diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index 02fd3856b0cfd909e0c18938313f635e5733b73e..c38b81d39a3e939dc75c42fb470ec8e8eb360e9d 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,7 +1,7 @@ --- -title: "Votre titre" -author: "V. Cognat" -date: "08/07/2020" +title: "À propos du calcul de pi" +author: "Valérie Cognat" +date: "08 juillet2020" output: html_document --- @@ -10,24 +10,42 @@ output: html_document knitr::opts_chunk$set(echo = TRUE) ``` -## Quelques explications +## En demandant à la lib maths -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . +Mon ordinateur m’indique que $\pi$ vaut approximativement -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: - -```{r cars} -summary(cars) +```{r} +pi ``` -Et on peut aussi aisément inclure des figures. Par exemple: +## En utilisant la méthode des aiguilles de Buffon + +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r pressure, echo=FALSE} -plot(pressure) +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +## Avec un argument "fréquentiel" de surface +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction +sinus se base sur le fait que si $X \sim U(0, 1)$ et $Y \sim U(0, 1)$ alors $P[X^2 + Y^2 \le 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : + +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, +en moyenne, $X^2 +Y^2$ est inférieur à 1 : +```{r} +4*mean(df$Accept) +``` -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. diff --git a/module2/exo1/toy_document_fr.html b/module2/exo1/toy_document_fr.html index 2ad6d2d6c77d740fdb424144429bf040ac0183da..79adf676d5e771dc414459b9cf823f8ee06b8da4 100644 --- a/module2/exo1/toy_document_fr.html +++ b/module2/exo1/toy_document_fr.html @@ -9,11 +9,10 @@ - + - -Votre titre +À propos du calcul de pi