Commit 897b5133 authored by Valerie COGNAT's avatar Valerie COGNAT

add lines to download csv from url

parent 5c8fdd53
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# A propos du calcul de $\\pi$\n",
"\n",
"## En demandant à la lib **maths**\n",
"Mon ordinateur m'indique que $\\pi$ vaut *approximativement* "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
"print (pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## En utilisant la méthode des aiguilles de Buffon\n",
"Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.128911138923655"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Avec un argument \"fréquentiel\" de surface\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si $X \\sim U(0, 1)$ et $Y \\sim U(0, 1)$ alors $P[X^2 + Y^2 \\le 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD4CAYAAADMz1tMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9WXBc530n+j/dDaAbDTQajcZGLMTWoECClEiAghZblGVZXhLLmrJTseNxOcmDy+V4nudpah7uS27mVt1JJbnXcWV841E8dtUkGUWOnVCibVEai4IISpQIkSAbALESW6PRWBrdQHfj3Icf//q+/nDO6dMLJCDivwoFoPss3/bfN03XdXoAD+ABfLLA8XEP4AE8gAfw0cMDxH8AD+ATCA8Q/wE8gE8gPED8B/AAPoHwAPEfwAP4BILr43pxMBjUOzo6Pq7XP4AH8G8erl27FtF1vd7ou48N8Ts6OmhkZOTjev0DeAD/5kHTtGmz7x6I+g/gAXwC4QHiP4AH8AmEB4j/AB7AJxAeIP4DeACfQHiA+A/gAXwCIadVX9O0HxHR7xLRsq7r/Qbfa0T050T0JSLaJqI/1HX9nVIP9AEUCNEoUThMFIsR+f1EoRBRIPBxj+oBmMFHtF923Hl/S0R/SUT/3eT7LxJR6P7PEBH9v/d/f2SQ11rZufjfCrJEo0TDw0ReL1FdHdH2Nv4fGvr45mO0tkSHY70Pat/tzpnoI9svzU5arqZpHUT0zyYc/6+J6DVd1396///bRPS0rusLVs8cHBzUS+HHl892ZSXWKh7PXite9/hslI7NDlNzyEs1TRYX53qgnUEZHaCPmqAMDxPt7GAuDPE4UUUF5vNRg9HaLi4S6TpRczM+W1zEGrW14eejIgKl2Hf5WbzPmka0tibmZzRnfpfTSeR2l2y/NE27puv6oNF3pQjgaSGiWen/ufuf7UN8TdO+Q0TfISJqb28vwauxvpkM0d27RJubRNXVIJbhMNZK3s/mrTAlXV4anfRSe4YoFvPS9gqRdyFMx14Ywv6Gw7iYF59/8wNzgRmX7e0lGhnBIUiliMrKiKamiD73ucIPdi4Cc+kSUUsLUXs7UU0N7qmsJFpdLex9xYLR2kaj+Lunh2hujujyZaJkkmh+nmh6muiVV7Dug4Pm61QKglrsvstjGR7GoYxEiK5dI9rbwz7z8+U5y+96912iJ5/E3+vrRLOzRBsbuL/EBLAUxj3N4DNDMULX9R/quj6o6/pgfb1hJOE+4HW8eBG/ec0YZmaIJiaIdndxtnd38f/MDL6X99O5FaMKfyXt7RG9fpkotUtU3VBJejQmnh2LATlkqKzE53YG+uKLOLDpNKg9v/yXv8TnTicOp9OJ/69ds7UOpu/b2QGB2dnB/xMT4vOWFlDD0VEcJCIQIr+/sHcWC0Zrm0rhZ30dSO90Evl82LjpaaKqKqLJSePNJzJfB6Nr8x2bnX1XgTnR5CTm5XYTeTxEb7wh9oDnrL6LCPuzvo49290Ft6+oKGxOFlAKxJ8jojbp/1YiuleC51ruKX/35ps4H5kM8MzjIXI4cN6JsvczU+0nR3KbYjEQUY+HyLmzTUm3n6angbOj835aX9zOHkguZJEH6nDgh5FtfR2H4F/+BdyeB5rJ4L5/+IfCNlWmaDKBuXxZ/N3eDpFS00AJ43H8sD75UYPfj7WUoawMP7Oz2JTqaqKlJXA3nw/rl05jPuHw/mcarUMmQ/TSS+bcwu7YCiGSsRg4vceDn6oqIG4mgznKc1bf1doKRvDSS0T37mGvkklIi2bzLxBKIeq/TETf1zTtZwSj3nou/d4umElfIyNYR6+XqLERa3TrFtFDDxG5XDg/moY9HxvDuXG7icq3QtS5PEyRKFGwvZIciW1KROL0DvWTow74utEQojvvDFPvOcq2A/TvM28YD9TnA6X2eDAoRnS/H1R+fBy6Het5Xq+gaFb6pCrO3ryJ525tAVna2vDuhQWiM2dwT00Nxj0zA9G5rw//f1yGvVAI8yQSum0ggHW4fRsI8/77QPzmZqy7w0H0qU+ZqyixGLgCw/o6pJ5UCusgq1qRiLk6YDS2XPtuBH4/0Y0bOJhbW3jG7dvYi4UFos5OMed4XLxrYQH7GQpB5UkksG9PPYV7db2kKpodd95PiehpIgpqmjZHRP+ZiMqIiHRd/wER/ZLgyhsnuPP+qFSDU/eUCOv07rtEZ8/e19ubgdRLS9jv06dBZBcXgU/t7UQ//zlReTnRmTMBmtSHKDIRpo6mVdor99MtXz85ynEAfD6iZGWAbnuHaOJXYXq4Y5WOnfRTzVAOZJEH2tYGbu92g9N3dGDTHnkEG1pRAYJQWwsCceJEbn1yYoLo5ZdBRIJBSA5vvknU3Q1xPpnEO7u6sCDb2+KZNTX4vK+vNAY9mQA5HJibrmf/baZnBwIYQziMQ+z3Ew0MEF2/TnTlChDT5cJPJIJ51dVBfFtcJDJSD5lT83xnZzGW+nohAWxsYP0GBsyt5UZjK4RIhkLYm/l5zEHTcCZ0Hefh3DmiZ5/FtfK7amuFYe/MGZwNIhCytraSq2g5EV/X9W/k+F4noj8p2YgkUPeUSEhjLL63tWFtOjuB6J2dkJZCIdx39y7WcWkJ6376dIA6f3+Iri8SDXQSRd4jqtBxxhoa7uNsdYC2uoZo5WGiqTjEGMvtlwfKXPbOHVD06mpQHyKIIrEYqHt9PQ5VX5+YkBFFj0ZxaF0uIH0yCa7Y3Ey0vIyD7Hbj83CY6Pnn8W5+ZqGcywhkw6XLJewToZAQQwcGrCUYRjB+3qVLeE5FBSj27i7mtLoKrnf8OD4Ph4meeGL/mFROvbICMbpN0j4jESEiEpkTWnls8nzzMRoGAtiDv/gLzKWhAcTZ4QABrqkRz5DfdfFi9qFm5rGxIVS0UuzhffjY0nLtgJn0dfKkMZ7t7eH8tLYSNTXhvs1NnKO6OhCI/n4Q37IyXLu3h5/+fjALjwf3+Xx5GHbVgbpcOLBdXdnumUcfxUB3dvB9b6+wtptRdDYWBYPCiMG6TGMjRJn1dRCYqipwDqcTYhERFitfl5SZlVxWaUZH8S4ivIsRbW5OHNBcCzcyAs/Gzg7G7vUSffAB1uzhh7Em6bSYm9EcAgGs4+XLIKjb23g/rysRED8YzL4vl3ejmBiI7m6oJ4uLmN/WFjhSKkX01lv7pSW/H/tpdahLrKIdasQ3k76IjPFM3hNew+pqMEMi/L2+LnCvrY3od38X/7tcIK4VFbi+u1s8P6dqle9AP/c58VJdt+bKsZjg9EyV/H5w+6EhcQ8bgviwPvmkeG4+YHXgYzGMeXQUnzU0gPhEIsJgyJZrOwt36xbmkkjgPocDVJt1tEwG/yeT+H54eD/XjUaxlj09EO0WF4neeQeb3dSE8Tud+xE/l+hcjHsvGgURun4da9Tejjn9/OdEp05lS0ssIa2tAfmbmswPdQnhUCM+0X7pi8FKHZMZMBtK+fOREex5MAgPi9MJ+0k6Delgbg7PYQOsy2VTtcp3oLW1+z6PUoDCqmTJRsHJSTzP7cbP1hYQ7tVXcWicToj/nZ35HVaVu29smB94hwOLWVuLAx2Pw3rq9WZTV6L8dNLGRojobA1fX8ff9fX4vLLSXIVQEbS5GXr08jLEOr9fqD+yMS2X6GxkNGQjKZG52M+Ec3cX70qnYaNJpyGdud04ZCwtsYTU3Iz5VVQUZ2OwCbYi9w4CShW5ZwZGNqhbt7D+u7tAfLcb36fTOBsjI3AN8nmNxWCbe/bZ4tbfbpSwUeDYY71Rqr0jBYREIkI0Tqfx4MpKTCiVwgtOnxaiLluDP/9544GpL339daLHH89GWn6GpoGL1dbi3WNjwrCi3Q/nGBgAwtmJenv1VagJ/Lw7d+D1CAZhvd3aEqI8z0eNZLt4EQjK7zebc75BPnLUI/vVNQ2EravLfH583/vvgxgvL4MwLy9D/N/bw3U8n3v3wOU5UOdb3yoZsh905N6hBCMGrOuQwFIp4NHEhJCQf/ELGN7r68HtNzeh59fWFo/0dlRFM8nyTiRAQyw1lJXBGMg6yd27GOTGBtF772HgTU04eJ/9LB5gxnmjUfiLo1FMuq0NhzEYxLvOnxfX8jNiMSD23JwIEFpeBkU9dw7/r61hPNXVeI4Vgg0M4P1ra0D8EyeIHntMRDNevAiRa3YW7svqaohwiYR4hpkFuFgLuCw2zswA6XUdYruVJMWSQnU1OEx3N+577z0cOp8P1yWTOHwcs8AGp48ol+ITlZbr94NhptNgLCx9VVWB26dSOPttbdi3VArnrZiAKbM4GzUWwzJwjKnY5z+P33t7+HJzE9zot7/F4QoGcdguXbIO2GFqFI1CZN/dFQFHoRDE63gcL796FYazuTn4o9lo2NYGken4caKnnwbVzGTw09Mj3CyvvoqwW6NgmkAASH72LLj62bPZIcysWshhmdeu4XOGUEjMk33j6pwLie7jNa+ogHhfXZ1tNDSK6otGce1rr0FaYc9EIgFRfm0N729txd/j48IoekCBOmbwb5bjqxCNghGFw8AXtvrv7oJR7e1BinW7gQN+P3DC47EX/2EGZrEIq6vZ0uf8PAhNc7O4zpRxMZerroahIpEQ+mtzMw7r668Tff3rxnoiU6P6eiABGw1nZ4GwQ0MCOYJBPCMcxjsrKrCQ169DN6+sFFxQjUFfW8P4NA3cPZXCNUb+cyMwU0Plz+343ws11MljU5Od1M1h4tLQgAPG7qKNDVw7NATuz4fo7FlwHpcL3Ke7+0ACdczgE4H4srj9xS8S/bf/BoL80EPCxdrfD+YUDEK8T6XA4L7wBTAxNf7j0iVct7dnTQjMJFGHI1sFSKVgjD53ThijTe1PLIaWl0Nfqa0VB2hpCeLy7q75oWZqxP5iIiD08jIOLiPSU09lu+446KiqCgtYVQUXJXNBOf6cY+/dbiA+Gyi7usC1fb7cVFTXhWrBLsuBASCMDFbEQ56vDPkkK9mJ6pOJS2UliOjODtbsj/5IzI/dRURYA5WgLC5iHy5ePNAMzk+EqC/vSVsbJOaeHiBtbS32Lx6H69jhwBn1ekEY2MDM8R+ahnM3NQWcyyU5mkmiHK3Lz5SN0aurwn5luOd80BMJUC5ObPH7YY1cWMgWHRiYAo6NQbchwuTLy/Fifm4gkK17bG4Kb4Ku454nnwTCy/5yOQadY+8rKjBJjl2fmrIvdvv9eF5/PwyO/f3CUp8PFBuHL4v9Zpsjrxf74Z9+Gvtjhrjq4VhYAPVvaCgu4cgGfCIQX9WfT56EatrUJNyqKytQU0+fhljf0yOiRdX4j9lZnBk1Ac9INTM7M7q+X6dvasI5YVXektAHArj4D/+QqKOD4g3tNLN3jManNVq+FaHYwxeyr5f13P5+iKAjIxhIZycW4oUXxEtlZOFgiGRSuOuCQRAcmaKxmzIex/M9nmy9yu2G5T4YzG30ILKnv9uBUjxHtbOom2NFXMxSTNXDsbwM6t/cnHttioRPBOKre1JTA4krEMhGRo70ZHtMIgGioMZ/cOYf4wCRdQan0ZkpSTKY309UV0cbn/oCzUc85IgsUWWlk1ae+ApdWe7OZhSy2OP3I7/d54MYb8TBZGRhY9TaGv7mohHPP59N0Z59FsY5tlAHgzjETicQLhYD4VERzmzx7HBaO1Cq51iBGXEJBq0lHPlwtLQIIslQSGqwDTgyfvxiai3YrdLD16RSeFckgmu6usCo+P6RETC0wUFz93IpxmT3IR9Me2nHUUlebZu0RJy2+4dowxXIHo9df7f6fKOEHHUDzEpLyQUpIhEQgLY2iLKs18qhlI89dnjKnBVy4IzuCYftV0EqccUkKz/+kUB8FUm4OlNrKwzKRlGchZR1s9rrXNWUCqnSVJJKXNEovfVimAKOGGV8ftppC1GmJrAfpw+qDJcVBSOyriuXSmWHrtoN/Dko4A2ZncVPKJRtaS1kXByLMDcnSkS1tkJPVAluKct/0b8BxM8niMru2hWLdIepHqctnC7xocrv5Qrw4r31Fq6zisz7qEBen/ffhwcikYA9pK8PyFvIuF55RUQ7chbl2hoMSs89ZzyOEh2sIx+5J3tjOIPO7QYRUF2ydly2pSg+m8uDJINdScLvh0qYb7yArRoSxeSbW02gkJh2HgvfK6sfH1dNQD446TQyBAMBHLS5Oagrp05lRwwagdE6yXOTwezzfA5WEXAkEF/2hS8uioSseBzRon19AsHt1JcsJJ6jUEJsRWSIsr9bXIRkKPvy7RAk2zhdyKHKRSXlzZHFsZaW3JWFDircNtd8jDaSidAHH4g02fJyxCt4PLjn7Fnr56rr9OqriM5zOsGxvF5srFEswkcMRwLxmaNtbMANzCnOzc046G++CUmsvj67viRHWKpnKd94jmIkBJWRbG4KT0FNTTYBWl2FRLi6irnlkwl6YMCZS5wX39YmXExDQ4XHtBOZiyotLfsLYPBz7FJeK4Oj0UYyEdrcxNgnJoQKo+vw91q5/1Rukk5j3TY24EKqq4PE0NaGA1BVZb3uB6xLHgnEZ0b10kuQunZ3iY4dEy7je/cQbLO6ij0bHoa4PDaGs+p0En3mM8KDMj+Psmhybkq+uSxE+9WHcBhnnxN82tpA6GtrgfQejyiu++abIieFYXMT39+4kW0HSiRyqwtWhKngM8QPbmzEpLnElyz28uZcuwad3euF4YXBiqIaiSotLcKFwmLQq69iUmzJzSVJmC2Iy2Uu6jERcrngwaitxVw9Hsz1/HnrRVO5CQd76LqopcBxDMePCz3Mjkfkxg0cmOefz478KwKOjB+f41VOn4Zo7/NhP91unC3OWWHIZCAZpFJAoJ0dqAGvvgpvUlkZiPGNGwiYyjeXRXav8nUrK6I46vw8/p+dhW3H4xFVl7e2cN/160T/639BjSQCs3z7bdw3PY2Q4TfewLysXMFWiUBFVZ8Oh0Httrcx8HAYiHj9+n4qmU7DYHXiBERkXqhconsggIXn7L/Ll0WY5MYG3ru2BgRyOkFBraruWi3IzZvmmVBMhLq7cXAWFhCO/NhjWDiuimwGamAGH8amJhEdubODH9USrW4OV5PlEt1eLw7Jn/0ZDnAJIvmODOITiQhOnw9MKBTC70BAVGaenYWBzONBCO65c/ifk2LYDXf6NJ6TSoliNnZyWTwenJ+RETC5H/2I6Ac/AKJOT+Mc1dYKRhcKgcjrOnAmmQRxCAYx9nQaexmLieQurjSVSkGCyJXhZ5XZZzc70BBiMRzcsTFQK68X1O/69eyIJn5Jby8mPTkJUfniRUzaSkRWD380inu5oQTXS0+nxQbMzloHtpgtCJF11BRnC37mM4hmnJ8X0keuRVMDeFwujINFxP5+HMjHHjMuIiJvzq1boigJ549zyDT3TSgS+Y8U4rOIWl4OZrC+jt/NzSAIdXX4n4PE2ttxXufnsVYsURHZC6fm8yNH86VSyExdXMRexeNAzkQCTI5tNm63iFY9fhyEaXkZ13V0iNoZDz+M54yOYi8vXAChiceB/KdPC4Iig3zuraIAi+oT4fdjog89hMHE41j8Rx7BwVQXikHTsCGJhHmGHYN6+OvrgehcFMHtBhJxDgAvrJUkYbYgfX32Qne5xNiJE9ggTobiLi1GoEYHdndjo7m8mtG7rAhUJIK5Li6KRCcuWFKCMN4joeMzBAKICvX7wXG5PJbPJyRMuXjmzo7wKtXXgwhwopdRjUtV3eL6h0wkZmehGgSD+KmoAFGurQVS19bibJw6JcLat7cR4ZfJ4B23bgl3bk8PpNeBAZFT4/Fkn4XtbXxmZfy2cudxNm1BhvNQCH7oxkZQ1WSS4pEETVecovilGO2RVB5se1uIW0wpy8sxMSvrpKobt7VhkVdW8KxYTBSvYELiclmXzjJbEDmoyMr9sbkJ4sPpyh4PNkzWJWVQDw7bA/hzs3eZeTVOngQniMUEseWyUdXVJXF5HinEJ8K6PfcckMkoHoWLZ2YyRL/6FYhAWZmIn9jZwfeDg9kIYmQPkusf+nyQ/mZmUOWZEZgIksX770PSvX0b9+3tiZ4QfN5cLkgLLpdAeq7RwHat3/wGRJ1TtV0ujJVrZpoZv7e3Ra2B5mZIDqw+F9wngrnY5CTR+jotblfTG7PdlCYXVdVVkbaCdXusN4TyYCsrMIZEIlioxkYgalXVfiuoSl358HMixfIyPltbg9jDLjWOox4YMDe25fJv5nKR+HxYyERCUOm9PUGAZMjlr7UCKwLV1YVc8GQSh4Dzx0tUY//IIT6DmS+ezwV/r2mi6vSZMziHo6P7zwPvnfw8o/qHnMzDCWseD/alvx+IzCX0V1ZgIwoG8f3AANRH3k/O3+AclmAQ13OrOO581dWFM8GFQIyM3y4XJFEiqJBlZbA/TE7ivLpcGGsiUUANx/viynrGS7/6VSVVlG1TfVmc7tX1U+x+ev2H5cEWFjCJ9XUsRF0dEHxtTeikVtTVKB773Lns4hV2XRJGMQsTE6IMN1NHIys5VxdaXRV1AJqbjRt6mB1Eud1TIU08AgGib38bzxkexnhCodzSjk04EiG7RmAn5ySfaNJ8ajayp2ViAkR4bw/nx+kEgl67hvMvF+3kqtpm7jXO5bhxAzEfkQjsCW1tQu+XxyzPjfsrEkEqbGvDefH5siWbgqNzo1EafSlMt67EyHvMT1vNIdqtClAiASLT3Hx/jaJRoh//WJQmZmrT1SWQxmhDdnYw2FLGyKswMUH0k5+AA9TUAKHX1oi++c39yJ9PeLPZwfntb0W7J3muhYT9FuiPPfIhu0bgcOBwy3ElainsfMRcu0FkMpFOJkVdyfp6gcDRKM4Xq4ic1MOqrhEzYlV3awsE5PhxIBUbuROJ7Htk1XhzU9gs2Bju94MYsLGYyFzVznmuAgGabxmi+JNEsZSYF7cu42ZAFAiItF3mlN3dQGrWSY0ip+TJyZl7pYxgunxZVBEiEr8vX96P+PmEN5sdHJ6bDLJuHo3iAN+6hf9PnjRXXw4gjPdIIj675TY2sO47O1hD5qoM+exfPkSCn2u0F7GYcL0ycBlvK0s6n594HMhaUSEqN3H3XxlB79wRXZSXl4Wxt7oa15aX768XYNahy05UolF5/1gMRCrLKM7NI1ROxxTUirraKVCoRkjZFf0XFrLbahGBWrKFWAW7yGan3RMDl9X6n/8TxqB0GpFoRDD+RKMQ0Qop7pgnHEnED4chCQaDuUth292/YnJYZOBYA7nxTTK5v2KUUXION9fhGo26DgYqd/9lnZ7zFerrwTDffRdn7bnnxHMHJSHPqkOXnbyFUAjv7OrCuVxaErU45AjCyXUggqeeqDVUSTVlCgU1o64cxGAUUskFCjMZBEEwJXS79xfvNIPmZkghzOmJ8L9RiTIzMBONjA6OOlfu8MM2Cy4p3tQEw46mweU0Pi6KMJaVwZdbbGMHAziSiC8ndal9I4oBu0TCSjQOhbBXU1PChc06PhdjYVW2uRlE4cYN0dGntRX3sV2othZzZSM36/Qc57+2BunY5RJqa1cXftvt0GWVtyDPlXMMmpsh3huHDQeo+okh2gmH6c6VVeodUroNy0jicOCBv/oVDn1TU3ZIJRtOnE5M9u5dDI7DaFdX4Wqxowo8/DDRX/81nsXlk3d3ib70pdwbnj1BY9HI6P3yXOWyWlNTmHtVFShoVRWI2DvviEabXi8Ox9QUxFmjFN4i4EgivpU+nk8KbCFSVK7951gDWX07eza7is/WFqTh115DbExjI8b0+uui25NqV2L3LRGY3doaGCO3gdd1nKG2NowllwvZ7lqqczWzccmSwx4FiM4PUSJONFZBNKTYCz4cID/83j1R+PD4cVCwlRUgywsvoLY/x2Qzpee8bDs+7WgUz3rmGYT8zs8D2b71Lfux74WkdMoEgY2ARNhM133UYz9tMglJoKcnO36AW0B9khDfDFFltUouk9XXB27b1GSeApsr7yEXcbCz/xxrIO8Vv/vuXcTj7+6KsxsM4l1LSxib3PyVvU6RSHYj0HBYNJglwrnheBceQzEqKgf/GM3VqDp23hWs5YdvbQkvgNzSeHU1O/VX9qHKEVK5fNr8roYGYZBYWEB3m0jEHhcotkS3TGHb2kDspqch0m1viyi+hgZ7zysSbCG+pmlfIKI/JyInEf2Nrut/qnxfQ0R/R0Tt95/5f+m6/v8VMzA7khW7OOvrUX05HIaUyB2lZaQkEnkPHo+IevyzPyP66leFPpzL0FXo/s/OgtHw3nL7850dfL+2hnN88yYIFzd/3d6GBNDbK9re+3yQjJNJRAlGIpAcORAoH7CybRjNNZXCmjz1VPYaOZ15Rghyp5+tLWGd5F7m6s1Mnerq4OLggBqOkDLzaTMVV4s0rK/jOSwu8SSsuqZoWm43ktn71XptPh+CkjIZbFwiAbGwuxvjYhsAN3Z85pmSp+nmRHxN05xE9FdE9DkimiOiq5qmvazr+k3psj8hopu6rn9Z07R6IrqtadpPdF3fLXRguThrIIA9vHAhOwXa7weSGRXhkPMemADw35mMUCWtuLmZaMz2J7N92dgQUaBNTbDhrK/jzPv9ImP0vfdAyMwCk0ZGQDQeeQRMY2sLjGNoyMDCLoHVuTGTDozmGg6L6tjsOlxZgXehsVHE4VhGCEajoFyMONyAs6MDD+C4dr5Zpk6JhLDmsg81V2quWqRhdhabUV8vOMTGxv6uKbK4aORG4o6qZguuchFNw72JBN79ve/trwcXi8FS63SKVN5YDMTLSJQtEPntcPxHiWhc1/VJIiJN035GRF8hIhnxdSKq1jRNI6IqIooSUVElRuxwVvUaTr+VQ6plxnHjBg7n5CQOKlF23sO776JPhNU75aIgXDw2mYRXhmvxG+0Lu9kSCbyrrw9qX0WFyOjjNPBIJNvYzGNQiZ2MeNvbUC2M6goaxcXYOTfBIHAhkxH5CSsrCFnmYjseDySY5WWRep4zQvB+/nv8xiQtLCRpO1VHPmcHNUwtUmVPDxZFvdnKh2oEMudobxeVgWZmsMBcS50hEsGm3r0riiHU1QlxkSP37HZUNeJcTU3WATyBAMaaSmVLFnfuYDNZJy1BfIMdxG8hItnZOUdE6tv+koheJk4c9eUAACAASURBVKJ7RFRNRL+v6/qe+iBN075DRN8hImrn2FYTsBNQo14jR6xxSqpcItvpxOdbW8Z5D/wOq3cGApAIZYRYXcV7OjrMA2ba24EkHAXa2goEKivDeeI95nMpg5mrmxvZyOowg8xwtrbAXCcnMU+jQiIqsLswFBIEbm0NLsOyMuAHZ8kyA+O2fTnPYixG654mGqNK8umzVEPrtO1rojGthzqe+RrmwRMoVLTlhWLqmEhgIRYXgUANDdldgMbGIDqtrQkpJBYTtgTZjcR1Bd9+G/calR0vVCeMxcDluWgDUXZrsnyeZQF2EN+oKqAa5/t5IrpORM8QUTcRvapp2hu6rm9k3aTrPySiHxIhZNfqparRiUO4mUiHQvuvcblgFHY6Ybhj3b+sDIf4qadgOd/ZwTUtLaJpxmuv4dAuLuYWVyMRSISM4FeugJCYqRg83mgU3id+djSKz2XuHgzi7HEPTHUMdiMMzWxnPEajcyOrA/PzwI3mZjE+bikej4t8HE5X7u7O4yz6/TT37jaVBWuI2mpom4gciThRpgLEKGQjqiiXzsspxazTHTsmdOYLF3AgFhZEQtGbb2JzAgFwhPl5kefNiTEsZrH0UFMDMXF7GxuXTAqLcb71BDmS79VXYbUNhUTlFzUiLNezbICdfPw5IpJDnloJnF2GPyKif9QB40R0l4geKnhUlJ3efPeuqI7U0SEKlRBlp0BXVCByj+Pbz5/H2jACpNPIe/jyl7G2nCqr6yAOnZ1CXLVquKKmUXOEnJmKYTSf8XF8Hw7j/HHKtlGDGnkMubpBMaO8dOnDpLoPjeGcym40Pqt6GAyVlXgnj2d5GQTPrLahKYRClFiJU6WOSTgScdIScdJCIXglclUPsVNWKBRCwZCpKSD5zZuggCzC9PYKkTCVggjGbcfLy/GMpSUsnrzocl1BLsi5tgZC0dgILvLyyyAEdtt28XwmJ6EDss2De7Qlk1jwYluJSWCH418lopCmaZ1ENE9EXyeiP1CumSGizxLRG5qmNRLRCSKaLHhUCty7J/LUjURps7h3lvI2N4Xra2gIxGFgQNTS4+jPmhp7eRRWKoZVwAy7IqNR0WGaJZlkEs9h1dbMvWxlhY9GwTA4GW51FUSlrw/nlaVW1XbGaymrpPX1YHayFMOIHQjAvS7nsRg90xTuT2J7MkxV66uUqfbTTnc/bboC5K+i3GKyXZ/69jYQk3v5LS5iAbheIIttV66A4q6u4jq28joc0NFYv7t8GSJjW5vo4huLiXJJmpbtlzWqJ2gkpfB80mlRPmp6GpS3vx8i1zPPFB9WKkFOxNd1Pa1p2veJ6CLBnfcjXdc/0DTtu/e//wER/R9E9Leapt0gqAb/Udf1iOlDbYCsozoc+JEr51qJlaqUV1OTnR3KgTYtLfDm2CnrbtVJh1UMrpBrtS/qmWXvTj5JW2ZW+GvXhGu4pwdxH9PTovEIv9vIdmZVD8OImBkRILNzbQRdgwEazgzRltdApQnnEJPthBu+9JKoXqrrmJCuizp2RBDxiLBA6TQkgt1dHJqlJSxUMCgMHj09GMfdu7DMVlXhHXV1QgSUAyrkjbLyT/N8WDSrqoIxZX0dG1dRUfJEHVt+fF3Xf0lEv1Q++4H09z0iKmlokUwEV1ZEkJbTiZxzK7EyFBIlt7mOAhv0XnxRtGizq4ZNTOy3bsueGb9fpNzmgmLjQKzg5k2MhQO/Tp6EpDs6CrXniSfMx6iuhVwPw4yY2T3XVglnRkxsLRiipZeHaT1DVBmspPbgNtU4bRo65AqpfX0w3mQyQKbdXZEvzRVQm5tBFPiAzc3hkLndGOCdO0ICSKeB6OwGSqUg4ieTuJYNHmpAhVmp5o0NQaAqKmBc4vJedioNFQGHNnKPY8O5qcn2Ntb56lXhMuLIT6PEnLY2ILuso7K7j1VCOSjGzJgXjQLpXS5hv5m8X4DC58s/zTVfm48R2I3lqKrCONWUXiMwiuBzOrM7Z1tBsRGt8tyG7wSoJjREtZEwpSOr9MGan/qe76da2dBhVo+fEWxjA5vW2AjE4uIJ7e0wFE1NiaSZpiYs1OSk6KEu637s5/3gAxyC2lqRaffooyAWRpVV5MSMzU1hoBodxTimp3Goz56FuLaxgbnJqoJVpaEi4NAivt+P9WaXkdsNeweHXT/3HAxyZlylrS27UAX77X2+/UExVqrTtWuQ7CoqhG7u8QhXsAq5OF9RpbByPL+vD4xM04SkE4sh2CcXFJudWCpJ5kN1xBug7WZQhXSc6E6EaIjtHmZ6Bvu7OWtpbAwLcewYkLqhAckROztAbs5+Yp/qk09C/Fd1PyIsNOcKcKegzk6ETt69C0RmSswGvkxG9HnjMspcnfidd/DO+nrcMziI8c/MfCRdgw8t4odCogY+l1R3OFD5WE1xNeIqMoJtbABxk0lhNJODYqx82cPDQsVIpcA4urqwnx8WoJDATsRhMQhm9fzBQTCXO3cwZ58PUk13tz2XeL5qpOr+S6WyXZOFeJxsExB1sEwNuRZ6MAgkn58HB93bw/9c6JALhJSVZZdYMit+GY8DoRMJID4/Y3sbSC/rPFyFiPPGEwn8PTMjjCwLC5go+6drarCBq6slL7phBIcW8Xlf2aVUXQ1uy+vGYMZVZASTK+8aVddlUEVojvuvqsL5qaiAnYDjCYy8KXYObjF2mlzPV3sxxuPwODQ3lyzak4iyJQ+XC8bO3/wG0sUjj4iO15xqb9foV7AqxAvT1gYRjwgvSadh4FhcxIO4Tv/Nmxi43PXHTBzr7YXEEI1CPO/txSSNdPBwWBiDuCR2PA77QmMjDtDyMjhad3d2EJE80U9yCy3uLch2lJs3wc3OnhUlsq0OBSOY3B3JzN1mJkIfP47139oS8fxECAYy2pdCDm6pEGNkRGR2sqh//TrWrqcH15Yg2vPD+9ne9cEHYJ7nzgG/rlzJdrPK67q4CMNrW5txAZ2CVSFeGLkW+vKyyJMmQnCDWgxRdfWYqRBeL/RL9r9Go+D0Ru4RNgbJiRnLy5AcEgl8d+4cxstBRJGICOLI11JaABxqxFez8DjKUtez6zTY4Spc2poIIrq6hkYitMeD9/b0ZCdLnT8vCmOo+5Lvwc13j62e/+KL2VZ9rgB87364Fcc1bGxAAiqGiTCD5Z6AbIcpK4OLlD1QcvXi9XUwTpdL1CTIp/DsvoUzKmFEJGqhNzSIh0ejEPnn5rB5nZ0QrV2u/TnVMkV85ZX9TUMHBsz9r2qNMq9XlFCenwcn4XDScBhjdruFu4jLMOVrKc0TDjXiE1knpnCdBiLr0uYc1OJwYL3X1va/Rxah+R0TE/jd04OfZFIkaXV1me9LPjp8vtbwfG0EnJdy6RLOPRf03NqCKlpoH0ZmsHJtDA4QklUPeV25IxbXITCba05VyIhacu6yXINcjmziSL/BQeGHJbLXJtmqaagKco2yqSk0XNjdhUX/9OlsI0gqBWTv7cXiTE2Jumpq4Y1S+Xzvw6FHfKLciSlGNfGJRH4+B7V4vdi76WlY6+XCnBz0Mz2NvfX7Idp3dwNxdnZEa/O33rIuoJqPDl+INdzs+SdPQqphq/7qKhjc7i6MyJkM1KX2dqhL6TSMz9/+dv6cX1afjOxdLE3LqgkTCSYQduZqCGbUkt00ZtfX1wOpuEZZJAJ3nFG9fL6PU3c1TYhS4TAW0AhkMXVtDUQiFMLGTEyILKn1daEysNGIW2lPT+MwqpZSLrxYAr3/SPTO48MjgxrIZdYfTg5q4b3z+/G5DMEgkGNiQqTqrqxg3/v6RNNTriNvNZ5Szi0fGBiAJJnJYO7shhwawrjX10HA3G4gHhM3DoG3A8wEr14F0tfXQ/LKZHDG2d7Fhk85zL2qCuPiNvEFzzXfhoB8fU2NaADq9wPx33knuwGoel8oJAJzOAsvErGOk5fFVE4YkXsCcqIPF1d0OKAGxONYELcbFPnqVdFGa3ERhKSgtsf74Uhw/Fx6s5HBi+Mrbt0CIh8/joNnBpEI7C2vvSaSoQYGwI04bp0PMCd3mY0nH2NdsX59GQIBSDH87slJSLb19SBkmQzOFKs6arkuI5Dn4nDgXrkeRGUl0Te+IQrXVFVlqx6yauL14v5QCGp4XvH9MuSyoKob4HDg+/l5LMDCAhaktVVUvTXSd7joRn8/DtLt2xCf7CTHqLrj1hYMIuXlEH24QejaGj5LJHD4NjYg+jc24l62lNbWgoqXSO8/EoifS681SuHloKz+fhDX7W24cbl7sRrUEovhQJ8+LcK1OWpycxMi894euH9trXWiTKlCV4ny9+rIasDYmJBOGxtFARsWz42iS2VQ5zIyYlzazEzCVseUTxFQS7CilmZNEDc3cSgaG8EFOMbe4zGnfBxMMjeHQVdWYsE6O3Nb2Zk4pdOiYsmJEzicV69CEhgagug1Pi4kgTNnYLFmN+LJk0B4MymnQL3/SCA+kbXerCKPXMmYi7NGIlhfTu2Va84Tic486+swgrW3iwSceJzos5/dX73GKNzUKCSbKP/QVX5eMV4dWefnqj9vvSWqWHN0qRkDU1XpXKXN7IAa31+Qq9qKWhoZfJqagHCcKltbi8VxOs31dc6Pv34diF9ZKQJI+GBYbSoTp+lp0V3V6USwEIuLNTUYx927kD7YPbKzgwM4Owv9iedYbKy3BEcG8a1AzZxbXMT+rq6KctMzM5D0jPouTkygmApHdQYCIBLcK5GJCJG5hCXnhjQ0iJDs/v7sDlLqeK0OfCHx7zIMDIiuQyx5vvACztTeXm5ky7e0mQq5Sp0X5apWqGU0ShQeJnJcipG7pe7DuppEJKj/c88J/6PbDZHHSF+PRuEGuXYN+tDuLh7GVV5khCQyb8bJST4OBw4BB+xwFlk8js9rarBJNTWiiOjaGu7lqD827HGdQTlCqgA41E0z7SCIfIBSKezVzAzWuKoK69bfDwJt5HqVIyxdLuzp2hrcd6dPQ9y300yT6yi8+qoIye7sBCHv7BTvlsdbaD/GqSmcFztt14oJAFObjq6v22/GmWue6rOJiusp+WHE7uQw7WzuUFz3ikjNeByUvKcHYgsnzbhcOCiye4cIvvvr14HQe3tY8HQaB+nRR4VIzmm7Vs04zSaaTIp8cS53VFmJ6xcWoPe7XKK22ac+lV+rcDqiTTPtcgSZK46OYv3Ly2GHYelofFzkZxBlH341wpKDq7ihCzd1Ubs6qVzu5k2I0V4vGAQjXGMj4jWef37/eImsubiZ0XJsDHPkMXDbNaPU4GLCg81KmxVSd0CdZynTk+V37bSHqHJ0mEgjmpmppNNd29kWWa8X3Jop0cDA/gfeuiU4qsOB6L2ZGRCDri4gIHPbl16ybsZpZo+QA4tkbu507g8F3tvDwvT3wzbAFPIgC3F8XGAXQdSusU4nItXGx5GUVVYGnT0QwJ6o0WJqhCURpMDJSVHheHwcRHh+XtheVAlrfFwEYHFiWCaDfQ6FcOZqa/M78EZnJhzGmHw+8268hYBRIFwkAkIzPo53dHWZt5RXwU5OQb5l6s1gdlYEJVVXB6izfYjqY2Haml8l6rsfdhuJAGEWFvBCo3BbGZaWQLWXl7HhTU04WGNjRF/7muC2uZpxWtkjZO72xBO45oMPgNwnT+I5V66I3H2jhSwQDi3i20UQlSuOjWF/uIru3BwQqKUFfzPCMpKoEZZcxnxhAXvt86HtGkfyVVUR/ft/b3xeXC4QFk7NrqvDOLjvQzicn43G6My0tgIZuRDr0hJ+7+3hfYUgvipdLS5CzQiFcN6amvD8hgZBwHIxm1y1MvItU2819tlZQTSSSaLrMwHq6hqi+j4ikgt3dnQIjmul85w8iYi7piYcnKUl3Dc4iJRZWTWw04zTTOxSudv58+I7NlBUV+N5Pp/4rshCm0SHOIDHbmCLHCBCJMJta2qEgfTePazx8LAoWsoenFAIBL2rS0gHXPrs2DE8o7oaZ2FoCDq20Xnp7oakxiHBHg/OQmsrvuf4klzFMlXgM/P5z+OazU0g37VrYi7l5XjWnTuwMVy8mF9sh1rbcnUVY791S9T8Z6Lr9doL+LGaZzgMvBgchMS6u5u7TL3V2EMhUSTV7cYc+POchTuNYGBAVDDJZDDYoSGip5/ez90vXMCGr62BOvLfFy4YP5up7MWL0A3V0tmhECLHeOHq6oSv/8YNpEBeu2YedGQTDi3i20UQRoyKCtGH7vhx4YNvacFa37sHxNzdxbqxwYzv57rwn/40QljNojjN4MIFPDsQAJHweLCn587he5loccLQb38rqjbJB14+G4zA/BmXvJ6ehlSyvQ2Oz8bNiYn8A7tUFzGH1kYiwhPldos6hpcu5X62vC9qtWA5kK6/HzaQwUHgTb7A8Rf9/cANTuFubb2/pvlG+fHgv/51IHljI/zpp08b+z67u2HI83rBcbxeYdhTQa0OnE4T/eM/YkFHRzH4srLshauvJ/qd38HiRyI44Kw7Fhi1R3SIRf18klFkSeqNN0QLMl2Hi3R9HYjCQTvb2zD+yT0QVN8yi+bc2GVmBureI48Yl/vi/b98GXukaSAGra2CaLW0CKnzySeF1CmDmVFTTtiqrIS9gXXwJ57A+8rKQHzk4Jrf/AbzVz1N8lzHxjDH3l4gI0uXbPvIZLBe09OQlru6jDPrzPaF33P1anYgXSlc0nI2LkvHbPuKRonuzfspfmObKuu91M5xFXZe1t0NDmDHJdLdbc/wIUsf6+vYrEwGHL22Nlvfkd/zyivgJFxu204cQQ44tIhPlL9Fmt2j6TS4wNtvg3uFQuAGExPCtcZEV83kY6QbGgIRuXEDexMIgAgEg3D/qfnk0SgQsaUFRmM2jslEy47B0uwaub1XTQ28Sjs7ODuPPw4bEJFIfiHCu//pn6A6cj3Jn/wEBKq2Vsy1vx9S0MiIaB03PY2An6kp/B2NQvVR603mOntmgXS6LgKsjMKUzVzjRntuVn5veJiopiFEwc1h2t4gGr1RSf3dSuFOowEfVAEMNVWR2yRPTJjrO4VkCNqAQ434ZmC2N4EA3GYvv4zD2t2NA5DJiECt2VlITz6fcUddGemeegri9vY2DHw1NeD8aj45F+1Us0RVblhIP0C+hsi4lr/TCeLEEoxsd3rrLVEbkijb03TqVPZcueTb6CjsV9/8JgjX3buYN7cba2oyjmExA5XJcUp1eTnGY9Rnb2JCuMaNCJa69ywZcts7nw9zbGggqmgO0HblEFXMhsm5skqzy36qecFEdDzoAhhmqYqnT2e3BlcXMN8MQRtw5BA/196whPbii6IeP7v5jEqdEWUjn4p06TR+iCBeG+WTX74MaSCX69GORZ/Tg1dXs3s39vUJtYAlvbo6UcDlxAn8vn0bnoeyMnz32GPZ82FPU0tL9lyNSr51d2cX3GDJdG4OyMtBZVaZonJzE7XJZiaTjVNM0H/2M+xbQ4NoJEpE9Itf4Pmy94Gr+XCqdk8P1ue117B+sCUEaLtm6EO86jfD4WJDJXOB3HF1aQnBH263MAQaqSBsEf7gA/zvdtvLEMwBRwLxjXq6We1NIIADzwFTzGnslDpjxJydRdOUqSkg0toakOrMmf355AsL+FyGVAriuYwQdjLxgkFIGXIg2PQ07DtTU1D3EglIMC0tAhGIcK3MtQcHRZswBvY02XUr8nVtbdlBZT4fzu7UFM6iWRdeJmRvv43zzvPiVuBsfecqS/X1GCNXrOrpwfrX1ADJH3lE7KlczYeb3XIgllUnIFM4yKYHRFgU7rhaVoaFa2jAIjqdxgEicoYgJ/K4XEVLIYfWqs9gt6ebaqSVvQJcienUKaI//mOR/KR6C/iehQUgPXtyOKCHC22q+eRqfv76OnTmiopsCzuRuaWbgdODfT5RKTcUIvrXf8W8+/rwfTKJd8jeIObaDz2E5/7O75h7mux6Tfg6lwvcNxIRwUkeD4jP1BQY0vvviyInDFznYGUFZ3hrC/f7/di3mRkR7tzYiL3hGhXz83gW90fgNmpEopoPP1NOICLC/uztiU5AZj0Gs1yfpSyOYAbMqY8fx4S3t3F4l5eNkVnegFOnwGGOHzeOOMwDDj3iq25YuZ4Bg9HemLmTOHfCCPn4nuVlwZ1OnwaiVVXhcMXjopmGnJ8vIxEnX/X27ncdy355o31m91RbG6SKzU1IhFNTwp/OvnWjIhryWlh5mqzcbUbrmEwCudvbQVB6e6FT7+wINaCmBnsju/qYkNXXi3z9hx7C31y6y+vF2no8ounN4iKIwOYmImXn5xGuzni5uSkKilZX729cyp2AAoH98zPrubkWzDPIIh/gl/7850T//M+YFDfsLC/HBKxcVrk2Kk849KJ+rp5uXPSUA2VkHdPMK5ArxbelBYcslRK2lL4+iLYPPyyy7WSjFBudVldxkAYGstUJuxIji8bs1k2nIfLu7gpbAxEOfW2tiPUwUx2sPE2BgAioicWE2G2E/DU1cBtyGDOP9Z13wIDk8OFgMDsmv6kJsS+s41dUCLXL58PYq6uxPkxEAgHMlwnK4CB6KrDkxNV8dF3MT21catYJyEyVvxMJ0JDsQ9Y0cFr2QxZq4Zd7sN29CyLg98N153RCTJJ1LqONKlGRTYZDj/iqLir3dJuaAicLhcx1zELfubYG0ZXTV91uHFizhCh5b1gtI8q2ZDO3sSqyIdd+4JBf9s/fuSMkvGQS93BPxUIKW+RjxDayMTU0QHc/f15EzkUiQOJLl3CdwyGMlZwF63SKdOlwWPjhr1zBuldV4ZqqKqIvfAHPGx0F/nGiHYcqDw0B2be3rROI5LUeG9uvSn9ImOXgAzW9UF6cXG4/zucfGcHAjx3DS5k6M/doaMAmb21Zb1SJXYyHHvGterqFw7kNfbnAaE3ZwNbQgMO6vAzu/93v2ltv2XjLLdvKysDtfvxjSCdMXOQyVnyu2JK9sYH319QIkZq798RioqCIUUpsqfP9jWxMHg9iTTyebJuLrkNq2tkRnX1aWkRYO9sZWOIYHgZxOHEC811bgzrQ3AwCuL0NPHG5RE7FZz6Da8NhfN7enp2dqNZo4O7GdXUglNeuYe1MDX9Wi8ODNqOYnM8/NSVcSizOlJVh03d2MKhjx2CAcjiMN49LbquujNZWTLpAInDoEd8qgq9YI6xVlNy5c8Kl1tUlIizzGfNLL4Fg1NdnxwBwkRCjMlZ83jjkt6YGDKGiAkQkEsH3jzxijvT5cPFc3aaN6u3JWa2f+5w4l5OToh5le7tIUea4CTZWdnaKMne8VlxO/vx5rHkwiDlfvQrpgCtQs2uPE66MWoyblQxjS38mA2nuxg3Mxe/HOLIShKwWJxfF5Oq5tbWYaCAAKhWPYzPTaWGsa2nBwnZ3w2UjF9vY2YGKwK4b2ZURj9sLnzQBW4ivadoXiOjPichJRH+j6/qfGlzzNBH9VyIqI6KIrusmWQr5g5mKU2w1olxRcnKClVFsRa4xt7TACKtpQr/lGAAev1EZq5MnQTQqK0WWocOBg9nRgfuvXsXhVyPa8uHinBq7vo5z5PViLF1dxgSExXk2flZX41xzOfv5ecxZrn7DtitZtFbX0sr96nIJe8nNm+K5vIZGhN6sZNitW0D6vT0QjMVFMOVQKDu57sPNMTtc3Mp5dFQEW7S2iki6WExUbPV68VIuclhfj3u2tnAYMhnBVdi1oWmQDvr78X0kgsNotzGBDchp1dc0zUlEf0VEXySik0T0DU3TTirX+Ino/yGi53VdP0VEv5fXKAqEfDPdVDDL3yDCHq+vI/rtpz+FiJ5vXoTsHcplheZ3+v046D6fsGqzW7GhAQQhHgcXjMcR0TYxkXtOqruTU2O5uQwXoeUqzteu7U9qk8uP9fSAc+/sYF1CIRCmrq5so2ZZ2f6uwrmyLGX36xe/KO6vrsb6yXEUZjEv8hrwtXfvitqaXi8MtQMDort1lofE6nBpGhaILY9q5pffj0Enk0BkhwOflZfj+54elCY+exY/7e0YALs2+IfDeiMR3KceIrPNtQF23HmPEtG4ruuTuq7vEtHPiOgryjV/QET/qOv6DBGRruvLeY+kACjW02Hmtu3rE77827fFd9GoKK1lB8xqyrPveXgYe8ul0+U08WeeAXc/flz45UdHgfy1tcIOUFuLyMFcc1KRg1NjuSmow4HfjAQ3b4JpjY7C6MYpwLdumWe5qrjCUYUzM9kl4s2yLHt7Ybi7eBG/e3uhzvA9ra0iFkFOflJ982NjQpIhApGMxYCfFRUiV6CxEXjEEX5Z+GN1uNTOpAz8OW8it286dkwYPr78ZaLvfY/oq18VPl0W4aemsPAcmHDjBhZvbg6LWbLGBPZE/RYikrzmNEdEqlzRS0Rlmqa9RkTVRPTnuq7/d/VBmqZ9h4i+Q0TU3t6e92CNoJSlpeSqSCMjWF+HA8S1pwccOJ9KN7J9QtfBmd1ucJ7GRjyzvDy7ySQTLblhKI9tYQFxBePjoqZ9QwM+zzUn1YrNKqyuQ7XQNPy9vo774nEwMY60SyaRtLS0JGpHcqis2nKc4+bn5mCL4FJxRvNkiEYhOfT0QD2S8x34mYkEnqdpWBu5hr+smqhJR2VlIKIeD9SHmhrcwzUZq6tN8MfscO3t4cFzcyIPmDeM73v2WQzg1i08/MQJUFRZHOKJcyWR7m5QrXfewWZUV4vinFzFJZ0uQWMCe4hvRN7UCp0uIhogos8SkYeIrmia9pau63eybtL1HxLRD4lQbDPv0RYAVhZu3tdf/xq58YkExMveXqw7W9+ZkOs6npOPZMWWay65PTyMs7K8jCQgFtnVEmpGRs2+PhAP5tK7uzBSnTxpfZ+Ri48lAxafPR4hQW5v4/nJpLg+HgfzqaoSxTO4irBcMkvGFW5rTpS7VFwu20QuQqveryYdseFueBiq08SEiGjkCkm28Ud2cTAsLGBTL14UB41ruA8PY8HYqPDmm6JpIYtKbLR7uYFiQAAAIABJREFU6CFQ2M1N6CJcgqulBYvHRKCoxgT2EH+OiOSyI61EdM/gmoiu63Eiimua9joRPUxEd+hjBDsW7rU1SFesm3Im2MmTQk3j4JRkEp/lK1nJh5LrOiSTeFdbm7knQmU43NdhZwfj4LTclhbr+4yAJYO6OiBBMgkJs7wcDMjhAKHZ2MA4o1HRbITXxO0Gch0/bi5RyGDlcSnWQ6Peb5R0RCSIYjIpDJRsRLeNP7K/lnWZ2VnoZ3zQLl0Cp+DAhLt3wUEeeii7aSFHOFVW4hk7O6BEZ84g31pdjBIF89hB/KtEFNI0rZOI5ono6wSdXoZ/IqK/1DTNRUTlBFXg/y56dEWCHQv35cvGRVIXFoCkU1PYPyLs0fHj+UdwyoeSOWw6DfsBV3nu6sr9nKoqMIp33oHIHQzifyZM+YAsGSQSmO/GBub3yCP4PBwWvu4rV0AUAgEQK7ndtpHonq/HpVgPjd37ed5F4Y6cbJPJwPjR3Y0oLc6bZ0NQOi0Wd2cHgzp3Dn/LRRjlSiIuA7Qscc5ATsTXdT2tadr3iegiwZ33I13XP9A07bv3v/+Bruu3NE37VyJ6n4j2CC6/0VIMsJigJTtcxKpI6je/KdQ0IhhgjSL3eIwzMyIfXC7SIR9KznLjDr7l5SgLxtll8n0q+P1A8q9IplUWnwsBGQnU8u+9vZj7nTuijXwslt2BaGfHfC/y7QlYbA/BUvYglMH0/EUiOAxer6iEm0wK/yxnTzkcoPB1dSKY4dYtLHAsBh1IHXhtLaQDq1jsIsGWH1/X9V8S0S+Vz36g/P9fiOi/lGxkVHxdBDtcwKpIaiCA5itqq3KjMWYyQGDO/3e78d3QUPah9PlErwSu8Ot2Y4xycQ+zRC21R2A4LAhXMZGcRqLywAB05NVVMLS1NayfHI3Y0GA8Xru2hkKvL/X9RqCev93FKI29Gab+1hj57klxvyzGyUEa7INMp/E5G/64iOHOjogcUgfO1VTCYYicrJOYJVMUAIe6k06x3VbsdK2Rq70YNULJBTzGu3dFs81EAsitdtBRY8X9fiDW7q44M48/bj1HLkk1OQlCwcY1joFnm1G+YGetzXoDFtoBJx84yIpYZu966y1RizBAUaocHaZtzUvO6ko6nbwfDsgi0OgouHR1NfS2xUXoiLOz+H31KhaYrftbW0R/8ifWk8in7ZIBHMlOOkTFG3zscAG5SObsLPbkS1/KjTx8OC5dEqXXjx3Dd4zE8lhlm4zDgXvTaRD07u79MRlGc5RdXpz8MjICe1FjI9aLbUb5xu/bEZXVaESGUtaqMAKOn1hbg4RUVoZ1M+ocVIp3Ma5xBafRUaLHHWHSPV4qd3vB1E8qulBXFxaY3R7sRmBKeeGCMBZxuG6uwR9gRaBDjfiyqG6V5WYFdoygdoukMsiHo6UFov3ysmilJrvFuDuSnHMhN5NwuYjeew9GNR6nmR1HPgdbW+I9XBHX7wcBUs+FUcMMozwPJpJW0mWxRrhC4No1YRPxejFvLvihtr0rFIy4vM8npLjY7RhVPVxHySRRVTXt14Xq65G3rB7KF14w5tpqu2YjOMCKQIca8ZkLzc8j/ZPVKK6gWooaiGato8z+ZzcqI2B7O/a+vh6H0ekUvmGW9txuYaPgnIvBQZF0srkpyllZxWSo3oHxcdzPtfiSSYxXjTNQC16yy3hpCWfolVewloODIuaAeziqdpWDMqKZ7UcoBHcrGzaJ8Htri+iXv7TX9dfOO424fHs7DLZuN1FU91N9bJsSulcwibIyBAlYcRa7xgejiR8glT3UiM9ek7/4C1DexkbMeWVFcKN8JZ5oFJzi5k0c2L09uK+4hfrFi/C2GP3PSLC1Bf2dSDSFYIu+1wsE5kywiopsSY1zLk6fFvfGYoJxWBmlVO/A+++LJDDOAeF6ejKoVZ25RPv772NujY0gBplMdv1+HjORWOuDMKLJe2NkzI3Hs12WW1uwqXCjmVxG31xqjkwYmcvv7cFt6vWC8TR6QvRwepg6Q0Q1vkqiuETxcr0gl9hpNnEu30xUcip7qBGfCEjS2iqSlohEQQc1+SMXsK44PS0q3aytgUuzBMWFHJqb9//PSMAdbOTiIF1dCHiR9/fixf0JM3LOBYMdxkG03zswOIiGGYEAntHcbNzsxaiqs8xFOVTX682u38+gSpcHUBCGolGiv/s74E9FBQhrXx/GxCHqmgbuOzMD5Dx9en9KszouO54hmTCyu5U9NCxRRXwBWmgfouYKheIR5ed6MiISZro8t8M+ACp76BHfrJvt0pIoSmEXwmHRtITFxUQC5c8SCZGBxo1JGUnURqUskvP/ZoTYSFJjHb8QF63Kbbu60FhDVUXUAjFyLj0jUSwmKgOzrcCofj//f5A6PBPk994TBP72baz7o49ibBsbkFDKy7EvHR3Z+2+m+uaqpxEO7+8k5PNBquRCIlyy+/ZKgJKVQ9k4zUhvxwBnJdJ0dGRfW+JIPRUOPeKzr1vtZmvE2XKBnCa9tQVkIMJh2tjAZ9zhhci8USkH2Vy7Bg5JZEyEzKoHPf/8/i47+fqrZVANk1a59FwqnJOOWEXo7haZiXaIWimBCTLX0a+oAPJvbIAoOxxQxyIR/GQykAjMSqTLYGYfu3tXdAjiSj5LS6i1mEjA2Opy4WyoUlEWTudjgDOjQqoIaTWhEsGhRvxoVGw+EUS8pSWIeZ/6VP7xDHKaNLc/n58XwTRuN/zk3NSEW0l1dooCjjISpNNAmEgE3OiDD7L96Fb6cCG+drtgdL6am4FQzz0n7BzDw5BA2tqgSrJkyYU1Sq3DmwET5PZ2QeDLykRn4C9/GeNngrywgDm2tOC+cBgcmuMl5LGqUhf3Hrh+XTCPlhbsPVv1ufYB9wwgypaKsnA6HwOcGZHg/P5MBhsSDGbX2D+AIIZDW16buVZFBea/uIifqiqEznLN9HzaQXOllbU13FNRISLpVlZEqLXcqPSb38RvNSU7HMY+TU7i8DU2goC8/HL2eBj5zcppHwTkKsYRCMAN9r3vQV0YvR9c/fjjmCMX1pDHbFiH3gTyuZZIEGTOTOVW4243OG9TU/b1TU2w++zsiJ6BTzyB69X3yTUCYjFRhsvhACefm8N3wSCS4aqq4IFzOjEelog4BX4fTudTDcaoWMLioqhkygagcPh+1JC08Got8CI65RIdYsRXXVAPPwyO4Pdj0/Pt104kDvzZsyK09tgxHHauFFNbC05+/nx2Hf7z5/GMq1ex7jMz2CMulqJpGJtRrfuPGuwW4wgEIC5fuID5+f3ZhTUY8jl7hZxTmSBzrn8qBeRzOBBcxcVA1tcxl/Z2XPfUU9Zjl+tpjI4Ko2hlJT7j9t/sKbh1S+BdVxckw0wG8TZc6i4Lp/OpBmNEJFhsbW6GtfIzn0F8AFuAZURQK58UAYcW8WWuxbHvqVR2yLNh5ZQcwMj/n/4T0ac/DS7Pa7m9LfrD5Tr4c3NQA1gUJDL3o3/UYHS+FhfB6VQubKdUVz5nr5BzKhNk7tTT1QWE5kYeqRTWfWQEcwmF7JcZY9x86CGRbdjZifPD9f9u3gTh6e8X5cQGBxFVe/Yszp0pTtsV64yIRFvbfpFGnoTdSeYJh1bHl1UnzoEoKxNRj3J0XL42EFaZxscRcdfYiGdxR13VVWikM4dCCNfluoszM/i7uRkHamPDOFMv3zEWotaptgWurrOzg7nduCFqQdhRUfOxXxUabMbI7/OJnIHRUejffj/Wo6wsu5M0jz2dhvWdU5zN7CfyXPv6QEDGx/G7qQnv0jTYa1wu/HzucyU2qhtZZ6024ICCeA4tx5e5Ftda405DnCVWV5d/hyOZe3NJLYcDyF9VBQ4eiew/+CrRbWqC+rGxAS7EJdWmpkTBjHgcxsN8bRGlUOtkJlRTg3NjZI8IBnOrqHZVh3yvNQIjSa+uDsa2xx8HF47FsB43bxL9j/9B9KMfwbsyPi5UMbkAKYMqCTmdeHZHB9aEO1oZtQI7MMhlIyi2oqwJHFqOrxaKOHtWuFSYk6qVU+xwSTVKi7saTU+D4xu5Cs2ILnes5erIy8vwjS8tYYzt7Rj76ipES3YD5RNJRlR8bkYslm2P4DktLdmLETEL0+XQ6Xw7AqvNLjRNhN46HPslPSKRwLS4CMLq8Qgj3eYmnllVBb9/RUV2spL8PpcLz7x1C8T7qacgLYyNQaLguBG1FZjR2EtiYM8VCnlAoZKHFvGJrGMXeAO4rRk3HOGQWFmclUU/NUprfR0Uf24OiMB+druZa1evggtpmqjHMD8v7lUz9fKNJGOQ7+eQYyKIrJzvYXYg/X6sR2OjeJ5sj8gVI8Lfy3ELLS2QdLxeSDm3b8M+8txzwudu1sqK5+9yic66AwOiuQzHUrS2Zn8v28JWV7EmVVV41sYG9m5sTDyLr1XXm4lWR4eIBn3rLRGlx1b8U6eyVemC6kPYoRR2N6CEcKgR3wyMNuDll0HBV1bADczSVGXuzbHyd+6AOz/2mPW+GBFdI1uEXDlJtUXY4eZmEobDkR1yTAR/9Nyc8NUbHchQCESQz14yaR7XbwXpNCSvykog/dISPuMgp50dhBCn0+Yps/L8R0f3d8ZpasL4KiqMq+qyLWxqCvunabjX7TYucGM3ZqaqCkTD4xE1BF0ufG40dqO9U3H8hGuC/K+/LPzzqZSozvJR+HUt4Mggvryo8/P7e+ZlMuCC7e37xVkZqVTu7XKJlFirvTAjuvLzmEO53cIXrVZxvXo1t/HLTMLg8t4cckwkwls7O2Gv4PUgyk6sef55EEGu1WcW128G6qFPp4GY9+5hzSsq8JNOW5cgl6UZDokmyu6Mk0hYMzi5OjDr6g6HqGakaaLAjZn0VF2NNeX+hnV1+LuzE2eJoyxlFSWXJKZW67n38svk7HJRdcv9mPPJSZG3f5BVS2zAoTXuyaAau6JRbJbcqDEYhP6Xy72Wj9vVaAyqO0x+XjoNDvXEE6LdWUsLbBH8DjvGL85KVJtL6Lo43AxuNw4sl3hjUD0+3d2QfD79aSC9PCY7YNSdJpHA2LlBzO6uCLE28zbJ87fbGUcGtnWxZLO1BVxyu0XQVUcHxiZntsrAcQBDQ6IhanMzuvY0N+P/5eX962O1d6obs3Y1TOXODC0m/fiADSycWPExw5Hg+Cq34ZRXue9cMIjvVfdaT48oP62KYufP2zv4cntzI4nNTBqQ38f6pl3jl1FzCZfLuOS3z2fcpkotAhIKWTMaLuu1sAAEkPvyqepHWxukFy7zzVw2GLQuQW4kIREJHT5XXoBq9OUCKOfO4XtdxzqxKma13kYVhdrahG9fPRu5bD2yNODcjJGjIUjbsSSh1QQVnl12AHCoa+4xXLyIReXNWV+HsSqVInr6abEBDQ1E//IvsNLX10PPT6XAAbq70RJLDYeWQ1LlironT4pe9D/+sYjnZ/24q0twTSOwKpdGZG3vMat/l0xCjJZ1fLZCs47P7+IiIPJnVuXactUelIuKcrIMJ7hsbGDtGxqw3sePW5fFsrLqFxLvkKssnZV9Ld+6jmbPUp9TOTpM6YUVqlqZpM6HPCK7LJ02ro12AHBka+4xqNympgaHcXl5v7FtdRWIkE5DfOT46hdfxD1BA3WLg3GmpgRCvfuuSPhgYsESG1HuegAcy3/3rmioWlcn1DsrzmukS3LfumPHhMTo9Yp22UQgXGx1dzigr9p1CZr1F7h8WbSzlkvJB4OIhGNdeG4O15uVIJehUCO1mmrMLbmdTiAd9yVUvV1W7zPi4ouLmL/cFEd1C6oERH3OWl2IyqajdHywi2gnYu4y+pjgSCC+WXrrCy/sX0NdF+41hpkZ6IJ+vzHyhsOiko1sNFtbwyEopB7AzAwMX5WVouT6xERuwxWRcUbZtWuii2xjozFXy2SE1f211/A+fj+vnVkEnVV/AQa5lDwDc8evfjXbxSojZilKY42MiNbxTU2iMA33xsuj+GwWmEU5VlRklx7jYjjshnz3XXhYhoYEoZOf46gIkPPkEN2cD1MNldGxh/uoZqD4rLpSwZEw7tkxyJl1SiUS7cXlXnAcoadp8OG+9x641taW+D6VwoFaXUUZpg8+APe2Uw9gc1NkgDGx4WCTXKAGa/Eh7+3Njn/n1NqLF1HMNZMRxqX6erxPRlwrwxn3F5CB+wswWIWNywZYRozr1/F3MQll/FxuHe90QmUrLwehZldmMXkrapQjV1uS1/ryZfxOp3EOnE6oNhMTYm78nPPncZ2rIUCuJ4do5ezn6c30EEXpcCA90RFBfCLrPAj50PX3izBabsvsdCIYgwMzuPklB4xUVGDDt7dhQecKtlx7LZMRVnUmKrkkNk3DYb16FQcyEsGz5KIeuebKhG5nB1xFLjyRSll7OtraROqynUjPCxdEC+q9PfH3hQviGpZE1tdF++yREcxVNsDOzQm1QUXMfFN2R0Zg03j/fUhQmQzGF4uJRC2i/QTI7vNVMCNuCwuivZ3cwp47GstE54AS6koKR0LUNwO2Qr/9NpDi8cdx4OVOqSdP4rNbt7BxDgcOrtMJHbW+Hj+xGA5Webko5by7Cx2aN5zbLXd1WRfSiEbxvMZGEJBYDMRkcHC/OG0Gsl7q9wPBZQiHhVGPaL+nw8oOYgR2+guotpDycsxtbQ1r2tkpDK984D0evLeyEvdFo/Yj3xiJq6ow/9FRUVk4FtvvBmQvRl6RdQqYBU81N+O3HHvA/vv33gMxYnXmAKtilwyOLOLLVuiqKnCCf/1Xoi98QSD/3bugyA0NuI45L+tlv/qV6EhTXQ3XzvIyDvIzz4hGppomNptdPVbABsPJSRyA7m48a3EREku+YGTjWFlBvABDWxsQjjm8lR3EDHL1FwgEsI6zs0L96OgAkty9C7vG+Hh2AhV3293ehvhfWyu68BCByN65Yxw1GQ6LMlk1NUD+dBrvqa/HPsluQLlCsNyHYWHB/jqYuewuXBAuVY5fGBsD86ioAOIzkfk4eg/kC0cW8X/xC8FJOWS0uhq6OFvyNzfNe7QTQQyV3XQeD+ogsJtueLiwDVQ7H6+vg3hsbxdm+DIKGR4ayvYq5MvhC4X1dazZiRMQtZNJEBwOhGEuPz6ONejrI/rf/xvrwOHMLhekK03D+BwO456BsZiov1dZiX3lgjXd3ZDGOJSXfemVlUIV8XhA9JeX7XN+q/Ds2loQUy6xfuIE5ptIiBBfOT+A6KOrW5gvHEnEZytvaysOXyYDMbK9HRSeOYDPZ6yvra5mc2Vu1JFM4nPmpPluIFu15aqt/f04iCMj4IJGiSlmh9LIfUSEzzY2YGRqahJ59sX0zrMLctkqIvxeWYHYz70HOM6Bg3veeQccnTkl59Bzyq3PZ56zkEyCqy4vQ/VqasK6hUL7m5kyp5X18EQChJx1bLkPoJlrzsz9FwjgnYODcA87HJh3dzcIrxz4c1C9B0oFRwrx5TZHug6O7vFgYTs6RE97rtMXDptzbJkr37yJeHcusMmQzwbKgST9/UDukREcUjbq9PaK7jlEIjGFyDj9U9VXX30V3K+pCfNNpYh+/WtwwvZ2kaHIhSoOAqqrse6JhCCW29sYT1OTaDnFKdQuF8bX0gKiOT4uCKzHA8Lw1FO4dmZGZDZylOObb4JIdHWJ4KmODmOpiwn1ygo4vVxBWNaxC8qykyAQACFTA39kafAAEupKCkcG8dU2RydOEP32t/iOg2tcLqLvf19wPCuOHQ5DbJyeBudk3dPjyT4EdjdQDSuWDYxEwip/86ZxYopqNzDKBONy4Dy/3V2Em/p8goBw6upBHTpOglpdxfirq0VeQlubmC+HzkYi2Csu7d3cDKK4tQUi3d4uoiWrqkAgZCkon+Qi3quFBUgI9fWCG8fjAilLUe+Az9bGBuY4M4Mz+vDD+N6o9dqR4/iapn2BiP6ciJxE9De6rv+pyXXniegtIvp9Xdf/vmSjpP0FNNxulNiemICoX11N9JWvZIu5Vhw7GITLZ30dSJ9Kget/8Yt43ksvibJPdop9GPWXHxwU72WrvFFxCSO7gVn0ngxGDT9SKRjRSn3geN6zs/gJhaBqscE0kcD/p05lG1G7uzF3Lpu9sQGE9PuB9F6vKJnu9YrPiAQifvvb9otfBAL7+1SqOQClsLoHApAqXnwR96XTGNfGBuZq1HrtEGTjfgg5EV/TNCcR/RURfY6I5ojoqqZpL+u6ftPguv+TiC4exEA5+WZ0VHDq8nKI9WfOAHk/85n996kcmyWHt97CwVhchATB3GZuDpuYSokEGd40InMR0cqSW0hiitHz1BBhteGHHOEnd8Vtayus7p+6Zl4vxGy3G8E5nOX27LOiKUVbG6IH5TDX4WGI6pEIjHpVVfBuVFeDiLDvvL9f5AmoYn8+EkwuFS0fq7sZoY9GEUjU3Y3P43E8IxCABMMl2eXWa3lJYgdQS18GOxz/USIa13V9kohI07SfEdFXiOimct1/IKJ/IKLzJRudBA4HDnVtLQ52Oi2yyDCu3M9Q1YXqatF9NxiEeMotq+vr9/dlIzIXEXNlgRmVEZMt0nYywWprMSZuv6U2/JAj/JjzuFwQq62MiLlAFY2bm0VsPpcd9/uxL2pyizz3sjLEWjQ0iH2rqcGa8N9skde0/WK/Om6rbEIrFS0YzM45UPtXMFjZAjgXIxgE8aquhtSytgYC19Ozv/WapURh1vPMLD64SLCD+C1EJAV+0hwRZS2ppmktRPTviOgZskB8TdO+Q0TfISJqb2/Pa6ByEuHSEg6J2w39kd10uSiqqi7s7oJjzc7iM10X0XpyoI28aWYiYi4uk6+xx+h53AueP+OGH5GIKH/V2Ij5bG1BF+fSX8XU7bOjdshrYTYXIoFMcu9AmaDNzIh4eSOxn0GO4+ASaj/5icgmNANOeW5uhm1nbAzE91vf2o9PVrYAuaej14tzU14uksSMWq+ZuoFVCsNdP8rLsSDsl5yYALcogc5gB/GNeKmay/tfieg/6rqe0SxYr67rPySiHxIhLdfuIHEviN3cnDDcdHWB6hLZ09HUenujo7ivvl6km/b04LmyAe7OHVGVl4s2MBykJZfzydWcfvUdtbU4OydOgFns7mJuZ85kR7cVGj1mR+0gshfjkIugzc+D07e3mycXRaOorBuNgkhzIxQikU1oBsypl5fxDi7R9frrkJxkfLKyBXDBkclJjHNuTuRn9PXhPWat1wwHpZY38vthvS4rw/+VlSAAql+yQLCD+HNEJAeathLRPeWaQSL62X2kDxLRlzRNS+u6/lJRo5OADWS8eLu7+C13eM116Mzq7Xk8Qi8lEhwplcrWxxMJ+KRlo81BBmaoOfBmBUT53PT2isAVvx+us+PHxbWFRo/ZUTvyWQtVApBVWa6Sa6Z/85osLcFekk5jnj09+7MJjcCq4rCKT7nsNtGosF1sbOD/M2eyuxjb8uOrFKa6Gg+7eRNRSlVVollDKiV0oyLADuJfJaKQpmmdRDRPRF8noj+QL9B1vZP/1jTtb4non0uB9HJxDO5k+8gj2PA33sDCtrZiHWprBecwA7v19pgjvfsuxDVun+z3A+mXl0WVmYMMzGDuNDlpXUCUz42mYTycVzA2hvHPzJjrsXbAjtpRyFoY6dBylV0jgsJE7tgxEaRFBENmXR3us7KL5ao4LINdu01ZGbi8an+zHUhlVN7o7bfF5JjLtbfjhWfP2nywOeREfF3X05qmfZ9grXcS0Y90Xf9A07Tv3v/+B0WPwgCi0eyEEI8HRpz33sOmu1wQpbjemx3jHheTUA1C6mHlTZURiqGpCRtdSMx9vsDcaW8PIvD2NtbB6TSvysviMbd8rqvDM9bWICkQ7S/HZTdoxUi6LEbiNNKh5Sq7RgSF92RgANWW+L6lJYjZTzxhHZyTT8XhUthtbBnnjTiSzwdEn5oCV+vqwsYvLRXdTIPoEJfeGh4Gx3U6hUiWSIADlpdDtLNbLonBTpkmdQz5lGUqBHKVhbp4ERKe2415b25iDZ54guhrXzOeF9uGuE8cj5uTXOzO/6BBLalGJMJezQirvCdzc1DF7t0DB//jPwaRU/eMA3o4LsPlsi7DxlCsRy2v86a+bGNDVHCV+4N1de2PVTaBI1l6i3um67rI+GK9LJOBLiWDXObYrJ7bxkZ+EVsHnWyRK3Q0FCL66U+xBuyFIIKBV3YVqZzJKH+/shKE9OzZ4iLWCpmjldidbxKUvCctLWCGXCprfBzqjbw/6+swhstxGdEopB+jyDoe78wMCEsoVHgQTl4RgmYBJ14voqL48A0a4nHecGgR3+/HQQ+HcejZvrG6CnHdrOGEVZeWX/9aVNzlenw+n7ml+6CTLXIdjEAAIaDvv49z4PeL8GS21Ktj5bWT8/fZM3HrFoiBlcW8ELAKcslF2PIlrLlKZVVUYN9Z2pmdxblQ4zI4slCdB4+X03wnJ7PLl+VDJM3coLYjK9mHTwQjQglFs0OL+Fz0YXdXdHrl8s2c8EG0v+EEI5LapaWtDVxyZwdcL5nENVwt1wyKcdHlEhXthI6ePCmiwOSinVZjlhFK9kz09+MZo6MiSq7YPPFcQS65CFtWnToH9pDbopkhhbwnw8NQg/jZvb1QdbjN9coKbDJmcRkyyOPd2gLezc6C+58+LQzJdkHThD2JSCQONTbmSA6SF/XJJ8UBLyEc2tJbbIjjfuU7O/BTf/rT4P5GNfh0fX+nVS7PNDsLu8DaGjjfnTuwm1y/XhJbyT6w0/FWbtDAEWuvvQZDHl8XCgEZOjuREdbZiTOwvm5eXkou3TU6CqlmcBBERNdxIGdmStN41arMlJ3W7mqdOk7VtVunT31HTY2Q8DiwihN1GMyI3cwMOPyVK4iIfOst2A84OOqNN+wZkYkw7tlZBAkRwT5z5QrOHRd3MS3J9RHU7jq0HJ8IImljI8I8GeJxIL4RJ5Z1RjUZhmuzccooERCjxIT0Q7Cj38mWCOQQAAAgAElEQVQZXhMT4HhlZeAMMieQPRHV1XiW7O4y4hpmnon+fhEH39dXvOoiSy1c9WZjA+tdVQWJjSvuWEkYucqRm4FZcNFjj+E+boYyNpY7PFcuzLK1hXu4G3IqBVvC6dPG4zCyzbFdYX1dGIXr6/E/SyCG0sdHULvr0HJ8ovxbg8vXt7aKgpGtrdjQiQkg0alT0J27uuDHP4giiPlwO65e4/PhYHFiBxen5K46n/+8CAtNp+0xA7XtU00N5v3ss6VRGdUCnLu7GNu9exh7KgUkuHEDhMts/2ZmsD+7uxjj7i7+n5mxfr/VGeG1C4VEmmw4jDNgFJ4bCuEZySSIz7FjmJvbDSJ2+rTIUZCBpTsu8/XGG0R///dYAy69duYMCopwHQkGQ0Jo1aurRHCoOX6+xjW+noN+GJnW1rD4MzNAPt5co1bIpQKZE8n138rLhUGK9Vi1jRNRdqUgo2hOuX2YFTM4KM+Eav3e2xMGRy7WubUlSm5Foxjv7/2e8fPkcuRE+M0IaAVWZ4TVZJaQiDD3SGR/cI1amGV+HpJBIIAzUlUlqgupYBRode8e1EgOufd6RfSty5UjlPcjqN11qBGfyNzLYWUVlRtL8JpxOywuQV1djc1XWyGXCozE+FQKyHD9enbZLafTulKQGs25s2ODa9yHg/BMyLanzk4c9p//HH83N2OMXKZ7eRkHnzP3fvMbGBuffhp2Bx6Hz7e/sk++5chVyEdilpns3h4kwpkZjH18HFIjV102eo8aBnzsGAzy09NQqTY3RaGOrq4ce/ER1O469Igvg52SSVa69cCAcQALE9JSpkDz3r30EhCeG1xwpKFcdmtnx9hLYVQ+rK0NEo3PZzMBhLIRoxRzNErT5SjS/n4QOu5ExDEUm5sIOmtowLgnJ0Ggee/a2kTHWybM3NW3UMgnToBTdScnwQi45Don4yws4PwYudGNwoBXV4Hku7si/uLUKRhYc4WWE9GB1+461Dq+CnaMnbJldnQUh4h1a9naLXsDiIheeYXor/4KVLrY7i8MgQDE+KefBkLoerangQhj29szHhdXCrp2DZzyxg1R3667O78230T2PA12wMh+EQqJQqeVlXh2NCpUq40N0Zc+nd7fiMLIe5GrW1EusGsjkm0B5eVY4/l52H+4KnBNDewiRuvMY4/F8J5EAn9zHsg3voGfCxew14cBjhTHtxLdolEgyKVLoNg9PSI9VfbVm6kO09Og2JoGF8zx46DyZjXf7YLMdTQN+mMiAY7NxSj9fmMCLx9I7lC7tobilOl0/raJUtSaU+ck2y+49r3Hg/WrqAAh5vp7e3uwvZSXg3jJYvdBSLd2nymvy5kzWOPJSXD6hx8WTW6t3qPWBuzpwf1y/EBB9rkDqsRzpBBf0yDmyp1wXS7RQWV6GpbTqSkcsL4+0d5Jbj4hA296Oo2Dy6mmly/jWWY13+2CrOtvbOBQcd+3kRHRUtpqbLJxamEBceYDA/lXiC2VlygUQkGYuTmMsbJSdM9Np4l+93dBsE6cgJRy+zYIRF2diLLb2IB7TBblD0K6tfNMtU7De+9hj1Ip2Bp0XdRFMHtWd3d2bcCWFux1TkOeFRRbDtgCjgzic0DE6CjEKu6wcvIkkIiRNxgEx2H3UH+/8PsbAdfyW14W7Zni/3973xpb13Wd+W3y8iW+KT7FhyRSVERZtmxLjoTWSBNP/IoLu0GDYpo00+kDQQfJYH5mMD86A8yfTPtnWkxSIwiCZoA2CYopDE9rjyonjpI0lmPSsqwHLV49eSmRJimSoiiSokie+fFxZe9z7j7n7PsgdRXdBRASec89Z5+991p7Pb91h6eTUuGY765k2vplZRyPePWrqqKhsG2MOj2tm2MCmY0taPOaICOZHiZKcc4qKvhTUqILyyQdNpnkyTc1RS1ncpLfa2jg72+9xcQ0YOtRaM2D9Pp1DbBSX0/Nb3aW+0lw86NSu4Vs2mROGky+VDQLPTCMPzTECdyzh4s1N0c7ubSUTCr2o8A4DwxwY/f26s45NhIsv6YmMsXCAk+o3l6NyQ7klj8htn4wZDc3R0EW1lHH5pyanqZwM8l1bGGpvHGNPYKUTDL0JUk5SnGuUik6sEwoMtmfN27oZqUTExQ4+/bRlt9qFNrgQXrvnh9gRd4pWN2YqZqeswaziYk8Dwzjnz/PiRe1EuCGGRujDT4xQUFw7hyva23liRqnXkkWX3W1jvV7HoWJ5LPLs3LJn7CdtiYirm3z28K5paXpjJ8JQmwYyIiQy2Ei+1EErYntZxuLhOnu3uXna2s8VSWnYSuqBE2yRSVMgJXe3jyo6fkg2TTB0tw8tEp6oLz6YdTcTIntecyukrZNzc3xp4hg+ZWXc0Pu28e67pYWvfD5yGl37XlvRihsUYiXXybzu3iqbR58gPfs7CSznj+fHv2II9mP3d26W83SEufLNhalaJYtLPAdZ2ep/gcTljYjkcpGtqhEezvn5PnnWe7+7LP2KMuWUn8/nTqDg1zA8nLtKMol3IQCPvHNBg7z89woc3NU9bdv1+2nH3+c6u+TT+oKtoMHdQVb3GIFsfwADZYQhgKTDbnWzAe1OJu6KJ1/g2ML2q2trXbzsL+f82o2DHWpVBQSTURKxZNJrsHAgL26zvOo0i8vc24bG3XjUKE4jSob53bYd1zi+3Fqer6c7ZH3aWriZM3OMkRVW0v7Q7pz5qAeFSTjmyCT16/zNLl5k5trfJwOvc5OhoQOH+ZGa2/3o9+6tLMGwrMjN0PCR9XMA+7mRFjoz7Rbz5yhEDRryTNpGOry/GRS9wmQvn2VlenFQ5KVt327TtIZHuZePnPG3/DTRtk4t6O+k2tGbL6c7eZ9QuHzPY+b3AZTlAMVJOOLDXblCt9xepoOO0n+mJxkea6kfGaD5GJK2kRC5+5vNoCmkGtTB1cK2q0tLdSUzJx+W8NQaeMtVX+u7x0UPmZePODXMLq76UAbHtbOyYEBhl3l96iGn9k4t+O+k0vOgMt4XDQCM5R87lwIfH42m9uBCpLxxXl0+za1HMGbW1jg6SINNaKcYHHtrIMSO9dTPhPVLywx5+WXs39+0AHc3c3TdGoq3UElacD19X6vdTD6EWzu4nn2CMTMDGvXS0p4uou3XzSMPXuIHSA9DCYnGSv/7d+miSYU1hQlG+d23Hdy8biH3fvqVf7fFbZL7iNMb3YZFn/PkU0q2ClI554IudpaTk55uW6qaINCDkvFDWOifOMcZJoKK8/v6KAz8jOfoWo3PZ3d8wF7+W1fH+cgOCe2VNbxcT+4x6VL+p1EDf3gg/R0Znl3iedLtqTp4Z+e1im9t25pBJrhYd0xGAh38DU0MGpz9qxOxZ6YCI9kvPsua+kHB/33z1dlq61qdmKC2pPUXQhsl4nzGNxfch8BjQF0A5RfzUWmm9uRCpLxZWNu385T5OZNToj0WWtutkMh9/drVVZq2W3kUitvI9lUQeSbTAVJts+PIhszl5ayc+zzz+vMs2PHdE267KW7dzluE/1GzJDqap5ejY38GRvzv5+8+969GvikspIajXj45+Z4z337+KMUBcTVq4wqCEUV0Lz/Ppmoro7/StTGJFMAHzjA6wYH+fx8RGai5lr8JgLbJZDw0uDDtr5yn0TCHx3p7g7MhTD/88/nzflUkIwv79nSopNe6uo4EQIv7hq+sjF/NjgHUfc3GVkAKU6fpvqbr+fHUdTBYBu7mBrPP8+5bW/3Cy7p3gOkw5gBeiOb715ayuSnCxf4THm+nPqrqxrxtrWVQl2AJ6MYU6I2wvR1dfw9qCGZArihgT6gujquRz5Dcra57uriHAI6v8GcL9v6yn16e2m+rq0xSpIWFg07cXKggrTxAX/ml6ujxBW6KWg2TUxoJ5R8nomDycyzkBZWFRVMArLZdpmYbZn4DsIKkE6e5HjMnAEZe3+/3T4XxBogHcYM8G/kiQkNQmErapEmFsmkrlcvLaW/Zn6ec3b0aLiDTZyRcVEbGwyYNPd0Dbe5zrfNRyA+OOnLKGp7WCt0uc9zz1FIyXN9HZQ3KV+/YBtqZEr/8A9MC922TYenFhcJiGBDfYnCT7c5+szmD7KpxscpqR97jAsmKDSSwnrgAKW3rQGHbYMB/r+JpzuIH+Cy5uZ+OX2aY1he1tmIc3P8fH2dgrK9nRtOxr24qDEMbt5kXv3yMpl11y7dgAIAvvc9f07A0pLOCZBrLl0C/uIvuDaNjby2pIQn3OpqdGci18Ymcp0pgCUL09YqLWrOcpnv4GHS3Z1DLYL5UsHsvZjC/geyoYaQqwSemGB1XiLByW9r48YKg24yJXZbW3yoKHiqr69T0JSV8dTq6GDNvKDQCLJr8GQKvs9TT/nVcVOwv/66thujxmYjU0ORZhymzTk0RAHW3s6T/fhxgptWVLBYafdulv/evMk2biLARkY49t//fb0O3d20a01ko2BRS18f8Lu/S80gWF0Zh4DkqiHJddeu+Z1lIoDjwm251MQ0NaW3Zws2N82KJN4srn9xdL37rhHsz5wKmvFdtZyZGU726irnZmWFHuOgemijuKYH0o1HTnk51SV0IyAMgtcP+DekqRJnikEvdrb5Dq41GraW4JWVFFKSLlxZyQSpmhqe4hcu8LldXXyvyUmOUVq3iSYl9eqyqbu77Sdy0KY9fFg7DDNBQHKtq5frRka06WITwGHrsLBAgWeS63yboKjSsScsLyHqXdOooYGb0cT1UorqYA7ZewXN+MEEB9FyEgm/lpNM8rSSNN7FRS5YebkfCMFGUcUzwW48lZU8hXt7KVwGBsg0EnsdGKBKDFB4SN92s7Ns2Pusr6cLoOZmmiJKab9FRQXHe+xY9IYx38tsCb6+rtOFT5zgvaVFW2srmb6qisLmzh0iEw0M+EEwFxaAN97QsFpikgDRJ3IUA0cJRZk7Vz/H0aPpgsgUwGEn+/h49rkymWgLGZnt/f1chLa2vKLEFjTju2g5kjwi9d49PZTyS0tujUWDaqRZPJNK+bvxHDigE046OjSWmjhxlpb8mwbwZ1qmUjRJpIKwp0e3/frkJ9M3XUWFHkN9PU2Ls2eBl16K14Bu3eJnLS18x7Iybecmk5oxFhf5f2nM6Xl6DNu2paPKLizojEoZw8gI58vWDz6sQjBIYYwzOKi1BFffVpxpEJaAU1ensQ/v3dM1COJgjjq533qLaeQu7cnMdzURjMbHGX71PUek5eXLeUWJLchwnlBDg/YEV1VptVu0HDN5pKmJk55KkUEExy7OBAqGZsziGVsYS7LtzH7ui4s6gvD447TbH3lEA4K89hqdW6kU16+piebBpUv8rvTDC8aGJyaAZ57RYazFRW7elZXwfAGZk8pKnXf/zjt8r2ACT309N+v6Ou/Z0OAPSy0usi5ibo4CwPP4PisrOh4vYxAGMUPNmYRYw0Kib76pGd812Sou5yUsnNrdzeuWlxmFANjMpaLCPm7z/To7dXsySRoK0xbkXc1eBK2t+n5p83P4MKX2Y4+FxPsyp4JmfMn2klRRSXCQpJBg8kh1NeGe6us5T66NRc38iKNHeToCOowlJzrAzyTHoLOTz9yxQ3eLaW+3L+jrr1NLkBNUatFHR/k+JuDm1at0sEnL5+5ubsDWVj7LdFgGE0MGB+nc+vBDail799JJV1enN768b18f909PD/DlL/PeKytkfhFCL71E+39tTYOf9PRQ/Q8bg1AmiU22xhxigggketzzwtbUFk6NAuEcG/MfNmHjNt+vp8ffnmx8nGbi6Gh467RUSj/n7l3uIev8bEL2npOqr5R6AcBfASgF8B3P874R+PxLAL6+8esCgP/ged7prEe1QXFajtke6sABXcLretrbyFQTu7r8Nr5sELm3TWUNLujSEhd0akp7mMfGdG16VRWFicCDSQcYSXAxm1zW1nIeTKx5m/OwrY3CT8ptH3kkXWVvaqLv4dAh3YBkdZXjmJ2lsBF1XcqA5+b0mFMpZt1FNfHMJMc+zCP/iU+QoWzFRkKZlsiG+RoAzaStrWRGmXsb9Jb0H1xY4Dzs3Mm5Syb5b1iuvrzr1avcq7duca1/67cinInyRXlRScLYLK++UqoUwDcBPAtgDMB7SqnXPc8zki1xBcBveZ43q5R6EcC3AWRfLGxQmCe4s5O28pkz+rQ9cEDHd7MVhuammJzkJlxY4AbYv9/Ntpya0p1RBb5LqgyffJLvY8aYTfszeIqcPatPkeZmMsbu3XZkmGRSt4NWSjvkkkkdcbCRrQGJuadMIXfpEvB3f6f9DrducUxf+lL6fTMpLAvzyAPhxUZA9vktNsEt92lpIdOvrdHcGh2lt763V18b7LW3vMx56O3lmu7ZE+7ok9DfsWNaK2xo4PdLS0MwEfKcyOOi6n8SwEXP8y57nrcC4AcAXjEv8DzvF57nzW78ehJAV8YjCSGblrN3LzdIa6uOo8f1Zsv0mRI/f/xxZlY98UQ0xLI51qYm3UFGEmak7DaR4Am8tkbnY2+vf+1MW1e88bW1DLu1tJDBpG12UOObm+O4ReCIiSRFMjbKtM7ANX0WyLz3oXjkDx7U8xZVbJTN+KNI5r67m8+SOgLp/2cC38iBK472ykqN6CxFNmK2vPMOtVazD+D0NHH69+3TjTnl+9b5yXNlmYuq3wkgZfw+hujT/E8AvGn7QCn1FQBfAYCenh7HIUbXfktN+dQUmS3NK5oluYYSbWP9nd/xZ3FJwczLL3PBBbzCpqnZMOslli/Xy0kYVHGl266YPYLbL3Nnaz2WaclrVPpsFMafa917GM5g2LoGx3/rlu4GLPdz3Q8y9/X1Gp9Afg8C34RhGtTUUHCYacySKWkKDkmTLinhqX/3rv6+dbx5Bt50YXxbR3Brnq9S6jMg4z9t+9zzvG+DZgAOHz7snCsc3FCjozrRQk4F2Xz5AtAICyW+/TY/lxi2bWNFxavDMrlMqLFUiptqcjK8dbZN85ud5Tx0dFCrELW4t9euJe7dSwYxzaWoVtaALpEVmDOx8cvLwzXRTHJMXJN1zPGYglJMo87OzPshmEJnfV3DhYn2YSYBBXs87N+vsxulNiGR0ElPgs0/NMTvCCS5UhTsdXX8d309JHSYZ0AOF1V/DICZBtMF4EbwIqXUYwC+A+AVz/Nyx//dIFtIaGyMm8+kfNVaC9lCieJ1vnQpPjyVSZmw+Y67dpHpX3uNG2tqin8zW2cDds2vvZ22d9D5Oz2dfu3aGvD971NYXLzIKMDJk35zyVYUFlYie/t2dpqo7RmZVKGa5oQkO3ke/SOZasOmWbm+Ho60PDPDeZNOuHfvcq0mJvRB0N2tnbFi8rW303wwI1GChXD5sl/ACx6CzMtsc4Z2Uwy5nPjvAehXSu0GcB3AvwXwRfMCpVQPgH8E8GXP80ayGkkI2RI7xLlZV+cOSpKp59eWMJVK0Wlj9qaXMeaSnRVM6Jia4jWSSXftGjeR6VkWjeTsWX3ydnVxrC4INlevMhFHbOpUiputpgb4gz/gNbbxJxIa2FSYf/dufnfnTv8z4jRR2xwdP07hFdZrIEimhnD9unsSjbkfxBlqanFy+tsgtpNJ3dBT6mbq6vzpuZLGLLU158/r8Pu2bToS9ZOf6Oc/+ijHPT7O8K/ZLenkSBOO7j2CxukM7KYIimV8z/NWlVJfA3AMDOd91/O8c0qpP9v4/FUAfw5gO4BvKaaqrYZVBWVKtk3b3k5GdEXBDW6wiQmqYlGVU2Yo8cYNLpi0v+oyXJcu2VlAtJAw31FCga2tFAIi0FMpMphoNUpRbRTv+vIyf7e1cbZpiRcu6N4DAFXVXbtozjQ1hWPonTrF7jdBG1+SkTLRRINztLpKITc7S5ta1qmri8zsUiIblaorFAS5DGssEmZymGFkETDBYixpM3btGr9bXq4rOCcmdNceEe4VFfpeYd2SRqabcCQHZF2TnOL4nue9AeCNwN9eNf7/pwD+NC8jClCYaSNZVlEkUt2sR5+fJzMnEgzTRdmBhw9zsebndX/02Vnd8DLKHs6mN3t1NU+P+noy9MICGbGigvZ+a6vWapTN8xLyd5vDTMJIYRQ2fsC+Hvv3h7f6dn1GKsW5WFnxr9OdO1ynoDYgmAGixSUSFBRxAKamwDl71p+W3d1NZo1qluoKz21DxpZyZ9FWEwmO30w2y6VbkisVdK4+kB2Qpukk6+/X3lPpu2d2fok6iWXxZma4eOL8qqmhPdnbax/LzExmTjPzHSUxqaSESMK3bpHpzVAhwJPj0CFuVvEoHzpkDznaHGbPPcdTemlJO6Dm5nS8P2xzDwzYGdwspnHVRIPPuH2bJ2NtrdZ8ZJ1s2sCxY7rt1cQEfQ39/RQSYQCmQWDQiQlmLALU7G7d4jOjmqW67kkbMnZdnV9b7etL79qTSbekbKngGT+4aZXiJAWbNgB+FW5hQQMeive0qooq7sGD/jRcU5oGfQEijWXxzHDRwED65pYxtLZyI0uOQV9fOHy2+Y6SOSdZX2LrBzef4PJ3d2s7M5n0J5nYniHU309mmp3lO0oRz6FD+vO33uL7SKVhUxNjz0A4g2cCLx1kIPP0O39emzAiCEQbUIrPbmzkvx0d+veVFdrKAJlxetof/pTaDgmjSePP6mpeL2OMapbqGnkIi4AEtdVgc82XX9aYhXkE1vVRwTM+oCfahpBiSmRThRPAw+VlLrCcbNK40fP0hjC9tUFnk+Rti01bX0/mGhgIrzJbW9MAoQKmGJdjIO9oQo1FbSphzKtX/TakxIpdipOefTaaOYPgTPJ7WLqykKtjM8hA5uknmo+s0/nzWhsAtEk0Ps7fpRJRCpmAdPXYrO0QhJ6uLv59505eL47cuGapcXMA8NQ+diw8yzEMlAUI75aUL3ogGF8ozmFm2oxKcbOsrnIxn36a0repiX/r79dlmKa3NtcIQirF62/f1idlVZW/SCaOXDZV0AzJprtS1HPEc71nj/5bGO697buujs1gCnpjo+54LJqPYCOYtnBtLVVzMYNaW3n97dvh/hdbbUciQVX/iSe4X/LZLNVs7WZGQKan+Z5RwtFlD+RCDxTjy8JJRtvt29wg1dWcJBMeS8pYy8r4MzJCr/Xv/R7vFeWtNSnTCML4OKV6czM358oKf8+hdDqU1te1GSJzIkVKOdRvAMgtUcwGein4hKOjfg99WHOTZ57h923agGAB/Pzn/HtlpVard+3SdQ3JpI7ASE6FCU5SX+/H7jt0KDyEF0ZRJk1UluPQEPeFCUMmOQebyfBCDxTjy+KGpUKaFV7bt+t6+IaG9DirbXJtDq2JCZ4skgK6f3/0GOfndVmvkNQT5IOCjTHv3SNDxqH7ZprH4JooZrtvGD7h2hq97sPD/FdSmKNAKcJs4ZYW4g2I0GtsBF54QSdL2arjpMYD0Nrb+Di/K4hGYYAiYWsRdWrb0J1GRvi9a9eYp9/cHF1FuVlUsIxv21BRqZAiKaXCa2mJk97WxsXv6oovsrHBbv/853xGSYlGmxkdBT7/efuGqKmhD2B+Xpfe9vby+5m8t5zetbX6hAT8G+3ePXqyq6u17WsDl8ymsMvFcx12X2EwKbG9coWOyLIyDTOWSDBJpauL6q+k20oOw+Rk+hht6m8wbt/UFF4dJ2AhIjzE6Ws2+hwZcU/xjTNpzDm8d0/nC4jj8MoVnUcxPs4Myscfd/PR5EoFCcQRhtwChKdCCjBDUxMdb8vLnOzpabZT+tnPwmPfQsFKwMlJLtDSEsewuEh19c03gR//2H6PgQE+d8cOepd37ODvJnBF3HtPTfE0v3OHJ+XUFP8+NORPi+3ooA05Nqbbp4t9aoJVZFPYZauKDDJE2H2Fwe7e5c+9exxTQwPXTjSHtTWaaxmBUhjU3Mw5efttf3WmVMeZJPNhpgPbGom4pvhKWPD0aT/qjjnv5hyePcvniY+iv5/P/Ogjjn10lIw/O8t8hTz0zIikgjzxoySpC6Lr7ducyO3beQIvLJBhJcwTReapcuwYi3QSCTJfeTnvefMm03mfeSY86Uc67JSV6Xberu995Qo3kAB53LzJU1Gy5kxqb+f9Dx4MV8uztdfjHExR95US27t3ueFPneJaBHsg1tRw/WwYBlFjjGo8Oj3tZqZkOy+2sKAAdkh9fnAOTcei+H727QN+9CMKRtlbqRTXP5EgHPlmUUGe+FG95VxqvMfGyOSyqWpq+PvYWGbjkLjxzAwXprxco9RUVNhPBol1P/EEVd4nnuDvLqqbvLfZRFHw/sysOZMka258nLkNv/gF/x0f13MShjGXa0JI3H1lrYI9EBMJnnSjozRn9u61YxhEjVGEpK3xaHCPCAxWKuUvqrKNf2KC2lZUt6og5BuQ3i8Q8BcgXb+uC8u6uyncVlc1EvT6OgVfUxPv9S//srmnfkGe+FGOJdfkiepqP5LJ4mLmjhNxDl2+rKGYFhd5gn3iE/pktznNMklkCb63YP1VVekElokJnhYnTviRc+/c4QacnfXfyzRrMs1+DFLYO8Td11yrRx+lWpxIkDnb2rQ9PzJC2Cmza1BU2ykgXtuQ5165Et6y2ubTef99mk9hvpBg5l9PD9X8IORb0P8h/hjJNOzt5fjKy/ndXbu0kKuo4F4zPfyZOmfjqCBbaEW1MgLiJ+D4caqWjY3+JhBPPMFTIZMJvHQJ+Mu/pCpaVUX1tK2NG1nAIMPGOTTE92hu9jNqmPNI3nttjc8tKdEnQTLJTVNVxf+LHS3vE9diKtuNE9dWKpP7zsyw3Hhmxp/KLGM14/lx9xIfUPCdpauy3EOATILde2RuglGS1lZ/+M2cR5mLa9e0YzCsVZptfOPj1Go6O/X7DQ4CP/whhYG0GRctqL+fvohsW3tFtdAqSMYH0jdUczNPXhdGmpkh88/O+htbHD6cXS+6S5d022iz+KO0lILFtvnW1tw2SNh7m17927ejN6TZ109I4sXBnnSZCoAwBot6hyjKZKxRZPH+lAwAABObSURBVGOGiQkNRCIn+A9/SIEpYTPpRWHr1ydjm5/354nU1ABf+IKeC5fefK7vOTMDfOtbdOLOz3O/bt/OOg2BZTt+nHswTHiF0QPZOy+oLoukbW3lZJ47R0ayJT2EpaNmC6fV1wf84R+m3++99+y+iFOnNEZffb1e/FSKmy7KeWSm7grJJgo+R+7jGnMPCrB79zi3UZpUnhGf0pBrpBf85GR8dyCTbCafgJDIPEi8f3KS/8aBjwbzREpL6XFfWNBaxO7dbqjOrmvS1AS8+CLw6qs0HWScySSbrJi1H3HIyZlQwTK+SSbDujKSzSM9Okrv/tAQF0viqdeu+Tvz2BggmFqaTGpUnuDiAmQO01aXKjNXp5otUcc88YNONJeY++uvU8jJ6Xf5Mk8VgYOyxfnzifhkItdIkdFPf8qxPP105uCxwTU+dswviG/fZjz/zBl/rUYY+KiZJ7K6ykQjpeh9l0pGqdsIZv7NztKMkYaZBw9q51ycX2V1FXjllfRiHolWSMOVTJCT4+iBYHw5dXJlpLExxkoXF3VRC0AhMDSkUzaDgB1dXVzk2Vkuqolxp5QGXZTF3b9fYwacPctneJ6uLY9zqgVP5