3xifP5XkxtmPKkmaxrrBT7IDeBA4COwH7kiyf9Wyg8C+8dth4JsznlOSNKUhV/g3A4tVdaaqXgOOA4dWrTkEfKtGngKuSvL+Gc8qSZrCzgFrdgNnVxwvAR8bsGY38IuVi5IcZvQvAID/SfLcZU27fV0DvLLVQ1wh3Itl7sUy92LZhyb9wCHBzxqP1QRrqKqjwFGAJAtVNT/g62977sUy92KZe7HMvViWZGHSjx3ylM4ScO2K4z3AuQnWSJK20JDgPw3sS7I3yS7gduDEqjUngDvHv61zC/CbqvrF6k8kSdo66z6lU1UXktwDPA7sAI5V1ekkd4/PHwEeA24DFoHfAncN+NpHJ556+3EvlrkXy9yLZe7Fson3IlVveqpdkrQN+UpbSWrC4EtSExsefG/LsGzAXnxuvAenkjyZ5IatmHMzrLcXK9Z9NMnrST6zmfNtpiF7keTWJM8kOZ3kx5s942YZ8Gfk3Um+n+Sn470Y8v+FbzlJjiV5+WKvVZq4m1W1YW+M/pP3P4A/AHYBPwX2r1pzG/ADRr/Lfwvwk42caaveBu7FHwNXj98/2HkvVqz7F0a/FPCZrZ57C38urgKeBz4wPn7vVs+9hXvxt8DXxu/PAb8Cdm317BuwF38K3Ag8d5HzE3Vzo6/wvS3DsnX3oqqerKpfjw+fYvR6hu1oyM8FwJeA7wAvb+Zwm2zIXnwWeLSqXgKoqu26H0P2ooB3JQnwTkbBv7C5Y268qnqC0fd2MRN1c6ODf7FbLlzumu3gcr/PLzD6G3w7WncvkuwGPg0c2cS5tsKQn4vrgKuT/CjJySR3btp0m2vIXjwAfJjRCzufBb5cVW9sznhXlIm6OeTWCtOY2W0ZtoHB32eSTzAK/p9s6ERbZ8hefB24t6peH13MbVtD9mIncBPwSeB3gX9L8lRV/Wyjh9tkQ/biU8AzwJ8Dfwj8c5J/rar/3ujhrjATdXOjg+9tGZYN+j6TfAR4GDhYVb/cpNk225C9mAeOj2N/DXBbkgtV9d3NGXHTDP0z8kpVvQq8muQJ4AZguwV/yF7cBfx9jZ7IXkzyc+B64N83Z8QrxkTd3OindLwtw7J19yLJB4BHgc9vw6u3ldbdi6raW1UfrKoPAv8I/M02jD0M+zPyPeDjSXYmeTuju9W+sMlzboYhe/ESo3/pkOR9jO4ceWZTp7wyTNTNDb3Cr427LcNbzsC9+ArwHuCh8ZXthdqGdwgcuBctDNmLqnohyQ+BU8AbwMNVte1uLT7w5+J+4JEkzzJ6WuPeqtp2t01O8m3gVuCaJEvAV4G3wXTd9NYKktSEr7SVpCYMviQ1YfAlqQmDL0lNGHxJasLgS1ITBl+Smvhf13t1pXPV3XUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "CO2_periode_fourier = np.real(np.fft.fft(CO2_periode))\n", "fourier_freq = np.fft.rfftfreq(len(CO2_periode_fourier))\n", "\n", "plt.plot(fourier_freq,CO2_periode_fourier)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }