diff --git a/module3/exo2/exercice_fr.ipynb b/module3/exo2/exercice_fr.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..e86a0587efe35965c00690260b6edb12e12ad6be 100644
--- a/module3/exo2/exercice_fr.ipynb
+++ b/module3/exo2/exercice_fr.ipynb
@@ -1,5 +1,2462 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence de la varicelle"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du Réseau Sentinelles. Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Afin d'éviter une éventuelle modification du fichier sur le serveur du réseau sentinelle, nous faisons une copie locale du jeu de données. Ainsi les données ne sont téléchargées que si la copie locale n'existe pas."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Si le fichier csv n'existe pas dans le repertoire local je l'importe de l'url:\n",
+ "import urllib.request\n",
+ "import os\n",
+ "data_file = \"incidence-PAY-7.csv\"\n",
+ "if not os.path.isfile(data_file):\n",
+ " urllib.request.urlretrieve(data_url, data_file)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202027 \n",
+ " 7 \n",
+ " 999 \n",
+ " 150 \n",
+ " 1848 \n",
+ " 2 \n",
+ " 1 \n",
+ " 3 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202026 \n",
+ " 7 \n",
+ " 694 \n",
+ " 0 \n",
+ " 1454 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202025 \n",
+ " 7 \n",
+ " 228 \n",
+ " 0 \n",
+ " 597 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202024 \n",
+ " 7 \n",
+ " 388 \n",
+ " 0 \n",
+ " 959 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202023 \n",
+ " 7 \n",
+ " 558 \n",
+ " 1 \n",
+ " 1115 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202022 \n",
+ " 7 \n",
+ " 277 \n",
+ " 0 \n",
+ " 633 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202021 \n",
+ " 7 \n",
+ " 602 \n",
+ " 36 \n",
+ " 1168 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202020 \n",
+ " 7 \n",
+ " 824 \n",
+ " 20 \n",
+ " 1628 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202019 \n",
+ " 7 \n",
+ " 310 \n",
+ " 0 \n",
+ " 753 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202018 \n",
+ " 7 \n",
+ " 849 \n",
+ " 98 \n",
+ " 1600 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202017 \n",
+ " 7 \n",
+ " 272 \n",
+ " 0 \n",
+ " 658 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202016 \n",
+ " 7 \n",
+ " 758 \n",
+ " 78 \n",
+ " 1438 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202015 \n",
+ " 7 \n",
+ " 1918 \n",
+ " 675 \n",
+ " 3161 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202014 \n",
+ " 7 \n",
+ " 3879 \n",
+ " 2227 \n",
+ " 5531 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202013 \n",
+ " 7 \n",
+ " 7326 \n",
+ " 5236 \n",
+ " 9416 \n",
+ " 11 \n",
+ " 8 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202012 \n",
+ " 7 \n",
+ " 8123 \n",
+ " 5790 \n",
+ " 10456 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202011 \n",
+ " 7 \n",
+ " 10198 \n",
+ " 7568 \n",
+ " 12828 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202010 \n",
+ " 7 \n",
+ " 9011 \n",
+ " 6691 \n",
+ " 11331 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202009 \n",
+ " 7 \n",
+ " 13631 \n",
+ " 10544 \n",
+ " 16718 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202008 \n",
+ " 7 \n",
+ " 10424 \n",
+ " 7708 \n",
+ " 13140 \n",
+ " 16 \n",
+ " 12 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202007 \n",
+ " 7 \n",
+ " 8959 \n",
+ " 6574 \n",
+ " 11344 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202006 \n",
+ " 7 \n",
+ " 9264 \n",
+ " 6925 \n",
+ " 11603 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202005 \n",
+ " 7 \n",
+ " 8505 \n",
+ " 6314 \n",
+ " 10696 \n",
+ " 13 \n",
+ " 10 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202004 \n",
+ " 7 \n",
+ " 7991 \n",
+ " 5831 \n",
+ " 10151 \n",
+ " 12 \n",
+ " 9 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202003 \n",
+ " 7 \n",
+ " 5968 \n",
+ " 4100 \n",
+ " 7836 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202002 \n",
+ " 7 \n",
+ " 6534 \n",
+ " 4530 \n",
+ " 8538 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202001 \n",
+ " 7 \n",
+ " 9835 \n",
+ " 7019 \n",
+ " 12651 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 201952 \n",
+ " 7 \n",
+ " 7941 \n",
+ " 5246 \n",
+ " 10636 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 201951 \n",
+ " 7 \n",
+ " 5823 \n",
+ " 3675 \n",
+ " 7971 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 201950 \n",
+ " 7 \n",
+ " 6424 \n",
+ " 4276 \n",
+ " 8572 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1514 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1515 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1516 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1517 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1518 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1519 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1520 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1521 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1522 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1523 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1524 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1525 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1526 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1527 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1528 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1529 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1530 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1531 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1532 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1533 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1534 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1535 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1536 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1537 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1538 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1539 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1540 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1541 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1542 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1543 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1544 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202027 7 999 150 1848 2 1 \n",
+ "1 202026 7 694 0 1454 1 0 \n",
+ "2 202025 7 228 0 597 0 0 \n",
+ "3 202024 7 388 0 959 1 0 \n",
+ "4 202023 7 558 1 1115 1 0 \n",
+ "5 202022 7 277 0 633 0 0 \n",
+ "6 202021 7 602 36 1168 1 0 \n",
+ "7 202020 7 824 20 1628 1 0 \n",
+ "8 202019 7 310 0 753 0 0 \n",
+ "9 202018 7 849 98 1600 1 0 \n",
+ "10 202017 7 272 0 658 0 0 \n",
+ "11 202016 7 758 78 1438 1 0 \n",
+ "12 202015 7 1918 675 3161 3 1 \n",
+ "13 202014 7 3879 2227 5531 6 3 \n",
+ "14 202013 7 7326 5236 9416 11 8 \n",
+ "15 202012 7 8123 5790 10456 12 8 \n",
+ "16 202011 7 10198 7568 12828 15 11 \n",
+ "17 202010 7 9011 6691 11331 14 10 \n",
+ "18 202009 7 13631 10544 16718 21 16 \n",
+ "19 202008 7 10424 7708 13140 16 12 \n",
+ "20 202007 7 8959 6574 11344 14 10 \n",
+ "21 202006 7 9264 6925 11603 14 10 \n",
+ "22 202005 7 8505 6314 10696 13 10 \n",
+ "23 202004 7 7991 5831 10151 12 9 \n",
+ "24 202003 7 5968 4100 7836 9 6 \n",
+ "25 202002 7 6534 4530 8538 10 7 \n",
+ "26 202001 7 9835 7019 12651 15 11 \n",
+ "27 201952 7 7941 5246 10636 12 8 \n",
+ "28 201951 7 5823 3675 7971 9 6 \n",
+ "29 201950 7 6424 4276 8572 10 7 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1514 199126 7 17608 11304 23912 31 20 \n",
+ "1515 199125 7 16169 10700 21638 28 18 \n",
+ "1516 199124 7 16171 10071 22271 28 17 \n",
+ "1517 199123 7 11947 7671 16223 21 13 \n",
+ "1518 199122 7 15452 9953 20951 27 17 \n",
+ "1519 199121 7 14903 8975 20831 26 16 \n",
+ "1520 199120 7 19053 12742 25364 34 23 \n",
+ "1521 199119 7 16739 11246 22232 29 19 \n",
+ "1522 199118 7 21385 13882 28888 38 25 \n",
+ "1523 199117 7 13462 8877 18047 24 16 \n",
+ "1524 199116 7 14857 10068 19646 26 18 \n",
+ "1525 199115 7 13975 9781 18169 25 18 \n",
+ "1526 199114 7 12265 7684 16846 22 14 \n",
+ "1527 199113 7 9567 6041 13093 17 11 \n",
+ "1528 199112 7 10864 7331 14397 19 13 \n",
+ "1529 199111 7 15574 11184 19964 27 19 \n",
+ "1530 199110 7 16643 11372 21914 29 20 \n",
+ "1531 199109 7 13741 8780 18702 24 15 \n",
+ "1532 199108 7 13289 8813 17765 23 15 \n",
+ "1533 199107 7 12337 8077 16597 22 15 \n",
+ "1534 199106 7 10877 7013 14741 19 12 \n",
+ "1535 199105 7 10442 6544 14340 18 11 \n",
+ "1536 199104 7 7913 4563 11263 14 8 \n",
+ "1537 199103 7 15387 10484 20290 27 18 \n",
+ "1538 199102 7 16277 11046 21508 29 20 \n",
+ "1539 199101 7 15565 10271 20859 27 18 \n",
+ "1540 199052 7 19375 13295 25455 34 23 \n",
+ "1541 199051 7 19080 13807 24353 34 25 \n",
+ "1542 199050 7 11079 6660 15498 20 12 \n",
+ "1543 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 3 FR France \n",
+ "1 2 FR France \n",
+ "2 1 FR France \n",
+ "3 2 FR France \n",
+ "4 2 FR France \n",
+ "5 1 FR France \n",
+ "6 2 FR France \n",
+ "7 2 FR France \n",
+ "8 1 FR France \n",
+ "9 2 FR France \n",
+ "10 1 FR France \n",
+ "11 2 FR France \n",
+ "12 5 FR France \n",
+ "13 9 FR France \n",
+ "14 14 FR France \n",
+ "15 16 FR France \n",
+ "16 19 FR France \n",
+ "17 18 FR France \n",
+ "18 26 FR France \n",
+ "19 20 FR France \n",
+ "20 18 FR France \n",
+ "21 18 FR France \n",
+ "22 16 FR France \n",
+ "23 15 FR France \n",
+ "24 12 FR France \n",
+ "25 13 FR France \n",
+ "26 19 FR France \n",
+ "27 16 FR France \n",
+ "28 12 FR France \n",
+ "29 13 FR France \n",
+ "... ... ... ... \n",
+ "1514 42 FR France \n",
+ "1515 38 FR France \n",
+ "1516 39 FR France \n",
+ "1517 29 FR France \n",
+ "1518 37 FR France \n",
+ "1519 36 FR France \n",
+ "1520 45 FR France \n",
+ "1521 39 FR France \n",
+ "1522 51 FR France \n",
+ "1523 32 FR France \n",
+ "1524 34 FR France \n",
+ "1525 32 FR France \n",
+ "1526 30 FR France \n",
+ "1527 23 FR France \n",
+ "1528 25 FR France \n",
+ "1529 35 FR France \n",
+ "1530 38 FR France \n",
+ "1531 33 FR France \n",
+ "1532 31 FR France \n",
+ "1533 29 FR France \n",
+ "1534 26 FR France \n",
+ "1535 25 FR France \n",
+ "1536 20 FR France \n",
+ "1537 36 FR France \n",
+ "1538 38 FR France \n",
+ "1539 36 FR France \n",
+ "1540 45 FR France \n",
+ "1541 43 FR France \n",
+ "1542 28 FR France \n",
+ "1543 5 FR France \n",
+ "\n",
+ "[1544 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_file, skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il n'y a aucun point manquant. Nous faisons une copie des données pour ne pas toucher au jeu de données initiales."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202027 \n",
+ " 7 \n",
+ " 999 \n",
+ " 150 \n",
+ " 1848 \n",
+ " 2 \n",
+ " 1 \n",
+ " 3 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202026 \n",
+ " 7 \n",
+ " 694 \n",
+ " 0 \n",
+ " 1454 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202025 \n",
+ " 7 \n",
+ " 228 \n",
+ " 0 \n",
+ " 597 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202024 \n",
+ " 7 \n",
+ " 388 \n",
+ " 0 \n",
+ " 959 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202023 \n",
+ " 7 \n",
+ " 558 \n",
+ " 1 \n",
+ " 1115 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202022 \n",
+ " 7 \n",
+ " 277 \n",
+ " 0 \n",
+ " 633 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202021 \n",
+ " 7 \n",
+ " 602 \n",
+ " 36 \n",
+ " 1168 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202020 \n",
+ " 7 \n",
+ " 824 \n",
+ " 20 \n",
+ " 1628 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202019 \n",
+ " 7 \n",
+ " 310 \n",
+ " 0 \n",
+ " 753 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202018 \n",
+ " 7 \n",
+ " 849 \n",
+ " 98 \n",
+ " 1600 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202017 \n",
+ " 7 \n",
+ " 272 \n",
+ " 0 \n",
+ " 658 \n",
+ " 0 \n",
+ " 0 \n",
+ " 1 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202016 \n",
+ " 7 \n",
+ " 758 \n",
+ " 78 \n",
+ " 1438 \n",
+ " 1 \n",
+ " 0 \n",
+ " 2 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202015 \n",
+ " 7 \n",
+ " 1918 \n",
+ " 675 \n",
+ " 3161 \n",
+ " 3 \n",
+ " 1 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202014 \n",
+ " 7 \n",
+ " 3879 \n",
+ " 2227 \n",
+ " 5531 \n",
+ " 6 \n",
+ " 3 \n",
+ " 9 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202013 \n",
+ " 7 \n",
+ " 7326 \n",
+ " 5236 \n",
+ " 9416 \n",
+ " 11 \n",
+ " 8 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202012 \n",
+ " 7 \n",
+ " 8123 \n",
+ " 5790 \n",
+ " 10456 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202011 \n",
+ " 7 \n",
+ " 10198 \n",
+ " 7568 \n",
+ " 12828 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202010 \n",
+ " 7 \n",
+ " 9011 \n",
+ " 6691 \n",
+ " 11331 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202009 \n",
+ " 7 \n",
+ " 13631 \n",
+ " 10544 \n",
+ " 16718 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202008 \n",
+ " 7 \n",
+ " 10424 \n",
+ " 7708 \n",
+ " 13140 \n",
+ " 16 \n",
+ " 12 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202007 \n",
+ " 7 \n",
+ " 8959 \n",
+ " 6574 \n",
+ " 11344 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202006 \n",
+ " 7 \n",
+ " 9264 \n",
+ " 6925 \n",
+ " 11603 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202005 \n",
+ " 7 \n",
+ " 8505 \n",
+ " 6314 \n",
+ " 10696 \n",
+ " 13 \n",
+ " 10 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202004 \n",
+ " 7 \n",
+ " 7991 \n",
+ " 5831 \n",
+ " 10151 \n",
+ " 12 \n",
+ " 9 \n",
+ " 15 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202003 \n",
+ " 7 \n",
+ " 5968 \n",
+ " 4100 \n",
+ " 7836 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202002 \n",
+ " 7 \n",
+ " 6534 \n",
+ " 4530 \n",
+ " 8538 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202001 \n",
+ " 7 \n",
+ " 9835 \n",
+ " 7019 \n",
+ " 12651 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 201952 \n",
+ " 7 \n",
+ " 7941 \n",
+ " 5246 \n",
+ " 10636 \n",
+ " 12 \n",
+ " 8 \n",
+ " 16 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 201951 \n",
+ " 7 \n",
+ " 5823 \n",
+ " 3675 \n",
+ " 7971 \n",
+ " 9 \n",
+ " 6 \n",
+ " 12 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 201950 \n",
+ " 7 \n",
+ " 6424 \n",
+ " 4276 \n",
+ " 8572 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1514 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1515 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1516 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1517 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1518 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1519 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1520 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1521 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1522 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1523 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1524 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1525 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1526 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1527 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1528 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1529 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1530 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1531 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1532 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1533 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1534 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1535 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1536 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1537 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1538 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1539 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1540 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1541 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1542 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1543 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1544 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202027 7 999 150 1848 2 1 \n",
+ "1 202026 7 694 0 1454 1 0 \n",
+ "2 202025 7 228 0 597 0 0 \n",
+ "3 202024 7 388 0 959 1 0 \n",
+ "4 202023 7 558 1 1115 1 0 \n",
+ "5 202022 7 277 0 633 0 0 \n",
+ "6 202021 7 602 36 1168 1 0 \n",
+ "7 202020 7 824 20 1628 1 0 \n",
+ "8 202019 7 310 0 753 0 0 \n",
+ "9 202018 7 849 98 1600 1 0 \n",
+ "10 202017 7 272 0 658 0 0 \n",
+ "11 202016 7 758 78 1438 1 0 \n",
+ "12 202015 7 1918 675 3161 3 1 \n",
+ "13 202014 7 3879 2227 5531 6 3 \n",
+ "14 202013 7 7326 5236 9416 11 8 \n",
+ "15 202012 7 8123 5790 10456 12 8 \n",
+ "16 202011 7 10198 7568 12828 15 11 \n",
+ "17 202010 7 9011 6691 11331 14 10 \n",
+ "18 202009 7 13631 10544 16718 21 16 \n",
+ "19 202008 7 10424 7708 13140 16 12 \n",
+ "20 202007 7 8959 6574 11344 14 10 \n",
+ "21 202006 7 9264 6925 11603 14 10 \n",
+ "22 202005 7 8505 6314 10696 13 10 \n",
+ "23 202004 7 7991 5831 10151 12 9 \n",
+ "24 202003 7 5968 4100 7836 9 6 \n",
+ "25 202002 7 6534 4530 8538 10 7 \n",
+ "26 202001 7 9835 7019 12651 15 11 \n",
+ "27 201952 7 7941 5246 10636 12 8 \n",
+ "28 201951 7 5823 3675 7971 9 6 \n",
+ "29 201950 7 6424 4276 8572 10 7 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1514 199126 7 17608 11304 23912 31 20 \n",
+ "1515 199125 7 16169 10700 21638 28 18 \n",
+ "1516 199124 7 16171 10071 22271 28 17 \n",
+ "1517 199123 7 11947 7671 16223 21 13 \n",
+ "1518 199122 7 15452 9953 20951 27 17 \n",
+ "1519 199121 7 14903 8975 20831 26 16 \n",
+ "1520 199120 7 19053 12742 25364 34 23 \n",
+ "1521 199119 7 16739 11246 22232 29 19 \n",
+ "1522 199118 7 21385 13882 28888 38 25 \n",
+ "1523 199117 7 13462 8877 18047 24 16 \n",
+ "1524 199116 7 14857 10068 19646 26 18 \n",
+ "1525 199115 7 13975 9781 18169 25 18 \n",
+ "1526 199114 7 12265 7684 16846 22 14 \n",
+ "1527 199113 7 9567 6041 13093 17 11 \n",
+ "1528 199112 7 10864 7331 14397 19 13 \n",
+ "1529 199111 7 15574 11184 19964 27 19 \n",
+ "1530 199110 7 16643 11372 21914 29 20 \n",
+ "1531 199109 7 13741 8780 18702 24 15 \n",
+ "1532 199108 7 13289 8813 17765 23 15 \n",
+ "1533 199107 7 12337 8077 16597 22 15 \n",
+ "1534 199106 7 10877 7013 14741 19 12 \n",
+ "1535 199105 7 10442 6544 14340 18 11 \n",
+ "1536 199104 7 7913 4563 11263 14 8 \n",
+ "1537 199103 7 15387 10484 20290 27 18 \n",
+ "1538 199102 7 16277 11046 21508 29 20 \n",
+ "1539 199101 7 15565 10271 20859 27 18 \n",
+ "1540 199052 7 19375 13295 25455 34 23 \n",
+ "1541 199051 7 19080 13807 24353 34 25 \n",
+ "1542 199050 7 11079 6660 15498 20 12 \n",
+ "1543 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 3 FR France \n",
+ "1 2 FR France \n",
+ "2 1 FR France \n",
+ "3 2 FR France \n",
+ "4 2 FR France \n",
+ "5 1 FR France \n",
+ "6 2 FR France \n",
+ "7 2 FR France \n",
+ "8 1 FR France \n",
+ "9 2 FR France \n",
+ "10 1 FR France \n",
+ "11 2 FR France \n",
+ "12 5 FR France \n",
+ "13 9 FR France \n",
+ "14 14 FR France \n",
+ "15 16 FR France \n",
+ "16 19 FR France \n",
+ "17 18 FR France \n",
+ "18 26 FR France \n",
+ "19 20 FR France \n",
+ "20 18 FR France \n",
+ "21 18 FR France \n",
+ "22 16 FR France \n",
+ "23 15 FR France \n",
+ "24 12 FR France \n",
+ "25 13 FR France \n",
+ "26 19 FR France \n",
+ "27 16 FR France \n",
+ "28 12 FR France \n",
+ "29 13 FR France \n",
+ "... ... ... ... \n",
+ "1514 42 FR France \n",
+ "1515 38 FR France \n",
+ "1516 39 FR France \n",
+ "1517 29 FR France \n",
+ "1518 37 FR France \n",
+ "1519 36 FR France \n",
+ "1520 45 FR France \n",
+ "1521 39 FR France \n",
+ "1522 51 FR France \n",
+ "1523 32 FR France \n",
+ "1524 34 FR France \n",
+ "1525 32 FR France \n",
+ "1526 30 FR France \n",
+ "1527 23 FR France \n",
+ "1528 25 FR France \n",
+ "1529 35 FR France \n",
+ "1530 38 FR France \n",
+ "1531 33 FR France \n",
+ "1532 31 FR France \n",
+ "1533 29 FR France \n",
+ "1534 26 FR France \n",
+ "1535 25 FR France \n",
+ "1536 20 FR France \n",
+ "1537 36 FR France \n",
+ "1538 38 FR France \n",
+ "1539 36 FR France \n",
+ "1540 45 FR France \n",
+ "1541 43 FR France \n",
+ "1542 28 FR France \n",
+ "1543 5 FR France \n",
+ "\n",
+ "[1544 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et le début de la période qui suit, la différence temporelle doit être zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\" d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYHUW5P/55z5kl+x6yQwIJS4IQIAQQQVaJgoKyxQ1UNIp4f5evyxW3q17kuiIKV1AEZBEUREWUzRB2iAkJsiUhJJCEbGTfk9nOqd8fXdVdXV1bnzlzZsLU53nmmT7V1VXV3dX11rsTYwwBAQEBAQEyCp09gICAgICArodAHAICAgICMgjEISAgICAgg0AcAgICAgIyCMQhICAgICCDQBwCAgICAjIIxCEgICAgIINAHAICAgICMgjEISAgICAgg7rOHkClGDJkCBs7dmxnDyMgICBgr8L8+fM3MsaGuurttcRh7NixmDdvXmcPIyAgIGCvAhGt8KkXxEoBAQEBARkE4hAQEBAQkEEgDgEBAQEBGQTiEBAQEBCQQSAOAQEBAQEZBOIQEBAQEJBBIA4BAQEBARkE4hDQLTB/xWYsWru9s4cRELDXYK91ggsIyINzb5gNAFj+ozM7eSQBAXsHAucQEBAQEJBBIA4BAQEBARkE4hAQEBAQkIGTOBBRDyKaS0QvEdECIvo+L/8eEa0mohf53weka75BREuJaDERnSGVH0VEr/Bz1xIR8fJGIrqbl88horHVv9WAgICAAF/4cA7NAE5hjB0OYDKAaUR0LD93DWNsMv97EACIaCKA6QAmAZgG4HoiKvL6NwCYAWAC/5vGyy8BsIUxNh7ANQB+3P5bCwgICAioFE7iwCLs5D/r+R+zXHI2gD8yxpoZY8sALAUwlYhGAOjHGJvNGGMAbgdwjnTNbfz4XgCnCq4iICAgIKD28NI5EFGRiF4EsB7ATMbYHH7qS0T0MhHdQkQDedkoACuly1fxslH8WC1PXcMYawOwDcBgzThmENE8Ipq3YcMGrxsMCAgICMgPL+LAGCsxxiYDGI2ICzgUkYjoAESiprUArubVdTt+Zim3XaOO40bG2BTG2JShQ52JjAIC2o2dzW14dOG6zh5GQEDNkctaiTG2FcATAKYxxtZxolEG8FsAU3m1VQDGSJeNBrCGl4/WlKeuIaI6AP0BbM51JwEBHYCv3vMSPnv7PCzfuKuzhxIQUFP4WCsNJaIB/LgngNMAvMZ1CAIfBvAqP74fwHRugTQOkeJ5LmNsLYAdRHQs1ydcBOBv0jUX8+PzADzG9RIBAZ2K5ZsiorC7pdTJIwkIqC18wmeMAHAbtzgqALiHMfYPIrqDiCYjEv8sB/B5AGCMLSCiewAsBNAG4DLGmPiyLgVwK4CeAB7ifwBwM4A7iGgpIo5hehXuLSCgamBWG4yAgHcenMSBMfYygCM05Z+0XHMVgKs05fMAHKopbwJwvmssAQG1hjCaC3xsQHdD8JAO6Ha46ek38bU/veRVN9hTB3RXBOIQ0O3wgwcW4U/zV7krAgjeNgHdFYE4BAQEBARkEIhDQIAHgs4hoLshEIeAAAtqLVb6/t8X4PnlwcUnoPMRiENAgAdqZcr6u2eX4/xfz65JXwEBNgTiEBBgAQV7pYBuikAcAgICAgIyCMQhIMADQSEd0N0QiENAgAVCIV0L2hDCiQV0JQTiEBBggdA41GLhDrQhoCshEIe9CKUyw7NLN3b2MLoXamjLGmhDQFdCIA57EW54Yik+ftMcPPV6yIIXEBDQsQjEYS/CmzzhzPodzZ08ku6HoHMI6G4IxCEgwIJaejkE0hDQlRCIQ0CAB2qxqQ+MQ+dg4ZrteGTB2509jC6HQBwCAiwIIbvf+bjsrhfw+Tvmo1QO1FlGIA4BAV0EIRVp52AZ1+WVA+uWgpM4EFEPIppLRC8R0QIi+j4vH0REM4loCf8/ULrmG0S0lIgWE9EZUvlRRPQKP3ct8RyMRNRIRHfz8jlENLb6txoQ0B68s/0c/uMP/8bYKx7ovAF0AQTakIYP59AM4BTG2OEAJgOYRkTHArgCwCzG2AQAs/hvENFEANMBTAIwDcD1RFTkbd0AYAaACfxvGi+/BMAWxth4ANcA+HEV7q3q+PP8VdgQLIW6FbqLVOnvL63p7CF0OgLnkIaTOLAIO/nPev7HAJwN4DZefhuAc/jx2QD+yBhrZowtA7AUwFQiGgGgH2NsNots9m5XrhFt3QvgVMFVdBWs296Er/zpJXzu9nmdN4gwd2sOMQ3DuvHOR3jHaXjpHIioSEQvAlgPYCZjbA6AYYyxtQDA/+/Dq48CsFK6fBUvG8WP1fLUNYyxNgDbAAyu5IY6Cq2lMgAEzqGbIQ6fUYO+wuLUuQicQxpexIExVmKMTQYwGhEXcKilum7HzyzltmvSDRPNIKJ5RDRvw4bgJRzwzkJQSHcuAnFII5e1EmNsK4AnEOkK1nFREfj/9bzaKgBjpMtGA1jDy0drylPXEFEdgP4AMrkSGWM3MsamMMamDB06NM/Q3xnoUoK2jsGOplZs3d3S2cPIYG/3c5jz5ias3Ly74zp4ByCQhjR8rJWGEtEAftwTwGkAXgNwP4CLebWLAfyNH98PYDq3QBqHSPE8l4uedhDRsVyfcJFyjWjrPACPsS4aS2D7nlZ8575X0dRa6uyhvCNx5JUzMfl/ZnrXby2V8dEb/4X5Kzom73LX0nxVjgtv/BdO+MnjnT2MLg1W7uwRdC34cA4jADxORC8DeB6RzuEfAH4E4HQiWgLgdP4bjLEFAO4BsBDAwwAuY4yJlfRSADchUlK/AeAhXn4zgMFEtBTAl8Etn7oidjS34Y5/rcAf5r5VtTZfXLk1OOBwtJbyPYcVm3Zh9pub8F/3vtxBI4pQk5DdVW5vZ3MbXnhrS5VbfeciiJXSqHNVYIy9DOAITfkmAKcarrkKwFWa8nkAMvoKxlgTgPM9xttlUK3F/N9vbcGHr38Ol582AZefdqC9cpi77Ube91bLHNLVJkBfvPMFPPX6BrzyvfdVtd13KgJxSCN4SHcy1m2PrJ8Wrtnufc07RNJRVfh+1ss27nRX6iRUe2l6ZdVWAEBLW5CX+CCQhjQCcagQ1dpkCJl2kCrVBj3qi+5KGuyNr6fAJ1eYW34InEMagThUiGqZHSZcgH97YQpXjvpizilfQzat2mtTkv86f8MPv7oWv3t2WXUH1MURaEMaTp1DgB7Vmki5dndBnqRBvoeS970lOaTzXVcRqk4cYupgxRsbsqK2L/z+BQDAp48fV91BdWEEziGNwDlUiGqx6oWCaC9MzFog7y66PbvvvKh2H4Kw2ebqvOWbcerVT1a1370V4RNMIxCHCpFXOmFCntg9f3lhdXU67cboTvJ3wZXaiM6bG3bVajhdHmGDlkYgDhWirlCdR5fs7sLEbBc8H1/F5qJ7oYd0IRg75EL4BNMIxKFCFKok/68k+GxQPVSO/DqHGvo5VLk9MbfKNuoQJlOMsEFLIxCHClGtaSSITJiXXRu1icpaZZ2Dz8If5l2M8A2mEYiDJ9QdfvWtlYIpayXwWQDlRbctr4e0J/H++T8X44BvPpgqW7l5N+Yt75iYTz5IfGjCjPFBeE5pBOLgCXVXV61pFD7g9sHnscl1zrz26cr6cbzxax9bmgnNccJPHsd5v56do498WLhmO+6cs0J77nfPLsPKzXsAAHtsQSKDWClG0M2kEfwcKkS1RABCph0mZsehJL2r3S2VRdPtiiG7P8AJ3ceP2S9z7jdPvhkfv/+XFoIY5l2MLhoIutMQOAdPdNS8icUiYV4a8erqbbj7eX0UXB+xUluOSK8tbWU89XqUSIoxhufe2BQde7dQOarp5yA/l7Dm+SE8pjQCcagQ1dY55FkYupsk4KzrnsHX//xKxde3lf0Dz/3sn4tx0S1zMX/FZtz/0pq4vNa7yqXrd+J79y+wWxpZUKgwEcXulraKrnsnIIh20wjEoUJUa5fXXW3R7/v3ajz5em1SvebhHFZsipzC1m9vxopNSea0mrweqZMZt8/Drc8tx7JNlTmpVZqkaOJ/P4InFq93V3wHIsceolsgEAdPqJuK6kVlzW+t9E7A5Xe/iItvmVu19mxPrzXHVy8C87WUyti6uzVpv8bJfmzJ1X3Qngx2n/rd85VfvBdje1MrfvHo6yHxFkdQSHtC5RSqb62UZywBeZDnY2+o48ShrYzmtkR5XWuFdHuJUS2d994p+OGDi/DSqm0Yv08fnHXYyM4eTqcjcA6e6DDOodoNBmSQR6zUyIlDa4mluLlavx6RoKcSD/roumqOpntgF7dka2oN8iXAgzgQ0RgiepyIFhHRAiL6T17+PSJaTUQv8r8PSNd8g4iWEtFiIjpDKj+KiF7h564lPvOJqJGI7ublc4hobPVvtX1Q14aq5XOIFdIBlcBnDWwtVSBWaiulOI5aWyut2dYEoHKxUqUK6Y7Cuu1NeJvfU1dFHOcsiJUA+HEObQC+whg7BMCxAC4joon83DWMscn870EA4OemA5gEYBqA64lIpN+6AcAMABP43zRefgmALYyx8QCuAfDj9t9adZFxgqvy/Mmjc+han33XRx6v6IaizDkk5TXROWi6qHSN72pz5Jj/nYVjfzirs4dhRXBITcNJHBhjaxljL/DjHQAWARhlueRsAH9kjDUzxpYBWApgKhGNANCPMTabRV/a7QDOka65jR/fC+BUqpSf3ksRLCU6DnnESvV1iUK6XHPOIYtKdQd729fT0lbGmdc+jWeXbuy0MYhnXQrEAUBOnQMX9xwBYA4v+hIRvUxEtxDRQF42CsBK6bJVvGwUP1bLU9cwxtoAbAMwOM/YOhoZsVKVJpBoJ+xW2gfb+/BVSM9cuA6rt0QhJ1rayqlForNeT6WLfFcTK7mweuseLFizHd/8a+X+LO1FzDkEsRKAHMSBiPoA+DOAyxlj2xGJiA4AMBnAWgBXi6qay5ml3HaNOoYZRDSPiOZt2FAbG/l4MB2kkBbN7I20YcOOZty6F+QZ9iW8n7t9Xuz41loqKxZkfm20Z9Ogu7bS5ky04VePL62swQ6G0AvlzvHdAQimrBG83gQR1SMiDHcyxv4CAIyxdYyxEmOsDOC3AKby6qsAjJEuHw1gDS8frSlPXUNEdQD6A8iEs2SM3cgYm8IYmzJ06FC/O6waOsaUVSCP0rSrTN0v/H4+vvf3hVi+sWtnE6vkef326TfTYiXPRtpD5HXXVspRmsRRP31kcUXtdTTE/F+/vQl/nr/KUbtjkUMK+Y6Gj7USAbgZwCLG2M+l8hFStQ8DeJUf3w9gOrdAGodI8TyXMbYWwA4iOpa3eRGAv0nXXMyPzwPwGOtiUbA6jHPg7TS3dW2lwzf/+gp+/eQbqbJ12yPrk84UYfiopiqZSq0lhjnLkv2JbwvVnrSm9lhK5JWtZXssXVFsIvRC25va8JU/vZRrs1QpVmzahSk/eDT+HYfP74LPpzPg4wR3PIBPAniFiF7kZd8E8FEimoxo/i4H8HkAYIwtIKJ7ACxEZOl0GWNMeBNdCuBWAD0BPMT/gIj43EFESxFxDNPbd1v50dxWwhOLN+CMScO96lc7GXxLjo+hM5biu+ZEge++8N4D4jJhiy8cxzoDPgt/pW+qWQp17buDj8ZTvTdk6jdtSZUlBjaiWWIMhS5mz6QSg1psDe+a+xY27myOf4vMv0H/F8FJHBhjz0A/2x/UlIlrrgJwlaZ8HoBDNeVNAM53jaUjcc3MJfj1k2/g95ccg/dMGJI5n1VIV6vnqKG9UawkxlytlKkdhYrfVQWRTdvzbnR9mIifywfD9kpKZYb6ori2a8ymVkWW41qgt+5uwY6mNowZ1KviPk0cb7BWitD52p8ugs27oh3Eqi27teczYqUq9Svabc0hVuoqEjfBOcij2bizGY+9tq5D+tOLTzouF6bcsrdYqT06B00vpvbKDrFSwfJld0WFa14x0ilXP4kTfvJ4u/pUZ06cW6ULPp/OQCAOHP161AMAtu1p1Z7PfLhVXqDziJW6ytTVjfkTN83BZ26dhyZb9rEKUekjr8ar8iXI1d6Jm9YpF+dg0wPlTZVaC6i7dRfnsHlXS7v7VJ+R+FkDdcdegUAcOITcXP5wbntuOcZe8QC27m7pOM6B/1fZaq+LOhlizPKzWVYlyyWtWadnPZ/rfFCJH2atrJVcog+XWKmrQR1vLYa4l7mC1BwhKiuHmIzyhBFK2Le3N3WYtVIl6CpyYoE84ymVGW56+k1nvTIDisrHa1P22kZQ6bsqVKBzaA/0xE9f12Vma1VId0XioIy3FqJT0zMKCukIgXPgEJNRZx+uVRRWYYH+15ubsLaCYGS1/raPunKm9bxekaqv+4+X1+CHD73m7FO3OOju2+dRVLrQpCyCakCQ9ffso5DOZ8pabeLw8KtvY/329gXVU++9JpxDZgz6sXRXBM6BQ0wHebcoPrDdLW2ZxPTVmD/Tb/xXRdfVeu5ucsh3GYCdzW0p00/TYqo+RxP0hKCyG6/0cdXaCS5Pe6opqwqbxCRP2lQXmttK+MLv52P8Pn3w6JffW3E7WWvAWnAOfmPprgjEgUMsBDpF3rk3zM6UdeYE6nJiJcZw0k8fx8adLXE+hPbu/Hwtd3zWkErXmR3NST5lf1PWym9cK1YytOcSfdgU0tUM8iiGsXKz3srPv6H0T9v8kX0TbPjRQ6+hVC7jW2dO1J5Xn9Eunj87iJUiBLESh07nYEN75s+u5jacdd3TFV/fFefuxp1p7sL3A5OzrcnISwhM5xhjuP+l1V5jsaEmpqxahbS+bsmpczD3U03OIR5Dhdet3baHX59uwcY5yF7Ntnq/fvIN/PbpZcbz6iN6c0NkTNEFVTKdgkAcOMTk9LVQac8Ocf6KLXh19faKr+9qczfPQq4+3RueeENbT0dc9M/c/jSuemAR/jB3pbWOisNH9/cajw7tezf+OoeZCxNfkrxzsasopJ97YyOO++Fj+PtLazLzRR3i2CsewJX/WJhpoz1muUaxUtd4PJ2OQBw4xITwtm5rxwTylbub++76s9dXZryjqU1bXqkIScVNz5h3jiYUdS7f3jqH6r4bU3PfvX+Bs44J1fBz2LyrJXaCBCoLGLJwTbRBeuGtLRprwOwYb9a8S59cHYd+9xGt/5JpIxgU0hECceAQE8I3FER7ps/uFv2C6IuuNnVzcQ6ez1e3Y9ZyEx3wMHTEwXd33p7h5Amf0Z4+5UW90ud35JUz8cU751d2MYe8OKvD8KVfPiKync1teHnVVk3/+vpd7fvqLATiwCEmY8GTOrRnd9HenVtXc+/XLZztVer5mq12xJPQ7ShrErJbU+bzqrVhRSx7+Wp5rz+6aH0yBku9+Su2ONvKpOH1fLO+Wf50ojSbniogEIcYYjHz1TnYFF0u1LUzUl1Xm7p5FKk+10YnctStMoo64uB7cZUV0j4L1bY9rbliE+2RiEN7vYR93smOJn1ImlQ7ym/v+eNXLddmxdT33GWbcc+8fPqrvRmBOHDUcjOulWk7kI7fX83RtB95TDB9oRch1UasVKe6ZufopxaxldTn8J4fP44v3fWCd5tNre0XKwm8sWEnALvOwdUFY9lx+HLHvou+jnaaCK+pzQt+Mxv/de/LXv35YsuuFm/T3Fqj2xOHl1dtxYRvPYgNO7iHZye67dsgD6uL0QYt2vsYa6Vf0EHnI+Ctc2iXWMmPIOqsrx5ZoETCtUwxk/mwL+QxnXXdM1GZdP71dTswf0UmkWMGSsCMCsfiVy+PhVYtN19HXDkzZZrbldDticOtzy5Ha4nhqdc3AkhP0UoW8Y6CK0RzZ0I3np3N1Ve6+5u3tg9ahXSVxRzaaz31LD4yfBvkrIOVTHHXOvu+a55KO4566U3UPnyJceUcRqU6h6v/uTjmmN7J6PbEQWxfRJTLmgRYq6CTztBBM8bwmyf1fgipeprjD/IdpQpVUZrHA9j2CKpJJPScgx/aQ7jvezHrrKc+h+a2Ev78QvtyLLdXRJnX2MDn3XS0zkGrkK6wzeseW4qLbp7r2fPei25PHMRiJSZPLXbl7f0gXde/8NYWnHXd0xh7xQMps0UVbaUylqzbYTy/YM32TJA8l9xf9Ofry9FehXTHmLJqCtvhBOc7p37zZDZarbqm6eroYNUBeD6zXg1FbXlu4iBVN1lKqW36csq+Y8kzZp+qtchx3dkIxEENC12DPivZ5cqT2zXRP3L9c7EH9h7LIv3Dh17D6dc8hbc26ePi6D4Afb6GHPfj7eeg6aVG4jS9n4MfKiFgTa0lPL1kg6G99MU/n/m63zgs53x35ab4THlfg1z/0797Pj4WzTPGNE5wfv35jkUX/dh0rQ8h2WpICvZOgpM4ENEYInqciBYR0QIi+k9ePoiIZhLREv5/oHTNN4hoKREtJqIzpPKjiOgVfu5a4kJ9Imokort5+RwiGlv9WzXcn/JbnhcdpXGojHOQrs9zoeUm5nHZ9aZd/tYSp1z9ZDSeCiKW5oGvWKlDrJU0OTZt1jNNjmi0riHe/fxKfNIgpqjVs63V9bPf3AQg0kntST23NFKiryqM5UeaMPGma32Ip40jf6fAh3NoA/AVxtghAI4FcBkRTQRwBYBZjLEJAGbx3+DnpgOYBGAagOuJSPCnNwCYAWAC/5vGyy8BsIUxNh7ANQB+XIV784K6OapFRMZK9Ad5xEoyOkqn3tFJ2KtFCIb2bcx9jcgK6BqPwHWPLbFWdHE8G3aYiXOl89EuVmqfsrca+q9Dv/sIfvLw4qgfTV/pkOTJD3VRbs80ND/brmXw0VlwEgfG2FrG2Av8eAeARQBGATgbwG282m0AzuHHZwP4I2OsmTG2DMBSAFOJaASAfoyx2Sx627cr14i27gVwKnUlU6Eqw/TR2T5aJn0TXSFkd0eb1up26pVYKx0xZkDuvht1xMHSjSvF665mu/7FNtOZYZFsD7xFZIby/Arp/JDfq3z9ff/2i7Dr86yMnMM7nynwQi6dAxf3HAFgDoBhjLG1QERAAOzDq40CIBtir+Jlo/ixWp66hjHWBmAbgMGa/mcQ0Twimrdhg15GmxcZ65karLtmWaf5mko5B9aOiW6jz5WOxxe+Zp2uMVSyxehRn1XE2vru21hnrXetzFlo4Puc2xPJN9VmO7f+eeeUV3wopYq8QMvn7pyzIl3P0PYajY5BvW+TTjnkc4jgTRyIqA+APwO4nDFmm6W6mc4s5bZr0gWM3cgYm8IYmzJ06FDXkL2QVUh3/MSoJIFLpWKcjproKeKQ45n5rtW+DmGu27MlvTFBzzmYO5K70FVzOWDZRihfuidHTCTbbbc3tElHcA7q+zbNr5dWbUtfZ2i8WfOsWhRq0B6dQ3eAF3EgonpEhOFOxthfePE6LioC/y+icK0CMEa6fDSANbx8tKY8dQ0R1QHoD8DtYlkFZIhDlSbGwjXbMfaKBzB3WfY2zM435vYqdYLrqHnuSlPpizxy7Ur6qYQ46HQONqSji+YfpF2slLRXLfNJZjiWMePE/Y3XV3vDwVj23fpaK+VZ4FXiYCLaXc3JtLPgY61EAG4GsIgx9nPp1P0ALubHFwP4m1Q+nVsgjUOkeJ7LRU87iOhY3uZFyjWirfMAPMY68A1d8JvZuHaWYPXNTvzt0XoI08SZC9/OnDPtTGwfnXwqz86mkg85Mi20X9fxYqX8XIIWFbzDeo2jg2/f1SZgcnPVspDxVkgbSEfeW/TpbtHatDCi/SHSs2fU5yfP4UtPOiA+9uHSq60RfXX1ti6ThEnAZ4t0PIBPAjiFiF7kfx8A8CMApxPREgCn899gjC0AcA+AhQAeBnAZY0zweJcCuAmRkvoNAA/x8psBDCaipQC+DG751BFgjGHuss1Ge/Fq7YpieVmOOD22rl1pIU0w3c9jr63DSyuzMe4B4MPXP4eDvv2wtV1Z7ryn1T9Uhq+dgT5kt5lgrNqyR9tOJZyD7hLbYpUSKxnOX3TLXIz/5oP66y1jkd+fuvOtFHKbpr4J1RMrucgJA8tEOfblTPNwnhniIFWql3xbfBbpDx0+0lknD8667hn84lE/H5Zaoc5VgTH2DMxz6FTDNVcBuEpTPg/AoZryJgDnu8ZSDexwxPxxzfufnncYvuaIzLhtdytWbIqcxXQLjWnu2RYgOW59HtGF7n6eW7oRn7l1nvGaFznR8F20mjvA5lv30VeysZL92b540gG43pCWVIYuF4I/55Ct+Phr67Hc4GgI+OsH8nAOtnwOXpZmnhZU7oYq46Z8dVp5CJi66MscQp3ELfoQv47Y5b+6epu7Ug3R7TykVYuFvBvLcUN6a8tbS+V4YTjtmifjyJnaj7QCRZic8SqXtZKm7nqLXX16POaO5HO//9cKYz0VGadDQz3t+uMwZR17xQO49Pfm7GRnTx6F48dnjOCyY8yZJVR+x7pHZiMMUX+2hTxpMI9C2oaXNFnRtH0byvNyDpWso/46B/f1AhniINFaWZTos/Dbavz+Xytw4W9mW2ro8fji6lhgVgvdjjiokybrIZ1U0E2SQoHw6ePHom+PNNM14VsPxbHeZaemPAuN1VpJFisZa/m1qSo2TYuT3bQ2OX7wlaxexQTfsecNvCfw0KvpscjNENl31HE9j/EsfnsHJv73w3hbYzKZF75+DrZQKHkgvy+zWImMD1w7Lyz3sHVPi/fYBHw9pPNY/qm6BLmP+qIsVnKPz2YO/O37XsUcjSHK3obuRxyU3zZrJS1xIEKBKDU5xPGf5mejZery+pgmlm2H1OYrhFX70tT1TVNqc9braFvwv7+0Bn97cXUq33YlSmr5NKFyRaLaz+2zl2N3SwkzF61zmrKm28lWsBEs+Tnvamfuce14DOVWUVdOVmC1QR8Uj0HTnMlDOjuWHG1mOAdJrCR9qD5z26fOll35iWJXQvcjDspLzYaQTqAjDkUiFCg9eW0yd6382nNsMtI6BzNUrkDXZJunYtNs6le9sA7PLt2orferx9/Af/7xRXzv/gWpfvNCfqa+hCEvAZGrz3MkudnVUsI5v3oW85Yn9Xw5h1rH88llOGF5N3LmOV+kA02a6+UZo8o55NE5qN+Vzyd0xJUz3ZUUdCUyuYZMAAAgAElEQVQz2u5HHJTftthKuh12oRBxD3I9sbvV5YbOk2RE7e6RBW/j5J89gbZSOaVzsC3MqlJLV9UV7sE0Hrn/aunj3tigi/KaYN32RESnt2DSlBmfj9+qr1dIKyIJub5U3ZVbfMHqbXhx5VZ8+75X4zJb1ljfRbLaqIa10mdvex7XzVqCW561PxMdUl3YiINJ56C5qE2Z9/K1abFS9lpbSPFqoitZs3Y/4qA8fPUlyz91O+wCEYgoVU/kLtCFXdC9bNPEUhegb/zlFSzbuAvb9rR6mbI2tZbw4eufc/bV5hk8xjhOuEULBw7roy2/6sFFXn0LyAtnJak61UXcx5RWqyeSGnp88XrcOy8SIRLSxMSUA0GgSbP797UsUl/8p9491nhde+3w7RZUmvegqf/oovW42iPE+J1z3sqUpXUO5vfuu9GKymxiJTvn4Fo3qgXfb7MW6H7EAeYJEp1P0KoTKxUIxYLelLNek5g+z0e62JB4hyHNxZimpc4OXs8i+3IOZpbd9W2YFrzNOeWwsp+Crk+9yaueOhDSa9iCNQmX5Xb6i/63lsr49O+eTz1r+R331GwQZOiS3VjFSkoAOrnuYaP7W/sS+PuX3mM8t8ti2m16Itp9QZXXSl8Vm9lDOltuN2W1cw5qcx3lsNaVHOG6HXFQJ3HmZbislSgrVhLH/g5e+gnwsd/OSf2WW0vpHHLMH11VX0WZXazkWkyrM8nlZ+qdVzh1LOsc0u9n1qL1MOGX0yenfpf4ju4mjdhIDpEyoFe9dWx64mBTSCfHjKXnhO9CMmFYHwzpow9d/oMH9JwcgawGCdlxVndRM0VlzdYzlHtwDrL1V4Osc9Bs3m2xn6oJX2ORWqDbEQf10aubbfm8Tawkv0Pxkepkx9qIgjnfP2OKn4Phk9D3xbBk3Q7c8kyyqPnu3m2iI1eIgWpN8ZRYyVPnYArtoVoryc8rbfJKGc9qwUVu2pn1EfnnwnXx8YkT7AEhtcTBUn/r7iTjGAPzJpby8HvUF/GP/zBzDyp+/YmjjNzMjqZW3DZ7eaa82oult7VSDgKmfs7bpWxuskJaN7czYqUOkv6UPLn6WqD7EYcM52C27tFaKxUoXrDE4plMUD+xkun1q2Ip+drUWHLMnzIDPvh/z+B//rEQAPDTR17Dk6/7OdvYWPY8sZdscCXjqST8hanryM/BDUL2EYuNQnuTHOksd2y3+OOHX8P2pmgRYyxNLH18NgTU5Ham9zegVz2mHTo8qqM5/937F+D3/8rqCKq94X1KmqNWzsFwUlesfs/iuQIeYiW1rXbOg53NbRh7xQOZ8sA5dCIyOgeLoklrrUQUe1O2csIi6MvGnc24xkMBZ1o4+/fUiyQ272pJmTHmmT6MJQsSYwy/evwNbPLkHOymrK6O/cY3uHeD9XzRYX/u9itIjglUsUJazAWVm1K9zV1EUefl7LqHnU1tvO00QShIz8Z1W2rqU7fOSF+nVrb7N0ucrm2sxthKHhZHMqGul56P3p9GESu1YxHf01LC6wb9YtA5dCKy7GG6QI69ozdlpTjev1BEy7uIX85KJ3bR2UObJnu/DHGIvvgzfvEUfvLIYul6045eV1aZrgIwT9TWUhkvrzLHgYn8QKo0yZ0OZvZFIK1zMHcjtxItjEnJwF71sc5H3TFeq7xv113rxEryNQ3FAk47ZFjqvCCQDGmlgyZ4bAyVqygqN+98O4aHJV/37TMPcbWSwXvGD8l9jU6M+vMLDs+MR4Zu6maNT/TzRCtWyrTvN79139Ah//0wzrvhOU3t6oVlrwa6H3GQjo//0WN44JW1xromhXQjt0gRH7o91LZ7FyJw1L4DU7/l73PZxsQfwLi5cBEHw2W3P7dcW25ica/8xyJ89U8vGVqLdqm+pOG1t/U7KIGUtZJnmyljJeUiecnzlVjVFQuxzsf17boWDZ1YSZ4PIwb0yCy68TjTtCH1bFy34itWykPTJ43sj2mThnvXHzWgJ/bplz+nt+7FD+vXA4Al2oDmomz4DP2xz4bOVzVwxi+e0jovmr7hIFbqRMiTafVWu1v/OZOzYXmLROghOIdWIVYyv1AfszgB1dLF9MHncfyR65oWrr/8ezXmazx7TZyDK3BbXZFycQ62aJSyjN1XrCTXk5XFkZ+Dvp+0J3W6Un2BYvNflzjB9W3rOAcVxYJ+18+QHn8xJVaykwe1TdfbiemR5T3WFwnD+/dwtCS1qVPmeEB3ibhd4z5JxzlonOA+fMQo3HzxFJwwIeFodO9YfQ4vrdyaCu1iwtL1O3GdI02sjK6UorTbEYc86NsjqwMoFCjmHJrbog/dJif09erNA5PHqSt7mm3e/VWTuL1SFreuQLl2oKu2mKOW/u3FNfGxb5umar6mxkTpvuqKBX+FtCKOUiHmjOESMJZWjgLJ/TDGUtyCKiqyIUMcTBuM2CzbdD45risWcvnxkDmWnxW6sQqxmc0XR4X87l5etRWrt+5BS6mMUw8ZBiLCw5efgDGDenpZKwHAG+vt3v0CGzUWbiZ0IdrQ/YhDPh8BnVgp4RyEiMAevdStGDONLc+HxxjDo4vWZcorzfUMmImea1j1xUIHTXK3LBgwv+No56jfbWd0DlJJXYG82X2XUVlLm+4e0u/IpDwuc7HS3G+eiueuOAVDJEsv1zvJ6hz87sf2HnVOnzbYfCesY9B+h/FJLfRcZlL2of97FgDwwMuJWPng4f1w+OgBes5B00eHBELsQtSh+xGHHAuk7j0VieJdmFg8ffMe2NqNxlY5Hnr17ThkuKl/u9VHtkznIe6DYqGyRcAF3+HM0hBJIPIg9yK4UniUqWMHoa5IsULaFgcJcH/cPpFl1Rhd4hrGIoK2T78eGDmgJ44eO0gecoxlG3dh7vK0mNCXc4jbQyLKMqG+WMhlalwp56B774KwmxNnaco8Oi8WyMA5+G/yKuk3adO/bkej+xGHnC9KTTZPhUQRKJqyi5X8diG6sclB51xYt12fV0Bu0kocNGU3Pf2mtq5LtFJfLOSa5Jfe+YJXPV23ujJhcaZ+0G3lsuL4Ziac/bhIcfK+A1AsFGLOwbUYuu7bNR8YA4omsRJYhkPox/OKyNZJJ//siYwSVCdSW78jO2dEXz5rfl0hj6eFPZifDdow58LXyGi5l5SP36cPL3P3VSTy8nOIxuVuLy/2Kp0DEd1CROuJ6FWp7HtEtFrJKS3OfYOIlhLRYiI6Qyo/iohe4eeuJT5biaiRiO7m5XOIaGx1bzEN26Mf0b+HEhuHZXaKDcVCzMOLF2lP0qMZg0ms1A7ewSVDBiITujzXrzBkMHPpIvIqpL11Cd47tWSnLaOfRoekAwE49ZB9cPX5h+Mr7zuQzwG7LD7uW2lHxYuavN2qziEjAmLSf6XRSmcMY8DUq2Z51Ev3IP9SN04uEFHVdA4x966c3LyrBet3NMXjvutzx+D/PnYEAL+FVw2qaRuDrj1ZTFUJuhBt8OIcbgUwTVN+DWNsMv97EACIaCKA6QAm8WuuJyKx2t4AYAaACfxPtHkJgC2MsfEArgHw4wrvxQu2BaZYoHiB/uu/V+EPc1dmTA971BcTzoE3tXyjWTH1wMtrMmW6BUJurxKYLq0mm3o2t95SQx+riJ5j9aFXuJt3efKZJ756EkYO6JkOn5HSOTCpPDp37lGj0VhX5LG0+BgcOnoXAdOlDFU3BSp3Ip/PcC7xVt8+LlefKhwifQBA74a6lCOeC6r/SHsgnNbUuXjklTMx9apZ8bfUp7Eudlr1IQ7FgslDOlv2/b8vzNzPZXdlueAHLebyKvYqzoEx9hQA35x3ZwP4I2OsmTG2DMBSAFOJaASAfoyx2Sx6mrcDOEe65jZ+fC+AU0nHA1cJtkdflKxsZA9NFaqZ3/f+vtBYd3tTVmnlsu234bRDhmHCPtlw2Hk8RfXw+XCiO3cpZ+sLhQ7ROXhzVmIhl8Ywluf+9ksTmq4jO/W5Pl759BYpLpLvNS2lMnrUF/Clk8fHZWXpfky0IS+Mt8HLTV+gXNyrsZiPJll0DpNG9jNephursOgyJa4Sz4ykt9k+nUO27tL1O70SGenWABO6EG1ol87hS0T0Mhc7Ce+tUQBWSnVW8bJR/FgtT13DGGsDsA2AOwt8hbA9/KLE9oop1bexDgu+f0aqnqpzyIu2UhkfOXIUPn38WGVs7hYb6nKKbHzrecpjAXcmubpiPlNWGdZtgY5zsFSr1hjkQIu+OoVHF+qV4i40tZZARPjqGQfFZSmFtFI/Nj3N2U+l8yIlVpJErD6QpHMZHDNuME49eB/9GDQXCW5AF6YekJ4Lyd+rWXchoKYATtrTj7vaaI9oudqolDjcAOAAAJMBrAVwNS/XTRWNpDQut12TARHNIKJ5RDRvwwa/4HGeTfP2kdk5DezdgN6Nddl6qDy+SplF8u/9h6Y5AJ/WigW9mahp8laTTY05B4dYqa5YMPar43pk2NaavI9bNwYf+30VBUoWm0G97XoL0czsNzdZ66VEWlLnzVoPatE20yqWo/as3Wna1N9w/FF6xaAiL05Mrm+MKEzmPnVDrS/a52JZ+o4FcdCJBFXLMBPnsGKTXnQs349sBHCKgdC5sNdbKzHG1jHGSoyxMoDfApjKT60CMEaqOhrAGl4+WlOeuoaI6gD0h0GMxRi7kTE2hTE2ZehQe2hk89jN5+TJK6aMLnmLyzvTBSEeyCGujVEgU+wXw8fuK4nxqCfky60OwXudRedQSZRVAZcHuA98uleryPk7ejXUZS+QIOr5eEILqGIl03kt5+DdS2XXOXUTOTkH0/sqkIVwa8pEiG1T5rS7n3+Lt0tWyybVp6RgsFa68MZ/6ccmVd26OwlKeOgov0RMKvYqnYMOXIcg8GEAwpLpfgDTuQXSOESK57mMsbUAdhDRsVyfcBGAv0nXXMyPzwPwGOtATxBXw4xFHIGIXNqjPvuIXN6ZzjEwPmmVT91XtJOn32rGaknESg7OoaBnzQG3GazdodA+PgExfbScg4/OQStq4G07+9a34Rv076BhfTXnWVxP3V3H/Xnc15NfOylznQtyvWeWbEyF0o769YfqeZ4+R8bNkm45EJzD1//8ivaaxxdH45SJg013IVC0zF3t2KTjnVJWvcacllxxe12IONi3QQCI6A8ATgIwhIhWAfgugJOIaDKiZ7McwOcBgDG2gIjuAbAQQBuAyxhjYgt1KSLLp54AHuJ/AHAzgDuIaCkijmF6NW7MBCvngOiGrn9iKVZtieIuibzQf7703XE4hIJlsvmgzBjPKKeMzWM/R9JClbrWcKktDWTevn0V0nVFM+dg+/DknZcOesskXZmob23OCHWhJUkh7WpUjFHlkIpEaDOJcnjxvV84LiNqlM8zjUJa7JxV8YgO+w3uLTWqr2MaPwB84uY5mbI8INjFSiauUndFvRpJ0NSnLFbSEhmVc7BvQr77wYk4eHg/fPS3ESchz0n5ugZbyFwLuhBtcBMHxthHNcU3W+pfBeAqTfk8AIdqypsAnO8aR7VgWwSJy5afWJzsjnryhPFH7ZdETBXiFfEie9YXtXH6TYiIQzbbmDwxTIuomr86vtbQly9x8IEY74R9+mDJ+p3GenUGvQhgJyxX/9OeC0N7pUX/ouWwUqas2WvUOkBa1ODLOajvtqCsOvL7FXPyyH0Hak1DZWKnnhUBAXs02HNXq9jdap8XLiczgdwe0kaxEhnNYn12/MY+YTcgUYlqfbGA1lKZE+JsH30a6zCkT5KDJN1m8itvaBGBvV7nsDfDRZnLLL1o6HYAFNc1iy/SfabPl8tcPGAxSzSJX9T81Ukf+r5bPWML+5n5Rf8PGp4VfcioNzjBNbWW8NZmc5A9F0fi7QQH80JeySdbkAiyz/zRQXVskx0JTaKopM2kb1MdnfgTyIbNEPje/Qu05WL4vtxxbkW4qR1E0W9dVx0yoh8e/+pJqR3/ekN0AADcTyU69uEc+vWsR1uZYXeLfrNHlE4YxSQuPsU51OUj1kkbXYc6BOIgQYgTZLFCvUZ2SMpOJO+CUWYMxQLwuuLvILdzg5R0SO1b63Vt+OxMCrvs9W6InZ1rAps4h9ueW269TigRTXjq9Y2p362lspagxGKYHEFlU05wyjmZILvEb+J8hnNQGpUVz6JFl7VOFD5DX8ckZjERhzVbzQsq4K9Xy6dzMJs4F4hQzAQcjCrL7/jg4X0xbkjv1PNdZPEb6lFfcMZhkjGAJ9zatkfvoxJxItIYpfkg35uPmE8H3fNesm4Hnntjo6Z2x6L7EQeXKasCLeeg7ERcH5C6QAux0spMqOqkHRNxKBYMsnfDEHSJRiqFTiF9/lGjM/VM4TN++NBr1vZdH++tCnGZ8K2HcNEtczP15MU0c87eBYDsIi37OfhuBFxrQ0qp79wtJpyD2u447txnaiFPWG8Z3hZ5nu2fcvA+1lB+Wh0cr6oz7/VdfHs0FCWFNP9eLROtD49VtdMgjlV1I/Krk+ebiSjr8OwVp8iNZHD6NU/hY79tn76nEnQ/4pCTa9PJDgvKl+MkDopoJxJdpXdR+/RtTP1u0sT9F33nSW5uEitNHJH2SBUfjE10I/JbyKZ+M07cP1PPZspaS+huRV5omGF9znIOyXMx3Vf/nvXcT4ZzDoUsgZHRqnAOujX2xAOHpsYm5o2Mv1z6bhw8vK9xDpoWKdOa/r6Jw1LjdXFfPkvgwF71uPGTR1l1Djua2zRhQyLozHvl51uycMc96rLhbmzfTxyN1lAlQxykc/IwTInEdN+XvAENOoe9CLKnqoCsc2hpKztfqEwcEmuQ9MRSPxwb++2TqSrpW//hiB2SQDOvZ6M7IwdEWb9k5btOFFJX7JjwGb6wmbL6JDBao3zYBQ/OocgjlCZhG9JQf7coOgfdInvhlMhlKO5bQ5oG9m7AxBH9jMTBbB6aLZv9jVPwk/MOT13nFCt5UIee9cU4MZCptd89uzyTylT0LXO/unklHuVbStwqomhzp96LLYpysu/T1ymVVUMG6duWrjFlyNN13VAs4Mfnvis1xq6AbkccrDoHzUzfp2/2Jcs7kZ88bBeVAMBOKSlIInYgnHtkIpLx9TQtGOS2RoW04UNQF409XAFnm5piF/rcG4n3r27xyZsJrtpgyn8ZMnEwLWyPLV6f+i3HVjItGsVCZH0WO1E6Vs3UhsHg+ZxZqJhhzGQOCJhHvDGif8840qpviBg/v5FEl2fbNKicg3jmuux5MgTnsFkxhW4oFlIKZDlGlXGs/L+pSrnMUs9Uriau+c5ZE3HekVlxq6nv+jrC+H36OsdWa3Q/4uAh8PD1Ci0zZrW+EXjxrSQKa1niHKYdGiVnF7mqfcZm9pDWw8Q5qB+iyIdr+3h1C4Gec8jnqHf4mAFe9cRO2gWbKWuai5Oukeoct386tJesczA96CI3TTbqHJTfqrWSbolVLYZM4iebOWke4iBD1auZ5oWXxzkl/302HwKiyxTnoLlOPEp1jMJHKXmOOTgHQ5USY2adAz/ed1CvjFjRFEYeEEmTeD3jyGoPp5/DOw3VIMyyysGnucvuegFnHnYmgORjE4vq6z94P+oKhON//Jh2bJ8/cX987Jh90VhXREtbGXfOWZHTlNWPOOzxSHmqW2d0i0ZdoZB5LvOW6wP7vvuAwUbln4pejX7mgfJOW4WPvuY8Rcnuo3MoEKIdfPx+7X3IFjhL1+80mPGmLYbUHNJy3yZiPGW/QdpyF2KdA2/WJEP3IT2CIEsqGS1Mfj/NbXo9Udx+Wczd9EnhpZxwDlzcaJUsCo7JJFZK53jRiZV030lbmaG+SJi3Ivsd1BVIkkZ0HfLQDTkHM3z3WInSyv4iz9WwluISMRka6goocHm1rrXGugL2G9wbw/v3wL6De5k9pJWrhaOOSSGtrjHFmOC5d1Uy9LbjkVhJfj5vbtAHLutZX+yQdIvR2HRl+kbksarcUMqUlTFtvK06sftjwD8XvI1nlthND4f1S/I//9MQwVXexe5pKeG+F9fE4j/T+FRcc+Fkbfkrq7dZx5eIV6J2P/DLp61jtOFtix+Cra0yY5i/Ygt2NdvFSrH4SbFqSkRk0W8vhbSDc4jiohkU0izdhgyxSZupvOsvn34gDx3CCVj1jAvbje5HHKpAmYXiLFoAk/Kxg3ul6r1rVD801BVSoYhlsZIMYwYq5bfRQ1opuvvzxwEw+zmo4cKFbsVm/64TIel2vMJe3cf6ykTsdMgrj9Xdu481iPpuVIW07uOvK0axssqMYcYd8/HSqvTiq15y8kHuqJ3yNU8tibz21+/Ipo5Nib0U9MzpOS2g6hxMOQlypV6hfFZsC9dux7k3PIcr/5HkS9FdLzgTdY41KvoT8YysYiXHmLKcg3wsOKRsK61t0TnV6W7/oTzPiKcBQC3R/YiD5ZzvPE8chJKyiSP64eHLT8zUHTe4d2pCyArp7Nh8dA5+8nzRvpiUKk6YkI5qK5R+F91itqfWPR5dED6xY5PPmKKU2kQiKnzr7T8kik/085nZcBwmG3e5NPNxpxTS+ucQ6RxsJpDJVbZ6MmTDBx3HkG6vuotKpYuVXWdlPn/Lp6ZkyjZwQihbx8mhKwQSK6R0eSP3Us7jl6SK01RExEHmHGSxkmgje52wTlP9M1Ruo+uQhu5IHDRP/108vK4r14BAojxKax3UBb+lVE4HbQOwcM12ANkJRAa5UkavyXeJ6kd234urtdeZwmur7YqMVpt3moPf6XaJYucjQ4RBkO/blDHLZH2lg2vXP2pATwDAu0ZH7/OFFVs0bbg7U2+zIGlSI85BJ/cn6w5+aN9EjFQs+BF4eVGzKZYLln4rhSt8xq8/cSSA7LOyWwOaz43k7w5I3qP6jK48exK+Pu3gzLWCe83oHHhIEVUM7GWtZFimy4ylcmdrOQfdxo+fqyvqvcCDzqFLIPvwPzp1X8z/9mk4mDuGud5P8tEmdSPnmHS9PS3lTI8X/Ga2tg+XJYdA0bCzWaHYeIvJZgqvTUSxbTWgF/ucediI1G/d+qTLb6AGJgT0rPwdl0xNxS0SmGywXpI/nLnLsoo9IqB3QzHmDnTcmWkRvfqRxal2ZKimrATg8tMmpOsUiL9DfQd3XDI1PvbNsS3vJm0ewQWyi0p8cNohaTGXqsRVMe3QaG5kws5b+rAppOUQ9vL3JePjx+wXWyDJSBw40+WNis5BJ1ZSF2OntVIZ6N1YFxstyNXitUB3HT+pxo9SdZDBCa4ToXvpdUXC4D6N/gppicrLrGTWAqhk3BmrXp/GmDmakMKAXan2nvFD4klutlYCxkohnMXOXt71fPesiZj37dOSMeYQLwPJwvLq6m3YvCvLkZwwYSjfbafv5VtnHqJvj9/Kzua2mMjKEO8gFt1pFlSTWOm22SukdnQK6eiYcbnSh48YpdSxL34j+ic7Y9+cHPKO1/bsi4VCu4nDTRcfrfQN3rf9Op0S2Vw38gNZvyOr15KT/SQLdNJWfdEctbUtJg4K51AnTFnTmxWbjssl3hH3N3XcIN5WUvMfL69N9Ze+Lvo/oFc6k2DiF5Nuvyug+xEHTZkIkeGvc+BtMbmMMtf37VHHPZ+zvTZrYh7J9Q7nopHPnpAOTyEHv2srlfHq6m1Yuy1tZnjkfgMl4mDmHI7ZfzAevvwEnHnYCK2jUaFAGNKnMXWND+SPY8m6HTjrumdwx79WGOsyBvxNEouZEqWID6fVEC+KQNjR3IZbnl2GXc1tWk7Hx5Q1ayyQ/mh1RECEnPYRCxRU93gDUibTlvr1RfLy/M4DeUF9Y4M5PLv6iF0iG8aAW59dbuxP7VvAlh+hFIuV0uUNsSlremx+4TMMYiXeiXrfu1va4thfWqs+fp38PUXl0f/25ojpCHQ/4qB5+MK6xjc2vZyw3GQC+bPzD8eME/c3iovUxVitV18s4D3jh2SsTeQP5+qZr+Os657Brx5fmqpTlpRmrqisBw/vhx51xdgMUH4CatA2f86Kj4MxnH7NU9a6wqnvCimjl+k9uDbH8qL+2GvrDTs4/x27PB5xmYjzry4wwhzZNkZhAqvqHEb27xHL2VPjkDhUW7t1xXRqS7GrbQ/kd/ih654x1rPlJNHVLTOGrZqIp3I4F11ynkaNOEkgybWR7jzZ9FFqk2blshycg3jvquL6klvnJU3oiAPTEzDxU6QrrWagzPaiGzrBZV973vC68YdTzpYJCJlktLBk+1QngbobbSvrlZCxWKnM8Cq3VV+9Jc05yF6crpSeQHT/ug9G/fD9OYfov69FTpkxr2RJrl25PD4ik2LQPSa7zgFabrDARVo6nYO6g1UDE/brWY99B/XKXCdzqDaiViwU0FaONiobdjbj9XXmENa+kE1Zd1kspfIqpE3rshymRjTpm1lNVFPbluevTLj9wmf4cQ7ifc9+MwkpoxMRJ9xNul3xu68jGmxnoPtxDpoysZipeRpMkD+cxxdvsNZVd5P9+CQ4/oAh6XqUXjBKZaYlWkVJrCTOq/qLQb0a4nvSRbRUISuF5R2xGgjNRkP7Sju/PDm25fzMAvsP7Y0bPn4kZv6/tGmwq70PSgr0ptYyFq3dnqnjI5vXWSulEu4guxAV+e5U17z62FTrIsb03JIsVrLdu1BytpUZpl41C1t3Rzvzx796kvEaFyqVgduJmGd+Zo3OoVGTzOjbXDdlCvGhiqrEQm7LjqgTackQ+g2b4lrPOYj/etZBRDzebsgj0RnwySF9C4CzAKxnjB3KywYBuBvAWEQ5pC9gjG3h574B4BIAJQD/H2PsEV5+FJIc0g8C+E/GGCOiRgC3AzgKwCYAFzLGllftDhXYHMhy6lszcmgAePq/Tk6nMFQW/Ukj+6O5rYTTeGhk+Xp5cps4h9iKpJwQinnLE5PNq88/HGdPHhkHITPFVlLbFJNXzoAlJuwPzjkUTa0lo9L8he+cjvoi4aFX3sZbm3fnstnW2egXiPD+d43IcFeudeWLJ4/Htb86A6AAACAASURBVI9FIrYnX0+I9skHJT4dlYiVUvkceJA8lcgcNLwvVmzebd85x+2lx1FmLEOIgfRCJeofoxEZCfNIlUsUuR4qgcve3wRbdUFkTW0ewPNn7zeoF97csMupc/jkcfvhBw8skkR+6fPy9yMI8vwVW3DuDc8Zx+uau4lYyVxPvLdJI/thATddN2USFASroa6AxrrCXsc53ApgmlJ2BYBZjLEJAGbx3yCiiQCmA5jEr7meiISw8AYAMwBM4H+izUsAbGGMjQdwDYAfV3ozXtC8TfWFuxBbTcht8YvHDOqVskxRF7+mthJ6N2posqJzKJXL2jy5RWlHJya/rNw+96jRPJRDspt0QSVMAPD59yaK8E8cux8+e8L+Rs5hUO8G9O1RjwuOHoOvnnFQsqh5iE91NvpyaBEZsmjHBfnRye37BPnLekgnzyfhHNKj+O8PTjQ6eSVWOFLDUjU1JEN8nXRecFc/5SG1ZdTFnEP15NUu8UpcTxm3jfgWCgSZfvVVvoOPTh2DP33hOLyfm8mmdQ7ZpUr1DVD7locmCLLO9yV1jSOfg2omLfqWCZFuHTGLlZLjhrqC1lCls+AkDoyxpwCoRuVnA7iNH98G4Byp/I+MsWbG2DIASwFMJaIRAPoxxmaz6Gnerlwj2roXwKmUyyc/H3TvvKTIEV2QP1q1TFdXVCuVGTbubNbaapMyuIhz0HwQKbGS+fWJyfvyKnsMHVFXnbTaDGKeDyiPSELn52B6+7JSWIfUTlE6lnfQP9Msriqspqx8fAcM7YMDJAfARp5URje0jx+zHwDghk8ciRMmDEGfxrrUPZvESol4xR7QT2wibn5mmfPeLjpuP2cdIBs+wwR1OLYNQZGyZrn3XXY8Zn3lvVFbRDh67CDtrlzHOai+ATpRn1w3j77JNMdUJzbRpywC1k1fk0JaRkOxYLU629FUW5FTpTqHYYyxtQDA/wsPmlEAVkr1VvGyUfxYLU9dwxhrA7ANQDpmchWhe+cxcchtrZSgf896bV1h2w0A377vFazcvCezI1briTHpdA5ijCXGrOE2dMHhTNBZVmpFWjlyTgB+O3ydV7HJQEB8YLr8vk997eSUT4i8MPzHKePjY59YQ1kdgSoWIPSoL2LWV05KX0dZQvf6D96Pb30gko2fMGEo7rjkmEyO7ShtbHYc4jk2tZUSZylNxU3cq/0Xjy5x3ttR+w101on6TsZmQz9l3n/61iht6wkThuDRL6d1RgUujovFuBQ5PApxklxP7Vs/H9NjtOkciKJdv+sTjzkm8Z8xbN7VEptXf+nk8by9dE15zmoDPpbTYxWQ/WUa6uzE4ZZnltsHX2VUWyGte/TMUm67Jts40QwimkdE8zZssCuCTdAtqCVFyeSCbDEk8INzDjXWFfPhnnkRfWzU5aVWfreV9DoH2UNal1tXoGdD0ZtARMHvFM7BYinlbi/6b1pYpo4dhK/xDHs6nYNMpE+YkCjuRXtfuuvfmTb3VYIeyiI5dbfngs5Kq1xm2LCjGfe/uNo4TwqU9XwWUXfT7ak6Bz3nIObXff9eHdfXvYPlm/QRb9sDnUWeDh/hi9sUTnRe4LlLPn38WIwboiz6Bb8wH4Ihlus+vzwrDpKVwqUyy/j0yMYYuncDAJ85fpzSaNImAFz/xBs48sqZaG4r4/Pv3T8WCSdiN/5fakLH5ekI2Ph9+qSkCPXFQuoedjW34Sv3vJS531qhUuKwjouKwP+L1FmrAMgZWUYDWMPLR2vKU9cQUR2A/siKsQAAjLEbGWNTGGNThg4dqqvihG69UhXSrkVQthgSUD0fBQiEtjLD1/70UvyxD+qdDR6mjs3EOciEySWfNKUqzLaZZbl1YiVfzsqlzPzWmYfgMr4DU0VaalgKGWKxWGpxyhJQd425kNE5RM/ni3fOx66WUhwQTsWulrZMqkpt88pCVWb6He1h3BFyv0G9Eq9vTcX/d/qBAJIF2tW3DxLLvexL/Ii02y0UCMeMG5QhgKMG9NLqbuRNiGl++IbEl/1Azrz2aXzzr6+kzstWSTqu7q7PHoPPKTnQ4775fT/06tr4nLypU0VfKieoQug1bcSxvkgpgnbnnBX48wuJwKXGtKFi4nA/gIv58cUA/iaVTyeiRiIah0jxPJeLnnYQ0bFcn3CRco1o6zwAj7EOjD6la3jCML7D4W/c5QwnZP2ydYjxo6PID+FP85OXLAdhS6739HPQECYTdETur198N77x/oMz9dT2zlHCQ4gx+iDZVenHKPelKqT76JT1UnuMsdyOQr7OjUn97O8yY7H4xoStu1sx15DUSEakh3LrHET4h4a6glXncMDQPjh67ECtuFLXtw/UnbGMnys5InQmqj3qC5lvInH+Ewulfn4kXIvfHGcAXns769shi7wEgU9Fx9WKbfkB71r+xmVHPFVxnXKK5IfD+yWGKTqludp7fbGQ8v5Xb7/LcQ5E9AcAswEcRESriOgSAD8CcDoRLQFwOv8NxtgCAPcAWAjgYQCXMcaEbeSlAG5CpKR+A8BDvPxmAIOJaCmAL4NbPnUU5I9yYK96zP3WqThi32jHJZ69K7VikYssWlNsq76urtwkz2dgaGot4Xv3L8DW3S0GziGZlCcdlOae1LATugXniH0H4vPvPSBdT8Puj9E4ZfmKlVw6h9QHoiFMJpTKzOqQpdaN+/C6IkFGIc2fj86QoBIUClkuUa9ziP7LUXhNhE4Xo0pfz3OMOUxZi4Wsx7juWTEGLFm/MxadmMJYiL49/De1xhQC3/3gxPhYN89segwG4A9z30oRnd6SvirhHLLiIjH1rr7g8FincMMTb6bO6aDqHLKGGrWlDk4/B8bYRw2nTjXUvwrAVZryeQAygnnGWBOA813jqBbkx10gSntm8mfvJA68oizWMSlrdTGXTMnkGQPufn5lHKNFa60kiZXUdu677Pj0OD1Xc0I0Ed0OYr4iiei/6aOVuylo9B0mmKr9v9MOzJTJJrymb8okllOri4Wl0sQ52fbTC1qkkNbol/j7K5WZVawUlUfP5+ixA7Xy+bhNb7FSMjYZv5yezSxX1HjY66yLHnr1bQDAvZyLNr1Piue4j4+OuR3hpwPoRad6x8OEKH7jL2kx1TpJnKhGAUg5NfJVpn/PepwxaTj++u/VeHTROl7fPC9VnUPHyU/80O3CZ8jUQV1cxQLvJA7CM1kmDiapEvnv1hhUCw1z32WWjuvUt7EOh/CQ40nf/vJlxswRXAX8OYfov2lyHz468TUoeiopATOx0Y1LJjimBfXaWUvw5dOzhEWtLxYWXUDA3140xSv0hzretM7BJOKgmDDZFNJijKVy2enX4rthyGNxVqQscfAhpCaxY8w5eEgPTRkUs21y3Y5Upncy5WPT3Hk6YVVavKsaGAioEQpsGyFV56A+n95V2pz4otsRB/ml66JvAu7dlRD3yMHzbBYsPr5JYpKnJ6/e5BUQxCE79nTf7n5FPQbmXFjyKjPVxXz+t09D3x71Kdl4HrESY/oFRbew+jj/maDeplhYdIvJ6Yqnu28H6fAZerESkCy8or7pHYgdtIv78yUOYiL6+aokxOGw0f3RWmJeIjjTWMUQvbz74VZcA3qTaa3RBUTf2TYvPDqxtZEtpeT/QPqZNUsE5e1tTfjlrMTcWJU21BfTHtLqeHtZ9HEdge5HHKQHrn4o4pcpbjyk80RpsYRZFuznuSr2aXLf2thK8cKbJnS6z0PcX12BrIulUAqbQmGnx+hGLLdVuhzcJ6uIz5cJTh+dVPfsfbg6X/imZvVvT5VR68VKQKLvYB6cA2NZc05de35jFOIV932r+SmG9cu+Zx3MYqWobx8C7582N7oX2YJJ50MqXoNO5Hjw8IQztz5FaThyO5+7fR627E58dGJDGA7VCU69L58gmtVEtyYOOvEB4CeXrStQys/AdoVvsDfVmsLma1BmDD+Vspfp24wqF4RA2gCxMzalFE3q5V1YfOr6cw6qKE1AJ36TRT35rZWUTQMnnnnbMSHa7Sa/bW2L55OIlUybkGiMrsBtvhGIxTfgsyDJOoe2kt1zX8bZk0dqy8UIfb4b2Y/IBqHnuVrKK67noqIyVcSqxqmymWvL8/lEnqv9uP0HY+WWxMz5txdNwfHj076+kbWSXjwF+OlgqoluHZU1M4fJUK5BsUCp1Jrmjzsrj9VOSdG3dFKeTEm9REmZ2iVqJqnwA3MtCInOwSVWsp7O1PONyuorAiozPY3TPXuZOORd0nViJV25Cz/8yLu05epu1+TnAESLdEtbGX+cuzK+Vt9m4s1rg69CWsQyUnfQumB+st7I5J+j4phxg/Cz8/WhTBJrpcrERQN61ePuGccqbWYXcr0vT/RfJQ4mKYNONyGPZ9/BvdCroYhJI/ulxKnvPmBwJsVuveohrQzY9X1WG92POCg29jLyfPt1hUKaczBcHImVWKZMOzZlTA+98namjpikfrtyP05I1HP5D+Q2g/Som8c8j0k7aBm6HWCThXO49dNHq9VTMHGUeXDhlDH46NR9je2nzOKZ2dqtUCDc+txyvLkx8oK26bZaSklejHOPHK2t5/u8e3Afi92K6fBho7OBC4sFikWnreVybOptw6DeDZkUuAJic+YXUTi7QD/9XyfjmP0HK/U0AR4tpqzqt5BJfKXoHGSo3G2Rb4CE3wqgn7OqQlodb7Wz/bnQ/YiDdHzSgWk/ATkctgsFUhXS/pyDDgTKKCZ1OytxXp0ouh7E5Hd9rKJNXapQdYw+yMc5pH8P6JX2Hj94eF8A0WIScQ7ZNnXhMeRFTX01B/E2TVDv0leHm2rDdo0iSmszROAFsouIjXMQc+K/ph2Eqy9wBxi0QXAOttwH8pjEN1Mqszi/hOsaE8Q889U5qAu5ru3ItyS7aGf6Jr1YSSUkavyneun9qfGrCtz5T+YcdAr7hmIhdS/qXFcJdUej2+ocbvzkUTjl4H1S52JZp8eiVlcseCXSIXiGzSYRhCqZZCMHZMNfiEmqfhC6Xb+Yz26xkrkNXT0X8uQCUD/kjyie2f817WC8b9JwXDtrCXY2t2nbbNaYku5OhU5QOUS/52G63ge2S1QVUCSnN28uZJjqEVG807ZxirZgjTKE2e6uFjdxKBaQ0jnorOwysDyfeHPh+d1s3Z3Ws2j9F5BVXOvrRVDFafupTqGCc+A/S2WGL508Hl/lMcNkiEyLvThBML2eekkhXS6zVIDJHvUF7PZ4F9VEt+McxOscPbBXZseZsIp+Sjhb4Du5Ta9JDqGQTsp0bHch3tmk29QRKrHrdIlFxOLnIg7ybmpo30b8+hNH6tvj/+XnKKJZqpDXun36NmZ2aPXFAo4eOyi2qPJVXudJbZk9rxch5CMR9p1xkh8iMiE2ilhUEZeJOCCZE97mqhaIne2OJh/ikHhIt5XLRgJ2nCTqsc3JPLlIIp2VknJX07TOJsNmraR+Xz8+77B0Pf5fmFebfFWifiLCNIJv9kxTuK5IsQHA9U8sxZ1z3orP9W6oqznn0O2Ig3gxugkkynzEQHUF8krMQRqFq3YKEWV0DnriEP1vKbknimirrkC4/uNH4pHLT7TWc92PvEM7/6jRmHboCG090d56yaPUFGxQzftsglC4asMha742mzhE7uaZJRvNnXLsbo6e9ebd/vH0rfcihc8Qi1C9Uazk15+8SFqJg6dOU3g4++xWZS/3UpmlRGSHj+6Pr0+LYnnJoi7bEPN8hzJRVK9Xx6i2ZgtLL2+ELpwyJhOSX3ybLW3leE6aODbhqzJUY8qtjlHM5QcVfWPPhiL2BLFSx0JMEN17FOywz46lWCDFY1IP3z1cHQ9eJu9m9Jng+ELuxbVwzqFA+MC79As5IBEcThyu/7ieI5g4MrHztomqxLP9+E1z4rJ6Q1A4Nc+veYzRh6PjwnTSPV8LqE/cPAevXakmOkzjrrnRDu6llVu92gTs7/3ZpVEy+ohriAZvCivua11UKCRmpzbioHsqR+6bVTKLXbA8zy496YBMPYCLTWLOIS0i+9uX3pOqF7dfJc6BiDL6AZ3YkCi7ibBZK8lcdA9NFroxAyMx08rNu2Mdg4mQR6a+bh8T2epLfYcNnmLsaqL7cg6aCSQUaT5WAf6cg9+4Xlu7Hc8s3Zhi43XxaWIRkMcYfU1ZE84hIna6qLEAMKRPI0YNiCJN2ib6lt1Zc0pdDgsg/UFZdbhc6fmrx5dmzskZ2f7wuWMz57ONpX8e/J2HrdV9rGZU+Fg4NbeV412vTZfgA6LE0sVKHDTr7TUX6uMliTEKjBzQM1MP4B7SJbfOwZVKUz3n6+eQUR6bOAdV52B5TnKbOuVxv57RvnpncxueWLze2p7Idig2NueY/Dso0XdmFOCF6jpi+qAbcg7RA9ZNzjqJVXShWCDs4aKL0QP1Hw1gUHppyoSM/MFXkvjxWs5B89G6+nbJoMVwNnEbeZP8W27LtqPVZWqrr9PX7ycFR7MthMIZ7I/Pr0yV3/nZY3D8+CQhkCkjnwxfqysBdQdr+rhTfXh0saelFH/wpnDbeWIhxZxDToW0rm/RRsrT3NBmkSLO4bmlG7Gzuc1oeSU7x9neQT7OIeuop//mgI1KyHXdYisulb8v3fcth86fccd8AG6xUpkx9Goo4hfTj9DWkwmY+tqFUruW6H7EIeYcsqiLQ3F7KqT5BNIlfRfIa+jiispoMmXVITZl9eQcvvXXVwGY5d9yW7Zdl06J2VDUx9qRExLZdQ76MBsTlWCDns65uaAuUj869zBDzQQ+r31Pa0nSC5mJA5Hb8kveQdvety5fhj5vSPTfi0PlC9fHuBjRxAXJRMOqc+D/ZY/gC6bo/TYYAzbuTCdf0s2j19dlE0TpNhI6ncOI/lniIAiBvGCbnnuBi91cXvZFyRdDreVrEl9NdD+xEv+ve0f1/IsQugT7IpnYJJt2SkD+Xaq8m1Hz8wL+lkVA8gG6TAvVZ2HjHJI27ZNcRkOxgNMm7qOtK7PsVjl0Qb/Ty6Tg9HjeeQn2IZJfxPB+PbyCyvmIg3a3lOJFyDSHfMNDyJ7mtncjcpfI0BGmJCy9R3BJReRhIg7yuOzvmnMO0kbpg4frubX1O5qxXMm+5yuKk53Skmuj/zJx0PkJiXuRNw6meypyhb3NEz66PiI2baUyFq1NJy/ShUXvaHQ/4hBP4uxbEh/oW5t3Y9SAnpj/ndON7cg6B9vHqCVClsVXXghsu7ydniaG0X97PXVS+4iVbHqML54cKS6FA9vPLzxc+yEC6bdgl0PrZa6qXsZHCmOrsv/QbHgIYcZYLFBFDnEmNLWW4sXFtBHx9c6Wa7k4xQOUe9TmKtcopE2EVw3ZrRMrAopC2jInRTW5zWquiwcM7Y07P3uM9pxOIa0NgCnEStLAbI6MpXKkc7A6//FzP3rotUwY+MgLPRCHmkC/aCfy/AP26ZOSh6uQKbndcid9rndDEecdpWeRAeBFh0WM6GqTI4aO3LeLc9DJN00Qbdkmea+GOowd3CvefekU63HfOSxYdDto1ZIkL1egQlihyBBJY3QJlmT8z9mT4mPbvQjTzjJj8c7cRDy9EzZJ/bl1TOnzuvctckk0e0S3VXNyvLpmu7GeaQxK7wDSu/JqZg4+f8qYlJ4q3XNWtGzjrGSHWVt8NRFR2Mpx83PPa1LNJilWa4duRxysOgdpErgsfOTztheunvraGQd55fo1txc1KLLFCejkp7Kfgw3qh2obn1jnffQYTXzXaWuPDMfZ9kwKRLL+1sG2AdOdqvd81xcdNxYDetXzcZj7OGh4n3gcYmeuM5cE/DkHeVjuWFrp36Z7Ygx4ZmniB2JqVTWOMHEORBT35XrXQJpzqOay2MM2H3nf8j3pOIKChnMwPceYc7Dk7QCS+1bv9fLTJnSKWKn7KaRjayWzWAlwL37yeZsYRt11tNd7VbdY/Ps7p+vlokI/4Fws3DvJuE3BOXhYQIldsZU4eDvB+WWM81lMbSEk9CHB/cYIJM/aui/mdRhj8SLkwzm8z5JYqJCDc8jzvivBjBP2N54Ti5yfn4M5K1p70GjRGYlRyT5M1kVfia6rQ6SQjjYDts2LKUnW5acdiDlv/ssrL0w10S7OgYiWE9ErRPQiEc3jZYOIaCYRLeH/B0r1v0FES4loMRGdIZUfxdtZSkTXUgdm0rZxDvIi7+QcPAmJLEv+6NQxuEDKJlUJBK3p1yOh6wN7N2hFYL6mrBmxkk3nkIPgCI9OXXpNAbkZ+4fjFzrDZ+LYmtGdkwm8r8jGRegAzjm0uTiH5Pj7ktgq229ynFes5C+60pfLlx89dqB1jovvyr6D5iKblFjJa4heMD1rILlHOSObUcFOlHLANOtkIg4j0jmYxyXeQ5Ok5xHBN+uKe6dC+mTG2GTG2BT++woAsxhjEwDM4r9BRBMBTAcwCcA0ANcTkSDhNwCYAWAC/7O7rLYDtvAZKW/dHLsvGyGRich3PzjJuEP0hViUmzw8pPOasgrYctX6KKRFPaFUM5mxqn2v29ZkracuEMt++IFMvYFSmI6Lj9sPf/3iuzN1bERGx1WkNgIOoijoqpXQib4Yw2V3vQDAzDn46mSefH2DNF6HdZr621vp7a7nmmti3rg2AgDw/PItcZnplZlyZthg/wajzuWwISYzY9WCzu4hHYmVbPNHPDo5TMa5R47i5/ZO4qDibAC38ePbAJwjlf+RMdbMGFsGYCmAqUQ0AkA/xthsFvGOt0vXVB2JrZJGjigVVUvnkGfX6YM8HtI+ZqdRo+mftsVFLFBusVIiBurbwyy9lFvZYYmHpOocPnfCOO0C079nkqN6WP8eWtPNvJyD/PyWrM/ay6fH6SNT52IlJD4hpt2svJjY1vCzDkvCo7hCZlfsC+IxfV1Z4MTcslumZctM4Vd8w4vI8OEcdjUnC7TRCklZsK1h+7lC2u7omSVMiVEJeUWLribaSxwYgH8S0XwimsHLhjHG1gIA/y8M3EcBkN1bV/GyUfxYLc+AiGYQ0TwimrdhwwZdFSfEAuPiHNw6B1kEZX6M9Tl2nTKOHptd1IDsuIf3y4b1jvvz3OXnSWYjPhS3eWwyhjFquOMK+lazp6l5H2SIFk33bfvEemrk0TaxmIqYOHjsjGVlZns5h6P2GxQfmxZSn3Zs8LnKJ36Qawzqua9POxgnTtBbF/nmxJaxT1/zNyNa2+OhcygUCOu2J9yu0UO6EPk5MMYcJryU6Vtuo8ahldpNHI5njB0J4P0ALiMifdjPCLonxyzl2ULGbmSMTWGMTRk6dKiuihueYiXXQi4vPDYnOHkXbpvInzx2v/h4+tFj8KcvZMUhQDpH8OQxA/DM1082tpnKIW1Bnu8r5hw8ldwNxUJuPxB9vYgTOZAnZZ9xolnpKWiIyYR3ZH/94nDw8L6Z0Myib18UYrGSuU5MHKRZ3uihc7DNyZ6SKDCvdZovxmpShEbtJce+HLetmjq8L7x3f+OYfaPWyjDFDov6jvqRneCMHt8Fwj9eTsLdnHmYPril2PWXmEsRH/0/RPH6BwSXshcppBlja/j/9QD+CmAqgHVcVAT+fz2vvgqArKkaDWANLx+tKe8Q2KyVUpPckT1Ntg6yfRBCye1agL/3oUTZeOKBZsI3aWT/+LhXQ9EqAlrA7c1Xbs7mopYhT9ivnH6gta64V18lt+s5+q5TBYp22qUyw5nvGmF3JISIMWTqk/CdsyZmyv/3I+/CEEdYZRd8rJUSsZKbc/D1Ku4lEQfbs3GNzYTffepoHD12kPZcPo47P+fgI4rJA6s1nhDbSqaspueZtlgko+e8CGleKtt1DqK9cYM1ebr3JoU0EfUmor7iGMD7ALwK4H4AF/NqFwP4Gz++H8B0ImokonGIFM9zuehpBxEdy62ULpKuqTps1kryDnvFJvuC6qtzEPJf12v11Xc01BUwgu98BzsWMhFi+rW3d1jryfN138FmEVA0Tj9RlfigXQuV78ctnIDalHwBOsRhjz3CgMjoZ9GN+ELMISvnwP8/tmh9XObj50CWR9mjzp84iHv/zPHjsPxHZ1rrChw8wpxaNeWA58lxu4Is+qIiPxDH9wWk/Rx6GQw00kYp9qgCJcaijH+2UDsWfaKq36gF2vM1DAPwV35DdQDuYow9TETPA7iHiC4B8BaA8wGAMbaAiO4BsBBAG4DLGGNCuHYpgFsB9ATwEP/rENhiK8lz5u3tZssZIE1cbBND7OxduiT5Y3HJjMXkHmxIoJMXvjkVADlnrt8C5JuiFLCLioSfQ5RS0963sIm3eq5rytprSQbIxNPtFX7vC4mqzeRF7ss5yIuOi3gmehFrtXT7tvvxXHijsbkV0nl4G18jj4a6QmzhZxOz6nxyTByB3LdtrhW4yWtbueyIWxa1IYuq5L5qrZCumDgwxt4EkAlHyhjbBOBUwzVXAbhKUz4PwKGVjiUPbPkc8rCo972YSL58/Rx8YQs3AST230P6VJ84uD42EVXAV+eQh3M4ZpxebAFwP4cyQ2up7HymrsxcUXvZcya5fx74ECZxquxp6aJep0MeR7ZEb+R9iYPQJudc3v8beHZAu5+D/7h8v9mGYkIcbPNCN36TQULBc0NXLETvuqXE7D5ElkdXLCQ5M2qF7hc+w5LPoUI9nd3PoQJrCteCKtJ1usRKvpDv2zVcZrH2kuGdS0I6PvUQuwewr1hJIK8ivBqcQ6wMt44x/0KuHquQFx1XOHfRjGsh//gx+0rt+4mBbGaiQBJaw2cHDQD3fuE4a3u+n5d8r7Z5oSMEJsK9euue+Nj2nS9ZvxOL1+3AU69vsGYTFP2Y8mvsbaasex2sOgd5EuR4DzY21eWQpL/GPuOFTFIXtbUSFFLEwU+s5Fr0BRHesKPZWs/XckYEd2stlZ1iJQF7KPUs8pismiCmjQ/nINDX8h7l6WMbn9zfWI1CMzVGPkibcyIAfEwiDtbFXOrbl8DaCFNKlu/4frzFSrLVoI3IFii1Bw8QrQAAENJJREFUcRBBEl2wve83N+zyakOMSxeOP1JIezVTNXQ/4iAOtDoHiU2sxEZOg0rESvWOxU+Ilao1RvLcnQKAsKZz1Xtp1TYAepvtdN8eA0QSPqOtxLyfqXXh0ImVqkAcNnJiaCNgcWwl/tsmkpCd7myEVL5XV74JEaPHxTn4RgGQh+UrmrOJTlPtucaojGs/g0FFvSfnQETx2A4c1seYN1tFJZtAFTZn0b3OlHWvhBCLODykbS9Kxvh9+ljPV7KA+y6YDYbUm9l6/qaNrk35dz80EcfuPwhHajyPZfgGSsvrBNdWLnt/iFadg/L7qP0GWhffT717rFefwsvbRwwjHpHJGgbw33X6itqARCfjmhfyImqPPJyc226IyCpwxqRIdGgjNrJVzkHDzFZSQPYdm+ZTfYpzsDaJ3pyTc4W6l5Hn+ZswzOHQuteYsu6tsFkryYuDLS+0DF/9QEfAl/A0OurJc271VruV1sHD++GPM45LOV3p4Csu8pUZC1O+1hJzhoeIr8mh79H5PciQ/VDa27dYwERwN5t4UHaOtMFX1AYkokHnrly6Bdv7lL351XzOKoR3sq29Jh7N96BhfXPFOIva1deTvxXX3Bw5IBpjs4PrTbVvef5ne+QcB+ym1IE41AB2nUNy/N0P+i0GDY4dQ0eG2fUlDq4dohyWwrXz84XvsuybRjWKrRQd+3IOdpvy9O/JYwY42zvxwKH4wnvtYgax081jiGBLKmVLDCUjDyEU79vJUXoS+DyhO5K2zecG8tAo0w4d7mynd2N6k2JqdnqOaMhLeL7pNzfaubZfXDg5PrbNNdecEbCFEt8bYyvtdUisbXRipaSsj0Os9B6eScpXJpkHvou+bz2XY5u8IzljkvuD9EEeXYJPffl9+bLwNpFVJbuw2z8zFVe8366gnDiyn7NvcW4cD0dx9QUZi/AYvveaR7clFJtuziG/qKQaepth/Xpg7rdOxX+eOsFZd5TC4ZvGfNFxfhwY4P9djZPCidielUy4bVFkbc8uis/kNayqoRsm+4ngslZyeXre8qmjsb2p1RluobUC22QRP8gFlz/Ex47ZF3fNeQu/+eRR1npiJ/nBw0c6dSi+8OUIxGN2LUSpUAW+1kqWes0eIc/bA6/Ae4yhsa5gDUzou1Dl4RyEqWuvBvvnX4EVtpMbEaasLks7W3A8Gb2Ve7hgip5DyBNPqndjMZXPwYRK3s1+lnetmtvKG5giUc2T/XQ/4mAJvJey93d8GQ11Ba84PC6bcx1cE7muECUbr3copP/nQ5Pw9TMORv9eZrEFkMiJq5kRzDffbewP4bhn+UPx5hws367IUldtiNuwKeRlk0UXgRfvZF/LohLV89+xC1NJmyIcqIxzuPi4sdbzXzplPLbsbsH7qsShygv0G//7gYoIWqWQDUJ+buH+5LltCl4IpDmH2z49FccdMDhpg5tyM2bPY15NdD+xEv/fXg9pX3z63eOq3uZPzjsM+w/pjRH97UrzumLBSRiAJEl6Ne/fVzzqK1aS481Uw2xQzXtcNcSbD7e1UnNb2UnoxKLvIrbFAmHUgJ743w+7k98I4uAyKqgkHPbIAfY5eeCwvrjjkmOq5qOTColfoKounL/71NGOvpN5OMFiVSVzDjaLJHmjUF8krbVYLZXS3ZBzMGukO2LX4bM458VHjhyNjxzpp6j0gQjjUCW3CQAJwTncoej19aRORcn0fFG29XT/oXZHsUoh/Dp8Esq0tJU9rL6i/z7E9tkrTvEaY0vJl3Pwaq5T0RG7aPGsBzi+Xd8NUEGzyOuQ1qul509MHBir2aLd7TgHAX3gvc79Gq7/+JG47TNT///2zjXWiuoKwN/iXkBeXiq9iIA8ooLSqyLcWmnxLS2oKaRqa4NCtYmP2vpK2mqt6Q81QVONr7aWKFT70tTaiNbWaFM0trYCiiIi+IxCqY9Ur1ct6sXVH7OnjOcxj8PMmZlz15ecnLn77rNnr1lnztp7zdprN/2822Ouek6CP9L92cIZofX8M0Zd+6AbKO7MIWyUtWB6zf2kdhrfONTaNMhHEriVsvhK+n7/UcPC3aJ53w95E/X8xDceUUEKjexWV+ni9f+OChVOk344c/Dea6krq3vh2P3HMHX36g08quvV3iwka/yZQxZupbjhklF2KfgAOW5kTljon4gwZGBb5ArupOzdOZyVG98Ida/4vf9we7Rbyb8+cZ/hxOHA8R08/srbkVl9W802TN9zJGtDchv59Ln7Icpwjxw6iGcvmxsZodXIoKvye+Gf48O+j4mw6anR/4xD6GY/2dwNP10YHi2UN9s/Tn/m4BOdosG9R7mVPrEzV7yZQ9QqbU2SQCsm35u7L3O7xtTczcsnaISjFkl2Dh/MxFFDufS48EV6SVh+2sH8u2db5DWPimYqG3eceUjNvEWVXHDMPlx69/rQKDKfqFQl0KBxqPiO+2sgMntWVqsPTTtTQQibOfRX/J/ILIxD1KjKP3fUrCV4U8eNVoqK/Dv+gLHcuWZzeKWEDGofQHedHdN8grL2RCw6HNQ+gIe+e2QqffPpGDKQjiHRz8KGRTyTKBuD29tiJQY8ddYkTjlkYmqDxUbcSpX3on8fZRVlV4t+98whLH1Gf+Vrn92Tr3aP5/yjw7cITcI451aJmpp//P9IqfD2giOmqNmIf84ZE8PzP4UtSMqSsnz3kvw4HrPf6Ax70nzS9CIkiDKui2/Uerf1ccsjL7HptfDdHdOg380c5nWNYcruw1PJ3d8qDB3UzlUn1o/TboQ7z57FU5t7Im8yjRH6CZ8cMUWNejddMS9WH9PKapuUshgHgAvnTKFrXPTzspsXh4d9ZsmC6WOZOia6j3nRyIy8MpLMnzlcfNc61m3pYclX9mdKRFLCnaXfGYeJo4YxMSLffdxEWUZ99ugYErkOA3a4WMZ2hK+IDbqVusZ27FznAjx2ydGx/NBpEnQr3fud2U09d1LOjZHCIm+uPfmgvLsQyi4JBqJ3fevzvNn7QVVAg58Kfd0WLxV+54jsn0oXxjiIyFzgOqANuFlVl+TRj42Xz0202tTYOTpHDObqkw7ksCmdofXOPmIvVv1iNRDtVkpC3DQNaRKcOUwdk+3oz8ifJIsJ66XCr0zO2G+Mg4i0AT8B5gCbgVUiskJVn2l2X8zd1HxOiJF59Kh9628hWjaCI8m8XFtGc7nzrFmxggDqUbm/TL8xDsDBwPOq+iKAiNwOzAeabhyM4vLghYe1hPGOWnlrtB5REWxRVKbdiFrAmAZFMQ7jgFcDf28GPpdTX4yCsvfo1nDBiAiXL+gKXQthGEGGDW7n5SXHse2j7Wx5+7+pulbrURTjUMspV7VCSUTOAM4AmDBhQtUHDKMsnBJzhzfDCLLLwDb26kwnrX4URXF4bgaCidjHA/+qrKSqS1W1W1W7OzvDH2AahmEYjVMU47AK2EdEJovIIOBkYEXOfTIMw+i3FMKtpKp9IvJt4H68UNZlqro+524ZhmH0WwphHABU9T7gvrz7YRiGYRTHrWQYhmEUCDMOhmEYRhVmHAzDMIwqzDgYhmEYVUjUbllFRUR6gY01/jUBeCVGEx1AT4r1smgzrixZnDuL69MfdZNnH0036bSXpG4ZdDNVVaPTDahqKV/A6jrlb8T8/NI062XRZlxZMjp3Ften3+km5z6aborbxzx1U/O3s/LVim6l6B3EPe5JuV4WbcaVJYtzZ3F9+qNu8uyj6Sad9pLULYNuYlFmt9JqVe2OW15GWkkWaC15WkkWaC15WkkWSF+euO2VeeawNGF5GWklWaC15GklWaC15GklWSB9eWK1V9qZg2EYhpEdZZ45GIZhGBlReOMgIstE5HUReTpQdqCIPCoi60TkHhHZ1ZUPEpHlrvxJETki8JmZrvx5EbleROJv7Fo8WVaKyEYRWeteo5sti+vHniLyVxHZICLrReQ8V76biDwgIs+5908FPnOx08FGEflSoDxX/aQsS+76SSqPiIxy9d8VkRsr2iqVbiJkKaNu5ojIGqeDNSJyVKCt7HQTN5wqrxdwGDADeDpQtgo43B2fDlzmjs8Blrvj0cAaYID7+zFgFt7GQn8C5pVYlpVAdwF0swcwwx2PADYB04CrgItc+UXAle54GvAkMBiYDLwAtBVBPynLkrt+GpBnGDAbOAu4saKtsukmTJYy6uYgYKw77gK2NEM3hZ85qOrDwH8qiqcCD7vjB4AT3PE04C/uc6/jhYB1i8gewK6q+qh6V/Q2YEHWfa8kDVma0M3YqOpWVX3cHfcCG/C2fJ0P3Oqq3cqOaz0fuF1VP1DVl4DngYOLoJ+0ZGlmn8NIKo+qvqeqjwDbgu2UUTf1ZCkKDcjzhKr6m5+tB3YRkcFZ66bwxqEOTwNfdscnsWMXuSeB+SLSLiKTgZnuf+Pwdpvz2ezKikBSWXyWu2nxpc2e5tdCRCbhjXD+CeyuqlvBuxHwZj5Qe6/wcRRMPzspi09h9BNTnnqUUTdRlFk3JwBPqOoHZKybshqH04FzRGQN3rTsQ1e+DO8CrQauBf4O9BFzj+qcSCoLwEJV3R841L1ObWqPKxCR4cDvgfNV9Z2wqjXKNKS86aQgCxRIPwnkqdtEjbKi6yaM0upGRD4DXAmc6RfVqJaabkppHFT1WVX9oqrOBH6L5+9FVftU9QJVna6q84GRwHN4P7LjA03U3KM6DxqQBVXd4t57gd+QoztDRAbifcF/rap3ueLX3JTXd0u87srr7RVeCP2kJEth9JNQnnqUUTd1KatuRGQ88Adgkaq+4Ioz1U0pjYMfYSAiA4AfAje5v4eKyDB3PAfoU9Vn3BStV0QOcdPIRcDd+fT+kySVxbmZPu3KBwLH47mm8ui7ALcAG1T1msC/VgCL3fFidlzrFcDJzl86GdgHeKwI+klLlqLopwF5alJS3dRrp5S6EZGRwB+Bi1X1b37lzHWT1pPtrF54o+mtwEd4lvKbwHl4T/g3AUvYsZhvEl6m1g3Ag8DEQDvdeF+EF4Ab/c+UTRa8SIw1wFN4D6euw0XJ5CDPbLxp7FPAWvc6FhiF9zD9Ofe+W+AzlzgdbCQQWZG3ftKSpSj6aVCel/ECJt51389pJdZNlSxl1Q3eoPG9QN21wOisdWMrpA3DMIwqSulWMgzDMLLFjINhGIZRhRkHwzAMowozDoZhGEYVZhwMwzCMKsw4GEYGiMhZIrIoQf1JEsjWaxh50553Bwyj1RCRdlW9Ke9+GMbOYMbBMGrgEqL9GS8h2kF4ixQXAfsB1wDDgTeBb6jqVhFZiZf/6gvAChEZAbyrqj8Wkel4K9+H4i1WOl1V3xKRmXg5tN4HHmmedIYRjbmVDKM+U4GlqnoA8A7eHhs3ACeqlwtrGXBFoP5IVT1cVa+uaOc24PuunXXAj1z5cuBcVZ2VpRCG0Qg2czCM+ryqO3LZ/Ar4Ad5mKw+4TM9teOlQfO6obEBEOvCMxkOu6FbgdzXKfwnMS18Ew2gMMw6GUZ/K3DK9wPqQkf57CdqWGu0bRmEwt5Jh1GeCiPiG4OvAP4BOv0xEBroc+3VR1R7gLRE51BWdCjykqm8DPSIy25UvTL/7htE4NnMwjPpsABaLyM/xMmXeANwPXO/cQu14GzGtj2hnMXCTiAwFXgROc+WnActE5H3XrmEUBsvKahg1cNFK96pqV85dMYxcMLeSYRiGUYXNHAzDMIwqbOZgGIZhVGHGwTAMw6jCjINhGIZRhRkHwzAMowozDoZhGEYVZhwMwzCMKv4HQJppkvnWyrUAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve au mois de septembre."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcI2d57/t7S1WlXd2t3qanu2f1jO2Z8W5sMBjbMQ42kBjuhcQhOZCEhAshJxDgJnCSnCzn+N5wE0hCDiEbCeAQiDEBOydgY2w2g7fxxozt8exL9/T0KrX2Ui3v/aPqLZXUpaVbLakkvd/PZz6jqZZ63q6W3ud9fs9GKKXgcDgcDseJ0OkFcDgcDsd7cOPA4XA4nDVw48DhcDicNXDjwOFwOJw1cOPA4XA4nDVw48DhcDicNXDjwOFwOJw1cOPA4XA4nDVw48DhcDicNYidXsBGGRkZoTt27Oj0MjgcDqereOaZZ5YopaP1nte1xmHHjh04ePBgp5fB4XA4XQUh5Ewjz+OyEofD4XDWwI0Dh8PhcNbAjQOHw+Fw1sCNA4fD4XDWwI0Dh8PhcNbAjQOHw+Fw1sCNA4fD4XDWwI1DF3D/87NIFdROL4PD4fQR3Dh4nLnVPD74lefxHy+c7/RSOBxOH8GNg8dJ5TUAQDLHPQdOZ8koGjTd6PQyOG2CGwePk1FMo5AuaB1eCaffufWT38MXH2+o8wKnB+DGweNkFB0AkOYxB04H0XQD8ykFs8l8p5fCaRPcOHicjOUxrMdzeOzYEo7Np1u1JE4fUrTkpLyqd3glnHbBjYPHySrMODTuOXz0qy/g048eb9WSOH2IoprGoVDkxqFf4MbB42SU9XkOukGxmFGwnFFauSxOn6Fo3HPoN7hx8DjMODRa57CSLUI3KFayxVYui9NnKJppFArcOPQNXTvsp1/INug5fO+VBewaidjGhBsHzmbCPYf+g3sOHifdoHH47X97Hp/57nEsWnJSIlcEpbTl6+P0ByzmkFd5nUO/wI2Dx2GeQ0bRoBvVN/tcUce5RA4LqQIAQNUpUrw2grNJ2LISD0j3Ddw4eJyMY4NnkpEbqm5gJpG3PQcASHBpibNJcFmp/6hrHAgh04SQ7xJCXiaEvEgI+aB1PU4IeZgQcsz6e8jxmo8TQo4TQl4hhLzRcf0aQsgh62ufJoQQ67qfEPJv1vUnCSE7Nv9H7U6cBqFaOqumGzAocD6Zx4XVgn19mRsHzibBPAduHPqHRjwHDcBHKKWXAng1gA8QQvYB+BiARyilewA8Yv0b1tfuArAfwO0A/oYQ4rO+12cBvBfAHuvP7db19wBIUEovAvAXAD6xCT9bT5AtlowD67NUCStQ0gyKQ7Or9nUelOZsFnadAzcOfUNd40ApnaOUPms9TgN4GcAkgDsBfMF62hcAvNV6fCeAr1BKFUrpKQDHAVxHCJkAEKOUPk7NSOkXK17Dvtd9AG5lXkW/kyloGA7LAKp7DkWtFCR8cTaFycEgAC4rcTYPJitx49A/rCvmYMk9VwF4EsA4pXQOMA0IgDHraZMAzjleNmNdm7QeV14vew2lVAOwCmB4PWvrVTKKjonBAIDqGUtO41DUDVy8JQqAy0qczYPJSqpOofLOrH1Bw8aBEBIB8DUAH6KUpmo91eUarXG91msq1/BeQshBQsjBxcXFekvuCTKKii0x0xNIK+6eg6KVf1i3xUMISAISOW4cOJuD8z3GvYf+oCHjQAiRYBqGL1FK/926PG9JRbD+XrCuzwCYdrx8CsB56/qUy/Wy1xBCRAADAFYq10Ep/XtK6bWU0mtHR0cbWXpXo+kGCqqBrXU8h8qT3GjUj3hIxnKGGwfO5qA46ht4ULo/aCRbiQD4HICXKaWfcnzpAQDvth6/G8D9jut3WRlIO2EGnp+ypKc0IeTV1vd8V8Vr2Pd6O4BHKa/gQtZq171loI6sVGEcxqJ+xCMyVrK8vxJnc2CyEgAUilxW6gcaaZ/xWgD/BcAhQsjz1rX/BuBPAdxLCHkPgLMA3gEAlNIXCSH3AngJZqbTByil7J31fgCfBxAE8C3rD2Aan3sIIcdhegx3Nflz9QQZK1NpOCxDFoWq/ZVYzCEWEJEqaKbnEPZjhU+P42wSZbKSxj2HfqCucaCUPgb3mAAA3FrlNXcDuNvl+kEAB1yuF2AZF04JVh0d9ovmxl8tldX64O4ajeD5c0mMRQOIhyScWsq0ba2c3sZpHPK8Srov4BXSHobJSBG/iGhAqpvK+prdwxgMSZiKB03PgcccOJuE4ogz8JhDf8C7snoY5jlELM+hXszhtn3j+N3bLwEADEdkZIs6CqqOgORzfR2H0yhlnkODxuF37/sJDErxZ++4olXL4rQQbhw8TMYhKzXiOci+kiM4FDIL5xK5IiYGgi1eKafXKYs5NCgrHT6/CsnHxYluhf/mPExGccpK9T0HWSz9OgdDEgAgyYPSnE1A0XT78NGo55DMqWUFmpzughsHD5MpNGgcXDyHsN90CnM8eMjZBBTVwIB14Cg0ONMhlVfXpFmfWsrCqNF6nuMduHHwMOXZSlLdVFan5xCWzThDrtifMx0Kqo47/uqHePr0mlpKzgZQNAODQdM4NOI5qLqBtKKV1Ue8PJfCT33ye3j0yEKNV3K8AjcOHiZT1CCLAmRRwEBQQq6ou7rpbrJSSDY9h2yNGRC9zHyqgJfnUnj+bLLTS+kJFE23pcpG2mek8uZBxvl+ffDwBVAKzCbzrVkkZ1PhxsHDZAoaopY8xFz61fxa78HVc/CbngOrsu43WLwmmefpvJtBUTMQ9ovwCaShOodVF+Pw8EvzAMB7fnUJ3Dh4lHMrOXzn5Xm7dcZAsIZx0GvFHPrTc2BG0e1+cdaPohkIiD4EJV9DslKywjjMJHJ4ac7s18mTJLoDbhw8SEHV8c5/fAIF1cCfWznisVrGwS0gzWSlPg1IMzlt1aWq/N6nz+HUUrbdS+pqFM2ALAoISEJDxmHVMgDs4PLIy2acgXcL7h64cfAgp5ezOLeSx++/+VJcOhEDUPIcUlWMgygQCEKpy0lAEkAIkOvTmIMtK1VsRC+dT+F3vvYTfPmps51YVteiqDr8ooCA5Gso5sAOMapOYRgUT55axnQ8iL3jUSS459AV8CI4D6LpZqofMwjOx9U8B2e8AQAIIQjLYt96DkxOqzSm9zxxGgAfobpeFM2AXxIQbNA4OI1yUTeQLmgYDvsRC0prDDbHm3DPwYOw+QySY8OvF3OoNA4AEJJ9fZutlHGJOazmVHz9uVkAaz0KTm0UzYBf9CEo+xoKSCcd913RDCiqgYAkYCgkcVmpS+DGwYNoVpGQJDRmHFTdKIs3MML+/vUcsna2Uul+3f/CLAqqgfGYn0sb60TRSrJSQzEHx30vaob1eh+GQjKSWX7vuwFuHDwI8xxEXymGIPkEhGWfq3FQNMO1h01I9vVtzIEZh1RetStyzyznEJZ9uHZHHAkuKzWMblCoOjU9B8mHfAMV0qsO41u0JhoGJAGDIQlpReNzqLsAbhw8iGrFHCRf+RiNgaBUNebgd5GVTM+hT42D9XMbFEhbhiJdUBEJiFzaWCcsG84vmdlKjTTeK5OVVB2KZnYHZg0heYqx9+HGwYNozHMQyn89sQrjMJvMo6DqrgFpwGyh0a+9lZzFfywonVE0RAMS4iEZybwKnff4aQjWAsMvWgHpGpPgnjmTwMtzqXJZyfIc/KLgaAjJjbPX4dlKHqTkOZRv+E7PwTAo7vjLH+D9N19UPSDtF3F2Jdf6BXuQjENOW82rmIY5PCkaEDEYkkGpaTSGwnLnFtklsHbdjQSkP/a1nyAaELGaV+EXBSiagaJmoFDhOfCYj/fhnoMH0QwrW8lFVmKn4GxRQ6qgYT5VqB6Qln192z4jq2gg1u1jFbmpgoaIX0TcMggr/PTaEIrKjEPtgDSlFDOJPA7NrmIhrWAs5gdgBaQtz8E2Djzm43m4cfAgpYB0dc+B/Z0uaFVlpZDczzEHHeNRs/UIu1eZgopYQOLSRoNQSvGZ7x7HyxfMthf16hwSORV5VYeqU6QLGsas+684PAc+Z6R74MbBgzBZSRSqB6RTVluIjGIOVHHLVgr7zZgDpf2nrWcVDZND5gQ81nwvXek58JRK/N33T+CPHnjR9WtpRcOfPfQK/uWJMwBgZyupOnXNNppNlHdbHYuankNG0UApTFkpXJpQyPE23Dh4EFYhXekNsLbdqm7Ysx0yimb3vakk7BehG7RsxGO/kFU0bB00jcNqWUBaLBuh2u88eWoFPzi66Po1NmzqyIU0AFNWigTMMKXb4CnWiptJnMw4MCnUL5rp2JKP8JhDF8CNgwdhMYc1noOjbXdJKtGqBqRZ871+zFjKKBqGwzJkUcBqXoWmG8gVdUQDUun0ynVvqLpRVXpkQf3FtALA3NynhkIAzC6rlTDjcMslowCAsZgpKzFD4pd8IIRgIChzSa8L4MbBg7C8creYA2Dqtew0llbMmIO/ShEc0H8DfyilyBV1hP0+U4rLqaV53AGxJ0+vPzq+hJ/728fLJq81QlEzkKuStFDpHfglH6bjpjfmlgV3PplHUPLhtn1bAACjlufADjIB6wDD60y6A24cPIjdPqMiW8nZttvpOajVPAc/a9vdX8ZB0QzoBkXYL2LQitOwjS4aEEEIwVBItj2HC6sF/PUjx7o6NvP8uSSeOr2CZ84k1vU65jm4/eyVhwq/KGDa8hzcjMNsIo+tgwG85fIJ/P6bL8UNu4cBwJZA/ZJ5WBkKyT1lmHsVbhw8SLUiOGfb7lSBBaRrZSv15zQ45iWEZdEO4jPjELM0c3ODMo3D5398Gp98+ChmEu7jK3WDer5gjsWVfnR8aV2vU3UKgwIFl5YYGRfjEPaLGInIOOcwDr/15efwvx49htlkHpNDIQQkH37txl22rMnuPfMcBkO8M2s3wI2DB6nVPgMwPQcmK+WKOvKqXrXxHmC2jfjB0UXPb3CbBTvxhv2itRE5ZCW/eQ+HwiVpgwVkq3lYH/3qC/jwvc+3etlNweSkx44vr+t1LOvI7WdfYxysk//UUKjMc/jxiWV87rFTOJfIYXIwYF9nBxb2Xg1Yr48FJdeANsdbcOPgQTTDHN5DSH3jAJinPqlGQPp//2QO7/qnp/Dn336lhav2DsxTivh9dsuRtCVtRMs8BxWLacUeX1ktNnN2JYczy96uNGeFaodmkmVN7+rB4ltucQeWrcTyIlj/rm3xEM6tlLysdEFFIqcimVMxaWWIAQ7jUFDLXh+QhLLZ0hxvwo2DB1F1WtaRlTEYlOATCJYyiv2BY7h7DuZJ7fET5mnys987gQcPz7Vgxd6CnYLDfhHxkIzlrGKfVFkq5lDYjDn88FgpjTNTRX5TdcPz6cBsfQYFHj/ZuPfAxnhWegnOa7tHIwDKjcNsMg9NN6x23KV7s9VhHMwDTqkmh3kOftHn+fvJ4cbBk6i6UTbLgSH6BIxH/ZhN5td0taxWIQ2YKYa7RsLYNRrG5398uiVr9hJsUwvJIiaHgiiohn3yL3kOEpJ5FQ+8cN5+XTXPgc0j8DKKpmNLLICIX8QDL8w2/DomK+VcZKWsosEvCtgzzoyDublPx4PQDYq51YLtkbH4ltNzIITALwqOgLRgfR/B8/eTw42DJ9F06ioTAebJbC5ZQCqvIWidxABUadld+voV04PYHg/1RXA6a8cXRDsv/2VLOooFTGlu73gUukHxvVcW8aodQwDcT8+A5Tk0MMOgkyiagbDfh/e8bie+eegCnmzQe2DxLbehUGmraHDfRAzRgGjHwKbjpYwl5pH9ymt34JaLR7F/cqDse8g+oRRzsIyLLApQde8H+fsdbhw8CIs5uDExGMT5VdNzYO0hAHfPISD67OZz+7fGEJQbm//b7TD9POz3Ycq6R0cupCAKxDaid145icd+9xb8/X+5Bne/7TIA5Z7DPY+ftr0KVfd+lbnZ2M6H9920G5ODQfzhAy/aQ45qodoxB3fPIeIX8Ws37sI3f+tGOwa2zTIO5xzG4crpIfzzr1yHiL+80bMs+myj65SVAPC4g8fhxsGDFDXq2isJALYOBjCXLGA1r5bpu24xB0EgCFkfyH1bYw2PeOx2nKmszICeWcnZNQ6MqaEQfnr/FmwfNjc7p3H4lyfO4uvPzgBgMQdv3zdF083GeLIPv37jThy5kMb5VffUXCc1Yw4FDWG/iIDks70FAJgYCEIUCM6s5NYE+ivxiwKYjWKGmf3t9Xva73Dj4EE0w3ANSAOmplvUDeRVvSxtsJoxCVknuf0TAzU7avYCBVXHh+99HodmVwGYAelYQEIsIIJSIGpJSpX4RbNi2hmQLmi6vXF2S0CabbrDEbMyudbcBUYp5uAuK1V6AgDgEwjGon4spBS73qaWcWDYnoPEjIO372m/w4f9eBBNp9VlpYGSt7B1oLasBJi6u18UMBCSzPm/Pdxn6fhCBv/+rBmMlX2CfU+mhkJ4aS7lutExwn6xLCirqAZUzTzyFq2BNZTSNenFXkHRDAxaqc4sOFyvp5ZuUPtU71bnkFU0bIkF1lwHgHhExkpWsT2HWBXD63xfljwHc31ej+P0O9xz8CCq7t6CGzBlJcaES055JTtHwrhxzwgA8+RWsDa5boZSimfOJNb8HM4MrpAjGM/iDtVOt4ApQTmlFUXTodieA7WueXczU1Td3nyDDRoHZ9ttt0ytjKLZqb+VDIVkrORKlefVDC97X8o+AYJ14OGyUnfAjYMH0YwaMQeHtxAPS/YpsZpx+Ny7r8XdbzUDrkHZB92g9mbXrXz9uVn8n5/9sS0fMZhx2BILYNSSVgDYGUu1jEPEL5ZtkAXVsAOmbBP1snEoaoZdwcyy2PJq7SrkYplxcC+Cq7bpD4eZ51BeP1IJi4UxKQlwGgfv3k9OA8aBEPJPhJAFQshhx7U/IoTMEkKet/68yfG1jxNCjhNCXiGEvNFx/RpCyCHra58mln9OCPETQv7Nuv4kIWTH5v6I3YeqV485DFryEGC68uzD69aVFTBzzdmJLWBvGuUbwYOH5/A33zu+KWtvB2z4zPlkoew6S5n8wq9eh3/+lVfZ10ueg7v0AZiZTWyDpJRC0cy5GYZB7UaIiqbjwcNzuMf6/71EweE5sPqWfLH25uvMFnKrc8hUiTkAQDzsx0qmiHRBRVDyVT3MyHZVtCPt2nrMPQdv04jn8HkAt7tc/wtK6ZXWn28CACFkH4C7AOy3XvM3hBD2rvgsgPcC2GP9Yd/zPQASlNKLAPwFgE9s8GfpGaoVwQHmZs+kpYGgZJ/YqnkOTphRqQxK/+V3juFLT5xtZslt48iFFJ49mwQArFTMY2Cew9RQ0PYWANgZSzVlJX9JVmLN6IqaAdUobaCKauArT5/D337vxOb8MJuIMyBdijnU9hzKZKUKCYoF4asbBwnZoo7lbLHmfa3MUHI+5jEHb1N3R6GU/gDASoPf704AX6GUKpTSUwCOA7iOEDIBIEYpfZyaQvEXAbzV8ZovWI/vA3Ar8WrUr02YRXDVbwFLYY0FJUStD2+1k5uTgOXaO4PSM4kcjlxIu4599CL/+uRZW6qonAmwmlchCsTeHBnMc6gZkJZLshI70aq6USbBKZo5MGhuNe+5+2UaB0tWkt09xEpYwB1YG3NwNi90Ix42Zbszy9maxsHVc+CyUlfQTMzhNwkhP7FkpyHr2iSAc47nzFjXJq3HldfLXkMp1QCsAhhuYl1dj2rQNe26nbC4w4Y9B4c7/90jCwBKMyS8jKYb+I8XzuP2A1sQln1Yzqw1DrGgtCajaDoegigQjDjiEJWE/U7jYG5aRc2wi8QA0+MqqDoMas6A8BKszgEo/Z7rBaSdMYfKxnv1YgnxsCnRnVnO1ZTrZMtgBcpiDlxW6gY2ahw+C2A3gCsBzAH4pHXd7bhLa1yv9Zo1EELeSwg5SAg5uLjoPve2F1A1Y027biev2hnHvomYOdPX37hxCLATpWPT+M7LC/b/6XWeOrWCRE7Fmy6bsFMpnaQKmt251kksIOEbH3gt7rpuuur3jvhLlbxMdivqRpmHwDwHAFVnP3QClmRgZys1aBzKZaVyz4Hdi2gdz6GerGQHpEVnzIF7Dt3AhowDpXSeUqpTSg0A/wDgOutLMwCcn8ApAOet61Mu18teQwgRAQygioxFKf17Sum1lNJrR0dHN7J0T7KaU8vaLJvtM6r/at5+zRS++UGznQGbT+BWIV1JsCIgnVU0u2OrU1v3Kt86fAFByYeb9o4iHvZj2SXmEHMxDgBwYHLADtS6EfaLyBZ1Kxhd8hycG5ii6bZhdZuh3ClYYJltwIJAEJCEugWPzDhUZmoBjchKsv24Wo0DUDIEAZ6t1HVsyDhYMQTG2wCwTKYHANxlZSDthBl4fopSOgcgTQh5tRVPeBeA+x2vebf1+O0AHqXdnoi/Tj7y1Rfwka+WhsloVVp2u8FObW6N9yqpDEifXs6iqBvYNRqG5vH0VsOgeOjFC7j54lEEZR/iIck1IO3mOTRC2C9CN0zDwAKlRd0ok14UzbAN62zSO54Dk2ec74GQLDYckB4ISmsC0mmlnqxUMg7r9hxsWYkbBy9Tt0KaEPJlADcDGCGEzAD4QwA3E0KuhCn/nAbwfwEApfRFQsi9AF4CoAH4AKWUveveDzPzKQjgW9YfAPgcgHsIIcdhegx3bcYP1k