diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index cda177b313f439bbedb4ad189b07c76ad47d9dc3..b208f57e6d5c6e21024ff91af04009a5a70add9c 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,33 +1,43 @@ --- -title: "Votre titre" -author: "Jan Jelinowski" -date: "La date du jour" +title: "À propos du calcul de pi" +author: "Arnaud Legrand" +date: "25 juin 2018" output: html_document --- +## En demandant à la lib maths -```{r setup, include=FALSE} -knitr::opts_chunk$set(echo = TRUE) -``` +Mon ordinateur m’indique que $π$ vaut *approximativement* -## Quelques explications +```{r setup, include=TRUE} +pi +``` +## En utilisant la méthode des aiguilles de Buffon +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : + +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) +``` -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +## Avec un argument “fréquentiel” de surface -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X∼U(0,1)$ et $Y∼U(0,1)$ alors $P[X^2+Y^2≤1]=π/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: -```{r cars} -summary(cars) +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ``` -Et on peut aussi aisément inclure des figures. Par exemple: +Il est alors aisé d’obtenir une approximation (pas terrible) de $π$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: -```{r pressure, echo=FALSE} -plot(pressure) +```{r} +4*mean(df$Accept) ``` - -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. - -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. - -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.