qoqv2MoyokW5vCU4qHKSjK8FA+VlGh47WD4dHCQ72czrzJ1DI6OAh98QCYRZ5c0STHNmKi8/jgKCqnaWgqZRx7hepvgo2GAHtJM5OxZqvgC4SWgKLa6jepqDTne3c1r//mf2YxkdTU+CzCY2isVoKdP6zFIl2MRXlNTuaFJPxCMLwuaLSMBXLD+fibySI7A4iI3ppSBigYgC20CQYyO0kMs3XK6u7lQd++m5/EDWoA88gifPTXFDXf4cPRJZjuZ5+c59slJMp5tE9k0HFNr+OgjMvjwMN+zpoZjP3VKx8zNGgiAducLL7CLTzJJIShmSNw7mJgIHR3UtGZmdI+6khK+g83FlEmH2qAfyEzJ3b6d79vSwueIr0dKj23U08N5EfVe/DO1teF1G6+9xvsKoIf8e/o08Md/HP8eUYChy8t8x717+Vmc8HKlB4LxRZXNlpGSSd3UsLGRkzw6ypO+spKqvsRjhXFNIIgbN1j+Kll8Kyscj2QQfvaz/pJKQJ/AUVDaNpKTWdQ7Ue2kP5urAywYTqqoIKBmaanuxLOyovHgT5ygNtTQwM1/8aJ2ZEnJaFyzkpkZaglSIru6yk36y1/ynm1tvIdUz/3kJ2Taqir9N8BNi7OlCwebdwrq0soKNQwgPnvTxNpbWtKM39cXjvw0Pp7elbm+Xp/ScWSaakHAUEADeQqCz5077u3hwuiBYHxTlc2EkczNIU0N19e52ZqbyWDj49wwn/oUN8rQECdV6r2lpr6hQefry/emptjH0IbUYmIIJJN24BAbydjEpAHInB9/7Jb2KxTMfty7VzsjEwmOq7SUYxwe1ii5JSX698ce87euisukEwdsWxvn6cQJzvv0NJ/Z1qYLaOrr+X6CmDM4yJPYxZQICwsCOswJcDxmzj4QX1os61ZaqgWY2aeyszO9P0FHhy4UErp1y++TiSJzf9sAQw8dohaQz9r8B4LxAbtzLY6JzM0v7ai2baO9Jxld27fzHrW1ZI7BQQoCEwiiupqn5PAw/z4+znvcvEmV8MMPuTFKSwlpJWTzol+7xg0Shsvf0MDrLl/m75WVHIeo/K6e76A3vr6eAvPCBY5l924yzMgIQ1G3bunCppoavp9gAAq5ZNKtrnIerl/nnFy5okuT9+zRmZC3b5OpBgY4tyMjXJ+jR90q4lz62+WSqvzcczwAZL+trfH9//7vdQKVCPyDB2nTyzzfukXh9rnPRT/HRjU1WvsUKivjvOSzXLcgU3ZtFFa4E5XWaGtHVVnJhe3t5eY/cIAM4Xm8RpBWa2q4iXt7eVKtrlKC79jBk/7ePV0GW1+v+9zLeExbva2N1585Q19CFC5/fz8Zp7eXC/7xx/r0EMeYy7vb0lF37eJ9zW7L4uFub+dJ89hjZMaWFg3hHQXjLuvy1ltaWKVSFGxKUTAKcKhED3bs4E9zMx2u0qlm375421UEjPS3k8KeVCpdMOWaqiwn8VNPkfGnpriWpaUMB0skZHWVqDrV1RxHdTV/D2ueEiRzbx84QAE/OMj5zxE+P5QemBM/E1QXoaCXt75eT+BTT+l2zIAWEKZ0FTV9aYkS/NFHySCJBJl4716tjivFzSjjsdnqUpMfhctvqn1lZWSQCxf4fHEuigooWo9rOq3ZxkvUxiNH+Jyg47S+XqP8hKmYNlNqYYEa0fo6tYbOTr6rFOiUlfHedXUUwlev0nnoypByipvjtaEQA7mnKgu5hJOPHHFn9LD7y36QRDMXDShbKljGDzY8GBzUTSVk88epbc3N6Rl3TU36BLO1wQ4CM0j/NxMEoreXqquJ0SYZYRIitNnqq6saJkvI9g6mf0BOgm3b6Jk/eZLPGRjQnvKwOvuwEJ+5QU3mdXGc2lJcTVOqpoZjuXyZ67ZnDzWr1VUyelsb5+/SJb6XqU24MKQIc9HgUik7CrE5j7li1+UjnOxyfyHRgESgbAYVJOPbGh7cuMENG1UCaZLY1/Pz3HQSd3/5ZQ1kuLRE4AOleI2opyYwQ5CRhJSibS/ho927eT8pDLLZ6uvrFELiARZElrt37Xa7nARVVWR6we27cYNjq6zk+MO0IFfsvjjHqQ2yvL2dWo9UDgojjo5yXD092nxYXtaCKZHgOBsadKnuBx/wOhcHqHmKSx7A8nK6Vz34frlQPsLJUanS+UyScqWCzNU388NFHZdY+sCAzo8WVTToKJuZAb73PS0Ybt7U3umurnC020zy0m194mdntW1nFtxIBtbysu56OzMD/NM/8bTq6uJ3urqYOhzM9z55kpumtpaq8uwsTYDVVTqhcs17DyNbeE5ab5spq3V1evPLfJnaVmUlx3zmDIWBrElLCx1jUt5sevWjbP3guFwKoHKdBzmI7t1LL5LKJLoUVuhkfj4xobEnwjo9udADl6tvqj4SVqus1Cgz8/P8kdzs4Ols2td37lAlLSnhvU6d4olpW7RMvMBRCKrSz9201QcGtH9haAj4wQ90VGFxkXb85CR/9u4lc0hKMEDH1+Sk7uQjIZ58nxRmpt3YGIVqWxvHcvo0nX+JBJm+u5vMPDWVDk7Z1MT6BpNBv/hFbupTpzRWQSrl72QjAiQu5FZfz1Je6U0XrLvIZxlrtuFkoTj/lGsZcT4FWkEyvqn6iF0FcCIOHODmunhRd5AF/JM5N0dBcf48JzGR4Ea5coV2bGurrnYypa50vxGbXNQ5OcHNjZRK6S62QsH+aWFqpti1kg4qEGEff8yNJc4uSQmW1NodO8gkYuZk07YqisyTR1J6z58ns9fW8r0vXOC/k5P8jsTsbTa0yaCyPt3ddABu387PpHEG4IevMufRxsRhbczffZc+BKnCzDT/P4xyMRlsqMNBNGTz/m1tmTmxs6GCDOeZCCpdXWSA2VmdR33njs6XNklQegTt5c4dDbB5+jSZqKeHG0VCMcmkvwJKwm4ffcT/z8/z9HvrLX8oMZXKvlX38DDHWlbGMZWX05yRFlLi8e/oIKP39lIorK35k0kOHeJmWF4G/vVfeZImchDl5skkDUkaG/n+AN99ZIRr0dLCuREQjbCW1jY0Jel5B2jBbnY2MucxLIyrFMdrtjFXivc+cSJzjEEbmQg6UeHTuOvkIJN03JUVaqoVFenXR6FP5ZMKkvFNkMLVVTqwpMxV7G0p5zRJNozncTP09uokFHGqSYKEADJKMpAwmsBwl5ToPm1SvmpuJAmjZduuvKOD411Z0WryvXs0F4S2beOp8NxzwFe/mj4HwmRSZPObv2nfTK5kbjphyO5uCrhz55h6W1mpIb3r6mjuCBPbyBZLFzwDU7Bfv851evttmkLSOy4M0FMpbWKIk29pifM/Pp4787jmjZjXJRIUvt/8ph86Sw6ykRGu1eXLvG5tjT+mQNosmLQgFaSqD6SrVqa6NzRE6SkFGMGqsffe0w0ld+zgxAmm2/Q0mVpyrxsa/KqY52nsfMkflzxvk9rbdSfbTENF+/dzswuzS1PIXbv8abnmgoepmtnkN4SRaWKJB3txUSPfLizQNm9rYx5EfX26eROkuHyCpSUK6FOnyBiSuyB+XxPmygzjLi3x/S5f1k1D+/rIfCJUc/F9uM5rEOOhqorzc/kymdq04d9/X/s0xFci5b5yz3zlHsSRE+MrpV4A8FcASgF8x/O8bwQ+Vxuffw7AIoB/73ne+/ka5MyMbuA4N8fJE4/wxx8D77zjrxqTWm8pkWxqYqLIpUv0DXz2s/5QTDJp9ymI6hlskAHw+p6e7OyuQ4f4LtIGSk562biuXVyA7NJSXTD0PI/jOnlS56v39dEUAXSUJI6hXPIJjh/nvXbt0lBpw8NcKwHqtIVx+/t1H3mTSQS/T+YiG+ZxnVe5TpheUHmkE7PpwDM1SqHlZX9adL5yD+IolvGVUqUAvgngWQBjAN5TSr3ued5547IXAfRv/BwB8Dcb/+aFBgfJuNJXbds2bt4bN5jZFKwaMzvqSPVZby/w6U9Tbb12jYsgE2pueFtST2Mj75Gv7qVhCEFA5gueaQw4rrnGkSN+rMCjR/n35WUKOonTz8+7J97EOcbOn+d4xakqGsbMDB2dAnMlSLY7d+q5CWOSXJtOus6rXCfRJ8BvSpqCoq6O15mtyQUQJpP5yge5nPifBHDR87zLAKCU+gGAVwCYjP8KgP/tMSngpFKqQSnV4XneeD4GOTysN4ag0JaX00t/9Gj6BMvEjYxoNbGvT8fxgxlRtnCN52kobYHlyqcUDlvcTBc8U9XQJbRUV8dqRTOPQkpnDxzgvK6vU9huxmkE8D0kvTcK5ipsHnNlHtd5jSvjNQVFdzcZ/uZNbZ50dPjRoLeKXBi/E4BZWTyG9NPcdk0ngLwwvknV1Tq/XigMy0waOrichi4bZbOlcDaUqWroosKa14itL6d8IpEOLJkrDQwwe0+yJpeXKXSlHj0Ic7UZgiZIrvMq1yUSWksyIy/B2oGZGZp1pjDJdwGOC7kwvg26IJju53INlFJfAfAVAOiRVXWg/fvp/FGKIbfhYTK/xPTDTritcpTcb8rkdHNRYc1r5MTdzFPe1n3o0CGdT3C/1s51XsV0M6Hba2rCUZI22353IRfGHwNgZkJ3AbiRxTXwPO/bAL4NMGXXdZDiDJud5UmwcyfVKcEiD5u8QproQiEXYRi8ZjNOeZOamuhwzYfP435SJrUR95tic/WVUgkAIwD+DYDrAN4D8EXP884Z17wE4GugV/8IgL/2PO+TUfeNw9UPUr47iTzM5DKXxfl+8CmnXH3P81aVUl8DcAwM533X87xzSqk/2/j8VQBvgEx/EQzn/VG+Bi9UKJLy14EepJOpSJtDTnF8z/PeAJnb/Nurxv89AF/N79CKVKQibRYVZMpukYpUpM2lIuMXqUgPIRUZv0hFegipyPhFKtJDSPcNekspNQXgWsxlzQAiij7vOxXHlz0V8tiAX4/x7fQ8z5oQfN8Y34WUUoNhcchCoOL4sqdCHhvw6z++oqpfpCI9hFRk/CIV6SGkQmf8b9/vAcRQcXzZUyGPDfg1H19B2/hFKlKRNocK/cQvUpGKtAlUZPwiFekhpIJgfKXUC0qpC0qpi0qp/2z5XCml/nrj8w+VUk8W0Ni+tDGmD5VSv1BKHdyqsbmMz7juKaXUmlLqC4U2PqXUp5VSHyilzimlThTS+JRS9Uqp/6uUOr0xvrxXnkaM7btKqUml1NmQz7PnC8/z7usPWOp7CUAvgHIApwHsD1zzOQBvgkg/RwG8W0Bj+w0AjRv/f3GrxuY6PuO6H4MVll8opPEBaADxG3s2fm8tsPH9FwD/Y+P/LQBmAJRv0fg+BeBJAGdDPs+aLwrhxP8VmKfneSsABMzTpF+BeXqedxJAg1KqI3ij+zE2z/N+4Xne7MavJ0H0oa0il7kDgP8I4P8AmNzCsQFu4/sigH/0PG8UADzP28oxuozPA1C7ASFfAzL+6lYMzvO8n248L4yy5otCYPwwoM5Mr9kMyvS5fwJK4K2i2PEppToBfB7Aq9h6cpm/vQAalVI/UUoNKaX+3ZaNzm18/wvAAAgldwbAf/I8b31rhhdLWfNFIXTSyRuY5yaQ83OVUp8BGf/pTR1R4LGWvwXH9z8BfN3zvDWlbJdvKrmMLwHgEAjtVgXgHaXUSc/zRjZ7cHAb3/MAPgDwDIA+AMeVUj/zPG9+swfnQFnzRSEwft7APDeBnJ6rlHoMwHcAvOh5XkQPm7yTy/gOA/jBBtM3A/icUmrV87zXCmR8YwCmPc+7A+COUuqnAA6COI+FML4/AvANj0b1RaXUFQD7APxyC8YXR9nzxVY5UiIcGAkAlwHshnawPBK45iX4nRi/LKCx9YBYg79RiHMXuP5vsbXOPZf5GwDwo41rtwE4C+BAAY3vbwD8t43/t4GAs81bOIe7EO7cy5ov7vuJ7xUImGcOY/tzANsBfGvjVF31tqiqy3F8941cxud53rBS6v8B+BDAOtib0Rq+uh/jA/DfAfytUuoMyGBf9zxvS8p1lVLfB/BpAM1KqTEA/xVAmTG2rPmimLJbpCI9hFQIXv0iFalIW0xFxi9SkR5CKjJ+kYr0EFKR8YtUpIeQioxfpCI9hFRk/CIV6SGkIuMXqUgPIf1/2VK6+gPRgjQAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"np.random.seed(seed=42)\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n",
"en moyenne, $X^2 +Y^2$ est inférieur à 1 :"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.112"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"4*np.mean(accept)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment