From 07d37affb10eed47c2cf5c86c43c2abdfc94319a Mon Sep 17 00:00:00 2001 From: f237ff24aa86b839d94249a27658b097 Date: Wed, 24 Jun 2020 14:23:54 +0000 Subject: [PATCH] commit from jupyter --- module2/exo1/Tutorial.ipynb | 140 ++++++++++++++++++++++++++++++++++++ 1 file changed, 140 insertions(+) create mode 100644 module2/exo1/Tutorial.ipynb diff --git a/module2/exo1/Tutorial.ipynb b/module2/exo1/Tutorial.ipynb new file mode 100644 index 0000000..df9bb19 --- /dev/null +++ b/module2/exo1/Tutorial.ipynb @@ -0,0 +1,140 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Mon document" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "mu, sigma = 100, 15" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "x = np.random.normal(loc=mu, scale=sigma, size=10000)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "module 'matplotlib.pyplot' has no attribute 'shox'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'matplotlib'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'inline'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m: module 'matplotlib.pyplot' has no attribute 'shox'" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEmFJREFUeJzt3X+s3fV93/Hnq5BQkhYFyoW5tjO7kbMNUOMUz/MWbUpDN9xSxfSPSI7aYmlIrhDZ0qn7YbfS2v5hiW1tsyENJtpQzJoFWW0yrABdmNc2qkRxLoxgDPHwCoMbe9ht1JVukls77/1xPlZOzbm+5/7wPff683xIR+d73t/P9/v9vIUvr3u+3+85N1WFJKlP3zHpCUiSJscQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXsyklPYC7XX399bdiwYdLTkKRV5bnnnvujqpqaa9yKD4ENGzYwPT096WlI0qqS5H+NM87TQZLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1LEV/4lhaaXasOeJiR379fvumNixdXmZ851Aku9McjjJ15IcTfKLrX5dkqeTvNqerx3aZm+S40mOJbl9qH5rkiNt3f1JcmnakiSNY5zTQWeAj1XVh4DNwPYk24A9wKGq2gQcaq9JchOwE7gZ2A48kOSKtq8Hgd3ApvbYvoS9SJLmac4QqIE/ay/f1R4F7AD2t/p+4M62vAN4rKrOVNVrwHFga5I1wDVV9UxVFfDo0DaSpAkY68JwkiuSvACcAp6uqmeBG6vqJEB7vqENXwu8ObT5TKutbcsX1iVJEzJWCFTVuaraDKxj8Fv9LRcZPuo8f12k/s4dJLuTTCeZPn369DhTlCQtwLxuEa2qPwF+l8G5/LfaKR7a86k2bAZYP7TZOuBEq68bUR91nIeqaktVbZmamvNvIkiSFmicu4OmkryvLV8N/BDwdeAgsKsN2wU83pYPAjuTXJVkI4MLwIfbKaO3k2xrdwXdNbSNJGkCxvmcwBpgf7vD5zuAA1X1pSTPAAeS3A28AXwCoKqOJjkAvAycBe6tqnNtX/cAjwBXA0+1hyRpQuYMgap6EfjwiPofA7fNss0+YN+I+jRwsesJkqRl5NdGSFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUsfG+fOS0oq2Yc8Tk56CtGr5TkCSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI7NGQJJ1if5nSSvJDma5NOt/gtJvpHkhfb4kaFt9iY5nuRYktuH6rcmOdLW3Z8kl6YtSdI4xvmw2FngZ6rq+STfDTyX5Om27jNV9UvDg5PcBOwEbga+F/ivST5YVeeAB4HdwB8ATwLbgaeWphVJ0nzN+U6gqk5W1fNt+W3gFWDtRTbZATxWVWeq6jXgOLA1yRrgmqp6pqoKeBS4c9EdSJIWbF7XBJJsAD4MPNtKn0ryYpKHk1zbamuBN4c2m2m1tW35wvqo4+xOMp1k+vTp0/OZoiRpHsYOgSTfBfwW8NNV9acMTu18ANgMnAR++fzQEZvXRervLFY9VFVbqmrL1NTUuFOUJM3TWCGQ5F0MAuBzVfUFgKp6q6rOVdW3gF8FtrbhM8D6oc3XASdafd2IuiRpQsa5OyjAZ4FXqupXhuprhob9GPBSWz4I7ExyVZKNwCbgcFWdBN5Osq3t8y7g8SXqQ5K0AOPcHfQR4CeBI0leaLWfBT6ZZDODUzqvAz8FUFVHkxwAXmZwZ9G97c4ggHuAR4CrGdwV5J1BkjRBc4ZAVf0+o8/nP3mRbfYB+0bUp4Fb5jNBSdKl4yeGJaljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHZszBJKsT/I7SV5JcjTJp1v9uiRPJ3m1PV87tM3eJMeTHEty+1D91iRH2rr7k+TStCVJGsc47wTOAj9TVX8D2Abcm+QmYA9wqKo2AYfaa9q6ncDNwHbggSRXtH09COwGNrXH9iXsRZI0T3OGQFWdrKrn2/LbwCvAWmAHsL8N2w/c2ZZ3AI9V1Zmqeg04DmxNsga4pqqeqaoCHh3aRpI0AfO6JpBkA/Bh4Fngxqo6CYOgAG5ow9YCbw5tNtNqa9vyhXVJ0oSMHQJJvgv4LeCnq+pPLzZ0RK0uUh91rN1JppNMnz59etwpSpLmaawQSPIuBgHwuar6Qiu/1U7x0J5PtfoMsH5o83XAiVZfN6L+DlX1UFVtqaotU1NT4/YiSZqnce4OCvBZ4JWq+pWhVQeBXW15F/D4UH1nkquSbGRwAfhwO2X0dpJtbZ93DW0jSZqAK8cY8xHgJ4EjSV5otZ8F7gMOJLkbeAP4BEBVHU1yAHiZwZ1F91bVubbdPcAjwNXAU+0hSZqQOUOgqn6f0efzAW6bZZt9wL4R9WnglvlMUJJ06fiJYUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktSxcT4nIGmF2bDniYkc9/X77pjIcXXp+E5AkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLH5gyBJA8nOZXkpaHaLyT5RpIX2uNHhtbtTXI8ybEktw/Vb01ypK27P0mWvh1J0nyM807gEWD7iPpnqmpzezwJkOQmYCdwc9vmgSRXtPEPAruBTe0xap+SpGU0ZwhU1VeAb465vx3AY1V1pqpeA44DW5OsAa6pqmeqqoBHgTsXOmlJ0tJYzDWBTyV5sZ0uurbV1gJvDo2ZabW1bfnCuiRpghYaAg8CHwA2AyeBX271Uef56yL1kZLsTjKdZPr06dMLnKIkaS4LCoGqequqzlXVt4BfBba2VTPA+qGh64ATrb5uRH22/T9UVVuqasvU1NRCpihJGsOCQqCd4z/vx4Dzdw4dBHYmuSrJRgYXgA9X1Ung7STb2l1BdwGPL2LekqQlcOVcA5J8HvgocH2SGeDngY8m2czglM7rwE8BVNXRJAeAl4GzwL1Vda7t6h4GdxpdDTzVHpKkCZozBKrqkyPKn73I+H3AvhH1aeCWec1OknRJ+YlhSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR2b82sjpHFs2PPEpKcgaQF8JyBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOjZnCCR5OMmpJC8N1a5L8nSSV9vztUPr9iY5nuRYktuH6rcmOdLW3Z8kS9+OJGk+xnkn8Aiw/YLaHuBQVW0CDrXXJLkJ2Anc3LZ5IMkVbZsHgd3Apva4cJ+SpGU2ZwhU1VeAb15Q3gHsb8v7gTuH6o9V1Zmqeg04DmxNsga4pqqeqaoCHh3aRpI0IQu9JnBjVZ0EaM83tPpa4M2hcTOttrYtX1gfKcnuJNNJpk+fPr3AKUqS5rLUF4ZHneevi9RHqqqHqmpLVW2ZmppasslJkv6yhYbAW+0UD+35VKvPAOuHxq0DTrT6uhF1SdIELTQEDgK72vIu4PGh+s4kVyXZyOAC8OF2yujtJNvaXUF3DW0jSZqQK+cakOTzwEeB65PMAD8P3AccSHI38AbwCYCqOprkAPAycBa4t6rOtV3dw+BOo6uBp9pDkjRBc4ZAVX1yllW3zTJ+H7BvRH0auGVes5MkXVJ+YliSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR2b8w/NS9J5G/Y8MZHjvn7fHRM5bg98JyBJHTMEJKljhoAkdWxRIZDk9SRHkryQZLrVrkvydJJX2/O1Q+P3Jjme5FiS2xc7eUnS4izFO4EfrKrNVbWlvd4DHKqqTcCh9pokNwE7gZuB7cADSa5YguNLkhboUpwO2gHsb8v7gTuH6o9V1Zmqeg04Dmy9BMeXJI1psSFQwJeTPJdkd6vdWFUnAdrzDa2+FnhzaNuZVpMkTchiPyfwkao