diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..73a0159a301fdc1b9cd1ae9292389f3e63059642 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -1,5 +1,1394 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek\n", + "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"\n", + "raw_data = pd.read_csv(data_url, skiprows=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020212176232354189239513FRFrance
12021207751946241041411715FRFrance
2202119766544370893810713FRFrance
32021187391221105714639FRFrance
420211774686287864947410FRFrance
520211674780289166697410FRFrance
6202115711215762714803171222FRFrance
7202114711197799414400171222FRFrance
820211379714628913139151020FRFrance
9202112711520841514625171222FRFrance
1020211179386667812094141018FRFrance
1120211079056645211660141018FRFrance
12202109710988793814038171222FRFrance
13202108711281836114201171321FRFrance
142021077135611031516807211626FRFrance
15202106713401981016992201525FRFrance
16202105712210898815432181323FRFrance
17202104712026882615226181323FRFrance
182021037891363751145113917FRFrance
192021027779554301016012816FRFrance
20202101710525775013300161220FRFrance
21202053711978840615550181323FRFrance
22202052712012828515739181224FRFrance
23202051710564757413554161121FRFrance
24202050770634744938211715FRFrance
2520204975026314569078511FRFrance
26202048766834312905410614FRFrance
2720204774999296370358511FRFrance
282020467375219635541639FRFrance
292020457369620165376639FRFrance
.................................
15611991267176081130423912312042FRFrance
15621991257161691070021638281838FRFrance
15631991247161711007122271281739FRFrance
1564199123711947767116223211329FRFrance
1565199122715452995320951271737FRFrance
1566199121714903897520831261636FRFrance
15671991207190531274225364342345FRFrance
15681991197167391124622232291939FRFrance
15691991187213851388228888382551FRFrance
1570199117713462887718047241632FRFrance
15711991167148571006819646261834FRFrance
1572199115713975978118169251832FRFrance
1573199114712265768416846221430FRFrance
157419911379567604113093171123FRFrance
1575199112710864733114397191325FRFrance
15761991117155741118419964271935FRFrance
15771991107166431137221914292038FRFrance
1578199109713741878018702241533FRFrance
1579199108713289881317765231531FRFrance
1580199107712337807716597221529FRFrance
1581199106710877701314741191226FRFrance
1582199105710442654414340181125FRFrance
15831991047791345631126314820FRFrance
15841991037153871048420290271836FRFrance
15851991027162771104621508292038FRFrance
15861991017155651027120859271836FRFrance
15871990527193751329525455342345FRFrance
15881990517190801380724353342543FRFrance
1589199050711079666015498201228FRFrance
15901990497114302610205FRFrance
\n", + "

1591 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202121 7 6232 3541 8923 9 5 \n", + "1 202120 7 7519 4624 10414 11 7 \n", + "2 202119 7 6654 4370 8938 10 7 \n", + "3 202118 7 3912 2110 5714 6 3 \n", + "4 202117 7 4686 2878 6494 7 4 \n", + "5 202116 7 4780 2891 6669 7 4 \n", + "6 202115 7 11215 7627 14803 17 12 \n", + "7 202114 7 11197 7994 14400 17 12 \n", + "8 202113 7 9714 6289 13139 15 10 \n", + "9 202112 7 11520 8415 14625 17 12 \n", + "10 202111 7 9386 6678 12094 14 10 \n", + "11 202110 7 9056 6452 11660 14 10 \n", + "12 202109 7 10988 7938 14038 17 12 \n", + "13 202108 7 11281 8361 14201 17 13 \n", + "14 202107 7 13561 10315 16807 21 16 \n", + "15 202106 7 13401 9810 16992 20 15 \n", + "16 202105 7 12210 8988 15432 18 13 \n", + "17 202104 7 12026 8826 15226 18 13 \n", + "18 202103 7 8913 6375 11451 13 9 \n", + "19 202102 7 7795 5430 10160 12 8 \n", + "20 202101 7 10525 7750 13300 16 12 \n", + "21 202053 7 11978 8406 15550 18 13 \n", + "22 202052 7 12012 8285 15739 18 12 \n", + "23 202051 7 10564 7574 13554 16 11 \n", + "24 202050 7 7063 4744 9382 11 7 \n", + "25 202049 7 5026 3145 6907 8 5 \n", + "26 202048 7 6683 4312 9054 10 6 \n", + "27 202047 7 4999 2963 7035 8 5 \n", + "28 202046 7 3752 1963 5541 6 3 \n", + "29 202045 7 3696 2016 5376 6 3 \n", + "... ... ... ... ... ... ... ... \n", + "1561 199126 7 17608 11304 23912 31 20 \n", + "1562 199125 7 16169 10700 21638 28 18 \n", + "1563 199124 7 16171 10071 22271 28 17 \n", + "1564 199123 7 11947 7671 16223 21 13 \n", + "1565 199122 7 15452 9953 20951 27 17 \n", + "1566 199121 7 14903 8975 20831 26 16 \n", + "1567 199120 7 19053 12742 25364 34 23 \n", + "1568 199119 7 16739 11246 22232 29 19 \n", + "1569 199118 7 21385 13882 28888 38 25 \n", + "1570 199117 7 13462 8877 18047 24 16 \n", + "1571 199116 7 14857 10068 19646 26 18 \n", + "1572 199115 7 13975 9781 18169 25 18 \n", + "1573 199114 7 12265 7684 16846 22 14 \n", + "1574 199113 7 9567 6041 13093 17 11 \n", + "1575 199112 7 10864 7331 14397 19 13 \n", + "1576 199111 7 15574 11184 19964 27 19 \n", + "1577 199110 7 16643 11372 21914 29 20 \n", + "1578 199109 7 13741 8780 18702 24 15 \n", + "1579 199108 7 13289 8813 17765 23 15 \n", + "1580 199107 7 12337 8077 16597 22 15 \n", + "1581 199106 7 10877 7013 14741 19 12 \n", + "1582 199105 7 10442 6544 14340 18 11 \n", + "1583 199104 7 7913 4563 11263 14 8 \n", + "1584 199103 7 15387 10484 20290 27 18 \n", + "1585 199102 7 16277 11046 21508 29 20 \n", + "1586 199101 7 15565 10271 20859 27 18 \n", + "1587 199052 7 19375 13295 25455 34 23 \n", + "1588 199051 7 19080 13807 24353 34 25 \n", + "1589 199050 7 11079 6660 15498 20 12 \n", + "1590 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 13 FR France \n", + "1 15 FR France \n", + "2 13 FR France \n", + "3 9 FR France \n", + "4 10 FR France \n", + "5 10 FR France \n", + "6 22 FR France \n", + "7 22 FR France \n", + "8 20 FR France \n", + "9 22 FR France \n", + "10 18 FR France \n", + "11 18 FR France \n", + "12 22 FR France \n", + "13 21 FR France \n", + "14 26 FR France \n", + "15 25 FR France \n", + "16 23 FR France \n", + "17 23 FR France \n", + "18 17 FR France \n", + "19 16 FR France \n", + "20 20 FR France \n", + "21 23 FR France \n", + "22 24 FR France \n", + "23 21 FR France \n", + "24 15 FR France \n", + "25 11 FR France \n", + "26 14 FR France \n", + "27 11 FR France \n", + "28 9 FR France \n", + "29 9 FR France \n", + "... ... ... ... \n", + "1561 42 FR France \n", + "1562 38 FR France \n", + "1563 39 FR France \n", + "1564 29 FR France \n", + "1565 37 FR France \n", + "1566 36 FR France \n", + "1567 45 FR France \n", + "1568 39 FR France \n", + "1569 51 FR France \n", + "1570 32 FR France \n", + "1571 34 FR France \n", + "1572 32 FR France \n", + "1573 30 FR France \n", + "1574 23 FR France \n", + "1575 25 FR France \n", + "1576 35 FR France \n", + "1577 38 FR France \n", + "1578 33 FR France \n", + "1579 31 FR France \n", + "1580 29 FR France \n", + "1581 26 FR France \n", + "1582 25 FR France \n", + "1583 20 FR France \n", + "1584 36 FR France \n", + "1585 38 FR France \n", + "1586 36 FR France \n", + "1587 45 FR France \n", + "1588 43 FR France \n", + "1589 28 FR France \n", + "1590 5 FR France \n", + "\n", + "[1591 rows x 10 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)] " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'data' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPeriod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mday\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'W'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'period'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mconvert_week\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myw\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0myw\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'week'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'data' is not defined" + ] + } + ], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "data = raw_data.dropna().copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_data = data.set_index('period').sort_index() " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm4HUWZ/vudc5fs+0JIAglJZIdAQkBAQBaJoAIKY1ABZ9AggvsyuMtoHMBx8McojChI0GFzZZMIBBBkC2HNBiQkgYTs+3pv7r2nfn90V3dV9VfV1We5S26/z3Oec051dVV1d3V99e0khECOHDly5MihotDRA8iRI0eOHJ0POXHIkSNHjhwJ5MQhR44cOXIkkBOHHDly5MiRQE4ccuTIkSNHAjlxyJEjR44cCeTEIUeOHDlyJJAThxw5cuTIkUBOHHLkyJEjRwJ1HT2AcjFkyBAxZsyYjh5Gjhw5cnQpvPjiixuEEEPT6nVZ4jBmzBjMnTu3o4eRI0eOHF0KRPS2T71crJQjR44cORLIiUOOHDly5EggJw45cuTIkSOBnDjkyJEjR44EcuKQI0eOHDkSyIlDjhw5cuRIICcOOXLkyJEjgZw45NgrsXrrbsxetLajh5EjR5dFThxy7JU45xdP49KZuZNkjhzlIicOOfZKrNve3NFDyJGjSyMnDjly5MiRI4GcOOTIkSNHjgRSiQMR9SCiOUT0KhEtIKKrw/IfEtG7RPRK+DlLOedbRLSEiN4gojOV8klENC88dgMRUVjeSER3h+XPE9GY6l9qjhw5cuTwhQ/n0AzgVCHEkQAmAphKRMeFx64XQkwMP38DACI6BMA0AIcCmArgRiIqhvVvAjAdwITwMzUsvxTAZiHEeADXA7i28kvLkQMQQnT0EHLk6JJIJQ4iwI7wb334cb1x5wC4SwjRLIRYBmAJgClENAJAPyHEsyJ4Y28HcK5yzszw9x8BnCa5ihw5KkFOG3LkKA9eOgciKhLRKwDWAXhECPF8eOhKInqNiG4looFh2UgAK5TTV4ZlI8PfZrl2jhCiFcBWAIOZcUwnorlENHf9+vVeF5ijeyOnDTlylAcv4iCEaBNCTAQwCgEXcBgCEdE4BKKm1QB+FlbndvzCUe46xxzHzUKIyUKIyUOHpiYyypEjs1hp7bYmPPvWxhqNJkeOroNM1kpCiC0AngAwVQixNiQaJQC/BjAlrLYSwGjltFEAVoXlo5hy7RwiqgPQH8CmTFeSIweDrJzDWf/vKVz46+dqMpYcOboSfKyVhhLRgPB3TwCnA3g91CFInAdgfvj7PgDTQguksQgUz3OEEKsBbCei40J9wsUA7lXOuST8fT6Ax0SuScxRBWSdRRt37qnNQHLk6GLwySE9AsDM0OKoAOAeIcQDRPQ7IpqIYHO2HMBlACCEWEBE9wBYCKAVwBVCiLawrcsB3AagJ4CHwg8A3ALgd0S0BAHHMK0K15YjB0SudciRoyykEgchxGsAjmLKL3KcMwPADKZ8LoDDmPImABekjSVHjqzI+c8cOcpD7iGdY6+GEMA/3lyPj974NNpKOaXIkcMXPmKlHDm6LAQEvnL3K9i0cw+27NqDwX0aO3pIOXJ0CeScQ469GrlYKUeO8pAThxx7NXLakCNHeciJQ469Gp3ZIvraWa/jqcW5p3+OzomcOOTYqyHQeQnETU+8hYtumdPRw8iRg0VOHHLs1eikdCFHjk6PnDjk2LuRE4ccOcpCThxy7NVQPaSzRIHvrKKoHDnaCzlxyLFXo1y/t5w25OjuyIlDjr0a5XIAOW3I0d2RE4cughWbdmHp+h3pFXNoEChvoc/FSjm6O/LwGV0E77vucQDA8mvO7uCRdC2Uu8bnpCFHd0fOOeTYq1FuyO6cccjR3ZEThxx7N5RF3t9WKc8DkSNHThxy7NUQlt+p5+W0Ya/B1t0tuOP5d9DU0pZeOUeEnDjk2KuRL/I5Zj6zHN/+yzw8NH91Rw+lSyEnDjn2amhOcBnOK+VUZa/B6q1NAIBde3LOIQtSiQMR9SCiOUT0KhEtIKKrw/JBRPQIES0Ovwcq53yLiJYQ0RtEdKZSPomI5oXHbqDQZZWIGono7rD8eSIaU/1LzdEdkTvB6fjff7yFMVc92C1FLHvrM60VfDiHZgCnCiGOBDARwFQiOg7AVQBmCyEmAJgd/gcRHQJgGoBDAUwFcCMRFcO2bgIwHcCE8DM1LL8UwGYhxHgA1wO4tgrXVlWs3rob977ybkcPI0dG5E5wOn71j7cAADubWzt4JO0HGTVlb32mtUIqcRABpPdVffgRAM4BMDMsnwng3PD3OQDuEkI0CyGWAVgCYAoRjQDQTwjxrAje2NuNc2RbfwRwGmUJhNMO+PivnsOX7noFza3db8fVlVG2n8Nevs3sZK9XTRFd6V7+TKsNL50DERWJ6BUA6wA8IoR4HsBwIcRqAAi/h4XVRwJYoZy+MiwbGf42y7VzhBCtALYCGFzOBdUKa0K5ZY7ugb11Gdlbr8uFnHMoD17EQQjRJoSYCGAUAi7gMEd1bksiHOWuc/SGiaYT0Vwimrt+fZ5BK0c6hChvw7i3bzK7D98AUHi1e/szrTYyWSsJIbYAeAKBrmBtKCpC+L0urLYSwGjltFEAVoXlo5hy7RwiqgPQH8Ampv+bhRCThRCThw4dmmXoOToxtu5qwdbdLTVpu2xnti66kKzf3own3lhnPd4dF8iIc+iOF18BfKyVhhLRgPB3TwCnA3gdwH0ALgmrXQLg3vD3fQCmhRZIYxEonueEoqftRHRcqE+42DhHtnU+gMdEJ32S972yCg+8tiq9Yg5vHPkfD+PIqx/2rv/owrWYfvtcr7rlx1bqlNMvFRf++jl8+rcvoGQx05KvVTdSOXQrLqma8Am8NwLAzNDiqADgHiHEA0T0LIB7iOhSAO8AuAAAhBALiOgeAAsBtAK4QgghtbiXA7gNQE8AD4UfALgFwO+IaAkCjmFaNS6uFvjGH18DAHzoiH0rbksIgZdXbMFRowd0KwVhpfiMJ2EAymcAOufWxI7XVm7B/oN6Y9mGnQCA1pJAQyE5p2I5bvebb13skXY4UomDEOI1AEcx5RsBnGY5ZwaAGUz5XAAJfYUQogkhcelOeGj+Gnz+/17CdecfgX+ZPDr9hByZsXLzruh3pvAZ1R+K3n6Vqc9HfvE0DhvZD8UCoa0k0FoqoYETDAj51X2WSrnx6moEv6ORe0h3IN7eGCxcb+V5GmqG7/11flnndVKpphPz392GupBbaGmziJXkd9e7vLKRWyuVh5w4dCBiRVnHjmNvRkNdeVO89pxDbdqVxKG1reTuvzbdd2p0RYLfkciJQwdCSn3zSVs79KgvRr+z3OdaP5JaNV9XDF7p1hSFtPyevWht5DW9t6I76leqgTwTXAeikMtCa44edcX0Sgy6qky+GImVkpzDys270NQalMuru3RmoNy/7ORx7TK+jkDOoZeHnHPoQMhJW25wuBzpOGBo7/I4s1pzDlVcqdS2YrFSsv0Tr30cbSXJOVSt+06PnG8oDzlx6EBIK4q08NBp8uPuCtcCe/CIfgCAiaMHxPWztF3uoDq4/bqinXPQ++8+1CFWSHefa64GcuLQgSh4em6+uTa3ZsqKQoUWKrXO51DN5tW26grBK22zVopPql7/nR3xJqyDB9LFkBOHDkSkc+jgcXRV+Cyw5UdlLe+8joA61EIkqtQvwNyAdKHLqxi5WKk85MShA0GWFzmHH3zumipKyHKbay9Wqk0PBYuo0rz27jjluuM1V4KcOHQgYlPWDh3GXg1OMeuDNFHfmKsexP/MXqzVf+C1Vamy/rh+WcOytBU3JolDW4oMpVvJ33OdQ1nIiUMHgnKxUkVwLeCSK/vBfQvKur8+i/fPHnkz+j170TpcecfLuEEhGNXE/a+uwnNLN7LHxn/noei3zQLOvJzutCHJQ3aXh9zPoQORhxKuDK67VlI28NubWsP6tbvPm3btARAns682vnDnywCA5dec7ay3cWcwjlznECOPaVkecs6hAxHJh3NL1QT+vmANnlpcfkKnNLGKRFNLG/65eAMAYE9r/CBqrciu1X5g664gL4YtZHfcf/chD3kkgvKQE4cOhM2yJAdw2e9exEW3zHHWcd22Nu4gUzTjwUX41C3PY8Gqrbhu1utK1WzPJOvmVG3/jTXb8R/3L6zO4hUOxLx+s+Vde9q6zWKZe0iXh5w4dCC6m87h8dfX4b5Xq5coybWAp+2cJZZvDPIfrN/ejDfWbo/bzvhQsj5Dtf1P3fI8bn16GdZvb87YShI2Iwfz/weufxK/fXp5xf11BeSxlcpDThw6EHLKdhfO4V9vewFfDGXntYYt8JyJxjBqa3NrSUtV2p5PJHr8VVjDsphH/8cDCyvvsAtBALjpibewbltt9EJ7G3Li0IGgPNB8RXCKlRjiwFVvDAPz7WktGTqHWouVkv+qscO1mbJ2ZzNO+Zq9vmYbrp31Oq5spw1KV0dOHDoQviEeuvOLXS58FdIy38Oe1pK22659Poe4h6aWgChVw6rGFum3mzCnLORtlXNim8Ih5rAjlTgQ0WgiepyIFhHRAiL6Ulj+QyJ6l4heCT9nKed8i4iWENEbRHSmUj6JiOaFx26gcOtMRI1EdHdY/jwRjan+pXY++IoAuvOLXS5YhTSDhjD/wZ62kkZQXKdXW5G7o7m1am2ZC2F7QgiB11Zuafd+UxG+aDbv8Rw8fDiHVgBfE0IcDOA4AFcQ0SHhseuFEBPDz98AIDw2DcChAKYCuJGIZFD9mwBMBzAh/EwNyy8FsFkIMR7A9QCurfzSOj8KngHB8snMw3VbOIU0V7+xPtQ5tLQZz6FMz2rP87K0/sLyTf6VO9AC7vZn38ZHfvE0nnyzfBPkWkASzDxEfjakEgchxGohxEvh7+0AFgEY6TjlHAB3CSGahRDLACwBMIWIRgDoJ4R4VgRbr9sBnKucMzP8/UcApxHt/a4rviG788mcHb4KaZVz0MRKTs4hWZZ1urKWtpY+X13hvxu3bTjag1ZIa6+3N+2y1rnyjpfw26eX1X4wDKL3LX+hvJBJ5xCKe44C8HxYdCURvUZEtxLRwLBsJIAVymkrw7KR4W+zXDtHCNEKYCuAwVnG1hURLSc551AWKjVlnb1oLVZu3g0g0DloYiVnv0xZFWxfbW1kITzWqKztoLfyGeUDr63G1fe3r5WUaQzmK3Ls7vAmDkTUB8CfAHxZCLENgYhoHICJAFYD+JmsypwuHOWuc8wxTCeiuUQ0d/36zsW6lgOZ0jE1SFonm8yz5q/GvJVbO3oYZfgi6CdcOnMuZi1YAyAwZVXbcxHkWj0P2zTIwpNIQvKD+xZUxW8iCyIa1snmqzmefLPlBy/iQET1CAjD/wkh/gwAQoi1Qog2IUQJwK8BTAmrrwQwWjl9FIBVYfkoplw7h4jqAPQHkBC0CiFuFkJMFkJMHjp0qN8VdmLUR8ng3fEzOhsX/Lnfv4QP/+KfHT2MquK2p5d7K6Q5ZBYrMTt52+4+S9Oy6vrtzfjh/QvittthDklTXJ/5+tunl7Xbpkf2IrvLw9X4wcdaiQDcAmCREOK/lfIRSrXzAMwPf98HYFpogTQWgeJ5jhBiNYDtRHRc2ObFAO5Vzrkk/H0+gMdEZ9suG6jG8ELagObWFOLQQdRh445mfPI3z2VTiLYjnHclo8Zqe3Mr1ijOUU6dQ7am+TaYRqrJOQBAmxKuvD1mUJZAklffvxDPWqLMVhMX3vwcbn/2bQAxx5BzDn7wicp6AoCLAMwjolfCsm8DuJCIJiKYd8sBXAYAQogFRHQPgIUILJ2uEEK0heddDuA2AD0BPBR+gID4/I6IliDgGKZVdlnZsW57E5as24Hjxw3xqi9E5Xbpco6m5QDoKM5h0erteHrJRvRuWIpjxgzqmEE4kJVAZ0v24xIrOU/0bJ9rt3Kdg1q1vU060jIbmpucQjsMUCVAkjPsCDPfrohU4iCE+Cf4zcvfHOfMADCDKZ8L4DCmvAnABWljqSU++evnsXjdDiz9yVkoFNInbTWn1540zqGDdjry3ZUhr7sTMouVathnljVUnbpqe+3JiNvW3j3GJqh3g3v5WbutCUTAsL49qjQuyTlUpbm9HrmHdAgZgM13IazGyxZzDmmmrB1EHMJvPdUmP5ZZ81drsYnaAx31jlfD8oe7j7bnnIXwrN3GK6HbU6xkg0kc6uvcJxz7k9mYMmN2pcOKIM2bc7GSH3LiEKJvj3oAwOYwaUsaqiJ3Dr87q1iJW5XMFxwAVmzahc/9/iV85e5XkifUELWMnJrVzyHrI+LFShkbSUF7i5XijGv8hbQZm6D2VgzL9ygXK/khJw4hpDOUqhw+5aeP4/j/5Hcu1XyRuQVXRYftdMJu1e45EdjulkCltMLh