1cSOXLNmfVMBryBACsT1ayjYP5oWR99kcifpxczHq6Avi5c0kspBXcfsAcXh8P+3HkQrrsOam8imlHM8L1wO5jVtHsmAyl5Zldimo4PAcvGQfLc3CczoOSr37MwQpID4UlnFrMln3N2dnWjcGgBIGY8yMayVYq8xyYrNTDrVx6gbrGgVL6Cy6XP1fj+XcDuNvl+kEAB1yuFwC8o946eplcUS+LA6zHcxiL+SGLQlk2SDVsWcn6v1jrg2HrFKjqFHKNLKlOwmScA1ZL6OGIjJVsscygpZr0HACzGMyZYuksDiuouu05eElWYut1ns6Dcv1WKcxzGAzKyBZTMAxq18Rk6lQ+CwLBUEi2Yg61AtKWcRB5tlK3wXsreYB8US9r/WAWwTXmOfzctdN4za7hhoxDQLZSWa0NjjVNYxKBZhiQPVo0zzYS5lHFw7IdIA77RVBKm5OVrGB9xuE5AOWBWuf0Pe/LSvU78LJYxWDIvGd5VbeNZKaOrASY0/QarnNweA7sd8iNg7fx5k7QZ2QVDbmi7mjXQCFVabxXSUDyYc94tKHnVsYcmOfAjIMz791rsFMu22zYmlncIVfUoRm0ec+hqFV4DiXjkMha7an9IuaSBWgeqXWwZSVxfbKS7TlYxsFpCJ1tz6vBfgeNeA5Or4ZNiOOprN6GGwcPwE54zHvQajTea4bAGlnJ3ACGQpZx8HDGEjOc7L4wKYxlLLF716xxyCha2ablzP9P5s3/66LxCDSDYj5dnkrbKWzPweE9hhqQlViwnf3+kznVPjBkCuakQV+NQ8qwbRzqB6QrPVu/KPAKaY/DjUOHKWqlKly2wakGbVhWWg+ST4AoEFs2SeXNvjisotZrVb9O2NrYSXTI9hzMDZrdu2qprPVwBqSdm5azU2vSSjfeM2bOVJ5Z8UbcoRRzWG+2kvm+Ywb1A196Fj/3d08AAJYyCoYjctXXAqXfQe0KaTb9rfz97Jd8XFbyODzm0GGcpzvbOOi1i+CawZzpYH4o0wUNsaBoz47wcjprVc/BqpJONe05mJtYVtHKGtKVyUpWu46LLOPQyKS1duAmKwUkn52VVo2SrGTey2MLGYgCgW5QnF8tlHUAdoP9DmrVObi1z2Br5bKSt+GeQ4fJOdoqp/IqdIOCUtQsgmuGgCNQmSqoiAYk+wPsZc+haBkuZjSZ3s027GZlpYgtK+llm6oz/595DtviYQDAUrq8zqJTlALS5bJSo3UOg457phkUi2kFc6t5TAy6D/phxBvwHNxSWdl17jl4G+45dBhnquRqXrU/sLUa7zWDs3I2XdAQC4i2IfLynAdVN2s/WNpqxC9C9gmbHnPIKhqcMnu2TFYy/6+xmB+yT8BS1isxh7V1DqZxaCxbaTRqtsK4fGoAP5lZxUwih/lVBVsGahuH2/aNYyaRL+uAW4lbQJr9u1diDgVVh6IZG37veRXuOXSYSlmJNcCr1rK7WZxzpNOW58BqKjztOVT0myKEIB6WsZIpNw4bjTlI1ljRrKKVnWidGTxJ6/8IyT6MRGTveA4uMYegbGr6eo2GiuwwsHc8in94V2ko1KHZVRR1o66sNDUUwh+8ZV/NoLVczXOQekdW+vOHXsEv/uMTnV7GpsM9hw7jdP2TOdVugNdoEdx6CUq+sjqH6XjIzijxcmdWVTfWVIHHwzKOLWSwnDEH3RNSvVFcI0SsmQ4hWjrlMs/BLwq2AQpJIkaifixlvOI5mL/PQEW2EmCeaiv7I330qy/AR4g950IWBdy2b9zOVDp4OgEAmKjjOTSC36V9hvnv3pGVZhJ5z3Xp3Qy459BhchWeA0snbUW2EmBuIM4K6ViwmzyH8nty3c44nj+XxGv+30fx0OELiPpFu8J3I4StzqzOTYv9fqIBEazjV0AWMBLxknFwr3MA1nZm1Q2KBw9fwEtzKRQ1AwKBffKPBiTEAiIOnjH7Xm4d3FgrEif26FK5MubQO9lK2aJWN/jfjXDj0GEqjQPLGGq0CG69BOWSrJTKa4gGRHvT9bRxcPEc/uhn9+OhD70eV0wP4JX5NAZCzWm+sYCEVF4t66eUcekxFJJFDIdlDxoHZ/sMNiq03DgcuZBCRtGQVTQrK678nm4dDGI+Zf5c9WIOjXDF1AD+25suwQ27R8quy6LQM72V0gWtbgfcboQbhw7DNO2oXyw3Dq3yHERTViqoOoq6gVhAsrV8r6eyujUjvHhLFP/0y6/C1dsGsXMk0tT/MRCUkCpUxBzYXANHumZQ8mEk6sdypgjDA1KcouogBGUxGXtUqFqesfT0KdMryBY1V4M75ZCahsO16xwaQfQJeO/rd7umshZ7xXNQNGgG9fThaiPwmEOHYSe7icEAUmWyUis9B8Ouji7PVvLum9st5sCIBiTc974boDfZ6X0gKOHYQgbdFzhbAAAgAElEQVSjET/Csg/Zom5nk7E6CFkU4LOmymmG2c9paBM20WZg86OdHXWDsrus9PQZM56QVXQ7A8wJk5ImBgIt7dDbU7KSY0hUqw51naB3fpIuhX14JwaCSOaLpVTWVsYcVN1uIhcNSA5ZqfOn4Gq4xRycCAJp+p4NBCWs5lUUNN32FLJFDZKP2CdfdiIfibD2HZ2Xlpzzoxkh1kfLYRwopTh42uE5uNxTp3FoJb2UrZS2jUNvGDsGNw4dJlc0s2zGov4yWUlsVcxB8qFQ1EueQ1C05Qhvew60ZVXjDGYcFNWwC7tyinkarBzBOWrNo170QDqroulr2lO4eQ7nVvKYTymYjgdBqRnjqqynYcahXhprs/RKbyVKaZnn0Etw49BhckUdIcmHwZBUUQTXKs9BMD2HfMlzEO1UVu9+WN308c0mFpRQ1Ays5lXbOBStoC07mbNNd8QqHPNCUFpRjbICOMAZcyhtWC/MJAEAN+4xR+wmcuoaz2HSMg6bEYyuRa/ISgXVAAs79YonxODGocPkihqCsoiBoISCWhpg38oiOM2gdtsJM1uJeQ7dKyttBqzCdSGtlAWg3TyHkUjnjcM3npvFm/7qh8ir+hpZqZStVApIH51PwycQXDk1CMCs+K6MOWwfDkEUCHaPNhfcr4dfFFDUDU8E9JvB2ZiR9SzrFXhAusOYw2p8GLCan7HNppUBaQBYtNpNxwKSnefubVnJaGhOdjMw47CcVcpSV2UfsU/m7EQ+GDTvWyeNw8tzKbw0lwKwtutpqKI9OwAcuZDGzpGwHUBP5FRsiZV7CCMRPx7+8E0bHrfaKOx+FnUDAaH+oCqv4jQOBe45cDaTXFFHUPLZG9OS1Q6iVfo6C6zOp8yKzmige7qytstzoNTcvNipWhJLshK7f4Jgtu/oZAsNVul+bCFdPebgkJWOzqdx8XjUzrxK5oqu77OdI+GWFWEy2P3sdmnJ2XuLxxw4m0quqCHsF0unVuY5tFBWAkzpRCDmpC+pC7qy1kpl3SycjdMCks/+/5yyEvMcAHS8SpptRqpOXdtTEFLyHHJFDWdXcrh4S9T2iswgf2e2gNIc6e7eUMs8hx4IsDvhxqHD5Io6QrLPbpvM5J5WprICwELKlE4EgdjxDR5zKBkHvyhUGAcrIC05jYOMpWznPAfnZlQZkCaEIOQYFXpsPgNKzSZ7Icfoz1Yb3GrYxqHLN9RMwRFz4J4DZzPJKaZxYL3x523j0KqYg/krX0gX7KCraFdIe/eDWtRp2z0H9jtwxhyCjo11JOK3Pb1O4NyM3OIxQVm0n/PKhTQAlHkOQOsOIfVgPZe6XlYqclmJ0yJyqmb26rGKqhasWEArG+8BwKmlrJ2uyGIOqoczR4qa7to+YzOJ1fAcAi6yUsQv1p2Z0EoKZcZhbVA3JPuQs2SPV+bTCEgCtsVDdswBaN0hpB69KCv1Sq8oBjcOHSZf1BGUfQjJIgKSYAeKW1UENz0UguQjuPXScfzZ2y8HYEoQko94PObQ+iI4n0Dslt9+0WefqiWfUOouWtEW2xmQbDeFOp5DyGoBApiew56xKHwCQbhMVupMplDJOHj3PdcI2R6OOfBU1g6TVXSErdPocNiP2aQ5l7hVEsp0PISj//OONX1zREHwtKzUjoA0YHoPaUVDYE22EpOVnMZBhKIZ0HSj5dk9bhRUA4SUsqsqMT0bc/OaTxXs2gVBIPakuM55Dpas1OUbqjPmwGUlzqZhGBR5Vbd17LijgVurPAcArg3VTM/Bm7KSYVBoRnsya1jcwS/6bIMg+4hrQJrJM7kObQoFVceuEXOetaus5BeRsRoHZhUNEcesZzYAqNVSXTWYMet+WUlHxG+mg/OANGfTYG8m5jmUGYc2f2gln+ApWenYfNqe2Vy01tUOz4EZh4AklMtKLjGHUJWZCe0ir+q4ZEsMsk8oCzIzIv5SzCGjaGXPYY87n8rqnffcRsgqGsJ+HwKSr+dkJW4cOggLZoZsWalkHNrt7os+4pkiuKWMgp/9Xz/CH//HSwAcxqHNnkNZKqu0VlZinkOn4g4F1UAsKOHL73013n3DjjVfD8kisopmNoezKvEZ7HHnjENvZCtlFLNOKSAJPVchzWMOHYSdOJmsNFQmK/Wv5/DPPzqFvKrj2y9eQEHV7bnanfIcZNG9zqHaKM52oag6ApKAa7YPuX6dzcQuqAZ0g5bNkmZeT2VX1nZRqnPo7g2VeWRFzeAxB87mwXKk3WSldnsOkk9oeyqrphu48zM/wnePLNjX0gUVX3z8DKbjQWSLOr5/dNH2HNoScwi5ew67R8O4YnoQ+7bG7OeyzbZTnkNe1cuMVSUs6Ow26jTS4ZgD63rL2sV0K1nLOAQkX9cH1yvhxqGD5GzPoVxWEgXS0ilcbkg+0vZspZVcES+cS+L7Rxftaw+8cB7pgoa//PmrMBSS8J8/mYOqmUarrbKSVKpzkH0EwxE/7v/AazE1FLKfG6oyba0dqLoBzaBrxm86CfvFsg68TuMQ7nDMYTAkY89YBD8+sdSR/3+zcMpKPCDN2TRYmmGoIlupVR1ZayEK7ZeV2EyJk0tZ+xobbn/V9CBuPzCB77w8b0+ta9WMCyesEC4g+kqprFU2ULbBdsI4MAkj4JLCymDGgNXOhMs8h87GHADgpr2jePLkiv056EaYrBQQfVxW4mweC9ZGOGoNjmFV0q2a5VCLTqSyrubNTeHUUsa+lilods+na7YPIVfUMZPIATBP8K1m3PpdDASlsjoHN5jnkO3A5sYyY+rJSkDJ4JZ5Dizm0KE6BwB4/d5RFHUDT55c6dgamsUpK3HjwNk0ZhJmwRub1xsPmxtTO07IlUg+oe2T4JjnMJPI2/nuGUW1M2mYLr2SNZ/XjoD0rZeO4+u/cQO2DYfsYG210zXz+HIdiDmwjchfwzjU8hzsOocONd4DgOt2xhGQhDJZsdvIKrolK/FUVs4mMpvMYTTqt3XjuCPm0G5EH7G1/XaxahkHSoGzy6Z3kLWKigDYrSxWsq3tVOvEJxBctc3M/pF9Putv999HyXPonKxU03Ow7h/r1xVxpLJ2OiANmH2+rt85jB8c607joGg6irqBiN/Xk6ms3Dh0kNlk3p7ZCwAxa2RnJ3RgM1upvScfZhyAUtwhrWiIWN1iI5WeQ7sLA+t4Dn5RgE8gHdHM2Sm1VkCaGYOFNJOVSo0FOx2QZhyYjOHMcq4rx4VmrepzW1bqYBPGVsCNQweZTeQx6RjHSAjBUEjuSEBa8gltL4JzGodTlnHIFFTbY4hUeg5tlkD8dQLShJR6FLUbdkqtFZBmsldJVnIpguugrAQAoxE/dEdGVTfBUphLRXB9JisRQv6JELJACDnsuBYnhDxMCDlm/T3k+NrHCSHHCSGvEELe6Lh+DSHkkPW1TxMrV5MQ4ieE/Jt1/UlCyI7N/RG9iWFQnE8WMDVYPqs3HpY7IysJ7e/KmsqrCMk+jET8OLVoGQdHmwc2b2Il1xnPwa5zqLGBhmUROaX9xsEuoGwg5sA8B2c3Vva4HUH+WoxGzXjbYgfnYmyUZWvQ01BI7ttspc8DuL3i2scAPEIp3QPgEevfIITsA3AXgP3Wa/6GEMLevZ8F8F4Ae6w/7Hu+B0CCUnoRgL8A8ImN/jDdxFJGQVE3MFUxyH04IndOVmqzcVjNqxgIStg1EnZ4DqUGcaWAtLlxtDt4aldI19hAzbbYnQtI15KVWExkIaUgJPsgOA4dXpGVWKYem4DYTZy3OihPDAbsbKWXzqfw1YPnOryyzaHuO4NS+gMAlblmdwL4gvX4CwDe6rj+FUqpQik9BeA4gOsIIRMAYpTSxymlFMAXK17Dvtd9AG4l7a4A6wAz1htrssI4/PINO/Ge1+1s+3okH4HWZt2XGYedI+HymIM9U0GAKBCsWFW0HfMcavy/IX9nZKV8A8aBGYCibpRlKgHAvq0xvOHScVw2NdC6RTZALxiHrQNBBGUfDAp89vsn8PvfOAxzm+tuNtpbaZxSOgcAlNI5QsiYdX0SwBOO581Y11TrceV19ppz1vfSCCGrAIYBdHfpZB1YGuvkYKjs+m37xjuxHIg+we5h1C5W8ypiQQlTQ0EsZRQomo6sotkeAyEEkYBou+/t1selOjEHoNTcrt0odkC6+tpYwFw36JqurQNBCf/47mtbusZG6GbjMLdaQEASMBiS7F5Rr1xIQdEM5Ir6GoPcbWz2p83txE9rXK/1mrXfnJD3EkIOEkIOLi56L/3tvmdm8Ja//mFDp4bZhLvn0CkkH2l7byXmOcSt4r/ZRB4GXdsDiHXubHfBViOeQ7jjAenqngMhxO7b5dbS2wuEZR+Ckg9LHoo5LKQLSBfUus+bW81j60AQhBD793DSip2tZLsvwF7JRo3DvCUVwfqbdU6bATDteN4UgPPW9SmX62WvIYSIAAawVsYCAFBK/55Sei2l9NrR0dENLr11fP/oIg7PphrqsTKbzGEgKHnmQ9uJmEO6oCEWkOyeUmdWzFqHcIVxYPh97R1paQ/7qdG5NOSYttZOGglIA6V76cxU8hKEEIxG/Z7yHN71uafwp986Uvd555MFTAyaAXVmHJg028/G4QEA77YevxvA/Y7rd1kZSDthBp6fsiSoNCHk1VY84V0Vr2Hf6+0AHqVdKtgdm08DABK5+qeO2UR5jUOnMceEdsZzGAqZxoEVwkUdE8ucj9vdXrohWUnqkOfQQJ0DUDIOXjmEuDEa9XsqW+nsSs5O/63F3GoeEwPmZ7hS3lvpwtTcShpJZf0ygMcBXEwImSGEvAfAnwK4jRByDMBt1r9BKX0RwL0AXgLwIIAPUErZJ+f9AP4RZpD6BIBvWdc/B2CYEHIcwIdhZT51G5pu2C5looFTw6mlLLbFQ3Wf1y7M3krt8xw03UBG0TAQlOyeUmcs4+DcyFg6K9CBgLSdrVRDVvJ3JuaQV835z746ac9MVvKy/j0SkT3jOeSKGnJF3S5wq4aqG1hIK9hqtb6p9OBWurwVOdBAQJpS+gtVvnRrleffDeBul+sHARxwuV4A8I566/A6Z1Zy9tyBZB3PYSVbxOnlHO66bls7ltYQ7ZaVUtZg9oGgaPeUOruy1jiwx4Sg7ka42YzHAiAEGLGCpm6wIjhKaVvbrBdUva7XADhlJe8ah9GoH0+d8kbzvWVrU6+XnjyfKoBSYGKQeQ7lv4tuLOqrhFdIbxLH5kudReu9MZ49kwAAXL3NfYJXJxB9BAZF29oYsOrogZCEwaAEgQBnV0zPK+KQkthj2Se0fcbFZVMDePLjt2L3aKTqc9jMhMdPLOMffnCybWtTtPUZh6iXjUMkgERORdEDFcZM3srU8QbnVk3ZiTXNZLLSsFXEutzHMYe+4L/ffxh/9MCLDT33+ELafpysYhw+/6NT+O6RBTx7NgFRILi8wznmTpiu3q7+SrZxCEoQBLNtCPMcoo4eQGxT61SDuLFYoObXWaHZpx89hk8+/Eo7lgTADEjXC0YD3SErsXTW5WznpSXbc6hiHM6t5HDt//wOvvHcLABgq+U5sDGyO0bCGArLDUnLXse77xgP8NSplbKB8rU4Op/BWNSPhbTiGpBeSBXwJ//7JYxG/dg6GMT+rbGGTn7tgqWJqjpFO/YR1q47ZsUU4mHZPm2VeQ6skrfDPYCqwYzDs2eTKGoGiprRlkrugmrUrHFgdIusBABL6aId4O0Uy5bnUC3m8MNjS1jKKPjSk2cBOD0H832wfTiErKL1hOfg3XeMB1jOFjEMuf4TARxbyGD/1hiyp1bKZKUPfOlZvGrHEAqaAYOag1fmUwp++YYdLVr1xhCtAUPtGhXq9BwAYMgxP9uZdumUlbwIa27HJJF0QcVwpHqMYrMorFNWing0lRVwFMJlCjAz2TsHq7fIFjXXONJzZxP246hftBMm2CFyezyMuWSBew69jGFQrGSLtlteC92gOLGYwY17RnB0PmMHpAuqjm8ensNDL15APCzjVTuGoBkUz51N4urt3ok3AKWTebumwVUaB1brIIuC7aIDpWyldqexNkpl/UC6oLXFOOSLDRoHuXs8By9kLC1ZshKlcK1yfu5cErdcPIqFtALBYTjGon68+bIJ/PT+cRxdSOPluVRb190KvPuO6TCreRW6QRua7nR2JYeiZuCisQiGwpIdc5hJ5EEpoFGKhbSCj77xYkwNBfGxrx3Ca3YNt/pHWBeSwGSl1nsOC+mCfUJjM5vZoKPKwKkXhtLUIiSXrzfVQGXtZlDQDNuw1oIZLy/XOYxEZBACXFj1gnEorSFb1MqMw2pexfGFDN565Va88/rtZV1YJZ+Az/zi1QCAeEjuiSI4775jOgzTDBupdmbFb3vHoxgKyXbMgWXf/N9vvBhPnFzGmy+bQNgv4ge/c0uLVr1xRB+TlVrrOazmVLzuE99FUTPgFwX79Ms8h8qTGiuC63T30GqEK4xDurA5NQ/3PH4a51cL+N3bLym7fnwhg6PzaRSKuj3vuub6uqAIzi/6MB4N4Jw1K7yTLDvqE7KKDkRLX3vhXBIAcNW2Ifsw40Y8LGM1r0LTDftz1Y1078pbDAtMNWQcFsw01ovGIhgMybbnwCp+f/5V07jnPdd72rW3A9ItzlZayiooagaumB7EO68v1XmwD1vlJubs0OpFmNa8d9xMd03lN8dz+M7LC/jSE2fW9On63GOn8F+//ByWMkpDyRLMuxgM1fcyOsm2eMjOVuskSxnF9lIrM5aeO5sEIaibZRgPy6AUSG7Se6FTePMT5wGY51DUjLq5/8fm05gcDCLiFzEUkmzP4cxKDiHZZ5+KvYydytpiWSljnaw/eOtF+MOf2W9fj1s6vTNTyflvr3oObPO9cY/Z62uzZKW8qiNV0DCfKpda5lMF6AbFcraIgFjfONx66Rj+9peurlmr4QWm4yGc84BxWM4WMRU3M6Yqax0OnlnBnrFIWdW+G+yg0+1BaW9+4jyAMxWt3uDwo/MZXDRmfvgGQzJSBTNecXY5h23xUNuLtzYCmz7XalmJfeAqP2DDVWIOdp2DRz2H0agf//pr1+N9N+0GsHmyEmusd+RCeWDT2fOnEc/BL/pw+4EJz78Hp+NBXEgVoNT5rLUSTTeQyBXttjZOzyFVUPHEyWXctLd+w0/2Xu72dFZvfuI8wLIjMJWv0ViNZSrtsYzDUEgCpWbw6uxKzlP9k2rBspWKLfYc2OZZKR+x5nuVnoOdreRRzwEAbrhoBMNhM6i6WbISkzOPzqfLrjs9CX8DdQ7dwrZ4CJSWWtl3gpVcEZQCO4bDAMo9h0dfXoCqU9x+YKLu9xninkNv4wxM1Yo7nFvJQdEM7B03I1dM213JFnF2JYftw11iHIT2BKRZn/xK48Ca71VeD0jmwBovGwcAEASCiF+0e0Y1S8lzKBkHVTewnFXs91QjslK3wA5R5zpoHJbSxbK1OAvhvnV4DuMxP66aHqz7fbjn0OM4S/lrpbPawejxkqwEmCc+RTO6xnMQfUxWanHMwZaVGvMcCDE3Xa8GpJ3EAtKmxhyAcs9hMa2AUuAd10xBFoWaDQG7jWnrc9LJoDT7zO8YKZeVckUN3z+6iNv3bymbw12NobAMyUc8kX3VDN5Nn+kwTs+hUMNzOGb1VCrJSuYm98KMmfa2zXJRvQ47mbdaVmIB6crMLVkUcPfbDuD6nWvrP4Yj8hpj4kWiARGp/OZ6DsfmM9ANCp9A7HjDvq0xPPLhmzAW6x3jMBrxwy8KHQ1KsxoH23OwOrM+cyaBgmrg1ksbG+Er+QRcOhHDT86ttmahbcL7n7gOsZwtIuoXkVa0mrLSsfkMJgYCtjY+ZMlKz5w2y+y7xXOQfO0LSAckwVUm+sXrt7u+5m9/6RoMNlDw1WliQamh8ZL1MAyKvKpjcjCI2WQeZ5az2DUaseMNY9GAfdLuFQSBdDxjaSVr/u5GIwEEJZ/tObDK7fXc88unBvCN587DMGhD3oYX8b6v3iGWM4o937me58AylYCSrHTwTALT8SCmPDIjuh52b6UW1zmkFQ0R//o2+r3j0brdUb1ALLA5MQc2M/vKbaa+/fjJZQBmZTlgzpnoRaaHgh2VlVayCnwCQTQgIuwXkbFiDqzauVbhWyVXTA0io2g4uZSp/2SPwo2DC5puIJlXMTVknhSqZSsZBsXxhYwdjAbMDSIaEHHF1ADue98Nng+kMtic5GKrPYeC1hUS0UaIBTbHc2Azqa/dPoQrpwfxqW8fxWpOxXyqAJ9AuqJuZiO0oxDOMOiawkLGSlbFUEiykgtKnsNytgjJRxBbx/v2Citw/UIXS0vdsXO1mUROBaWwT/3VZKWZRB4F1bDjDYAZQH3kIzfhvvff0FUnvHZ1Zc0omqdbOTSDGXNo3jiw91vYL+Lutx1AIlfE//fQEcynFIxF/V0rU9RjOOJHuqC17D2o6gau+3++g/ufP+/69US2aMcMneNfVzLm9fXUiuwejSAk++zYYzfCjYMLLGth0hrkoVTJVrKD0Q7PATA14W7xGBiirz2N9zKF3jUOsaCEtKI1PU2PeapByYf9Wwfwzuu34d6D53DkQqor5LWNwmZj5BpoWbMRcoqOpUwRL19w75i6kivaNQqmrFTyHNYjKQHmSNvLJgfwwgz3HHoKlqk0WcdzODpf6qnU7QyH/YgGRNx7cAZ6C0eFphVtTbpqrxALmAWQ9eYP14O939hm+YvXb4eqUxyeTWFLD2UoVcIqvgs1ik6bgXU6cGYiOklki4gzz0H22b/Hlaxi1+Gsh8smB/Dy+VRVGcvrcOPgwgVrPiyrlKxmHI4tpDEe8zfUOtnrBGUf/sedB/DMmQT+9vsnWvb/ZBTV0/OMm4HFUpoNSuccngMAXDoRw/6tMQC9G4wGSj9vrlXGQS0PMFeSyBURjzhlpdLz4+H1G+XhiB9F3Wio7b8X4cbBhfNJs0qTFcNUC0gfmy8PRnc7d165FbdeMobPPXaqZf9HptDDnoN1SGg2KM0OI87eSe+4ZgpAbxsHW1ZqmXEwN2m3ymXDoEjkVNtziDhiDsvZ4oaSANgsjWY9yU7BjYML51cLGA7LCMlmZW5l4z1KKWYSORxfyPSEpMQghGDf1hiSueKmuMLJXPmHkFLa8wFpAE0XwtkxB4dxeOtVk9g7HsHV27w1QXAzCVqzMRppk78RFFtWWjtUKF3QoBu0LOaQVTQUNQPpgrbumANQGgSVqzKP2utw4+DC3GoeE4OlweGVGugnv30Ur/vEd5FXdRzY2tmZt5tNxC/CoM2f3k4sZnD1/3gYzzpm7iqaAVWnves5WIWQzWYsMeMQkkr3aTAk49u/fRNes9tbEwQ3EyYr1Wp02QzMc3CTlVZyrJbB/B2G/SKyRX1DNQ4MNre7svV3t8CNgwtzyQImBsxgdFDyrTnJHLmQwnQ8iK+9/wb8H1dPdmKJLYNVejfbevrsSg4GBV48X8oMsfsq9ajnYMtKSnPGgWXrBOT++niWZKXWbKYs5pAr6msMEDMCdo8va2Nn/ZE2IivZngOXlXqH88k8tg6YnkNQ9q0JKK1ki9geD+Oa7UOe75O/XtipPtPkBrdqDTxytkNgfZV61XPYLFmJeaqV86l7HSajtU5WKn2Ol7MKPvXwUTx+wqw+T1R4CKz3F5vmuBHPoRRz4LJST5AuqEgrGrZaNQ4BF88hmVM9P3Zxo2xWxs2qJa2wDxdQ8hzW2z6jW2D3rtmAdGW2Ur/Qelmp9H3PLufw6UeO4de/eBBHLqRsWWkoVN46/vSyOQd+I6mszMBUjhvtFrhxqGDOSmOdsI2DsKa3UiJXqqTsNZjkk2nSOCQtz8HZDqHaoJ9eQfYJEAXS9Ekxr+qQRXOORT/R+myl0vd96vQKAPNe/9oXDmLB6njLPASWhfjwS/PW9fWnsoZlbhx6CpbGastKkq/sTaUbFMm8amc19Bos5tBsEC2ZN09i51ZyduZTtVkOvQIhBGG/iFyT9y5f1PrOawA2R1Y6PLuKHx9fcv2aU1Z62jIOH75tL2YSeTz88gJkUbAN1CVbopgYCODIhTQEgg11BW61sWs13DhUcD5Z7jlUBqRTebPv0lCPykqRTZJGWMwhrWi2F8HiGL3qOQDmz5ZpMnUxr+r2xtJPyD4BAmlOVvrUw0fxe9847Po15yHvubNJiALBO6/bBlEgeOFc0hr1anprhBDccskYAFNq2kg/KyYr8WylHmFuNQ+BAOPWlK2A5Ct7s1Zqk71GSTffnJgDAJyxpKVeD0gD5mmxWRkhV9T70nMghCAki02dtJezRZxP5l3rdJjn4BMIckUd2+IhDIVlXL3drB2p/EzfahmHjQSjAcBvSYM8W6lHOJ8sYDwWgGg1zgtI5dlKrLCrV2UlppM2axySeRUjEdPAsrhDWuntmAPA8uObzFZSdQT60DgAprSUVzd+/xLZIhTNcK1lUFQdhABj1sFv16jZHuemvaMA1hqBG3aPwC8KGwpGA8zY+cpmUXcT3DhUcD6Zx8RAqUVBUC4PSCesaVG9Kiv5BIKw7Gs+5pAr4rJJsx/QOYfnIPlIV8yD3ihh/+Z4Dv0oKwGWjNuE58BSUpk87KSgGfCLgm0Edo+a3Q1u3DMCYO2BLyj78L6bduMtl2/d8HqcbTi6jd49wm2Qk0sZvGZXqQq1MubQ67ISYAalm4455FVsGQhiJOK301lZ64xeqw1xEpbFql0/GyWv6j3tXdUiJPs2LCsVNcP2Ts+v5hELilhMK7h2RxxAySMbjpR7Dge2DmBqKIidI2vnvf/2bXs3tBZGMz9Pp+nPd2AVFlIFzKcUXDY1aF9jdQ6UUhBCel5WAsyYQDOeA6UUq3mzFmRbPIgzK2au+HKm2BMdbGsR8Td37wAzIDsa6d3W3LUwZaWNbaYsQw4wFYCvPzuLZ84m8PTvvQGAOZfFLwp2tTPzHASB4KEPvb4lHm14E94PnaJ3/fsNcGjWHMxx2WSpX4St6dQAABncSURBVFJA8oFSoKizviwqJJ8pvfQq0YDYVMwhV9Sh6hSDQQl7xqI4ciENSikOn1/FJVtim7hS7xHyN39SzKt6WdO9fqIZWYlJvoBZr/Ti3CoW04ot6xQ003NgstKu0VLTzLBftOOMm0lYFnlAuhc4NLsKQmD3zgdKVZuFomkckrn1jwzsNiL+5oxD0