6keQG4OkkX7/I2Iyo1ciBg0DZDfD+979/kVOUJM1mUe8EqupEez4FfJHB6Z23kqwBaM+n2vAZYP3Q5uuAE7Ps96Gq2lJVW6amphYzRUnSRSw4BJK8N8l3n18G/gHwEnAQ2NWG7QIeb8sHgZ1JrkqyEdgEHF7o8SVJi7eY00E3Al9Mcn4//6mqfjvJV4EDSe4G3gA+AVBVR5McAF4GzgL3VtW5Rc1ekrQoCw6BqvpD4EMj6n8M3DbLNvuAfQs9piRpafmJYUnqmCEgSR0zBCSpY4aAJHXMEJCkjvmXxS4zk/rLT5JWJ98JSFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DH/noCkFW+Sfyfj9fvumNixl4PvBCSpY4aAJHXMEJCkji17CCTZnuRYkuNJ9iz38SVJ37asF4aTXAH8e+DvAzPAV5McrKqXl3Mel5p/7F3SarHc7wS2Aser6g+r6s+Bx4AdyzwHSVKz3LeIrgXeHHo9A/ytZZ6DJI1tUu/sl+vW1OUOgYyo1TsGJbuB3e3lnyU5tsTzuB74oyXe56TYy8pzufQB9jIx+Vezrhq3j786znGWOwRmgPVDr9cBJy4cVFUPAQ9dqkkkma6qLZdq/8vJXlaey6UPsJeVaKn7WO5rAl8FNiXZmOTdwE7g4DLPQZLULOs7gao6m+RTwH8BrgAerqqjyzkHSdK3Lft3B1XVk8CTy33cC1yyU00TYC8rz+XSB9jLSrSkfaTqHddlJUmd8GsjJKljXYRAkiuS/PckX2qvr0vydJJX2/O1k57jOJK8L8lvJvl6kleS/O1V3Ms/SXI0yUtJPp/kO1dLL0keTnIqyUtDtVnnnmRv+5qUY0lun8ysR5ull3/T/o29mOSLSd43tG5F9jKqj6F1/zRJJbl+qLYi+4DZe0nyj9p8jyb510P1RfXSRQgAnwZeGXq9BzhUVZuAQ+31avDvgN+uqr8OfIhBT6uulyRrgX8MbKmqWxjcJLCT1dPLI8D2C2oj557kJga93dy2eaB9fcpK8Qjv7OVp4Jaq+n7gfwB7YcX38gjv7IMk6xl8Tc0bQ7WV3AeM6CXJDzL4doXvr6qbgV9q9UX3ctmHQJJ1wB3Arw2VdwD72/J+4M7lntd8JbkG+HvAZwGq6s+r6k9Yhb00VwJXJ7kSeA+Dz4usil6q6ivANy8ozzb3HcBjVXWmql4DjjP4+pQVYVQvVfXlqjrbXv4Bg8/zwAruZZb/JgCfAf45f/lDqSu2D5i1l3uA+6rqTBtzqtUX3ctlHwLAv2Xwj+BbQ7Ubq+okQHu+YRITm6fvA04Dv95Obf1akveyCnupqm8w+E3mDeAk8H+q6suswl6GzDb3UV+VsnaZ57YY/xB4qi2vql6SfBz4RlV97YJVq6qP5oPA303ybJLfS/I3W33RvVzWIZDkR4FTVfXcpOeyBK4EfgB4sKo+DPxfVu7pkotq58t3ABuB7wXem+QnJjurS2asr0pZiZL8HHAW+Nz50ohhK7KXJO8Bfg74l6NWj6ityD6GXAlcC2wD/hlwIElYgl4u6xAAPgJ8PMnrDL6x9GNJfgN4K8kagPZ8avZdrBgzwExVPdte/yaDUFiNvfwQ8FpVna6qvwC+APwdVmcv580297G+KmWlSbIL+FHgx+vb95Gvpl4+wOCXjK+1n/91wPNJ/gqrq4/zZoAv1MBhBmc2rmcJermsQ6Cq9lbVuqrawODiyX+rqp9g8FUVu9qwXcDjE5ri2KrqfwNvJvlrrXQb8DKrsBcGp4G2JXlP+23mNgYXuVdjL+fNNveDwM4kVyXZCGwCDk9gfmNLsh34F8DHq+r/Da1aNb1U1ZGquqGqNrSf/xngB9rP0arpY8h/Bj4GkOSDwLsZfInc4nupqi4ewEeBL7Xl72FwB8er7fm6Sc9vzB42A9PAi+0fxbWruJdfBL4OvAT8R+Cq1dIL8HkG1zL+gsH/XO6+2NwZnJb4n8Ax4IcnPf8xejnO4DzzC+3xH1Z6L6P6uGD968D1K72Pi/w3eTfwG+3n5XngY0vVi58YlqSOXdangyRJF2cISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUsf8P8HoSeFBppesAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "plt.hist(x)\n", + "plt.shox()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "## utilisation d'autres langages" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext rpy2.ipython" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%R\n", + "plot(cars)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} -- 2.18.1