--- title: "Votre titre" author: "Votre nom" date: "La date du jour" output: html_document: default pdf_document: default --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ## Préparation des données Les données de l'incidence de la varicelle sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente. L'URL est: ```{r} data_url = "http://www.sentiweb.fr/datasets/incidence-PAY-7.csv" ``` ### Téléchargement Si le fichier n'est pas présente dans le répertoire alors il est téléchargé et créé, sinon il est simplement lu ```{r} data_nom = "incidence-PAY-7.csv" # Téléchargement du fichier s'il n'existe pas if(!file.exists(data_nom)) { # préciser method = "auto" sinon une colonne NA est rajoutée download.file(data_url, data_nom, method = "auto") } # Lecture du fichier data = read.csv(data_nom, skip = 1) ``` Y a-t-il des points manquants dans nos données ? ```{r} na_records = apply(data, 1, function (x) any(is.na(x))) data[na_records,] ``` ### Conversion des numéros de semaine La gestion des dates est toujours un sujet délicat. Il y a un grand nombre de conventions différentes qu'il ne faut pas confondre. Notre jeux de données utilise un format que peu de logiciels savent traiter: les semaines en format [ISO-8601](https://en.wikipedia.org/wiki/ISO_8601). En `R`, il est géré par la bibliothèque [parsedate](https://cran.r-project.org/package=parsedate): ```{r} library(parsedate) ``` Pour faciliter le traitement suivant, nous remplaçons ces semaines par les dates qui correspondent aux lundis. Voici une petite fonction qui fait la conversion pour une seule valeur: ```{r} convert_week = function(w) { ws = paste(w) iso = paste0(substring(ws, 1, 4), "-W", substring(ws, 5, 6)) as.character(parse_iso_8601(iso)) } ``` Nous appliquons cette fonction à tous les points, créant une nouvelle colonne `date` dans notre jeu de données: ```{r} data$date = as.Date(convert_week(data$week)) ``` Les points sont dans l'ordre chronologique inverse, il est donc utile de les trier: ```{r} data = data[order(data$date),] ``` C'est l'occasion pour faire une vérification: nos dates doivent être séparées d'exactement sept jours: ```{r} all(diff(data$date) == 7) ``` ## L'incidence annuelle ### Calcul Étant donné que le pic de l'épidémie se situe en hiver, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de l'incidence, du 1er août de l'année $N$ au 1er août de l'année $N+1$. Nous mettons l'année $N+1$ comme étiquette sur cette année décalée, car le pic de l'épidémie est toujours au début de l'année $N+1$. Comme l'incidence de syndrome grippal est très faible en été, cette modification ne risque pas de fausser nos conclusions. L'argument `na.rm=True` dans la sommation précise qu'il faut supprimer les points manquants. Ce choix est raisonnable car il n'y a qu'un seul point manquant, dont l'impact ne peut pas être très fort. ```{r} pic_annuel = function(annee) { debut = paste0(annee-1,"-09-01") fin = paste0(annee,"-09-01") semaines = data$date > debut & data$date <= fin sum(data$inc[semaines], na.rm=TRUE) } ``` Nous devons aussi faire attention aux premières et dernières années de notre jeux de données. Les données commencent en octobre 1984, ce qui ne permet pas de quantifier complètement le pic attribué à 1985. Nous l'enlevons donc de notre analyse. Par contre, pour une exécution en octobre 2018, les données se terminent après le 1er août 2018, ce qui nous permet d'inclure cette année. ```{r} annees = 1991:2021 ``` Nous créons un nouveau jeu de données pour l'incidence annuelle, en applicant la fonction `pic_annuel` à chaque année: ```{r} inc_annuelle = data.frame(annee = annees, incidence = sapply(annees, pic_annuel)) head(inc_annuelle) ``` ### Inspection Voici les incidences annuelles en graphique: ```{r} plot(inc_annuelle, type="h", xlab="Année", ylab="Incidence annuelle") ``` ### Identification de l'année avec l'épidémie la plus fortes Une liste triée par ordre décroissant d'incidence annuelle permet de plus facilement repérer les valeurs les plus élevées: ```{r} head(inc_annuelle[order(-inc_annuelle$incidence),], 1) ``` ### Identification de l'année avec l'épidémie la plus faible Une liste triée par ordre décroissant d'incidence annuelle permet de plus facilement repérer les valeurs les plus élevées: ```{r} head(inc_annuelle[order(inc_annuelle$incidence),], 1) ```