spUGghKuHr7IJI5Fc+eTeLMcg6XT/dWo8JKNuOk2M8xh2ZkGGcQ+pULaZxbMWuWWEJEQdUREH148+UT+PUbd244C2k9mDGo7pSVmjIOhJDThJBDhJDnCSEHrWtxQsjDhJBj1t9Djud/nBBynBDyCiHkjY7r11jf5zgh5NOkQzvvoZlV7B6N2PnJAOysEebq9nJ1NCPWZMyBSW+DIcluMf2FH58GAFzhkOx6kbAsoqgZTY1bLRT7OVtJ3LCslMiV+iM9fnLZvs6Mg6IZ8EsCrt42hN97877mF9sAIbn57LVOsRmewy2U0isppdda//4YgEcopXsAPGL9G4SQfQDuArAfwO0A/oYQwj4BnwXwXgB7rD+3b8K61s2h2VVcPll+sg1anTFZxlIi27t9lRjN6uartucgY/doBLGAiG8emgMAHJjsfc8BaK6Hf78WwQFAUBI2LCsxz2H/1hiKjmrocxWeQztxTpTrNlohK90J4AvW4y8AeKvj+lcopQql9BSA4wCuI4RMAIhRSh+nZuXKFx2vaRvzqQIW0sqazSvo4jm0wx3tJM3GHFh19GBIgiAQXLVtCJpBsWsk3PMBaRaL2uhpsagZ0Azal0VwAKwiuI3dO+ax7rdmrAyFJMQCIs4sM+Ngeg7tJCz7+jbmQAF8mxDyDCHkvda1cUrpHABYf49Z1ycBnHO8dsa6Nmk9rrzeVl48bwWjp8qNg5usNNjjslIkYFap6sbGpsE5Yw4AbGnp8qne9hqA5jtxlkaE9mciYTPZSitZFRG/iO3D5njf/VsHsH04XC4rtdlzCPnNz5Kxwc9SJ2nWOLyWUno1gDsAfIAQ8voaz3WLI9Aa19d+A0LeSwg5SAg5uLi4uP7V1mAxbY4OnLR6KjGYcShY6azJnNqzBXAMu/neOryHTz18FPc8fhpASVZi8tvV2804w2U9Hm8AStXfG+3Mmu/Tdt2MoOSDqtMNxWwSuSKGwpLdbv/SiSi2xUMl46DqCLTZc2BDg3JNNBPsFE3dKUrpeevvBQBfB3AdgHlLKoL194L19BkA046XTwE4b12fcrnu9v/9PaX0WkrptaOjo80sfQ1sQ4tVyB5MQlpMK0grGjSD9r6sZG1w65lo9o3nZvHgixcAmO26ZZ9gb3DX7xzGb95yEe68cuOVpt0CixU06zn0a8wh1ERn1pVsEfGQjF0jYRACXLVtCNuGQ5hJ5KAbtCNtSUpzpLtPWtqwcSCEhAkhUfYYwE8DOAzgAQDvtp72bgD3W48fAHAXIcRPCNkJM/D8lCU9pQkhr7aylN7leE3bSOU1u3WEk23xEAQCnFjM2qX5vS4rbaT53kq2aHdfXc0XMRCS7HRfWRTw0TdebPda6mWalZWYPt2/2UobH/hjeg4ypuMhPPLhm3DHgS3YFg9B1SnmVvMoaEbbPYdwF8+RbkbYHAfwdWsDEAH8K6X0QULI0wDuJYS8B8BZAO8AAErpi4SQewG8BEAD8AFKKXsHvB/A5wEEAXzL+tNWVvMqYoG1rR0Ckg/T8RBOLGZwctGs9N0WD7V7eW2lNCq0sTd0QdWRcbTmTubUng88V8M2DhsMQmZ6fCBSPZqZBpfIFe2qZ1bgxj6rZ1dyUFS97TGHsD1HuvtkpQ2/AymlJwFc4XJ9GcCtVV5zN4C7Xa4fBHBgo2vZDFIFdY2kxNg1EsbJxawdtL50ItrOpbUdFnNotNaBpRAyaa6/jQM7KW5sM1iwYl9jsd73stxoZkBOIquuqUFixuHcSq5DnkP3znTgFdIWq/nqG9ru0QhOLmZwaHYV24dD9ubZq7BTa6OyEjMOGUWDqpvtkod7PC5TjYi/OY153hpXydpK9xssS2u9bbsVzfRe4+Hyz+aodR/PJwvQDdr2OoeSsePGoWtJ5VXEqmz6u8ciUDQDjx1bKmut0avE1hlzWHa0LUjlVSxnixvugd/tBCUfCNl4zGExrUAWhb71vEqyUuPZSi+cS+Jrz8wCWNsQMyD5EA2ImEmYrTTaXedgZ691YSFcfwqbLqzmVUwMBF2/tstq5Zst6tg30QfGwdqYEi4DU9xYzij240SuiESuiOENDGTvBQghCMvihlNZF9IKxqL+nu7dVYuNnLT/+/2H8cKMKfm6tbYZjfgxmzTTWduerdRkgkIn4cbBIlXQEAu6347dY6Xujaz6spcJSD5sHQjg5FK2oec7G56dWTbTBns93bcWzYwKXUgX+lZSAhzZSg2mslJKcXwhg+t2xDExGMD1O+NrnjMS8dueQ9vbZ9gV893nOXBZySKVrx6QHg7LttSyrw9kJcA0iCcWMwCAbx2aw0wiV/W5TlmJvaZfZSXAmv61zs3gzLJpiBdSCsaigTrP7l3Wm620kFaQLep4yxUT+Ku7rrIH+TgZicqYWzVjOe2WlfqyzqGXKKg6FM2oGnMghGD3WAQjEblvTnW7RyM4sZDBak7Fb/zrs/jEg69Ufe6KY/IZS/ftV1kJMGc6ZBUNf/IfL+FT334F55P5ms9/6tQKbvqz7+EnM0nMpwoY79NMJWD92UonFszDyG7HbIZKRiJ+uxVMu1NZZVGAXxSQanKyYifgshJg/+JqBQF//cZdWMkW+0YL3j0aRrao48EX50Ap8PBLF+wxn5UsZ4uYGAhgbrVQMg597DmEZRGHZ1fx6BGzOcDnHjuFZ/7gtqp69ysXUgCAJ04uI1XQMBbrY89hnbLSCUv6ZCM/3XAWX7Y7lRUwlYflBuN3XoJ7DjAlJWBt6wwnb7psAr/06u3tWlLHYSex+54xeyIWVAMPHb7g+tzlrIIdw2bLgpNLXFaK+EW7XuHXXrcT2aJu14C4wXr/fP+o2S9stE+8UzdknwDZJ2Butba3xTixkEFI9mFLDYNabhzaX3k+HPGXxeW6BW4cAKzmTT2wX9MH3WBB+KdPJ3DJliimhoL4xvOzrs9dyRYxGvUj6hexZElMvT4QqRYsQ2XPWMTu8lsrLZhNLHv6VAJA/9Y4AKaEe8dlW/Dvz87aLbhrcWIxg92jkZoe/YjjoNKKOdH1GI7IWM5w49CV2J5DgKtsjLGo35aQrt4+hJ+5Yit+dHzJNcVwJWPOuGA9pwZDEqQWzOPtFlgnzpsvHrXjWLWqzc9ZwX42p3y8j2UlAHj/zbuRK+r4vDU9sBYnF7M1JSUAGIl21nOIh+WydO9uoX8/wQ5YzKGWrNRvEEKw2/rQXTU9iIvHozCoWWnqRNF0pBUNIxHZbtHdz2msQClD5ZaLxxpqYnh2JVfmtfaz5wAAl2yJ4Q2XjuPzPz5dNtGtknxRx2wyXzMYDZh1DoxOGIeRiB/L2SLMWWbdAzcOcI615MbBCZOWrt4+hC0D5mn2wmq5cWBaajzst+/fSB9nKgHARWMRTA4Gce2OuKNPlbtxWM2pSBc03HqJORNLFEhfS3KM2w9sQTKnYrZKppei6bbMWc9zGO60rBSWoWhG19U69K1x+JcnzuC5s6bGW5KVuHFwctul47hxzwh2DocxYRmHykAh01LjYdk2Dv3uOfzCddvww9+5BbIoODwHd1mJSUo3XzIGUSAYjfohCP2REVeL6SGzWwGb/1zJ++55Bh//90PYOhDA9TuHa36vkCzaKbKdCkgD5Snf3UBfGgfDoPiT/3gJn3jwCACzOjoo+SB34FThZe64bAL3vOd6CAKxdfBqnoNTVurnTCUG2+AjdWQllqm0ezSMi8YifZ3G6mTbcKnVthvHFjJ4w6Xj+MHv3NJQdhfLWOpUKisALGW7K+7QlxHYpYyCom7gyVMruLBawGpOrdo6g2MSkHyIh2XMpcqNA2tLMB4LYDBofgjcqlT7lYgsghAgXaVClp2Mp+Mh/PHP7m/n0jzNeDQA2SfYnlUliWwR24dDEBtMfBiJyDi7kmt7ERxQOix1W8ZSX+6ITMekFPjPQ3NIFfp3/sB62BILrPEcnj+XwFBIwtRQsOQ59Lms5EQQCCKyWFNWGghKiAUkXL+rtjzSTwgCweRQEDMra2MOBVVHtqivS74cifgh+Qh8HZDsbFmJew7eh2XcxAIiHnjhPMKyj8cbGmBiIIDzFcbhubNJXLVtCIQQO9uLy0rlRANiVVnpzHKu5ycLbpSpoaCr55DIrb+WZjwWsAfvtBtbVuoyz6EvRXbWvveXb9iBF84lcfBMgnsODbBlIIALjoD0al7FsYUMrpoeBFD6sPZ7QLqSaEBy9Ry+eWgOjx1fwlXbBjuwKu8zHQ+5BqRLGXKNf2bfd/NufOadV2/a2tZDQPIhLPu4rNQNnE8WEPWL+M2f2oNcUcfnfnSKBwIbYGIggERORSJbxNOnV+zMjyutze11F43gI7ftxbXb17ZN7mfcPIeXzqfwoa88j2u2DeHjd1zaoZV5m+mhEBI5FemCWjZ9MZE1DW18HSnTk4NBTA66z2tpB2YLDS4reZ7ZZB5bB4OQRQG//5Z9+IXrtyHOc8vrssUahvT79x/Gf/5kDrtGzH5KV1ieQ1D24b/euqeTS/QkkYC45tR478FzIAT4h3ddazeb45RTmv+cx76tJeOwklu/59BphiPd13yvL2Wl88k8tg6WPIXdo5E14wU5a2G1Dt88NAeBACeXsrhoNMLjNXWolJUMg+KhFy/g9XtH+fuuBtNxq9ahIu7AJhR2U7HgcFjmMYdu4Hwyj8mhzrmY3QqrkqYU+OOf3Y9dI2G8fu9oh1flfaIBERlHKuvzM0nMrRbwpsu2dHBV3md6iHkO5cbBbJ3fXR0NhsNcVvI8uaKGRE7F1g7qj90Ka4scln14+zXTuOu6bRB5NW9dogERKUfM4cHDFyD5CH7qkvEOrsr7DIYkRP2iq3EYCEoN1zh4AdaZlVLaNTNhuufubhJsKlcng1PdStgvYmIggJ+5YiuCsg+ST+iaN3oniQUkFDUDimb21nn0yAJu2D3SVSffTkAIwY6R8JpZ5iu5YtfFCEejfmgG7aq5Dn3nOcxaNQ7cc9gY3/jAa3mMYZ04O7NKIQFnlrO4bR/3Ghph92gYT59OlF1LZItdF6vZbrUDOb2c65oOAn3rOXDjsDHGYwGeXbNO2FyMdEHDQlqBqlNM8ZhXQ+wajWA2mUfe0dF0JVvsulqa7cNm59jTFV6Ql+k740BgpsiN93nPfE77iDoG/sxYmTdc1mwMNquBjZ8FzArpbpOVpodCEAhwZrl7jEPfyUp3XbcNd123rdPL4PQRTllp0ZotPTXEW2Y0ApvVcGIxi/1bB0ApRSKrdp2sJIsCpoZCOLXs3kjQi/SdceBw2o3TODDPgctKjbHTKrQ8uZjBD44uIiT7UNSNriqAY2wfDnWVrMSNA4fTYmJlslIeIxF/R4bOdCMByYfJwSCeOrWCz37vhB3v6qYCOMbOkTC+/uxs16Sz9l3MgcNpN+WeQ557Detk92gEPz6xDEUzkMyxvkrdZxx2DIeRVrSm01kzVWaDbDbcOHA4LSbsL5eVuHFYHyzucMeBLbhup9nUsdtiDgCwY4Sls25cWlrOKHjdJx7Fvz19drOWVRVuHDicFiP5BAQlHxK5ImaTeR6MXif7JmIgBHj/zbvxRz+zH6/fO4q949FOL2vd7LDSWU8tmXGnh1+ax6GZVQBmi5DKQVpu/PWjx5EuaLimDZ2PecyBw2kDV20bxH3PzPAahw3wtqsmcdW2IVw0Zqa1fvFXr+vwijbG1FAIPoHg9FIWiqbjg195DpdOxHDf+16Dd/3TUyhqBr75WzdiIOQebD+9lMW/PHEGP/+qaftetBLuOXA4beAjP73X1oq5cVgfok9oy2bYamRRwKUTUTx2fAlPn0ogV9Tx7NkEfnhsCaeWsphN5vHR+14ApdT19Z/57nFIPgEfalNbfG4cOJw2cM32ON5wqdkygxuH/uXNl23F8+eSuOeJ0yDE7HD8B/cfhkCA37h5Nx5+aR7/eWgOZ5dz+Pm/exw/Or4EAMgXdXzz0Bx+9oqtbRtMxo0Dh9Mm/vjO/fjtN+zFrpHuPwVzNsZbLp8AADz04jxed9EIJgeDOLOcw3U74/jIT1+MPWMR/MXDR/GHDxzGk6dW8KuffxqPHVvCd16eR7ao486rtrZtrZ4xDoSQ2wkhrxBCjhNCPtbp9XA4m83kYBAffMMeCLzNed8yHQ/hSmty4i0Xj9kNGO84MAGfQPChN+zFicUsvvvKIn7j5t3YORLGe77wND79yDFsiQXw6p3DbVurJ4wDIcQH4DMA7gCwD8AvEEL2dXZVHA6Hs/m87apJCAT4qUvG8I5rp3DZ5ADebHkUdxzYgsv///buP0aOso7j+PsDRzX9QSntlVBbLU1AqERbuQSqVROVGPhDTTCxjbEVjYo/ovwnNSb6jzE0Sgj0j9pIDfiDVAPGVhGCRBvx9500lPMipaaRw8a2Wkp7VZHw9Y95Nmxubnu3uzM3s3ufVzK53Wdnn3yfb+b2O/Ps7MzKxVxxyUJuffcVfP/j17FmcCGHjp3hvetWzOqOhVp9+TGbJG0AvhIR70nPtwFExNdavWdoaCiGh4dnKUIzs2K8/HJw5J8TrBmcenrx7IvZiQvz52Unk56ceJGd+w/zsY2XFfJ9g6SRiBiabr26nMr6GuDZpufjwLUVxWJmVprzzlPLwgCvFIWGJQvmse3Gq8oOK6cW00pkV9KeLHdII+kTkoYlDR8/fnwWwjIzm5vqUhzGgVVNz1cCf5+8UkTsioihiBgaHPSN7c3MylKX4vBH4HJJl0maB2wC9lYck5nZnFWL7xwi4iVJnwUeAc4HdkfEaMVhmZnNWbUoDgAR8RDwUNVxmJlZfaaVzMysRlwczMwsx8XBzMxyavEL6U5I+jdQ5JfWi4FTBfa3DDhRYH9Fx1dkf0XH1lBUDuucu7L6nEvbXxn99WP+GmN6XURM/1uAiOjJBThecH+7Cu5vuObxFdZf0bEVncM6567EGOfM9uf8lTOmXp5Wer7g/vYV3F/Rio6vyP6cu3r2WaS659D5K1gvTysNxwwuHlWVusfXC5zDzjl33enH/LU7pl4+cthVdQDTqHt8vcA57Jxz151+zF9bY+rZIwczMytPLx85mJlZSVwcZkjSKkm/kDQmaVTS51P7xZIelXQo/V2S2pem9c9I2tHUzyJJB5qWE5LurGpcs6moHKbXNks6KOlJSQ9LWlbFmGZLwbn7YMrbqKTtVYxntnWQv+sljaRtbETSO5v6uia1PyPpLkn9ed/XIk+v6ucFuBR4c3q8CHia7Jam24HbUvttwO3p8QJgI3ALsOMc/Y4Ab696fL2UQ7Jrgh0DlqXn28nuJFj5GHsgd0uBvwGD6fm9wLuqHl8N87ceWJEeXw0819TXH4ANZPeh+RlwQ9XjK2PxkcMMRcTRiPhTenwaGCO7g937yP7BSH/fn9aZiIjHgf+06lPS5cBy4Fclhl4bBeZQaVmQ9touZIr7f/STAnO3Bng6Ihp3y/o5cFPJ4Veug/w9ERGNbWoUeLWkV0m6FLgwIn4bWaW4r/GefuPi0AFJq8n2LH4PXBIRRyHbAMk+7GdqM7AnbWRzSjc5jIj/AZ8CDpIVhbXAPSWGWytdbn/PAFdKWi1pgOyDbdU07+krHeTvJuCJiPgvWUEZb3ptPLX1HReHNklaCDwA3BoRL3TZ3Sbg/u6j6i3d5lDSBWTFYT2wAngS2FZokDXVbe4i4iRZ7vaQHbEeAV4qMsY6azd/kt4A3A58stE0xWp9uXPn4tCG9KH0APC9iHgwNf8jHWqS/h6bYV9vAgYiYqSUYGuqoByuA4iIw+mo6wfAW0oKuTaK2v4iYl9EXBsRG4C/AIfKirlO2s2fpJXAj4AtEXE4NY+T3ca4YcpbGvcDF4cZSnPb9wBjEXFH00t7ga3p8VbgxzPscjNz7KihwBw+B6yV1Lh42PVkc8h9q8jtT9Ly9HcJ8GngW8VGWz/t5k/SRcBPgW0R8evGymnq6bSk61KfW5j5/3xvqfob8V5ZyM78CLIpjANpuZHs7I/HyPa+HgMubnrPEeBfwBmyPY61Ta/9Fbiy6nH1ag7JzsIZS33tA5ZWPb4eyt39wJ/TsqnqsdUxf8CXgImmdQ8Ay9NrQ8BTwGFgB+nHxP22+BfSZmaW42klMzPLcXEwM7McFwczM8txcTAzsxwXBzMzy3FxMCuBpFskbWlj/dWSniozJrN2DFQdgFm/kTQQETurjsOsGy4OZlNIF2d7mOzibOvJLvG8BbgKuANYCJwAPhIRRyX9EvgN8FZgr6RFwJmI+LqkdcBOYD7ZD6c+GhEnJV0D7AbOAo/P3ujMpudpJbPWXg/siog3Ai8AnwHuBj4QEY0P9q82rX9RRLwjIr4xqZ/7gC+kfg4CX07t3wY+F9k1jsxqxUcOZq09G69cV+e7wBfJbvzyaLr51/nA0ab190zuQNJisqKxPzXdC/xwivbvADcUPwSzzrg4mLU2+doyp4HRc+zpT7TRt6bo36w2PK1k1tprJTUKwWbgd8Bgo03SBel6/y1FxCngpKS3paYPA/sj4nnglKSNqf1DxYdv1jkfOZi1NgZslfRNsqt23g08AtyVpoUGgDvJbiN5LluBnZLmk12N9+bUfjOwW9LZ1K9ZbfiqrGZTSGcr/SQirq44FLNKeFrJzMxyfORgZmY5PnIwM7McFwczM8txcTAzsxwXBzMzy3FxMDOzHBcHMzPL+T8zQ21SvcdffgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie couvre la majorité de l'année, à cheval entre deux années civiles, nous définissons la période de référence entre deux minima de l'incidence, du 1er septembre de l'année 𝑁 au 1er septembre de l'année 𝑁+1\n",
+ "\n",
+ ".\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte pas un nombre entier de semaines. Nous modifions donc un peu nos périodes de référence: à la place du 1er septembre de chaque année, nous utilisons le premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de la varicelle est très faible en septembre, cette modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an novembre 1990, ce qui rend la première année incomplète et se termine début juillet 2020 ce qui rend aussi la dernière année incomplète. Nous commençons donc l'analyse en 1991 et la terminons en 2019."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_sept_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1991, 2019)]\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_sept_week[:-1],\n",
+ " first_sept_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHdNJREFUeJzt3X+QVeWd5/H3B5uAOmDAgBEQYSLjBsxOG6jGGXezsZgAJluCtSbTo6NUhioyBjNJaqsSLd3CUv4Yp5J1Q1m6kpiIGlGWDSW7I9EWNzVuLcMPo4kgYeiMBBG0O9VEYLbo2PDdP+7Tcrq36T63uX1/fl5Vp+6533ue0+fhan/7+XGeo4jAzMwsj1GVvgAzM6sdThpmZpabk4aZmeXmpGFmZrk5aZiZWW5OGmZmlpuThpmZ5eakYWZmuTlpmJlZbk2VvoBS+9jHPhYzZsyo9GWYmdWUV1999bcRMWmo4+ouacyYMYNdu3ZV+jLMzGqKpN/kOS5X95Skb0raI2m3pPWSxkq6V9I7kl5P2+czx98lqV3SPkmLMvG5kt5In62RpBQfI+nZFN8uaUamzDJJ+9O2LO8/gJmZld6QSUPSVOBvgHkRcRVwHtCaPn4wIprT9nw6fnb6fA6wGHhY0nnp+EeAFcCstC1O8eXA0Yi4AngQeCCdayKwCpgPtACrJE04tyqbmdlw5R0IbwLOl9QEXAAcHuTYJcAzEdEdEW8B7UCLpEuB8RGxLQpL6z4BLM2UWZf2NwILUitkEdAWEV0RcRRo40yiMTOzMhsyaUTEO8B3gIPAEeD9iHgxfXyHpF9K+mGmBTAVeDtzikMpNjXt94/3KRMRPcD7wMWDnMvMzCogT/fUBAotgZnAFOBCSX9JoavpE0AzhWTy3d4iA5wmBokPt0z2GldI2iVpV2dn5yC1MTOzc5Gne+rPgLciojMiPgB+AvxpRLwXEaci4jTwfQpjDlBoDVyWKT+NQnfWobTfP96nTOoCuwjoGuRcfUTE2oiYFxHzJk0acsaYmRWp49hJvvToNjqOn6z0pViF5UkaB4FrJF2QxhkWAHvTGEWvG4HdaX8z0JpmRM2kMOC9IyKOAMclXZPOcxvwXKZM78yom4CX07jHC8BCSRNSi2dhiplZGa3Zup+dB7pY89L+Sl+KVdiQ92lExHZJG4GfAz3Aa8Ba4AeSmil0Fx0AvpKO3yNpA/BmOn5lRJxKp7sdeBw4H9iSNoDHgCcltVNoYbSmc3VJuh/YmY67LyK6zqXCZpbflfdsobvn9Ifvn9p+kKe2H2RM0yj2rb6+gldmlaJ6e0b4vHnzwjf3mZVGx7GTrH5+Ly/ueZeTH5xm7OhRLJrzce7+wieZPG5spS/PSkjSqxExb6jjvPaUmZ3V5PFjGTemie6e04xpGkV3z2nGjWlywmhgdbeMiJmV1m9PdHPL/Mu5uWU6T+84SKcHwxuau6cyOo6d5I71r/HQzVf7LykzayjunhoGzxAxMxucu6fwDBGzUnKLvb65pQG88q3ruKF5CmNHF/45xo4exZLmKbzy7esqfGVmtcct9vrmlgaeIWJWCm6xNwa3NJLeGSKbvnott8y/nM4T3ZW+JLOa4hZ7Y3BLI3n01jOTBlYvvaqCV2JWm9xibwxOGmZWMr6no/75Pg0zM/N9GmZmVnpOGmZmlpuThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpZbrqQh6ZuS9kjaLWm9pLGSJkpqk7Q/vU7IHH+XpHZJ+yQtysTnSnojfbZGklJ8jKRnU3y7pBmZMsvSz9gvaVnpqm5mZsUaMmlImgr8DTAvIq4CzgNagTuBrRExC9ia3iNpdvp8DrAYeFjSeel0jwArgFlpW5ziy4GjEXEF8CDwQDrXRGAVMB9oAVZlk5OZmZVX3u6pJuB8SU3ABcBhYAmwLn2+Dlia9pcAz0REd0S8BbQDLZIuBcZHxLYorJL4RL8yvefaCCxIrZBFQFtEdEXEUaCNM4nGzMzKbMikERHvAN8BDgJHgPcj4kXgkog4ko45AkxORaYCb2dOcSjFpqb9/vE+ZSKiB3gfuHiQc5mZWQXk6Z6aQKElMBOYAlwo6S8HKzJALAaJD7dM9hpXSNolaVdnZ+cgl2ZmZuciT/fUnwFvRURnRHwA/AT4U+C91OVEeu1Ixx8CLsuUn0ahO+tQ2u8f71MmdYFdBHQNcq4+ImJtRMyLiHmTJk3KUSUzMxuOPEnjIHCNpAvSOMMCYC+wGeidzbQMeC7tbwZa04yomRQGvHekLqzjkq5J57mtX5nec90EvJzGPV4AFkqakFo8C1PMzMwqYMjHvUbEdkkbgZ8DPcBrwFrgD4ANkpZTSCxfTMfvkbQBeDMdvzIiTqXT3Q48DpwPbEkbwGPAk5LaKbQwWtO5uiTdD+xMx90XEV3nVGMzMxs2P+7VzMz8uFczMys9Jw0zM8vNScPMzHJz0jAzK5OOYyf50qPb6Dh+stKXMmxOGmZmZbJm6352HuhizUv7K30pwzbklFszMzs3V96zhe6e0x++f2r7QZ7afpAxTaPYt/r6Cl5Z8dzSMBumeuhqsPJ45VvXcUPzFMaOLvzKHTt6FEuap/DKt6+r8JUVz0nDbJjqoavBymPy+LGMG9NEd89pxjSNorvnNOPGNDF53NhKX1rR3D1lVqR66mqw8vntiW5umX85N7dM5+kdB+ms0Raq7wg3K1LHsZOsfn4vL+55l5MfnGbs6FEsmvNx7v7CJ2vyL0cz8B3hZiOmnroazIrl7imzYaiXrgazYrl7yszM3D1lZmal56RhZma5OWmYmVluThpmZpabk4ZZ4mVBzIbmpGElV6u/fL0siNnQfJ+GlVz2l+/qGz9V6csZkpcFMcvP92lYyfT/5dur2n/5elkQM9+nYRVQq8s/e1kQs/yGTBqSrpT0emY7Jukbku6V9E4m/vlMmbsktUvaJ2lRJj5X0hvpszWSlOJjJD2b4tslzciUWSZpf9qWlbb6Vkq1/Mu3d1mQTV+9llvmX07nie5KX5JZVRpyTCMi9gHNAJLOA94BNgFfBh6MiO9kj5c0G2gF5gBTgJck/VFEnAIeAVYA/wg8DywGtgDLgaMRcYWkVuAB4M8lTQRWAfOAAF6VtDkijp5zzW1E1OqaTI/eeqZVvnrpVRW8kvLoOHaSO9a/xkM3X10TSd2qR7ED4QuAX0fEb1IjYSBLgGcioht4S1I70CLpADA+IrYBSHoCWEohaSwB7k3lNwIPpVbIIqAtIrpSmTYKiWZ9kddtZdJov3xrVa1NVrDqUWzSaKXvL+w7JN0G7AL+Y2oBTKXQkuh1KMU+SPv946TXtwEiokfS+8DF2fgAZT4kaQWFFgzTp08vskpmjcMzxexc5R4Il/QR4Abgv6XQI8AnKHRdHQG+23voAMVjkPhwy5wJRKyNiHkRMW/SpElnrYNZo6vVyQpWPYqZPXU98POIeA8gIt6LiFMRcRr4PtCSjjsEXJYpNw04nOLTBoj3KSOpCbgI6BrkXGY2DLU8WcGqQzFJ4y/IdE1JujTz2Y3A7rS/GWhNM6JmArOAHRFxBDgu6Zo0XnEb8FymTO/MqJuAl6NwA8kLwEJJEyRNABammJkNk2eK2bnINaYh6QLgc8BXMuG/k9RMobvoQO9nEbFH0gbgTaAHWJlmTgHcDjwOnE9hAHxLij8GPJkGzbsojJ0QEV2S7gd2puPu6x0UN7Ph8WQFOxe+I9zMzHxHuJmZlZ6ThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4aZmeXmpGFmZrk5aZjVgY5jJ/nSo9voqJHH61rtctIwqwPZx7eajaRiH/dqZlXEj2+1cnNLw6yG+fGtVm5OGmY1zI9vtXJz95RZjet9fOvNLdN5esdBOj0YbiPIT+4zMzM/uc/MzErPScPMzHJz0jAzs9yGTBqSrpT0emY7JukbkiZKapO0P71OyJS5S1K7pH2SFmXicyW9kT5bI0kpPkbSsym+XdKMTJll6Wfsl7SstNU3M7NiDJk0ImJfRDRHRDMwF/i/wCbgTmBrRMwCtqb3SJoNtAJzgMXAw5LOS6d7BFgBzErb4hRfDhyNiCuAB4EH0rkmAquA+UALsCqbnMzMrLyK7Z5aAPw6In4DLAHWpfg6YGnaXwI8ExHdEfEW0A60SLoUGB8R26IwZeuJfmV6z7URWJBaIYuAtojoioijQBtnEo2Z2ZC8LldpFZs0WoH1af+SiDgCkF4np/hU4O1MmUMpNjXt94/3KRMRPcD7wMWDnMvMLBevy1VauW/uk/QR4AbgrqEOHSAWg8SHWyZ7bSsodHsxffr0IS7PzBqB1+UaGcW0NK4Hfh4R76X376UuJ9JrR4ofAi7LlJsGHE7xaQPE+5SR1ARcBHQNcq4+ImJtRMyLiHmTJk0qokpmVq+8LtfIKCZp/AVnuqYANgO9s5mWAc9l4q1pRtRMCgPeO1IX1nFJ16Txitv6lek9103Ay2nc4wVgoaQJaQB8YYqZmQ3K63KNjFzdU5IuAD4HfCUT/ltgg6TlwEHgiwARsUfSBuBNoAdYGRGnUpnbgceB84EtaQN4DHhSUjuFFkZrOleXpPuBnem4+yKiaxj1NLMG5HW5Ss9rT5mZmdeeMjMrlqfnDs1Jw8ws8fTcofl5Gg2o49hJ7lj/Gg/dfLUHBc3w9NxiuKXRgPzXlFlfnp6bn1saDcR/TZkNzNNz83NLo4EM968pDw5aI+idnrvpq9dyy/zL6TzRXelLqkpuaTSQ4f41le3OWn3jp8p0tWbl9eitZ2abrl56VQWvpLo5aTSYYm52cneWmfXnm/vsrDqOnWT183t5cc+7nPzgNGNHj2LRnI9z9xc+6b5eszrjm/vsnHlw0Mz6c/eUDcpr95hZlrunzMzM3VNmZlZ6ThpmZpabk4aZmeXmpFEmvqvazOqBk0aZeJFAM6sHnnI7wnxXtZnVE7c0RpiXXDazeuKkMcJ8V7WZ1RMnjTIYzpLLHjg3s2qUK2lI+qikjZJ+JWmvpD+RdK+kdyS9nrbPZ46/S1K7pH2SFmXicyW9kT5bI0kpPkbSsym+XdKMTJllkvanbVnpql4+j946j9VLr2L2lPGsXnpVnyWYz8YD52ZWjXItIyJpHfBKRPxA0keAC4BvACci4jv9jp0NrAdagCnAS8AfRcQpSTuArwP/CDwPrImILZK+CvzriPhrSa3AjRHx55ImAruAeUAArwJzI+Lo2a611pcR6T9w3ssD52Y2kkq2jIik8cBngMcAIuL3EfG7QYosAZ6JiO6IeAtoB1okXQqMj4htUchUTwBLM2XWpf2NwILUClkEtEVEV0oUbcDioa65lnng3MyqWZ7uqT8EOoEfSXpN0g8kXZg+u0PSLyX9UNKEFJsKvJ0pfyjFpqb9/vE+ZSKiB3gfuHiQc9UtD5ybWTXLkzSagE8Dj0TE1cC/AHcCjwCfAJqBI8B30/Ea4BwxSHy4ZT4kaYWkXZJ2dXZ2DlKV2uBnFZtZtcpzc98h4FBEbE/vNwJ3RsR7vQdI+j7wPzPHX5YpPw04nOLTBohnyxyS1ARcBHSl+Gf7lflZ/wuMiLXAWiiMaeSo0znrOHaSO9a/xkM3X13yVoCfVWxm1WrIlkZEvAu8LenKFFoAvJnGKHrdCOxO+5uB1jQjaiYwC9gREUeA45KuSeMVtwHPZcr0zoy6CXg5jXu8ACyUNCF1fy1MsYrz7Caz0vD08tqSdxmRrwE/TjOn/hn4MrBGUjOF7qIDwFcAImKPpA3Am0APsDIiTqXz3A48DpwPbEkbFAbZn5TUTqGF0ZrO1SXpfmBnOu6+iOgaXlVLw8uCmJVW9g+w1Td+qtKXY0Pwk/uK1HHsJKuf38uLe97l5AenGTt6FIvmfJy7v/BJD1abFcHTy6uLn9w3Qjy7yaw0PL28NnmV22Hond10c8t0nt5xkE73xZoVzX+A1SYnjWHw7CYrh5GcoVct/AdY7fGYhlmVumfTG/x4x0FuaZnuAWIbcXnHNNzSMKsynqFn1cwD4WZlkvd+BA8QWzVz0jArk7w3hHqA2KqZu6fMRthwups8QHx2jTBBoJp5INxshPmG0NLyBIGR4YFwsyrh7qbS8ASB6uAxDbMy8HL3584TBKqDWxpWU2q1P9s3hJ47t9iqg1saVlHFLovtJekbm1tsleeBcKuovIOaXhHVbGTlHQh30rCKKDYJeAaS2cjy0uhW1Yod1HR/tll18EC4VcRwkoBveDOrPCcNq5hik4BnIJlVnsc0zMzMYxpmZlZ6ThpmZsNU7H1G9cBJw8xsmBrxZtNcSUPSRyVtlPQrSXsl/YmkiZLaJO1PrxMyx98lqV3SPkmLMvG5kt5In62RpBQfI+nZFN8uaUamzLL0M/ZLWla6qpuZDc+V92xhxp1/z1PbDxJRWDxxxp1/z5X3bKn0pY24vC2N7wE/jYh/BfwxsBe4E9gaEbOArek9kmYDrcAcYDHwsKTz0nkeAVYAs9K2OMWXA0cj4grgQeCBdK6JwCpgPtACrMomJzOzSmjkxROHTBqSxgOfAR4DiIjfR8TvgCXAunTYOmBp2l8CPBMR3RHxFtAOtEi6FBgfEduiMGXriX5les+1EViQWiGLgLaI6IqIo0AbZxKNmVlFNPLNpnlaGn8IdAI/kvSapB9IuhC4JCKOAKTXyen4qcDbmfKHUmxq2u8f71MmInqA94GLBzlXH5JWSNolaVdnZ2eOKpmZnZtGXTwxz819TcCnga9FxHZJ3yN1RZ2FBojFIPHhljkTiFgLrIXCfRqDXJuZWUk06s2meVoah4BDEbE9vd9IIYm8l7qcSK8dmeMvy5SfBhxO8WkDxPuUkdQEXAR0DXIuMzOrgCGTRkS8C7wt6coUWgC8CWwGemczLQOeS/ubgdY0I2omhQHvHakL67ika9J4xW39yvSe6ybg5TTu8QKwUNKENAC+MMXMzKwC8q499TXgx5I+Avwz8GUKCWeDpOXAQeCLABGxR9IGComlB1gZEafSeW4HHgfOB7akDQqD7E9KaqfQwmhN5+qSdD+wMx13X0R0DbOuZmZ2jrz2lJmZee0pMzMrPScNMzPLzUnDzMxyc9IwM7PcnDTMzCw3Jw0zM8vNScPMzHJz0jAzs9ycNMzMLDcnDTMzy81Jw8zMcnPSMDOz3Jw0zMwsNyeNOtBx7CRfenQbHcdPVvpSzKzOOWnUgTVb97PzQBdrXtpf6UsxszqX9yFMVoWuvGcL3T2nP3z/1PaDPLX9IGOaRrFv9fUVvDIzq1duadSwV751HTc0T2Hs6MLXOHb0KJY0T+GVb19X4Sszs3rlpFHDJo8fy7gxTXT3nGZM0yi6e04zbkwTk8eNrfSlmVmdcvdUjfvtiW5umX85N7dM5+kdB+n0YLiZjSA/I9zMzPyMcDMzK71cSUPSAUlvSHpd0q4Uu1fSOyn2uqTPZ46/S1K7pH2SFmXic9N52iWtkaQUHyPp2RTfLmlGpswySfvTtqxUFTczq2bVev9VMS2N6yKiuV/z5cEUa46I5wEkzQZagTnAYuBhSeel4x8BVgCz0rY4xZcDRyPiCuBB4IF0ronAKmA+0AKskjRhGPU0M6sp1Xr/1UgMhC8BnomIbuAtSe1Ai6QDwPiI2AYg6QlgKbAllbk3ld8IPJRaIYuAtojoSmXaKCSa9SNw3WZmFVft91/lbWkE8KKkVyWtyMTvkPRLST/MtACmAm9njjmUYlPTfv94nzIR0QO8D1w8yLnMzOpStd9/lTdpXBsRnwauB1ZK+gyFrqZPAM3AEeC76VgNUD4GiQ+3zIckrZC0S9Kuzs7OQStiZlbNqv3+q1xJIyIOp9cOYBPQEhHvRcSpiDgNfJ/CmAMUWgOXZYpPAw6n+LQB4n3KSGoCLgK6BjlX/+tbGxHzImLepEmT8lTJzKxq9d5/temr13LL/MvpPNE9ZJlyDZwPmTQkXShpXO8+sBDYLenSzGE3ArvT/magNc2ImklhwHtHRBwBjku6Jo1X3AY8lynTOzPqJuDlKNxA8gKwUNKE1P21MMXMzOrWo7fOY/XSq5g9ZTyrl17Fo7cOeftE2QbO8wyEXwJsSrNjm4CnI+Knkp6U1Eyhu+gA8BWAiNgjaQPwJtADrIyIU+lctwOPA+dTGADfkuKPAU+mQfMuCrOviIguSfcDO9Nx9/UOipuZWfkHzn1HuJlZDes4dpLVz+/lxT3vcvKD04wdPYpFcz7O3V/4ZFHjIL4j3MysAZR74NwLFpqZ1bhyLlzq7ikzM3P3lJmZlZ6ThpmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpabk4bVtXI9Y8CsUThpWF0r1zMGzBqFFyy0ulTuZwyYNQq3NKwuvfKt67iheQpjRxf+Ex87ehRLmqfwyrevq/CVmdU2Jw2rS+V+xoBZo3D3lNWtcj5jwKxR+HkaZmbm52mYmVnpOWmYmVluuZKGpAOS3pD0uqRdKTZRUpuk/el1Qub4uyS1S9onaVEmPjedp13SGklK8TGSnk3x7ZJmZMosSz9jv6Rlpaq4mZkVr5iWxnUR0Zzp87oT2BoRs4Ct6T2SZgOtwBxgMfCwpPNSmUeAFcCstC1O8eXA0Yi4AngQeCCdayKwCpgPtACrssnJzMzK61y6p5YA69L+OmBpJv5MRHRHxFtAO9Ai6VJgfERsi8Lo+xP9yvSeayOwILVCFgFtEdEVEUeBNs4kGjMzK7O8SSOAFyW9KmlFil0SEUcA0uvkFJ8KvJ0peyjFpqb9/vE+ZSKiB3gfuHiQc5mZWQXkvU/j2og4LGky0CbpV4McqwFiMUh8uGXO/MBCIutNZick7Rvk+mrJx4DfVvoiyqBR6gmNU9dGqSfUT10vz3NQrqQREYfTa4ekTRTGF96TdGlEHEldTx3p8EPAZZni04DDKT5tgHi2zCFJTcBFQFeKf7ZfmZ8NcH1rgbV56lJLJO3KM2+61jVKPaFx6too9YTGqivk6J6SdKGkcb37wEJgN7AZ6J3NtAx4Lu1vBlrTjKiZFAa8d6QurOOSrknjFbf1K9N7rpuAl9O4xwvAQkkT0gD4whQzM7MKyNPSuATYlGbHNgFPR8RPJe0ENkhaDhwEvggQEXskbQDeBHqAlRFxKp3rduBx4HxgS9oAHgOelNROoYXRms7VJel+YGc67r6I6DqH+pqZ2Tmou2VE6omkFanrra41Sj2hceraKPWExqorOGmYmVkRvIyImZnl5qRRRpJ+KKlD0u5M7I8lbUvLq/wPSeNT/COSfpTiv5D02UyZn6UlWl5P2+QBflzFSLpM0v+StFfSHklfT/GSLT1TLUpc16r9Xoutp6SL0/EnJD3U71x19Z0OUdeq/U6HLSK8lWkDPgN8Gtidie0E/l3a/yvg/rS/EvhR2p8MvAqMSu9/BsyrdH0GqeelwKfT/jjgn4DZwN8Bd6b4ncADaX828AtgDDAT+DVwXvpsB/AnFO7Z2QJcX+n6jWBdq/Z7HUY9LwT+DfDXwEP9zlVv3+lgda3a73S4m1saZRQR/0BhdljWlcA/pP024D+k/dkU1vQiIjqA3wE1MRc8Io5ExM/T/nFgL4U7+Uu59ExVKFVdy3vVxSu2nhHxLxHxv4E+T76qx+/0bHWtV04albcbuCHtf5EzN0b+AlgiqSnd7zKXvjdN/ig1d/9TtTXvs1RYsfhqYDulXXqm6pxjXXtV/feas55nU4/f6VCq/jsthpNG5f0VsFLSqxSawr9P8R9S+B9qF/BfgP9D4b4XgFsi4lPAv03brWW94pwk/QHw34FvRMSxwQ4dIJZ7GZlqUIK6Qg18r0XU86ynGCBW69/pYKr+Oy2Wk0aFRcSvImJhRMwF1lPo4yYieiLim1FYjn4J8FFgf/rsnfR6HHiaKuzekDSawv9wP46In6Twe6l7oreb4lyWnqkaJapr1X+vRdbzbOrxOz2rav9Oh8NJo8J6Z1NIGgXcA/zX9P4CFZZtQdLngJ6IeDN1V30sxUcD/55CF1fVSE3wx4C9EfGfMx+VcumZqlCqulb79zqMeg6oTr/Ts52nqr/TYav0SHwjbRRaEkeADyj8xbUc+DqF2Rn/BPwtZ264nAHsozAI9xJweYpfSGEm1S+BPcD3SLNvqmWjMJMk0jW+nrbPU1jufiuFFtNWYGKmzN0UWln7yMymoTD4vzt99lDvv0+1bKWqa7V/r8Os5wEKEz9OpP/eZ9fxd/r/1bXav9Phbr4j3MzMcnP3lJmZ5eakYWZmuTlpmJlZbk4aZmaWm5OGmZnl5qRhZma5OWmYmVluThpmZpbb/wMivm6jAWtaTwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1996 564901\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies sont assez similaires, elles touchent entre 0,8 et 1,3% de la population française, et se répartissent plutôt de manière homogènes au cours des 30 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFH5JREFUeJzt3X2QJHV9x/H3lztQYPFAWVDPhzNCNqKnIudzle6iscQjWhqfEE00WmeVipgyZfARjU/ns8aHVC5KIPGJDUJFOYPB6PoURTk1HoirBk7liBKioosonn7zR/eRdWvvdne6Z3s6v/er6up6nro/85vZz/T0dM9EZiJJ+v/vgK4DSJJWh4UvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKsTa1VzY4Ycfnsccc8xqLrI1N9xwA4ceemjXMVasr7nB7F3pa/a+5oals+/YseO6zBxvupxVLfyjjz6aSy+9dDUX2ZqZmRkmJye7jrFifc0NZu9KX7P3NTcsnT0ivtfGctykI0mFsPAlqRAWviQVwsKXpEJY+JJUiEaFHxETEfH1ef9+FhEvaCucJKk9jXbLzMxZ4N4AEbEG2A1c0EIuSVLL2tyk8zDgPzOzlf1FJUntirZ+0zYizgK+mpnvWnD+FmALwPj4+AnT09OtLG+1zc3NMTY21nWMFRs0987d1w8hzdI2rl9383RfxxzM3oW+5oals09NTe3IzE1Nl9NK4UfEQcA1wN0z80f7ut7ExETOzs42Xl4X+noU36C5N5yxvf0wy7Br6+abp/s65mD2LvQ1NyzrSNtWCr+tTTonUa3d77PsJUndaqvwTwE+1NK8JElD0LjwI+IQ4A+B85vHkSQNS+Nvy8zMXwC3aSGLJGmIPNJWkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRCNCz8iDo+I8yLiWxFxRUQ8sI1gkqR2rW1hHu8ALsrMx0fEQcAhLcxTktSyRoUfEbcCHgI8HSAzbwJuah5LktS2yMzBbxxxb2Ab8E3gXsAO4PTMvGHedbYAWwDGx8dPmJ6ebhS4K3Nzc4yNjXUdY8UGzb1z9/VDSLO0jevX3Tzd1zEHs3ehr7lh6exTU1M7MnNT0+U0LfxNwJeAB2fmJRHxDuBnmfnyxa4/MTGRs7OzAy+vSzMzM0xOTnYdY8UGzb3hjO3th1mGXVs33zzd1zEHs3ehr7lh6ewR0UrhN/3Q9mrg6sy8pD59HnCfhvOUJA1Bo8LPzB8CP4iIifqsh1Ft3pEkjZg29tI5DfhAvYfOlcAzWpinJKlljQs/M78ONN62JEkaLo+0laRCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSIRr/iHlE7AJ+DvwG2JOZ/qC5JI2gxoVfm8rM61qalyRpCNykI0mFiMxsNoOIq4CfAAn8bWZuW3D5FmALwPj4+AnT09ONlteVubk5xsbGuo6xYoPm3rn7+iGkWdrG9etunu7rmIPZu9DX3LB09qmpqR1tbC5vo/Bvn5nXRMRRwMXAaZn52cWuOzExkbOzs42W15WZmRkmJye7jrFig+becMb29sMsw66tm2+e7uuYg9m70NfcsHT2iGil8Btv0snMa+r/rwUuAO7XdJ6SpPY1KvyIODQiDts7DTwCuKyNYJKkdjXdS+do4IKI2DuvD2bmRY1TSZJa16jwM/NK4F4tZZEkDZG7ZUpSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVonHhR8SaiPhaRFzYRiBJ0nC0sYZ/OnBFC/ORJA1Ro8KPiDsAm4H3thNHkjQskZmD3zjiPOD1wGHAX2TmyYtcZwuwBWB8fPyE6enpgZfXpbm5OcbGxrqOsWKD5t65+/ohpFnaxvXrbp7u65iD2bvQ19ywdPapqakdmbmp6XLWDnrDiDgZuDYzd0TE5L6ul5nbgG0AExMTOTm5z6uOtJmZGfqYfdDcTz9je/thlmHXqZM3T/d1zMHsXehrbli97E026TwYeHRE7AI+DJwYEe9vJZUkqXUDF35mvjgz75CZG4AnA5/KzKe2lkyS1Cr3w5ekQgy8DX++zJwBZtqYlyRpOFzDl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSIRoVfkTcMiK+HBH/ERGXR8Sr2gomSWrX2oa3/xVwYmbORcSBwOcj4l8y80stZJMktahR4WdmAnP1yQPrf9k0lCSpfY234UfEmoj4OnAtcHFmXtI8liSpbVGtpLcwo4jDgQuA0zLzsnnnbwG2AIyPj58wPT3dyvJW29zcHGNjY13HWLFBc+/cff0Q0qzM0QfDj27sOsVgVpJ94/p1ww2zH4s9zqsx7sO4z8t5rnf5vN7ffV4q+9TU1I7M3NQ0Q2uFDxARZwI3ZOabF7t8YmIiZ2dnW1veapqZmWFycrLrGCs2aO4NZ2xvP8wKvXDjHt6ys+nHTN1YSfZdWzcPOc2+LfY4r8a4D+M+L+e53uXzen/3eansEdFK4TfdS2e8XrMnIg4GHg58q2koSVL7mr6M3w44JyLWUL14TGfmhc1jSZLa1nQvnW8Ax7eURZI0RB5pK0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klSIRoUfEXeMiE9HxBURcXlEnN5WMElSu9Y2vP0e4IWZ+dWIOAzYEREXZ+Y3W8gmSWpRozX8zPyvzPxqPf1z4ApgfRvBJEntisxsZ0YRG4DPAvfIzJ/NO38LsAVgfHz8hOnp6YHmv3P39c1DNnD0wfCjG1d3mRvXr2s8j7m5OcbGxlZ8u67HG7oZ87asJHsbj/OgFnuc+zruo557f4/zUn+nU1NTOzJzU9MMrRR+RIwBnwFem5nn7+t6ExMTOTs7O9AyNpyxfcB07Xjhxj28ZWfTLWArs2vr5sbzmJmZYXJycsW363q8oZsxb8tKsrfxOA9qsce5r+M+6rn39zgv9XcaEa0UfuO9dCLiQOAjwAf2V/aSpG413UsngPcBV2TmW9uJJEkahqZr+A8GngacGBFfr/89qoVckqSWNdrglZmfB6KlLJKkIfJIW0kqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVwsKXpEJY+JJUCAtfkgph4UtSISx8SSqEhS9JhbDwJakQFr4kFcLCl6RCNCr8iDgrIq6NiMvaCiRJGo6ma/hnA49sIYckacgaFX5mfhb4cUtZJElDFJnZbAYRG4ALM/Me+7h8C7AFYHx8/ITp6emBlrNz9/UDJmzH0QfDj27sNMJA+pobzN6VvmYf9dwb16/b52Vzc3OMjY3t8/KpqakdmbmpaYahF/58ExMTOTs7O9ByNpyxfaDbteWFG/fwlp1rO80wiL7mBrN3pa/ZRz33rq2b93nZzMwMk5OT+7w8IlopfPfSkaRCWPiSVIimu2V+CPgiMBERV0fEM9uJJUlqW6MNXpl5SltBJEnD5SYdSSqEhS9JhbDwJakQFr4kFcLCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYWw8CWpEBa+JBXCwpekQlj4klQIC1+SCmHhS1IhLHxJKoSFL0mFsPAlqRAWviQVonHhR8QjI2I2Ir4bEWe0EUqS1L5GhR8Ra4B3AycBxwGnRMRxbQSTJLWr6Rr+/YDvZuaVmXkT8GHgMc1jSZLaFpk5+I0jHg88MjOfVZ9+GnD/zHzevOtsAbbUJ+8BXDZ43E4dCVzXdYgB9DU3mL0rfc3e19ywdPY7Z+Z404WsbXj7WOS833kFycxtwDaAiLg0Mzc1XGYn+pq9r7nB7F3pa/a+5obVy950k87VwB3nnb4DcE3DeUqShqBp4X8FODYi7hIRBwFPBj7aPJYkqW2NNulk5p6IeB7wCWANcFZmXr6fm2xrsryO9TV7X3OD2bvS1+x9zQ2rlL3Rh7aSpP7wSFtJKoSFL0mFsPAlqRAjX/gRcWJE3KXrHCvV19xg9q70NXtfc0N52Uf2Q9v6O3k+DPwU+C1wZmZ+pttUS+trbjB7V/qava+5odzsI7OGHxF3iIhbzTvrScBHMvMhVHfulIh4YDfp9q2vucHsXelr9r7mBrPv1XnhR8TdIuLjwOeBv4qIvV++9kvgkHp6mup7Jh4QEYt9ncOq62tuMHtX+pq9r7nB7At1UvgRcei8k/cGrs7MDcCngDfX5/8Y+FVEHJaZPwa+DRwNbFjFqL+jr7nB7F3pa/a+5gaz78+qFX5EHBERZ0fEV4CtETFevyLdE/hCRERmfhT4aURsproThwEb61l8h+ob5W5arcx9zm12s5eS2+zLz76aa/gPAfYAj6L6ls2XALeqM9w2/+/T43OApwBfBn5O9eMqZOYXgROBn61iZuhvbjC72Vemr7nB7MvLnpmt/qP6Tp1nA5+h+h78I+vzp4Hn19N3AbbWl9+XahvVmvqyMeC/6/msB64Angf8PfAe4JC2M/c5t9nNXkpuszfPPow1/JOBRwOvAh4IvLE+/2LgQfX0D4DPASdl5leoXtWmADJzDrgEuG9m7gaeRrV96ofAyzLzF22GnfdBxx/1KfcCvRpzcNy7yO6Y+1wf6Nsy621KGRH3pXqL8Tlge2b+Cvh94MrM/FREXAW8KSIeAewAHhsRR2bmdRHxHeCGiLgT8E7gqRFxFNV36v8P1dsWMvNS4NJBcu4n/ybgWVRvi94EXAv83qjnrrP3cszr7I67z/XlZO51v9T3YSTHfcVr+BFxq/rBmATOotpF6OHA6+ur/Bb4dkQcnJlXUb3tuGd9x6+h2ocU4DdUb00OAD5C9fWgpwInANsy87crzbZE7rGIuGVEnFMv7yrgHZl5bUQcQPVKOnK56+y3qf9/EHA2PRnzOvMRUe1HvA04n36N+1ERcZv6j/ccejLuEXFkRNwnIt4FXEC/xvygul8eSrWpohdjXmc/MCIOjoizGdWOWea2p0OAPwX+jWqHf4A/B55bTx8BfAM4vg69FdhQX3ZyHfjIenonsI7qQ4aPAwfNW84BTbaR7Sf3p4Bz6/PeADx73nXW1v8/D3jNiOTeewT0E6i24c0AE8ALejDm87N/Afgk1ZN65Me9nuehwNOp3mZfD2zuybjvzf1JqrXAx/VozA8EngN8DPgb4Bjg9FEf8wXZL6RaG797nW8kx33JNfyIOBC4HHg88KbM/OP6ouP3XiczfwL8M/B8qj+Uo4C71Rd/FngocFNmXgi8DzgPeDfVWtOv582ntVfdBbnfmJl7Xz13AsdFxOvrV+I/i4hbAxcBt+06dz2/jIh1wBOBt2fmZGbOUr3C773OyI35ItnflpkPz8xv0INxj4hjqDYfPAx4GbAb+D7VB2lr6mWO3LgvyP1Sqm2636vzbBzlMa89l6rk3k71m9iPq0//pl7myI35ItnfRvUceSzVc2YiIraO3Lgv81XsfODUBec9Cbhk3unbA9fU08+lOuT3COBgqlfuO8277pFtv9KuIPed6mznAqdQPckuGqXc9bKeA7y6nt671vy4UR/zhdnr0wcDt6vzTY/quFP9wd5i3umzqFYYHjPK475I7vdSre0f1ZPn+seAP6mnnwmcVvfLl0d1zPeR/RnAi+uOOXcUx325d+pkqp3930K1eeEVwJ2pjvg6at71LgbuX0+/BvhXqreXf7laD8B+cn8aeCXVBx/r513nwPo+nViffm3XuescT6xznQp8leoV/zFUmxmOnHe9kRrzRbLvAN5PtYfC/Cf2SI77vHy3odqG/HCqbak/ptonemTHfUHuR9Sn+/Bcfw7V5uJ/otpL5b1Um0Z+AoyP8pgvyP59qpWEuwF3HMVxX8kd+wTVAQF3pHrlOh34IlX5B3Dr+oG607w7eQ/gll09GIvk/gDV4cnHzrv8tlQfhN5zxHIfW4/vX1OtDTwFeCvVfrgvqktoVMd8YfYnUK3ZnzTq477gfnwNeFw9/X7gDfX0SI77gtyPrqcPmHf+yI451R4tZ1Ftz34lcCYwW//tjuxzfZHsLwX+DnjAKI77SvbSeWxmvi4zfwC8jmr3qHdSvS35KNWr3JrM/D5AZv46My/LzF+uYBnDMD/366kG//CIuFdEvJRqs88vstrOPEq5v091qPTarLZhXlifdyHVh9GjPOYLs28HvgkcHxF/MOLjTr1HBVQfmB9TT7+2uig+xoiO+z5yH1DvsfMSRnjMgeOAmcy8juodyhrgQ4x+v8DvZj8HuBG4a0TcfdSe68veDz9/d6f+n1IV/ssz84MR8VTg8sz8WtsBm1qQ++dUBypcQfVKfCDVngCjmPtXEbGV6q0rVGs5DwS2ZubXRnzMF2Y/iOpt7qup9po6iBEdd6g+IIuIvd9G+N36vCuAF0XEqcA3RzH7gty76vP2RMSTqZ4/IznmEbEGuJrqKwb+AbiB6ijT52TmVaP8XF8k+y+p3uG+kWpzzy0YoXFf9g+gRMQtgEdSHd11d6rdp96TmXuGF6+5RXJvy8y3dZtq+SLitVQHbBxPtd3vzHqteeQtyP5J4EU53KMwWxURs8ArMvPcvQcDdZ1pOebn7jrLckXEXal2UbyJ6jlzAfCarI4uHWmLZP8o8NLMXPUvYlvKin7xKiKeTXXgwz+OyFupZelr7r0iYgL4ntlXx7wjPe9NtWvvnj6UfV9z71UfWXos8O+ZeWPXeVaiL9lH9icOJUnt6vwXryRJq8PCl6RCWPiSVAgLX5IKYeFLUiEsfEkqhIUvSYX4X1imPqgj49tmAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +2473,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-