From f4627ff6127d9c796a0eeccbd90ff4734ef262c4 Mon Sep 17 00:00:00 2001 From: ef8766fce5f06e5c105a6af29adae07c Date: Thu, 21 Sep 2023 14:09:37 +0000 Subject: [PATCH] A few spaces changes to make it identical --- module2/exo1/toy_notebook_en.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index cbc91cb..5176849 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -11,7 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Asking the maths library\n", + "## Asking the maths library\n", "My computer tells me that $\\pi$ is *approximatively*" ] }, @@ -71,12 +71,12 @@ "metadata": {}, "source": [ "## Using a surface fraction argument\n", - "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0, 1)$ and $Y\\sim U(0, 1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -93,7 +93,7 @@ } ], "source": [ - "%matplotlib inline\n", + "%matplotlib inline \n", "import matplotlib.pyplot as plt\n", "\n", "np.random.seed(seed=42)\n", -- 2.18.1