/NTV0BHxrKzPuQqrfLtYK6XkTTCL23teS51HJ7d16TTI04SGkBNVXRSWb7QvdtUULaRxDh01meUGS+293N3eHc+/U/F4Eqjhbam1ziGLtVJVVvZ2MWWVXfGddfSiLE3Gc9Lgh5xzCGHaQqfWr3CGPfPWBqwNnZRSFdIdYJf97pbd+NQtzyfKyyGKm3fuwbf/Mq8aw/IfSwYPZM/TlXa8m3G0zwqWyhhL+yx1e1pLuPuFd5xm1dKQo9NyDgwnnMOOnHMIIV8ybuKs2dqUKvrJik/8Ol54O6NC+pklG+I/mtWLXu+djbtSX7aOCFdQaY/lLrreZ2XgHMq9fao0qlJO9xePL8ENsxejR30R50zkQ6vFyav4NszrqLXo3yRkpVwhnQk55xAiFqEkJ85xjN6hqjqHVFPW6vVVDjRrJaX8xbc346SfPo4757hFRrV6F7OG1c7m5+A6ljxaDeWvbXy9Gor8Acc55dazYeOOgMvd5rLmS7kH5n1zEeA1W9OztW1rasHp//0PLFjFh3IxNyXbmlrCflObzoGcOERwcQ5s/TJ3Yrv3tOEjRuiJNK5EfYnaO+RA0Cdf5631OwAERCILtu6qjsmr7U7MXb4JO/e0WY56tp3VWqkKllO2Ha0sHz2op1c7vv2VBceFRtZKRm8bdzSjqaUtMQjXpofbkJl4YdkmLFm3A//19zfY4+b9fHPtDnZ8OXjkxCFE1t15uWv0qyu34DUjaF1rBlPWjtj16IQi/md6uNqGZu6qv/WX16ozMAY7m1tx/v8+m+mc8cP6MKW1vdG8Qprv878feRNA+3gUVwKbtdKkHz+Ki2+Zk7ij5kZnzFUP4tpZr3v3J1O82sLP2HR1Hc2JdxXkxCGEnKi+8shy55c0+1SRJdlPu8lLPZSKadYpNmypFufA3IvbnlmeuR3OIT5rbKWs6zYbeM/Sp3Rs44iDi5NUF8dyOc6125r0cx0XGgdlTfY1Z/mmZOpSpo2bnnjLe2wyUdMzb23E1UqQQQmrrisnDl7IiUMIOY/8Zbjli5Wyoj1zG3PQxVpxeZpde0egnM01u+g66tdKtJfWbNZrUxMelTPiRau34difzMbvn3s7LnQMUooZ7WsyryAuFzKqMQD89unlieNpYrocbuTEIYQwvn3rZ4VvhjIVvhnKqgmbElot9yUOtRKGcN3WecTFMlFkzql1JNwsYiUJ7tpcZzS3VqZ3WbYhCCnzzFt+0VP/vmCtc0zVtlZKzaBo6SAnDn7IiUOIyAnOc+LMXrS2rH6KZWxtNfFAO/EO1tugcg5R/H4R/m9fcGN0yeVt18QRB7e1kmtM5Ysl086sKxQiq6G4P3t9VRZftfXQY/76SnN8Yna5kEbAbWEybGc9v3Qj/vjiSsvR7oecOISIPaT9MGv+mrL6KZZxxzuCc1ChRfdUyn3pXFIRWemI7CiHc+Bl+fb63LFq6Iq5HW2ToqNauHobJv34Ue+c0hpxSJnZrsX5oflrYnGox8Pz9ZDW5lUZcyKNC8/qN/Lxm5/D1//wavaB2PoviUjU1hXR7YnDrPmrMfE/Ho5epNovvtlXkY7mgnVrJeZ4yvhqpcfhFqFiGdSX5xwyjiWztZufQvrTv52TKHtjzfb4HMc4mxnjh3Lx55ffTZQ9+Npq1izZyjkkxEqV6UTSOIeOFh/9+qmlOO1n/8D8dzs+pW456PbE4UcPLMKWXS3KxK21rLmr6BzUP+pLrOocdLt2NZOa3pY+aNsuO/O1MfVdYjvbQsqeU65cyRM8kU0WPrfUnYXPdc80/5kqEXCJdzbuwhV3vIQv3f0y05anaE3jHLLf1DTP+3Kjr/7n3xZh5ebKg0i+9E7g/1ONtjoC3Z44mKi1DXRZOyRNrFN76rCtqQW/eGwJe0yzVgq/5UtozYVhDNn2Tldjp1eO2K7AnOOmDcmjWcVKjyxM6qzMuWeNcluGCCvtznLH2W7CC5Um2e9u3u3dV7U5h3SxUnnz6VdPLsWX7mrf8POdEd2eOJgvda135uW078s5bGtqwdf/8CrGXPUgHnvdrjBvKwm8uXa79fiPH1iId7fEL/2ritMep3N4a/1OZXyMuMQ+5LLquepnSakpwYqVajwP/uOBhUyfeqfvu+7x2g7C0bejYmqV9dttCYeqq3NIFStVEA4tLVJyFnS0WLhc5MQhQRxq+yTL2c2oY3Kd/59/WxRZW9z/6mprvZ89/AY+cP2TWLKOV5btaLbHz9mlHCNmb8mx8uaQbet31nuTXc7Pl/N+DvbGszrIqSiVBB5/fR1/zPN61NE670GGxbfcWc89y7teWMH3YXKQmrl0GWIl44aZkQYqCfjYmhIM0wfc+9GVkEociGg0ET1ORIuIaAERfSksH0REjxDR4vB7oHLOt4hoCRG9QURnKuWTiGheeOwGCrd5RNRIRHeH5c8T0ZjqX6rl+owH6Dslyn3wlYuV7NilONi5Ridloeu2pwc3k/jSXYFs+Qt3xjJmbmHgWH1z0fdVWJaFMtqoZ2RRrrHMYxSMvvPhuWUb8a+3vcAe892YlMMdpVsreTZk6JlcaG0rYdPOOLOieYbuwe3ZvwKTONxhBICsRExZTc6hq8KHc2gF8DUhxMEAjgNwBREdAuAqALOFEBMAzA7/Izw2DcChAKYCuJGIZFjJmwBMBzAh/EwNyy8FsFkIMR7A9QCurcK1lQXf+VSu6WItFdLaDriCTQu30N37yioAwOuKpQzXBfdCeouVsnICTMuD+zRkawRAYx1DHBz1L741aUHku/N1ReAtZylzcjgVtsPOceMhuYji9+6dj6N/9Ihyqn6ubfH2zUVucgYPL9BFqZU4MpbjrGpDF5UqpRMHIcRqIcRL4e/tABYBGAngHAAzw2ozAZwb/j4HwF1CiGYhxDIASwBMIaIRAPoJIZ4VwSy53ThHtvVHAKdROdujMpAQK3VAwLU0aPPUcb4qO28PlpZ7QrxYydN6pQrmowWHn4Ot9QaOOJS563xq8Qbncde0VhfLnQ7Rnq9YyRb2hK+b1lN2PGCINs0utGmt/LnOM/ieubs3b20l63vOOWTUOYTinqMAPA9guBBiNRAQEADDwmojAahCx5Vh2cjwt1munSOEaAWwFcBgpv/pRDSXiOauX78+y9D9UXNrpTI4By1Gjv181SSznUhrooRTAvqusx0VLTMr5+CCKkbh4PLRU+/TDbMXlzkCS9tVba28TU5C52Axkb5nLq+zMPHWup3af3NjUq4pK5CeY8UHnTyIbiq8iQMR9QHwJwBfFkJsc1VlyoSj3HWOXiDEzUKIyUKIyUOHDk0bshfMjmtuylpDa6WCxjm0B5KDqUQJmFkh7V3ohgz9XEk7vpyaq556/TIxDduGluHND2mcULmPzbkAJo6ZYiW+/7TMiBJm7Chz/uQ6h8rgRRyIqB4BYfg/IcSfw+K1oagI4bc0wVgJYLRy+igAq8LyUUy5dg4R1QHoD8Dt/VMlmGy+787e9VIIITDmqgfZJCTlEB9fhXQ5Nv4sPCkLdy2tDOtQRStJoz6n33BZGfHHeM6hNrsE97yJf9tyFJhtVGpdd9UHDyrrvOpwDsrvMsZgzj9z6lVGHKqoc+iiSgcfayUCcAuARUKI/1YO3QfgkvD3JQDuVcqnhRZIYxEonueEoqftRHRc2ObFxjmyrfMBPCZqaFP60Rufxi8fD5y8zHe1Gr3KifWLx5OOZJUrpGsnVhJCZBpfE5ebghMreb761Xjk5TRRl9FaqVZQ75NrcfLlUmwy/bS+o36qzH6a/g++89oG8xSTa1XFSu8Z3gf79u/h3fawfo2Zx2NC3r9VW3ZbfT86M3z2micAuAjAqUT0Svg5C8A1AM4gosUAzgj/QwixAMA9ABYCmAXgCiGEXEUuB/AbBErqtwA8FJbfAmAwES0B8FWElk+1QKkk8NI7W/BTuatPKKQrhyvtZ1k7JM+4/CoXZFtAnnxzvTUkw/jvPISP3fSM97i+ek8ySBknVqoV5yAtqHxha743k6M5K4enLqSPvb4WY656kA265rpGlbD6xkVyDdPnfsYJery6qwiXGHGifD2kbYTD5AxMHYN6vK5QyGQC/L7xQ7zrpmHG3xbhmBmPVq299kJdWgUhxD9hFzScZjlnBoAZTPlcAIcx5U0ALkgbSzVgynJ3NesvYdoOZtzQ3ppHsIlSSeDl0I+ADdlTxluoJW1xLS7KQa7vZRt2smaYEm0h4Tx7QDJXsS8480HfK84qBvjjiytxxfvH630pTZx31Ej8hQkYZ6K+CtZKavVfP7kMAPDi8s0YN1RPQeriotTr5zIGSuhipUzDtLaVtZlyxG4ubshtdVUeF6NOxfoiZXqmLVVQPu71TnB7G8zdhWlT7ZoSh4zoh0tPPAAAMF556UslEXln/vLxJbjolmABzhoK2gZVju9MC5nS+JZdbksaiUqmdCWmrFnfx2UbdmLMVQ/i7Y1K+A7l+PhhffDFU8cnTzTgZQ2RAc8uDZLjcBykr3d1c0vlCtF3Nu2KiLWtX7mAlSvSs+3GfdrT5qvnpsenXEKdi3XFQqb55Rr/Z2+fixuf4GOPaTBuzYtvb/YfQCdAtyMO5iNPxntxyPQLhLOPGAEA6N8rdrb67O1zMf47gYRs/qrYe7Zai45vukd18vv6IETtVkmuwDkP+bZcrhL4u3+dH7dhck/KjbAukCyHp///xWOLMe3mZ61jYL28ern1AAAgAElEQVTFOeJgbUEfu4tz8G4QwG/+uTSsxld0cQ6VbBJ8ppMqRnMt9LYj5ikJayWVOBQoE2fqisv0yMK1uG5W0tgkDU8vcfvAdDakipX2NrgsJrj/KgoU26mrL/JsJVaOej7HOZRjQdGmsOO+Tk/cq+1i6yuxCVfBekh7Nv3wgrVorCvgY0ePSq+soM1CPCtj6/VB/9fDb2ZugSWUrkVQOeQWKykEL4U6vL3RL1w0N6ws+gwzHpfPIxeW3yZ8OQczHpIuVipk2nr4mGS3tpVYYwYbejG6rc6M7kccTE7BPO4iDgWKFnzbhNVKPXakPtA5B3sDd86JnYf4uEf27ZDOdZS/qPJERi+TYhcTkgOoK2br3zbctlLJizxwRKRaVmvf/es87DeoF6afNC5o11FfvXUuO/tyno6da7KzDj7cpByL6TQmhEgdp6+1ku2QWZxQUKsK6SI5n6nJ5fmE3vj5o4vx9TMPtB43r79XQ9dabrvWaKuBpFzJeVhFgVTiYGk+ZTvku+b88L4F2LWnFdedf6S+M7Y0YOYW5l5MV7yYatn1c0QzK1PCZRdzoWARHe1pE4ZHslu0kl4zG1raSvj9c0EwOEkcypGtu+BtCWYpj6yVmBo+z23h6m04+aeP44JJOrfnxTl4Wyulnw8AIwxTVXWB37hjj7OXhM+Ex419LWOGtzIy2HYocp1DFp0DUbSQ2CdPXM6LWPze5tueWY575gbRRnx0DpN+nG4q5wpDXC1TRq6dP72ULWm7Kz6SxwiiX5zM37sV5TpufvKtstrgdQ5+svWRnhZjlT62iHFgGnLqAZRDb2/clRC7+cwnTR/tEpdarjLp56D/V8e/fONOJ7Ez+/DxgRvQsz69kjaeTNU7HN2POKTpHBznEsW7VPtuRq+f1r/Emq328NltntZKKnwVpNUGN7xf/WNppjayirVsnENLW0kTGd01h4/Zw/UnF5YVm3bhJ3/zCwRngjOH9NUZ9WnUmXqfkBk/u+DIRJk8z6ZTct3pLItp1uNm++Xkz3ApoAH9mvs21nkTO65tDnUpmxhzXnV0Tuus6H7EIbFDMDkH+7nFAkWsoU0mmTYBbIv71/+QdCiT8PVzUMHJ0Tc7xDUaUfPrgm+nCgKZrIyDrX5Lm9AW1d/8c5m1jctPGaf9lwvL2Tc8pZVnspVnQmD4+qkI2P0Z9Gir8W8i4BsWGfhP/rbIOVZWU+Q0m3Y2F/omuB9kpaasCc7BGJSq1G+oK6T6Umh9emzzs870nDh0cqRbK9kfoI/OQQW3QJfDWpZjSUQUOPxdN+v1SLm5aafdhV/PylU+qsE6Z83CpVvvxPANnkZIEhhJkLcZebFfemeL97iymvVu2x33JYQeDkVrw7KmEiHhFCjxGJN97rqPHRHdO3Per9y8i/VAl7WqsdAJy29XPRXm7TU3euqzE0hReieCAnoQh5Q6KzfrlmKV5JfoCHQ/4lDBcSKFTS/XWsnSdn+H/FJdLH1fSgJw7UOv48Yn3sL9r67Crf9chj+9ZPcWrta8rYa/xCML7fmvORQsO+xArJSOLCI4MxKoCxxxct2fH9y3QFlAhB5lVxljtXag/3LMaKufw3k3PsMSFIm0IfgM8a+K97pzV2+h8YkF3ZjE2xQH15IQmTgHn32F6xKv+tNreNnYSHQx2tD9rJUqCV28fnsziAh1BdL0ABJfvuvl1CxWtv779eQfxcYdzYaHtLP5CPXFAnY0B2NpLQk2ob1tXJUs8D4vABcFVUVWhbTN7t8UK1nPR/K+2iy73vH0GwB4Dsh3c1ISgUxb+rTXFwqRx7Ut1HU5fh222Eq2QHFx/cp1DqrHsFtR7ydWMp+ZGp+qVMrmaOfzDrBK/JLAjj2tbB7tXKzUyZH2fP76in13LTOGNdYV0MSEN/jrK6u03QK3xtn679eD5xwm/fhRrNi0Oz7fOjodqnOObclQFxONxbd08u6W3fwBDZW/ABndHKzX19JW8lZum6O2cQ5X/XkePwamH5/wGR8KPe7j4yL6lmKlugKhoLypum6iwvvtkRP6u2cfrPSnf9sQ6Bz8h8HNOak/sZuNu0VB6r+2kjDmuFHX4SNhw6srkyLGm59aiiN++LBlvKlNdip0O+Kg4sDvPpQoc4k0pL6hR33RS7zAOldZXqshfewhgldtVYiD5wxrKFLqwnH7s8uVduNym47jhGseS+3Xh3Nobi2lhinJApvi1lvnQEkHqaw5hLnr4UKam8vq9z90CHtUIA4IKKDrH2z3rhzfxegUx+VeMGl0oswmPz/ugEFpzbHg6kuLLXtUVv2/OW/V08YM6aURj0Rdo20fPd/bG3fhyTf1jJRPvGEXxVWSCKsj0O2Ig/p8XAlVXLBxDln7V+G7IJbFOVhWjYfmr8ErK7YkGq5kEvue6kOEfaES4S/f/Ur02zdhC+9NXvmLzBEH8/6YIrRSxDkAg3oH8bvaSrr+QWujOoyDsxnVYz12muNRH8677FFtk/ULKWNTF/uhfRuZBV+gWCD86fL34pefOBoHDImDZaZZKT61eAM7JpMomlGOXbrDLkYbuiFxyPA2mbt5eWZjfdGLsHCLjpVFdrSjTvqHF/gpawuU0miI+19dFfZfLZ2D37nLNtjDnj+cVSGtzGL1XgVipfTzg1ulj7saPiHcBsK8OyYhlLdPAOgd7pyPGNVf2zz4Zgb0QRyV1V5HJQ6xToQ/QY4zM+fAnZAhVE3P+qJWb0dzK375+FtoKwlM2n8QBvdpxO2XTsGUsQFnk1AZMl2sYnyP0ub3gJ4NzuNdCd2POGSatUbl8OSAc/ARK3Et2pRr9oFtV0zy7pzzTuL462uSKb21WEn2IbL1KwnCV+3dkVd8HwsFyJQH2Ogma5pIbpg+KVNtDKMQQeiPx752Mn7/mWNx2L79o2O2BaqcmFg+p9QX/DPl1RUKzuNZUEhhU5I6h/j3Ff/3UqL+kD6NOP3gYQAYzoHpZKcRTJA7z8SA3nbOIVdId3JkeTzmGin/FgvkZbPMvayVzo8e9clHNvXnTyXKfPuJdqqqPLaCMfpyHZFsvQLrMYkHX1vNlre2CT8LHuU5febEsSgWKDOB5BYXn7GbYqX4eQRE/YChfdCvRz1u/NTRSp244Yfm8deeFS6OmrMes11bfdFDTsX1z9SXz84njpmA0BbfeZa4R7bAmazlEStW4sciYTMsCfrIiUOnRtoDOnJUvENLWjQE3wUir7nPcg42FlkpNoPoqWhIMQOVKIlsdixq3bnL+TSiWdtx4ZqHgpAUae9LZUni/cVKUr4/YXgfFImqonNgY2sZd8gcXqRzgNA2F+qiI4e2bMNO/PD+2ESZu1QCYdee5A7YPCfrbU4XK1VOXNPimKnl+/bvqafTtZwTEQdHStGojCEEc992vxuukBpdjDakEwciupWI1hHRfKXsh0T0rpFTWh77FhEtIaI3iOhMpXwSEc0Lj91A4cwnokYiujssf56IxlT3EnW4nk+/HnVorC9a68qJT1T+omU7TX05ljts6Xt7hv0VQkQvyNccoTlkv+q4du3xd/QykfW+pIYbKXskwJSxg7yd4C49cSx+ev4RuGBS4BiWeXEzqr/3gMFYvDY9h7TJXQqlnm3s8p6ZYbJthPDTt75gaamSNKE80uINWdtjGpTvm8nFLduwE00tbRACOGifvpj3ww9g3wE9vSzlbG1ypya5C4HPzJzrbN+1GelqTnA+29DbAExlyq8XQkwMP38DACI6BMA0AIeG59xIRHK1vQnAdAATwo9s81IAm4UQ4wFcD+DaMq/FC661qFigaJZccuscbDFiEY0fFlg7qKaP5guqYjsjs3x1Jc/u6uOyD/KDh+1jPebXAt+vazGcMnYQjhkzMFN7vvCJ0WPiRI/k7zP/bQr+fepB3uOoKxZwweTRUc6OrNdh1m+sL7DPP63Z2M/BvtDIvnws3IiAOQ5OMC1NKCfGBFycQ6xzyEImuNakiErl4ppa2vD+/3oCX73nFZRE8C727VGf2LDZ7rMUkfnEVPv5o4u1/9t2t7KGKCqn75o3e53OQQjxJABfOcM5AO4SQjQLIZYBWAJgChGNANBPCPGsCGbh7QDOVc6ZGf7+I4DTiBPWVw32B1QsxL4B/zDsl4H4RSHED/r6R90ZwkyP2jfXbk8dlWsO+XoPZ56Ijup1Bf/FMmu/aTt0rj2f2TFmcC/UFQuOBTZu19RLFMg/Do5sZ+123bLFZo5rLsK9G4r41xPGxMejb7u+RN6TesNbsKzMd5JzsFxuz3o+e5mNmMgxZeZEmPakclu1HJO5tZ9avAFAnK+jQGSIlfh+ipFYyeifGfGji3SrOVv0AykiBdIi2XYtVKJzuJKIXgvFTnJbORKA6je+MiwbGf42y7VzhBCtALYCGFzBuJxI4xzM41d/5FB89Yz3AIgnq7o+v7UuKTpwobWthLMO3wcXTkk6FvnAd9EqicBj27tdR7NE/hObq2dbYIDay2F9FkxzHS8QeYsA5PjNnMK+0hUi0jgcTSFdBc4htf+U43biwNeXZq824vF5I/pt1B5TJgmNajkmF/Fggxbfo6LxzGyblCiqsnnc43lv3rWHLdfT1Nob6i4K6ZsAjAMwEcBqAD8Ly3nrTXu565wEiGg6Ec0lornr1yd39j5wPZ4io2ge1LshUgLLyUoUJyvv4Vj4grr6/5IA+jbWY9zQPlq577zxtSTyt1YKxRguaxUifyskpt6Zhw631k8Pce7VbQJZdtFmzSw6JXstG+eQLKtXHBZ9xEq2sS1anTRpTkMclZU/3miZ3zbiGZmyWvqzc1TJMnlfuNhiFM5J2V6hoN8Xm7VZwaJzWLE5PWbWJoU4qKJN35D6e51YiYMQYq0Qok0IUQLwawBTwkMrAahb4lEAVoXlo5hy7RwiqgPQHxYxlhDiZiHEZCHE5KFDh5Yz9FSRjbm49WooRmytnKyktGOTydr6KwkBxmzcWwFaySLtru8+nnUnrcJF0NLaLfeFkmtQ2u6bq6POA+k0Va3xcc9Z5QBUHZBdrKTXlVizLRBtHbpvP+/xxK4ENh2Cn3hMQiqkheBNue0iQUasFL5vqr+KrLV1dwuWrN8RjZ8MzsHm4xKJlYzxf+ymZ20Di7BFIQ7jhvaOfqv6Cxdn38VoQ3nEIdQhSJwHQFoy3QdgWmiBNBaB4nmOEGI1gO1EdFyoT7gYwL3KOZeEv88H8JioIf/lWoQDnQOwW7HW6VlfxMDQzHGfMEdtIQPnYDpCSSWazTPWhvT0pDqyL1quvv1Md4N+mTLnC5PCOVjGU0toYqWUC69Ecc2JbIRSz0rYLIOSytK7ph/nPR4uTeis+bHvhE1yZeUcZPgMyxhtz47lHMLOP3v7i0q/ccUVm3ZH7RUMbs/mxGizVvLBzuZ4XVDD02i6Dsf5Xc1aKdUukojuBHAKgCFEtBLADwCcQkQTEdyL5QAuAwAhxAIiugfAQgCtAK4QQsg7ejkCy6eeAB4KPwBwC4DfEdESBBzDtGpcmA1OnUNopXLG9f+Iyno0FDHtmP3Qp7EOHz5i36CQ4nbqODZAQTIYWKBEc61v3MStKxBa2oRXnPmgH896yrhsKFD6Ih68nHw914u4dpvdpyNtXC6k0Q+1VXOHrhoclKMwd/Uvq9/4yaMxaf+kBVgs5ktvw+xbhqju26MePeuLWiY0G7g+Pvf72LvYxr3Ynku0Zlpum9UjnCmTC/CmnfGO3bxmXeeQPlekWMk2Jb979sHYd0BPfJ7xsFavWRUFqmIldyrSrkUdUomDEOJCpvgWR/0ZAGYw5XMBHMaUNwG4IG0c1UKqWAnAys1xFNReDUUUC4RzJo6M65HC2qcsHuYOphTKSZOcg1teGtQXGTgHr2qaAtQGSjkOBERyT1uJ7dflUPa9v863HgMsnIN7KHpdXy844xx1B19NyOYO27c/hvfrkTgei4wcYqWwkjm2CybHEt2sumrbZdq5Fx5RjnXLcZ/sdhJ1TOx208pIEyt5THrJjdjETn171EUOkYkxqu0oY1Pbyq2VujCcYiWixCzlWH9CLJNOWzzMhb4kZLpRY1xKNW4xjTxPqyxW4pzgTAQe4e72Ytl0klMyTQJVpLH3tixgaZBEwbZG6qasOlROKe0u2u7zik28glO2myYycnEO8cZEx/HjYiM/uUi/td5tTZfm52BTIFs5pvDbbs3ELznq/DrugEF4+qpTtZhOcuE3/RMa64rROH02RH1DT/NtFrNUTuQbjVFpX5UYaDoRx4uUpwnt5PDhHFRwxKFQsLP2JpI6hyA72VwlC5YJMwwwoMpKnd2VDdfiT2SPKXNsqLAtWth1MwezCZeDFhArWSWaWtq8Q2IA5eU4CGzmg9/lxn56fU26P4urgtRNcYjDeuutacrj8Geat3uah7SPQl+vLzkHwRJm0zdDBo1Us+YdMWoARg7oqRlubAkXc3OBlQYhxYLfhkiG1Lb5LBAU0ZgBtf06jXNQdA6OIXC04d0tuzHbsXmS2NNaqiggZjnodsTBBc7Zq0cDzznIiZI2IbkEJAUiLDH8I9Iee120+FaXc1DHZUeSaB60T9/giJT5KlYqKs775dOZxmHiN08tjX7PWbYJB31vFp5ZsjH1vEw6B6Oyqtwsl3NI6zhVXCP4xTU4xI9NDV1RSOGckm3y5VnNafuFi68QFj2CwTLLCAN7mN23Suzke2T2Kw1CVCMRF/r0CCTpO13xprw4h+TYuPEdtd+A+Hzmjnzw50/i0pSQHABw5NUP48P/88/UetVEtyMO6ZyDh1iJ4omfRsx5nUNyHOnWShT0W22xkkVEoYJTSJ/0nsCUWIolbMRrqSNvgw9Ua7A5ywKiwKXftMFncUz6OZAi++fP+fCRgXFC1r1c5MRlLEDS/FR9HuYa9chXTtL6NMemLqaxKS9/B6QpZnw8FNsYE9qab4K58O9/6BD0aSxqYzRhipXkmJuZ3BeqfkLOK1PJLt9PUrg9F9LEXlInyEE9Rb2OVofOQYhAj2HrM42zltjd0oaFZfixVILuRxycOofkA6xneEx18UiLYMqJlbhdTppMnxC8qL5Z2nw3tHLn5iI6jComsaAWM3I2vkjzI7FBEi0fhbSZGzsQG7o5hygydSmbFYqsao7qouP2B6BngjPrTBjeF3UFsoqV1Gsl41vF7y6dgvu/cKJ2XDaVDOZnWyiT19ynsS5Vh2GKlaTsXuccgm81VIzUw33byOEtnfR8xUqc6a6KtpI7x4aEOi/3MB7cKv7xjfcDqCRYZ8foKrofcXDcZzN8xkePHsnWKyjmO28ykTdVqLbRQCxL/lS4GPiMCwgmtRkiIDiPP9FXPCl3Yq7qBMLSDTvMQg3VCOXAoZcShTbLO5IqVlLamv26nvdXI942Ra0SmjrLuGRVc3ym7F+A38Gqilc3t2e3GhrWt0d0X81+zdzor8o0ssY42V06QYvVxD0C0/RbzhsugKXGOYQX/dI7+njkIu0rVoqIl+V4m4tzCE/6+5dP0iQKrQxhi/4jiLIwqHdD2ZZvWTjlaqL7EQfHMTNPg83sjuC/+P7jTX3hkX4On5iyHwDg08ePSR0XABy930A2rIM9EYrfAGVGO6efQyEpHotfMl0+7Ls7khFu0yB1G1mRRSH93gP0UF4+C3DsaZttRxhzDvrAzB13qcSPXZ0DTvPjaJFOVlKZYTNNqCvKsFqP67pA6UFLTPNUuadgiQPDOZjo1aCIlUT6vHfdFyAgQml6llEDe2p1ND8HW9gO5t31RdozqRX8kgPsRXBNnqIRPsO2g/Ax7ZS4c84K/OdHj4j+R6asBcKbP/4g6gqE255Zzr7p9195IvYd0AOrtzbhgKG9MelHjyYmn82CwXceSmsW50LDvPLmDrLOopDm8P4Dh+Jti6mniUoZamv4B6Xl8yeN0o75LMCqaXGWMa7eujvqw+xT7S/UTCTOV0V8bgsz+w65qOzeY84hqGkaStjARstVGrTdN1NMy3EssqxgUfqq6BkppBH167MhsHIOpXSdA5G+Nqii49/8c5l2ztGRQtptaiuEsIrwfPLV1wI556DAXEhszs8u0840BJMv+N1QV0ChQNaop8P7NWJwn0YcNrI/ejXUBelJjYrmSzp6UE8AbsczFV4J4bkdbPgtdSCcKavthe7dWOdNvMqW04bfPslnzCqK1BACAiMH9EycIxe5Hc2t+K+/v5E4bsP/PLYk6kPrU1lU121vCoPoJa9dDYKo3hozd4W8ppcNMQygc8TmOD7xm+ed43ftvAsFRYdhmVHm8xBC4JUVW7Q86dw4bfNAGiyYMZNsHKehf0/AqZCWuhDjeKsjeNi3zzo4PMfRKdySiI7iHLofcXA8hGSSF9vCkjTtNAO09W2sw7FjB2nelvKFMnMy2HoxLTs4sZK5AF/7sSMwckBPNrk9AHzh1PHafzk+NaLnPobnru1lUfvnnPRs6SmLBT/5cNCe8ttZTxj/g28fh6akKWvMGQrBLzSSONwwewl+9eTSxHEVQ/owHrcMQQKCRXXmM8sByJwFOjSRl3INaiC4oD37M+NuiS8NdqliCKRxQFyTJuewYvNunPvLp/GD+xYk+lA3Z7YFuGcoVjLDYowamCTogO6HwUHdvAVjUURGFqmCzdsaiK9X9Z3h4Hofcs6h3eCQrZM+aWybTs60857L3puot0//HpEZGxBPXG7B4uZGgpNhQgSY1kutbYHM1PYy/ctkPY+E1Dl86a5X2PoAT7zkJUgiJF8CdTi7LQ5YvnFwgGwmuZy818dayXzOuhMcv5jW1/nrWHpafGX0ccb9yTSx3KKgbhBcmc9cDJN6Xpr1ToPFI4zb6RLp98rc8Q7sVZ+Y01t3JZ3RBvUOfCU4zmFo30atbmzKqtezca0REbZyDvqcYYlgynWy/aboHGzHNu5oxud+9yJ7rNbodsSBewZy91xXLBg7Sr4NzrTTxJ62UoITWRqGMuBECtxOxmTBObHSu5t1M8ytu1tQIErsZvo28uoln10JqxgNr0ISoXomGqfNO9fXJh1Iv8+Xnjg27NdcLOXOP33x5hZq3QkueQPkouljamtbYLj/Am5RmC2FqVnmIoq6yNG9k37oy+9jy7n62qKKpOXTpP0HJhTS5qL4o3MOxWUnBwmBOIX0Ke/RQ/X3tIiVbJIe0zrLREkINNYp+TWUYxHnT3qIDZ/ti2nsYsI2TWe/vg5vWLJH1hrdjzgwZdd89HC8+v0PoL6oP0Aba+6jkG5uLWnRPYEgLzUArN+hRyJVZdwqkpxD8mX64p0vJ84hSuocpOcqAPz3vxwZ/W5iInd+c+qBRr/6OM6fNCp6yaSZnUyIpHbLibZ+ddEklvOy5aiW19vU0oanlyTFLAN71Uf19Exgwbftpbvx8SXRb3Md1UU3vPWKJIYyto+KA4frYiifxTwyPRXCaiUX1It3xXobeoO2JiYM66OJXNI4BzMplQS3MS+QbnVlWrgViJIKaaOdTx23fyyKYRTSZrcygkEhIg6yXRvn4FaYt5UERg/qFcWp0sVKsg19u+DD3KZxDrZDu5g85O2F7kccmIfQWF9E/171WkA9wM6aBw/aozODw9hp3UnzRMvcQaoZ6CRMj9Gph+7Dcg7qYrH/4F7Rb45z+OjRo/DE109RL0NvSymT/TQYYqVVW3azPiBnhuMz79/llvSRst73752P55clHQ5J2TFyBNvmNHjDYw7iUNAXBUKs6JeIiUPyFTrlQH13yy1UNtv1knD7jBQLhYjwq9dr3k8bcXjkqydrBC1d6GYBa61Ezp05Z+qqPp+GYkHjPjixkjn/TbGSJCJWsVI0PrvOAYjNm9Vav5DGBETa/fV1vnNVs7Vhln7jD6+m9lUtdEPi4BDfGIu0jTWXKQpdGNKnIbHjlhMgsXCDFxWYCukg8X3w++2NO7F55x4tvDiAyPrJpiQjAibtPwh///JJOP3gYWhiwhYAOgFxrSBSrBRzDgJNLW04/prH2Jj4wRiDen9+KU4rnhb9c7HFxFKe99eX39WV1ymyZxWcQlrzVFbuu0Tk6csM+5gxgyJxV3ANyTqmp7AaxsJFHOqLhLaS9GqPy22cSBpUK6mFq/zDM9g4B4ldzcmNEHtdSjsmodXESpILMfqNxEqGQUT5OodQkGhwVO9u2R0R9KCrJOECgMGWcN9pqXZ9dWt/eHFlu3lMdz/iwJTJiUVGBavOAe5dwA0XHoV7rzwxIVaSPxO7dUMR3rexDv96wpjkOJVF6+SfPoGTf/q4dXymQtoc74H79EVjfTEhF+ZgLjREiG6OVMbJxU4AuMWw9U6ML+QcvqbsgtSELvq43S+CXD/+/U/z2MXST+fAjw8InguBNMMCICaGnOjx9EOG4/CR/eOxKM/25FBmPqyvbhGmLlpuzoGiZ6vJw02xkrUFHTFJEjjrhqfS6xuKX/OYnCt72pLz6j3D+ybeKXXcDXXmZiidc5DnmGIl62KbonOQRMW0ajrhmsfiJgzO4dB942fdXxHfqqgrkNPTOUvA1ZfesUd0ria6H3HgduiSOFAWnYMdZxw8HCMH9EywknLCJuLXGOe3lEqpMZ0Ae9CuAhFaPGZbXcGeIIWL06NCxsOXduYNoahCCGE1YY3HF9RT741tQUy7DPU+caICn5fOJH5aVFZhsVayxXUOoYsd4t+NdQXWNFYVx7g5h0L0bF9Uwr6bi5I/5xD267k4OU1ZFUUtl6bzSsOMGtDvjUkcuNza5vOU766smipWgvuCpZgr7b6o91cV/9qIUp8e9awvh0SWMDibdvLhxquN7kccmAVE5Rw0WbNT5yAwx5CBy7SPchdtKq73GxSIaj5w6D7cwCK0tgnWYkWKY9JQINLivdiuxTdBSoJzAGHC8EBReeToYNek6hzShsjFwfnwEfvify48Cjd98mitPO16VTPRWxWORVqg+YmVkuOLFkHwysQ04qBC3yDwC3eskHYTh7pCIFbasmsPfvTAQgDAx1TsaWAAACAASURBVCePxonjh+gVPVkHTxoSQVh28LJLeVs4sSZ3XWo7Sc4hSPyj1jN7rTOU14EivGTdpadaK0nOIUVxfewBsV+T+Xw59OtR5yQOtvO4++jj2FkNpM5wIrqViNYR0XylbBARPUJEi8PvgcqxbxHREiJ6g4jOVMonEdG88NgNFG5NiaiRiO4Oy58nojHVvUQDLOcQighMnYOlCbl43GqIT27/tyl44AsnRhPWVFzvP7gXxg/rg4+E4Z6jfpR+hRBoLQk2Y5bLP+DA4X0x+2snR+25vDbV6zPb+9ARI6LfF04ZjTs/exy7gHxiyn546pvvx4xzD8eJ44fgspMPAJj2OHBEqVAgfPjIfTFqYC+tPG1tV01J/+vhN6PfvUPTXb9gbMn/auRTYkIfZHlB1Q2HEIL1vJetlYSI5OjfPfvgRL1imEtc5T7POmJEQm+SdfmohhS7QBSNwzb/BvYKiLbUaamPx9Q5EBG+cWbg+W0TK8WcQyxWmvCdhzD/XV5/kqZzkGtxmuK6X4+YU1OV6rb51rdHHXY4LI9s57WkxJyqJXy2P7cBmGqUXQVgthBiAoDZ4X8Q0SEApgE4NDznRiKSW7ubAEwHMCH8yDYvBbBZCDEewPUAri33YnyQpnPQ5NaWNuTiYT7s3o11OEyRNcNQNDe1lNDb4hBlKtJYzsGx058ydlBkdkhEaDE0qJw4gBib+Y8fEzvJ/edHj8B7xw1mbfKJCKMH9cLA3g34/WeOxfBQhi5E+kLjMuvr1ajfnzSdQQ/GlFSFSWz48SQV0irnAGa8aTtu0+ZfwhaeQRVjFAtBGtnPvO+ARL36YgFtJT0OD7eAmDoN6zhTQmybkGu+TecgLYzUnXs/RV9zwNA++Mvnj8cPPnxIol+TcwCUmEmywOg29kCW43NfR6yAt4lxJOcQdudxWzi9oomGYsHpLGclDswLXw1C7oNU4iCEeBKAaUN4DoCZ4e+ZAM5Vyu8SQjQLIZYBWAJgChGNANBPCPGsCJ7K7cY5sq0/AjiNzLe1iuCeQVHZfXhZDYS6hO0pNshqPBUhBNZvb9aS10TNKboJaabIJVcPrGbSx7do9TYsXZ+eZCeW/cdtcrsSr8ehKCp9xEq2OsMMD1jX9R42sh97P1WceejwSDRhA0f8Sgp1IAA/OuewiLDv279HdE9st+aUA4fiiFH9ceL4Idqcsqf/jBWgrvg+yzbsxGOvr9MC5HFz9vqPT+QHxnfrveBISymbh3SBESv9/Ssn4Y7PHhv9P2q/gWgoFsP2FOJg0bMBdnGWfE8ik+aU9yNWwPOoL+rP1ee+qH3a1o/6YsEZZmP1lia2nLueaudMsaFcncNwIcRqAAi/h4XlIwGsUOqtDMtGhr/Ncu0cIUQrgK0A9BjKVQSvtAzLDAWySxklhEAz40CmQhUr/fLxJVi4ehvLWhLiSSgnUD0je3DFJEqbMHKyq2uO5ETUF5RzwEqIXVj9Rfw7zUHQFb64bw9dsSqHtojJgnX39Peyu83PKGakRIRjxqQQh8T4TJ0D4YTxQzDryydFbXJL99mHj8DiGR8EEIgd7rvyRIwf1idhlMBJBWRZS5uw6iUARPNHdQjk1sMBvXirGRO+O+RYhxPM0Wseeh1A4ED6vglDwmtQFdLxQjiif08cP07XicQ7/biM25io0VYBRvcTvifFiIi4r4NTNG/auSdS6H/p9PcE9TJwVCXj+Ur87tIp8TjrCqySXuL7985ny9n3pJ1Yh2orpLkZLRzlrnOSjRNNJ6K5RDR3/fr1ZQ2Qu9dthhIqHgT/FArhoi/P40RFsj05uR6ctwYAn9hcFe+Ygez0fu3EQS01dRo2SAW36k3Ncw7pbanOaLbJ+4ljgxwW3hwa4pfD9Mfo26MOvRvr2EV0pBF0zYeT0f6H92XBqq1YtmFnYgEtFCyLN/GKalPswJ0r58XDC9agJOw5BSRU+bxNxOMDM02oDX/4XBA7rFgAdiobnGlT9ovuSyAOk8QhbZUOvtoU8ecLy5MmmqouoaWtBHPzLTkHuZcy74Xpd2Am+/nTiytx9I8ewdbdLfj08WPQp5FPguSCnkM6Ln/fhNgZssHgHEolgR8oBMHWDycm6+ycw9pQVITwW2a0WQlAjew2CsCqsHwUU66dQ0R1APojKcYCAAghbhZCTBZCTB46dChXJRXcbY0YB9J3CjYWtVgooE2I6MEddwDP6BRCRfO1s16Pdr6D+zQm6gWcQ9BWSxSriBfv2DjTwxRb6349k3GUeOuagHNQ5cNmxNjgOtJXGnWHx921i47bHz857/CgV0N3wileJdJMCW1ENAs4a6WSEDj7hn9qx+XzLih27lpwQWasBcPKwcY5SO5mWN9GKwEBgMtOCvQQ6kLDWWSlp92R9cKhM2P/SriLBhCFLedCwcdyep5z4CDr+YaWLwmBCd95CI8uWquV1ymWgYC+mH74yH3x4vfO0BuK5mlQ74k3400mx4Vm1znYxEp61IJ3Nu3CzGffjodled4s49DJOYf7AFwS/r4EwL1K+bTQAmksAsXznFD0tJ2Ijgv1CRcb58i2zgfwmKihCyDXtIz0qIp3ALtyq1gIXkhbvBeJIMCcwE1PvBWVDe+bJA7qeyzjEbHWSgX75LtwSkyTuYXl1k8fg8+fMk7LTSB1IqpliRkXyBieFXIxsmXj0sMd63W4qKXqeWu2JuWxkihwNM+8/PT83PoJJvGSR0sKcZCL2m3PLNfGyo1F1znwSV2kdVWxWECpxBMQAPjksfsD0PMWV8Y5BN/cHfrS6ROi39EOviQSC7q6uYp0DikBHaPFPIXDUE18OUixkhqbSoLZXyXui2ryrXJjBdeNMWDqlNhxmpyDaeBgaZsj/O1EG7xMWe8E8CyAA4loJRFdCuAaAGcQ0WIAZ4T/IYRYAOAeAAsBzAJwhRBCbq0uB/AbBErqtwA8FJbfAmAwES0B8FWElk+1gnpjDxjaGy9853Ts0z+w7FAVw4DdRr6uUNCIg29/QCB7ZOsJYMWmXZjx4KKwj2xiJXXB4YjD2CG98c2pByXqlYT+gvRmorcmFzO76MmWU1m9Vb7+FfI8Th77k/MOi9oyYUaDTZVDG4/EJF6mUpQLHGjrR3KPEoE+ga8HBIuvS+cgi10LDeBvymqz5zcDIUpi3FZKvheS+BLF497CiE+1fsMBpnEOsY4gWe/I0QMiTtf0kFbLtPbkmAXw4GurtXhd6tyXp7pEOH/+/PEAgjzyUtRmq19XDHQOsWLdGJflgXHttZdYKTVNqBDiQsuh0yz1ZwCYwZTPBXAYU94E4IK0cVQNyn2tK5AWH56gO63ZbLWLBUJbSURiJ9tu3hQpAG6F75V3vhwldOetlShS4DXWFaIwHIfu2y/ZrwekYjgtgbmfziH4tomVVBGdqZB2iUCCgHpJSDEMJ1ba3pTNg9RswSRe5nEuEivAcyhmsMTAz4E3NgCChdelc+CIA/f4fG3hbYvvjFAEKKGaipoLuvxbIIr6/fmji539FjwWX9mm2oeKDx62j1IvHJ86zxyWdwICV9yhx/56Y00cGttHE3P0fjEB3bxrD3o31llF0Q3FWBfTUGfKKByxxTjOoZOLlbos9GQ+pjjBl3MgtJZKkdjJtvkxRQqA3VRUCKGx4nXcAqLsWNWhTz9Jt4f3dd6VYq80hzlbYhoVHFuv4itnxPJrzr/CBifhBf9SmaekdZX0c9Cfm7Q1Hze0D654/zj86qJJqdxR3LY+HquHdJTJTIQEhF8sOIUvL1bKpnNIKw9CYwSLlSkKiuYkeK6Ibd9T5xBzGEkKqF62ev8kXBsx7vmploRp/hAmzKjEJqTOTxJ187JHWzLXcaLtPPBejaBNKI44KP9tE7cQcg4pG+6EDoPrU+1XpQecQloVK6kLtklIssTVESJdeejFOYTfgc4hLn/866dg/tVnRqK7LOOT7XEoRDoHhjiY/1PepWQTOudw/6uB7YT02B09qBe7IHP9mBF3bVxBvEN2i5UiRa7yzKqxWPi0UCwQ2oSIHCyv/djhYf/B8WBBzUaU0kSz8tmkbWA43QTPOQTfXGufV8LGq/V8Mr2VQjGVzfdJEgd5Heb8mcDo+mS7ErPCxEudRuewt0GfPOZR/UW2KaTrpFgpPG57WIVCcofM7awISRNHjnMoEClKcGWHZFT13TVKYpNmdmiOmWtdfTnVsQ3oWR+ZB9rac8EmdpBt+KZcdcHkjGw6hbQ+uHMCnYO6y+fHLHe5bSW7RZNsD9AtzNI2KU5YxDs2AlZSdG19GgPfABEd95eHx0QujXMI6nGiTy6lr26WzbTniJl0lCImUjmM1Vt3JysbaBNJMZUKqWuU12EyQjYiqYtj7WOvBbofcVB+m2xn8DeuYbOkkOk65Y7bnnUqg1gJQluiihznUAgWl0Wrt2l2/+Zi4ytWkspSjmU3x5cGVYGXtnuziUw4lARPjKKQJ8xBU/afaq1ktOHy4I7bTKKRSRkaiBaV8ywLv2qnb/eijsu3KLmX00JGuCDfAZ90sVLXJhf0oiHKIWXzkobIWilt7oXfHHerEnU5p25+MrYMZMVKEUegjzNhAKLoJlyXFGUiNCr97Yt6etVY5xBch3mfzECZErpuLllWS3Q/4sBYoUT/oVNlm1hJTqRUdpOSVJ5ldcN+tfEwXUvP7E/95vlEueu/DTHn4PeCRv857id6mXT4ONXZhuvawctrZE/NyjmYxMEj+q05rlEDe+LH5x6eqGcmebGFxpBl23a34C8vr0zlHDYoqWZ9QqrY0BiGHzGT8/TvmUxaU6RArGTG/5LdEyXH8sJ3Tmf79bVWivJDGO/a6EE9ccnx+yfqzV60LipzbWrS3svon3CLvr73oSBGlFnnEMNIxNQ5mLHPbPdBfTVt71it0P2Ig/Kb2yyox227GjmR9kScA98XgRK7OteyrY5ng5FnOjiui7MkzAXYWxlJkgPyY+3T2wsWTfVFsZnkqrDdP5fprptz0PH5U+I8AtxCyvs5pBAH4/+fLj8+CjGht22EVyjxY5a73F89uRRNLSWs3ZZ8/nJsALTwzzKBUDmQtv07DVn5UMYfpxDm/5CcZsTdKgppc76bSZIkfExF1XrqHJ0ydhCe+uap6NUQt81ZP2Xx9je5jIKyELvGGFmZKXW4GFEmcTCJiW2DxqUQyBXSNYJ6X08wYuCbOaRta6Zc8GRVV5gN33wCAvqi+WEmBEYhFGeZTZq7HleCenN8wodzSOgc+PalOEYlbPwuWf9vJqqReS9c/hCufAomAVDb93EY8xErmY/cescNq5e2Ep8G1FfUFitog2e24OozMWZIb69zOUji4AonLSEV0q0G5yBvBSdWsnOFfjoHWe/1NXFsLa5JzoqLJQ6WmEnJfO3Bd8nY7NjMxtU5d/PFkxL9yvm6p1WE44zfuUG9GxK+ORIq0VH1IO2BVD+HvQ/Bnb35okk47eDh2pGEtZJl0SxyAfkZ8OIXtmZCIc0lrueiqALcrsdreJE8PO0FfW7pxsR5bHsIXiaVOPiEtzjrcD350b1XnIA125pw7i+f9pCv+usvgOBlMye9KxOcDYkNQYoYKBAbBuIEzvs97tfZraKg1eX+5UJGtTU5B358QfgWm86Bu29pznxpmydZ78HXVjvb9C3jOBEA2H+IHtpdXYjlGH910SScaSTq4jgHM3gkEFsfSqKwWcnm1quhqIdhUSBvz79MHqVwMznnUBPIZzh6UK+kOAbIpHMw2zThHd+GAMjY0FEZP9nbRNID2aRV/rtQ8uIcXn5nS/T7vQcMxtfOONDeHtJ3b+pLO0IJfy0xsHcDDh7RL9rBuxghH7GSCk5SaDbh48GdtEKzLIJGoLfWNoF6y/PxWehjqxyZ7L4y4hCJlSyLk4piAZq1ktwNy3taIMJ7DJPMVJPcVOIQ1JsydpBSxrXHjzfRXvhtzvlbP32M0W/wrYqVOI48Vqy7xUpyQ9BaKuHFtzdrlk29GopWzqFUEhg3tDeuO//IaExfuftVNkpxtdH9iEP4bVOq+gTeMxdfu8zcb0ySKKXVD0wJGQsoh0L65x+fiDs+cyw4+OocVPzko4ejvyUc9J62El5buSWWSVsduZQxOPqSTlcucOe7dv1/efndZBtGI8s27MQ7m3Y5+02EP7DUizmH4ITWNhfn4EMcdHFMpSkjpYllWt7voK8CWlWdQ9j3N6ceiP4963HA0N4YNbCXpgNJU6yX4+fgciJUwfqdMAruUw8alkiOJE3J97SWnJGSI+5JoTWcYCHWiQDzVm7RjvVsqMNOy/1XxZDqZvOF5Wxs0qqi+xEHaVnBvM7SVE/Cm3Ow7VU5ttbRb9riINl2c1zmpFX/vnfcYBxv5hc26sld1L1XnMDWU1OHpi1GTy/ZGL3I3A4K0F9kl7Kbyzdhoo9F4WnDt/8yL8HCm2N4ZYX+8nIwn7ntOhaFsvJFq4PQDC0lwTo4AtmIgzSGyGIWzCEyZVVMo396/hF83wVdBi/nwikHDsOrP/hApCCu83q+knNIs5TTrzdokxkbU/gbI41v3KvOOfRgTJBl2PcVm3bFYjOWOITtKdfBcQHyPpcYnVND0W4CrFq3qZdYKcfog+5HHJQgYSbqiqSl5bM9MPPh2sVKfli9tQl/eHFlaj1pvZOQ65oKaeW/S1Rhmgly1jYA8K8njLX2xSFKWGRZBNUFI01kVBICjyrmiSaG9e2RyKeRpqY4+Puz3BUMqKGrbX3YLuPvC4IQ07MWBDLz1rYS6+AI+ImVVFl9Vn3DF08dnyiTbaiL7xAucjBCU1YlKqutf5clmUTMObjHbIrRgnY58U7yXM7UXJ6qRrXlUs3KHNG79rTi7heC/GW+YiWZH1vvNyQOIjl+NcqvCRtxqJRj9EH3Iw4R55BEfaGgKaHTOAcpr/3xuYl4ggCyU/e01J7S+c4kWklnPrIe0+qF3xt2BgpkLtgfoHMAPpZQ0kGPi48P6DmFXfco8DBPPoPnvqXHfDxy9ADtf7VN/Y7ab0CizOzBpaQHYjFUa5uw3mef970S4tCDCY3O+RFYRWShtdKNjy8BwHvxA8kcC2xb0aLqEYPGGB/rROj5rsl3Q+UcRjFxjdQotPfMDTZu3OXKerK9b5x5IJu/WxUvms+tGJoIc3h00bpI5KReY6Ucow+6H3EIv22cg/qMbBNXPlyBIEexLS6Kv7VSAB+TUulBq4KztonGalmIgHiCXTfrDQD2l11d5H0MteRktpmbDu8Xvzzu3WVSMVwgaHGaZL1aYcKwPjiJ8SMwCZDLvBeI9SAtpZL1vvi88AVPws+Bqy/ncnNrLAqxiYKKRGhrE3h15Vbt3GSbMseCfSyyC3UDpoovJaIQ4IpHONcsN5bLjICUKlRis09/jjgE36oVEnv/DB2Q1XRXsWoy25EmwiZWbQnCdry9cVei7VysVAPEL3Xy5sqXVi6Gapo/FREr3moXEfA9pIwt5biMbZMoN4agiZVcnINxyKYjUMVDPguSFE/N/Lcp7HE2qQoDzjSSW7jMomryDYeP7M+WJ95lt2g9qt/aJqwiAZ97qxGHFGJiy8mgtxd8N3twDsWCns3MJjaU1+ey1uPEMVx6W1lv3Xa3eTR36847emSyMKyrXofLUVN931z+KbI92zNUQ48vWb9DO2bqOiWajBz16v2sxCveF92OOEiwnIOy6J99+Ah864MHseeqk8kp02eOcf4LEnIh7GXJjGazg3d5SPvoHCRs4g51p+tqb/SgYAfW0lbCeUeNTJg1cv26ljczI5utf5NgZJEqcZ7AqpjQnr7RtOfn2x8/tA+AYM6I0JjAaq2UwZQVSCcOR++vEwfe7j8Ixe0TW6lApOkmKtE5cJwD99h8uQTz2r58+gQ2q6FssyXlOtT8GlEfjnrS4s9uuht8v/T2Ztz85FK9DeKJg1midu+bXrUSdDvi4NI5qC/t4aP6W19i1Qkuq2LoS4xyU0Kyzi6ZL2emaTqx+S4g5iGbuEMXK9nbO++oIE14S6uwciFBvwpxcIqVkotwD4tzoIosTkJcHP0RitjKdhkfmzRK+28jIv/7qcBbdlDvhmgBtm0Q/HQO/pwDF22WQ7FAOudgqddWEnhq8Ybov1XnEHbk4gqJ4Rz4qLb2BdlWb0ifBnz59Pc4gxeqCmluUxRxNilipdhfoxS2zXYZ1VvBmEjbOAcXd3rkaJ6jrSa6H3GIrJU4sVJc5lr0vTkHo49zJu6bCF+dBQUiVi9h5mBWJ7FbIa0fs4kJfBXSsYiiDfV1fuKsNFNWW75irT3jfxbOgata58Ep9e1Rr3MYlvYH9q6PxpRGHHx1CLKaj+mz1r6F0rW0iSgDIWAXB72xdrv230aEixFxSB+bThyYikwbPMGIf9sy9alN7lF0LG7/BbdYSZa1pnIOQbl5iaceNMxKHEwzX7XtQ/fNiUPV4eIcvE1AlWNcgDwJc7F17aa1Mdr6JWCnEj3zI0fui6e++X6MC0UXcb24X9dO35zHtoVazXvtQwybWkpoKNpfUF2xZq0WiDEMcQcX1z8RyM/eZALcguRnp+/HAakhD6TSV4asSNRV+v32WbxIU20zjWtNhHLPSHzSYMbEkoh0Dl7WSorTKeu0lixLEy1yodPNNne3uHUO0aLP5FPQ6hnWT7ZHYlNN3nLJ5MgKzERLq2n00L6oiDgQ0XIimkdErxDR3LBsEBE9QkSLw++BSv1vEdESInqDiM5UyieF7SwhohvINwxoGYiIA9NDfcFvEVQn0+NvrPeqd8L4wfju2YdkGGkSxQJht6GkGj0oaVOdJXyGD1Qil6ZABoCm1jarGSug70xdSktTcQgA/3biWLaeCs400QaOkPgq9FVab7sOeXpJxI5mdrESRedMP2kcWweA02OX65sbr/M8jzo/OudQLSqq3k+B7Z/rQ9c5JJ8Gd69c4p3gnDTOgbBLiSXFxUorGIs+kOTQgXjRb0mJdcW9NxOG9QERoWgxNDE3QjVcFllUg3N4vxBiohBicvj/KgCzhRATAMwO/4OIDgEwDcChAKYCuJGI5N2+CcB0ABPCz9QqjItFbKvETDBPzsHXvlxl47/3oUOsYSdM2Fo3o166OAwf+NZr8FRIx3l37T4OgL6LkuZ6/Ph0zuH+K0/EN89MxnXatHMPgEC5fOunJ+Myx8KaALNj8xUb+jjzqdm7fv7oYgBxDgUTsTjG78HYDAi48XH/K4Er+KSPn4McixojiOMcGuuKmHbMaK2MVQxrxCFlWSPdi5njHLicLZyhSFLn4E8crg090YOc9Azn0GaKldima4ZaiJXOATAz/D0TwLlK+V1CiGYhxDIASwBMIaIRAPoJIZ4VgUbqduWcqiNKhs7KMuPfrh2j7+JR77kD9cVGQ4RlT6HpyTl4zjZ1wqeJgST6OcJaqITZlnM36FffPR0+qj/78p38nmEAgnt86kHDMzmHpXEOnBgrquepWAeCZ/WnlwJnqjSFtO/w08VK+n/vOehRzcWFZNE5qPAJtwLw16EWceEwtLrQY0m5TFRV4sBxDlmtlVSlu7xemSfDhEkcfAN5VguVEgcB4GEiepGIpodlw4UQqwEg/B4Wlo8EsEI5d2VYNjL8bZYnQETTiWguEc1dv94uzkkbsA2+NuTqZLUpcQFdsZnFo/Ez7+Odd2QoBonzjx7F1vNe9L1HpJzjIVYCgP0H23MM+HM2SZ0DB3mby6G/PZldvKoTuOP5d+zj8xArcYuFVSHtIasHgNMOCl4pV04LbkxpnIbtPA5OzsHjOsxjl58yDh84ZDhb15wvaalnhzIeynrfBufA3Bf5LF56Z3NU1ouZK3EgxDSdQ8hBMufKDHsmJHGQ4TionTXElXZ3ghDiaAAfBHAFEZ3kqMvdNuEoTxYKcbMQYrIQYvLQoWVmv3LoHNQyX52D6wX1ldWrsVj+37SJ+MoZdnNXiZs+eTTef9Aw9pjv4lttGaZ6ja7dm/cGVuEczjyUXziCeulijBOZ4IP7DeqF/7nwqEQ5RzA4+Cmkg291Z2gTuRWi63D3K8NgpD2/xKLqeeOH9+NjK6nw4RxcMKtcfso466bG5BRYBbJhyuoCQRfPcia5sj1Vp8iZtpuK6ywhymW3RUvgPZkY6KZPTgrH2YU4ByHEqvB7HYC/AJgCYG0oKkL4LaOmrQSgCg9HAVgVlo9iymsClymrL+egHnNZIKmTzsXS/1aJJX/QPv2s9VTZqysaqa9/jHq9tkicWaBeotNz3FfspXAOZpIVs14aPvO+sYmyq885FMP6JXeZnPggrV/bCNSAa9x5XHtp1yM5j7SY/uZiO3F0MkaUibumH4cDDOs3Dj6cgyvGVdIHw5/LcHl6A+kcVdGQ8bN+DkYT32B0XUD8Xst5aiNwsrhFixGlcA4OsVJDaBZuMwCoFcomDkTUm4j6yt8APgBgPoD7AFwSVrsEwL3h7/sATCOiRiIai0DxPCcUPW0nouNCK6WLlXOqDpcpqy9xUBc+10RUJ50rJpHenr1fNU6+LYIqADR5JG4B9BfKjFdUDtT757oO3/1PUSEONodEwE+sxD1Pm17ElziobdoVkcH36q2x4t02TF+FdFaT1NGDemL5NWezlm0mbF7FWcYgCYdrk2KKSFyb4mRI+mRlTYSbcn9Mzo1TNLtypGjlYVPShyUtHLsWelz2xfg5tJUEvnDny2GbHeNxUAkpGg7gL+FLUQfgDiHELCJ6AcA9RHQpgHcAXAAAQogFRHQPgIUAWgFcIYSQq9jlAG4D0BPAQ+GnJnAF3tN3vq7JH/92WeVoMYmcOgz1HNciqLLOdtbfV2yj+UNUQcSkKfQ9nQP/TQkHboIo3pHZsqep7bmugVvMbCaPqljJdVt8NhOSaMxftTVRlmwv+PbJ5+yDchSYrkCNWj3nZifklhzUIRks0o9TB4A5yzcm6ujvmn1sZl2AFyN6WyQaimsbxyw5iicUMZWcBzLasoqNO2Pjky5HHIQQSwEccQ8MMAAAEyFJREFUyZRvBHBa8gxACDEDwAymfC4APu51leFK9qPOB/dk9dvpqxPF1Z4vJ6JO2IG97JyDtxOYMqRqqB90Rb2fzuG4AwZZ66liJR+TUudCzpxvUwyrY3dtEvx1O7rFLBfPyTZGDr7PtxwRdb1P2F2kmSoHHTc7LL3Mobnus/lc57+bFKdp8b8ycg6cU2LSDJhvS/bVFDo42jkHe1kg5tLvlYzEGrTZMcSh+3lIO5L9qBPCZdnha8pa56mQLmqLql8918vpG7FR7akapra+90+9Fx9w6RIKCufgjNWUbNcE95xsnsoqXPoR390lQScOY4fwlly+z8A3PEjsSe1+zT9x7H7Rb1+LJpej2exFgVWdy9JMfVY3XzTJLTb0uC/q/Fi7zR61AEjqCX0UvbYakhBKqzZrOHaHjjOItqwfU/VJ6rv+nuHp+qBqoX01HJ0AvjoH34XG9aL6RjNVj7ll634vrq9CWjOrq4IlhNpE2oLkgyLFAeF8iI3rCrKYlGpw3EtvfxIir92+b3tyg7Nfig5BNufacADAJ6bsFy1uvhYxLmu0lZvtjo3m2IB0gmTO+08qxIyrs2D11sRxFQ0KYfvcyeOc+rs0JAiX5VK4R6uGQTFNWdW87qpO5MEvvi9T7LBK0A05hxAONg9wL27qRLzKEtY7aEMlNvYx+Vo/+RMHv9lTSokbkxVqG05xTAbnO6nAcz0P2ZxbP5As81E8uyK8+l+HVzXMyZg0/gtM2k8VvtZP6mFfSzIX52DLgVFun+bxUy0m3BK96t17XrkTb6gr4KoPHlSRSbc5B8wIyRJ9G5PREWS3hVAhrVp3Sb+JB75worbJrC8WnFKDaqLbcQ6S7PI6h7jMtXCoi/RpB9vt79WH6lpI6jzFSr67cW/ioJlXuut+c+qBiUBgJtRdlGs36PsqFkgVK/noHLKJgPr2SA9nMri3XfG/dmtT6vlyXFVNXRr56rjvpLxnaZuKcjYGLs7h36cehAfnrfbu8/hxg511k2lw3WPr1egm+tKZrRqiVBO27JE9G4ro26MO25uSxgZyHCUByGkuTW0ntKMYyUS35RzSrJX697TTTV/WW10g3aZ/fjoMX72Ur85BZWXTkr18/pTx+NLpE5x1fP0csohjJHysn7KIlW765NHOvp/65vtT+/VNuEJI5v3mMNlIzmNDHB/MjThdZzaxjQ3Hjo2NB1xRd304siyB8sx5n0YU06If7zsgCMxoBrF0wdZlb+NaWyycAwD0MzYjck7IdUKdI9LHwddAoBbofsTBoXNQJ934YXZ7b18TQV9rJR97+aCeL+fgVQ1tijXJ5jB4XSXQX/jKPaR9rZ/koSwK6Q8ensxXrGJYv0YM6dOA733oYGudj03i01CasOXhMHHx8WO82nPFB1MRBcBL5Ry8usXPp02Mfvd27M59QtPLPs+ZmEwNasJ0/kojdmnTv59j46fispP5MDYq6ooFfHxy7JzqMjE3xUGmV7VKHFrbBApUHV1gueh2YqX4xUredF/W31fmV+/pBOfL3vrW8xUrqZucSZ67VhfUa3RZAvn7YcS/3WKq4Ni2phZrnSzB+IBgNzv3u2c46/jm51DFYz8651BrPd8RyueWdk1y/qVduq/MXSXQLpGcK9GT2udL3zsDfR2e/hJypy9hu55fXTQJl/3uxaqJ8A4ZYY9WoI1HGdB7HSIyc8MUh14P/4fjfmThWuxobq2KUUcl6H7EIfzm5pfvnOrZUMQL3zkdA1NCcKvtOTOoZXS4SYNUCH41JUaTFD9deuJYNoxEVqiT2cU5+IqV1ikmia4XZWFo9rfaoQOoxQbMd1FVFevHMzGe4np+/e4MneTSwilITjONiHmHCPc0pfYlmr5WQiaXYia3klDDo1cDvtchq6Up4uU70VhXQHNrCcNCfxeVc3ht5RZ89va5AOy55NsL3Y84OALv+e64Absj0/9v71xjraiuAPwtLu/nlYdeAeECRRSviHLlUXlYhQpogAZrbRWomCKtRmn/KK3aNNRUTWvqo4klKQRbrX2n2FoNmqrR+gLFByKCShSKVaMggqLI6o/Zwzmcx8ycw5wzM9z1JSd37r777LvXrHNm7bX32mvnk7+xJY5ooLCEYj7jhvbhueumhX75/JFKpaPqchzqKR3+gvQb7+85eB20zhO2XgLBc8G1RiTXx6AHju8BzWgpv/cDcsahcL67EH9XeZinG1X9lewannVKf+acGj5lFAV/YNC9U3vWXz+tbLi337swTUfeJ5In7zdOLw6f9fEHfvkJNEvh6+GyKcO46uzhB++n/9n+4oCy65Oc9xtlnaqWtD3j4H6WWjeIWxlD+uZGOHHMHfbr0Ymxzb0DdxX7RBmV+fLGFbQR1Q2uxlAGTStFGeBFSf1dK4RcTp3A6TH3p7CH1xVnfYkX71pHy8Dgkar/8AnbYRtVH5E3/YlwW4lst9XiJ55T1cB9QLn7F+17fGVIKHB+ZFG5I1Eh991uCvG+D+qjnZQMQvHCWXP1owx6aknbMw4BK9JxG+q4RuQ+IsIfF0+IrT1/WimuVMBRb181xih4h3R4g0Ff7lrTrp3w2b7w/Rq5kW/wnZw0vB8bl4Uflugb/7BNcFH1EffnOSqVDjqifo8bA1LQQO5AoDDPy3+kNIZMM/v3rzB/lW9cKpm5qAdtzjj4lPpCxBqLXiE/ndMSKaVynBycVorJdfA/3FNPDN6kVM2mo+AcR+HtNfftxoDGLmwPOJa0Vgi5B1aU/RpxfQx3uimKwhDKQqKvOSSUAM7ds7Db4osR10PWX0NYPm9MYD1/mq9nyADEXwMq/Cz74apRItrqSZszDkGhrLWY4vvumcPYEeGBdPH4wfH/8xB8zyGucLncek48I9V8gqYTojKiqUdNjEP4cZ3RQnJzD7dYunUwYKK1OTgSLapHkFRUpX/Pwp75ze70wa+MCB6cRH0InzroKF5dNj00B5fvoYWlY/HHBYUh6b5n8tn+A9GTZtaBtmccAg77qYVbd/X08uk1kiZuz0Ejthf1xLN8gh7AhRkty1ELz/ChH0wOHTFGzSM0bkhv+nbvxBUhc+FROeekJv68eEJomHLnkE1oPnGfHBiVg4cHhTw6m/t24/nrpoVO75w76ljufvotJh8ffppklOSM/n6FsOmn3BrQoffRNyr79h9ga14QRtK0PeMQ6Dl4fxxQEFd9pOLfi6g5/MM4cNBzCK7n/7mShemgh2rUQIJJw/sdcuxjHARtlvTJ30kdtOO1sWtH1l47NZZ+gfcwb20OD14IOlUwDfieQ5TQ0qMiBGJ8eVhf3vzZzNiMXW5tJ7h/G3fsBuCDgg2nnTrkjMOtD2+OpU9x0PZ2SLufpdccvJ9hbviRwmVThnFB60AWTGiOpT0/Hv2YkKiNg55DBa5D0EN1zmhvp/K3SmTrzOeSM5oj/7842bk3F56Y5I7XclS60Hzx+OD7HDf+NFDYAnIlxOkF+Z5r2JqMP6X5xJb3Dyn304d8tv9A5HD1epDuIUMNmNHSxPHHdC+Zz8X3HOLYk5AFenXpwM3nF53XVDVTju/HzXNHMSskJYI/PVDJMynooTpuaB+23nhuaBsiQlPPzrzzUbSEeW2JJVOHRwqIiHKf46Z/YxdOaOrB9eeNrPv/joK/hBHVyJ51wqHJOv3pqMvveY73duc2fl46cUg8HaySNmccBvfpxuA+pQ9bGdnf2y5/dki0jVEaEeGC048Lr+cmlvr3qv/03QNLJhW59fVi0eTwXD1JsWRq8G76JOncoYEHlkxOuhtl8dcMwhL5PbX0bNa88g4XjTs0+MR/f75h6NKhgaUBxwHUg9RMK4nIdBHZJCJbROSaJPpwQlNPXl02nfNGxbOz0yhNl44N3HrhaO75zvjAejNP9nYKh20uqoTGrh0ZWib9Qq2ZNrJ8encju4xo8tadwhyHpl6dmTehucgLLgw1vuFrLWxcNj2WCL3DIRWeg4g0AL8CpgHbgGdFZLWqvlLvvkSJTjAOn9mjwzOa/mRWC/e/9A6jQnYCZ4XTIywOG9nje2cOY0BjF2a2BGf6LUfhefCTh4dHUdWDVBgHYCywRVXfABCRe4HZQN2Ng5Ee+vXoxL2Lxkc6WcwwkqJ9QzvmjhlY9fsLM9NGydtWD9JiHAYAb+f9vg0Yl1BfjBQxfmjwKWFZYNXCsezcm8w6h5F+2rUTtt54Lp9+/gXbd36SmtmLtBiHkhm0iyqJLAIWAQwaVN9wOsOolikRNlsZRucODWXTkSdBWhaktwH5YS4Dgf8WVlLV5araqqqt/frZF84wDKNWpMU4PAsMF5EhItIRuBBYnXCfDMMw2iypmFZS1f0icgXwINAArFDVDQl3yzAMo82SCuMAoKr3A/cn3Q/DMAwjPdNKhmEYRoow42AYhmEUYcbBMAzDKMKMg2EYhlGEJHlu8uEgIruBTSX+NAh4K0ITvYBdKa5ncqSrnsmRrnomR/X1Rqhq+ClVqprJF7C2TPl7Ed+/POX1TI501TM50lXP5KiyXrlnZ+HrSJxW2hmx3n0pr2dypKueyZGueibH4dULJcvTSmtVtTVqedYwOdKFyZEuTI7a/88sew7LKyzPGiZHujA50oXJUeP/mVnPwTAMw6gdWfYcDMMwjBqReuMgIitE5F0ReTmv7BQReVJEXhKR+0SkpyvvKCIrXfkLInJm3nvGuPItInKbiISc+JpaOR5xZ22vd6+j6yzHcSLybxHZKCIbROQqV95bRNaIyGb386i89yx1932TiJyTV56YTmKWIzGdVCqHiPRx9T8WkTsK2sqMPkLkyJI+ponIOnff14nIWXltJfrMCg1nSvoFTAZOA17OK3sWmOKuFwLL3PXlwEp3fTSwDmjnfn8GmIB3sNC/gBkZleMRoDVBfRwLnOauewCvASOBm4FrXPk1wE3ueiTwAtAJGAK8DjQkrZOY5UhMJ1XI0Q2YCCwG7ihoK0v6CJIjS/o4FejvrluA7WnQh2oGQllV9THgg4LiEcBj7noNMNddjwQedu97Fy9MrFVEjgV6quqT6t31u4A5te57PnHIUYduhqKqO1T1OXe9G9iId8zrbGCVq7aK3P2dDdyrqvtU9U1gCzA2aZ3EJUe9+luOSuVQ1T2q+jjwaX47WdNHOTmSpgo5nldV/2CzDUBnEemUtD4gA9NKZXgZmOWuv07uFLkXgNki0l5EhgBj3N8G4J0257PNlSVNpXL4rHTu8nV1dzXzEJFmvJHP08AxqroDvC8InscDpc8HH0CKdHKYcvgkrpOIcpQja/oII4v6mAs8r6r7SIE+smocFgKXi8g6PNfNP719Bd5NXAv8EvgPsJ+IZ1QnQKVyAFykqicDk9xrXl177BCR7sBfgCWq+lFQ1RJlGlBeV2KQA1KgkwrkKNtEibI06yOIzOlDRE4CbgIu84tKVKurPjJpHFT1VVX9qqqOAX6PN/+Lqu5X1e+r6mhVnQ00ApvxHrQD85ooeUZ1valCDlR1u/u5G7iHBKY2RKQD3gf/blX9qyv+n3OF/SmKd115ufPBE9dJTHIkrpMK5ShH1vRRlqzpQ0QGAn8D5qvq6644cX1k0jj40Qci0g64FrjT/d5VRLq562nAflV9xblxu0VkvHMx5wN/T6b3OSqVw00z9XXlHYDz8Kam6tlnAX4DbFTVW/L+tBpY4K4XkLu/q4EL3TzqEGA48EzSOolLjqR1UoUcJcmgPsq1kyl9iEgj8E9gqao+4VdOWh9+J1L9whtR7wA+x7OmlwJX4UUBvAbcSG4zXzNeptaNwEPA4Lx2WvE+JK8Dd/jvyZIceBEa64AX8RavbsVFzNRRjol47u2LwHr3mgn0wVtE3+x+9s57z4/cfd9EXsRFkjqJS46kdVKlHFvxgiM+dp/FkRnVR5EcWdMH3qBwT17d9cDRSetDVW2HtGEYhlFMJqeVDMMwjNpixsEwDMMowoyDYRiGUYQZB8MwDKMIMw6GYRhGEWYcDKMGiMhiEZlfQf1mycvYaxhJ0z7pDhjGkYaItFfVO5Puh2EcDmYcDKMELmnaA3hJ007F26g4HzgRuAXoDrwPfFtVd4jII3g5sM4AVotID+BjVf25iIzG2/3eFW9D00JV/VBExuDl0doLPF4/6QwjHJtWMozyjACWq+oo4CO8czZuB85XLx/WCuCGvPqNqjpFVX9R0M5dwNWunZeAH7vylcCVqjqhlkIYRjWY52AY5Xlbc/lufgf8EO9AljUuC3QDXkoUnz8UNiAivfCMxqOuaBXwpxLlvwVmxC+CYVSHGQfDKE9hbpndwIaAkf6eCtqWEu0bRmqwaSXDKM8gEfENwTeBp4B+fpmIdHB5+MuiqruAD0VkkiuaBzyqqjuBXSIy0ZVfFH/3DaN6zHMwjPJsBBaIyK/xsmneDjwI3OamhdrjHca0IaSdBcCdItIVeAO4xJVfAqwQkb2uXcNIDZaV1TBK4KKV/qGqLQl3xTASwaaVDMMwjCLMczAMwzCKMM/BMAzDKMKMg2EYhlGEGQfDMAyjCDMOhmEYRhFmHAzDMIwizDgYhmEYRfwfS0VrAyXYNpwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4JFd97/09tfUqtdRaZjQjzT4ez9hjj+2xsbEBGxtsAgSHANfOE0wu3Ou8xNkT7g0QsrwJL0tC4IawhCWvbV7CEhKWEDAYL3jF9gzeZsazb9JoV0ut3ruW8/5RdaqrV7W6W93V3efzPPNIKnW3qmu6zu98fyuhlILD4XA4HCdCq0+Aw+FwOO6DGwcOh8PhFMGNA4fD4XCK4MaBw+FwOEVw48DhcDicIrhx4HA4HE4R3DhwOBwOpwhuHDgcDodTBDcOHA6HwylCavUJ1Mrg4CDdsmVLq0+Dw+Fw2oqDBw/OU0qHVnpc2xqHLVu24MCBA60+DQ6Hw2krCCHnqnkcdytxOBwOpwhuHDgcDodTBDcOHA6HwymCGwcOh8PhFMGNA4fD4XCK4MaBw+FwOEVw48DhcDicIrhx4HAsnj61gJOz8VafBofjCrhx4HAs/ve/v4TPP3Ky1afB4bgCbhw4HItkVkc8o7X6NDgcV8CNA4djkdF0pFS91afB4bgCbhw4HIusZiDNjQOHA4AbBw4HAEApRUYzkFaNVp8Kh+MKuHHgcABkddMocLcSh2PCjQOHAyCjWcYhy40DhwNw48DhAAAyljspo3HjwOEA3DhwOAByRoErBw7HhBsHDgcOt5Kqg1La4rPhcFrPisaBEDJGCHmEEPIKIeQwIeQPrONhQsiDhJAT1td+x3M+SAg5SQg5Rgi51XH8KkLIy9bv/pEQQqzjHkLIt6zjzxBCtjT+rXI45WFuJYPmgtMcTjdTjXLQAPwJpXQ3gGsB3EMI2QPgzwA8RCndCeAh62dYv7sDwCUAbgPweUKIaL3WFwDcDWCn9e826/j7ACxSSncA+DSATzTgvXE4VeOMNfB0Vg6nCuNAKZ2ilP7S+j4G4BUAGwG8DcB91sPuA3C79f3bAHyTUpqhlJ4BcBLANYSQEQC9lNKnqanb7y94Dnut7wC4makKDqcZMLcSAF4Ix+FglTEHy91zBYBnAKyjlE4BpgEBMGw9bCOAccfTJqxjG63vC4/nPYdSqgGIAhhYzblxOPXgNA48KM3hrMI4EEKCAP4dwB9SSpcrPbTEMVrheKXnFJ7D3YSQA4SQA3NzcyudModTNVmncuDprBxOdcaBECLDNAxfp5T+h3V4xnIVwfo6ax2fADDmePoogEnr+GiJ43nPIYRIAEIAIoXnQSn9EqV0P6V0/9DQUDWnzuFUhTPmwJUDh1NdthIB8FUAr1BK/8Hxqx8AeI/1/XsAfN9x/A4rA2krzMDzs5brKUYIudZ6zbsKnsNe6x0AHqY8n5DTRDKOIDRvocHhAFIVj7kewLsBvEwIecE69iEAHwfwbULI+wCcB/BOAKCUHiaEfBvAEZiZTvdQStnd9n4A9wLwAfix9Q8wjc/XCCEnYSqGO+p8XxzOquABaQ4nnxWNA6X0CZSOCQDAzWWe81EAHy1x/ACAS0scT8MyLhxOK+CprBxOPrxCmsNBbdlKqs7nP3A6F24cOBzUFnP4+58cw51f/sVanRKH01K4ceBwUOhWqs44nJpL4MJiaq1OicNpKdw4cDgw3UqKZN4O1RqHaCrL+zBxOhZuHDgcmMoh6JEgCaRqt1I0peYVzwHAydkYj0NwOgJuHNqYt33uSXz3+YmVH8hZkYxqwCMJ8MoiUtnq1MBSMt84zC6ncdtnHsc3nz2/VqfJ4TQNbhzalIym48XxJbw4Hm31qXQEWT1nHKptn7GUUqEZFIZh1ms+dHQWmkExFU2v5alyOE2BG4c2JZkxF7BoSm3xmXQGpnIQ4VMEpKtIZU2ruq0aWNzhZ0dmAJiKgsNpd6qpkOa4kHhGA8CNQ6PIaDo8sgAKsaqYg9MAZFQDlAJPnJwHACwms2t2nhxOs+DKoU1JZssrhwcOTePQBe5uWg0ZzRFzqMI4OK97RtfxxMl5ZDQDXlngyoHTEXDj0KYw5bBUsEudj2fw+994Hl/8+alWnFbbYhoH0Yw5VKUcctc9qxn4xekFeGUBN+wYxFKKKwdO+8ONQ5uSsN1KWt7xbz03jqxucNfGKsloOjySAJ8sIlVFbyWncshqBuJpDSGfjKEeDxa5cuB0ANw4tCnJrGkUllMqWHdz3aD4+i/OAQAWE3yBWg0Z1SyC88rVBaSXnMZBNyzjIqLPr2ApmQXvOM9pd7hxaFPiVrZSVjfsLqKPHZ/DZDSNwaCnyN3EqQyLOfiqTGVdLlAOadWMN/T5ZKg6tWNCHE67wo1Dm8KUA5BzcZyZTwAAbto1hAg3DquC7fx9ilhVV1Zn0Dmr5ZRDv18BwDOWOO0PNw5tCgtIAznjEEubxzaF/UirvJ30ashoBjxyjdlKTuXglwHwWgdO+8PrHNoUVgQH5DJn4hkVfkXEQNADwNy9joR8LTm/diNruZUkUahoVMcjSaRVPT/mYCkHvyKhjysHTofAjUObUk45BD0S+q3d62JC5cahSlgqqyIJUHUKTTcgicXC+q//8zBOzsaxaSAARRSsYLSpHMIBwb72XDlw2h3uVmpTEqWMQ0ZDjze3e+VB6erQdAO6Qe2ANACktdLprOcWkji7kMTJmRiGekyFVpitBPBrz2l/uHFoU5JZHYOW+yhPOXhlhAPmAsWD0ivz8NEZHJ2OAYAZc1BM41AqKE0pxeSSOdxnMprOGQdLOXgcMQde68Bpd7hxaFPiGQ3rQx4QkkurjKdV9DjdSnyBwqPHZvGxH79S9vd/9K0X8ekHjwOAWSFdYeDPckpDwmE0hh3GgbmlZFFA0CNxtxKn7eHGoU1JZjX0eGT0euU85ZDnVkpw5fCzV2Zw/1PnSv6OUorltJpTDpKAgMcMwzljOowLlmoQiPnzcK9pHDKajoyqwyubt1OfX+ZuJU7bw41DmxLP6Ah4JIR8sp05E8+YAWlFEhBQRK4cAKgaRUrVoRvFFcvJrA5Kc4u+RxYwEvICQMnZ0Myl9OrtgwCA4R7zsU7lAAD9foVnK3HaHm4c2pRkVkPAIyLkK1QOpkuJtXHoFKaiKfzpv72YV/xXDao1a6FU7UKiQB14JBGbwn4AwPlIsujxk1HTOPzqvg0AYMcc0qqBrG7kKwfeSp3T5nDj0KYkMpqtHKIpFYZBTeXgNd0i4UBu96rpBn788lRb9/t55nQE3zk4gceOz63qeWwQT7KEmyhWZBwEhAMK/IqI8cVi43BhKQVFEvDWyzbgzms24cZdQyAEiKVV6/mmcjANMzcOnPaGG4c2JZ7REFByyiFh7ah7LJ95n19GxFqgfvjSFN7/9V/ihfGllp1vvWSsfkdsoE61MOWQKJF9VKgcFEkAIQRj/X6MR3JupW88ex73PXUWFxZT2BDywqeI+Njb92Ik5IMiCnZlOlMO/X6Zu5U4bQ8vgmtDdIMirRoIeCT0+mQsp1R7geqxlEO/X7FdI2y3XW5q3DeePY/Dk1H87e17m3D2tZGx6g6eOrmwquepuqmWCg0BUBx0Zjv/sbAf4w630reeG8eJmRg2DwSwoS+/qFCRBCwXKAdmsCmlIISs6nw5HLfAlUMbwlRC0OFWYsYhaBsHGYsJs3X0YyfM3XYiU7otxNOnFvDQK7NNOPPaYfOaT88nMBUtDhaXw1YOpYxDutitBABjYR/GF5O2Gy6WVpHI6jgytYyNBcbBI4m2cWDKwSuLoDRnmDicdoQbhzaE9VXyK2ZNg6pTe8F0BqSX0xoOTy5jPp4BUHqBBMwFNFOmItgtOM/vyVWoB2ZUSrXQZkaWLfgea3HfFPYjmdURsVKBYw4jUqgcPJLTrSTax4BcvIPDaUe4cWhDmDsk4BExYi1Wx2fMXP2gJxeQBoDvv3Ch6HmFqDpFxuUdXDOqDkKAgYCCh16Zqfp5uZhDeeVw6cZeAA63Un9+xlI8o9m1DYXKQZEEuwiRGQXF+ur2a8rhVIIbhzaEpXMGFMlerFghV6/lVmLVu19+/Ay2DQbynldIuygHjyTgXVeP4ceHpqsOrjPXTrKES40NTLpstA8A7L5KY1Y66/hiCppuIJnVcesl6+GTRVxiGRJGfkA6Xzm4/ZpyOJXgxqENySkHCaP9lnGYspSDZRxu2bMOn73zCvyPG7biI2/dA0UU7MUQAI5Nx/D8+UUApnHQDLMTqVthRWb33LQDQz0e/NUPDsMoUdhWSEXlkFEhCgS/+arN+OSvX4b1VgHcWNi8puORpH2t928J4/Bf34pLNoTyXiM/IC1YX0X7nDmcdoUbhzaEBZaDHglDQQ8UUcDJ2bh9DABkUcBbL9+AP3/LHty0axgBj5gXc/jUT4/hL75/GEBuAXWzj9zsemr2LfrDW3bihfElHJqMrvg8u86hZCqrbqYD+2W86+ox+7hfkTAYVDAeSeZlgQlCceYRa/ENlFIO3K3EaV+4cWgzfnZkBhesAi2/R4QgEGzo8yKrGyDEdDWVwq9IebvnZFa33UxZa3HLqC42DlbXUwDYOdwDwGyEtxIVs5UyuYryQjb2+TAZTduqgLnrClEcMx9s5SCzmIN7ryeHsxK8zqGNiKVV/I/7D9gpk0wljPb7cXYhiaBSenfLHutcIDOabu+qVcv94WY3SEYz7IXYb7XVrqaVhqpVqHNImy1IShEOKJiPZ+2gddBT2ogwQwA4lQN3K3HaH64c2gjWkiFt7UhZB1EWlO4ps7s1Hyvm1TmkVcNeONnu2s1uEDZMB8gtwtXMeq5YIZ3V7GtYSH9AQSSRLSouLKSkcmCprNw4cNoYbhxcyHgkies+9lBRRg6rcJYsdeC3FkkWlA5WNA5SXiprnnLQ20M5sF26v8JAnkJyMYcSvZWssaqlCPst45Axr3lZ4yA5jIP1/6HwmAOnA+BuJRfyjWfPYyqaxuHJKPaN9dnHWT79n795NwDYLqSNzDiUWegAMxYxs5y2f85ohu1OUh0xh/l4BjPL6aKsnFaTUQ17R55zK61COZRIZU1kNLtFdyHhoIKUqmMuZhYQlotN5BkHnq3E6SBWVA6EkH8hhMwSQg45jv0VIeQCIeQF69+vOH73QULISULIMULIrY7jVxFCXrZ+94/EajpDCPEQQr5lHX+GELKlsW+xvVB1A98+MAEAWCwY1sOCo1dvDeO3rt9qH8+5lUovYICpHPLdSjoyBVlKGU3HFx89hd/48jOu6+Ca0Y0a3UpWnUMJ5ZDIVFYOQK4Qrpxy8JQ0Dlw5cNqfatxK9wK4rcTxT1NK91n/fgQAhJA9AO4AcIn1nM8TQljE7wsA7gaw0/rHXvN9ABYppTsAfBrAJ2p8Lx3BQ6/M2O0uFgqMA3MrhXz5RmDUKtqq5FYKesQCt5IBVTdAKc1zKy2lVEStf24io+p5i69AVnYr6Qa1h/yUUg6xTOWYAwCcW0hCFkmeEXDCYg4eq6MrwLOVOJ3BisaBUvoYgEiVr/c2AN+klGYopWcAnARwDSFkBEAvpfRpam5J7wdwu+M591nffwfAzaSLW1n+24EJrO/1YmOfz+7tw2Cpm70FxmFdjweiQMqmWwKA3yPl7Z4zqgFKAc2gjmwl3d6NT5SYhNZKspph+/QJIfAr0opuJdVRt1GoHCilFZXDgMM49Hjlst1VmVuJqRmAu5U4nUE9AenfJYS8ZLmd+q1jGwGMOx4zYR3baH1feDzvOZRSDUAUwECpP0gIuZsQcoAQcmBubnVDX9qBWFrF4yfm8ebLRjDY4ykyDtGUCoEAwYJaBkkU8MdvuAi/evlGlCPokcweSpoOSinSlstD1Y28mAPbjbvNOLD2GQyvLCKlVk5ldRqHeIFySKk6DFpebTHlcGEpVTELjBmCUu4l7lbitDO1GocvANgOYB+AKQCfso6X2l7RCscrPaf4IKVfopTup5TuHxoaWt0ZtwGPHptDVjdw6yXrMWClUjpZTqvo8colaxnuuWkHrtte0qYCAAJWEDeR0aHqFCykkNUMR8whZxzYXGW3wCqkGX5FXNGtxIyeIgpFysHZgqQULOagG7SicSilHBSeysrpAGoyDpTSGUqpTik1AHwZwDXWryYAjDkeOgpg0jo+WuJ43nMIIRKAEKp3Y3UUPzk8jcGggqs295tD6ksoh8J4Q7WwRTCR0fJ2tE7XTL5bqXhMZisxs5VyC7BfEat2K4X8MpJZPa8XU664rXQRXMgn251Ye8oUwAE5Q+A0XJJAIBDuVuK0NzUZByuGwPg1ACyT6QcA7rAykLbCDDw/SymdAhAjhFxrxRPuAvB9x3PeY33/DgAPU7elyjSBtKrjkaOzeMOedRAFgoGgggVrWA+jIcYhq9lFdAAKqqYdysGNbiW50K1U2TiwnXufdc2cj8/1pyp9PQWBoN9SD5UC/Swg7VQOhBB4JJEbB05bs2KdAyHkGwBuBDBICJkA8JcAbiSE7IPp/jkL4LcBgFJ6mBDybQBHAGgA7qGUsjvy/TAzn3wAfmz9A4CvAvgaIeQkTMVwRyPeWLtxdDqGRFbH6y4aBmC2b8hoZrtotrAvp1T0+morTXEqB2cQ1lk5nFENewF1k1vJMCiyupFXjVydW8lcnNki76yIds7EKEd/wDTQ1biVCrOZPLLA5zlw2poVVxpK6Z0lDn+1wuM/CuCjJY4fAHBpieNpAO9c6Tw6HbbQMWXAfN6RRNZe0KIp1W4rvVqY+ySe0dGnlVMOuu2qcVNAmsVEnMrBr4h2O5FysJhDyG9e02RGB8yefbZxqOQyYgOTeivUj5SKOQCmseDKgdPO8PYZLoHtchXJdHSzhckZlF5OaxUXqko4lUM6z72S71ZKqzoEYhqicpPjmg2rF3DGHKpxK7FrytxKzq60iSqUAzPQlbOVyigH7lbitDncOLgE5h+XLddJOFhsHOqKOSjOgLRDOTgWzLRqtvHeZBXVuSXuwALoq81WYoqjz1IOzkK4WIYFpMsv/CydtRrjUFo5cLcSp33hxsEl5JSDZRz8+cYhrerIakZRAVy15GUr5QWkcwtYPKPBoMAOa16CWzKWmDHLNw7Sii27WXFfn3Utnzg5j0/99BiAXJ+qSi1HBmzjsLpsJXacp7Jy2hluHFwC2+WWUw5sMavdOFh1DlndLoAD8t1KzIe/YzgIwD1Bads4yKt1K1kxB+ua/dPDJ/DZh08ikdEwHU0j5JPhUyoHpIHK6kIRxaJzA3jMgdP+cOPgEtguk2Xk9HgkyCKx+yuV66tULR5JhCySYuXgcM0sJs2/NRb2QSDA7HKmpr/VaMq5lVSd5lVBF6IWuJVYmcNUNIWpaLpsR1ZGOGA+r6ZsJUnkvZU4bQ03Di7Brua1FhlCSF4h3ErjKqvBr0hFRXCllENAkRAOeOwGgK2mtFtp5c6s2YJUVmZ4LyylMRVNrWgctgwEAOTmZZSibLaSzGMOnPaGGweXkLUWEtmRyx+28uyB+pUDYLpH4hm9IOZQbBx8iojBoDkm0w2Uy1YCKndmZcphIKhg31gf/tdtuwAAk0spTEfTWB8qv+gDwBWb+vHMh262YzClcHZlddJJbqVXppbxhUdPtfo02pJ2ruflxsElFCoHwFzUmKuHdWStxziYo0ILlIO1uBICLKXMv+WTRQz1uEk5WG4luYRyKGEcTs7G8NTJeds4eCUR37vnevzWq7dAIMCZ+QQWEllsqKJmZF1v5ceUr3PonFTW771wAZ944Kjd/pyzMoZB8ZHvHcLrP/XztjUQ3Di4hFxAOtdUbyDgweHJKP72h0dwbsHMHKo1IA1YbqVsQSorS+lUJLuthl8RMRBQsJBwi3Eo71Yq1V/po//1Cj7wnZfsGdmy9TxJFLC+14tfnlsEgJoLCp2Ur3PonApp9hnhbrLq+dB3X8bXfnEOZ+YTJeeXtwN8TKhLsOschNwi8zs3bUdWM3DvU2dhWLuPWovgADOwGkuXLoILeiU7998rixgMejAfc4lbqYRxyE2Dy09nNQyKA+cWQVDa4G7o8+GlC1H7+3rpDygIKKJdG8JQJMH+++0OS3dOqwas8A2nAgvxDL753Dg29vlwYSmFxUS2YsabW+HKwSWougFZJHntuC9e34svvvsqfPmu/RAFAp8s5rmdVkuvT8ZySi1ZBOf88PoVEQNBD1JWUVyrYTvw/K6s5vmmsvkL8PHZGGJpDYmsXpQBBpgGgR1vhHIIeiQc/MgbcPPu4bzjnZStxCrl0x2ihNaas5bKf+1FgwDguqmK1cKNg0vIakZeMNrJTRcP40vv3o8/vGVnXX8j5JOxnDaNg2gZoSTrTurIgmIBaQCuUA+V3Ur5xuu5s6bLSDeovag5r+tIX84grJStVC1eWSyaFGdmK3WGcWDqspqZ3RzgfCQBALh8tA8AVuwB5la4cXAJqm5UVAU3XTyM337d9rr+RsgnI5pSkVZ1WynES7SR8MkiBns8AIA5FwSlc8ahRLZSwYJ18GxuFAi7KZ3XdaPlSgr5ZFt9rAUey61kdEAQlyuH1XF2PglCgEs3hgDk6ofaDW4cXEJWp2WVQ6MI+WSoOsViUoVXFiCLxA7o9hQqh4BpHBZcYRyqz1Z67uyirYqWrJtScrjqNljpq41SDeVghqwT4g4549D+76UZnI8ksSHkw3CveQ8tcbcSpx6yWv68grWABbNnl9PwyiIUUSiKOQjE9NEP9lhuJRfUOpSKHZTKVpqOpnFhKYWrNpkjzReTWSiikOfyYUHotTcO1hzpDlhQ7Wwlrhyq4txCApvCfvT5zHtoKdH6e6gWuHFwCSu5lRoBq5GYi2fgkQTIkmDPkmYT0fyKBEKI3TK8lcohreo4cDaCjGU4ncH6Um6lV6aWAQDXbgsDABaTal6mEpBzK61UAFcv7P+yE9I/7WylDngvzeDcQhKbB/xQJAEBReTKgVMfZkCarPzAOrCNw3IGHknM24mzgDRbdD2SiF6v1NJCuB++NIV3fPFpnJ6Ll6wjEEi+W+nYTAyAWdkMmG4lueB5vT4Jt+wexo27htb03G3l0OZBaUqprS65W2ll4hkNC4ksNg2Yqc19fqVtYw7tl3zboZiprM1RDrGMZsUczL8nkJybxu/oUjrY42mpW4nFDA5dWM6LNwBm7ymzbXfOOByfjmF9r9fOSFpMqkVqjBCCr7zn6jU+81yX1nY3DsmsbqtLHpBemXMLZqYS68vV55cR5dlKnHrINsGt5Jw/7ZFEe3cri4L9vc/RBmKwxc332MJ6YSmVl6nEMNt251JZj83EcNH6Hnuw0XJaXfM4Tjk8HeJWcvbe4sphZVgnA1YU2eeX21Y5cOPgEirVOTQKZ18mj5RTDooo2IuvN085KC01Ds6daqFbCcifBqcbFCdn49i1LmgH1ynFmrvqytEpbqV4Jn9SIKcyzDhsdriVeMyBUxeqbpRcABuJc6KZRxZspSJLOeXgdyqHoMfuCtsKnItRKVXlV0TbrXQ+kkRGM3DRuh576h2ANTe45WDGtt2zlZyTAnlAujKTSync99RZbB0M2Pdan0/mRXCc+sg2IeYgCsSuZ/Baw38Ac3fNfPrOyWh9fgVLSbVlhVypFZSDcxrcsWkzGL1rfQ8USbDdSS0zDnJnuJXylEObNpBrFI8em8WnfnoMDx+dKbonNN3Ae+99DomMhs/9xpX28X6/gqVkti2LIblxcAmqRpviAmG1DnnKweFWchqHQBUDddYSp4+7VMwh4Mkph+MzMRCSG3Hqt8aiFmYrNQtmnDrKrdTm76VePv3gcXz24ZN4770H8MTJ+bzfTUXTODodw5+88SLs2dBrH+/zyzAo7KaW7QQ3Di7BrHMoP8+4UbC4gzk21BlzKA5I+y33TKm22M0gL+Ygl3IrSXbA9MRsHKP9PrslBgtKKy2KOXit8822+YKa4DEHmwtLabxmp9lM71wkmfc7lu47XDD/o89qY9uOGUvcOLiETBPqHACHcZBzBkESSS7m4FAOLP7Qqs6saTUXhynlVgo4Yg6LiSyGgh77dywo3fKYQ5sbB6YcRIF0tXHIaDrm4xlcsakfkkAwtZTK+308XdyjDDBjDkBukFY7wY2DS1D1tW+fAeTSWZ3KQRYFOy/fqRwClmvGGZRsJhlNx851QQiknFsppxziGS0vEM3OvXXGoTNiDuz6hgNKV6eyzkTNrL3RPh/W9XoxFU3n/Z4Z0UCBcegPmMZhkSsHTrU8eGQGz57JdRBtRp0D4HQrFcYcisdd2jMT1NYoh1RWR69XxiUbQiV7IQU8ki3n4xktb9cWcItyaPMFNZHRQAjQ75e7WjlMRk2lMNLnxYY+LyYLlYNlHJwNLAEgxPorlah1uPv+A/inh0+sxek2BF4h3QIiiSx+7xu/xFi/Hw/+8esAAGoT6hyAfONQKuaQ51ZSWqsc0pqOXp+Mr7xnf8lrE7BGm2q6gUShcmAxB6lFdQ5ypwSkdQQUCT5F6uqA9BQzDiEf1od8eHF8Ke/3iTLKoc9vuZVKKIfnzkZc3bWXK4c1JpHR7EH3jHufOou0auDEbBzHrX5Aqk6bqhy8jqlyskRybiWlWDm0MubglQX4Fam0cbBcR0lVd51yyGUrtfdu2zS6IryS0N3KYcl0I23o82JDyIvpaDovPTW2QsyhsJhUNyiWUirmYuZxSikWE1nbCLkBbhzWmLd+9gl89uGT9s+JjIb7nz6L/Zv7QQjwXy9NgVLalDoHwBwVClhuJUfMYaTXi99+7Ta8/uLcuEt78W1htpLTzVUIM16JjGYvYoxgi2MOgkDQ75cxseiem70W4llTkXllsatbdk9FU/aAqJGQF1ndyCsQZeo6oOR/XiVRwFWb+/Gt58bzNlnLKRWU5ozG7/7r87jibx7EdR97GCesDWOr4cZhDTEMirMLiTwJ+tjxOSwlVfzprbtw9ZYwfvTyFFTd3IE0I+0yl60k5sUcBIHgg7+yG6P9fvuxTEUkXGocmDFYiGdh0HxJ72+xcgCAV28fxOMn5kBp+xVAMRKWIvPKQlcHpKeW0nbca8Rq++7c5cczKnyyCKnE5+1Dv3IxZmMZfOmx0/a9mlLRAAAgAElEQVSxiBWDWIibBXIHzy3ao3ndMH0R4MZhTUlkNRgUODOfsI+xrIUtAwG8ee9InmupGW6l3ryYg2mMymVJMb99skUFPGnVgLdC7Qc7v9mYKfmdkp5936o6B8AcMD+znMHxmXjLzqFeEhkNAUXKq0bvRiajaXtQFJsmyFxNgBWb8ZQO4V61OYw37x3BP//8tO2aW7RUh2ZQLCSymI2lsWt9DwDYm8VWw43DGhK1Gm5NLCbtYigWuAp6JfvDwJp1NWOXuznsh0DMoTeKyFwvpRdQn+wGt1L5a8Juxtllc6cVUJwB6da6lQDgtReZMyMeOz7XsnOol1jacitJYlfHHKaiKYdy8NrHGPGMVpSp5OR1Fw0hpep2jMGZ2npkahkGBTaFzTbfbimc5MZhDWHGwaBmYzggV0bvl0V7d8skZjMWsm1DQTz/kTfi0o0hyBLrrVT67woCgU8WWxKQVnUDmkHz6i4KYW6lWeuGC5QKSLeofQZgZrbsHA7isRPtaxwSWQ1Bj2i5lbrTOKSyOpaSqq0cBgIKFEnAtKPWoTDmVciA5TKKWIph0RGveHnCdDuzTq7cOHQBy6nconrWci3F06YPV3A0wYtYA3Wa4VYCgJCVXmcHpCv83YBHbEnMgS1E1QSkZ5bLu5VaqRwAUz08cybStllLCctd4pXFrk1ltWscLOVACMFIyItJh3Fg93U5Bqzq/YWEuZGJOOoeXpqIAjBVPYCi7MZWwY3DGhJ19HFncYd4RrU/ROwrGwbS7ME0zBhV+rt+RcobxdksWPCzkluJXb+ccijuC9XKmAMA7BwOIqsZtjuh3YjbAWkRWc1oy+6i9TJjGYH1jkLMkZA3r4VGYSp1IQPWTHY2WdGpHA5dMI3DWJgrh65h2TIOhABnrPGBiYxuz2tmX5nUbJZyYORSWcsvoH5FzGu+1iyqUg7MrVRSObQ+5gAAQz3mjrGV41ZrRdUNZDXDVg5A+xf11cKyVcPgHJY1GPTY9y1QhXGw3EoLzDgks1jX64EiCpiMpuGTRQxbnxW3FMateOcQQv6FEDJLCDnkOBYmhDxICDlhfe13/O6DhJCThJBjhJBbHcevIoS8bP3uHwkhxDruIYR8yzr+DCFkS2PfYutYTpvGYftQEGfmTOMQc1TyeiQRiijYH7JmL2TO3krlcA7UaSbMDVMxlVUpVA7uKYJjMOPQjsqB5eCHA4qt4Lox7sBibs6Ehx6vbN/fAIoq9AvxKxJ8sogIcyslVIQDHttojPR57c1hOymHewHcVnDszwA8RCndCeAh62cQQvYAuAPAJdZzPk8IYXf3FwDcDWCn9Y+95vsALFJKdwD4NIBP1Ppm3EY0pYIQYO/GEM4usJiDih7nDtcrOYxDc10gzjqHcgQ8UksC0qkscyuVNw6iQOCVBXvhLdU+o5UBacDcYQLFFbLtAGsut6HPa/8/HJqM4hMPHG3r2o3VwmJufofbstcn2YoCMDd9wQrZSoCpHpzKod8v25uHkZDXvg/bJuZAKX0MQKTg8NsA3Gd9fx+A2x3Hv0kpzVBKzwA4CeAaQsgIgF5K6dPU/FTdX/Ac9lrfAXAzUxXtznJKRa9XxrbBAKaiaSSzWpH8DHqklrmV7N5KFf6uma3UgpiDrRwqX5OgR4Jm+cGd1akb+nx47/Vb8bqdQ2t3klXAdobtqBymrDz+kZDP/n/45rPj+MKjp1o6PrbZsDofp3Lo9crIagbSqo6sZrrfgsoKxiGgYD7hMA4Bxd48rO/1taVyKMU6SukUAFhfWc+FjQDGHY+bsI5ttL4vPJ73HEqpBiAKYKDG83IV0ZSKXp+Ejf1mCtzMcsbO/mAEPZKdudDsgLRHWjnm4Ox82kyY+6JSKiuQy1jyykJedaooEPzFW/dg04C/3FObgkcSEfLJ7WkcHFk6rBjx6PQygPyAaqfDlIPzs8gyDWNpLa92qRIDQY/tVlpMZBH2K3ZV9IY+LyTBvA/bRjmsklKrDK1wvNJzil+ckLsJIQcIIQfm5tyfOx5NqQj5ZPQHcjnOsbSaVywT9Er2TqFVymGlmENrs5VWMg7m7ysFA1vNUI/HVW6lmeW0nf5bicklM1Aa8sn2/8NZq2Cz25SDXxEhCLmlio3bjaXVsrMcChkImG4l1nSvP6DYbqX1IS8IIVAkAZk2Nw4zlqsI1tdZ6/gEgDHH40YBTFrHR0scz3sOIUQCEEKxGwsAQCn9EqV0P6V0/9BQa90F1bCc1tDrle00toV4psit5Iw/NDt4Wk3MwcxWar5xSKnVu5WAlW/MVjIYVFylHD7wnZfwge+8tOLjppdTGOkzFy3Wgly3XHjdphz8BS4jtsFbTmu5WQ4rGYegBwvxLKJW071+v2y7lVgNhSIKUDV3xHNqXY1+AOA91vfvAfB9x/E7rAykrTADz89arqcYIeRaK55wV8Fz2Gu9A8DDtEOiXUw5hC3jMLmUKmoQ55Sizc9WqtxbCbDqHFS96fntzK1UagKcE1bP4G7l4HWVcphYTGK+CmM16Wg2V+jei5QYXtOpJLPF1c+sR1ksrZad5VDIQEBBVjfsbgnhgIJNVm3D5gGzdYYiCcjq7sgIW/GOIoR8A8CNAAYJIRMA/hLAxwF8mxDyPgDnAbwTACilhwkh3wZwBIAG4B5KKXun74eZ+eQD8GPrHwB8FcDXCCEnYSqGOxryzlzAcoFxOB8xfbhOg+Bc1ErNSV5LnPMcysFuipRavrHYWsDaQ/uUysaB1TNw5VA9C/GsPYSmElPRFF5jBfQL3XtdpRwyFZRDSrMTIqrJVgKAk7NmI8Z+v4Ibdgzix3/wGmwfCgIwN2xuUQ4r3lGU0jvL/OrmMo//KICPljh+AMClJY6nYRmXTsMMSJs94L2ygPMRM521MJWV0WzlMBj0QBII1vUUj+Bk+NjMhGzlPO5GU33MoR2UgweJrI5kVitaZJpNVjMQTakrpk2ruoHZWAYbLOVQ+P/QVTGHrFY0p6HHEXOgVoh0pc8ga6FxYtbswtzvVyAIBLtHeu3HmMqhvWMOnBVIqzoymmFXVQ4EPLacLB9zaG4G77peL5798C24bnv55DB2U7w0HsXf/aR5+e12zGEFNcXOz83KYYjVOsRav6CyVi0rxZFmYxlQmptd4Iz9DPd4uks5ZHXbfcnodWQrxctMgSuExR4PnF00f7aUhBNZFNo+lZWzAqx6kvkm+wOybRwKU1kZzc5WAky/Z6WyEpYN9JUnTuNzj5wqOQt3LUirOiSBlBye4iRgxxwqK4xWMsiqpF0Qd2Cxj5Sq28FlJ8tpFdd//GF89fEzAHL9hFgq60jIi5E+HyJN+hy4gWSmWDkEFAmEmNer2mwlFnw+eG4R12wJ2/EcJ4rIlUPHw/oqsR1GOOCxXSX5qaw532+rWz2UgrlBnj9vthWOpZtT85BWjRVrHIDcDRlosbumEkw5uCHu4OzxVKp+5fnzS7iwlMK/PGkaBzbYhrmVNoX9CPtlO1+/G0iWyFYSBIIej2Qqh0x1yqE/kLvX/+CWnSU3ZYrkHuXg3juqzYmm8pt1MUkJlG4tDTS/CK4aWECaNVxz9pNZS9KaDk81xqEd3EouUg4LjnNIZDQ7X5/x/PnFvJ/ZYBuWLLF5wA/NoG093W61JEpkKwG5/kqyaM49EYXKbmGPJKLfL2PHcBCvLuPKVUTBNUVw7r2j2hymHJhx6PfnjINzIWMqQhJIXpGNW/DJ+R+RphmHbOUpcIx2SGU1XXeoKn10rVlwKocScYcXxpewa10P1oe8eGliyY6JCQLB26/ciDftHcFTJ+fzOpJ2OskS2UqAee8upzR4JGHFTCXGP797P0b7fWVduW6KObj3jmpj0qpu3zws5uAMPvWUSGV1o0sJQNGOqWluJU2vzq2kuL8IThYFDASUqqqS15r5RL5ycEIpxQvjS7h1z3p86M27MR1N5y1i//CufQCAV6aWkVJ1pLL6iqnG7U5WM5DVjaKYA2De27G0Ct0w7HjCSlyzNVzx94oktKTRZSnce0e1KZRSvPaTj9ipfkw5sFoHSSB59Qxsx9GKYHQ1FO6YGmUcHjk2i6dOzuPDb96TdzySyOLguUWkVWPFNFYgZ7wqjWh0Axv7/ZhYTK38wDUmXznk/1+eXUhiKaniik19CPnkvPkFTsKWCo4ks9io+NbuZF1Ayu7IWrxU9nolXFhKYzaWwR5HOmo9yKLgmpkZ7lyR2piMZuaHbwr78bqLhmx3Evsa8Eh5u7EelysHlq20bdCs4FxONcat9NPDM/jKE2eKdknfePY8/uf9B3BsOlaVW4nlmxf6zt3GWL8P44vJVp8GFuIZu8FbvMA4sHjDvk19FV+D9QrrhnTWhD3LoXTMYSmZxflIElsGG9Pg0SO5J+bgzhWpjWE76/devwX3vfcaO0jF3EqFvnFbObR4nGU5fLIISSB2LUSjlENa1UFprlqUwYa2X1hKVaUc9o314W9vvxTX7xhsyHmtFWNhPy4spkqmjzaT+XjW7hJc2Ir9l+cXEVBE7BzuqfgaA45Gkp0O27yUUw5T0TR0g2LrYLAhf48XwXUw8TLte5lbqafguE8WIRD3upUEgeCf330Vfv/mnQgoYsMC0kyuH5uO5R13+uWrMQ6iQPCb12527fVjbAqbWT6sDXarWIhn7H4+TuVAKcXDr8ziuu0DK2bd2MqhC/orsaB9OeXA2Gop63pxU/sMd99RbUiuWjLfzRF2uJWcEEIQ9EiudSsBwM2712Fdr9cOwDWCpFUBfXymwDg4MnqqMQ7twli/uSCPR1pnHCilmE9kscVq8uaMObx8IYrJaBq3XTqy4uuwz/JCG87FXi3MrVQqW6nXlzvWKOPAlUMHE8uYi2eh+yjkkyGQ0imXPV7Z9TtfIJe61wjSTDkU5MvPLaexrtfM/FipdUY7MRY2XTmtjDvEMxqymmGlUuYbhwcOTUMUCG7ZPVzhFUzYZ7kblEOSKYcydQ6AeT36q2hkWA2yKEDlAenOhCmHQveRIBD0+5WS+dBuVw6MHq9sG796Yb2TjjvcSoZBMRvL4M17N8Ani3YacCewoc8HgQDjkdYZB7bTH+rxwC+L9oQzSikeODSNa7eF0ecv7vdTiCAQDAY9uLDU+uyrtaaScmD3+JbBQMUWNKvBTcN+eCprg6lUSv8/X7vNbs3rpNcnrejndQO9Xqlh3ThZoG96OY1oUkXILyOSzEIzKDYP+PGt377W7uvTCciigJGQr7XGwapxGAh6zPGv1md1YjGF0/MJ3HXd5qpfa8+GXhy6EF2T83QTLGhfSjmwDLltDXIpAbkKaUppwwxOrXDj0GAqzZP9v163veRzPvgru9f0nBpFj1fGmflEQ14rrRoYDCqYj2dxfDaGq7eE7WD0ul4PLhutnE7ZjoyFfRhvYa0DUw4DAQVBj2RvZKat676txMalHJeN9uGx43NIZJrbyr3ZsPu5onIYaKxxoBTQDNr0Ls2FuN+X0WbEqmzC5eTKTf24clP/Wp1Sw+j1SQ1LZU2pOi63DMCL42ZTv1krGD3c2zmKwclYv7+lyoHFCMIBBX6PaC98zGiEAyu7lBiXj4ZgUODw5HLjT9RFMOXgL5GttKHPB0kguHws1LC/J1txNje00ODGocHE01pRFXSnwBqNNWKmQzKrYftwEFds6sMXf34K0aSKWWsHO9xTXSuCdmNT2I/ZWMYegdpsIgkzXtTvVxBQJDvm4DQa1cKU3UsTSw0+S3eRyGpQJKFkTHBdrxfPffgW3Lhr5SB+tbDmm24ohOu8FazFxDMagl6p5f7CtaDHK0HVad3l/YZB7Zbcf/O2SxFJZPF3Pz2KmWVTOQx1qHFYZymitWzd/cffegHffX6i5O8Wk1l4ZQE+RUTQEXNgxWyrMQ5DPR5sCHnx4kRnxx2SGb1kjQOjfxXXrBoqKYcHj8zg84+ebOjfqwQ3Dg0mntZc3SG0HlgArt4WGsy4+BQRl24M4Tev3Yx/feY8XpqIIhxQ4JE6p77BCWtSt5bK4SeHp/HY8fmSv4sksnaNgt9hHBbiWQQUcdV1JXtHQ3i5C5RDM0e7eizlUKrW4d6nzuDzj5xq2jRGbhwaTCzTucbBHqpeZ9yBZSqxrqu/9eotMCjw0NGZjnUpAbn3m1pD45DRjLIZZYuJrL3TDXpExK0c/kgig3CJkZUrcdloH84uJBFtUL8tN5LM6E1t6ihLpsehUDlQSnF4chnxjNa0aYxdZxziGQ1n5xNrZn3jaa2oxqFTYHUH9VZJs8WR7aS3DQVx5aY+UJpzvXQiLKhZ2NOoUWi6Ac2gZae0RZJZ23UUUCTbSEeSqq0oVsMGaxBQJ/dYarZyUETzM6Lq+evTVDRtG4VmFVJ2nXH42tPncOPfP7pmbXET2c5VDr0NUg7MreKc1/COq8YAdG4wGgC8ytoqB/aZjpRpa7GYyNpFbgGPhGRWh2EZk9XEGxhs0Sxs/d1JJLNNVg5iaeXgzAprVuv3rjMOQXuBWxtpFk93bt43axdQr3JgO2encXjL5SPo8UiryrVvN5hySK2RcmBGdyGRLamMzZiD+X/IFrxEVkMknkU4sHqjzAYtrZUScgOxtNrU+eSsjU5hzOHwZC7w36x06K4zDmx+QrwBu993ffHpopm7sUwHu5XsgHR91y5VIne81yvj4T+9Ee+7YWtdr+1m/NbI1TUzDtZuM6MZdpoqQ9MNLKc1O+bANjCJjI6FRDZvUmG1+B0GplOJ1HhtaoWlshYqhyOTy9g2FECvV+JupbWCLdyFg05Wy4WlFJ49G8HjJ/IzQzo5W4ldu0bFHLwFKYJDPZ62aEBYK17FfG/JtXIrOV630LW0ZAWNw4H8uSJzsQwymlGTW4m9RrLELOpOwDAoFpNqTdemVtjnv7DO4fDkMvaM9GIs3LyJgp17J5aBfaDrrfRlwaHzDomn6QZSql7UrrtT8CsiRIHU7ZJLlXArdQPMR59ao512Ws0tKAuJDA5diNrN8djUNjaRkJ0L24XWEpBmyq/TlMMffesFfOXx01hOq9ANal+zZqCUqHOIJlVcWErhkg2hplbZd59x8DbGOLBcf6dxYINBSvVV6gQIIejx1t9CgymHUi0JOhk7lTW7NskQGc2hHBJZ/PbXDuIdX3gKs7F0UaEbizmwhaaW3XGgQwPSP3tlBo+fmLevWTPdSnKJCmlm4LcM+DEW9mFiMdWUWoeuMw7Mb16vW2kpZX5wJhzGgbWz7ulQtxJgLgiJOt0IqRLZSt2AKBAokoCkuvbKYTySxIWlFKaiadx9/0G7b1WfFZDeEDLnSzx7JgIANdU5sJhDJwWk06qOWFrDbCzjMKjNy6ArFZBmSr3XJ2O034+MZmAuvnZV9oyuMw45t1J9rpGo5VaaWk7bO7ZyI0I7iYBHtPPja4W5lQpjDt2ATxbtQUe1kNUM+7NXiFM5HDhnJkrcesk6vDC+hP96aQpATiFsHvBjU9iPR4/PAcjNhV4NiihAEkhHKQfW2mR22aG2mulWspSDM9U+5pgRYw+NasJEwa4zDoEGZSuxAB+lwOSS2TCO3SSdmsoKmL7qelVXt8YcANOVVs9O+3OPnMRb/unxkr9zKocDZ03j8Ds37oAiCnj42CyAXMyBEIKbdg1BN0z3RC1uJUKIXS/RKczGzHt5IZG1R9bWoqpqpVRAmm1ke72yPW52ogkZS11nHBRJgEcS6l7gnC0DWNwhll59u+52I9iAxSCl6pBF0hbT7xqNTxbrKoI7u5DAeCRVUr05lcP0chqEALvW9+Dqrf3Iagb8Bf2TbrzY7CYqi6Tmz2xAETtKOcwu59w1bEphM5WDXCKV1akcRvv92L+5vykbq+67O8HGXdZpHJKq3ZabGQdmcDq1zgEwd771LgbJrL7qJm+dgk8R66pzYK4OpladZCzlwOYZj/b74JVFvGbnkHU8f5G7btsAvLKAcECpuYuw3yN1VLbSrKNj7tHpZfhk0W7z0gxKKQeW/NLjleFTRHzn/a/GGy9Zv+bn0qXGof6Mm2hKxbahIBRJsIPS8S5RDvUuBmlV77pMJUa9yoGlUE9Fi33OaUs5jFjB5m2DZrX5a3YOAih2HXllEa+/eLiuSWamcug8txIAHJ2ONbXGASjdPiOW0eCVhabXAHXuKlaBoEdCvN6AdEpFv1/GWL+vSDl0ckDanCBWv1upG+MNgKkc6tmYMOUwVUE5bOjz4ciUWVELALvX92IwqJScPfCpd+6DXkdapN/RwK8TmF3OQBEFZHUDsbTW0BGg1WBXSDsa78XSqt26ppl0rXKoP5VVRZ9fxqaw3zYOrCFdM3uxNBszlZW7lWrFr4h1zXNgU9suLKXw9WfO4bWffASGFVRmr8u6pbI+VYJA8On/tg9/dMvOotdjg39qJeCpP7XZTczGMtgxHIRgedmarRwIIZBFkqccllOtacnTlcYh6GmMWynkk7F5IICz8wnoBsWpuThG+30Qhc6bAscIeCRkNANaHWMMu92tVGtAP63q9nOnoik8fnwe5yNJ20+e1nQIJNf2fPtgbtf7mp1DuGIN5pQ3IrXZTczGMhgJeTEQNGsbaknxrRdFFPJjDmnVrs9qJt1pHOqMOVBKEU2qCPkUXDYaQiKr4+RsHC9NLOFya7Zup5JrmVD7bjGV1Zsa5HMTPqX2bC/nkJepaBqvTJttnJlyzagGvLKI7UNBeGUBu9b31H/CK+B3zKLuBOZiaQz3euzW8Y0eA1oNsiQUZStx5dAker1yXW6ltGogqxsI+WR7N/bQ0RmMR1LYOxpq1Gm6ErvZWh27xWS2i2MOcu1uJeZSkkWCk7NxnFswjQIzDmnNdNfdesk6PPvhW+zd71rSSamsmm5O0Rvq8drqq9luJaBDlAMh5Cwh5GVCyAuEkAPWsTAh5EFCyAnra7/j8R8khJwkhBwjhNzqOH6V9TonCSH/SGrNq6uSoMeMOdTan4S1zujzy9gy4Ee/X8bXf3EeAHDZxs42Dn5P/f100qoOXwfHZSphFsHV9tljzfMuWteDqWguIO1UDh5JACGkaYuJ3zE0qN2Zj2dBqTlwiimHVriVZLFYOfT62lM53EQp3Ucp3W/9/GcAHqKU7gTwkPUzCCF7ANwB4BIAtwH4PCGEbR+/AOBuADutf7c14LzKEvRK0A1ac0ohK4Dr88kghOCKTf12c6xLOtw4BJhbqY4gpJmt1JWiFT5FhEFLD5BfiUXLrbRnpNc+5pUFu3leWjOaHugPrPF0u2bC0liHezwYtpRDK9xKHknI+3x0UrbS2wDcZ31/H4DbHce/SSnNUErPADgJ4BpCyAiAXkrp09TcTt3veM6aYM90qDHuwHy/IWum8pWbzDjD1sGAfaxTCTRAOXS7WwmobeBPxHIrXbLBNA69XgmXj/Y5lINuF2Y2C/vz0AFBaVYdva7X6xrlkNUMpFWjJc086/0kUQA/JYQcJITcbR1bRymdAgDr67B1fCOAccdzJ6xjG63vC48XQQi5mxBygBByYG5uruaTZn7z1cxCnlxK4cx8AkBOOYT8zDiYnrO9Ha4aAEeb5noC0l3sVvLVsdNmbqXdlnLYPdKLzQN+R8zBgKfZyoF1Zu2AdNYZphx6Pbhqcz+2DQWwvQVjaxUpF3OIOTqyNpt679DrKaWThJBhAA8SQo5WeGypOAKtcLz4IKVfAvAlANi/f3/NTs5apsH93/95BFPLaXz/nuvtrphMJVw21oeQT8YNOwZrPaW2wV4Matwp6gZFVjO6VjmwbK9aMpYWk1n0eCRstgqzdo+YxW1zsQxSWR3pFigHNjSo3rohNzAeSUERBQz3eDES8uHhP7mxJechi8R2Kzn7KjWbuj5JlNJJ6+ssgO8CuAbAjOUqgvV11nr4BIAxx9NHAUxax0dLHF8z2KS21biVpqIpzC2bOws75uDPjVx85kM34537R8s+v1Owu9rWuBjYsxyU7ow5eOtwKy0msugLyBju8eA3r92EX79yFGNhs0vn+GISmZbEHFj2Wvsrh/FI0hV1SoNBDw6cXcRnfnbcXmvaKuZACAkQQnrY9wDeCOAQgB8AeI/1sPcA+L71/Q8A3EEI8RBCtsIMPD9ruZ5ihJBrrSyluxzPWRNqmYW8kMjabbqXUlmIArGDcYB5069xkpUrsHe+NboRmOLoduVQk1spqSLsVyAIBH97+17sHQ1hk2Uczi8kWxJzYAN/OiHmcD6StI1tK/nrt12C1188jM/87AT+/Zemx723zZTDOgBPEEJeBPAsgP+ilD4A4OMA3kAIOQHgDdbPoJQeBvBtAEcAPADgHkopu0PeD+ArMIPUpwD8uI7zWhF74M8qdr+RRBbJrG4OW0mpdqZSt1GvG2ExYRrYVmSBuAHbONToVuor6KxqG4dIa5SDXffSATGH8cWkPUynlYyEfPjMHfugiAJ+bg1jaoVyqNkcUUpPA7i8xPEFADeXec5HAXy0xPEDAC6t9VxWy2qzlZxtC6IpFYtJ1Q5GdxuiQKwWELUZh1y6oLeRp9U2sMW71phDYYA0HFDglQVMLqWQVnV4mx5zaD/lsBDP4P/7xXksJDK485pN2D3Si2hKxVJStY1tq/FIIvZs6MUL40sAWhNz6MqUkdyo0Oo+0AtWlggARFNZROLZlqS4uYWAp/aWCSxdkKUKdhtMedVSJb2YUItmMhBCMBj0YCGRRUYz4Gly/Ygdc2ijgPSHv3sIDxyeBiGmAv6Hd+2za0XcYhwAYN9Yn20c2jFbqS2RRAE+Waw65hCJ54zDUlLFQiKDrYPNbeXrJgKe2lsmsCZxw73daRx8NSiHe588g+8+fwHxjGYP8nEyEPRgPp6xlENz3Uq5mEN7uJXGI0n89Mg03n/jdpyei+O5sxH7OACM9rvHOFw+lkuNb8WMmO5MGQGwrteT14KgEguJ3HSopaSKSCLblL41bsWv1N6meTaWRtAj2TvobsOnrD4V+CeHZ/DiRBQAMNJX7BMfsriMrY4AABXkSURBVNJZ06redOWgiAIkgbRNf6X7njoLQgjuum4zrt4SxngkheloGuPWTOZNA+4xDvvGzPqpoEdqSQZVd96hMHvdn5qLV/XYiMOttJjMmsahi91KwTqVQ7e6lICccliNW+n0fBxvv2Ij7nr1lrzWGYzBoAcHzy3CoGi6ciCEINCAueJrzYvjS/jMz47jyVMLeNOl6zES8uHqLWEAwHNnIzgfSaLPL7ekwV05tgz4EfLJeVmRzaRrlcP2oQDOzCdgGBR/+m8v4qtPnCn7WKdxOLeQhEFb063RLbDpX2lVz2sQVg5VN/DJB45iIZ7B3HIGg11sHBTJ3GlXu5jG0ipmljPYPhzEvrG+kqMiB4KK3Xep2coBMPsrub0I7pvPnceTpxbw61duxEfesgeA2YbEr4g4cDaC85EUxlzkUgJMw3vV5v6W3S9drRwymoETs3H8xy8nMBj04LdevaWkfFtIZCEJBDqldguNbnYrBT0SJhaTuP1zT2I2lsGd14zhj9+wq6z0fflCFJ9/9BSGezyYjaVxaRe0GanEauZIs8/b9qHyMa5Bx2exFRP2en1y3qwJNzIfz2LbYAAfe/tl9jFJFHDFpj48enwOyayOaywl4SY+9va9dU0OrIcuVg5mSuB3n78Ag5rujmdOL5R8bCSeRTigoNcr266obnYr+RUR5yNJHJ2OwSsJ+Nwjp3BiNlb28SzYd3Q6ZrmVujONleFTxKrrHE7PmcZhW4UeP3nGocluJcBULhFHXM6NzMczedeJce3WAZxbSCKe1vCGPetacGaVWdfrtdulNJuuNQ5s+Pp3nzcrEH2yiO+/ULprx0LCNA4hn2zv5LrZrRTwSFCtAei/d7M5l3g5Vd6tMLFotjM/cG4RyazetZlKjJE+H355frGqGQin5+IQCLC5QqB0IJj7LLbCrTQQ8OS5Xt3IQjyLwWDxPfveG7bi/vdeg4MfuQW3X1Gy32fX0rXGYcBa7GeWzbTUN+1djx8dmkJGK97RRRIZDAQV9PllZCwfezcrB9Z8b9tQwO4QWiktmCmHk7Om6urmgDQA/NarN+P4TBwPHZ1d8bGn5hMYC/vhqaAIhhw74kqPWyvCAQULcbcbh0xJV3DAI+G1Fw11bfZcJbrWOBBCbPVwxVgfbtm9DrG0huPTxRlMkUQW4YAnb1ZDt7Z/AHKFXDdeNGznX1cKSLI0QUa3u5XeetkGjPb78PlHT644Ee7UbBzbVqipcbpLWqEcBoMKYhmt5MbKDaSyOhJZPU9hcVama40DkIs7XLGpD6P9Zv749HJx7cOClbrKjEPIJ0MWu/fSMYPwul1DdkOwSrMxxiOpvIBqt7uVJFHA+27YiufPL+GUFVMohWFQnF1IVIw3AObnkSUDtCLmEA6Y/59udS3Nx814SKmYA6c83bvCwWkc+rE+ZO5mp6OpvMdkNQOxtIZwwHQrAd3tUgKA1+wcxJ3XjOHabWG7IVg5t5JuUEwupXDTrmF7Aet2txJgtkYAgLPzpY3DmfkEPvy9l5FWDVvhlkMQiP2ZbIVyYPE3t7qWWPubUjEHTnm62tH29ivNABQrLJIEUlQ1vWiNZgwHFFs2d3MwGjAzZ1hKIKUUkkDKNjGciqagGRTbh4PYPhTA2YVkx49SrQbnHIZS/D8/egU/PzaH2/dtwO37Vg6UDgY9mI1lWqIc2KK74FblYLVsGQjwTclq6GrjsK7Xi/ffuD3v50K3EtsNDQQUO/2Q+y5zEEIQ9EplmxiOR0wlNtbvt8epdmOr80IGAgp8smhnchUyH8/gVdvC+MwdV1T3etZn0ttC5eDWdFbW/qabiy9roauNQyHrQ15MFygHlr8/Fvbb8x/CfAeSR49XKutWYjvjsbAPf/6WPTXNMehECCEY7ffZmVyFLCayq6rYZRlLzZ4hDeQKQt3qVpp3bPA41dPVMYdCShmHF8aX4JUFXLy+x3aH8A9ZPj0euWy20kQkCYEAG/p8CHokDPHdm81Y2I/xMsohYtXWVAvbFTd7ngNgTimTRdIUt5KmG3j8xNyqnjMfzyDokVpSPd7OcOPgYH2vF1PRdF564QvjS9i7MQRJFNBnGYdujzkUEvRKZbOVjk7HMBLydXV2VznG+n2YiCSL0llV3cByWiua3VCJbYMBBBTRnvHdTAgh6Pcrea3t14oHDk/j3V99Fsemy1fkF1KuAI5TGX7HOhgJeZFSdXuhy2oGDk8u25kl63rNjKYNfd2dp19Ib5mYw71PnsFPj8zgV/aub8FZuR/mqmRD5BmsT1E4UH3g/h1XjeLRD9zUst3xQNCT19p+rTi3YLrhzi6UTwEuZCFRugCOUxkec3DA0lmPTC7joVdm8OodA8hqht1XfctgAP/+/uvsnzkmPV4Z8Uz+Tu7I5DL++odH8MY96/Bnb9rdojNzN2ywzMRiKm82NMuQW02hpSQKLXXZDQSUpriVJqwY1uRSaXdcKeZj2YrtRzil4crBwXpLGfz9T4/hK0+cwe9/4wUAwL5NffZjrtocbsngDTcT9BQrhx++NAmBEHzi1y/j16sMrPCyMCjNisnCq3ArtZqBYHNaaLDsrguLKVxYSuFdX3zaLnJjZDQdf/PDI5i1Mg8XEt3dJr5WuHFwwJTDwXOLCPnMIOtQjwcbQtyNVIkey63EfOeUUjxwaBrXbRvo6jYjK1Gu1mExsXrl0GrCAaUpFdIXLMVwYSmFx4/P4dmzETx/finvMU+dWsBXnziDnxyehm5QRBJZDLbRtXQL3K3kYLjHC0IASoEPvuliHJ2Oodcn87z8FejxytANirRqwKeIODEbx+n5BP77DVtbfWquJuST0euV7FoQRsRReNkuDAY9iGfMAVBrFfeglOLCYs44nLAaOU4VdDV45rQ5F/p8JIlIIguDdvf8lVrhxsGBIgkYDHoQTal4094R3HHNplafUlsQtPorxdIqfIqIBw5NgxDgVhf2x3cbY2E/zkdKKwfWrqUdyBXCZbGhxJzrRjAfzyKjGZAEgsmlFI7PmHGuyaX89PNnzphzWc4tJO0W+zzmsHq4W6mAfWN9+LV9G3mLh1VQ2HzviRPzuGy0D8O93B23ElsHAzg9n98JOJJQEfRILWm/XSusX1Zh+5lGwlxKl24MYT6exeHJZetv5pRDIqPhpYkoAFM5sDbx21doXsgphhuHAr581358/Nf3tvo02ooeb37b7vORJHbwm7Eqtg8FMbGYyhsFuZjMon8VaaxugE0rO7eKFNPVwlxKr9pqjvNkMY4ph3I4eG4RukGxcziI85EkTszG4JNFbFwjNdPJcONQAh5jWB3OzqxZzcBMLG1n4nAqs20oAEpz+fuAVR3dRplKgNkeRSDA2YXS7UAawYUl87Wv2Zqb9RzyyZh0KIdnzixAFAh+7cqNSGZ1PHM6gm1DAQg8Y27VcOPAqRs23yGW1jAVTYFSYCM3DlXB3B2n53KuJVM5tJdx8EgiNvT51lQ5TCym0OOVsGt9j33shh2DmFlO2yNXnzkdwd6NIexeb3ZaPjK1jB3DXMXWAjcOnLqx3UppzZb+XDlUx1Zryttpx1yHSCK7qtYZbmHLQGBNlMN0NI2//8kxvDQRxcY+H9b3eiEKBB5JwDVbw1B1ivl4BqmsjhcnlvCqbWFscgSguYuzNni2EqdumFtpOa1iYtE8NtrHs0OqIeCRsL7Xi1NzcTx4ZAa6QbHYrsZh0I//fHGq4a/7/z55Bv/82GkAwC27hyGJAtb3etHnl+1YwmQ0jeRsHKpOce3WAYz2++y09O1cOdQENw6cunG6lZbTGgSSKyjkrMy2oQAOXYjiwSMz0HSKlKqvqq+SW9gyEEA0pWIpmc1rB1IvP3tlBldu6sNrLxrCtdsGAAB3XD2GvoCCEavP2dRSCq9MxyAQYP+WftPNFfLhwlKKu5VqhBsHTt2IAkFAERHPaFhMZrGu1wulBa2j25VtQwE8dcrMzWdx03aLOQC5jKWzC0nsa5BxODufwKm5BP7yrXvw36/PFVX+3s07AeRqQi4spfDM6QVcsiFkK9nNA35ML6exZaDymFVOafgdzGkIPV4ZsbSKC4spHm9YJdsGzZ3tddsGcKdVeNlu2UoAsMXy89cTlM5oOt5773P4j19OADBVAwDcsrt0QWWfX4ZXFnBuIYnnx5fsNFcAuH7HIG7YMcg3KjXClQOnIQS9EiIJFROLKVy9hXetXQ2XjYYAAPfctAO71vcgntGwf0t4hWe5j7GwH4QAZ+fNoPTPjszAoBRvvGQ9xiNJxNIa9mzorfga9z11Fg8fncUvTi9g/+YwfnxoGhetC9p9qAohhGBDyIevP3MOBgVec9GQ/bt7btqBe25q3PvrNrhx4DSEa7aG8W8HxqEbFKP9G1t9Om3F/i1hPPOhm+15If+nyrnRbsMrm37+M/NxUErxF98/BM2guGX3Ovzxt1/A4cll/PD3bsC2MtlDC/EMPvvQSVy1uR+vTC3jjZ/5OdKqgT9/c+WW7/s29SGjGfjArbvw2p2Da/HWuhJuHDgN4fdevwPfOTgBg1Je41AD6zqk1cjlYyE8eWoBR6djmLRaaTx0dBYHzi2CUuB3//V5/MfvvLpkc75/efIMElkNH3/7Xjx3dhH/56Hj+OQ79uBXL99Q8W/+w7v2rcl76Xa4M47TEEZCPtx17WYAvMahm3nz3g2Yi2Xwdz85BsAMsP/VDw6DUuB/3bYLR6aW8dUnzmAhnsE7vvAUvnPQjC0YBsX3np/Eay8aws51PfiNV23CMx+6ZUXDwFk7uHLgNIzfv2Un+gNKXnsDTndx08VD8MkiHj46i4vWBdHnV/DsmQi2Dgbw/tdtx7NnIvjy46dxbDqGA+cWcfD8IgxKsXUwgAtLKfzprRe1+i1wLFyjHAghtxFCjhFCThJC/qzV58NZPb1eGffctKOtuolyGotfkXDz7mEAwI27hvEGK8vo1kvWgxCCP7rlIiwlVfzgxUn85rWbcMOOQfzvf38JH/neIXhlAW/Yw+eNuwVXGAdCiAjgcwDeBGAPgDsJIXtae1YcDqcWbt9nJiTcsnsd3nL5CPZuDOGd+0cBAJeP9eG2S9ZjuMeDD9x6Mb58135cv30QR6djuGX3OrugktN6CBvt2NKTIOQ6AH9FKb3V+vmDAEAp/Vi55+zfv58eOHCgSWfI4XBWw6m5eNkZCqpuIKXq6LWK1VJZHf/0yAn82hWjvJq5CRBCDlJK96/0OLeY6Y0Axh0/TwB4VYvOhcPh1Eml4TqyKEAWc04LnyLiA7de3IzT4qwCV7iVAJRqtl4kaQghdxNCDhBCDszNzTXhtDgcDqc7cYtxmAAw5vh5FMBk4YMopV+ilO6nlO4fGhoq/DWHw+FwGoRbjMNzAHYSQrYSQhQAdwD4QYvPicPhcLoWV8QcKKUaIeR3AfwEgAjgXyilh1t8WhwOh9O1uMI4AACl9EcAftTq8+BwOByOe9xKHA6Hw3ER3DhwOBwOpwhuHDgcDodThCsqpGuBEBIDcKzCQ0IAog38k41+PQAYBDDfgNdph/fa6Ndt1LVjuP0aNvr1+PWrj0Zev2a9V3bOmymlK9cCUErb8h+AAyv8/ksN/nsNfb1q3kOrzm0t3mujX7dR165druEavB6/fi65fs16r6s95052K/2ny1+vkbTLe+XX0D2v12jc/n7dfP1c+V7b2a10gFbRPMrNdMJ7aBX82tUHv3710Y7Xb7Xn3M7K4UutPoEG0AnvoVXwa1cf/PrVRztev1Wdc9sqBw6Hw+GsHe2sHDgcDoezRnDj0EAIIWOEkEcIIa8QQg4TQv7AOh4mhDxICDlhfe23jg9Yj48TQv6p4LXuJIS8TAh5iRDyACFksBXvqVk0+Nr9N+u6HSaEfLIV76fZ1HD93kAIOWh9xg4S8v+3d38hVpRhHMe/P1op/JdlGkqFdFOZhGaQlhEUXdhNgV0U0W52kxVEd2kEdeOFUhLqhUUaWhEWFllRUUKSlXWR4p8E05BUJInMvxRFTxfve+iwc9Ztd+c4Z8ffB4Yz+56Zl/d9ODvPzJw576s7muqamcv3SVouqdWQ+rVScvwWSzoo6VRV/SlFmY9Qne8LMAm4Ma+PAfaSpj1dCizM5QuBJXl9FDAHWACsbKqnCzgKXJb/XkqaKa/yPg6D2I0HfgYm5L/XAndW3b8OjN8MYHJenwYcbqrrO2A2aZ6Vj4G5VfdvmMVvVq7vVNX9GsriK4cSRcSRiPg+r58E9pBmubuHdJAiv96btzkdEVuAP3pVpbyMymdtY2kxv0WdlBi7q4G9EdGYDepzYF6bm1+5QcRvW0Q0PlO7gYskXShpEjA2Ir6JdKRb19inzsqKX35va0QcOZftbwcnhzaRNIV0dvEtcHnjw5JfJ55t34j4C3gM2ElKClOB1W1sbkcZSuyAfcC1kqZI6iL9M1/Zzz61Moj4zQO2RcSfpAPioab3DuWy88YQ41cbTg5tIGk0sAF4KiJODGL/EaTkMAOYDOwAFpXayA411NhFxDFS7NYDXwIHgL/LbGMnG2j8JF0PLAEebRS12Oy8eaSxhPjVhpNDyfKBfQPwZkS8m4t/yZfr5Nej/VQzHSAi9udL+7eBW9rU5I5RUuyIiA8i4uaImE0af+vHdrW5kww0fpKuAN4DuiNify4+RJqmt6HllL11VFL8asPJoUT5+4HVwJ6IWNb01kagJ6/3AO/3U9VhYKqkxuBYd5HugdZWibFD0sT8egnwOPBqua3tPAONn6RxwEfAooj4qrFxvnVyUtKsXGc3/yPmw11Z8auVqr8Rr9NCenomSLeBtuflbtITNJtIZ7CbgEub9jkA/AacIp21Tc3lC0gJYQdprJTxVfdvGMXuLeCHvNxfdd86MX7As8Dppm23AxPzezcBu4D9wEryj2XrvJQcv6X58/hPfn2+6v4NZvEvpM3MrMC3lczMrMDJwczMCpwczMyswMnBzMwKnBzMzKzAycGsDSQtkNQ9gO2nSNrVzjaZDURX1Q0wqxtJXRGxqup2mA2Fk4NZC3nwtU9Ig6/NIA3h3A1cBywDRgO/Ag9HxBFJXwBfA7cCGyWNIQ3Z/IKk6cAqYCTph2WPRMQxSTOBNcAZYMu5651Z/3xbyaxv1wCvRMQNwAngCWAFcF9ENA7si5u2HxcRt0fEi73qWQc8nevZCTyXy18Dnow0BpRZR/GVg1nfDsZ/4+a8ATxDmtjlszw52gVA87j963tXIOliUtLYnIvWAu+0KH8dmFt+F8wGx8nBrG+9x5Y5Cew+y5n+6QHUrRb1m3UM31Yy69tVkhqJ4AFgKzChUSZpRB7Pv08RcRw4Jum2XPQQsDkifgeOS5qTyx8sv/lmg+crB7O+7QF6JL1MGpVzBfApsDzfFuoCXiJNE3k2PcAqSSOBn4D5uXw+sEbSmVyvWcfwqKxmLeSnlT6MiGkVN8WsEr6tZGZmBb5yMDOzAl85mJlZgZODmZkVODmYmVmBk4OZmRU4OZiZWYGTg5mZFfwL1o/AMQlhck4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-200:].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + " first_august_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", + " for y in range(1990,\n", + " sorted_data.index[-1].year)]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "ename": "AssertionError", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m first_august_week[1:]):\n\u001b[1;32m 5\u001b[0m \u001b[0mone_year\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mweek1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m52\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0myear\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myear\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAssertionError\u001b[0m: " + ] + } + ], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_august_week[:-1],\n", + " first_august_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "ename": "AssertionError", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m first_august_week[1:]):\n\u001b[1;32m 5\u001b[0m \u001b[0mone_year\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mweek1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m52\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0myear\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myear\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAssertionError\u001b[0m: " + ] + } + ], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_august_week[:-1],\n", + " first_august_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_august_week[:-1],\n", + " first_august_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " #assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEICAYAAACQzXX2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEapJREFUeJzt3XuQZHV5h/HnZRd0YWBFF4YKoEPQGImrImPwUsFZsCwV1BJNvCCBlGZNeSNmUxZJqWgSlIRgaSxIakWUEuOoYEoB46Wio+IFmVXLFQlqBBGIRGJAl6Cw8uaPc4bMrjs7Zy49fd6t51M1Nae7T/d53z7d33P616e7IzORJNWy17ALkCQtnOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJU0OpB3fC6detybGxsh/Puuusu9ttvv0EtckXYQz/YQz/Yw/LbsmXL7Zl50HzzDSy8x8bGmJ6e3uG8qakpJiYmBrXIFWEP/WAP/WAPyy8ifthlPodNJKkgw1uSCjK8Jakgw1uSCjK8Jakgw1uSCjK8Jakgw1uSChrYh3Qk/bqxM6+8f3rT+u2cPuv0IN14zokrshytHPe8Jakgw1uSCjK8Jakgw1uSCjK8Jakgw1uSCjK8Jakgw1uSCjK8Jakgw1uSCjK8Jakgw1uSCjK8Jakgw1uSCjK8Jakgw1uSCjK8Jakgw1uSCjK8JamgzuEdEa+LiGsj4tsR8cGIeOAgC5Mkza1TeEfEocBrgfHMfDSwCnjRIAuTJM1tIcMmq4E1EbEa2Be4dTAlSZLmE5nZbcaIM4CzgbuBT2fmKbuYZyOwEWB0dPSYycnJHS7ftm0bIyMjS615qOyhH6r2sPWWO++fHl0Dt929Mstdf+jagdxu1fUwW9962LBhw5bMHJ9vvk7hHREHApcBLwTuAD4CXJqZl8x1nfHx8Zyent7hvKmpKSYmJuZdXp/ZQz9U7WHszCvvn960fjvnbV29Isu98ZwTB3K7VdfDbH3rISI6hXfXYZOnATdk5k8y817go8CTl1KgJGnxuob3TcATI2LfiAjgBOC6wZUlSdqdTuGdmVcDlwJfB7a219s8wLokSbvRecAtM88CzhpgLZKkjvyEpSQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQV1Dm8I+JBEXFpRPx7RFwXEU8aZGGSpLmtXsC87wQ+mZkviIh9gH0HVJMkaR6dwjsiDgCOA04HyMx7gHsGV5YkaXciM+efKeJxwGbgO8BjgS3AGZl5107zbQQ2AoyOjh4zOTm5w+1s27aNkZGR5al8SOyhH6r2sPWWO++fHl0Dt909xGKWQZce1h+6dmWKWaS+PZY2bNiwJTPH55uva3iPA18FnpKZV0fEO4GfZeYb57rO+Ph4Tk9P73De1NQUExMT8y6vz+yhH6r2MHbmlfdPb1q/nfO2LmTksn+69HDjOSeuUDWL07fHUkR0Cu+ub1jeDNycmVe3py8FHr/Y4iRJS9MpvDPzx8CPIuKR7Vkn0AyhSJKGYCGv2V4DfKA90uQHwB8NpiRJ0nw6h3dmfhOYdxxGkjR4fsJSkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgqq/dPV0iLM/gV3qSr3vCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpIMNbkgoyvCWpoAWFd0SsiohvRMQVgypIkjS/he55nwFcN4hCJEnddQ7viDgMOBG4cHDlSJK6iMzsNmPEpcDbgP2BP8/Mk3Yxz0ZgI8Do6Ogxk5OTO1y+bds2RkZGllrzUNlDPyylh6233LnM1SzO6Bq47e5hV7E09rBr6w9du+jrbtiwYUtmjs833+ouNxYRJwH/lZlbImJirvkyczOwGWB8fDwnJnacdWpqip3Pq8Ye+mEpPZx+5pXLW8wibVq/nfO2dnoK9pY97NqNp0ws6+3tStdhk6cAz4mIG4FJ4PiIuGRgVUmSdqtTeGfmX2TmYZk5BrwI+GxmvnSglUmS5uRx3pJU0IIHejJzCpha9kokSZ255y1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBXUK74g4PCI+FxHXRcS1EXHGoAuTJM1tdcf5tgObMvPrEbE/sCUiPpOZ3xlgbZKkOXTa887M/8zMr7fTPweuAw4dZGGSpLlFZi7sChFjwBeAR2fmz3a6bCOwEWB0dPSYycnJHa67bds2RkZGllDu8NlDPyylh6233LnM1SzO6Bq47e5hV7E09rBr6w9du+jrbtiwYUtmjs8334LCOyJGgM8DZ2fmR3c37/j4eE5PT+9w3tTUFBMTE52X10f20A9L6WHszCuXt5hF2rR+O+dt7Tpy2U/2sGs3nnPioq8bEZ3Cu/PRJhGxN3AZ8IH5gluSNFhdjzYJ4D3AdZn59sGWJEmaT9c976cApwLHR8Q3279nDbAuSdJudBroycyrgBhwLZKkjvyEpSQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQV1MuffR7mr3sv5VeftTBLWc+b1m/n9J78Crw0DO55S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S1JBhrckFWR4S1JBncM7Ip4REddHxPcj4sxBFiVJ2r1O4R0Rq4DzgWcCRwEvjoijBlmYJGluXfe8fxf4fmb+IDPvASaB5w6uLEnS7kRmzj9TxAuAZ2Tmy9vTpwLHZuard5pvI7CxPflI4PqdbmodcPtSix4ye+gHe+gHe1h+D8vMg+abaXXHG4tdnPdrqZ+Zm4HNc95IxHRmjndcZi/ZQz/YQz/Yw/B0HTa5GTh81unDgFuXvxxJUhddw/sa4BERcURE7AO8CPj44MqSJO1Op2GTzNweEa8GPgWsAi7KzGsXsbw5h1QKsYd+sId+sIch6fSGpSSpX/yEpSQVZHhLUkGGtyQV1PvwjojjI+KIYdexFNV7qF7/jD2hD3vohz700Ns3LNvvTpkE7gDuA87KzM8Pt6qFqd5D9fpn7Al92EM/9KmH3ux5R8RhEXHArLNeCFyWmcfR3FkvjognDae6bqr3sJD6I2JXn7rtherrAeyhL/rcw9DDOyIeFRGfAK4C/ioiZr7w6hfAvu30h2m+e+CJfQyN6j0spv7s4Uu26usB7KEvKvQwlPCOiP1mnXwccHNmjgGfBf6+Pf+nwC8jYv/M/CnwXWAUGFvBUudUvYfd1P85fr3+kbb+79GT+mdUXw9gD9jDoqxYeEfEgRHxvoi4BjgnIg5qt1aPAb7U7s19HLgjIk6kuVP2B9a3N/E9mm//umelat5Z9R52U//6WfV/bBf1P6a9ie8Os/4Z1dcD2EN7E/awBCu5530csB14Fs23FP4lcEBbwyGzXoZfDLwE+Brwc5ofgCAzvwIcD/xsBWveWfUe5qp/FTXqn1F9PYA92MNSZeay/tEEwSuAz9N8t/e69vwPA69tp48AzmkvfwLNuNKq9rIR4Cft7RwKXAe8GngvcAGw73LXvKf1UL3+PakPe7CHQf0NYs/7JOA5wFuAJwF/157/GeDJ7fSPgC8Cz8zMa2i2eBsAMnMbcDXwhMy8BTiVZkzpx8AbMvN/B1DzntZD9fr3pD7swR4GouuPMexg5miDiHgCzUuJLwJXZuYvgd8CfpCZn42IG4BzI+LpwBbgeRGxLjNvj4jvAXdFxEOBdwEvjYiDab4r/L9pXp6QmdPA9BL73ON6qF7/ntZH24s9+JxeMQve8551Bx0HXERz6MzTgLe1s9wHfDci1mTmDTQvLx5DM050K81xkgC/onkJshdwGc3XMp4CHANszsz7Ft3V/D2sant4Ks3LnlI9tHVlRExQdB20fRxQvY+IeEj7/8nA+4r2cHBEPCQixmnGdiv2sE/l5/SidBlboTmu8U+Afwb+GNgb+FPgVe3lBwLfAo6muRPOAcbay06iuQPWtdNbgbU0g/yfAPaZtZy9BjU+BOwHvJxmhWyieVOiWg/7A1fSfJ86wOsq1T/rsXQa8G80H3Yo1Qf//6nk36cZE52i+b3Wao+l/YDTaYYN7gROLNjD3sArgcuBfwQeDpxRqYel/M275x0RhwBXABPA+2kG80+mGTfaDpCZ/wN8DHht+2A4GHhUexNfAJ4K3JOZVwDvAS4FzqfZyt87s6wc3J7qfjRhcTzwbuDpwPNp3pS4r0IPrTXAA4AjI2IdcCTNXkKJ+iNib+Ba4AXAuZn5/Paio2ctv9d9ZGZGxFrgD4B3ZOZEZl5Ps2dWooeIeDjNkMIJwBuAW4CbaN6wK/N4Al5F85x+B81v6p7cnv5VoR4Wr8PWbQ3NL8XPnD6dZrD/NOBrs87/DeDWdvpVNB8dPbC9/uXAQ2fNu26lt1LAg2ZNv55mhZ5SrIfTgHOBNwIvA54NXFOl/na5HwVO2em8FwJXV+mDZm/vr9vpmT3xk6v0QBPQD5h1+iKaDepzq/TQLvNy4A/b6ZcBr2kfS2We00v56zLm/Qvga+2B69C8DDk2My+m2QM8BCAzbwWujYhjM/N84PvAh2h+vPiqzLxp5gYz8/YOy11WmXlHRBwQEe+jGTZZR7PyjoyI0T73MOu+3wv4D5q91+Mz83LgiL7Xv5OLgLMi4ryImIqINwFfpfmN1IPb2vrex+3A70XEKcCWiLiYZm/vt9tXRL3uITN/lc2beDNj9kHzRUuX06yHEs9p4F+B0yLiI8CbgccC36bp4aC2rr73sHgL2MrN7GFcDJzRTr8f+Nt2+sHAhbRbMprxqEcDDxz2FmqnPl5J8/JwM80Y+JeBN9E8gHvdA/ARmr2mtTTHq76B5sH6xmLr4FM0H4Y4nOaJdAbwlULr4RFtvf9Asxf3EuDtNMcBv55mI9vrHnbq5xvAye30JZWe0+1z+CKanbE3A2cB17ePr1LrYaF/nY82ycyMiMOAQ2i2eLR3FhFxBc2Y8qpst2SZeW9mfjszf9F1GSshMy/I5t3mC2jGKf+J5iXUx+lxDxExQrPH927gkzTvlB8LvBg4MCIup8f17+R5mfnWzPwR8Faaw7jeRYH10LqJ5uPQq7MZV72iPe8KmjdkK/RARMw8/6+iebMP4OzmojKPp6OAqWz2mt9Ls3PzQeo8lhZvgVu5Z9N8QcveNFu8Z9DcWS8BHj/sLdECezkc+DTwkPb0S4Gjh13Xbup9IM2rngtp3miaAD496/Je17+bvh5G82bSgyv1QfPx6C3t9INoXkEcXamHttZ9aTacJ+90/il976HNnj8DLmxPr6PZsTyi2npYzN+CfowhIr4E/CZwI82xkW/JzG91voEha48SOIFmY3MUzdDJ+Zl5726v2EPthwhOBiYz88fDrmchIuIBNBv+U4HfoTnM64LM3D7UwhYoIs6meT4cTbMjcFY2e+KlRMT1wJsy80Mzn+MYdk1dRcSRNM/je2jWxb8Af5PNJyL3aJ3Duz3M6yzgBuCSbN/wqCQiVtN8v8EvaXoo99IpIlYB91V6gu1KRLyC5jDN91dcDzMi4pHADyv2MOsDd4+jeRN8e8XHVbsj8wjgy5l597DrWSm9/Rk0SdLchv5LOpKkhTO8Jakgw1uSCjK8Jakgw1uSCjK8Jakgw1uSCvo/Eksj3q1kgScAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.hist(xrot=20)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2020 221186\n", + "2002 516689\n", + "2018 542312\n", + "2017 551041\n", + "1991 553090\n", + "1996 564901\n", + "2019 584066\n", + "2015 604382\n", + "2000 617597\n", + "2001 619041\n", + "2012 624573\n", + "2005 628464\n", + "2006 632833\n", + "2011 642368\n", + "1993 643387\n", + "1995 652478\n", + "1994 661409\n", + "1998 677775\n", + "1997 683434\n", + "2014 685769\n", + "2013 698332\n", + "2007 717352\n", + "2008 749478\n", + "1999 756456\n", + "2003 758363\n", + "2004 777388\n", + "2016 782114\n", + "2010 829911\n", + "1992 832939\n", + "2009 842373\n", + "dtype: int64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.sort_values()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG6VJREFUeJzt3X+MndV95/H3xwyxgdpkDGPiH4Cp4qAYkkJ8ZdxNtlvi1nY2FTYqJLOhYbRYcgJsSqqVwA5ZoQVXgmq1aa0oLFYoGEgAr7cIbxcvGcxGZXcdm3EgBUNcTwIxjh1m2HHARPKUsb/7xz1T35mO75w7c2fuj/m8pKv73O8859zn+BnP9z7nnOdcRQRmZmY5ptX6AMzMrHE4aZiZWTYnDTMzy+akYWZm2Zw0zMwsm5OGmZllc9IwM7NsThpmZpbNScPMzLK11PoAqu3888+PhQsX1vowzMwayt69e9+JiLbR9mu6pLFw4UK6urpqfRhmZg1F0i9y9nP3lJmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw2zKaznveN84YFd9Bw7XutDsQbhpGE2hW3aeYAX3+xj03MHan0o1iCa7j4NMxvdpd/cQf/AyX96/djugzy2+yDTW6axf+PnanhkVu98pTEGvqS3RvfC7VdzzRXzmHFm8U/AjDOnsfqKebxwx9U1PjKrd04aY+BLemt0c2bNYOb0FvoHTjK9ZRr9AyeZOb2FOTNnjLi/PyjZIHdPVcCX9NZM3nm/nxuuupgvLb2I7+85SG+ZhFD6QWnjtZ+YxKO0eqOIqPUxVFWhUIiJWnuq573jbHzmdX6w71cc/+AkM86cxsrLPsKdn//4aT+hmTWy4R+UBvmDUvORtDciCqPt5+6pClR6SW/W6Dz2YcO5e6pClVzSmzU6f1Cy4Zw0KvTAl09dvW1cc3kNj8RscviDkpXymIaZmXlMw8zMqs9Jw8zMsmUlDUl/JmmfpFclPS5phqTZkjolHUjPrSX7b5DULWm/pJUl8SWSXkk/2yRJKT5d0pMpvlvSwpIyHek9DkjqqF7TzcysUqMmDUnzgT8FChFxOXAG0A6sB3ZGxCJgZ3qNpMXp55cBq4DvSDojVXc/sA5YlB6rUnwtcDQiPgp8C7gv1TUbuAu4ClgK3FWanMzMbHLldk+1AGdJagHOBg4Dq4Et6edbgDVpezXwRET0R8QbQDewVNJcYFZE7Iri6Psjw8oM1rUNWJ6uQlYCnRHRFxFHgU5OJRozM5tkoyaNiPgl8J+Ag8AR4N2I+AFwQUQcSfscAeakIvOBt0qqOJRi89P28PiQMhExALwLnFemLjMzq4Gc7qlWilcClwDzgHMk/Um5IiPEokx8rGVKj3GdpC5JXb29vWUOzczMxiOne+oPgDciojciPgD+BvgXwNupy4n03JP2PwRcWFJ+AcXurENpe3h8SJnUBXYu0FemriEiYnNEFCKi0NbWltEkMzMbi5ykcRBYJunsNM6wHHgd2A4MzmbqAJ5O29uB9jQj6hKKA957UhfWMUnLUj03DiszWNd1wPNp3ONZYIWk1nTFsyLFzMwmhZeFH2rUZUQiYrekbcCPgQHgJWAz8FvAVklrKSaW69P++yRtBV5L+98aESdSdTcDDwNnATvSA+BB4FFJ3RSvMNpTXX2S7gFeTPvdHRF942qxmVkFvCz8UF5GxCxTz3vH+XePv8S3v3SlF+ybAqbasvBeRsSsyvyNjVOLl4UfmVe5NRuFv7FxavKy8CPzlYbZKPyJc+oaXBb+qVs+zQ1XXUzv+/21PqSa85WG2Sj8iXPq8vfn/HNOGmYZ/EVEZkWePWVTnmdFmXn2lNWBRrkpyrOizPK5e8omTL3fFOVZUWaVc/eUVV2j3BTV895xNj7zOj/Y9yuOf3CSGWdOY+VlH+HOz3+8obup3N1mY+HuKauZRpmi2qyzotzdZhPJ3VNWdY30x7iZZkW5u80mg5OGTYhG+WPcTPPwX7j96tN2t5lVi5OGTYhm+mPcKBrpCs8al5OGWRNplCs8a1yePWVmZp49ZWZm1eekYWZm2Zw0zMwsm5OGWYNolLW8rLk5aZg1CN/pbfXAU27N6pzv9LZ64isNszrXKGt52dTgpGFW53ynt9WTUZOGpEslvVzyeE/S1yXNltQp6UB6bi0ps0FSt6T9klaWxJdIeiX9bJMkpfh0SU+m+G5JC0vKdKT3OCCpo7rNN2sMg3d6P3XLp7nhqovpfb+/1odkU1RFd4RLOgP4JXAVcCvQFxH3SloPtEbEHZIWA48DS4F5wHPAxyLihKQ9wG3Aj4BngE0RsUPSLcAnI+KrktqBayPii5JmA11AAQhgL7AkIo6e7hh9R7hZ8/F3hEy8ibojfDnws4j4BbAa2JLiW4A1aXs18ERE9EfEG0A3sFTSXGBWROyKYqZ6ZFiZwbq2AcvTVchKoDMi+lKi6ARWVXjMZtbgPHOsflQ6e6qd4lUEwAURcQQgIo5ImpPi8yleSQw6lGIfpO3h8cEyb6W6BiS9C5xXGh+hjJk1Oc8cqz/ZVxqSPgRcA/zX0XYdIRZl4mMtU3ps6yR1Serq7e0d5fDMrFF45lj9qaR76nPAjyPi7fT67dTlRHruSfFDwIUl5RYAh1N8wQjxIWUktQDnAn1l6hoiIjZHRCEiCm1tbRU0yczqWaUzx3zX/MSrJGn8G051TQFsBwZnM3UAT5fE29OMqEuARcCe1JV1TNKyNF5x47Ayg3VdBzyfxj2eBVZIak2zs1akmFWZ/7NZvapk5pjHPiZe1uwpSWdTHFv47Yh4N8XOA7YCFwEHgesjoi/97E7gJmAA+HpE7EjxAvAwcBawA/haRISkGcCjwJUUrzDaI+LnqcxNwDfSofx5RDxU7lg9e2psvvnUK3xvz0FuWHoRG6/9RK0Px6wiw8c+BnnsI1/u7Cl/CdMUV+l/Nk99tHrU897x034/un9P8/hLmCxLpQONvvy3euS75iePFyyc4nL/s3nqo9U7fz/65HDSsKz/bC/cfvVpL//N6sEDXz7Vs7JxzeU1PJLm5qRhWf/ZfPlvZuAxjbrRCFNevWiemXn2VJ3wlFczq6Xc2VPunqoxDzCbWSNx91SNjWVtnUboyjKz5uSkUWNjGWD2vRJmVivunqoDufPL3ZVlZrXmgfAJVs1lN7xUgjUCLzXTmLyMSJ2oZleS75WwRuDu0+bm7qkJMlFdSV4qweqVu0+nBndPTRB3JVmOZurK8e98Y3P3VI25K2lqy50W3UxdOf6dnxrcPTWB3JU0dZUmg5Hu8G/Wrhz/zjc/d0+ZVVHul1q5K6e5uuaagbunrCnV+93wuXf4uyunubrmphJ3T1nNVfKJc7Run1qrJBlM1a6cZu2amyrcPWU1l7PCb6XfZV5LX3m0i7aZM4Ykg9LvLJnq3DVXn7zKrdW9Sj5xNtI3B/ob5Mpz11xj85iG1UwlK/z6D01z8Rd6NS5faVjNVJoIpuoYQDOqh6sxz94am6wrDUkflrRN0k8lvS7pdyXNltQp6UB6bi3Zf4Okbkn7Ja0siS+R9Er62SZJSvHpkp5M8d2SFpaU6UjvcUBSR/WabvWgkk+cD3y5wMY1l7N43iw2rrnc4wQ2Lp69NTZZA+GStgAvRMR3JX0IOBv4BtAXEfdKWg+0RsQdkhYDjwNLgXnAc8DHIuKEpD3AbcCPgGeATRGxQ9ItwCcj4quS2oFrI+KLkmYDXUABCGAvsCQijp7uWD0QbmblNNKkislUtfs0JM0Cfg94ECAi/jEifg2sBrak3bYAa9L2auCJiOiPiDeAbmCppLnArIjYFcVM9ciwMoN1bQOWp6uQlUBnRPSlRNEJrBrtmM3MTmcs35Zpp+R0T/020As8JOklSd+VdA5wQUQcAUjPc9L+84G3SsofSrH5aXt4fEiZiBgA3gXOK1PXEJLWSeqS1NXb25vRJDObqjypYnxykkYL8Cng/oi4EvgNsL7M/hohFmXiYy1zKhCxOSIKEVFoa2src2hmZp69NR45s6cOAYciYnd6vY1i0nhb0tyIOJK6nnpK9r+wpPwC4HCKLxghXlrmkKQW4FygL8V/f1iZH2a1zMzsNOph9lauepvlNeqVRkT8CnhL0qUptBx4DdgODM5m6gCeTtvbgfY0I+oSYBGwJ3VhHZO0LI1X3DiszGBd1wHPp3GPZ4EVklrT7KwVKWZmNiXU2yyv3Ps0vgZ8L82c+jnwbykmnK2S1gIHgesBImKfpK0UE8sAcGtEnEj13Aw8DJwF7EgPKA6yPyqpm+IVRnuqq0/SPcCLab+7I6JvjG01M2sY9bpGl9eeMjOrQ5O9RpeXRjcza2D1OsvLy4iYmdWpelw6x91TZmbm7imr/2+5M7PG46TRxOptqp6ZNT6PaTShep2qZ2aNz1caJZqlO8cLspnZRHHSKNEs3Tn1OlXPrNk1ywfPctw9RXN259TjVD2zZlf6wXPjtZ+o9eFMCE+5ZfLvvDSz5tIMX+zkKbcVcHeOmY1HpeOIjdyN5aSReH19MxurSj94NvL4qbunzMyq4CuPdtE2c8aQccTS7+2A+u7Gyu2ectIwM5sk9Tx+6jENM7M60wzjp55ya2Y2iRp9Ory7p8zMzN1TZmZWfU4a1pQaeR68WT1z0rCm1Mjz4M3qmQfCrak04zpiZvXEVxrWVLwsvNnEctKwptIM8+DN6llW0pD0pqRXJL0sqSvFZkvqlHQgPbeW7L9BUrek/ZJWlsSXpHq6JW2SpBSfLunJFN8taWFJmY70HgckdVSr4da8vI6Y2cTJuk9D0ptAISLeKYn9BdAXEfdKWg+0RsQdkhYDjwNLgXnAc8DHIuKEpD3AbcCPgGeATRGxQ9ItwCcj4quS2oFrI+KLkmYDXUABCGAvsCQijp7uWH2fhplZ5SbjPo3VwJa0vQVYUxJ/IiL6I+INoBtYKmkuMCsidkUxUz0yrMxgXduA5ekqZCXQGRF9KVF0AqvGccxmZjYOuUkjgB9I2itpXYpdEBFHANLznBSfD7xVUvZQis1P28PjQ8pExADwLnBembqGkLROUpekrt7e3swmmZlZpXKn3H46Ig5LmgN0SvppmX01QizKxMda5lQgYjOwGYrdU2WOzczMxiHrSiMiDqfnHuApiuMVb6cuJ9JzT9r9EHBhSfEFwOEUXzBCfEgZSS3AuUBfmbrMzKwGRk0aks6RNHNwG1gBvApsBwZnM3UAT6ft7UB7mhF1CbAI2JO6sI5JWpbGK24cVmawruuA59O4x7PACkmtaXbWihQzM7MayOmeugB4Ks2ObQG+HxH/U9KLwFZJa4GDwPUAEbFP0lbgNWAAuDUiTqS6bgYeBs4CdqQHwIPAo5K6KV5htKe6+iTdA7yY9rs7IvrG0V4zMxsHL41uZmZeGt3MzKrPScPMzLI5aZiZWTYnDTMzy+akYWZm2Zw0zMwsm5OGmZllc9IwM7NsThpmZpbNScPMzLI5aZiZWTYnDTMzy+akYWZm2Zw0zMwsm5OGmZllc9IwM7NsThpmZpbNScPMzLI5aZiZWTYnDTMzy+akYWZm2Zw0zMwsW3bSkHSGpJck/W16PVtSp6QD6bm1ZN8Nkrol7Ze0siS+RNIr6WebJCnFp0t6MsV3S1pYUqYjvccBSR3VaLSZmY1NJVcatwGvl7xeD+yMiEXAzvQaSYuBduAyYBXwHUlnpDL3A+uARemxKsXXAkcj4qPAt4D7Ul2zgbuAq4ClwF2lycnMzCZXVtKQtAD4PPDdkvBqYEva3gKsKYk/ERH9EfEG0A0slTQXmBURuyIigEeGlRmsaxuwPF2FrAQ6I6IvIo4CnZxKNGZmNslyrzT+ErgdOFkSuyAijgCk5zkpPh94q2S/Qyk2P20Pjw8pExEDwLvAeWXqMjOzGhg1aUj6I6AnIvZm1qkRYlEmPtYypce4TlKXpK7e3t7MwzQzs0rlXGl8GrhG0pvAE8BnJT0GvJ26nEjPPWn/Q8CFJeUXAIdTfMEI8SFlJLUA5wJ9ZeoaIiI2R0QhIgptbW0ZTTIzs7EYNWlExIaIWBARCykOcD8fEX8CbAcGZzN1AE+n7e1Ae5oRdQnFAe89qQvrmKRlabzixmFlBuu6Lr1HAM8CKyS1pgHwFSlmZmY10DKOsvcCWyWtBQ4C1wNExD5JW4HXgAHg1og4kcrcDDwMnAXsSA+AB4FHJXVTvMJoT3X1SboHeDHtd3dE9I3jmM3MbBxU/EDfPAqFQnR1ddX6MMzMGoqkvRFRGG0/3xFuZmbZnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZNicNMzPL5qRhZmbZnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZNicNMzPL5qRhZmbZnDTMzCybk4aZmWVz0jAzs2xOGmZmls1Jw8zMsjlpmJlZtlGThqQZkvZI+omkfZL+Y4rPltQp6UB6bi0ps0FSt6T9klaWxJdIeiX9bJMkpfh0SU+m+G5JC0vKdKT3OCCpo5qNNzOzyuRcafQDn42I3wGuAFZJWgasB3ZGxCJgZ3qNpMVAO3AZsAr4jqQzUl33A+uARemxKsXXAkcj4qPAt4D7Ul2zgbuAq4ClwF2lycnMzCbXqEkjit5PL89MjwBWA1tSfAuwJm2vBp6IiP6IeAPoBpZKmgvMiohdERHAI8PKDNa1DVierkJWAp0R0RcRR4FOTiUaMzObZFljGpLOkPQy0EPxj/hu4IKIOAKQnuek3ecDb5UUP5Ri89P28PiQMhExALwLnFemLjMzq4GspBERJyLiCmABxauGy8vsrpGqKBMfa5lTbyitk9Qlqau3t7fMoZmZ2XhUNHsqIn4N/JBiF9HbqcuJ9NyTdjsEXFhSbAFwOMUXjBAfUkZSC3Au0FemruHHtTkiChFRaGtrq6RJZmZWgZzZU22SPpy2zwL+APgpsB0YnM3UATydtrcD7WlG1CUUB7z3pC6sY5KWpfGKG4eVGazrOuD5NO7xLLBCUmsaAF+RYmZmVgMtGfvMBbakGVDTgK0R8beSdgFbJa0FDgLXA0TEPklbgdeAAeDWiDiR6roZeBg4C9iRHgAPAo9K6qZ4hdGe6uqTdA/wYtrv7ojoG0+Dzcxs7FT8QN88CoVCdHV11fowzMwaiqS9EVEYbT/fEW5mZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMLJuThpmZZXPSMDOzbE4aZmaWzUnDzMyyOWmYmVk2Jw0zM8vmpGFmZtmcNMzMmkDPe8f5wgO76Dl2fELfx0nDzKwJbNp5gBff7GPTcwcm9H1aJrR2MzObUJd+cwf9Ayf/6fVjuw/y2O6DTG+Zxv6Nn6v6+/lKw8ysgb1w+9Vcc8U8ZpxZ/HM+48xprL5iHi/ccfWEvJ+ThplZA5szawYzp7fQP3CS6S3T6B84yczpLcyZOWNC3s/dU2ZmDe6d9/u54aqL+dLSi/j+noP0TuBguCKi/A7ShcAjwEeAk8DmiPgrSbOBJ4GFwJvAFyLiaCqzAVgLnAD+NCKeTfElwMPAWcAzwG0REZKmp/dYAvw/4IsR8WYq0wF8Mx3OxojYUu54C4VCdHV15f8LmJkZkvZGRGG0/XK6pwaAfx8RHweWAbdKWgysB3ZGxCJgZ3pN+lk7cBmwCviOpDNSXfcD64BF6bEqxdcCRyPio8C3gPtSXbOBu4CrgKXAXZJaM47ZzMwmwKhJIyKORMSP0/Yx4HVgPrAaGPzUvwVYk7ZXA09ERH9EvAF0A0slzQVmRcSuKF7ePDKszGBd24DlkgSsBDojoi9dxXRyKtGYmdkkq2ggXNJC4EpgN3BBRByBYmIB5qTd5gNvlRQ7lGLz0/bw+JAyETEAvAucV6YuMzOrgeykIem3gP8GfD0i3iu36wixKBMfa5nSY1snqUtSV29vb5lDMzOz8chKGpLOpJgwvhcRf5PCb6cuJ9JzT4ofAi4sKb4AOJziC0aIDykjqQU4F+grU9cQEbE5IgoRUWhra8tpkpmZjcGoSSONLTwIvB4R/7nkR9uBjrTdATxdEm+XNF3SJRQHvPekLqxjkpalOm8cVmawruuA59O4x7PACkmtaQB8RYqZmVkN5Ey5/QzwAvAKxSm3AN+gOK6xFbgIOAhcHxF9qcydwE0UZ159PSJ2pHiBU1NudwBfS1NuZwCPUhwv6QPaI+LnqcxN6f0A/jwiHhrleHuBXwwLnw+8U7ahjafZ2tRs7YHma1OztQear03jac/FETFqV82oSaMZSOrKmX/cSJqtTc3WHmi+NjVbe6D52jQZ7fEyImZmls1Jw8zMsk2VpLG51gcwAZqtTc3WHmi+NjVbe6D52jTh7ZkSYxpmZlYdU+VKw8zMqqBhk4akv5bUI+nVktjvSNol6RVJ/13SrBT/kKSHUvwnkn6/pMySFO+WtCndQzLpqtieH0raL+nl9JgzwttNOEkXSvpfkl6XtE/SbSk+W1KnpAPpubWkzIZ0HvZLWlkSr5dzVM021fw8VdoeSeel/d+X9O1hdTXkORqlTY14jv5Q0t50LvZK+mxJXdU5RxHRkA/g94BPAa+WxF4E/lXavgm4J23fCjyUtucAe4Fp6fUe4HcpLlmyA/hcg7fnh0ChDs7PXOBTaXsm8A/AYuAvgPUpvh64L20vBn4CTAcuAX4GnFFn56iabar5eRpDe84BPgN8Ffj2sLoa9RyVa1MjnqMrgXlp+3Lgl9U+Rw17pRERf0fxRsBSlwJ/l7Y7gT9O24spLt9ORPQAvwYKKr/y7qSqRnsm4TCzxeSsjjypqtWmyT3q06u0PRHxm4j438CQb/hp5HN0ujbVizG056WIGFxqaR8wQ8XVOap2jho2aZzGq8A1aft6Tq1b9RNgtaQWFZc2WZJ+Vm7l3XpQaXsGPZQup/9DrboJSmniVkeumXG2aVDdnKfM9pxOI5+j0TTyOfpj4KWI6KeK56jZksZNFL8kai/FS7l/TPG/pviP1AX8JfB/KS5xkrWKbg1V2h6AGyLiE8C/TI8vT+oRD6OJXR25JqrQJqij81RBe05bxQixRjlH5TTsOZJ0GcUvs/vKYGiE3cZ0jpoqaUTETyNiRUQsAR6n2IdMRAxExJ9FxBURsRr4MHCA8ivv1twY2kNE/DI9HwO+Tw27QzTxqyNPuiq1qW7OU4XtOZ1GPken1ajnSNIC4Cngxoj4WQpX7Rw1VdIYnN0gaRrF7xX/L+n12ZLOSdt/CAxExGtRfuXdmqu0Pam76vwUPxP4I4pdXLU49slYHXlSVatN9XKextCeETX4OTpdPQ15jiR9GPgfwIaI+D+DO1f1HI1l9LweHhQ/eR8BPqCYRdcCt1GcXfAPwL2cunlxIbCf4iDScxRXcxysp0Dxl+FnwLcHyzRieyjOBNkL/D3FQbC/Is3WqUF7PkPx8vfvgZfT419T/EbGnRSvjHYCs0vK3JnOw35KZnbU0TmqSpvq5TyNsT1vUpyw8X76PV3cBOfon7WpUc8RxQ+XvynZ92VgTjXPke8INzOzbE3VPWVmZhPLScPMzLI5aZiZWTYnDTMzy+akYWZm2Zw0zMwsm5OGmZllc9IwM7Ns/x9vXI9RWLWQMwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*') " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +1405,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/projet_7_evaluation_par_pairs.ipynb b/module3/projet_7_evaluation_par_pairs.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..748ac4ad8f8e78d95a403ec97d229418e151fa89 --- /dev/null +++ b/module3/projet_7_evaluation_par_pairs.ipynb @@ -0,0 +1,165 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sujet 7 : Autour du SARS-CoV-2 (Covid-19) *(Evaluation par pairs)*\n", + "\n", + "## Résumé de l'énoncé\n", + "\n", + "Le but est ici de reproduire des graphes semblables à ceux du South China Morning Post (SCMP), sur la page [The Coronavirus Pandemic](https://www.scmp.com/coronavirus?src=homepage_covid_widget) et qui montrent pour différents pays le nombre cumulé (c'est-à-dire le nombre total de cas depuis le début de l'épidémie) de personnes atteintes de la maladie à coronavirus 2019. Les données sont disponibles à https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv.\n", + "Nous créerons un graphe montrant l’évolution du nombre de cas cumulé au cours du temps pour les pays suivants (14 au total): \n", + "+ la Belgique (Belgium) \n", + "+ la Chine - toutes les provinces sauf Hong-Kong (China), \n", + "+ Hong Kong (China, Hong-Kong), \n", + "+ la France métropolitaine (France), \n", + "+ l’Allemagne (Germany), \n", + "+ l’Iran (Iran), \n", + "+ l’Italie (Italy), \n", + "+ le Japon (Japan), \n", + "+ la Corée du Sud (Korea, South), \n", + "+ la Hollande sans les colonies (Netherlands), \n", + "+ le Portugal (Portugal), \n", + "+ l’Espagne (Spain), \n", + "+ le Royaume-Unis sans les colonies (United Kingdom), \n", + "+ les États-Unis (US).\n", + "\n", + "Les graphes auront la date en abscisse et le nombre cumulé de cas à cette date en ordonnée. Nous aurons deux versions de ce graphe, une avec une échelle linéaire et une avec une échelle logarithmique." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Chargement des données" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous importons les librairies necessaires pour l'analyse des données dans un premier temps." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous chargeons dans un second temps les données dans une variable Python (utilisant la structure de données *panda*)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv\"\n", + "raw_data = pd.read_csv(data_url)" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAADuCAYAAAAeC/GzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VdW9/vHPNwMJQ5jCTAQioAgoKilCbb1WLWCrYlv10lallV5a9dfa4XrV2pbrVGt7q9Zbh9rSCw4V0Q5Qq1JE1LYKGESQ0YQ5gJAQhjAkZPj+/jgreBIxCZDkJOc879frePZZe6211wHMk73XHszdEREROVFJsR6AiIjEBwWKiIg0CgWKiIg0CgWKiIg0CgWKiIg0CgWKiIg0CgWKiIg0CgWKiIg0CgWKiIg0ipRYD6A5devWzQcMGBDrYYiItCpLliwpcvfu9dVLqEAZMGAAubm5sR6GiEirYmabGlKvQYe8zKyzmT1vZmvMbLWZjTGzrmY2z8zywnuXqPq3mVm+ma01s3FR5SPN7L2w7iEzs1CeZmbPhvJFZjYgqs2ksI08M5sUVZ4d6uaFtm0a8l1ERKRpNHQO5VfAy+4+BBgBrAZuBea7+2BgfviMmQ0FJgLDgPHAI2aWHPp5FJgCDA6v8aF8MrDb3QcBDwD3hb66AlOBc4BRwNSo4LoPeCBsf3foQ0REYqTeQDGzjsB5wDQAdz/s7nuACcCMUG0GcHlYngDMdPcyd98A5AOjzKw30NHd3/LILY6fqNWmuq/ngQvD3ss4YJ67F7v7bmAeMD6suyDUrb19ERGJgYbMoZwMFAL/Z2YjgCXATUBPd98O4O7bzaxHqN8XWBjVviCUlYfl2uXVbbaEvirMbC+QGV1eq00msMfdK47SVw1mNoXIXhH9+vX7yPry8nIKCgooLS2t+0+hlUlPTycrK4vU1NRYD0VEEkRDAiUFOBv4trsvMrNfEQ5vfQw7SpnXUX48berqq2ah++PA4wA5OTkfqVNQUEBGRgYDBgwgTOm0eu7Orl27KCgoIDs7O9bDEZEE0ZA5lAKgwN0Xhc/PEwmYHeEwFuF9Z1T9k6LaZwHbQnnWUcprtDGzFKATUFxHX0VA51C3dl/HpLS0lMzMzLgJEwAzIzMzM+72ukSkZas3UNz9A2CLmZ0aii4EVgFzgOqzriYBs8PyHGBiOHMrm8jk++JweKzEzEaHOZBra7Wp7usK4NUwzzIXGGtmXcJk/Fhgbli3INStvf1jFk9hUi0ev5OIfKglPm23odehfBt4Opyaux74OpEwmmVmk4HNwJUA7r7SzGYRCZ0K4EZ3rwz9XA9MB9oCL4UXRCb8nzSzfCJ7JhNDX8Vmdhfwdqh3p7sXh+VbgJlmdjewNPQhIhL3Zry5kQdfeZ+/fvtTZHVpF+vhHNGgQHH3d4Gco6y68GPq3wPcc5TyXGD4UcpLCYF0lHW/B35/lPL1RE4lbvWuu+46XnjhBXr06MGKFSsA+PGPf8zs2bNJSkqiR48eTJ8+nT59+gBw7733Mm3aNJKTk3nooYcYN25cXd2LSJzYuucQP/7LCl5dE5lh2LzrYIsKFN3LqwX42te+xssvv1yj7Oabb2b58uW8++67XHLJJdx5550ArFq1ipkzZ7Jy5UpefvllbrjhBiorK4/WrYjEkWcWb+ay//0ni9bv4txBmQCUlFXU06p5JdStV+pzx19Xsmrbvkbtc2ifjky9dFiddc477zw2btxYo6xjx45Hlg8cOHBkTmT27NlMnDiRtLQ0srOzGTRoEIsXL2bMmDGNOm4RaTl++8Z67nlxNWdkdeL+q0aQkpTE+f/zGgcUKNJQt99+O0888QSdOnViwYIFAGzdupXRo0cfqZOVlcXWrVtjNUQRaUI79pXy+39u4DdvrOfzp/fmoS+fRXKSUVhSBqBAacnq25Nobvfccw/33HMP9957L7/+9a+54447jnpmh87oEok/q7btY+Ljb7GvtIKLTuvB/f8+guSkyP/rGemRH937y1rW4W7NobQCX/nKV/jjH/8IRPZItmz58OYBBQUFRybrRSQ+FOw+yLW/X0SHtBRe+f6/8btJnyAtJfnI+rSUJJKTjP1l5Q3q73BFVVMNtQYFSguVl5d3ZHnOnDkMGTIEgMsuu4yZM2dSVlbGhg0byMvLY9SouDjZTUSAsopKbnj6HcrKq3hi8jkM6tHhI3XMjPZtkjlQxx6KuzN/9Q6+/cxSRt41j50lTX+hsw55tQBf/vKXee211ygqKiIrK4s77riDF198kbVr15KUlET//v157LHHABg2bBhXXXUVQ4cOJSUlhYcffpjk5OR6tiAirUHB7oPc++Ialhfs5bGrRx41TKp1SEth/1HmUPJ3lvDC8u28+N523t+xn67t23DpmX0or2z6CyEVKC3AM88885GyyZM//m78t99+O7fffntTDklEmtnC9bu4ZtoiyiudG84fyPjhveqs3yE9pcak/MHDFfxqfh7T/rGBiirntN4due3iIUz+VDYpyc1zMEqBIiISY/vLKvjBrGX07dyW//v6KLK7ta+3Tfuwh5K7sZhFG4r5w6LNbN1ziKtysvjeZ0+hd6e2zTDymhQoIiIx9ouX17Bt7yGe/9aYBoUJRA55LVpfzBV5bwEwtHdHHpx4Jp8Y0LUph1onBQqRyat4O/W2Jd44TkQ+6u2NxTyxcBOTxgxgZP+Gh0HvTuk4zncuHMx/fDqbjPTYP/so4QMlPT2dXbt2xdUt7Kufh5Kenh7roYhIHdYV7uf7s96lT6e23Dzu1PobRPnRJUP5z3Gn0iOj5fx/nvCBkpWVRUFBAYWFhbEeSqOqfmKjiLRMm3YdYMKv/0VpeSXTvz6K9mnH9uO4Y3oqHVvAXkm0hA+U1NRUPdVQRJrdXS+swoCXbvo0g3tmxHo4jUIXNoqINLOF63fxyuqdXP+ZgXETJqBAERFpVu7OvS+upnendK47N76OjihQRESa0d/e286ygr18/7OnkJ4aX3e5UKCIiDSTqirnl39/nyG9Mvji2fF30owCRUSkmUx/cyMbig5w/fkDj9yKPp4oUEREmsG8VTu484VVDO7Rod77dLVWChQRkSZWWeXc87dVnNKzA3/99qdqPNsknihQRESa2EsrtrNx10G+d1H8TcRHU6CIiDQhd+fR19Zxcrf2jB0Wn4e6qilQRESa0Bt5Razcto9v/Vt8TsRHU6CIiDShR1/Lp1fHdC4/q2+sh9LkGhQoZrbRzN4zs3fNLDeUdTWzeWaWF967RNW/zczyzWytmY2LKh8Z+sk3s4cs3N7XzNLM7NlQvsjMBkS1mRS2kWdmk6LKs0PdvNC2zYn/cYiINJ53Nu9m4fpivvHpbNqkxP/v78fyDT/j7me6e074fCsw390HA/PDZ8xsKDARGAaMBx4xs+pZqEeBKcDg8BofyicDu919EPAAcF/oqyswFTgHGAVMjQqu+4AHwvZ3hz5ERFqEwpIyfjBrGZ3bpfLlUf1iPZxmcSKROQGYEZZnAJdHlc909zJ33wDkA6PMrDfQ0d3f8sjTn56o1aa6r+eBC8PeyzhgnrsXu/tuYB4wPqy7INStvX0RkZibs2wbG4oOcNeE4cd8a/rWqqGB4sDfzWyJmU0JZT3dfTtAeO8RyvsCW6LaFoSyvmG5dnmNNu5eAewFMuvoKxPYE+rW7qsGM5tiZrlmlhtvzzwRkZZrfeF+OqancMkZvWM9lGbT0Ng81923mVkPYJ6Zramj7tFOY/A6yo+nTV191Sx0fxx4HCAnJ0fPxRWRZrG+8AADe3SImyfBNkSD9lDcfVt43wn8mch8xo5wGIvwvjNULwBOimqeBWwL5VlHKa/RxsxSgE5AcR19FQGdQ93afYmIxMyhw5Xc8vxylhfs4eRuHWI9nGZVb6CYWXszy6heBsYCK4A5QPVZV5OA2WF5DjAxnLmVTWTyfXE4LFZiZqPDHMi1tdpU93UF8GqYZ5kLjDWzLmEyfiwwN6xbEOrW3r6ISMws3ljMs7lb6J6RxudOj+8LGWtryCGvnsCfw25bCvAHd3/ZzN4GZpnZZGAzcCWAu680s1nAKqACuNHdK0Nf1wPTgbbAS+EFMA140szyieyZTAx9FZvZXcDbod6d7l4clm8BZprZ3cDS0IeISEyt2rYPgNk3fopO7VrWM9+bmkV+2U8MOTk5npubG+thiEic2rmvlLEPvkH7Nin869YLYj2cRmNmS6IuGflY8X+ljYhIM3jxve2c94sF7DlYzjnZXWM9nJhIjJOjRUSa2PQ3N9K7U1se+erZnNIzI9bDiQntoYiInKDS8koWbyjm/FO7c1rvjnF/E8iPo0ARETkB7s7Fv/oHACP7d6mndnxToIiInIDlBXvZUHSA807pztihiXWacG0KFBGRE/DnpVtpk5LEr79yVkLcUbguif3tRUROQFWV89KK7Zx/Snc6pifWNSdHo0ARETlO72zezY59ZXw+gW4AWRcFiojIcfrLu5HDXRee1jPWQ2kRFCgiIsdh9rtbeWbxFr54Vl86JMjzTuqjQBEROUbb9hziP59bxqk9M7h53KmxHk6LoUARETlGv/vHBtzht5NyyOyQFuvhtBgKFBGRY3DwcAXPLdnCxaf3pm/ntrEeTouiQBEROQZz3t1GSWkF147pH+uhtDgKFBGRBnJ3nnhrE0N6ZZCT4LdZORoFiohIAy0r2Muq7fu4Zkz/hHpWfEMpUEREGuiVVTtITjIuOaNPrIfSIilQREQa4ODhCl5e+QFn9+tMp7a6zcrRKFBEROpxoKyCq37zFusL9zPpkwNiPZwWS5d3iojU49cL8lmxdR+PXzOSscMS+xb1ddEeiohIHXaWlPJ//9rA5Wf2UZjUQ4EiIlKHx15bT3mlc9NFp8R6KC2eAkVE5GPs3FfK04s28YWz+pLdrX2sh9PiKVBERD7GI6+to6LK+fYFg2I9lFahwYFiZslmttTMXgifu5rZPDPLC+9doureZmb5ZrbWzMZFlY80s/fCuocsXBlkZmlm9mwoX2RmA6LaTArbyDOzSVHl2aFuXmjb5sT+KEREPrR1zyH+sHgzV5ydRf9M7Z00xLHsodwErI76fCsw390HA/PDZ8xsKDARGAaMBx4xs+TQ5lFgCjA4vMaH8snAbncfBDwA3Bf66gpMBc4BRgFTo4LrPuCBsP3doQ8RkRO2oegA10xbRJLBdy4aHOvhtBoNChQzywI+D/wuqngCMCMszwAujyqf6e5l7r4ByAdGmVlvoKO7v+XuDjxRq011X88DF4a9l3HAPHcvdvfdwDxgfFh3Qahbe/siIsetvLKK7zyzlB17S/nllWfqjsLHoKF7KA8C/wVURZX1dPftAOG9RyjvC2yJqlcQyvqG5drlNdq4ewWwF8iso69MYE+oW7svEZHj9pvX1/He1r38/IoRelb8Mao3UMzsEmCnuy9pYJ9Hu2Oa11F+PG3q6qvmYMymmFmumeUWFhYerYqICADv7yjhV/PzuOSM3gqT49CQPZRzgcvMbCMwE7jAzJ4CdoTDWIT3naF+AXBSVPssYFsozzpKeY02ZpYCdAKK6+irCOgc6tbuqwZ3f9zdc9w9p3v37g34uiKSiKqqnFv/uJwOaSncOWF4rIfTKtUbKO5+m7tnufsAIpPtr7r71cAcoPqsq0nA7LA8B5gYztzKJjL5vjgcFisxs9FhDuTaWm2q+7oibMOBucBYM+sSJuPHAnPDugWhbu3ti4gck6oq539fzeedzXv48SVD6dpeJ40ejxO5l9fPgFlmNhnYDFwJ4O4rzWwWsAqoAG5098rQ5npgOtAWeCm8AKYBT5pZPpE9k4mhr2Izuwt4O9S7092Lw/ItwEwzuxtYGvoQETkmlVXOt55awrxVO7h4eC++cJamY4+XRX7ZTww5OTmem5sb62GISAvywLz3+dX8PG66cDA3fmYQbVJ0vXdtZrbE3XPqq6e7DYtIwnrj/UIeejWPL52dxXcvGqynMJ4gRbGIJKQP9pby3Wff5ZQeGdx9+XCFSSNQoIhIwik+cJgb//AOpeWVPPzVs2nbJrn+RlIvHfISkYSyfe8hLv3ff1G0v4xfXjmCQT06xHpIcUOBIiIJ43BFFTc8/Q6HDlfwh2+cwycHdYv1kOKKAkVEEsZPX1zN0s17ePgrZytMmoDmUEQkIbyyagfT39zI5E9l67YqTUSBIiJxb80H+5g6ZyWDenTg1ouHxHo4cUuHvEQkrs1d+QHfemoJbVOTefiro0lN1u/RTUWBIiJxa/X2fXzv2Xc5vW8nfnPNSHp30rNNmpICRUTi0t5D5XzrqSVkpKfwu2tz6NExPdZDinsKFBGJO1VVzs3PLWPr7kPMnDJaYdJMdDBRROJKwe6D/McTufx91Q5uvXgIOQO6xnpICUN7KCISN7bvPcTExxdSWFLGTRcOZvKnsmM9pISiQBGRuLD7wGG++rtF7DlYznPfGsMZWZ1jPaSEo0ARkVavorKKbz+zlILdh3hq8jkKkxhRoIhIq1aw+yD3vrSGf+YX8fMvncGobM2ZxIoCRURarS3FB7nisTfZsS8yZ3LVJ06K9ZASmgJFRFold+ebTy6htLyKv33nUwzr0ynWQ0p4Om1YRFqdqirnv+esZNX2ffzwc0MUJi2EAkVEWp3H3ljHjLc20atjOpec0SfWw5FAh7xEpNWorHKmzlnBUws3c+mIPjw08Uw9C74F0R6KiLQa989by1MLN3P5mX346ReGK0xaGO2hiEir8MLybTy8YB1fHnUSP/3C6QqTFkh7KCLS4q35YB83P7eckf27cMdl2jNpqeoNFDNLN7PFZrbMzFaa2R2hvKuZzTOzvPDeJarNbWaWb2ZrzWxcVPlIM3svrHvIwr8KM0szs2dD+SIzGxDVZlLYRp6ZTYoqzw5180LbNo3zRyIiLcm+0nJufPodOqSn8OjVZ9MmRb8Ht1QN+ZspAy5w9xHAmcB4MxsN3ArMd/fBwPzwGTMbCkwEhgHjgUfMLDn09SgwBRgcXuND+WRgt7sPAh4A7gt9dQWmAucAo4CpUcF1H/BA2P7u0IeIxJE1H+zj0/ctYH3RAR789zPpkaHb0Ldk9QaKR+wPH1PDy4EJwIxQPgO4PCxPAGa6e5m7bwDygVFm1hvo6O5vubsDT9RqU93X88CFYe9lHDDP3YvdfTcwj0igGXBBqFt7+yISB/YeLOebTy4hNTmJJ64bxbmDusV6SFKPBu07mlmymb0L7CTyA34R0NPdtwOE9x6hel9gS1TzglDWNyzXLq/Rxt0rgL1AZh19ZQJ7Qt3afdUe+xQzyzWz3MLCwoZ8XRGJsaoq57vPLmXbnkP85pqRfHpw91gPSRqgQYHi7pXufiaQRWRvY3gd1Y82W+Z1lB9Pm7r6qlno/ri757h7Tvfu+kcp0ho8+Mr7LFhbyE8uHcbI/l3qbyAtwjHNbrn7HuA1InMfO8JhLML7zlCtAIi+Q1sWsC2UZx2lvEYbM0sBOgHFdfRVBHQOdWv3JSKtVEVlFU+8tZGHXs3nypFZXH1Ov1gPSY5BQ87y6m5mncNyW+AiYA0wB6g+62oSMDsszwEmhjO3solMvi8Oh8VKzGx0mAO5tlab6r6uAF4N8yxzgbFm1iVMxo8F5oZ1C0Ld2tsXkVbocEUVU55cwk9mr2REVifuulynB7c2DbmwsTcwI5yplQTMcvcXzOwtYJaZTQY2A1cCuPtKM5sFrAIqgBvdvTL0dT0wHWgLvBReANOAJ80sn8ieycTQV7GZ3QW8Herd6e7FYfkWYKaZ3Q0sDX2ISCvk7vzoL+/x6pqd/Ojzp3HNmP6kpSTX31BaFIv8sp8YcnJyPDc3N9bDEJFaHl6Qzy/mruU7Fw7m+589JdbDkVrMbIm759RXT1cIiUhM/XXZNn4xdy0TzuzD9y4aHOvhyAnQvbxEJCZKyyu5aeZS5q7cwdn9OnPfl87QnEkrp0ARkWZXWeV855mlzFu9gxs/M5Apnx5IeqrmTFo7BYqINCv3yNMW/75qB/996VC+dm52rIckjURzKCLSrJ5atJknF27im+edrDCJM9pDEZFmkbejhMffWM9zSwq4YEgPbhk/JNZDkkamQBGRJveXpVv53qx3SUkyrsrJ4vbPDyUpSRPw8UaBIiJN6q11u/jP55YxakBXfnnVCLK6tIv1kKSJKFBEpEms+WAfLy7fzlOLNtOvazumfe0TdEjTj5x4pr9dEWl0v5i7hocXrCM5yTjrpM7c+8XTFSYJQH/DItJo3J3HXl/PwwvWMeHMPtx28Wn06qSnLCYKBYqINIpF63fxs5fXsHTzHj53ei9+eeUIUpJ1ZUIiUaCIyAn7y9Kt/OC5ZfTqmM49XxjOV0b1021UEpACRUROyB8Wbeb2v7zHOdld+d0kTbwnMv3Ni8hxWbF1L0++tYlnc7fwmVO78+jVI3U/rgSnQBGRY1JV5fz2H+v5xdy1mMG1Y/rzo88PpU2K5ksSnQJFRBps1/4yfvDcMl5bW8jFw3vxsy+eQad2qbEelrQQChQRqdeBsgoee30dzyzewr7Scu6aMIyrR/fXxLvUoEARkTr9K7+I/3p+OVv3HOKTAzO5/fOnMaxPp1gPS1ogBYqIHNWGogM8vXAT0/61gezM9sz65hhGZXeN9bCkBVOgiEgNew+W89MXV/Ns7hYAvjzqJH5yyTDattEZXFI3BYqIHPHO5t1c/9QSivYf5pvnnczVo/tzUlfdHVgaRoEiIqz9oIRHX8vnb+9tp3entsy+8VyG99U8iRwbBYpIglu2ZQ8TH18YHn51EjePO5XO7drEeljSCilQRBLYxqIDXDf9bbpltOH5b32Snh11Z2A5fvVe2mpmJ5nZAjNbbWYrzeymUN7VzOaZWV547xLV5jYzyzeztWY2Lqp8pJm9F9Y9ZOEkdjNLM7NnQ/kiMxsQ1WZS2EaemU2KKs8OdfNCW/1KJXIMSssr+cYTuVS5M+ProxQmcsIacq+ECuAH7n4aMBq40cyGArcC8919MDA/fCasmwgMA8YDj5hZ9ekhjwJTgMHhNT6UTwZ2u/sg4AHgvtBXV2AqcA4wCpgaFVz3AQ+E7e8OfYhIAz21cBP5O/fzwL+fycndO8R6OBIH6g0Ud9/u7u+E5RJgNdAXmADMCNVmAJeH5QnATHcvc/cNQD4wysx6Ax3d/S13d+CJWm2q+3oeuDDsvYwD5rl7sbvvBuYB48O6C0Ld2tsXkXoUlpQx7Z8b+MSALpx/ao9YD0fixDHdzS0cijoLWAT0dPftEAkdoPpfZV9gS1SzglDWNyzXLq/Rxt0rgL1AZh19ZQJ7Qt3afdUe8xQzyzWz3MLCwmP5uiJxqbLK+fr0xewsKeP68wfGejgSRxocKGbWAfgj8F1331dX1aOUeR3lx9Omrr5qFro/7u457p7TvXv3o1URSShPLdzEiq37uP+qEVwwpGeshyNxpEGBYmapRMLkaXf/UyjeEQ5jEd53hvIC4KSo5lnAtlCedZTyGm3MLAXoBBTX0VcR0DnUrd2XiHyM9YX7+fnLa/j04G5cNqJPrIcjcaYhZ3kZMA1Y7e73R62aA1SfdTUJmB1VPjGcuZVNZPJ9cTgsVmJmo0Of19ZqU93XFcCrYZ5lLjDWzLqEyfixwNywbkGoW3v7IvIx7vjrKpKTjJ9fcYbuFCyNriHXoZwLXAO8Z2bvhrIfAj8DZpnZZGAzcCWAu680s1nAKiJniN3o7pWh3fXAdKAt8FJ4QSSwnjSzfCJ7JhNDX8Vmdhfwdqh3p7sXh+VbgJlmdjewNPQhIh9j0fpdvP5+IbddPITendrGejgShyzyy35iyMnJ8dzc3FgPQ6TZ7T1UzpcefZOS0nJev/kzelSvHBMzW+LuOfXV05XyInHO3fnOM0vZtOsAM64bpTCRJqOHQIvEuUUbinn9/UJuGT+ETw7sFuvhSBxToIjEuTnLtpGRlsLVo/vHeigS5xQoInFuecEeRpzUWYe6pMkpUETiWGl5JWu2l3BGlp5tIk1PgSISx3I37qaiyjm7X5f6K4ucIAWKSJzac/AwL63YTnpqEucO0mS8ND2dNiwSh8orqzjzznkAXHRaT9q20fyJND3toYjEofe27j2yfMEQ3Z5emocCRSQOLVy/C4C+ndsyfnivGI9GEoUOeYnEoRVb99I/sx2v3/yZWA9FEoj2UETi0NoPSji1Z0ashyEJRoEiEmdKyyvZuOsgp/ZSoEjzUqCIxJnlBXuprHKG9OoY66FIglGgiMSZ53K30L5NMuefqkdeS/NSoIjEkb0Hy/nr8m1cdmYf2qfpnBtpXgoUkTjy/DsFlJZX6c7CEhMKFJE44e48vXATZ/frzLA+uhmkND8FikiceHPdLtYXHdDeicSMAkUkTvz2H+vp0i6Vz53eO9ZDkQSlQBGJA7kbi3ltbSFTzhuoB2lJzChQROLAQ6/m061DGpM+qcNdEjsKFJFW7tDhSt5aV8SXzu5LuzY6VVhiR4Ei0sr9aWkB5ZXO6IGZsR6KJDgFikgrVrD7IFNnr6R7RhqfGNA11sORBFdvoJjZ781sp5mtiCrrambzzCwvvHeJWnebmeWb2VozGxdVPtLM3gvrHjIzC+VpZvZsKF9kZgOi2kwK28gzs0lR5dmhbl5o2+bE/yhEWp+nFm7Ggee+OYYOujJeYqwheyjTgfG1ym4F5rv7YGB++IyZDQUmAsNCm0fMrPqUk0eBKcDg8KruczKw290HAQ8A94W+ugJTgXOAUcDUqOC6D3ggbH936EMkoZSWVzLz7c2MHdqTAd3ax3o4IvUHiru/ARTXKp4AzAjLM4DLo8pnunuZu28A8oFRZtYb6Ojub7m7A0/UalPd1/PAhWHvZRwwz92L3X03MA8YH9ZdEOrW3r5IwpizbBt7DpZz7ZgBsR6KCHD8cyg93X07QHivfmh1X2BLVL2CUNY3LNcur9HG3SuAvUBmHX1lAntC3dp9fYSZTTGzXDPLLSwsPMavKdIylVdWMe0fGzilZwdGn6y5E2kZGntS3o5S5nWUH0+buvr66Ar3x909x91zunfX7byl9XN37vnbatbuKOH7nz2VMB0pEnPHGyg7wmEswvvOUF4AnBRVLwvYFsqzjlIu682yAAAHw0lEQVReo42ZpQCdiBxi+7i+ioDOoW7tvkTi3k9mr2T6mxv52icHMH54r1gPR+SI4w2UOUD1WVeTgNlR5RPDmVvZRCbfF4fDYiVmNjrMgVxbq011X1cAr4Z5lrnAWDPrEibjxwJzw7oFoW7t7YvEtUXrd/Hkwk1MGtOfqZcOjfVwRGqo9zxDM3sGOB/oZmYFRM68+hkwy8wmA5uBKwHcfaWZzQJWARXAje5eGbq6nsgZY22Bl8ILYBrwpJnlE9kzmRj6Kjazu4C3Q7073b365IBbgJlmdjewNPQhEtcOV1Txo7+sIKtLW269+DQd6pIWxyK/8CeGnJwcz83NjfUwRI7LI6/l8/OX1/L7r+VwwZCesR6OJBAzW+LuOfXV05XyIq3A2g9KeGh+HuOH9VKYSIulS2tFWjB358mFm7h/3vtkpKdy54RhsR6SyMfSHopIC/bgK3n8ZPZKTuvVkVnfHEOPjumxHpLIx9IeikgL9cqqHfx6QT5fOKsv9181QpPw0uJpD0WkBXrj/UJuePodhvfpyF2XD1eYSKugPRSRFqS0vJL7573PtH9uYHCPDsy4bpTuIiythv6lirQQb28s5r+eX86GogNM/MRJ3HrxEDq305MZpPVQoIjE2M59pTz6+jqmv7mRPp3a8vQ3zuHcQd1iPSyRY6ZAEYmRktJyfvjnFfx1WeRWdNeM7s8tFw/RIS5ptfQvVyQGthQf5BszcllXuJ8bzh/IF8/uy6AeGbEelsgJUaCINKO9h8r545ICHnzlfRyYcd0oHd6SuKFAEWkG7s6L733A1DkrKNp/mHMHZXL35aeTrUf3ShxRoIg0sfd3lHD331bzxvuFnN63E7+5Joez+3XWtSUSdxQoIk3A3Xl1zU4ee30db2/cTYe0FKZeOpRrRvcnJVnXE0t8UqCINKK9B8uZv2YHv/3HBlZv30ffzm354eeG8MWzs+jWIS3WwxNpUgoUkRN0uKKKN9cV8ad3tvLSiu2UVzond2/P/1w5ggln9iFVeySSIBQoIsehtLyS19YWMnflB7yyegclpRVkpKdw9ej+XHJGb846qQtJSZojkcSiQBFpgIOHK1i2ZS/ri/azbc8hZuUWUFhSRud2qYwf1ovxw3tx7qBupKcmx3qoIjGjQBGJsvvAYdYV7md94QHWFUXe1xfuZ+Oug1RWffi47DEnZ/I/V47gkwMzdUhLJFCgSKvj7lRWOeWVzuHKKsrDqyJ8rqh0yiurOHi4kpLSckpKKygpLWdfacWR5ZrvkeUDhyvZe6j8yHbaJCfRP7MdA7t34OLhvRnZvwtDemfQrUOaQkTkKBQoclTukR/YpRWV7NxXSvGBcsorqyI/wCuqPvxBXvHhD/XDFVVUeuS3+Koqp2j/YfaVllNaXkllleMOFVVeIwAiy05FVc1AqKiKlFdVOZUhQKqOvB//90pNNjLSU8lIT4m80lLpn9mOjPRU2rVJPhIgJ3dvT9/ObXWKr8gxUKAkoC3FB9lQdICi/WUUlpRFvR+msKSMwv1l7Dl4+IR+cANkpKfQqW0q6anJpIQJ6tTkJFKTjZTkJNJSk2iflkJqspGanERKchKpSUZKWJ+SZCQnGckWeU+KWk5OMtqkJJGanESb6PbJRkpSEinJRvs2KR8GRwiRtJQkXVAo0kQUKAlk064D/PTF1fx91Q48KizSU5PonpFG9w5p9M9sR86ALnRp14b01CTSU5Pp0q4NvTqlHwmD1OQk0sIP89SUSFmb5Mjn5BAcZpCWoglqkUSiQEkQc5Zt46aZS2mbmsykMQO4eHgvenRMp3tGGu3bJOu3dhE5Ya06UMxsPPArIBn4nbv/LMZDiqnKKmfNB/tYXrCXcwd2o19mO8orq9i25xD3/G0Vndum8qcbztUNCUWkSbTaQDGzZOBh4LNAAfC2mc1x91WxHVnzcHf2HipnzQclLC/Yw+INxSzeUMy+0gogMvmcZEZZRdWRNv996VCFiYg0mVYbKMAoIN/d1wOY2UxgAtDogbJ4QzE79pUC4ER+mEdzB8c/XA6ro+v6kf/UqvtxfYTyisoqdu0/fNQJ9MOVH4ZFdrf2fO703pxzcld6dWzLK6t3kJwUmZju3Tmdfl3bkdO/SyP+qYiI1NSaA6UvsCXqcwFwTu1KZjYFmALQr1+/49rQo6/ls2Bt4XG1bQzJSUbX9m3o3iGNbhlpDOqRQbeMyOdBPTowrE8numfUvPHgmIGZMRqtiCSq1hwoR5tF/siJru7+OPA4QE5OznGdCHv3F07nYFkFH85b25Hl6iIzi1qG6k/Rc91mHJn8/ri6UZvAiJwe27ltqu4LJSItXmsOlALgpKjPWcC2pthQ385tm6JbEZG40povA34bGGxm2WbWBpgIzInxmEREElar3UNx9woz+3/AXCKnDf/e3VfGeFgiIgmr1QYKgLu/CLwY63GIiEjrPuQlIiItiAJFREQahQJFREQahQJFREQahdW+jUg8M7NCYNNxNu8GFDXicFoDfef4l2jfF/Sdj0d/d+9eX6WECpQTYWa57p4T63E0J33n+Jdo3xf0nZuSDnmJiEijUKCIiEijUKA03OOxHkAM6DvHv0T7vqDv3GQ0hyIiIo1CeygiItIoFCgiItIoFCgiItIoFCgiItIoFCgiItIo/j82tYb5RANmVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "raw_data.loc[(raw_data[\"Country/Region\"]==\"France\") & raw_data[\"Province/State\"].isna()].iloc[:,4:].isnull().values.any()\n", + "raw_data.loc[(raw_data[\"Country/Region\"]==\"France\") & raw_data[\"Province/State\"].isna()].iloc[:,4:].transpose().plot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous notons la date de début et la date de fin. \n", + "Ensuite nous chargeons les données des 14 pays.\n", + "Nous vérifions qu'il n'existe pas d'entrées eronnées dans les données de ces pays." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_fr = raw_data.loc[(raw_data[\"Country/Region\"]==\"France\") & raw_data[\"Province/State\"].isna()]\n", + "data_be = raw_data.loc[(raw_data[\"Country/Region\"]==\"Belgium\") & raw_data[\"Province/State\"].isna()]\n", + "data_de = raw_data.loc[(raw_data[\"Country/Region\"]==\"Germany\") & raw_data[\"Province/State\"].isna()]\n", + "data_ir = raw_data.loc[(raw_data[\"Country/Region\"]==\"Iran\") & raw_data[\"Province/State\"].isna()]\n", + "data_it = raw_data.loc[(raw_data[\"Country/Region\"]==\"Italy\") & raw_data[\"Province/State\"].isna()]\n", + "data_jp = raw_data.loc[(raw_data[\"Country/Region\"]==\"Japan\") & raw_data[\"Province/State\"].isna()]\n", + "data_kr = raw_data.loc[(raw_data[\"Country/Region\"]==\"Korea, South\") & raw_data[\"Province/State\"].isna()]\n", + "data_nl = raw_data.loc[(raw_data[\"Country/Region\"]==\"Netherlands\") & raw_data[\"Province/State\"].isna()]\n", + "data_pt = raw_data.loc[(raw_data[\"Country/Region\"]==\"Portugal\") & raw_data[\"Province/State\"].isna()]\n", + "data_es = raw_data.loc[(raw_data[\"Country/Region\"]==\"Spain\") & raw_data[\"Province/State\"].isna()]\n", + "data_uk = raw_data.loc[(raw_data[\"Country/Region\"]==\"United Kingdom\") & raw_data[\"Province/State\"].isna()]\n", + "data_us = raw_data.loc[(raw_data[\"Country/Region\"]==\"US\") & raw_data[\"Province/State\"].isna()]\n", + "\n", + "data_hg = raw_data.loc[(raw_data[\"Country/Region\"]==\"China\") & (raw_data[\"Province/State\"]==\"Hong Kong\")]\n", + "data_ch = pd.DataFrame([raw_data.loc[(raw_data[\"Country/Region\"]==\"China\") & (raw_data[\"Province/State\"]!=\"Hong Kong\")].sum(axis=0)])\n", + "\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}