{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence du syndrome de la varicelle" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Importation de toute les biliothèques python necessaires" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"\n", "data_url = \"Donnees_Varicelle.csv\"\n", "\n", "# On remplace l'URL du fichier par l'URL du fichier enregistré localement pour éviter les problèmes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On enregistre les données localement dans un fichier CSV" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202238717814213141315FRFrance
1202237717314982964315FRFrance
2202236710691781960213FRFrance
3202235715814002762204FRFrance
4202234722667883744315FRFrance
52022337734001739911026FRFrance
62022327780140861151612618FRFrance
7202231768964170962210614FRFrance
82022307903957701230814919FRFrance
92022297148511006019642221529FRFrance
102022287154711102819914231630FRFrance
112022277211911619826184322440FRFrance
122022267168541280620902251931FRFrance
132022257222461801126481342840FRFrance
142022247224581810526811342741FRFrance
152022237187721487522669282234FRFrance
162022227189161494122891292335FRFrance
172022217203101630724313312537FRFrance
182022207235851900428166362943FRFrance
192022197185931418123005282135FRFrance
202022187178511396321739272133FRFrance
212022177203141600124627312438FRFrance
222022167196601486024460302337FRFrance
232022157177991371521883272133FRFrance
242022147170051316220848262032FRFrance
252022137154481165919237231729FRFrance
262022127147021079418610221628FRFrance
27202211711729834715111181323FRFrance
282022107133141003616592201525FRFrance
29202209710485760013370161220FRFrance
.................................
16301991267176081130423912312042FRFrance
16311991257161691070021638281838FRFrance
16321991247161711007122271281739FRFrance
1633199123711947767116223211329FRFrance
1634199122715452995320951271737FRFrance
1635199121714903897520831261636FRFrance
16361991207190531274225364342345FRFrance
16371991197167391124622232291939FRFrance
16381991187213851388228888382551FRFrance
1639199117713462887718047241632FRFrance
16401991167148571006819646261834FRFrance
1641199115713975978118169251832FRFrance
1642199114712265768416846221430FRFrance
164319911379567604113093171123FRFrance
1644199112710864733114397191325FRFrance
16451991117155741118419964271935FRFrance
16461991107166431137221914292038FRFrance
1647199109713741878018702241533FRFrance
1648199108713289881317765231531FRFrance
1649199107712337807716597221529FRFrance
1650199106710877701314741191226FRFrance
1651199105710442654414340181125FRFrance
16521991047791345631126314820FRFrance
16531991037153871048420290271836FRFrance
16541991027162771104621508292038FRFrance
16551991017155651027120859271836FRFrance
16561990527193751329525455342345FRFrance
16571990517190801380724353342543FRFrance
1658199050711079666015498201228FRFrance
16591990497114302610205FRFrance
\n", "

1660 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202238 7 1781 421 3141 3 1 \n", "1 202237 7 1731 498 2964 3 1 \n", "2 202236 7 1069 178 1960 2 1 \n", "3 202235 7 1581 400 2762 2 0 \n", "4 202234 7 2266 788 3744 3 1 \n", "5 202233 7 7340 0 17399 11 0 \n", "6 202232 7 7801 4086 11516 12 6 \n", "7 202231 7 6896 4170 9622 10 6 \n", "8 202230 7 9039 5770 12308 14 9 \n", "9 202229 7 14851 10060 19642 22 15 \n", "10 202228 7 15471 11028 19914 23 16 \n", "11 202227 7 21191 16198 26184 32 24 \n", "12 202226 7 16854 12806 20902 25 19 \n", "13 202225 7 22246 18011 26481 34 28 \n", "14 202224 7 22458 18105 26811 34 27 \n", "15 202223 7 18772 14875 22669 28 22 \n", "16 202222 7 18916 14941 22891 29 23 \n", "17 202221 7 20310 16307 24313 31 25 \n", "18 202220 7 23585 19004 28166 36 29 \n", "19 202219 7 18593 14181 23005 28 21 \n", "20 202218 7 17851 13963 21739 27 21 \n", "21 202217 7 20314 16001 24627 31 24 \n", "22 202216 7 19660 14860 24460 30 23 \n", "23 202215 7 17799 13715 21883 27 21 \n", "24 202214 7 17005 13162 20848 26 20 \n", "25 202213 7 15448 11659 19237 23 17 \n", "26 202212 7 14702 10794 18610 22 16 \n", "27 202211 7 11729 8347 15111 18 13 \n", "28 202210 7 13314 10036 16592 20 15 \n", "29 202209 7 10485 7600 13370 16 12 \n", "... ... ... ... ... ... ... ... \n", "1630 199126 7 17608 11304 23912 31 20 \n", "1631 199125 7 16169 10700 21638 28 18 \n", "1632 199124 7 16171 10071 22271 28 17 \n", "1633 199123 7 11947 7671 16223 21 13 \n", "1634 199122 7 15452 9953 20951 27 17 \n", "1635 199121 7 14903 8975 20831 26 16 \n", "1636 199120 7 19053 12742 25364 34 23 \n", "1637 199119 7 16739 11246 22232 29 19 \n", "1638 199118 7 21385 13882 28888 38 25 \n", "1639 199117 7 13462 8877 18047 24 16 \n", "1640 199116 7 14857 10068 19646 26 18 \n", "1641 199115 7 13975 9781 18169 25 18 \n", "1642 199114 7 12265 7684 16846 22 14 \n", "1643 199113 7 9567 6041 13093 17 11 \n", "1644 199112 7 10864 7331 14397 19 13 \n", "1645 199111 7 15574 11184 19964 27 19 \n", "1646 199110 7 16643 11372 21914 29 20 \n", "1647 199109 7 13741 8780 18702 24 15 \n", "1648 199108 7 13289 8813 17765 23 15 \n", "1649 199107 7 12337 8077 16597 22 15 \n", "1650 199106 7 10877 7013 14741 19 12 \n", "1651 199105 7 10442 6544 14340 18 11 \n", "1652 199104 7 7913 4563 11263 14 8 \n", "1653 199103 7 15387 10484 20290 27 18 \n", "1654 199102 7 16277 11046 21508 29 20 \n", "1655 199101 7 15565 10271 20859 27 18 \n", "1656 199052 7 19375 13295 25455 34 23 \n", "1657 199051 7 19080 13807 24353 34 25 \n", "1658 199050 7 11079 6660 15498 20 12 \n", "1659 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 5 FR France \n", "1 5 FR France \n", "2 3 FR France \n", "3 4 FR France \n", "4 5 FR France \n", "5 26 FR France \n", "6 18 FR France \n", "7 14 FR France \n", "8 19 FR France \n", "9 29 FR France \n", "10 30 FR France \n", "11 40 FR France \n", "12 31 FR France \n", "13 40 FR France \n", "14 41 FR France \n", "15 34 FR France \n", "16 35 FR France \n", "17 37 FR France \n", "18 43 FR France \n", "19 35 FR France \n", "20 33 FR France \n", "21 38 FR France \n", "22 37 FR France \n", "23 33 FR France \n", "24 32 FR France \n", "25 29 FR France \n", "26 28 FR France \n", "27 23 FR France \n", "28 25 FR France \n", "29 20 FR France \n", "... ... ... ... \n", "1630 42 FR France \n", "1631 38 FR France \n", "1632 39 FR France \n", "1633 29 FR France \n", "1634 37 FR France \n", "1635 36 FR France \n", "1636 45 FR France \n", "1637 39 FR France \n", "1638 51 FR France \n", "1639 32 FR France \n", "1640 34 FR France \n", "1641 32 FR France \n", "1642 30 FR France \n", "1643 23 FR France \n", "1644 25 FR France \n", "1645 35 FR France \n", "1646 38 FR France \n", "1647 33 FR France \n", "1648 31 FR France \n", "1649 29 FR France \n", "1650 26 FR France \n", "1651 25 FR France \n", "1652 20 FR France \n", "1653 36 FR France \n", "1654 38 FR France \n", "1655 36 FR France \n", "1656 45 FR France \n", "1657 43 FR France \n", "1658 28 FR France \n", "1659 5 FR France \n", "\n", "[1660 rows x 10 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y'a t'il des lignes avec des données manquantes ?" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Aucune ligne avec des problèmes de données, on peut continuer" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On modifie le nom des données en \"data\"" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202238717814213141315FRFrance
1202237717314982964315FRFrance
2202236710691781960213FRFrance
3202235715814002762204FRFrance
4202234722667883744315FRFrance
52022337734001739911026FRFrance
62022327780140861151612618FRFrance
7202231768964170962210614FRFrance
82022307903957701230814919FRFrance
92022297148511006019642221529FRFrance
102022287154711102819914231630FRFrance
112022277211911619826184322440FRFrance
122022267168541280620902251931FRFrance
132022257222461801126481342840FRFrance
142022247224581810526811342741FRFrance
152022237187721487522669282234FRFrance
162022227189161494122891292335FRFrance
172022217203101630724313312537FRFrance
182022207235851900428166362943FRFrance
192022197185931418123005282135FRFrance
202022187178511396321739272133FRFrance
212022177203141600124627312438FRFrance
222022167196601486024460302337FRFrance
232022157177991371521883272133FRFrance
242022147170051316220848262032FRFrance
252022137154481165919237231729FRFrance
262022127147021079418610221628FRFrance
27202211711729834715111181323FRFrance
282022107133141003616592201525FRFrance
29202209710485760013370161220FRFrance
.................................
16301991267176081130423912312042FRFrance
16311991257161691070021638281838FRFrance
16321991247161711007122271281739FRFrance
1633199123711947767116223211329FRFrance
1634199122715452995320951271737FRFrance
1635199121714903897520831261636FRFrance
16361991207190531274225364342345FRFrance
16371991197167391124622232291939FRFrance
16381991187213851388228888382551FRFrance
1639199117713462887718047241632FRFrance
16401991167148571006819646261834FRFrance
1641199115713975978118169251832FRFrance
1642199114712265768416846221430FRFrance
164319911379567604113093171123FRFrance
1644199112710864733114397191325FRFrance
16451991117155741118419964271935FRFrance
16461991107166431137221914292038FRFrance
1647199109713741878018702241533FRFrance
1648199108713289881317765231531FRFrance
1649199107712337807716597221529FRFrance
1650199106710877701314741191226FRFrance
1651199105710442654414340181125FRFrance
16521991047791345631126314820FRFrance
16531991037153871048420290271836FRFrance
16541991027162771104621508292038FRFrance
16551991017155651027120859271836FRFrance
16561990527193751329525455342345FRFrance
16571990517190801380724353342543FRFrance
1658199050711079666015498201228FRFrance
16591990497114302610205FRFrance
\n", "

1660 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202238 7 1781 421 3141 3 1 \n", "1 202237 7 1731 498 2964 3 1 \n", "2 202236 7 1069 178 1960 2 1 \n", "3 202235 7 1581 400 2762 2 0 \n", "4 202234 7 2266 788 3744 3 1 \n", "5 202233 7 7340 0 17399 11 0 \n", "6 202232 7 7801 4086 11516 12 6 \n", "7 202231 7 6896 4170 9622 10 6 \n", "8 202230 7 9039 5770 12308 14 9 \n", "9 202229 7 14851 10060 19642 22 15 \n", "10 202228 7 15471 11028 19914 23 16 \n", "11 202227 7 21191 16198 26184 32 24 \n", "12 202226 7 16854 12806 20902 25 19 \n", "13 202225 7 22246 18011 26481 34 28 \n", "14 202224 7 22458 18105 26811 34 27 \n", "15 202223 7 18772 14875 22669 28 22 \n", "16 202222 7 18916 14941 22891 29 23 \n", "17 202221 7 20310 16307 24313 31 25 \n", "18 202220 7 23585 19004 28166 36 29 \n", "19 202219 7 18593 14181 23005 28 21 \n", "20 202218 7 17851 13963 21739 27 21 \n", "21 202217 7 20314 16001 24627 31 24 \n", "22 202216 7 19660 14860 24460 30 23 \n", "23 202215 7 17799 13715 21883 27 21 \n", "24 202214 7 17005 13162 20848 26 20 \n", "25 202213 7 15448 11659 19237 23 17 \n", "26 202212 7 14702 10794 18610 22 16 \n", "27 202211 7 11729 8347 15111 18 13 \n", "28 202210 7 13314 10036 16592 20 15 \n", "29 202209 7 10485 7600 13370 16 12 \n", "... ... ... ... ... ... ... ... \n", "1630 199126 7 17608 11304 23912 31 20 \n", "1631 199125 7 16169 10700 21638 28 18 \n", "1632 199124 7 16171 10071 22271 28 17 \n", "1633 199123 7 11947 7671 16223 21 13 \n", "1634 199122 7 15452 9953 20951 27 17 \n", "1635 199121 7 14903 8975 20831 26 16 \n", "1636 199120 7 19053 12742 25364 34 23 \n", "1637 199119 7 16739 11246 22232 29 19 \n", "1638 199118 7 21385 13882 28888 38 25 \n", "1639 199117 7 13462 8877 18047 24 16 \n", "1640 199116 7 14857 10068 19646 26 18 \n", "1641 199115 7 13975 9781 18169 25 18 \n", "1642 199114 7 12265 7684 16846 22 14 \n", "1643 199113 7 9567 6041 13093 17 11 \n", "1644 199112 7 10864 7331 14397 19 13 \n", "1645 199111 7 15574 11184 19964 27 19 \n", "1646 199110 7 16643 11372 21914 29 20 \n", "1647 199109 7 13741 8780 18702 24 15 \n", "1648 199108 7 13289 8813 17765 23 15 \n", "1649 199107 7 12337 8077 16597 22 15 \n", "1650 199106 7 10877 7013 14741 19 12 \n", "1651 199105 7 10442 6544 14340 18 11 \n", "1652 199104 7 7913 4563 11263 14 8 \n", "1653 199103 7 15387 10484 20290 27 18 \n", "1654 199102 7 16277 11046 21508 29 20 \n", "1655 199101 7 15565 10271 20859 27 18 \n", "1656 199052 7 19375 13295 25455 34 23 \n", "1657 199051 7 19080 13807 24353 34 25 \n", "1658 199050 7 11079 6660 15498 20 12 \n", "1659 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 5 FR France \n", "1 5 FR France \n", "2 3 FR France \n", "3 4 FR France \n", "4 5 FR France \n", "5 26 FR France \n", "6 18 FR France \n", "7 14 FR France \n", "8 19 FR France \n", "9 29 FR France \n", "10 30 FR France \n", "11 40 FR France \n", "12 31 FR France \n", "13 40 FR France \n", "14 41 FR France \n", "15 34 FR France \n", "16 35 FR France \n", "17 37 FR France \n", "18 43 FR France \n", "19 35 FR France \n", "20 33 FR France \n", "21 38 FR France \n", "22 37 FR France \n", "23 33 FR France \n", "24 32 FR France \n", "25 29 FR France \n", "26 28 FR France \n", "27 23 FR France \n", "28 25 FR France \n", "29 20 FR France \n", "... ... ... ... \n", "1630 42 FR France \n", "1631 38 FR France \n", "1632 39 FR France \n", "1633 29 FR France \n", "1634 37 FR France \n", "1635 36 FR France \n", "1636 45 FR France \n", "1637 39 FR France \n", "1638 51 FR France \n", "1639 32 FR France \n", "1640 34 FR France \n", "1641 32 FR France \n", "1642 30 FR France \n", "1643 23 FR France \n", "1644 25 FR France \n", "1645 35 FR France \n", "1646 38 FR France \n", "1647 33 FR France \n", "1648 31 FR France \n", "1649 29 FR France \n", "1650 26 FR France \n", "1651 25 FR France \n", "1652 20 FR France \n", "1653 36 FR France \n", "1654 38 FR France \n", "1655 36 FR France \n", "1656 45 FR France \n", "1657 43 FR France \n", "1658 28 FR France \n", "1659 5 FR France \n", "\n", "[1660 rows x 10 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = raw_data.copy()\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On convertie le système de datation des données de \"AnnéeSemaine\" en \"Année\" et \"Semaine\"" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On organise les données selon la date de la mesure" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Affichage des données du nombre de cas de varicelle en fonction de l'année" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm4XEWZ/vt135ubPYHsJIEEEnYhSIhBQISwBJcBFTQ6sigjyg8dt5kRnXGbEZVRBkRERFAWF2BQBpRN9t2EsCQhQMiFBHIh+77dpbvr98c51adOna+Wc25335vc8z5PP91dp05VnTpV9dW3FgkhkCNHjhw5cqgo9HQDcuTIkSNH70NOHHLkyJEjRwI5cciRI0eOHAnkxCFHjhw5ciSQE4ccOXLkyJFAThxy5MiRI0cCOXHIkSNHjhwJ5MQhR44cOXIkkBOHHDly5MiRQFNPNyArRo4cKSZNmtTTzciRI0eOXQrPPffcOiHEKFe+XZY4TJo0CfPnz+/pZuTIkSPHLgUietMnXy5WypEjR44cCeTEIUeOHDlyJJAThxw5cuTIkUBOHHLkyJEjRwI5cciRI0eOHAnkxCFHjhw5ciSQE4ccOXLkyJFAThxy7PJ4c/12PLl0XU83I0eO3Qq7rBNcjhwSx//kUQDA8h9/sGcbkiPHboScc8iRI0eOHAnkxCFHjhw5ciSQE4ccOXLkyJGAkzgQUX8imkdEC4hoMRF9P0z/HhG9TUQvhp8PKPd8k4haiWgJEZ2qpB9JRIvCa1cSEYXpLUR0a5g+l4gm1f5Rc+TIkSOHL3w4hw4AJwohDgcwDcBsIpoZXrtcCDEt/NwDAER0MIA5AA4BMBvA1URUDPP/EsAFAKaGn9lh+vkANgohpgC4HMCl3X+0HDly5MiRFU7iIAJsC/82hx9hueV0ALcIITqEEMsAtAKYQUTjAAwVQjwjhBAAbgJwhnLPjeHv2wHMklxFjhw5cuRoPLx0DkRUJKIXAawB8IAQYm546YtEtJCIfkNEe4Rp4wGsUG5vC9PGh7/19Ng9QogSgM0ARjDtuICI5hPR/LVr13o9YI4cOXLkSA8v4iCEKAshpgGYgIALOBSBiGg/BKKmlQAuC7NzO35hSbfdo7fjWiHEdCHE9FGjnAcZ5chhhBACf134DrrKlZ5uSo4cvRKprJWEEJsAPApgthBidUg0KgB+DWBGmK0NwETltgkA3gnTJzDpsXuIqAnAMAAbUj1JjhwpcP/iVfjiH17A1Y+83tNNyZGjV8LHWmkUEQ0Pfw8AcBKAV0MdgsRHALwU/r4LwJzQAmkyAsXzPCHESgBbiWhmqE84B8Cdyj3nhr/PBPBwqJfIkaMuWL+9EwCwasvOHm5Jjhy9Ez7hM8YBuDG0OCoAuE0I8VciupmIpiEQ/ywH8HkAEEIsJqLbALwMoATgIiFEOSzrQgA3ABgA4N7wAwDXA7iZiFoRcAxzavBsOXIYQawkM0eOHBJO4iCEWAjgCCb9bMs9lwC4hEmfD+BQJr0dwFmutuTIkSNHjsYg95DOsVvh14+/gW/cvtA7fy68zJGDR04ccuxWuOSeV3Dr/BXOfLkXTY4cduTEIUefRs455MjBIycOOfokcsYhRw47cuKQo09DWCPBdB9/fr4Nv3lyWV3ryJGjHshPgsvRJ9EoncPXblsAAPjssZMbU2GOHDVCzjnkyJEjR44EcuKQo08jV0jnyMEjJw45+iRyD+kcOezIiUOO3QZZwnHljEOOHDxy4pBjt0Eq2kAZ7smRow8hJw69HGu2tOPVVVt6uhm7BDLQhrqbsubIsasiN2Xt5Tj2vx9BZ6mC5T/+YE83pdcjjVgpP4U2Rw47cs6hl6OzlJ9U5oucB8iRo3bIiUOO3QaZ9Ac5RcmRg0VOHHLsNkijP8iFSrs+Hl2yBgtWbOrpZuy2yHUOOXYbZOEccsZh18V5v30WAHJ9XJ2Qcw45+iRyfXSOHHY4iQMR9SeieUS0gIgWE9H3w/Q9iegBIloafu+h3PNNImoloiVEdKqSfiQRLQqvXUmhyQgRtRDRrWH6XCKaVPtHzbG7IxPnsJs5Olz3xBuYdPHd2NlZdmfOkcMCH86hA8CJQojDAUwDMJuIZgK4GMBDQoipAB4K/4OIDgYwB8AhAGYDuJqIimFZvwRwAYCp4Wd2mH4+gI1CiCkALgdwaQ2eraa4/bk2rNvW0dPNyGFBKp3Dbso5XPv4GwCAzTu7erglOXZ1OImDCLAt/NscfgSA0wHcGKbfCOCM8PfpAG4RQnQIIZYBaAUwg4jGARgqhHhGBNu1m7R7ZFm3A5hFvcgQfdXmdvzL/y7ABTfN7+mm5LBgN2MCuoXeM3ty7Krw0jkQUZGIXgSwBsADQoi5AMYIIVYCQPg9Osw+HoB6iG9bmDY+/K2nx+4RQpQAbAYwIssD1QNd5cDXYM3WnHPozcgtWXe/58nRc/AiDkKIshBiGoAJCLiAQy3ZuT2LsKTb7okXTHQBEc0novlr1651NTtHH0MqD+nd1JhVdsHu+XQ5GolU1kpCiE0AHkWgK1gdiooQfq8Js7UBmKjcNgHAO2H6BCY9dg8RNQEYBmADU/+1QojpQojpo0aNStP0HL0Ia7a2o72r9grTTJzDLrjV/suCdyz9l1OHHLWBj7XSKCIaHv4eAOAkAK8CuAvAuWG2cwHcGf6+C8Cc0AJpMgLF87xQ9LSViGaG+oRztHtkWWcCeFj0QjOSto078cN7XkGl0uuatkthxiUP4TOhjboLG7Z34vSrnkTbxh3OvGlGzK4qk392+QZ86Y8v4L/++rI13+7KGeVoHHw4h3EAHiGihQCeRaBz+CuAHwM4mYiWAjg5/A8hxGIAtwF4GcB9AC4SQshtzoUArkOgpH4dwL1h+vUARhBRK4CvIbR86o249vE30Lp2mzujA2u2tGPFBveCt7vimTfWe+X7vxfexoK2zbjuiWXOvLvzeQ4bt3fipbc3Y3tHCQCwYuNONl/v21Ll2FXh9JAWQiwEcASTvh7ALMM9lwC4hEmfDyChrxBCtAM4y6O9vQKVGszAGT98CEDu3VlLbNyx+5pvnnnN03h97Xb87vz3AABKZXtAxl2VM8rRe5B7SGdAvjvrnfjVY6+nvqcXSi9ZvL52OwCgWAhW/ZJBtLlrPE2OXQE5cciAXWQ96XNoafIfzr3IjSYVmopBu8sm4hAOznyM5ugucuKQAV0Olj5Hz6CluejOtItDcg4m4iAhvcX/OO8t3PFCmzVvjhwc8qisGdCZE4deiTScg8SutsFuqoqVkmNw5ead2N4R2n6ED/bNPy8CAHzkiAmJ/Dly2JAThwzIT2frnRg9tL933l1TqKToHMpJsnb0jx6u/t7ViF6O3odcrJQBLpY+R+3goxpoDuXw41IQhyp20VfpFCvtos+Vo/cgJw4ZkM+73oWmQjCM07yXXVQfDSlNMlkr5chRK+TEIcdug2xOcLvWIit9bFy+Nrvac+XofciJQwY0yjZ+V7HB72lILiDNZnpXDS9R9iUO+dDJ0U3kxCEDGjXv8gmeDrXWBZXKFUy6+G7c8FQUumPzzi48/OrqmtaTBr5+DPnQydFd5MQhCxo082oRpmN3gQ8XddEfns9QrvnajjDy6U//9lpUx++fx2dvmI81W9tT12Vvh8A1j73Oxtu67ok3qr87uiphfnd5OXJ0BzlxyIBGyXNznaMfshDRrArpZeuCMBa1NmdeubkdP773VXz2hmS02msei4jDF//4AoBcrJSj/siJQwY0auKpC8DuvBMslSu47G9LsLU9W+A8X3HS4nc2Y+XmIJrpk63rAPi9S/Ykqhq/DvkMOzqT5zSohGzD9s661J8jh46cOGRAoyamWs/ushhwRO7uRSvx84db8eN7X81Upi9x+OCVT1Ydxf4w9y3v8mvR9eu2deDfbl9gPKRHbgQKzIzkj0m0t2p7ZyltE3PkiCEnDhnQqHU6xjk0qM5a4unX1+F/56+IpXFETopo2ruyiWrSit86StECbVtka2nP9MN7XsFt89vw14Ur2evR8Z7JWguMDMz1zLOveCLR9zlypEEePsMD+oLWKBFPUqy0a5lffurXcwEAZ02f6MgZgFuo6/HEm3vi3AfH6Z3Vw9SZDFyazxj819sXejVtV4T6/E8uXYeOUhmzDhrTgy3a/ZATBw/oi1bjOIfG11lvcM/R6PDZHSmVybXYDLhKkHVwPcFxDruLmDEr1Of/9PXBJiQ/OKu2yMVKHkhyDo2qV+UcGlNnvWFdaBv0jGroCVtzakm03t60MyyTvx5xDn519nUz57799I2BkzgQ0UQieoSIXiGixUT05TD9e0T0NhG9GH4+oNzzTSJqJaIlRHSqkn4kES0Kr11J4UwgohYiujVMn0tEk2r/qLVE401Zd+dwCHI5tD1hLZ/eV4FdS/HhvGUbAJiJQ6Vi5hxYsVKN2uULIQQWrNi0W1vN5YjDh3MoAfi6EOIgADMBXEREB4fXLhdCTAs/9wBAeG0OgEMAzAZwNRHJU1h+CeACAFPDz+ww/XwAG4UQUwBcDuDS7j9a7aBPh54xZW1MnfUGL1ZqbBtU4uDTrbXselPYjstCR7vNO5P6EFYh3WAnmL8uXInTf/EU7lrwTkPrNSEnUvWHkzgIIVYKIZ4Pf28F8AqA8ZZbTgdwixCiQwixDEArgBlENA7AUCHEMyJ4szcBOEO558bw9+0AZlEtefpuQh+IPWGttLugNzySN+dQh7pNo/q+xasAABt2dHrd0+h+fCM8w7p1zTb2+qYdnTjxp4/itdVbG9KeXjCMdnuk0jmE4p4jAMwNk75IRAuJ6DdEtEeYNh6AakPXFqaND3/r6bF7hBAlAJsBjEjTtnqipwbi7ujnwEEufvXaDe7oLOF3f3+z+t+XI+stfc77OTS4DdV3xF9/ZMkavLFuO65+pLUh7ekt72Z3hjdxIKLBAP4E4CtCiC0IRET7AZgGYCWAy2RW5naTHWZVD2e5prbhAiKaT0Tz165d69v0bqOnFNJxP4eemw1d5QqufrTV6MCVBry5KoXX6oMf3P0K/uP/Xqr+785ZCPXmZ32tlbZ1lPDk0nX1bYwC12N3lYI+bSo2xsZld9bB9RZ4vUkiakZAGH4vhPgzAAghVgshykKICoBfA5gRZm8DoBq2TwDwTpg+gUmP3UNETQCGAdigt0MIca0QYroQYvqoUaP8nrAOqOXALFnOo670Es7hlmdX4L/vW4JrHnu922WlfY5aSBc3bIuLarxFH3Xoc9fzsNcNt0gTzkagyjkYOqUrPIVoUdtmPNXaOKKVo37wsVYiANcDeEUI8T9K+jgl20cAyK3ZXQDmhBZIkxEonucJIVYC2EpEM8MyzwFwp3LPueHvMwE8LHqVxknTOdSwZV3MWcASqtKxUfqH1jVb8YlfPYO31kfRQbeEStJ6n53dqDf+bzHnMHeltWxXFlLXG5RvkmiZmC55pvWS1Vvxj9fVl2jNfWM9jvnxI3WtI4efE9wxAM4GsIiIXgzTvgXgk0Q0DcHsWg7g8wAghFhMRLcBeBmBpdNFQggpj7gQwA0ABgC4N/wAAfG5mYhaEXAMc7r3WOnxysotaCoQpo4ZkriWECvVsN7OUgUD+hXZazGdQw3rtOH2597G3GUbcO9LK/H54/cDEBGF5jqJDKJdae9CbxFdcGKlnoKJUHZZOOBa49L7XsW6bR0Nq6+vwkkchBBPgt+83GO55xIAlzDp8wEcyqS3AzjL1ZZ64rSfPQGA97JMmrLWbtHotIqVGm/KKtchVS4v29ivqfvEIetz1Ov5G62QzrLO9wba4BIrpdHjbOsoYe3WDkweOShjW3pBh/QB5B7SPQxf4tCoTSw37STn0E/hHJat245nlyfUQk70lt14GnBtzko4XMeTchuP3sA5FBzsnU13puPs6+fihJ8+mrktPd8bfQN5bCUP1NNaySbH7wkPac6stIvhHOTkrmU8m3qpmWxra1qv7O6u0677e+sBT7LZJt1Xmna/8Nam7rUlpw4NQc45GNC6ZhsmXXw3Hnx5NRN4r3Yz2Car7cnYSmp9so1Nxe7PSu45pJigt62LvcUmojeIUVx+DlmQtX9d3NfuhgdeXo1JF9+NLRkPw8qKnDgY8OKKYHdzz0srewnn0BhwE08+bxrxxl8MYRbY3bh3qbVHowlAlmct9IK10LUgZ2liVn+TXkArG4qrHl4KIPJSbxRy4uCBWhKH9q4y7nspOvDFXyFd/0Xspbc346rQw1WtLUvVXwrPOk4FlqtIX0ytymhk+Ixa35MWT7euM4bGUFHLPvENY6KjrxEHyTlm7a+syHUODnR0VbBma3ssrTuv6JK7X8HNSigHO+eQLkBcd3HHC29H9Rkq3NZRQkc3PKU5IueyhOkp9BKpUkPEKJ+6zn4mgkuslGXBzsw5GPpDCNErRHC1RoHRAzak3obWtgtBDrG7F63Eeb99NnatOy9pxcYdsf92nQP/uyfx/p88giN/8GDm+3mxUvYJ3d0J43M3V0V2QsY/68enB8EDznvvpMS1XiFWqjrBda+/typy87LBAfSt9Ttwwk8fxeot7ex10/rf6J11o1DoIZ1cThwyIOtLemLpWjy6JB4Typ9zaOzQUOtTJ+O6bcmooS6s93RYsp8DxF98dvnG1O3pTp3VOFBZTVkNC1tLU+AIOZBziOwFu2FTC1Ztbkel4r9jn33FE9XfMuSGjt/NfRPL1m2PcbIqTLqv3ZQ2VJ+30cQvJw5ZkPEd/b/fP59Is3EOsbHQgHFh4lS6y7X88y2R/oG3VspW7vaOEj7+q2dS3dOkbcOtj1ZTjiG833C7FDX21vWNM3F+e9NOzPzRQ7jioaXWe791xyJMuvju6j0SpsWuf2gy3dHFzw3jgUm9hb2uMeTzXv7Aaw2tNycODQQX1dR2nnGjdQ7qwldLq6IN2xUTvBp6JN/w9HKvfKrYKotDGdesrO/DJQZjiWfGulxo7ypj8w4/80jutL5VmwOxz+Ov2SMk/2HuW2y6SefQ0hxwT5c/+BpufTZ5r4lL2d3FSnOXbWio3iEnDhmQdffIBdmzh2/oOT+HRiJaeNI9ZC0sf2yTzaYfyTpJWULTQ+LDD//8SRz+n3/zyrtiY7DjVzcsal9meRcmnUOL4mz5jT8t8i5vd+UcCsoqbbNurHm9DatpF4PVq7aGY9A2oBvtIR1rSg0fUu1KVo6fcWtczHBjGs7Bro/IBu5999SOd6mH6arE9U8uq3n9Jp1DMaMG3lDcLg91zDaS/uXEIQMu/rP/bsYF28tWQ3Y33EO6XuWmLNi2TGRZRLIuPDqyvg+ODsSCHJYqCU9YH3rWKHEDb7mVzeLM1GTXo5ietcykL2zbhJufWZ6uYb0MlBOHvglfzqEnWeZaci18SdksgHTlsg/S3FIPbo1b2OR5GQDw26eW47DvxUU9Pv3SneHxwMurvfOq1dQgmEqKVDc4DuwfrnoK375zccYSk1i2bnvjrYaUjm6k2LHPE4efPbgUZ/ziqR6r3/aqe0tspW6X5bie9TyHLFxAIcU99j7IqHNgbpvxw4cylVUrfO6m+Ym0+cs3YClzYl4tneBMa2wWpb3Pfd3Fm+u344SfPorL/rakrvXoULu2kXSpzxOHyx98rRpHSUU9TMu5dck2oBstijYpRm0igzShmvU60t2XTPNe6JVsus7BqzmcKCXju8my87Prv0RYbm1x5jXP4OTLHzfWpyPLdKl1H3JiJYkf3fsKVmzYYbzugzVbA3+decvSh6rvDtQxOz9DmPzM9TasphzsTteqc2gg57B+WwdufCYK6+Fb34/ufdWZJ66QNiPtM2YxS01zB2utlILLWbYuGShNV5q+8FZtnPh6UueQdXCaRKVZH8Um7vnVY29ki/fVC6Bugn5w9yuNq7dhNeVgiYONO/D1kF6wYhOO/tFDVUcjE1rXbDN6ZMfPVQYWv7PFq26XjXtwvx2Kus1ZVneRMGW11Gk1c/Vo6hdufi55n/b/I1c/7S7IAp8em7DHgG7VoUKNM6YqSrNw2kbxkOOpsiqySzUyZ2q09i+2ucr9HHZPcDtd++LE/9Zx+i+ewsrNfBwaiTVb23HS/zyG797FK+e2tpdi/x9TFv3l6wJ2nFsA0i4KtvMcGoMsTnCMf4pjiVjYtgmrtybfSZZIu7YWVzzESrXs3keWuDcDvvAVsfn2k0tRvKMze8DInkSvNWUloolE9AgRvUJEi4noy2H6nkT0ABEtDb/3UO75JhG1EtESIjpVST+SiBaF166kcFUgohYiujVMn0tEk2r/qD0Pbo76cw7dg7SImbdsvfc90gRwnkXOmdaE0ZcYepWVoVN05s22oCxs25y+ghD/cNVT2MR5H8cs0DIXHxUn4t+2PLVER6lcHVP1NmVd9PZm63UJm84BAHZ01IY4NDo6qipxaGTNPpxDCcDXhRAHAZgJ4CIiOhjAxQAeEkJMBfBQ+B/htTkADgEwG8DVRCSjif0SwAUApoaf2WH6+QA2CiGmALgcwKU1eLZuoR5hktkdsq8TXA+Ysvo4PtXkvIWMFYwZ2pK6/OZifMiXDF66AB8LSyK7n0N0Yy1MIn1MnOsxdM6+bh7O+c28bpVhFivFoXPFpg2Ga45kDREu0VPhD+9eFJ3/0qvESkKIlUKI58PfWwG8AmA8gNMB3BhmuxHAGeHv0wHcIoToEEIsA9AKYAYRjQMwVAjxjAie8CbtHlnW7QBmUWNlDQ1BIziHWg6eurwC2w43ZVFZTFnVc7ABoCvjgpHV8kWtbp1ntFobqpxDgyXhKjcphN8moaL1tdHqSM8n9P98+S7DuXKNdA6NXJoSz96wmlPqHEJxzxEA5gIYI4RYCQQEBMDoMNt4ACuU29rCtPHhbz09do8QogRgM4ARTP0XENF8Ipq/dm3tZJ8q6kqZmTFl2/ll8XNopImluQ2WZ2LSuIifXvWkyh1AtyBKa4r75vqAKFzAKJt9oPbzv96+IFMZXHm+MbpqgazlXXp/3LLNRJf1d+T7ilycmI1LTING7t53asE6e5XOQYKIBgP4E4CvCCG22LIyacKSbrsnniDEtUKI6UKI6aNGjXI1ORN6k7NZfKz7NSyrJ3VNnd5SlpV5I1aDNttCplerqWHfqO90vefZGLadqg/j03iBJI9fPfZG7L9pkdUjFeu6BNPzuMZ+t8VKPSDL2NYRNxTpdR7SRNSMgDD8Xgjx5zB5dSgqQvi9JkxvAzBRuX0CgHfC9AlMeuweImoCMAxAYz1NQlSpVcaBsLOzjEkX343rnngjcY0XK9l0Duk5h1o6zvl0Abdw2ZrQ2wJn1mo36Q2lA7gQ7umLs7f/49Mn1LzP2fhKGerwXeS7LGHtbffpqJUpayOxs7MXcw6h7P96AK8IIf5HuXQXgHPD3+cCuFNJnxNaIE1GoHieF4qethLRzLDMc7R7ZFlnAnhY1JF3+4ernsSvH08u3kD3Wcb12wM58m8YZW5aWWU8Kqsf0u4shBCpApn5lmm8ZrNWspWZsiwVtn7fd9QgrzJqBfWdthsOs8lSnjGsBajmu02utBfbklEGnOV4aqQT3J1y/Z9PnFL97RIrjR3WP03zjNiwvbPb3ta+0J+9VxEHAMcAOBvAiUT0Yvj5AIAfAziZiJYCODn8DyHEYgC3AXgZwH0ALhJCSPJ3IYDrECipXwdwb5h+PYARRNQK4GsILZ/qgXJFYGHbZlxyD+9p2N2+ly/PlxBYOYcMUVm5fK+v3YabQ+9nfQLN+OFDOOGnj7JlrdkSV5hybDk3wdNyDj7mmNyBMbWYKEP6NzvzmKo565qncdj37k9Vn9pf7aUamFY6+qAuNgUJMY/A3QtXGnLbyuHT9Tmhn2GgEjvV+szFNc86cEy6BiYQdOby9Ttw3H8/0s2y/NBZ6jlWu8mVQQjxJMwShlmGey4BcAmTPh/AoUx6O4CzXG2pBTbusMt5bQvOv80+AP99nznoVrki8NLbZtv4lJasscXY32EomTbrsseqv3U599qtHVgLYOTgpFmoHvXUV2TVCH8F/b7Zh4zFfYtXOe/58qyp+JlyrGV3OMUs51fHOQczcRDC71zmyAnOZtjg3z4f1Ko4c+C9+H9d9KdeV63PXGIlH/1Sb0OCMPYmU9bdDbo5nQ7bJHvX+GHJ/EJUB90vHmnFhaFtfIHp2bSmrKrpnb/OwZ4xzU5SD2z3Y4bbYjmBGoqO1BZMuvjumOe2iqP3G4EPvmucpfQAicB7zjtqC7U+m1jJlxBLMaZRrES1f0a9ruzEnb9RHz/6mFb/qcTBJVYyXV6zpR1HXfIgWtcko9Cq0OfObc+u4DPWEDpBy6Oy1hGuvrUN9AHNRRy97wjMmLRnNe0n9y/B1H+/Fx2lcsyjlguVwStvzRWWMoiVXMTBFMmUlelrZW1nwg80FdMFE7SJoXx2RecqjldqbiJ4adA1H7hEW297dgVONIjZagHfnZ+az/ZYH/65K9w81YFzqE2BZoV0/L9t0Y+LlRwbP8P1+xevwtqtHfjtU8ut9+u4bX4DiEPJLFKrN5xipd0N3ZkohQKhUIifBS0PudfPh/bdoNvao04KXxNVVy5Tu9LqDiR0p7I0eHTJGhQLlJlV9l1A1Ws6cdRr/rc/LUQ94fsefXeI0g7elD3Yj9RYIe1RnI9YzDcqa8KUVfkfEys5neD4+mQ7pQ+LCXq7BrbUf/lMipXqXmUVfZBzcO0uzNcKRCBQbFDH5cYOkQ5bn4VzyGBmKRwTJI3FlM9A7KdvxZn7Xlm5hb123m+fxdnXZw/BoDfP58mS5zm4H9Ilrli+bjtmX/E4Nmx3+y1k4QC7c0wopagzbdnRdb+0ZCa/+myiYHX8uazrTMXIMfFk6zpj1OKwZbF/A5uLhny1g77pbKQYtO8RB0fv2nZ2RaKEDDcyJRTOsrmFWR+w9720Cif89FGUypXYomQq+831cW/SWrKdPrvcQczuKbU5barcPMoVPwVusQ46h1880opXV23F/R4K8SxK/e4s7t3VORx76cP49RO685r7vm7QhkS63mfq3zRiJdN1lZm0+ULo7eD0irVGbzdl3a3g1DlYrhEFuwxugldE/F5uF+NjrXTxnxdi2brt2Npe8rJWOv4njyYVreRJAAAgAElEQVTaYUMaEY4PcRjFWDk9/2Y6m3cfU1bbfYC/92viHSi33fFCFN0lTT/pHr02qO9x4p7mcxZqRWBtAST3HzPYWW7bxp344T3xsBd6215emQyY4DN2THn09GSspeh3XKyUlThEfWQbR/rtjfCpSxKHxlGHvkccMiqtgGAQFcggn9ecyXyjut7+PK/UEqiPtZLvbs23Tq6+258zK+qsyurUe9wof1dZxHq8dc029o7pijEBELV/e0cJX701inWUZg6m8XRWyx0/PCIOh02IW8Kpa5RK0E47dKyz3OQ1/mL/OopF/PQSfuk2ayXVICKrtZLavzYCkyBaDViodTFXLlaqI1zv03a5WKCQc+CIA2M9o4EjFys27GTzCCE0zsEPCWWeZdflglc4aM+06FraOyxlqZxDuRLr86dfX8feM23i8Nh/2T/f/0v8EKQ0LUrFOSiNVtuvR5g19f1XT96fTf/93DfZdJtYqZ5xuLKOHe5efQx3KMRY9cVxMY+mhd+Xc0gQqUYQh5BzOOXgMQ2rU6LPEQcX7ArpQG/AsZMVL52Du35Vbh7XOfgNCiEE7l+8Co+8GoS62qQ5/aUTK/nk4QllGsxbZnYm89Wf6+y3eputDLkYrNa8wZ9709/BLQ3nsFE5AEjtpoQuxEBv9h8zBGfP3CeR/rfFqxNpP5szzaiQfuDl1XhtNc9dueClT6gRAQGSO3S1v4sx4pBRrKSsgjbuY8tOLQheA9ZpacoqdSs551BHOF9oeJ1TbhYKgViJXRC1/7WIWpCJcwDw+Zufw2dueBbL123HV259MX7dk5UP0nxkA8kkexjyZNpvnlpmbZtP1V2VuFjJtyjZx3qbO1KEtmhPwTlc/+QyrN4SHl5j4RxUDksXUXKuKtzznj5tPIh4U+HP3TTfYZljhs+4WLl5pzOP6SXp70Lf8atH2hYNmykOpus+nMP9i1fhC7+Lh2nPynmlgbRWag7FZ7lCuo5wmrJarheI0FwssAPoq7e+GE16GJzgUpCMdds6vayVdKgD9jt3LcYTS+PilTQ6h6zhoO16Bcu1tMQhIVZKT5LleQ76wrFcO1PAho6U0VVlzCp1rCXFSub72Y2L5dFrvZ74lPedO/mzylV4+zloNEwV46XjHPj0GLfOmI9vae/C5Q+8lkhvREBfKVaqcg65WKl+cPWtzRGmQEBLU4HdVT6xdB1eXaW433M6hxRr16lXPI5bY+75foNCnQBD+zNmpmlYBwAvv2M7usPERdk4h9oNbrWeLE6I0yYOrxJ6nTh822Nxk3DpHM4/dnLsvxRjZNE5cHkBfjMChGPO0uUnH5w+GJ0fQ2nOdPFpB1rLcSqkBU9Ua2HKumpL/EjSHZ0lHPa9v8XnNtOOekGKSw/eaygAYPweA+tep0TfIw7K70kX3524LkUcHApEaGkuoMMj1DI3Vb3OR1B+b96pyKc9x6E6YAczPghcCAzAvKv6wJVPOOrzTZPiG0tZ3djjdpUrqUV5zUWqEoXuiAhcOodvf+jg2H+5kNtqtLWH4xJ0nYWEi1sdNqAZV37yCGseiQPHDgl++BAHS56Dxw21FuM0ZVV+q34Orrh6pj5V++jjv3oGaxQC0WWJilqLM8Bd6CpX0FQgnPfeSQCA4/evzyFnHPoecXAsAjZrhUKB0NJUTGWd4sIeA+Mho03chbfOwSPjVQ8vTaRlXRx9FdIPvCwVpun0ETb8y/9GpqelsjBSX9Py2FwsVMVKvvP8FGannXY8SOJQEQID+wXmpPqJX7YXzsftMue3PVpzkTB8gDtsORCZjfoQcdu7lLt9o1hJ+T1iUD8mfAbwyRkT8cfPzcRQJeS6aww/umStIUxMPO0T1/7dWk4j0VUWaC4WQETo31xoaGylPkccXJAyR24QFYmMYiUdnFy4yAWp82zXH5nzDDiozTbNlZ/+jZGfZtwFsToHJlWeC2znHNJBjWqaCMfsIcNrUvRHvs8/gnH6S3uiW1ERK03YI/B1kLtpiVhztEfhxpbpccnglyPRVCh4izubClLu7ZffBEkczGKluNhIVUjPX74BO7vK6N9cxNH7jcDeIwbiux8OODOXExwQ6PJ0JPRNStSBRi7GHDpLlaoymuoQRNGGPkccXH1r5RxCnUN7V8XJgXDzrdkjDpFpn/vnF95OpM1bljxJNXa0qDOOVHqFt60Mn7LslkzpylLRWa6kUvgDQL8iVeNXdUeslDYGFilipbHDBuDeLx+XED2lFSsZdQ6wj/mmInnHm5I+BT5Paxt7kW+CWyFdLMT9is685hkAwF+Vw4U+EIZq93FK265zaHCNV2eRdUVXuVL1Ajc54NYLfY84OPpWKnG5fESEoufuiZurzUwwlqwvu1IR+Pivnkmmp1jw1evZjwRl0lLmr7bB86Q57tCWUlmkPvWspblYjaXjv8An86UlLFX9gAjMbw8aNxT9m4u44hPTEmW+s2lnYhPAEQKbQtrWvEBkEU8z5Y92/LUSK/HX1f40hauJRdole3mmsiX0DaGaxfZu63HKno6AcyiE9fF9US/0OeLg2vfsN3pwmIsRK4V+DkC2nSZ3loJeyrptHYk8HEyLeZpWqXlN4SZsIJPPB9OIH90bxOex9Ru3PnOTYVt7cvenB0zzmbdFihTSvmIlrvmZPY0RX2D2HhFZosgiZ1/xeOI+fRiVyhW8vpZ/f0T2M6SLBUpwXEbFbYrF0NYjaXQOpjGmekZX56THO+SyqLqrRFt6AecQEYde5udARL8hojVE9JKS9j0iels7U1pe+yYRtRLREiI6VUk/kogWhdeupJC3JqIWIro1TJ9LRJNq+4hx+Fv9JNOai1Rd4F3jkBNxdIclbNb0FabFTK3jf59rY/P4tmf0kKR8XUVTwSQDtYmOzOVxk5s7TIjDEXvvYSQIuoz+ts8fjQe/9r6ATQ/TbNE4XUi7m5PZheB3wPIaAGxhCKG+Sv/kb0uwcnN7Mh/cIbubi4UEsTFll2Pa63EtmaTuQh/Dy9ZtR3tXGRUBHDtlJF7+z1MDzoHpYFV/J4mND4HXx/xGR5j1RopxOAQKaalzaIzjnYQP53ADgNlM+uVCiGnh5x4AIKKDAcwBcEh4z9VEJKN7/RLABQCmhh9Z5vkANgohpgC4HMClGZ/FC66uFUJg844ufO225G5iSP/m6rx0vaQlq+N20aVyhbWV9t3qX/C+fWP/fR2IbLBlHdLSlIhDpKNYoPROcCnFSv2bksHh9B3sb86bjguP3897Zztj8p6YMnpILE5WLc7HrkrSPe3tBeJhxonJw0FfzOfbzrJ29MnAfsUE8XSFmeju+tTSHBSkivLau8o44aeP4mu3vQgIgaYiYWC/plDnkCxDFdEWHJyIimsei4cf/8HdyaNvVfS0zqGjVEa/cA40FwsNPQfbSRyEEI8DSGo+eZwO4BYhRIcQYhmAVgAziGgcgKFCiGdEMHNuAnCGcs+N4e/bAcwifbTWED5y+Lc22BzhIkuLJ5by5xlHZUWVLTWIbXzHXou2SJrltZ4FwrEAFfgAgyqaCwV2IbTdl/Yal1vnyiaPHGw8/tQGNU6WL+ewzMNzmnvE/zr9kMR1IeILvco52ImDv8McYB9jA/sVk5yD4YbIPyOZYdyw/lqd5lrlAT1qn0vfoSeWrkNF4aiMYiWFc1BNg+PPkbzvT8/HuemNOxycQw9bK+3oLGNQaO48uH8Tq1CvF7qjc/giES0MxU57hGnjAahuvW1h2vjwt54eu0cIUQKwGcCIbrTLCnf4jPjOdNH3ToldV3UO6xmzOBXqQi13Sd/RrFJ82VZ9V21iodPEBLJVXSA3m14s8mKlPQb2M9dpKc/3TAb9HVYXkpTWSqqZJxc2QUdnqYJ5y937JK6ks4+elMgRPK7COZCeg4e+mNtk7QSyFjagOck5mMZFNR9z/aSDxlR9NmxlAIHFHxD3apfvlBDnqArEj7GiwjlIBb++qfaZWpz+SkVPcw47OssYIIlDS1PSH6aOyEocfglgPwDTAKwEcFmYzs1OYUm33ZMAEV1ARPOJaP7atfZduwk+nIO6MxvSP+4gpO5S+jfbu0/dGcldzaSRcfd3n7HH2aqbFoQnW/lQ1WlBRM7FuqlQYHd1E/c0u/in5hxYziT+X74uo62/oT5V53CQ5mfAwSuYHNwEP+Ic4hZWMeJgtZLROQdzXUHIbnOGAf2KiX4zexKHbWOuFTRlqa0HmiTnoKzm8l7JzUkCaAp0qergJJ3Q863b7jbu2NLeZb3e0zqHHZ0lDOoXWFAO6rcLEAchxGohRFkIUQHwawAzwkttACYqWScAeCdMn8Ckx+4hoiYAw2AQYwkhrhVCTBdCTB81KpsbuZM4QFiP/6MqcXCXpe685cD13aWp4Mz5TNZKPqE9fOr2UX41GXQOaX0Zqvd5btP08jmOwUcwqeocbARNYoch9IgOp15L+W1SSNu6Ysro+AluVnNLJN+z+g6aCoWkn4OhLLlgm8y8fUUwUiTERR3evLMLKzbsgOyZgmJRpqIYs1YK56SW7xyP88ldi21PWyu1d1Wqm9DAIbBxdWciDqEOQeIjAKQl010A5oQWSJMRKJ7nCSFWAthKRDNDfcI5AO5U7jk3/H0mgIdFHcm12zEM2LTDvJuIJohAu0OEU4oRh+A7izKF2z2ZFgRXm1TY+oIMk1JFU5FXFtrusyqkPXUOtTC1DPKnsxvvjqUbd10IGDkH24J/6iFj8cUTpih5zXXph/2UKwI/eygKnxKYssZh7l+zzkFvh20KS2WyqgxW82/tKCmcA/+OVFPWqlhJq9Nk3qvCFfrETnjr7+hQroiqCM2kf6kXkpHZNBDRHwG8H8BIImoD8F0A7yeiaQjG3XIAnwcAIcRiIroNwMsASgAuEkLI1epCBJZPAwDcG34A4HoANxNRKwKOYU4tHswEV9+WKhXM0WKr3PXFY6pHKqoON7agXEBcji0Hf3KX5n7ZRJQY+KYdRM04Bw+dQ2DKmsxjc6hb9PZm4zXvXZFBrJSW9Koep16OXZ47Y5nv7Jn74BNHTUxcj1krIbkDDtoTfDcXKRFxFgAOHR8dK+rSOajP9pcF7+CKB1XiwIxJQ3E2zkHvP7tYKfme9DEjm1Qo8O+mibVWiuehUINxztH7YNrE4awFoilgoYTV8q5OyupSuYJ12zoxdlj/kDgE6QXiOfV6wUkchBCfZJKvt+S/BMAlTPp8AIcy6e0AznK1o1Hg5OyHTYhMOlWFtIuKc2yz70RUUWSUckaxUirOwQyCB3EoFninMMt93//Ly8ZrbH1c+R595rOrU3elPpMuLecwdlj/2CKuX9c5B9W0sxLbTCQrVu/TzaZN+YBgV66iyMRWMhNKfz8HW1+pu/5A75Ic36SIlbh5prc5IKL87qJ/c5GNiQXw4c/Vdll1ZHUS8fzg7ldww9PL8c+zpmLVlvZqGxvNOfQ5D2nXbtk18iOdg3AuUjGFdEVOdq099iKq9+gLrmkBThNAz7ZbLhA5DzMJdA7JTNc9ucy7DSp8B35C5+BQSJugTjZb1a5AcbbyOcg+E1oelbDLutTNxMjBZiswG9Rmd2lilCKRd/gMVaRquw4Ar67izwH504VHx/Ru8nhWfdzKeEK+or8h/ZuxVVcuh9WUK8J4GJJJvyg3draq68U53L0oiBt1ZSj+k2OAI6L1RN8jDjY5O9yLtern4OQcYjvBsI7ETIx+3m7waObkrqa6TRNJmg/65AWkWMm+NSoyHtJd5UrmAbxma9y6pKtcYTk5lzWNL1QzSfsJgO48KqqWN4YWxa2Vojyq/DviHOLtlfB9Vl0hre+uC4VkO7PqdFQRTbtBvHnkPnvG/i9ds5WtUyphCzECropp4+UO7d+UOONZoiKEMfaUKb1kic5sagMAvLJyCxsQU4ctkq9+fGuVc3C0p9boe8TBuiDyrvoqVLGS6zXFj/k0cQ5Rnt/9/U1Du9wHoEiYJrY8SUqr3IhArGS+DgScg17fj+551X5TCkz993vxrTsWJdITIgjXqmUycfXkHOQ1by9qabPvaJYQ8aapZxNwnINJBGKF1gid2LKcg6Go/UYNjrVNh2mh9YG+D5FOn0VFtGN7R4NaGAcxg/hOhalPOy3nfNiCc572syfYgJgq/vRcGw789n14cz3vUKkTgIhz8JM01Ap9jzg4rrsWAFUhnebgIPlT9eT90GHjtPz8asx5K6cNn/GeyUm/Qpe1kkoo38XIzjnO4bm3LKEcaoSkfDpA2tDZcc6BxzFTRrA7V5/26cvOGdP2il0PxEpRroP3GoqLTtgPgPJ+lULUhcxFEA8YMyR2u2w7tyv18XM4772TMHnkIGN967d3ZvJSl5sc3cou4hwi802boQO7cMbESnzb9jQ4bEofDK7KGZMD7sc37peO3z4diF25syWAZIBOeSKkSf9SL/Q94mA1TYtPjH98z97JPJJzqAi8ZlEEArwTnPreB/Vrig0+0+JWZAaFaVefZvDYZMtEQBfTfhWcQtp3fdBt9dPApHPoSqkhjIssTHkiC5G001Jfjz58eEAcVGKjd9eMkIhXNxMGzsHWzdd8+kj830XHxNogn0/fgASRht2sw5D+TZEpK3P9rwtXer97FbIvvqud2S05B5W7s+nTdKusIC1A2SJWGtQiHczi4Wm6LOd8XPnJI9BUIAxoTsb98oG0KGwydNiUUfG5cUd4losuIqw3+h5xsFzTPZFPOGB0Io+qc/jd3+2ns23viHZDnBNcWRNNmawtOKVcWp0DB1PWlqbAa/aNtRHby5VbZByffEUL3ZGdmp5dNflM6wRn6g2VO/LmHAzp1YVayae3U9/pm3QONowa0lINuaBHUtXNYnk/B67tUT4Tx5lFrCQ3RC+siHOcMc5BmBfqqH3mfq9YFNIVIbDvyEF4+puzYuldVbFSstSB/Zpw8F5DM+/iJZEzRSAYZYiGnCuk6wyrzgHxRZizZDC56nN4VonDo8qQv3LSVABBrBR1weEGy/CBzewJUEadQw2slbgY/1zeQiG5kKzdyocs0I/B7A70Oqu74rQRK8lNTIvVzYBwTsxolx5uBLQ+rC7UCreir1lRcLsk1AXOtg7HxU/xa7pYiVvQucWfkORCEnkyEAcTV1D1K1LGmNWAgmlXlcvXFP86hg1sxjDtHO2qtZLpWR3tsaHsIHYmopGbstYd9hGmdj43oEwRIDn8+N5IOauKlb48ayqW/GA2hvRvirVG7qJOO3Qsnvi3E/Dg147HQ187ng0hYB5YKZzgDOkFYhTnTOZAZh+/wEW0PWhccpfF1W3aMekwETWzFZPFUqXKFfB1SfmvEP5iJfkKEsMnwTkkFy394Bp1oThi7z3gA26XLPvs6dfjsbdKleQJejznkOR8dDCn4Doh6bm+ILY0JTmHmIEH4wlpale5YhZ3CsETSMk5/GFeXDogRUnUDYe0KudgECObNn5ZxHbdQZ8jDnbOIT4xuEGjxlZKA1WGTESB6EZrj1zYh/RvwsQ9B2LK6MEYMbiFjWmvDyC5W+S8aU0w9UWgpIw/e3fEWIP6FZN1MfdlFdvI/yrj4DOPdJ2DLncGovDSb27YgV9pZwEk2hU25HdzA6uzPz8fP/eblHyrNrdjxYZkID99fKnv+QdnHKrkM7dDvScSBQV4bXU8pETASbi5xO0dpQTnk2i7Vs6G7Z1Y6tDLlZX+V9GiRCSocg5WnYN902ASeVUYvQ+gEIe5ceLw1MUnBvUx3Lwv5HOYiICRc0CukK4rbF2rv3D+IPewHCXfrAPjuomRg1swblh/HLF35FnNvlTdzLBsEEcw7KQ+fm69YGZQhoUllZCx99/awJvS+cbb8d096YfEm9rpS3BNcfvTTlZ1VyogEhF4gSj653m/nYcHX1ltLy8cHKu3BKeyvaNFcY0WKIFfPf46AGBB26ZYHl00pS4g/T0VoDHi4BAFdZYq3k5wLs5BxymXP46TL08ec6rC5EsTcQ5RX6Q9z1mOYpu1ksnM1bSr33NQv7Bd2eX/pSpXyD+7qU+CUCLZ6syCvkccrJxDfBGzHeSuLmRXf/rdGNyiRiIRmLDHgNgpZqrOwQSTQpobiEmLnaBcTu6uO8DJwfmxX0b22GqzyNNrtuBpPsERBy7Mh7eHtCFuf9pdlaroNy0SMry0T8wquYjJuD/6AhPJwIGl4Q5+R0e8H3Sdg2l3aQsPUooRB1keX87UMYMTJfH7GLJe/68zDo3139TRg73OQ5fDdeKeA2Lp0lpJFalaTVmZdsn2lEVSdCbBifaAaC6a7jOFEnfhjhfaqs6eFSGwraOEL9z8HNZsiY55NRGmnHOoM+xx8uOLPjcwVCe4KC0e16WzVAlM65QJed9LgUu8quTWLVPkJNDr5Q7eef7NuHWHvEcdWNKuHgCO2W9k9XcH453ZrB2eok+YL82aot/irZRrZkxeuWiYLmX60ftKM0+3iMtHN6r2v1D+q5CHu7cwZ3cM1MRQsllRSOr4M0ZiGRiPttTHl/FMDU+xkt42HWOG9vcSIca9uZPXJ+wRLe4jBvXDkP7xsG0nHDAK93/lfYn75Ds/bmo8BL/s70JBFSvxzwBILtYwLiqi+h4T1wTflbLOZkN8jawL9VdvjYL/lcoCd7zwNu5bvApXKJFyjRsCi0VWPdDniAOHv37pWCz+/qkJPwe7ziGeT32h7V2VUEQV3fd/L76TKFNn+btMiijOE/neuCeyLFe19V+xMRJrHDs1Ig7tzML8nQ9HJ9RxYqWjJu0JHQXLhJS46lNHYPjA5kT7xw7tn8irZnmBcaYb1FJM5FOh1iF/dpYqiaMhJVSz5IBzSL7vfuFCz51lfe+Xj9PqD76l/bqJcxBCoMhsMoI8kSgkC/YZMRCHTYgcFm1E8n8+fniQR0vPEp5EHdfNxUJi03Ds1FE4YOyQxH1GnUMxKVYqM+9XbZttXBwwdggOHjc0GUbGwDHKPjB5UOvzOwvUmE9x3WO84L3Ds0ZyU9Y6g+vbwS1NGNTSlOh8blioC0qUFn+hneUkcVDzRuXHRQjyUj9tAPvIN2W56oJkDA1QqiQ4qE/P3Ac3fjY4s6lQYOzvWUIZ7ebau8qYzxyh+aHD9mJjQ00dk1wo1CwfufpppuW8iMQmVrKd3hYPhRLc+4np8RDbUqykvxMA2GdE3GNYllE96Ux7aHXfLWP06/0iCYuLOJgW6sf+9YSY7sQmflKjfapwrT8mnxeJ5qakLorrP0A1GY3f0cxYK1kV0sx8ky2STP0xU0bEiNiOzhLmLd/AHvgj69pvNO8VXgvicOHvn1dCfkSF7eiMt+eqTx0BIE4oG4G+Rxy4ga0EtopxBMziyomV9IVz/PABCbESl1dXPn4wDKfxL6cekKhT1vf62m1Vd3qJwycMqy4CqnhL3yU9dfGJ+MLxQXgGTqwjdyhFSnrNcnRGVUgf+O37cOY1fEwZqVD/xSOt1bTVioxVwsWmyyap5QDRosyJHWw6ntg5AEKy7doiVYwOWnFBNn94aDN/oL5TVnaJUsphsjqTi+bwgUkleRYIAdwbRvvU4ePToupkVjDmyur4CMSI8TJaTGIdgz9Bv6JKHMK8sTmXfIbE2eIal6+Lni4Nue+X3k5GkJV1nnbouMS1qF3dX6gXtAXnm6hFLVsXNxSRxN5XjFsr9D3iwCzY1R22JtvnrZWSCmkVP/rou3D7hUcbLQtckTXHDx8QC8Am75EDcdZlj+Fjv4zvqlWFm7pbbdFEIeOHD6iGfeaIg3x2jiiyR3HCbycjOZ+f3L+kmpaFOMhm3b94NVsvp7C0BatTnaRE+F/X5/dLET9Htmmv4YHI7IcffVfseqRsFhER0CqUxEi+i/ful4yJlQaRhZHAhb9/3ppHwvQaqqJLRmE6YnBLdYQ0F5I6puYmvh/lc+rvPgrZzZt+Jtpo2clXdXnafTc+8yZ/A9MeHU3FgtGAJA3uXrgyUZ/ev7LnfMS4tUSfIw5c3zYpnENMrGQQpQDmwXPKwWMwbtgAo8KKdVAKv8sVwQbzCo7sjP63ronbqlcqqkI6ytiPmZDyWTkWXT1gxuScFU/zk4Fylh2jGYc3165IVSqqeWXRHMGwEYe4zkGw8XlMikwO8k7ZNnkwvESkAI/ESokoqVV/lQq2tnfhxbfipq5podbpC9N7qIouGRZN1Sdwptf9irwZrtC+q/mblHOTpVjJ8gzElCGfXQ1i6NsNVS9mQ6VDWpqc50+nQVU0apmXIJ47rhf6HHHgXnUke/U3Zd20Ix5R8aSDAl+HluYoYBhX13AlCqSukC6VBRuMq2g4KlFir+H92V1dkbG04BTqEnKHFYiV9BuT9XKLAAeOBb/m00fixs/OqIqyADcXoirFb3k2ck4aEXJDabl8dfGQnIPezmaDrJxDRdsF632oBq4z6RakX0W5IvD5m5/DO5sDDuuhrx/PluWCj29CUufAiJWgcg7mGGDyW1/jdJ3Df3zwoKBcEe+zan5GrKTK4hOEgKEOepiKgmlShpihjC/hIEiDW5qwtb2GxCH85uYTF4SxEXCOfCL6DRGtIaKXlLQ9iegBIloafu+hXPsmEbUS0RIiOlVJP5KIFoXXrqRwJBFRCxHdGqbPJaJJtX3EOLgFpMlwgLdNrLSwLX4W8lWfejfuvOiYmL+DWlf/5gL+6djJsRguug16qVKJnY2r1mlahM8/djIu+/i0arvUXR03lArMYjFpRLBATx09GB86bByumDONMaclLPjOKVjwnVPwnQ8djG/MPrBKAF2LOrdYjBjcguP3HxXrDxfnMH1SFD7i3++oDseqTJYTK9mIl+pTIAQv01W5Shd0zkFfwFURj3zu/zojfnJuJG4SePr19dX0/bRInb7LhM2r2WRPb9qdVomD4ez0aaHTZ+ARz4uJJObM2DtsV5hgICZyTq7YsAP/cNVTfMPA6xxKmjhK1Sly/XHmkROqv2UfmMbP4P7M+RHdQDVECKvvSba/ETm2o1QAACAASURBVPDZFt0AYLaWdjGAh4QQUwE8FP4HER0MYA6AQ8J7riYiyU/+EsAFAKaGH1nm+QA2CiGmALgcwKVZH8YHrM6hqCqko3Secwi+9V1D/+YiDp+onjWthHoWAh2lSsIuvtomlXMwiJVMC+fsQ8di2IBm1s/BpEQG4oPs7KMnAQjkqFd96t04aNxQJmhcGKBsYDM+e+xkXPj+/aqclmtRt1lZqG10nZvg8hA+dC/zec0ckjqHJBE2hVXmEDnUGTgHpU0tTQX0by7gkzPiYeGbDZZOOgYYxpIOG+cgNxKJc81NUVfD1cIUGv2nZx6Ov3zxWIwY3M+oYK62K/w2RVxVOQchgNa1cVFqgrFldA6RPkPJo10zoewYi/2aCqlC1ThRFSslL9XCKzsLnMRBCPE4AN1G8XQAN4a/bwRwhpJ+ixCiQwixDEArgBlENA7AUCHEMyLo7Zu0e2RZtwOYRfqWq4bgOYeIHVYHA9cK2bRtDpaSlAVxe2c5WBC0xU0vv1QRVTNIFTZvTEUcCSA4dCW6zywWU4vjdK5epqwAINwTjTNllRimiNmk7N80AVzE4T8+dFAizYtzqEidA3DRCVOq3N+A5qJRfHPMlEBRfNlZh1fDp+giEr3/1YXaFO9Hcg7cCXgqpu/jF4RPgusGubj5KKSFUDmHaAW798vH4Z5/Dvw9BvQr4l0ThrGKU848G1AIqlZfsxI+g3XqSzbRCGm1p+qUbN7WgFus1FwgdJaTJuEStmNA2frCb268jhgc6Od8xbi1QladwxghxEoACL9lcKHxAFYo+drCtPHhbz09do8QogRgM4DumWhYwHVt3JQ1SrdxDlz4BxWqcnvWZY8CSJqW6rvzQKzELBgWsZIcnFxcILZdjEKdU9p6K6ThHrC2Qf1dxfkOCPqMs6Sa+61ZVXm8ik8pBzLp1lmyPBMSR75SEEH2yW+cUL3OPfcfPvce3PTZ9wAAPnbkBFwxZ1rsutz9JYlD8L+9q4yK4MeXL6dCRDFONQvkoqsr3T/08ycBBIcT/fOsqWF9UXtVruagcUMTR9AG7zteV4JzUERsgDm/VEi7ekVXJ2zY3olDwnZddtbhiTwuxS5nPquaJrs4vL8u5M2GTfAhWt2JBJsFtVZIc+9QWNJt9yQLJ7qAiOYT0fy1a9dmaiBr0VJVpLk9pKWZp4vtV22qV28JYqmYdr4uhbR6VKIO2Yyxw5Iex1zPch6ZvOmq/p8jIAjFSnxfzD5kbFhn/MjRwxUPXt1TuiIELr0veQ71mKH9Y45WEqpCm4NdrBSUt2ZrB+5euLL6hPJZC0Qs+9hUKLBHduoiEtOO/Pbn2oIFj3k/ac6J9slJ0SqcgFQsjxzcggJFB+xIfPWkqRjcImMc2U1Z9ToT5yAX9Dxhs0RgYadb6ciNgEmkOueouLOiyhUsX7cd7/6vB7CwbTNOOmgMRodjTN2wsUHvlA7VRVJAoN+rtq8pHj+rs1TBN25fGD1vStnHxh2B75Lb0a/3cw6rQ1ERwu81YXobAPWtTQDwTpg+gUmP3UNETQCGISnGAgAIIa4VQkwXQkwfNWoUl8UJrmujxVE77MeyuPrY5HeVBL58ywvVtBGD4ufV6runktGU1Vzf6KGRSagecloucurOkNM5cItuQqzEHXwUykA5tn/EoH645uwjq2WpzVeVsPpiKAC0bUw6WXF5AfMCKarfNrFS8P2F3z0HIHlQEVFUfvw8cG3h0whuVdSnNU7uZKeMHhwT06iIB3C0w0f4WtVzMP1waki8AeCj756QOE955JCWmHK9qnNw2PdzsnH93UXiTYEp/34v7tYc9OQ4lfoqlZO9+fwZ+Oi7J2j5o3euOpHFzLmVMtjNltJmNVqv3iYg4vA6w754Yula3Do/EpqkIfIA8Nhra9FRKicI4bSYHjO9RV53kJU43AXg3PD3uQDuVNLnhBZIkxEonueFoqetRDQz1Ceco90jyzoTwMOinuTRupOMU2bezyHkHJzKKMKS1Vtx54vvVFP0w2yqE7e6mxGprZVUKxZ9senfXMBXTpqK2y88OpFHLe7EA83Hoept1dNMCmmdA1OzqOIfvZ6KEHjwlTXgwHI4jjlotY0Pb5ZEYUdnudoGWV9bGJ9q8TuRF63+KiQR1kUR+rNJIt2/qRjqHPg2fWP2gfaHqtbrkYfhFGX6RIXrKhIlRBotTZEzG0ERKzmIgxwXKkzjyW3MkGyXLfw2oEcJiMZaNN8EyzkMHZC0NDStRFKHEh0nmmx3WpTKAne+GD8D5NsfisSuvS4qKxH9EcAzAA4gojYiOh/AjwGcTERLAZwc/ocQYjGA2wC8DOA+ABcJIaRw/kIA1yFQUr8O4N4w/XoAI4ioFcDXEFo+1QvqTmDmvnvihW+fXP2vD2qbKasz9g1zr66UUzn+Kx58Da+u3MKLlZjjOH3r/MpJ++PAsZFMOJqUUYGjmSB4elGmIIRCmBx31HvN/ZrgHJjnHBpG+OQ4nA3buxJp8XbYOIegPPleSlVRQrS46/4sQHIXrnOA8qopBEk5FMWZFhCZzAUnjOdzL0AR5xDHdedMj7etQIx3eKH6TERRSJUNTJ/EyqJkfcm+SG5SJKTPkMxXqcR1DsaxCGBh2yb873ORelMVlamEkpPtn3rIWPy/9wfhZaRBgEnMU9U5hJtEfT+blnMAgnH3/b+8HEs7UjE80PUq9YaThxVCfNJwaRaXKIS4BMAlTPp8AIcy6e0AznK1o1ZQ32FLUxF7DIo7pcXDZ3Dy/+DbZe3ADY3k7in4v2VnF654MAjZy4mVJOegD0A1JDeQHJDc2iEZk7TEjbfcCiaFy79A53zURU2fQ9xiLmNNce9j805+oZI7Oh+FtG4oIG9paSqwk5zbhavpNic4KSapCPPiLu87dPwwrGLCjEhwxFKHrEM/VGjWQWPiZRWSfa8GoiSK4kH97u/x09G4Ok2ityhP8M297xMPjNrmI6ICpOWcSPhC3PLsCvzoo4eFeUKCBF6sRET45Iy9cfWjrytcpFZHCLmJS8M5uAQiLiW5rrurN/qeh7RFp0CazoFdXD05B5sZqQ1msVJyAJ4+bXwinwsyT6dLNGAgZPG0yCxTxw2fmREry3gsQUKsZM7DhdY3zbfv3Lk4vO7mHPTFZsSgfvjKSVPxu396D8vJJRZRzdHM5AQn6yxXAkJv2lz6vqMOj9g+sgmLNKdNHUVKnlMOxB2w0nhluxb0yAE0CZUz48y4uYgmpl21YOazSazEtdPEeUpus7O6CXFzDr6+FSZw/VpP+Gu/dhOofcvttIW249Uhk1w6B9uu3ZaH5xyk/b99APos6BKdjLlo/F53WyVHoM6zT8/cG18/+YAYR5Ym1LAtHhW3U3YVa71s6B4iwldO2j+ok6FIep1JhTTPOQCoHl5TqZiJuXyPnQ5z6QUr3HGXZA0uMUehEO1K9xrWH1PCkOrymdLI0LndvmkuucZFtb9cukDwY+FfTtk/lgcIxgR3fjcQX8DfXL8dNzy9nM2ni5X0dd8VGPLMIydg6ZptsXfoDPZXSOpf6ok+yDmYB1mgc1D+11jnYBIDqGVxk1juNk2hHaJ7rU2qlgW4LU78xUrxQa2L6mSdvtywYJol+40V8TiksD46Bxu4PtVLjCzAwjpldFuDWFKa/5rWa5lcSw9c17OqCulCgarRe2PexZ4LUzCPNLGSYVxzReq7/bIQ2K4cp8pb1/ERS7944tRYWbL81jVb2bar3Jp+pohqUKKLlfS6ufVBTWsuMue0OyZJsVBwmtDXEn2POCi/OZmwb+A9E1uqlpW417DTjw0aTqwU7p4WanJjk3lgVH6yXTIP52gWuxf2soPyAyVg7EB7piybh7cOnnOgan06nJyDh87BBpveSf+vO3SxHtCh3NhH5+Di7nwgx5yLiBYLylnNlcjfpqqQRjKcuU0sZuKuVHBEBIiP2yIF/gsX/SEKN27SObjGgmrGPUwz25WQRgDNRcIGJdrADZ85Cu/bPzKfb3ZYK3GLuL4J1F+/zhXoZ3k0FXjRX73Q94hDTOfAyZPt16OwxQ7OgUkzmfOpg0JXHMo6hRCJw3R0EZSfziH4di08CREYk0fuJm2HsARp/jFhWOJgWcVdxXqFz7AUol/68OF7xc7jBhjOQcrpDb4hW9q78OcX2oxmuPJ5a0EcpCmnKViehPqOShWROKmOGJ3ES98/FRyI0xMYNlr6NJo0YiA+pvgwcHnMIiq2ObE8EqZd+qCWJuw7chBOPWRsjDN//wFxc2/pwd1lsFZycQ5NhULiOdTrn3rP3njxO6fErksC3ihHuD5HHBBTdrl0Dsm7I3lwes5BnyBViw1lULy6KsnumvwcdHl4QhTEtiv4dusc3IRHOuWohNKkhPUFN+xt4jK9W37+ySOs11X4NEsdD4NbmvDzTx5h9rcQcqEI05jyCgXCbfPbIASqPhTJsuIii+OmjmTz+aBFiW4qocrhJYqFaJMS4xwUs151DPZrKmBgP15lKTlK1XSb5ZIIKCsc+OETh+PRfz0hFkmA4zo5wwTAHVoiMhywi4Xlme2mo00BRqykFccZE8SJAydWin5ffFrS18X3CNlaoc8RB/UlqiGggeSOh1/ogu8snINpMVI5h6+cNDVxvcDs2gBO5+Be7arErRY6h9ApZ82WDiUtCb1ZiUPeFXBE0HRQDJAUl+hxfuxipfgCyJavyr/NRcX0VXJscJZnXu8o/O4sV3Dc1JG4+fz3OO8xQS5waiwwNUx6tV3KGCuVK9V2qqasrlMSq+0PN1kyFDxg0qWhel6FqUyO6zR59LtDxwffAnHza3l0rlp+uSKqSmcuREtSrBSvmwu8FxMrFXmx0sB+RXzuuMmJ0yBVbNpp9+2pFfoecQi/rz37SJz33kmxa4R4DCObE5w7hEAyLWFdFH6rg2bK6HjcfiDYyXDj3q1zMO/iXZzDE0vXeZQV9OfabRFxOGLvZDA4fac9UZts933luOpulntO6w5fy5/YjVkWDC/OwTO/qhCVHsQmyzMX1HeUJmQ4B0mIVYUu1yPV87QrwqxzcOjjomtIhAfhdQ6EZ5QzK3xEsWpb42W5IfMIEXHrT198YmKXLh0CB4QcDEdMdbGSfq679JNQofbfnKP2TsypwOhE8FwWgL+9vBoA8KN7krHH6oG+RxzC97PPiEFJayWNc7AppLOIlUyLty6LTN7HL3L6wqFXycXpyaLs/PKsJDcT1BcoV9WyZjMHsqvt4ojHgWOHYmQYlpg/CcuyszdecV+vWp75cg4eCyIAdFU5h2wituo7KlfYEO5pIHUO6ilqHIpKX5QqonrGSdWUtUDYf4xyFKilLE4Mylsrxb3A+RDmfPk6OJ2DDCWu5gGkb44sn69TCFENZrlma9IRUT0D/KnWdQnPZo44SLPX/z7zMEweOYjdyAhh3oTIPuTaUw/0PeJQDQeQvBaIBuzEQbLpOx3x2nl5s5YnzKSbuCXuY5RygJlzOH7/UfjWBw7EF0+ckmxXeIvv4egjB/fDV09OyqgltrSXsNOx8Kj9aFpU9Pj+KmwSPF2UoC7gL7+zxUpY5LXVWzqMeeKB18ztUB0oy5VKaI2SlThEGxBuPKSBDDynLlZ7Dkpa6siFp6xxDh87cgL6NRXw4cP2wvjhA3DslJHO55AitrgnPLegU2wcmowZdLBiJcRNWUcNaUmIGOXGq7NUqW4ITBZ9ZSGq5rw6V6A+jwDw3JsbY9cGNBfZOSHHmxoFWkVnqRIQB8MskRFyOcJTD/Q94mBRFhYLFHNu46xNJJu+o8PxgiwiKf1/qWInSJz1B5DkMuSg69dUwAXv248NES4nmzRl/Zl2FoEOm/LriaVB2PRfPvq6tQyVhpl235xyXsJm/23jDD748yesHNLLSjA9Y/meOofOcgXXPBb0gyn0OuAZc0ch4BwnmQYcp/vBdyW5O9muiuQcwnr3GzUYr/3gNOwd6g+i89YtzSdKOG2a9ARZjBm4LtE5Bz38OADsNXwAAODtjTurY8pkRVWuCAwNxUntXckxVA2jUxGJd9pUJKspKyduBIDL/rYEAmb/F4nubRf80eeIgw3NxUJMUcsNzJbmuNu8CSYbdxXy7/0vraqmcYcImWKqFIt8ebaYO3pohlGDW9h83wmjQdqIw+trg9DI67a7ArHZZc9qnidb1yWuTdxzQPX3UZPsJ6CpRFQIYM61fzfm1Sewa5fuGz6iqywSB+hEZbjvV89NMC0kHKYxh//IhUv1a7HtxqXJq4m4qacmmiAXaqeJM+JEi9c5cGkGsZLyvz9z8JMM4Li9s4SrHmkFYBIrBWIxKZL7EsOBFxRiqjfH5I8g00y+Ri+u2BRyXIlbAURiqSxB/bKgzxEH+cq4F9BUjLO53DvQT7T6VXhmgQ5+oMdT5Y7kuieXVdM6Ga/YokGspE/gaqwgy4Iib9kYLugmmba0xvCxmjOdjS0xpH+k+zCxzHI3eMcL8ZDFv/3MUThynz2r/1W5N5CUM6cxAddFax/TzggIylMWOM9yS5WKcVH3mdhqljQKae49+OrI5GL38JJA6Wlqp0y3NUuGaHdGGyhQzJnUNx4ZJ9JVD/sBIi5Brw8AVm7eWQ3TzulCpLWSEAJjhrbg66ccYGyXEMnNWNFAHFaE55TITYjOkRw4dmgYc4vv3O+ffggAfhNQD/Q94lAdQNyOoRATK3ELTVMxitQ5cnC/2IEpKtj36zHPO5iBX2AiZgbtTQ5KwM45yMX5108EBMm0W+5XjGTQLph2yRKjh0RKR6OyLbywRZPvHjwueQSlCr1f0jgI6c8mJ1+sPEvdJnSV+XM5AL9IqurikEYhbdoFA+5jbeUw+OqtC4J6TZxDURIH+wZEPyFQ31QBQf+rXsgmAqJjr2HJhR8a5zB6SJIjrorOlDWZFSuFIfLLFfNCLZtVEUmxkskv6bM3zA/bkTQvBoBZB422es4fOHYoCpQM/V8v9DniIMH1f3OBYqyeafck9Q62XaAt6J0Et5AdNiG5KzBFNU1yDnC2S79kWthluk+gL1mmSX/REnOGspelL9h6fn2y6q2z0TI1Nj4ATNhjQOy3+wxqP+pQNpwFDvgRGDVPs+Vd/scHD4r9t1rXOcSgpo2GqTyXzkFa3qhpOra2l2Lxo0y+EDoGMBwSAbHBYFI0A26TXCnGrQgzEVQNKJau3ha7ZuIcouvBtz615D22IWIiPPVAnyMONoV0U5GwrSOwMrjunOnGM5/lbsOmLDQpzVw4YOyQRJrJlNUUldVKtLRGmMQfkjjYlME3fjYIy91RqmBgv2IihDhXp2uy6cQocTC9sTUBbDGEbvrsjNj/89472dkul9ycQ8miK0jjqAjYOQfdX8Rklgn4i5UkTLG3suocfOASKw1uacL1505P5JHtUWvjzWKTIjZunhYLgbWSEMLgjR2NhQUrNsWOB5V1+xgD6v1T0nQSpnobFV6p7xEH5WQrHepif8j4oYnrEnIi2Sd6/NoHDxuX8Hr0nTtFw24hyc5G+Y2t0i6ZCFw1JLFlJO43ahAAoKOrYmV11TpdYiU9FLq+S0y8txQ6h0Ga34cqUjO9yy8rHuu2t32AogvpKFeMXuBp/BwAM/HmyuqOX44+Zl5ZyVtySZGI1UMalIk4sAH1lKQPH75X4pCiqE57xGUgeka1L4wxnyr20/pk+lsbkuedNxUpFhZEh2ym3j9SB+a2BDNfryX6HnFwcA4SPqIZm7JQv/S54/ZNtsXz0D8iQgdjTqeLhKrKQmu74teMOocmn0UskmdzMmWuTqNCOkzW2fEE56Ddrk+wNAsSETlNM0cP6V89OtI2aY+ZMrLqdNjRVWFFVEA6PweAj9Ib5bP/V8tavj65iMXyaTdvaed9V6qcg4VUBp7zwnmyWfI+e9/Ywq7o1kpsX0guqmwXHUvOwSZWMq0PF7xv3zD8ubGpyrkf8XS5MbIr+9Pp1bqDvkscmBeg7qJ9FIdvrNtuvJbwXvZrHosCUcxC47z3TsLTF5+YIA5yt5SGaBmtlTwUoarc1Zbfh3OQbddDoes7QNcCknbe+Cjxix4LIimTtqNUrpo861DX+m8ywdWCepJ1m+rk2ulK46A//6dm7M3nqyqkzWVJp820ixh7wpvy20YcAHfEZY6LMp/Wx5upRvfx6d/6wEGxg5N820ukcg6Wd45dROdARMuJaBERvUhE88O0PYnoASJaGn7voeT/JhG1EtESIjpVST8yLKeViK4kX4PyDIhslTixkh/nsN3DQ1FddC943744bMKwZFs833FSiUy8qZ4UK6XQOZgUnn7EIfptm7g+TnAmzkGHfvfeI5JB0dJAvnO7nNfOXQT3R7LgjpJZrKQuwhw3qdYH2H0vEoSTU+j6Egcl38x998TsQ3krPF+dQ0UkD6dK0wYJtQgr54B4sDvusWX5PnHRRKhQd4mV1PbN3DcwuTYduSohr6iLfFOBqsp51zjblcRKJwghpgkhpKboYgAPCSGmAngo/A8iOhjAHACHAJgN4Goikrz3LwFcAGBq+Jldg3axqJ6Jaxk8+u8sUEVU3zztQG8HKg76BDcNDjlgXQotFZzlB+BHHNRnspvXRfl0U1UJ1fFLYtmPPpDIpxLm337mKHz95LgNetqJIzky2yLqw0XKwHurt7Rj3rINbOh1mS/6zZel9pFNIa2/Z66dPm0H4s9vG/v+HtLAqi32GECJgHcusZLBQETWqYaV6E7QSWltZDutj2vrdz4UmEIXCvbjPCVR0DkdyTXbzYT9T1XsLuohVjodwI3h7xsBnKGk3yKE6BBCLAPQCmAGEY0DMFQI8YwIVu6blHtqDlu/qu/ENkF82GUpKyYy77J837G+oJoGh2xzGiXmIENMfpsOISpLKYcJ8sfle9Fw7rEUt8gd1+SRycCIAPCeyZFD3AkHjE4QpbQst8xuUsACUfttRUsLnadCD+9NO3giqC6upnGhhpK3iQj1K76moBwKsbFvfvdFnw2IX5Ws85gNLs5BDS5oE7E5oxtUdQ5uPwcVkssrFhwhXxiFdIxzsDWO0o/xrOgucRAA/kZEzxHRBWHaGCHESgAIv+URSuMBqDZfbWHa+PC3np4AEV1ARPOJaP7atWuztxh2O2j9tw6fc1zlAp2GXzDtvm95Nm4qZ2L5yWPiJpSYJrFSCoU0AOxjEe/4cE1R24P/Y4byYT3qJ3A0Qw2VYIK00HHtfqvnYVvyjVYildo4OC9rpQwcsC1ih6/OQcWdFx3D5tOb6+q7UYxjW1SYfopjMovsczVcDQd5lGu5Yh67Mp2zkHKd9XxoaAkZa2+BqqHeXZxDo9Bd4nCMEOLdAE4DcBERvc+Sl3sqYUlPJgpxrRBiuhBi+qhRo7gsTthMWdUk247Nh3BH8fDNOPHA6OjB5iLhtR+c5iz3mk8fiRnK7llFpHMw3+87uNIopAEYrXPUdtkgs8jQ3Vf/Ix+WxNX+Q8cndTsA8N0PH+xuhAGcfDmZJxhbru6V123P0V/ZJNi5wPh/7pV5i5WUfDbOwVfnoOJwQ7iHtKLbkYY4YEBSh8itzfKx5AFDXABC2a6qn4NRrBR8q6bXkSk5v5E4atIeOHrfEZiwR7CRUvtJjevm1m3tApyDEOKd8HsNgDsAzACwOhQVIfxeE2ZvAzBRuX0CgHfC9AlMel1gM2WNT5DuUWgpK7a9x/3HDMGskEDMOYq3DgGAC98fnVSlxinS8eiSgJvizF45/ON7zHX6iJXUqLVWxakH/6QGI9tnxEA2rLSaz4RigXD6tL0S6Z85ZrKzDea2Bd8usZLN9FFtn8xvgqpnkDGA+ErjfzknxFgojgJh7rdmOYuyvXpJOGxP6S/KimfkxLVqkl0XEv/v4xf06Zn7GNtVqQQOmS5T1njIcape4xTSnWVRjVkGAPuODPyErv7Hd2NI/6ZqaHA74d0FrJWIaBARDZG/AZwC4CUAdwE4N8x2LoA7w993AZhDRC1ENBmB4nleKHraSkQzQyulc5R7ao6qtRLT/3GTy24SB88Z8vam4Bxh7lhBCVXOvsdAftFUsdqyoKiDnTt1TiIt55DG5JKDKg9OY4rL1ufOkgrRkZnmSVmgIPDbl/74grUsH6MBFSs3mZW6ahlLfjAbx0xJnjWtMgHDB/bDGEVkpYI836XPuPadOz4iL19FuT5efaIim7gyuTsvlYVx0xMZUCQDdcqQ3yqefn0dFqzYFCP20i+mX7GA4QOaq5u7R5esgQmqVVy9Yd6GujEGwB3hQGgC8AchxH1E9CyA24jofABvATgLAIQQi4noNgAvAygBuEgIIVfECwHcAGAAgHvDT10QcQ6MfLaG8jyfxRVA1arlEcuAUCfFiMFu4mCTGauLhe15fQ6ZUeeqr5/D5Z843JrHdYZBHa2cnXXa7c/9Jq1c7FyHRUnYHCUp9ptvmyrus3o1K9ds40KORZs1ju8r0tvzQHgMZqw+Tz2grq/jneDiibbIs+WKCMaiI/T6grbNifYVC5Qwl5VnnryxNorDJMPzdJQqGKZs+uYvjx8eFK+3cR7SmYmDEOINAImZLoRYD4DlXYUQlwC4hEmfD+DQrG1JA9tJcN2UJMWQVizlYz4I+HEOvh7StiY2e0R+9OYclIVr6uhk7Ci1rM6SOdx1kM/ZrJoTENkcl/mmihFGsVitWhV/z6Zy1UXT7vUfXbOZJUfHY7qtcYDAx8dYltZnnP9QMbaZMRbFEIdkZj2PiQsqFKh66BF3aJCpfJlULBDau+L9s25bEH1W7RtpfdVRKmO4ck61TXQsfTAagb7rIc1cqy3nkK4s22656Dlxufw6YrtN207My88h+m2LHqo+mklhHCcO/hY6bLucOdJBLsK2cvVmXX/eUWw+XwWxhG0dULvc1mdysfG1YrMZF9zxfHDehhSHclimRA741gcOMubzEit5bkD08crl1U1hTeW9s2kn1m3rxHNvbsRTreud7ZKw6RzawrMcVDPakw8OFeut1QAAEoZJREFU4kQdMHYIhinE4bKP89w1sAt5SO+KqHarQ+fQXaQ93tGWPS0XYtv1+8qW0+ocbBNdcg6mXVhQVvBdqpiP2AzqcTar5tTBy7lQq9S0+0trWmrbefs+qHQ2s/Vd3PLMnPHNDeaQMRIbHScDcnUCqJ5PraIY4478iMOkEQPxBcWIg8sDmOeolP3bwIqtJOdASSc46U903NToGU971zi8/J+n4pC9hsWcUdXzT7g6diUP6V0L0kOamVhpxRHcYJZIc7wj4OAc0oqoPHeItmL9TiyL8qzabFOcBt/22ETRNavjlxfnUFvqEJmy2hTS8f+mgHkvvb2ZTTfBZjTgOy7Ses6b4kIBwBET7ce0Av76FH3/wfnv+BIHdUP0448dloiADCTHTncsEokIg7ToAtV+LiRDdg/oV8TkkYNwnRZyfGC/JFfnCn+zK3tI92pYrZVSlvWN2XzgNMBfIS3hq3PoblnqBHE5833osHH49Tl8/HxAF2v4LTwmqG1O4/jlg3v++TjjNVPwOxUPvRIoSldvMVuB6c0a1MKLZlZaiChfrvl5fS3iZDbuXGWunrYNZpHRd//B7S8iicO/npo8XjPeLrL+19Ns41o9IjVtv2SF7pRX1TlQMvBeqVLBEROHG0V26sbDvjnKdQ51g03nsNUQpthYlmUnuS1lWfbdfrpR7CtbdrHPV33q3VW5KIf4bt8tyvLdeac5yY6vL/7/4L3MZ3N8/vik+EGH6eCbeJ3xSk3hRD56BH8gUhb4cqeybSOHmI0ZpM09YDerNoVbUbEzVCwfv7/dUTVJHJJ54vHOzGWNU44OzeIVruKiE9xjAgAG66LDcHhLJzoVpXLyOFH9uoTLcKBBjENfJA5mD+m7FqTzvbMRcJ/jNVXYJnpaEZWvh3QthS92a6UwjycBtCnz0yqkhw9Mihd0nHTQaJz33knG63qAOLZOrVkmuf2ZR05g07PAV68l+8y2sKunytmMHnw4Yun5P3aYWXYORHb+EtyrPUQh7DYuaqiyUNvG2QfexYeeUWFzSFWhcwFyznMK6VJFWI0GVNNXl7VeoxTS3fFz2CURhew2Y+KezAHmDCYpuy0daV+gySMYSG/hMsIWZkAp6p8MIaOzwMdM0lfm7WtyaYI6MX367rpzecsiCU5+7WqXcSGrqdFDOvGJLwdqOh4X8LPC+/opB+Czx062hrsAgHHD48SD67N9RgzCuGH9sXJzu/VdNnua7B4+YTjuWWSPraRyHpedZbYc0hXccvevEofNO7qwoG0TSg7nzq5YGI7eoXPoe8TBEnhPwjWJFn3vFBBRYuejwmYHzuHSjx1mvOarczh84nAsWLEJ5x872ZhHTsABzUVjjKYssPsAuPPEwjyk1NfoUMVArvDMPvDh3GSOfsUCPjljoiVf7ahDWoW0b36btZLPuykWyEkYAGBgc3z+TDPEYPJpv7pQ28aZD+ejEqHxe5g3ijqHJblU1UP687+bj7+/sQGAfRyV1DAclrY1UufQ54iDhNVyxnHvEI+dpOtAER02zmHEIPdEA4DbPj8TnaWKQ6EbfHc3dpQOH5GRr3OezWfChyNTiUNHyvfAwYc4VP00LF61Qb7ge8ak7hNmX6MHH+Ks4gsWPcyQlibMPmQszjmaj0uUBmq/tl5ymrHffKRnalm2TZvqZ7DPCJ7zV+uzRRuWRPRzx03G/2/vXIOkqK4A/J3dZYFdXoI8FFwBRQTBqCARxGgZUVErkKhRY4SApTHxFWNSUaNJpTQVTIzGV2msBF+JMWXFBHzFMka0fCQqER9IUDCoCCW+BXwgePKjb7O9M9M9d3Z7p6fZ81VNTe/dO3fOnp3pc++5555z3vQxrVUF61o/py+92XoiOmnlUK7I1VbZ8nBCOq9UazPn+EktXHLPMu/+STfrvk3dmLLLgNiZVUj3hvrEA0wQdfF4i+ZFpaGvxa+PXsffDXzSpUdvAGmsHJLqOIdE/7TkyK3ym/MAX917aFlD6Gvgw2F83Uot/eNviHV1wvUnlc6YWylRPSUZ1HAil6SPqKGMu+kDLHmttZ5IbPqMiJ4GJqyAwpVDQ31dUaGw8Gb/buTMR1Id788in+s+PeMnnw0lUnN0Fl3POCSFKznSOCmdNHuJ0txYz8ZNW8r6xm87Zb8OywSRlNEpW4eDRsdHpoTvlZzbx29DeotH1frxQ/vwyEvtrPdRAi+3UpuVT/k8U+Vmf1cct1fZ9/Q9hf95ZKPUh7Q/G3H4bqj76MzHgEPrDX1micy9IVE9JRmtrcahQF9BtbZiYd9NOBwYdSsl7fk0d29g46bKIiHbS5eLVgpJvBdX57sBwN9O358LjxxTtS9kiO9mpi8Tdo53k4TvlBRt0nbPwS/kL45zDtmtbJ9K8CqZGrlOXDm45zRWsL43+8899tmywDcKz6eehk9xKmiNpDrry6Pi389Tr+E+R+H/oVt9XckVa1K1xHBD+pAxg2L7BGMLj614Z2vFwc6kC64cguekf39aOZamjxvC6CGlE82FjBrcm1GDk/ukSaUuhjTxPbmdNKP08c12dEO7kNA47Ds8/nRwmzxTHhlq09hUDGeu0ZQMpQgPZKV9cryj+M72jxg/hGsfWtkmOV3RWJ7/85l7D+XwcUMSZ+e+0YFby/IWGIeejfV8UsI4NCW8Z1g/+hsJNVYAXlwTlLONK0ObJl3POCRUggtJ2hyuhOu+mY5vNk3Cm2s1jUN4G0yakBUWpYmj0vMjaVBfJ9x1xlSGb5/gi/eUf/chfdihbw9+eFj5sxPl6N5Qz91nTmXkwHgfO7TO0Dd7uOSqie/K4dxpoznlgJH0S8hI3LtHA40NdXx/WvlVY5JhAP8VWesGdFvD1LNbPZs2f140kUmyheHHupyRC/vtNjg+rUpadD3jkLByaGqs56NNWxJjm/NO6Aut9GBdh97z8/IG2ddW+UZ1jNi+uU120I4yfljpbLIhUfkfXLYu9uR1c/cGnji/dDW29hCX5TZKmFrioxIpsbPE+5xGnSQaBggM5fKLD08lXbvvxOlVt8G8piBDbU9nfApzTCWt3H7xtfFct2glk0cOSH5TN0SSiyotutyeQ1JupdBwpLVyqEWG9uvJyVNHcNOc5INfabLVleV5cvvRBH/qPi2Ba2d0GVfcfWfH51PqDKK5dN7ekFDaMwN6upPRSWkxIIiQqiZp191IazzflcPDLuhhwZI32rSHGVY//Lit6ydJvB379eTimePKukTDQJdyq5806HIrh+njhrDb4F4lQz4rjerIIyLCRUeVT57myx2nTd46U4ojdAUlzciiG81NjfHj7dS/iVXzjiwrV/jl2bFMCoe0iJ6tiKtNnBWTRw7gmAnDOPPgXRP7XXHcXl5RUmkyZZcBVTdK5fD9+o8a1IuX123gsD3apuQIvw9T5v2zTXtSok5fbj15EguWrGE7j7QwHaXLGYedBzTHxkGfMKmFmx5flXokz7bMvh6HuUJ9xtUvBti0pXVWe8nM8R0XDHjoBwdV5UsEbc9TzNl/eFXe05fGhjouq1FXaVoh2mniuwK5/dT9WLBkTdGBwFJhrCdMammTv6q97DqoN+cempztNi1qxjiIyOHAlUA98DtVnVdtGX5y1FjOm7576tEuXZ2d+jfxq2P23BpGWIod+7WmKUhrs21EQu6rtIkevMuizrVRfQb06s7cEqlqCvfFXvjZYd7nnmqJmpBYROqBa4FpwGrgKRFZqKovVlOOujqhR13n+/K6IsdOjM83BEHRk10GNrPyrY25Ns7fKVGBzMgfd353ild68lJ8VmAc8mgYoEaMAzAJWKGqrwCIyO3ADKCqxsHIljtOm8Kr76QXYVRNwsIv5pHcNggDH9rDfikmtMySWjEOQ4HXIz+vBr6YkSxGRvRvbsxtpNjXJ+7E6vc+9ioeZGzbjBrcm1XzjuSt9Z+WzaFVy9SKcSg13yrSqoicCpwK0NLiV5DDMKpBj271XHDEmKzFMGqIwjKieaNWnLurgahTehhQVJZNVW9Q1YmqOnHgwOQShIZhGEb7qRXj8BQwSkRGiEgjcDywMGOZDMMwuiw14VZS1c0icgZwP0Eo63xVXZqxWIZhGF2WmjAOAKp6L3Bv1nIYhmEYteNWMgzDMGoIMw6GYRhGEWYcDMMwjCLMOBiGYRhFSBrlCrNARNYDy0v8qgV4zWOIvsAHKfVLc6w05U9TLt9+tSq/71g+8mehV5O/c+Ty7Ver8rdnrNGqWr42sarm8gE8HdP+lufrb0irX8pjpSZ/mnLlXf4Kxiorf0Z6NflN/lTGirt3Fj62RbfS+5797kqxX5pjpSl/mnL59qtV+X3H8pE/C72a/JWP1RXkT1sXW8mzW+lpVZ3o254XTP5sMfmzxeTvfHxlzPPK4YYK2/OCyZ8tJn+2mPydj5eMuV05GIZhGJ1HnlcOhmEYRieRC+MgIvNFZJ2IvBBp+4KIPCEiz4vIXSLSx7U3isiNrv1ZETko8poJrn2FiFwlVSr2m6L8i0RkuYgscY/4oszpyb6TiDwkIstEZKmInO3a+4vIAyLysnveLvKa852Ol4vIYZH2qus/ZflrXv8iMsD13yAi1xSMVfP6LyN/HvQ/TUQWOz0vFpGDI2Nlcv9pNz4hTVk/gC8B+wAvRNqeAg5013OBi9316cCN7noQsBiocz8/CUwmKC50HzA9Z/IvAiZWWfc7APu4697AS8BY4JfAea79POBSdz0WeBboDowAVgL1Wek/ZfnzoP9mYCpwGnBNwVh50H+S/HnQ/97Aju56HPBGlvrvyCMXKwdVfQR4t6B5NPCIu34AONpdjwUedK9bRxBaNlFEdgD6qOoTGvynbgFmdrbsTo4Oy18FMUuiqmtV9T/uej2wjKCs6wzgZtftZlp1OQO4XVU/VdX/ASuASVnpPy35O1vOOCqVX1U3quqjwCfRcfKi/zj5s6Id8j+jqmGhsqVADxHpnuX9p73kwjjE8ALwFXd9LK2V5J4FZohIg4iMACa43w0lqDgXstq1ZUWl8ofc6JbUF1V7WSoiwwlmRv8GBqvqWgi+QASrHChdD3woNaD/DsofUuv6jyMv+i9HnvR/NPCMqn5KDei/UvJsHOYCp4vIYoLl3ibXPp9A8U8DvwEeBzbjWae6ilQqP8CJqjoeOMA9TqqWsCLSC/gL8D1V/TCpa4k2TWivCinID/nQf+wQJdpqUf9J5Eb/IrIHcCnw7bCpRLeaDhXNrXFQ1f+q6qGqOgH4E4FvGFXdrKrnqOpeqjoD6Ae8THDDHRYZomSd6mrRDvlR1Tfc83rgNqrk7hCRbgRfjD+q6p2u+U23VA5dFutce1w98Mz0n5L8edF/HHnRfyx50b+IDAP+CsxS1ZWuuabuPz7k1jiEkQoiUgdcCFzvfm4SkWZ3PQ3YrKovuqXfehHZzy1HZwELspG+cvmdm2l7194NOIrANdXZcgrwe2CZql4e+dVCYLa7nk2rLhcCxzs/6whgFPBkVvpPS/4c6b8kOdJ/3Di50L+I9APuAc5X1cfCzrV2//Eiq53wSh4EM+u1wGcEFvhk4GyCyIGXgHm0HugbTpCtdRnwD2DnyDgTCT5QK4FrwtfkQX6CKI7FwHMEG11X4qJoOln2qQTL3+eAJe5xBDCAYOP8ZffcP/KaHzsdLycSkZGF/tOSP2f6X0UQALHBfd7G5kz/RfLnRf8EE72Nkb5LgEFZ6b8jDzshbRiGYRSRW7eSYRiG0XmYcTAMwzCKMONgGIZhFGHGwTAMwyjCjINhGIZRhBkHw+gEROQ0EZlVQf/hEsnaaxhZ05C1AIaxrSEiDap6fdZyGEZHMONgGCVwSdb+TpBkbW+Cw4qzgDHA5UAv4G3gW6q6VkQWEeTB2h9YKCK9gQ2qepmI7EVwAr6J4ADUXFV9T0QmEOTS+gh4tHp/nWGUx9xKhhHPaOAGVd0T+JCg1sbVwDEa5MSaD/w80r+fqh6oqr8uGOcW4EdunOeBn7r2G4GzVHVyZ/4RhtEebOVgGPG8rq35cf4AXEBQwOUBly26niAtSsifCwcQkb4ERuNh13QzcEeJ9luB6en/CYbRPsw4GEY8hbll1gNLE2b6GysYW0qMbxg1g7mVDCOeFhEJDcEJwL+AgWGbiHRzeftjUdUPgPdE5ADXdBLwsKq+D3wgIlNd+4npi28Y7cdWDoYRzzJgtoj8liD75tXA/cBVzi3UQFCQaWmZcWYD14tIE/AKMMe1zwHmi8hHblzDqBksK6thlMBFK92tquMyFsUwMsHcSoZhGEYRtnIwDMMwirCVg2EYhlGEGQfDMAyjCDMOhmEYRhFmHAzDMIwizDgYhmEYRZhxMAzDMIr4P+tHZDXuSLSQAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Affichage des données du nombre de cas de varicelle en fonction de l'année sur les 200 dernières semaines" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmYI2d97/t9q0pV2lrd6lZ3Ty8z07OPZ7x78I6xAS8YEkOAxORw8CUkTjjAzUJuAifJgXtOnEBuTkw4OZBjEtZAwAQINsaADcZ2bONZjO3ZPPvS+6Lu1q6SSnrvH1VvqbR1S91aStL7eZ55uqdUpX4llepX399KKKXgcDgcDseK0OwFcDgcDsd+cOPA4XA4nCK4ceBwOBxOEdw4cDgcDqcIbhw4HA6HUwQ3DhwOh8MpghsHDofD4RTBjQOHw+FwiuDGgcPhcDhFSM1ewFoJBAJ0bGys2cvgcDicluLQoUMLlNL+1fZrWeMwNjaGgwcPNnsZHA6H01IQQi5Ush93K3E4HA6nCG4cOBwOh1MENw4cDofDKYIbBw6Hw+EUwY0Dh8PhcIrgxoHD4XA4RXDjwOFwOJwiuHHgcDicdXBmPornzyw0exk1hxsHDofDWQefe+oM/vjhV5q9jJrDjQOHw+Gsg5iqIZzUmr2MmsONA4fD4ayDpJZBVNWQzdJmL6WmcOPA4XA46yCZzgAAYqn2Ug/cOHA4HM46SKSzAICoyo0Dh8PhcAxUQzlE2yzuwI0Dh8PhrAPmVopw5cDhcDgcRtJwK0W4cuBwOBwOI6lxtxKHw+FwCkikDOOgpvO2P/rKFO76zDOYDSebsax1w40Dh8PhrBFKKVSttFvp8GQIr81E8IGvHEC8BdNcuXHgcDicNcIMA1CcyhpVNThEgiOTYXz5+fMNXtn64caBw+Fw1gjLVAKKYw5xVcNQtwseWUQwmmr00tYNNw4cDoezRhJW41CkHDLwKBIUhwhVyxQeanu4ceBwOJw1wtJYgeI6h3hKg0cW4ZSEvP1aBW4cOBwOZ41Y3UqFAemYqpnKwbpfq8CNA4fD4ayR/JhDfiprVNXgUUQokpAXuG4VuHFoAIlUBk+fnG/2MjgcTo1hMYcet6Mo5hBPZeCRJTi5cuCU49FXpnDfF/djLtKaxTAcDqc0qhFLCHiVomylKHMrceXAKUfYkJvt1nuFw+l0mCLo9yp5AWlKqa4cFBFOh2h2bp2PqGZFtd3hxqEBsLuGVjkpOBxOZbC+SoEuBVFVA6X6NDhVyyKTpUXK4V3/+Dz+4alTTVtvNXDj0ADY3UWiBf2OHA6nPImUftHv9yqgVI8zAHqmEoCimMNMKIn5iNqcxVYJNw4NgN01xLly4HDaCnbRD3TJAHKFcDFV3+5RJDgdep1DNqv3YWqV+AM3Dg3AVA4t2HyLw+GUx3QreRUAQMSIL7J50h5ZhCLpFdLMc6C2SEEcNw4NgLuVOJz2JGlmK+nKgSWdmG4li3JgnoNWaaXBjUMD4G4lDqc9SaYzcDoE+JwOABa3Uoq5lSzKwTQOXDlwDHJuJW4cOJx2QjcOIrxOCUCuM2uhcsjSXEp72xgHQshGQshThJDjhJCjhJDfN7b3EkKeIIScMn76Lcd8nBBymhByghByp2X7NYSQw8ZjnyWEEGO7Qgj5lrH9RULIWO1favNg0pMbBw6ntQlGVbz/S/sxE9ILWpPpDJySCK+iGwfmVooWZCsBwFJcb9vdTm4lDcBHKaWXALgewIcIIXsAfAzATymlOwD81Pg/jMfuBbAXwF0APkcIEY3n+jyA+wHsMP7dZWz/AIAlSul2AA8C+HQNXpttYCdDnMccOJyW5kdHZ/DUiXkcurAEQL/xczoEMyDNuiDELcpBkfTL7FLcUA7tEpCmlE5TSl8yfo8AOA5gBMA9AL5i7PYVAG83fr8HwDcppSql9ByA0wCuJYQMAfBRSl+geqXIVwuOYc/1bwDexFRFO8CVA4fTHjxj9EhbTugqIGG4lZwOEf1dCsYXEwAKYg6Gclg2lEOyjZSDieHuuQrAiwAGKaXTgG5AAAwYu40AGLccNmFsGzF+L9yedwylVAMQAtBXzdrsDIs5tOIcWQ6Ho6Nlsnj+dBAAsGyoABZzAICNfhcuLsYB6DEHSSCQRSGnHGJtphwYhBAvgO8A+ANKaXilXUtsoytsX+mYwjXcTwg5SAg5OD/fOl1OU6x9RoucFBwOp5iXx5fN/klLMSN+YLiVAGBjrxvjSznj4FEkEEJKxBxa4zpQkXEghDigG4avU0q/a2yeNVxFMH7OGdsnAGy0HD4KYMrYPlpie94xhBAJQDeAxcJ1UEofopTuo5Tu6+/vr2TptoAXwXE4rc8zJ+chEKDb5TDjB0nNqhzcmA4loWWyiKUy8Mj69rYNSBu+/38GcJxS+neWhx4BcJ/x+30Avm/Zfq+RgbQFeuB5v+F6ihBCrjee830Fx7DneheAn1HWwaoNSPI6Bw6n5TlwfgmXjnRjpMdlxg8SqQxczDj0upDJUkyHkqZyAFAckNayaIXLm1TBPjcB+M8ADhNCXja2/VcAnwLwMCHkAwAuAng3AFBKjxJCHgZwDHqm04copeyq+EEAXwbgAvC48Q/Qjc/XCCGnoSuGe9f5umyFyiukOZyWZzacxCXDPizFUlhOlFAOvW4AwPhiHLFUBm7DOJjKwXBFUQqkMxSyZO+cm1WNA6X0P1A6JgAAbypzzAMAHiix/SCAS0tsT8IwLu1Ikrfs5nBanrmIilu8CkCB4zN62DVpjTn4deNwcTGOmKrBq+hGIaccUuZzqVoGsmTvGmR7r64NSGf0vu5A5W6lUCKNt372WZyYidRzaRwOp0LiKQ1RVcOAT0GP25GXraRIuhEY6nZCFAjGl3Tj4JHzlQM7BmiNoDQ3DnXGehJU6lY6Mx/F0akwjk2H6rUsDodTBXNhfQbDQJcTfreM5XgK2SxFMp2Bywg8S6KA4R4nxhcTiKVyMQemLKwzprlx4JiZSrIoVOxWYsGuVsmH5nDanbkIMw66cshSXeGnMxROSTT32+h3G8pBHxEKwFQWVtQWiD9y41BnmHHwexyIp7SKshQWY8UNuqZDCbx4NlifRXI4nBVhbTEGfAr8br0990xY38aUAQBs7nPj5EwE4UTa4lYqvsxy5cAxTwK/W0aWVnZSLJfIh/7kI0dx/9cO1WeRHA5nRaxupR633p57OqS3ymAxBQD4rZu2wOdyQDPmRwOllUOSKwcOOwnYCVXJSbFU4FaKqhqeOjGPUCLdMgU0HE47MR9V4RAJelwO9BjKYdrozOqyGIcdg1149CM34zf2bcQbd+sdhUSBwCHqCZ9MRXDlwDGb7vV69BOqkowlViyTyujH/vT4rNmCg/Vn4XA4jWMurCLgVSAIBH7jRu/cfAwATIXACHgVfPpdl+PSkW5zG4tL9Lj06wA3Dhwz8MTuNioyDrH8Hiw/PDxtPhaMqbVeIofDWYW5SBIDXXpbbhZzePL4LADgio3dZY9jKIZiYB4EHpDmWGIOa3Er6aMFf35iHpcM+fTHuHLgcBrOfERFf5cTAOBzOUAIcD4Yx0iPC6NG8dtKsLgDMyxcOXBy2UpVKIdlSw+WhagKVcvilh0BAFw5cDjNYC6iYsCnKwdRIOh26Td7123prej4IuXAjQOHDfbIxRxW78xqbe3LjMuI36U/FkuVPY7D4dSelJbFYixlupUAoMcwDtdWaBzMmIOpHLhbqeNhGUdMOazmVqKUWro3Zsyq6kGfE4QAi9w4cDgNhan1AcOtBOQu8hUbB0M5+M2YA1cOHU9hKutqbqV4KmNmJqW0rJnt5JEl9LgcCHLjwOE0lFyNQ0459HlkBLwKtgQ8FT1HK8YcKmnZzVkHrCNrpams+Z0bc24lp0NAr0fOe5zD4dSfswtRAMBor8vc9oe370Q4mUalo+6ZcmCxilZwK3HjUGeYfGT5zeX6KyXTGXzu52dw47a+vGMTpnEQ0euREYxy48DhNJJDF5bgVSTsGOgyt1lrGCqBKQePIkEWBa4cOHpA2iESswlXuc6sL55bxGd/egqn5/Q23V5FgqplLMpBNw7nFmKNWTiHwwEAHLqwjKs29UAU1j6chykHtyxCkQTePoOjKwKnJEISBciiUNatdHFRH0z+1GvzAPQGX6XcSjwgzeE0jkgyjRMzYVy9yb+u52H9l5wOEYpDbAnlwI3DOnhlfNkMHhfyk6MzePPfPY1IUoNinBguWUSiTCrrhGEcmLLY4HMaxkF/fpehHJbiaWSz9p8/y+G0Ay+PLyNLgWs2r884sGlwTDnwbKU2ZjGWwjs+9xwefWWq5ONHpsI4PRfFazPhvBOjnHIYX4rn/X/Q5zSylaxuJQWZLEU4yaukOZxGcOjCEggBrtrUs67nYcrBLYtQHEJLBKS5cVgj0aSGLC1fsRwxLuAnZiKmv7G/SzF7wBcyvpgw0+K6nBLcsphX56AbBz3TgaezcjiN4dCFJewa7EKX07Gu52E3iC5ZhCJxt1LL8Pjhabw8vlzVMamMftGOqqXvAKJJ3X2UzlDzrmGsz4PzwdIB5fGlOG7c1ofhbid6PbJ+AqV1t5IsChAFgl6PnmfNq6Q5nMZwdj6G3Ru6Vt9xFUzXssNwK3Hj0Br85WPH8VePHa/qGPbhMiNQSMSynd01jAU8mFxKFMUpwsk0luNpbOp14z/fMIY79gwa0lN3K7G+LL1GAQ1XDhxO/clkKWbCSQz3uFbfeRUuH+3G1Zt60O1yGDEH+7uVeCor9CDwoYtLCMXT6HZXJh/TGT0oHFPLGAc1FxdgymFLwI0s1TOTtg94MRdJ4pOPHMV7rt0EANjY68bdlw0BAB584iRSmSziKc0cJtLr1Y0DVw4cTv2ZiySRydKaGIfX7+jH63f0A9BVRDhh/7ghVw7QW2NnshTPnp6v+Bh29x8tZxwsyoEZh819ekzhvFGr8NKFZfzw8Az+vx+fAKAPJ2cwtRBOaObxrC8L673E4XDqx9SyHh8cqYFxsMLdSi0Ea3HBagwqIZ1Z3TiwynrmVtrCjIMRd2BZR69OhAAAm3otxsGoqAwl0qZyYJ0dWyHTgcNpdaaW9RnRtVAOVnTjYP/vcMcbh3Qmi4xRN/D0ybmKawiYcijrVkpq2GmU25t3/h4Z3S5HzjhYpGWXU8pzaTGDEkqkzWwnQSCQRcGsfeBwOPWDGYehHucqe1YHSzaxOx1vHFgdwWUj3ViIpvD4kZmKjlNXdSulceVGPTeaXdwBPSh9fkGvaQgn0iAE8DmlPJcSkG8cFMsA81a56+BwWp3pUBJdigTfOtNYC2mVOoeOD0izi/yvXT2CLKX45KNHcfP2wKqB6ZXcSiktC1XLYmOvC7s3dGFrwGs+NtbnxsHzSwCAcFJDlyLhgXdcBqmgbwszCKFEGtsHvHnbuXLgcOrP5HKi5i4lALxCulVgysGjSPj0Oy/HYiyFz/7s1KrHreRWYgVwXkXC47//evzOLVvNx8b6PJgKJaBqGYQTafhcDvzKFcN4i5GlxGDKIapqecqjVdLgOJxWZ2o5geEau5QA3c3MA9ItALsLVyQBl45049JhH07ORlY9LrWCcmCZSl1OR1G/97GAG5QCE0sJhBLpspJVlnIfjcviVnI6WiPTgcNpdaZDSQzVSTmkMlnb90jjxsHSngLQFUS5mQtWmFspnaFF/sOccSj22g0aowbnIyrCybQ5/KMQxWIcnHnGQWyJdr8cTiuTSGWwGEvVPI0VyGUishtMu9LxxoHdhecaY0mIVWAcrFXOhVXSrACuVD+WPq/eAiMYTSGc0OBzlQ77sBPIujZ9u4BkCwSzOJxWZirE0lhr71ZiN352jztw48CUQ17n1NIZSHnHWYxDTK1cOfQZVc4LUV05lHMrraQc7H5ScTitzrRRADfcXQflYMQQyw3+sgurGgdCyBcJIXOEkCOWbZ8khEwSQl42/t1teezjhJDThJAThJA7LduvIYQcNh77LDGc8YQQhRDyLWP7i4SQsdq+xJVhd+GK6VYq31bbStoiCQvjDisZB79bhkCAYFRFKFHerWQNQuf/LnLlwOHUmePTYQDAln5PzZ+bZS9W2+yz0VSiHL4M4K4S2x+klF5p/PshABBC9gC4F8Be45jPEULYbe/nAdwPYIfxjz3nBwAsUUq3A3gQwKfX+FrWBAtI58b4SYiXqV2wkudWKjIO5d1KendVGTPhJOKpDHxlYw45teAqrHPgyoHDqSsvnlvEloAHA121dyvtG/OjS5Hw8xNzNX/uWrKqcaCUPgNgscLnuwfANymlKqX0HIDTAK4lhAwB8FFKX6CUUgBfBfB2yzFfMX7/NwBvIoUpPnWEBZNZawqPLCKezqyaSZDKcytVrhwAIOBVzFnQvjL7rBiQ5sqBw6kb2SzFgfOLuHasty7P7xAFvH5nAE+dmIN+ObQn64k5fJgQ8qrhdmIz9EYAjFv2mTC2jRi/F27PO4ZSqgEIAehbx7qqwkxldbBhHBIoxaoXYKtbKVJgHFhtgkMs/fb2eWWcnTeMQxnlIEvl3Eq8fQaHU09OzkUQSqRx7Zb6GAcAuHXXAGbDKo5Ohev2N9bLWo3D5wFsA3AlgGkA/9PYXuqOn66wfaVjiiCE3E8IOUgIOTg/X3mTvJUwU1mlXMwBwKpxB2saWrFySMOrlK+w7vMo5kyG8qms5bKVRF4Ex+HUkf3ndEdJfY2D3r77qdfs61pak3GglM5SSjOU0iyALwC41nhoAsBGy66jAKaM7aMltucdQwiRAHSjjBuLUvoQpXQfpXRff3//WpZeRC7mkEtlBYB4mQlvDFXLmhf2QuMQTmpl3UWA7lZiVKYcLMbBIZhdZDkcTu158dwihrqdGPXXPlOJMdDlxKZeN07ORev2N9bLmoyDEUNgvAMAy2R6BMC9RgbSFuiB5/2U0mkAEULI9UY84X0Avm855j7j93cB+BltoCOOxRyYj98j6xfi2CrprOkMRY/RfylSWOeQ1MrGG4BcOiuAsqmsokDgEHVRlVchLYlIafavruRwWpUjkyFcvclf1N2g1rhlESkbxw9XbbxHCPlXALcCCBBCJgB8AsCthJArobt/zgP4XQCglB4lhDwM4BgADcCHKKXs1X8QeuaTC8Djxj8A+GcAXyOEnIauGO6txQurFDajWTAa37nkCt1KWgZOSYRbFku6lVYaSN6fpxzKfwSKJCKd0YqUA6C7tZyCWO5QDoezRpbj6bwbuHph96E/qxoHSul7Smz+5xX2fwDAAyW2HwRwaYntSQDvXm0d9cI6oxnQ22cAWLUQLp2hkCUBHkUqUhnRpIYNvvIpcNYTr1zMAdBPnqhaEJA2YhHJdCbPaHA4nPVDKUVkheLUWmL3uQ68QlrL5l1k3cyttErMIaVl4RAJvIpU0q3kVVZyK+nKQRJInsuoEObqcjmKg9N2vuPgcFqVWCqDLC2fhl5L7D7XgRuHdCavpsAjV6YcUloWsiTAq0hVu5UChnLwuYq7tlphQenC3koAePM9Tsejahl859CEOcmxFrDpjOUSRWqJ3d1KHW8cklqmpHKoJJVVlkR4FBEzYRXv/sfn8czJeSTTGcRSGfhXGBbEspVWymgCcumshUVwAHitA6fj+daBcXz026+UrTTWMtmSN1FLsRQOXShd18u8AA1zK3HjYF+S6WyeT99dYcwhpWUhG26l49NhHDi/hGdPzZtzZ0dWSINzOkR4FWnFeAOQCz6X6rNkZznK4dQbSim+8eJFAMChC0sl9/nbn5zEe77wi6LtX33hAt7z0It5hayMsNn6pgFuJZuP/O1446AaWUcM5t9fNeaQybmVGOOLCUwsGcZhlT7wfV55VemqlHQrceXA4bw8vozXZiIgBHjpYs44PHNyHj94VS+hGl+KY3wxXnTsciKFVCaLRaMQ1UpD3UoOe/dJ6/gZ0oXKQTSCxKu1001n9BTYHrcMUSDYEvBgfCmOyQqUAwC874Yx9HpWMw4iJIHkteFga22XmMP4YhyDPmde0R+Hsxr/uv8i3LKIuy8bwmOvTiOdyUISCD7xyFE4RIK3XT4MNZ0t6R5mw7zmwioGC7IKV+uLVku4W8nmJNP5ygFAydoFRjCqglJqZCsJuP+Wrfj6b1+HG7b2YXwxjsmlBESBrJjKCgAfuHkL3nHV6Ir7KJJQlK7aTtlKyXQGdzz4DL59aHz1nTkmUVXDX/7gWEXjbNuVly4u4+btAdyysx+JdAavTUdwYjaCcwsxU1WrWgaJdKaouR0zGPPRZNHzMrdSY2IO9nYrceVQol7AXWamw5n5KO588Bl8+f3XmtlKwz0uDPe48OrEMsJJDcenw9jgc0Iq03SvGhRHsXFop2ylUCKNRDqD+Yja7KW0DPMRFf/Xl/bj6FQYXqeEnYNdzV5SUwhGVdywtQ/XbNZ7fr50ccnsV8a+G2o6C0qL09VN41DivGusctCzlSilda/GXgsdbxxULZuXygro6ayllMPTJ+ahZSkml+NIZbJ57p6NfjcAYP/5RVwy5KvJ2rpdclHWUzspB/ZFtPtELDvxv586jVOzUciSgKUSPvNOQMtksRRPo9cjY7jbiQ0+Jx47PI2FqH6xN42DcVeeSOXfACbS+nlnNQ6PvjKFHYNehBNpyCUUez1QHCIoZQW13DjYjmQ6a06BY7jl0jGHF84GAegXtVSBUdnY6zYfG63RUPI/vmNnUYGd0kYxBzYUKVnB5D2OzomZCPaO+LAcT2Mxnm72cprCYlw3igGvDEII7rtxDH/z49dAqZ4ezm6cmHspns7Abzm+lHL4r989jDv2boAsCQ1xKQGWWdJaxpYxt443Dmo6kxeQBvTOrIXKIZOl+IXVOBjZSgxrB8dadXPs8ypmNTVDsbTPaHXYBD2uHCrn7EIUN2/vx7mFaMcqB5ZlxL4bH7x1G+7cO4ifHJtFMKriC8+eA6U0TzlYMQPShnHQMllEVA3ToQT8HnnV+qNakTMOWdjROWg/c9Vgklomb3YCoCuHwpjDsamweRcfSqRBKfLcSt0uB7qMtNbVMpXWQ67OoZ3cSq3/WhpBVNUwG1axtd+DXo9s+tg7jWDUMA6eXI+yrf1e/N4btsFvbFO1rKkcCo1DoXJg5+F0KKl3VG5AGiuQu9Gz63e5o41DJkuRztAi5eBRpCLj8PyZBQB6HQS7c7EqB0IIRg3X0kiPu25rlkUBhKAtBv5EmXHgbqWKOGdMD9wa0I1DpyoHFlso1TnVvOCmsznlkC5jHIznYRlKU8sJhBPpxikHdqNn0+9yRxsHc350iZhDYYX0/nOL2NrvwXCPE0uGz1MuyEjaaCiGeioHQggUqT0G/rAvZTu4yBrB2QV9MMzWfi/8HhmL8ZStZxDXi5xyUIoeM+uAtEwu5lDwXU6k8gPS4YT+f1XL4uJivAkxB3t+lzvWOPzlD47hB69OAwCcUmHMQSyqkD46FcYVoz3wOh3myekoOG5znxsCAYa6V65xWC9OR3uMCuUxh+o4Ox8DIfp51uuWkdKyiHWg6lqMpSAKpGT7GWtLe3bzZ735oJQintYDwPFUBjFVQyiRC+wvxlIrzlipJXZ3K3VsQPob+y9ih5EjXpytJCGRziCbpRAEgmBUxUw4ib3DPsxHVJwO6XdwSoFy+MDNW3Hdlr66p8E5JbEt2mdEuFupKs4uxDDqd8HpENFr+NaXYqkV28O3I8GYil6PbA7ossK+e5GkBtas1XrzodcVAJt63Tg9F8VcRDUVLGOljsq1xFQONr056kjlQClFIp3B8ekwAJSIOegnGDupjhn77RnywatIZszBUZCbvKHbiTfvGazr2gE2R9qeJ1Q1sJgDdytVxtn5KLYGvABgGodS/YHanYVoKi8YbYVdcMMWNWCNH7LfNxvxwfmImrcvsHq35Fohc7eS/WB3DynjQylun6GfHGzC27EpwzgM++B1SkgZ3RxlsTmT2Jw2nyBVKRFV/1Jyt9LqUEpxbiGGLQEPAJhZOSznv5MIRtWyYzyZcrC6ihJ5xkH/Tm/qyxkHti8rUm6ccrC3W6kjjUPhnapSVOdgzHRQc8phpMeFHrecJ+GbVbjibBPlwCukK+cb+y8inspg9wbdFdrrNoxDtPOMw2IsVTIYDeS8AOWMQ6JIOSQRTqYhCsSsT2pYzMHm7fc70jgUXozKKQcmQY9Ohc2WGNaeKw6xOSXvdp89WylmQLrDYw6JVAafefIkvnXgImbDxc3gHj88jT/73hHctqsf77h6BADQa9w5L9VROVBK8f8+ehRHp0J1+xtrIRhNVacc0sVupeEeFySBYNZQDj6nZLbZb3i2kk2/y50VyTIorGEoDEizmEMspSGRyuDsfBR3XzYEALZQDopDMC+srQxTDqqWNYP/ncjTJ+fwmSdPAQBu3NaHb/zO9XmPP3Z4GoM+BZ9/7zWmK6JLkSAJpK4xh1AijS89dx7dLgf2DnfX7e9UQzKdQUTVzGmKhbALbmiVmINXkTDoc2ImlEQmS+FzOTDcrRsH7lbS6UzlUGAcCgPSzABEVQ2n56LIUmDPkC7nvRblUNiwr1E4He2RrRS19I1qBzfZWmEDom7d1Y9zC7GixyNJDYM+Z14WHCFEr3Woo3Fg+f/LNurhxF5vb5mANHuPli3GwepGZk33XLKIoW4npkMJhJNpdLscGOrRU9Abl8rK3Uq2g50srN1FYfsM5jqKJjVTtvd36XcqVuXgqEFb7rVg9z7wlRJJps1Cwk52LU0sJdClSLh8tAcz4aSZKMGIJNMlW0j31ds4GCmehdk8zaRU6wwrSomYQynl4JYlDPW4MB1KGm4lB7YEvBBI6eK6eqDYvBVORxoH5oO8bFSXyqXaZwC6cmDuG6+iS03rl7R5AenWjzlkshSxVMY0up0clJ5YimPE78JGvwuUAtOhRN7jkaSGLqXY1eF3yyVjDsl0xmz3sh6YUQjZyDicD+rKqrAhJYMph/AqMQe3LGK425kzDi4J91w5jEc+fLN5TtYbdmNk1+9yZxoH4wR559WjeOtlQ0WjApk6iKma6fpg7iSv5UvaLOXgdAgtXxvAjG7A+CK2+utZDxNLCYz63Rg1ZoIwNxMjqmollUO55nvff3kSv/mFFzG1nCh6rBq89RFLAAAgAElEQVSYcrCLcfj2wXF89OFXMNTtxM5Bb8l9CmMOLodYMluJuZVSWhYTiwl0uxxwiAIuHWlcbEUSBUgCsa0XoCMD0uxO4spNPXjnNcWjOj1GtpJ1lgIzGHkB6aa5lew9e7YSmHEYYMoh1dqvZ61QSjGxlMD1W/vMVMrJpRLKoUSQ1O9xlGy+Nx1KGj8TGF7HbBEz5mAT4/CZJ09h91AXvvz+a8sGjVljShYn8bsdZZXDkPHepDLZhmUoFcKmwdmRjlYOrjJtLgSBwCOLBW4l3Sh02SAgzRoDtvLdNhv00+lupVAijaiqYdTvwoZuJwSiu5kYmSwtqxw2+t1Yiqfx8vhy3nbml58Nq5gJJfHhb7yEX/vcc/j6ixeqWpvdlEM4mcbVm/xlg9GAHqh3SqK55h63XKAc9O+zUxLN7CQA8DWoTXchikO0rXLoTOOQXtk4ALobibmVPLII0UiztENA+urNfmRpbjJdK8LcdQMdbhyYC2nU74ZDFDDU7cpzK7Gbk1LG4Tev24SBLgV/9r3D0DK5u08WpJ4LJ/HUiTn84NVpHJkK44ljs1WtLWyZX9JsKNWNZCWtLZwOwTRsfk+xcnA5RAgCMbOTgCYaB0ngMQc7YRoHubxx8CgSIqqGSFLLS1/12KDO4YatfXDLIp6s8stuJ5jLzlQOHZqtxFTCqKXdu9U4MIVVyjh0OR34xK/sxdGpML7z0oS5nc07mI2omFxKQBQI9gz5irKgVoMFdVNatukqNZbKgNL8VPJyKJI+mxkAelz5yiGezpgdEHrdsukablQ/pUK4W8lmJFMZELKyW6hLkRBNaoakz91VyJJgHtfMbKVbdvTjyeOzLdvPP2LGHPS7t2ZffJpFTjm4zJ9WtxIzouV87HdftgHdLgeOTIbNbUFTOaiYXE5gg88Jj1J9nMrarbTZ6sFMDCmRtVWINfuwx+1APKXh+dMLePCJk0ikMuZNoSAQbOhmtQ3NUg7crWQrEmldWhJSviKXuZUiqlbUEpndxUlNrOi9fc8gZsNq3kWhleAxB52JpQS8imTOJhj1uzETTiJtuIlyxqH0nS0hBANdijm4BrC4lSJJTC4lMNLjgiwKa1AOuYSMZhfCraSgCmHprALRjWoyncW3Do7jsz87hWAsZSoHIDd7pdRsiEagOKr/XBpFRxoH5ndcCY8sIapqJQuQvIoEWRJWNC715rbdAyBEb73QihTFHDrYrTTqd5nn0qjfhSwFZoyMo6jKLorlL179XYo58lLLZM3ah9lwEpPLCYz4XZClNRiHZNrsVNps5cCUZkVuJeO7rUgi3LKIVCaLs/MxUAocmQzBJeeeY7jB/ZSK1srdSvYikc6sOpDH65QQSeoB6SLj4JSalsbK6PXICHiVopz4ViGqaiAk1wahU5XDdCiZNzlw1LhYjRuupdWUA6AbBxZnWIqnQamuaqeXk5gJJzHqd0GWRLPVfKWEE2kMGm6/phsH432oJDbA3L5Oh2CqhJOzEQC6qnI7bKQcbJyW3pHGIWkJSpXDq0hmKmuhW4kph2Yz6FNKdvFsBcKJNLoUCYokQCCdG3OIJLU8fzer/GWuoXAlxsGbcyux47YPeBFRNWSydM1upUhSw8Ze3Vg12zhUF3PIKQf2u/UCbP3uv3H3AO7YM7hiemw9sXMrnFWvcISQLxJC5gghRyzbegkhTxBCThk//ZbHPk4IOU0IOUEIudOy/RpCyGHjsc8SQ0cTQhRCyLeM7S8SQsZq+xKLsQalyuFVjJhDUis6Ib2Ko+nKAQAGu5yYDaur72hDpkJJDHXr7hRWxRqMqrb1v9aLmKrlZcCxO1jm72e+9pXcHv1dijkPOWgoiD1Gi3lAz4BSHNVfhMLJNDYacw+WmzxUKOdeqyDmUEI5WLF+9/eN9eKh9+0zU9UbjeJo7VTWLwO4q2DbxwD8lFK6A8BPjf+DELIHwL0A9hrHfI4Qwj6JzwO4H8AO4x97zg8AWKKUbgfwIIBPr/XFVEqlbiWtTAHSqN+FAV9j+q+sxIDPiblIaxqHiSXdFw7oX9aoquHNf/c0vvTcuSavrLFEVc1sAAnkjAO7U48kNUgCWTGzjgX15yMqFgzlcInVOBjKoRr3RdY490d7XCCk+c33IsnKYw5W5WCNLbJBSat5DRpJS7uVKKXPAFgs2HwPgK8Yv38FwNst279JKVUppecAnAZwLSFkCICPUvoC1XMvv1pwDHuufwPwJlLnSG+igoC01ZVUaBz+9K7d+NpvXVeXtVXDoE9BMKaamS2txKQRiAX0L/OpuSiW4umSLavblXQmC1XL5ikHp0OALAoW46AnRKz0lTCNQ1TFoqEcrMZhuMcFpcqAdETVQKme4tmlSE13KzHj4JGrizk4LYbgDmO+u7uC52gULe1WKsMgpXQaAIyfA8b2EQDjlv0mjG0jxu+F2/OOoZRqAEIA+kr9UULI/YSQg4SQg/Pz82tcei6VdSWsxqEw5uCSRXS7mxPAsjLoc4LSXNGTHagkdhBOphFOaubkLZdDxPFpPSV3oYPGXsaMDByrcSCEwOdy5CmH1YbPWJVDMJaCQICdG7zmY06HqGcrZbIV18UwpeBzOdDtdtjCOHgVqSL3j1U5sOBzf5eCKzf1AFi5+LXRdFK2UqlPjq6wfaVjijdS+hCldB+ldF9/f/8al6gbh0oC0oxGTYaqFpYGape4w5HJEC79xI9XvfuftLSMAPQvK2uIFozZ47U0glzfrvxzsdslmRfnSIlsuUL6vRa3UjQFv1tGwKNAEohpgGVRAKWAlq3QOFhiHT0uucg4TCzFGzqNMKqmi27SysGK4BSHYBqCzb1u7Bw03Eqr3Bg2EsXG7ffXahxmDVcRjJ8s2X4CwEbLfqMApoztoyW25x1DCJEAdKPYjVVTEqlsntwsRZ5yaFJp/WqwVuN2yVg6MROBlqUYX4yvuB9Lvx2xuJUYwY5SDmxkZf7NR7dFOZRKpS7E75YhCgTzERWLMRV9XhmCQDDid2GsTzfA1Q6WYQFxn0sv0LN2ZtUyWfzqPzyH//XTUxU9Vy2oxEgy2PAuVucAAJv7PBjpceEP37wTbzFG/toB5layY6eDtRqHRwDcZ/x+H4DvW7bfa2QgbYEeeN5vuJ4ihJDrjXjC+wqOYc/1LgA/o3V+p5KVuJWc5d1KdoEFxedsYhxYcHy1O8rJgn5C1s/CTi6yehM13UqFyiFnHMLJ9KrKVRAIAl5ZdytFU+Yksy+8bx8+fvclAHLt5SuNO1iVg3U9AHBkKozFWAozDTzvoqpW8U0aUw5Oh2DeeGzuc4MQgt9/8w5sHyg9C6IZKJKAbBWKrpFUksr6rwBeALCLEDJBCPkAgE8BuJ0QcgrA7cb/QSk9CuBhAMcA/AjAhyilzAn9QQD/BD1IfQbA48b2fwbQRwg5DeCPYGQ+1QtKadUxh0rvWBpNn0eBKBDbuJVYrr11NnQpJpYScDoEc9Sj9bOIpzKIpxrnrmgmhe3gGd2FMYcKbk5YlXQwlkKvV39fdw52mepSNu6mKzUOuaIzB3wuR162EpsyF1nlc66W588s4E/+7ZWSd9GVxF4Y1pjDBp8T91w5jDv3bqjpWmsFUzl2jDusetZRSt9T5qE3ldn/AQAPlNh+EMClJbYnAbx7tXXUilQmi0yWVlTnwLCrcRAFgn6vfQrh5iL6OiJllMNSLIVIUtNbOvTkWkawz2JrwIOzCzEEoym4e+35nteSUgFpoNA4lJ4fXUi/V8Fr02HMR1XcbmTlWGFFmxUrBzMgLaHHCEhTSkEIwQtngnn71IpnTi7g4YMT+NhbLikqSosk02b8ZDVY+wynQ4AkCvj7e6+q6TprCftc1HTGdh6K5ldyNZikMXGsHdxKgFElbZNah9WUwyceOYq3/q9ncXQqbAajgdyd3uvGegGg5OjLdmQl5RBOpi2Dfla/Y+7vUjAVSoIQgvfdsLnocdM4ZCpLm2RuJa8ioc8jI52hCCc1pLQsDp5fytunVrCUzgvB4oSGcgOPSsFSWdlduZ1ha7Wjcug441DJLAdANx4CAQipLLe6WQz4nLaJObDmb6ya1QqlFM+fCSKS1HBxMW4Go4Gcob52i24cFmxi7OpNrIxx8LkcoFRXYllamXJl6azvv3Esz/Ay2EUoWWFmTDihD7mSRAF9hpsqGFXx6sQyEukMej1yXtfWWsDWdiFYnNDAUlkrwWlRDnan2kSBRmL/d6/GVDIFDtDzzT2KBK8sQWhia+7VsFN/pflw+YD0+WAcC1EVm4x2DKMW49DnleF0CLh6s96FpVPSWcu5lVivJZbVVYly2Le5F3uHffgvt24v+XhOOVR2EYqnNLiNdQWMVNmFaAovXdRVw227BuqmHM4bykHLZPFn3zuMHx2ZQTyVqTwg3ULKweXQX1OsgWnBlWLfW+I6wVpDr9Y+A9AH/tgvhyCfwS4nluJpJCtoCVJPEqmMGWsoFag8cE7PTv7se67Cl547hzfuHjAfu+/GMdy+Z9DskNkphXARVYMsCkVNHFkLjXPz+kWyp4KCy9t2D+A2y3taiFJltlI8lasFYtlPwaiK6VASXkXCpl434qkMtEwWUo36jLF8/4uGcvibH5/A11+8iMOTIQCV1xu1knJgsZVFG7pSO884pPULVyX9VQrv6OwIa4w2sRTH9oGupq3DOmymlHLYf34RfrcDV4x2FwUIvYpkFih5Faljah1iZdIzmXH45bh+l76137Puv1VtQNo68yRguJUWoipmw0kM+hT4XPq6I0kN/hp1NGXV9eeDMTx1Yg4PPXMWXU4Jr04YxqHC72Mu5mB/48BcdnY0DvZ/92pMggWkKzAOXqdk2wI4xmajyOncwsqFZ/VmPqq7tggpHZA+cH4R+8Z6Vx2Q1OeVO6bWIaZmimocgJxxOHRhCQIBtgQabxysbe3Z3e1CNIXZsIpBn9PsEltL1xLzu18IxvFvByfQ36Xgf9yTS3CsNCCdUw72dyv1eXKG127Y+8pXByqNOQDA796ytd7LWTfswlEqw6ORzBnxhlG/q0g5zIaTuBCM473XFWfRFBLwKh0Tc4iqWslkB2YcTs5GsSXgqYnvvNp8+nhKM2+gJFGA3+1AMKZiJpTEdVt6zbhILYPSTDkEYyn87LU5vP2qEdy4PddmrfIiOKPOoQXcSj6nA5JAuHKwA8w4VHJXcdelQ7jrUvuU2peixy2jx+1oejdTlqm0JeAtijk8fngaAHDrrtX7YfV55I5xK0XLZOBYp5Jt669NNW+1qay6Wym3toAxUGguksRgt9O8i4/UWDkwYZlIZ3D7ngEMdDmx1bgBqjTmsLXfg/ffNIabt6+9/1qjEASCXpue8x1nHJKpylJZW4nNfR4zw6NZzIVVCATY1FusHL7/yhT2DPmwY3D1mEifV7GlxK4HsZRWMq7llkVIRoZcrVo9VOtWKmxO2eeVcWouinSGYrBLqYtbKZnOmNlsLoeIG7cFAOTqXypNZXWIAj7xK3vN9F670+uRbVnb03HGgbVmsFNnxvWypc+N882OOURUBLwKul0ORFXNbIFwMRjHLy8u454rhyt6nn6vjMVYChkb9pqpNeX6BRFCTPWwo1bGocpspUSq0Dgopjrd0O00A9K1dCupWhY7jKSKW3YGTHV/16Ub4Hc7MGiDAVv1wK6u1I4zDol05QHpVmEs4MFUKNHUOczzURX9XQq8igOZLDULmh55ZRIA8LYrKjMOo71uZCma7iZrBDFVg7dMgSUzDrVWDpXGHApH6fZ7FbCWRwM+Zy7mUGPl0OeR8bG37MZH3rjD3H7b7gG89Be327Z1/nqxq1up4wLS9924GW+/argl0twqZazPA0qbm846F0nqxoH5otU0XLKI/eeXsGfIV3FfnKs36YVwL11YslX3zHqgZyuV/gqyi++2Gr0H1bRpoJQiXtCcss+SrrrB54RXlmo+PlTVsnA6BPzeG7YVPVbn4ZBNpc9Qy3ajfa6QFeKWJXOwfbswZgTsmpnOGoymEPAqZi46S2edj6hmcVslbA140ON24NCFpbqs0y6wGc2Fg34YPW4HhrqdNevrVY1biTWntLqVAob/nhC9VYcgEHgVCeEadmZtdiFnswh4FURVDSdnI7jrM880PfOQ0XHGoR1hA12adVJRSvU5Al7ZvJixoHQwqprtFypBEAiu3uTHoYvtbRzihguwXHrm/bdsxV+8bU/N/p4gEDhEUlH7DLM5pcXlxZRDn0eBwzA0PqejZm4lSilULdtWir5SWB3Jd16awGszEXzthQtNXpFO530SbUiPW0aXUzJ78dSDs/NRPPjEyZK99qOqhlQmi4An51aKJjVksxTBWAqBruoqaK/Z7MfpuSiW4/aT2rWiXF8lxo3bAri7xhPLZFEoqxwuBGPmZxsv0UWgzzDw1qCwPuehNsqBubuUDlQOzPA+fWIeAPDdX06afaaaCTcObYLP6ajrTN/Hj8zg7396qmTfIxZM6/XklENE1bCc0NtOs948lcLiDr+8uLzOVduXcu2664kslTYOZ+ajuPVvf44njs0CgDnP2xpzYHOqN/hyLsIup1Qz5WAahw5UDqyFxmszEfjdDizGUnjy2NwqR9Wfzvsk2hSXLNZ1ghrLhCpVg8DS8Pq8slkcFU1q5r6BKvPNr9jYDVEgZgfQdoTFZBrZDl425hUXcuDcIigFTs5GAOSaU7oK6hwAYNASP/I5HTWbBqdWUZzablhvnn7zuk0Y6XHhe7+cbOKKdLhxaBM8smgOrK8HKxkHpiYCXiUv5sDmMrDGbZXiliX0exWzJUc7Ys5yaGDvLkUSSyoHptAuLuoJDUw5WN1KHkXCzdsDuHFbrp2FzyUhnEjjM0+exI+OzKxrbVw56Fw+2oPtA16z40Az6bhU1nbFLUvmHV89YHULJZWDYRz6vHIu5qBqWDDS8/qrCEgzPIpYVzdZs2maW6lEQJp1fx1f1GNWrMVMYefif/nt6/L+73M6MBNO4jNPnsKdewdx16Vrn9Oc7GDl4FUkPR6UyeKykW44HQLUMI85cGqEWxYRq6NbiV0wFiKlYg66wej1yFAkEbIoIJK0KofqjYNXkdraOCyzGc0NLOwqFZCOJNM4NRcFAIwv6cohYZxH1t5KpfA5JbOSfSm+vtgDu/noROVACEGfV0afR8ZQtxNOh9jUglYGVw5tglupt3JYKeaQQpdTMjt/ep0SomoaAgEkgeQ1kqsUr1Oy5XSsWpGLx9RmFkIl6DGHfOPw6kQIlAJXjHbjyFQYWiabC0iv0kXAZ/lc15tZxmIhnagcAL31fo9LBiEETkk0b8aaCTcObYKnzsqBGYf5EvOdg7FUnjrwKhKixjD6Pq+8pjGrHllCMNrcflG1JqZqePbUAu66dAOC0RTcsgh3wwPS+cbhl0bQ/22XD+OViRCmQ8mSMYdS7BzsQsArY+9wN45Ohde1NqYcOtU4/J/37oNgiCanQ6h41nc96TwN16a4ZBHxugak9ZN1PqrihTNB3PHg0zhlZLcEo2peewXmElqIptbkUgKY+mgv5fDdX07i9/7lEMYX9Xnaa31v1opSIpX16FQYWwMe7B32AQDGF+PmjcBqyuGWnf048Gdvxt5hH5bjqZI1MJXClEMnupUAoNvtMHtH2cWt1JmfRBvikSXE05l1fUFXwow5RFN45tQ8Ts5G8b4v7sfkcgLBaMqs8gT01g+zYbXq6mgr7RhzmFpOmD9149A4lxJQ2jgEYyn0dynmuNmLi/GSdQ7lIITA75ahGe1A1kqnKwcrikOEqmXr9l2uFG4c2gSXLCKTpRV33awWa8zh1GwU/V0KIkkNf/XYcQRjqllBCwA3bO3D4ckQzs7H1mUcYpbW3+3ATEgfpToTTmIhksp7zxpBqWylcCINn0vv4yQKBONLunFwiMRsk7EaPW79jnd5HUHpTlcOVpyO6jro1gv+SbQJHsMFsNagdFTVcN1fPYlnTs6XfJwph8VYCidmw7h2rBe/csUwfn5iDouxVN5dMEtpjKjamu+OPYqEdKZ+xq4ZMOMwHUoiGGu8W6lUtlIokUa3ywFJFDDU7cT4YgKJlFaRamD43fpnvJ7Oolw55GDvfbNdS9w4tAluI19+rUHpyaUEZsMqDpbphqoaX95MlmJ8MYEdg168+ZIBxFIZZGl+S+ftA15s7dc7xa5HOQBoq4ylmbBuHKaWE1iMpdDfYLdSqQppZhwAYFOv21QO1QTK/cZnv7SOjCWuHHI4TePAlQOnBrDMkvgalQOrVZhYKp0hlExn8uIKOwe7cNP2gCmBrS4SQgju3Kurh7WmahZ2d211KKWmcjg2FdYNasMD0vkV0mkjbdVqHC4G40UjQlfDXwO3ElcOOdh3iisHTk1gPXrWbBwMl0C5zq6JdAaj/tzAnh0DXjgdIm7ers/57Su4C77nSn2g0q5B35rW42kz4xBOaKZr7ti0nvbZcLdSQUA6ZBTiMeOwuc+DYCyF+Yha1aTEWriVuHLI4TTqhZpd68A/iTaBfZnja7yYMuUwaRiHQxeWzAszpRTJdAYb/XpGi0Mk5oChOwyFMNydP+lt9wYfjv33u7BneG3GgTXwq2e/qEYyHdbf1y5FMg14o7OVCgPS4QLjwOaCHJ8OVxVz8LkcEMj6CuGS6SxkUVhTTUy74eQxB04tWa9yYHd906EEZkJJvPsfnzeHjqQyWWQpTOWwJeAxM1nedfUoHv3wzaaxsCKu44ueUw61G0PZTJhL6fKN3ea2arvVrhdZFJDOUGSNlhellAMAhJNaVcpBNKrg19NCQ9UyUBz8cgTAfB94zIFTE9zGuMm1BqRZk7wsBX5ybAZZCpya04vc2Ena36VAFgXsGMzNqRYEgstGu4ufcJ3kYg7toRyYcbhqo9/cFqhyzsV6kQ2XDVMPzDj4XPp7PRZwm/tWE3MAdNfSegLSyXTWbL/S6ZjKockDf3j7jDZhvQHpRcsQn8cP6+2Xzy3oY0etFbN/ctcuXD7as56lVoS3YBZ1q8MylS43DKksCuZFuVEwf76qZeF0iEXKwS1LGOhSMBdRq27r0eN2rDtbycmVA4BczEFtZbcSIeQ8IeQwIeRlQshBY1svIeQJQsgp46ffsv/HCSGnCSEnCCF3WrZfYzzPaULIZwkh3PFYJe51B6RVjPTobqMXzwUBAOcLjINTEvHbr9+Ka7f0rne5q+JhSqhNAtIzoSQCXhmbDL9+n1dvstZImHFgQemwqRxyDfTGDNdStVlDvR4ZS7F1uJXSnTk/uhTONnIr3UYpvZJSus/4/8cA/JRSugPAT43/gxCyB8C9APYCuAvA5wgh7Az8PID7Aeww/t1Vg3V1FO71BqRjKewd9oEQ3bVEiN6GeTmeMrMmqvFDrxcWQ4m0i3EIJ7Gh24khn26AG52pBJR3K1m75jLXUrVupR63vM6AdIansRqw71k7BqTvAfAV4/evAHi7Zfs3KaUqpfQcgNMAriWEDAHwUUpfoHqvhK9ajuFUiEMUIIsC4ms8oYLRFIa6neaMYDbx69xCzJKD3rg7O0EgxnS7NjEOoSQ2+JzwuSS4HGJR6m8jkAuUQyiRhtMh5Pn6WVC6+piDA4vrcitx5cBgbqVWNw4UwE8IIYcIIfcb2wYppdMAYPwcMLaPABi3HDthbBsxfi/czqkStyKuSTmkM1mEEmn0ehQzI+lXrxgGAJwPxvLcSo3E65TaJuYwtZzAhm4nCCG4ZrMfl4/UPoi/GrJo+LKNQKe1OprB3ErVqkS/R0YynV3zBY0rhxzsfUi0uFvpJkrp1QDeAuBDhJBbVti3lIOVrrC9+AkIuZ8QcpAQcnB+vnQPoE7G7RARW0PMYSmWG/O50e+GQIA7926AQIBz8zHTreRsoFsJ0NNZo3WcUdEolmIphJMaNvfqF95/+e3r8Ed37Gr4OsyAdDqnHAon0ZlupSov1KwQbq1Baa4ccrD3oaWVA6V0yvg5B+B7AK4FMGu4imD8nDN2nwCw0XL4KIApY/toie2l/t5DlNJ9lNJ9/f3961l6W7LWaXALbAa0R8ZvXrcJH3/LJehxyxj1u3EuGDezJhqtHLqU9pgGdy6oB/a3lKgFaSSjvboq/N2vHcJTr82VVA7bB7x4y6UbcN3Wvqqee0O37o5kGW7VwpVDDkEgkCWh6amsazYOhBAPIaSL/Q7gDgBHADwC4D5jt/sAfN/4/REA9xJCFELIFuiB5/2G6ylCCLneyFJ6n+UYThWsdY70oqkcFOwb68Xv3LIVADAW8OD8QqwpAWnAUA5t4FZiWV+lCgUbye4NPvzr71wPtyzif/zgGMIJrcg4KJKIz7/3GlwyVF1l+zWb/RAFghfOBNe0NpZey9FxSoKp8JrFepTDIID/IIS8AmA/gMcopT8C8CkAtxNCTgG43fg/KKVHATwM4BiAHwH4EKWUmcYPAvgn6EHqMwAeX8e6Oha3LK4plTUY01tnWBvrAcCWPjfOLcSQSDU+IA0YxqEFlYOWySJtaVNxfiEGgeiN7ZrNDdv68Ouv24izCzGML8bXNN+7FD6nA5ePduM/Ti9Uddz4YhxPvTaHZDrD3UoW7DANbs1VOJTSswCuKLE9COBNZY55AMADJbYfBHDpWtfC0fHIEmYjyaqPC1rcSlaGe1yIqprZd6mafju1oKvFjENU1fCeh36Bw5MhDHU78cyf3AaHKOBcMI4Rv8vMFmo2rxvTS48iqpZX47Bebt4ewOd+fgbhZHEsw8rpuSjmwkncuD2Ah545i6+/eAGSIHDlYMEOxsEeZyunJriqVA7ZLMWXnzuHgxcWzf44VgZ8ei7+hUW9jXejv7yeFos5fP0XF3B4MoQ79w5iOpTEqxPLAHTlwLKA7MClI92moaqVcgCAm7YHkMlSvHh2ccX9/uFnp/BHD78CAJiPqMhSvfaCK4ccTofQFkVwHJvgkSXEq+hF9PLEMj756DH88PAM/G65qCPmQJceZLxoGIdGfz3YAU4AABPISURBVHm9ztZRDsl0Bl949hxu3h7Ap37tcgDA86eDoJTi/EIMW5scb7CiSCKuMNp41NI4XLWpB06HgGdPrZxJGIylMB9Vkc3SvDbfClcOJi6H2LoBaY79cCvVBaRPzuiN9T7yxu342Ft2Fz0+YHQNHV+Mw+kQGt7uwWuOCrV3873vvjSBD/7LISxEVXzotu3we2TsGfLhuTMLCMZSiKha04PRhewb01ug1NKtpEgi7tizAd86MI6z89Gy+y3GUshkKZYTaSzEVAwbmU68t1IOxSGueeRvreCfRhvhlvUTSi80X52Ts1G4HCL+8M078a5rRoseZ8phOpRseLwBaI3me9OhBP7o4Vfw6kQIH7h5C67fql90b9reh5cuLOO1ad0A2804sLhDr6d2xgEA/vytl0CWBHzsu4fN1uCFsLqaYFTFYiyFN10yiAfecSnuuZLXvjKcDhHJJs9P58ahjXDLErQszRvoshKn5iLYPuAtO2DF55JM33QzgoXM5bGcsO9Mh2mjFfffvvsK/MXb9pjq6sbtAaQyWfzDU6cAAFtsFHMAgDfsHMD/fPcVuHl7beuFBnxO/Mldu7H/3CJeMWIuhbC5DzPhJJbjafR5Zfyn6zabjR85LJWVKwdOjcg136vspDoxE8GOQW/ZxwkhpmupGcqh3/jb8xG14X+7Utja+gsG91w71gtFEvCLs4t43Zg/b8SqHRAFgndeM1qXDKorjZbupT63ZDpj1s2cnNVdT42epd0K2CFbic9zaCO29usX+ieOz+LX921ccd9QPI25iIqdlsE9pRjoUjCxlGhKsJBdcBei9jUOc8YFcKDAOHgUCY98+Ga4ZREbbVDf0Eh63LriK9VKw7rtxIw+S7swhZrDs5U4NeaWHQFcMdqNv3/y1KpB3JPGlLedKygHIBd3cDUhWMjaWttdORBSXEAIALs2dHWcYQD0JnwA8saGPvDYMXzoGy/lZSedYMqBG4cinDxbiVNLCCH46B27MLmcwMMHxlfc9+Ssbhx2DKyiHIxah2bEHHpcDkgCsblxSKLPo0AS+VeJ4ZFFyKKQpxJ+fHQWvzgTzBsIdMo4B5vRvtzu2MGtxM/oNuP1OwLY1u/B0yfL55on0xm8eHYRbllcNQjI3CXNMA6CQNDnlW3tVpqPqEUupU6HEIIetwPLhiFYjqdwcTGOYCyFqVACgD5bghVs9jV4lnYr4JR0t1KlmYf1gMcc2gxCCHYMdOF0mTzzyeUE7vrMM4gkNbxhZ3/ZTCVGzq3UnAKl/i7F1sphLqIWBaM5egtvNvzn1YmQuf3opP77tn4vjk+HS1bmc3Lt8ZvZkJArhzZkc8CNi8E4MiXyzE/NRhBJavjrX7sM/3TfvhJH59NvuJWUJhUoBbyK2VLcjsyFuXIohd/jMMeGvmpJaT1sGIcdA3qsq1RlPsce0+C4cWhDxvo8SGWymAkXN+FjTfZu2haAowI/eTNTWQGg32tf5ZDNUixEuXIohd8tmwHpVyZC6HLqTopj02F0OSVz/gMPRpeGqYVmZixx49CGbO7TM2QulBi8YrbnrjAIyNxKzZK2gS4FwZhattq2llwIxswOtJWwFE9By1KuHErQ45ZN5XB4IoRbdw3AIRIk01n0emQEjPOPB6NLw1qJcOXAqSmsA+j5YLzosWA0BUUS4KlwcE+fR0aXU2ra3XG/V0E6QxFqQJX0fV/cj7/64WsV7z8fZQVwznotqWXxux1YiqcxG05iJpzElRt7MNStJz/0uGUzCF0qBZhjUQ5NTGflAek2ZIPPCVkScCFYrBwWoikEvErFTfQEgeBHf3BL0+S/tRDOX8c1qFoGFxbj6HZX/jfmwkYBnI8rh0J6PTIyWYr95/T23XuHfRjpceHiYhy9bgcCxuca4NXRJckpB+5W4tQQQSDY3OvG+RLGIRhTq5byIz2u5rmVGlQIN7GUAKXAhNGePKVloa3So8psncEvcEX0GEb24HndOOwY8JotRPzunFuJK4fS8IA0p25s7vPgQhm3UisFAc3+SnWudWAzK4KxFKKqht/68gH82feOFO33dz85gY9951UAudYZPCBdjN9ooXHg/BL8bgf6vApGmHHwyBjpcUGRBGyxWbdau8DmtUea2JGYG4c2ZaxPVw6FRTTBqNpSjc76G6QcLloM6fmFGPafXzTTLhmUUnxj/zh+dHQGADAXScIji/Ao3DtbCFMOr82Esd1IW2UFl363Az1uGf/xp2/EWy8batoa7czOwS44RIJDF5aatgZuHNqUzQEPkuksZsO5iyqlFAuxVEtliPhcEmRRaJhyAICnT84jpWUxsZSvvF6biWAhqmI5nsZiLIXJpYSZksnJh7mLshSmcRj161l0LHbU36XwGocyeBQJV23047nTC01bAzcObco2Q66fnstVSkdVDSkti0ALtSsghKC/SzGDv/Xi4mIcg0Zg+ceGMggntbwsqf84lfuinluI4sRsBLs2rNybqlNhbiVAr4YGgEuGurC134MrjJbenJW5aXsAR6ZCZkowI53JNmQ6IjcObcoOoxU3a7AH5ArgWkk5AHrdxrkSNRu15GIwjstGeuBzSnntHiaXEubvz5yah88o5joyGcaFYBy7Bn11XVer4nM6wETBNkM59Lhl/Oyjt+LSke4mrqx1uGl7HygFXjgTBAAcnw7jd756EFf99yfww8PTdf/73Di0KQGvDL/bgVNzFuNgFMC1UswB0O88z85H69aEjFKKi4txbOp1Y5NRQMiG4DDXUjKdwf5zi3j7VSNwiMRUF1w5lEYQiBl32N6/clt4Tmmu2NgDjyziuTO6Yv3Lx47hF2eD+NUrh7E1UP/3lBuHNoUQgh2DXea0LQBmj6JWylYCgG39HoSTWt16LM1HVSTSGWzqdWGj4Re/aVsfAD3FFQAOnl+CqmVx264BbOp14xdn9bu53dw4lKXH7YDLsXrnX05pHKKAG7b14anX5hFPaThwbgn3vm4j/uodl+GKjfV3zXHj0MbsHPTi5GzEvONuVbcSc0ucKdNpdj187RcX8H+ePgtAT//dZAznuXFbAG5ZNI3Ds6fn4RAJrtvaiy0BL7JU7ze1qQOH+VRKwKNg24CHB53Xwd2XDWFyOYHP//wMUpksXr+jtjO/V4Ln4LUxOwe7EElqODIZxndemjC3t1rhERt/emY+iuu39tXseefCSfy37x8B81Zt7HVjclk3BpcM+TDqd5lupWdPLuCazX64ZQnb+j148rhufPmFrzx//rZL0ICWWG3NHXs3wOk4jH98+gxkScC1W3ob9re5cWhj2JS33//mL3F2IQZRIOhySlCk5lQ7r5UhnxMuh4gzc7UNSj9+ZAaUAp9+52WIpzLY1u+BV5FwZDKEfWN+jPrdmFhKYCGq4th0GP/PnbsAwCzc4vGGlbmcZyWtG68i4c2XDOIHr07j9Tv6GtqpgLuV2hg2H/rsQgx9Rq+bVuxlIwgEW/s963YraZksZkK5NuaPHZ7GzkEvfuN1m/D+m7aAEIIN3U586p2Xw+kQTeXAcs1fvyMAIKdkdm3gmUqc+nPPlSMAgJu3Bxr6d7lxaGP6vAr6PDIUScC3f+8G9HcpZi5/q7Gt35tnHFbre1SKP/72K7jlb57C8ekw5sJJHDi/iLtXqNDd6HcjnNTw9RcvosftwN5hPQXz8tFu/KfrNuHuyzZU/0I4nCq5bVc/PvEre3DvtZsa+ne5W6nN+a2bt8DnlLC134tv3X99s5ezZrb1e/Hoq1NIpDI4Nh3Ge77wC/z7f7kJvR4ZH/32y/joHbtw9SZ/2eOfPTWPf395CgIB/uCbL2NjrwuUYsX2DaxR3IHzi/ijN++EaMQXnA4RD7zjstq+QA6nDJIo4P03bWn83234X+Q0lA/dtt38fWsL55vv2uAFpcDL48t4/Mg0UloW//7yJLoUCc+dDuLEzCE8+pGbzJkBVrRMFv/t+0exJeDBx96yG7/7tUM4F4zh42/ZbRYLluLWXQP46O07ccfeDTy+wOk4uHHgtAS37OyHRxbx3Zcm8KzRxuKxV6fhdAjYPuDF9HICH/nGL/Ht37sBL5wN4sRMBPfdMAZBIPj5iXmcW4jhH997Ne7cuwFf+a1rsbnXjbFVOoK6ZBEfedOORrw8Dsd2cOPAaQncsoS7LxvCd385iUyW4qbtfXjutF6I9sA7LoUkEPzpdw7jK8+fx4NPnkIokcaRyTA+9c7L8M0D4wh4FbzpkkEAwBt2Ni5XnMNpVWwTkCaE3EUIOUEIOU0I+Viz18OxH++8ZhSZLIUoEPz1Oy6HLAqQBIK7Lx3Cu67ZiN0buvDJR48hkcrgfTdsxndemsD7v3QAT52Yw7uuGYVDtM3pzuHYHlsoB0KICOB/A7gdwASAA4SQRyilx5q7Mo6duHasF5v73Njo13sgvXvfKLI01wL6z9+6B+/95xfxf79pOz78xh3YtaELf/HvR5ClwK/vG23y6jmc1oLUq5lZVYsg5AYAn6SU3mn8/+MAQCn963LH7Nu3jx48eLBBK+TYhelQArIolG0eOLWcwFC305yR/dRrczgzH8Vvv35rI5fJ4dgWQsghSum+1fazhXIAMAJg3PL/CQDXNWktHBtTKhvJynBBk7fbdg/gtt0D9VwSh9OW2MUJW6pBTZGkIYTcTwg5SAg5OD8/34BlcTgcTmdiF+MwAWCj5f+jAKYKd6KUPkQp3Ucp3dffzzNOOBwOp17YxTgcALCDELKFECIDuBfAI01eE4fD4XQstog5UEo1QsiHAfwYgAjgi5TSo01eFofD4XQstjAOAEAp/SGAHzZ7HRwOh8Oxj1uJw+FwODaCGwcOh8PhFMGNA4fD4XCKsEWF9FoghEQAnDD+2w0gVMOnDwBYqOHz1Xp9dn4+/t6tD/7+rY9avn92f63VPh97bzZTSlevBaCUtuQ/AActvz9Ur+eu0fPVen22fT7+3vH3r13evxZ4rVU9X7XvTbu4lR5t9gJWodbrs/vz1RK7v1Y7v3eA/V+vnd8/u7/Wur53rexWOkgraB5lt+dud/h7tz74+7c++PtXnmrfm1ZWDg+16HO3O/y9Wx/8/Vsf/P0rT1XvTcsqBw6Hw+HUj1ZWDhwOh8OpEx1hHAghGwkhTxFCjhNCjhJCft/Y3ksIeYIQcsr46Te29xn7Rwkh/1DwXL9BCHnVeJ6/acbraSRreO9uJ4QcIoQcNn6+0fJc1xjbTxNCPkvYRJ42psbv3wOEkHFCSLRZr6fR1Or9I4S4Cfn/27u/EKuqKI7j30VjgSlZoTERMW+VSWR/SMmICAKDIKiHJJzRKLCC8C2LoB4KUkpMJUYpw/4gEhVZUlEDSX/IXpLS1GwkamIoKvMv9OLqYa9Lp3vubboz5865d87vA4d7Zp89m70XF9fZxzN7204zOxDtPF3muLpCka9WdeoB9AJXxflM4DtgLrAGWBXlq4DVcX42sAhYAWzMtHM+8CMwO37eCtxc9vg6LHbzgQvjfB7wc6atL4GFpP073gMWlz2+LovfgmjvRNnj6rb4AdOBm+L8TOCTKnz/JhT7sjtQyqDhbdJ+1QeB3ijrBQ7W1VtWlxyuBT7K/LwUeL7s8XRi7KLcgN+Bs6LOgcy1JcCmssfTLfGrK69McmhH/OLac8B9ZY+nk49KPFbKMrM+0t3FbuACdx8FiM+x9pP8HrjUzPrMrAe4nX9vUjSljSN2dwBfuftfpK1gRzLXRqKsMiYYv8orKn5mNgu4DRhqZ3+7Xccs2T0ZzGwG8Aaw0t2PtfrI292PmNn9wHbgNPA5UImd61uNnZldDqwGbqkVNahWmVflCohfpRUVv7ip2wasd/fDberulFCZmYOZTSN9uV5z9zej+Bcz643rvcCvY7Xj7u+4+3XuvpA0tT3Urj53ilZjZ2YXAW8B/e4+HMUjpO1faxpuBTsVFRS/yio4fpuBQ+6+rv09726VSA7xVsyLwH53X5u5tAMYiPMB0vPMsdqaE5/nAg8ALxTb287Sauxiyr4TeMTdP6tVjqn/cTNbEG328z/i3e2Kil9VFRk/M3uStFjdynb3e0oo+z89JuMgvXnkwNfAnjhuJb19NES6+x8Czsv8zg/AH8AJ0l3v3CjfBnwbx11lj63TYgc8BpzM1N0DzIlr1wB7gWFgI/FHmFP5KDh+a+K7eDo+nyh7fN0SP9JM1YH9mfJ7yx5fJx/6C2kREcmpxGMlERFpjZKDiIjkKDmIiEiOkoOIiOQoOYiISI6Sg0gbmNkKM+tvoX6fme1tZ59EWlGp5TNEJoOZ9bj7YNn9EJkIJQeRBmKRt/dJi7zNJy0V3Q9cBqwFZgC/AcvcfdTMPiattXU9sMPMZpJWT33GzK4EBknLRg8D93hap+tqYAtwCvh08kYnMjY9VhJp7hJgs7tfARwDHgQ2AHe6e+0f9qcy9We5+43u/mxdOy8DD0c73wCPR/lLwEOe1ukS6SiaOYg095P/sz7Pq8CjpA1kPoxVQc8ARjP1t9c3YGbnkJLGrijaCrzeoPwVYHHxQxAZHyUHkebq15Y5Duz7jzv9ky20bQ3aF+kYeqwk0tzFZlZLBEuAL4DZtTIzmxb7BjTl7keBI2Z2QxQtBXa5+5/AUTNbFOV3F999kfHTzEGkuf3AgJltIq3+uQH4AFgfj4V6gHXAvjHaGQAGzWw6cBhYHuXLgS1mdiraFekYWpVVpIF4W+ldd59XcldESqHHSiIikqOZg4iI5GjmICIiOUoOIiKSo+QgIiI5Sg4iIpKj5CAiIjlKDiIikvM3gzJ5QpEEPtoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Séparation des données en années du premier septembre au premier septembre et tracé des données" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_september_week[:-1],\n", " first_september_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG61JREFUeJzt3X+MXeV95/H3x4wzA9QmYxgT/wDsKg6KISnEV7a7yXZL3NpmU2GjQjIbGkaLJTfApqRaCezACi24ElSrTWtFYbFCwUD44bpFeLt4yWA2qrd1bI8DKRjiziQQ4+Aww44DJpKnjP3dP+5z6zuT8cy58+vec+fzkq7uud85z3Of4+OZ731+nHMVEZiZmWUxrdoNMDOz/HDSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJrqHYDxtsFF1wQCxYsqHYzzMxy5cCBA+9GRMtI+9Vd0liwYAEdHR3VboaZWa5I+lmW/Tw8ZWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmY1Znu90/wxQf30H38RLWbYnXIScOszmze1cn+N3vZ/EJntZtidajurtMwm6ouvWsnff2n/vX143sP8/jewzQ2TOPQpqur2DKrJ+5plHG33vJs9+1Xcc0Vc2maXvy1bpo+jTVXzGX3HVdVuWVWT5w0yrhbb3k2e2YTMxob6Os/RWPDNPr6TzGjsYHZM5rOWMYflKxSHp7C3XqrH+9+0McNyy7hy0sv5ol9h+kZIRmUf1DadO2nJqmVlmeKiGq3YVwVCoWo9N5T3e+fYNNzr/O9g7/gxIenaJo+jVWXfYw7v/DJYT+lmeXV4A9KJf6gNHVJOhARhZH28/AUo+vWm+WZ5z9stDw8lVTarTfLM39QstFy0kge/MrpXtmmtZdXsSVmk8MflGw0PKdhZmae0zAzs/HnpGFmZpllShqS/lTSQUmvSnpSUpOkWZLaJXWm5+ay/TdK6pJ0SNKqsvgSSa+kn22WpBRvlPR0iu+VtKCsTFt6j05JbeN36GZmVqkRk4akecCfAIWIuBw4C2gFNgC7ImIRsCu9RtLi9PPLgNXAtyWdlap7AFgPLEqP1Sm+DjgWER8Hvgncn+qaBdwNLAOWAneXJyczM5tcWYenGoCzJTUA5wBvA2uArennW4G1aXsN8FRE9EXEG0AXsFTSHGBmROyJ4uz7o4PKlOraDqxIvZBVQHtE9EbEMaCd04nGzMwm2YhJIyJ+Dvw34DBwFHgvIr4HXBgRR9M+R4HZqcg84K2yKo6k2Ly0PTg+oExE9APvAecPU5eZmVVBluGpZoo9gYXAXOBcSX80XJEhYjFMfLRlytu4XlKHpI6enp5hmmZmZmORZXjq94A3IqInIj4E/hb4N8A7aciJ9Nyd9j8CXFRWfj7F4awjaXtwfECZNAR2HtA7TF0DRMSWiChERKGlpSXDIZmZ2WhkSRqHgeWSzknzDCuA14EdQGk1UxvwbNreAbSmFVELKU5470tDWMclLU/13DioTKmu64AX07zH88BKSc2px7MyxczMxsS3hR+dEW8jEhF7JW0Hfgj0Ay8BW4DfALZJWkcxsVyf9j8oaRvwWtr/1og4maq7GXgEOBvYmR4ADwGPSeqi2MNoTXX1SroX2J/2uyciesd0xGZm+Lbwo+XbiNiU1/3+Cf7Tky/xrS9f6Rv2TQG+LfzQfBsRs4z8jY1Ti28LPza+y61NWf7GxqnJt4UfG/c0bMryJ86pq3Rb+Gdu+Sw3LLuEng/6qt2k3HBPw6Ysf+Kcuvz9OaPnpGFTmr+IyKwyXj1ldckroswq49VTNiHyckGUV0SZTQwPT1lFav2CKK+IMptYHp6yTPJyQVT3+yfY9NzrfO/gLzjx4Smapk9j1WUf484vfDL3w1QecrOJ5OEpG1d5WZ5azyuiPORmtcDDU5ZJnv4Y19uKKA+5WS1x0rDM8vLHuN7W4O++/aozDrmZTTYnDcus3v4Y50WeenlW/5w0zHIgL708q39ePWVmZl49ZWZm489Jw8zMMnPSMDOzzJw0zKooL/fyMitx0jCrIl/lbXnjJbdmVeCrvC2v3NMwq4K83MvLbDAnDbMq8FXellcjJg1Jl0p6uezxvqSvS5olqV1SZ3puLiuzUVKXpEOSVpXFl0h6Jf1ssySleKOkp1N8r6QFZWXa0nt0Smob38M3q57SVd7P3PJZblh2CT0f9FW7SWYjquiKcElnAT8HlgG3Ar0RcZ+kDUBzRNwhaTHwJLAUmAu8AHwiIk5K2gfcBvwAeA7YHBE7Jd0CfDoiviqpFbg2Ir4kaRbQARSAAA4ASyLi2Jna6CvCzfLB3w9SWybqivAVwE8i4mfAGmBrim8F1qbtNcBTEdEXEW8AXcBSSXOAmRGxJ4qZ6tFBZUp1bQdWpF7IKqA9InpTomgHVlfYZjOrQV45lk+Vrp5qpdiLALgwIo4CRMRRSbNTfB7FnkTJkRT7MG0PjpfKvJXq6pf0HnB+eXyIMmaWQ145lm+ZexqSPgJcA/z1SLsOEYth4qMtU9629ZI6JHX09PSM0DwzqyavHMu3SoanrgZ+GBHvpNfvpCEn0nN3ih8BLiorNx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlpYJDMrPJNpqVY75yvnZUkjT+A6eHpgB2AKXVTG3As2Xx1rQiaiGwCNiXhrKOS1qe5ituHFSmVNd1wItp3uN5YKWk5rQ6a2WKWQb+RbNaVenKMc9/1I5Mq6cknUNxbuE3I+K9FDsf2AZcDBwGro+I3vSzO4GbgH7g6xGxM8ULwCPA2cBO4GsREZKagMeAKyn2MFoj4qepzE3AN1JT/iwiHh6urV49ddpdz7zCd/cd5oalF7Pp2k9VuzlmFRs8/1Hi+Y/xl3X1lL+EqQ6N5hfNyx+tFnW/f+KM34/u/6fjy1/CNIWNZqLR3X+rRb5yvvb4hoV1qJJfNC9/tFrn70evLU4adSrrL9ru2686Y/ffrBY8+JXTIyab1l5exZYYOGnUray/aO7+m1klPKcxwfKw7NU3zjOzrLx6aoJ52auZ5UHW1VMenpognmA2s3rk4akJUumy1zwMY5mZOWlMkEonmH2dhJnlgYenJlCWZa8exjKzPPFE+CiM5y03fJsEywPfZqb++TYiE2g8h5J8nYTlgYdPrcTDUxWYqKEk3ybBapWHT20wD09VwENJllW9DOf4//zU4eGpCeChpKmtkmXR9TKc4//zNpiHpyrkoaSpqzwRnOnq/noczvH/eSvn4SmzEVTypVYezqmfobmpxsNTlhu1fjV8JVf3ezinfobmbGgenrIJk/UTZ5Zhn2qqNBFM1eGcehyas1/n4SmbMCPd4Xc032VeLX/8WActM5oGJILy7ywxD83lne9ya1WT9RNnnr410N8eNzIPzU0NntOwcZd1DsB/ZOqPv9Cr/rmnYeOukmQwVcf/61W1e2ReuTXxMvU0JH1U0nZJP5b0uqTfljRLUrukzvTcXLb/Rkldkg5JWlUWXyLplfSzzZKU4o2Snk7xvZIWlJVpS+/RKalt/A7dJlLWT5wPfqXAprWXs3juTDatvdzzBDYmXrk18TJNhEvaCuyOiO9I+ghwDvANoDci7pO0AWiOiDskLQaeBJYCc4EXgE9ExElJ+4DbgB8AzwGbI2KnpFuAT0fEVyW1AtdGxJckzQI6gAIQwAFgSUQcO1NbPRFuNvXkaVFFrRq36zQkzQR+B3gIICL+JSJ+CawBtqbdtgJr0/Ya4KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrR2qzmU0tlX5Tpo1eluGp3wR6gIclvSTpO5LOBS6MiKMA6Xl22n8e8FZZ+SMpNi9tD44PKBMR/cB7wPnD1DWApPWSOiR19PT0ZDgkM6snXlQxebIkjQbgM8ADEXEl8CtgwzD7a4hYDBMfbZnTgYgtEVGIiEJLS8swTTOzeuWVW5Mjy+qpI8CRiNibXm+nmDTekTQnIo6moafusv0vKis/H3g7xecPES8vc0RSA3Ae0JvivzuozPczHZmZTSnVXrlViTyv8hqxpxERvwDeknRpCq0AXgN2AKXVTG3As2l7B9CaVkQtBBYB+9IQ1nFJy9N8xY2DypTqug54Mc17PA+slNScVmetTDEzs9zK8yqvrNdpfA34blo59VPgP1JMONskrQMOA9cDRMRBSdsoJpZ+4NaIOJnquRl4BDgb2JkeUJxkf0xSF8UeRmuqq1fSvcD+tN89EdE7ymM1M6uqerg/l+89ZWY2SWr5/ly+NbqZWY2ph1Vevo2Imdkkyvutczw8ZWZmHp6qZ7X+TXdmVr+cNHIoz8v1zCzfPKeRI/WwXM/M8s09jRzxTdnMrNqcNHKkHpbrmeWN5xAHctLIGd+UzWxyeQ5xIC+5NTMbwlT7YicvuTUzG4PRzCFOhaEsJw0zsyGMZg5xKgxlecmtmdkZZL3lx1RaDu85DTOzMarlu9dm5TkNM7NJMpWWw3t4ysxsHOT97rVZeXjKzMw8PGVmZuPPScNyZSqsgzerZU4alitTYR28WS3zRLjlwlRaB29Wy9zTsFzwbeHNaoOThuXCVFoHb1bLMiUNSW9KekXSy5I6UmyWpHZJnem5uWz/jZK6JB2StKosviTV0yVpsySleKOkp1N8r6QFZWXa0nt0SmobrwO3/PFt4c2qL9N1GpLeBAoR8W5Z7M+B3oi4T9IGoDki7pC0GHgSWArMBV4APhERJyXtA24DfgA8B2yOiJ2SbgE+HRFfldQKXBsRX5I0C+gACkAAB4AlEXHsTG31dRpmZpWbjOs01gBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrx9BmMzMbg6xJI4DvSTogaX2KXRgRRwHS8+wUnwe8VVb2SIrNS9uD4wPKREQ/8B5w/jB1DSBpvaQOSR09PT0ZD8nMzCqVdcntZyPibUmzgXZJPx5mXw0Ri2Hioy1zOhCxBdgCxeGpYdpmZmZjkKmnERFvp+du4BmK8xXvpCEn0nN32v0IcFFZ8fnA2yk+f4j4gDKSGoDzgN5h6jIzsyoYMWlIOlfSjNI2sBJ4FdgBlFYztQHPpu0dQGtaEbUQWATsS0NYxyUtT/MVNw4qU6rrOuDFNO/xPLBSUnNanbUyxczMrAqyDE9dCDyTVsc2AE9ExP+WtB/YJmkdcBi4HiAiDkraBrwG9AO3RsTJVNfNwCPA2cDO9AB4CHhMUhfFHkZrqqtX0r3A/rTfPRHRO4bjNTOzMfCt0c3MzLdGNzOz8eekYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpllThqSzpL0kqS/S69nSWqX1Jmem8v23SipS9IhSavK4kskvZJ+tlmSUrxR0tMpvlfSgrIybek9OiW1jcdBm5nZ6FTS07gNeL3s9QZgV0QsAnal10haDLQClwGrgW9LOiuVeQBYDyxKj9Upvg44FhEfB74J3J/qmgXcDSwDlgJ3lycnMzObXJmShqT5wBeA75SF1wBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTEQE8OqhMqa7twIrUC1kFtEdEb0QcA9o5nWjMzGySZe1p/AVwO3CqLHZhRBwFSM+zU3we8FbZfkdSbF7aHhwfUCYi+oH3gPOHqcvMzKpgxKQh6Q+A7og4kLFODRGLYeKjLVPexvWSOiR19PT0ZGymmZlVKktP47PANZLeBJ4CPi/pceCdNOREeu5O+x8BLiorPx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlJcMhmZnZaIyYNCJiY0TMj4gFFCe4X4yIPwJ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruvSewTwPLBSUnOaAF+ZYmZmVgUNYyh7H7BN0jrgMHA9QEQclLQNeA3oB26NiJOpzM3AI8DZwM70AHgIeExSF8UeRmuqq1fSvcD+tN89EdE7hjabmdkYqPiBvn4UCoXo6OiodjPMzHJF0oGIKIy0n68INzOrA93vn+CLD+6h+/iJCX0fJw0zszqweVcn+9/sZfMLnRP6PmOZ0zAzsyq79K6d9PWfvoTu8b2HeXzvYRobpnFo09Xj/n7uaZiZ5dju26/imivm0jS9+Oe8afo01lwxl913XDUh7+ekYWaWY7NnNjGjsYG+/lM0Nkyjr/8UMxobmD2jaULez8NTZmY59+4Hfdyw7BK+vPRinth3mJ4JnAz3klszM/OSWzMzG39OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmY2YNCQ1Sdon6UeSDkr6ryk+S1K7pM703FxWZqOkLkmHJK0qiy+R9Er62WZJSvFGSU+n+F5JC8rKtKX36JTUNp4Hb2ZmlcnS0+gDPh8RvwVcAayWtBzYAOyKiEXArvQaSYuBVuAyYDXwbUlnpboeANYDi9JjdYqvA45FxMeBbwL3p7pmAXcDy4ClwN3lycnMzCbXiEkjij5IL6enRwBrgK0pvhVYm7bXAE9FRF9EvAF0AUslzQFmRsSeKH7H7KODypTq2g6sSL2QVUB7RPRGxDGgndOJxszMJlmmOQ1JZ0l6Geim+Ed8L3BhRBwFSM+z0+7zgLfKih9JsXlpe3B8QJmI6AfeA84fpi4zM6uCTEkjIk5GxBXAfIq9hsuH2V1DVTFMfLRlTr+htF5Sh6SOnp6eYZpmZmZjUdHqqYj4JfB9ikNE76QhJ9Jzd9rtCHBRWbH5wNspPn+I+IAykhqA84DeYeoa3K4tEVGIiEJLS0slh2RmZhXIsnqqRdJH0/bZwO8BPwZ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruuAF9O8x/PASknNaQJ8ZYqZmVkVNGTYZw6wNa2AmgZsi4i/k7QH2CZpHXAYuB4gIg5K2ga8BvQDt0bEyVTXzcAjwNnAzvQAeAh4TFIXxR5Ga6qrV9K9wP603z0R0TuWAzYzs9FT8QN9/SgUCtHR0VHtZpiZ5YqkAxFRGGk/XxFuZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZ1bDu90/wxQf30H38RLWbAjhpmJnVtM27Otn/Zi+bX+isdlMAaKh2A8zM7NddetdO+vpP/evrx/ce5vG9h2lsmMahTVdXrV3uaZiZ1aDdt1/FNVfMpWl68c900/RprLliLrvvuKqq7XLSMDOrQbNnNjGjsYG+/lM0Nkyjr/8UMxobmD2jqart8vCUmVmNeveDPm5YdglfXnoxT+w7TE8NTIYrIobfQboIeBT4GHAK2BIRfylpFvA0sAB4E/hiRBxLZTYC64CTwJ9ExPMpvgR4BDgbeA64LSJCUmN6jyXA/wO+FBFvpjJtwF2pOZsiYutw7S0UCtHR0ZH9X8DMzJB0ICIKI+2XZXiqH/jPEfFJYDlwq6TFwAZgV0QsAnal16SftQKXAauBb0s6K9X1ALAeWJQeq1N8HXAsIj4OfBO4P9U1C7gbWAYsBe6W1JyhzWZmNgFGTBoRcTQifpi2jwOvA/OANUDpU/9WYG3aXgM8FRF9EfEG0AUslTQHmBkRe6LYvXl0UJlSXduBFZIErALaI6I39WLaOZ1ozMxsklU0ES5pAXAlsBe4MCKOQjGxALPTbvOAt8qKHUmxeWl7cHxAmYjoB94Dzh+mLjMzq4LMSUPSbwB/A3w9It4fbtchYjFMfLRlytu2XlKHpI6enp5hmmZmZmORKWlImk4xYXw3Iv42hd9JQ06k5+4UPwJcVFZ8PvB2is8fIj6gjKQG4Dygd5i6BoiILRFRiIhCS0tLlkMyM7NRGDFppLmFh4DXI+K/l/1oB9CWttuAZ8virZIaJS2kOOG9Lw1hHZe0PNV546AypbquA15M8x7PAyslNacJ8JUpZmZmVZBlye3ngN3AKxSX3AJ8g+K8xjbgYuAwcH1E9KYydwI3UVx59fWI2JniBU4vud0JfC0tuW0CHqM4X9ILtEbET1OZm9L7AfxZRDw8Qnt7gJ9lPP5acwHwbrUbMc7q7Zjq7Xig/o6p3o4HJueYLomIEYdqRkwaNnkkdWRZJ50n9XZM9XY8UH/HVG/HA7V1TL6NiJmZZeakYWZmmTlp1JYt1W7ABKi3Y6q344H6O6Z6Ox6ooWPynIaZmWXmnoaZmWXmpDHBJP2VpG5Jr5bFfkvSHkmvSPqfkmam+EckPZziP5L0u2Vlvi/pkKSX02P2EG834SRdJOn/SHpd0kFJt6X4LEntkjrTc3NZmY2SulL7V5XFl6Rj7ZK0OV2/k+fjyeU5knR+2v8DSd8aVFfuztEIx5PXc/T7kg6kc3FA0ufL6prccxQRfkzgA/gd4DPAq2Wx/cC/S9s3Afem7VuBh9P2bOAAMC29/j5QqIHjmQN8Jm3PAP4ZWAz8ObAhxTcA96ftxcCPgEZgIfAT4Kz0s33Ab1O8XcxO4OqcH09ez9G5wOeArwLfGlRXHs/RcMeT13N0JTA3bV8O/Lxa58g9jQkWEX9P8YLFcpcCf5+224E/TNuLKd5mnojoBn4J1MTa7JKYnLseT5rxOp7JbfXwKj2miPhVRPxfYMA3/OT1HJ3peGrJKI7ppYgo3ULpINCk4l03Jv0cOWlUx6vANWn7ek7fX+tHwBpJDSregmUJA++99XDqUv+XagwTDKaJu+txVYzxeEryeI7OJK/naCR5P0d/CLwUEX1U4Rw5aVTHTRS/zOoAxa7pv6T4X1E86R3AXwD/SPFWLAA3RMSngH+bHl+Z1BYPoom96/GkG4fjgfyeozNWMUQsD+doOLk+R5Iuo/gldX9cCg2x24SeIyeNKoiIH0fEyohYAjxJcVyciOiPiD+NiCsiYg3wUaAz/ezn6fk48ARVHBLRxN/1eFKN0/Hk+RydSV7P0Rnl+RxJmg88A9wYET9J4Uk/R04aVVBasSFpGsXvP/8f6fU5ks5N278P9EfEa2m46oIUnw78AcUhrmq0fTLuejxpxut4cn6OhpTjc3SmenJ7jiR9FPhfwMaI+IfSzlU5RxM5y+5HQLEncRT4kOKngnXAbRRXS/wzcB+nL7JcAByiOCn2AsW7TkJxNcgB4J8oToL9JWnFThWO53MUu7//BLycHv+e4jct7qLYM9oFzCorcyfF3tQhylZ2UJzkfzX97Fulf4c8Hk8dnKM3KS7Y+CD9P12c83P0a8eT53NE8cPlr8r2fRmYXY1z5CvCzcwsMw9PmZlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpn9f/2Yi6a8X2tzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Valeur numérique du graphique au dessus pour pouvoir déterminer quelle est l'année avec le maximum de cas et quelle est l'année avec le minimum de cas" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 221186\n", "2021 376290\n", "2002 516689\n", "2018 542312\n", "2017 551041\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Histogramme du nombre d'année ayant un certain nombre de cas de varicelle" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEICAYAAACQzXX2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEaZJREFUeJzt3XuQZGV5x/Hvwy7owgCiC0MFMEPQGImrImPwUsFZsCwV1BJNvCCBlGZNeSNmUxZJqWgSlcRgaSxIakWUEuOoYEoB46Wio+IF2VXLFQlqBBGIRGJAl6Cw8uSP9wyZXXd2zlx6pp/N91M1Nae7T/d5nj7dv3P67dPdkZlIkmrZa6ULkCTNn+EtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJU0OpB3fDatWtzbGxsh/PuvPNO9ttvv0EtclnYw3Cwh+FgD0tvy5Ytt2XmwXPNN7DwHhsbY/PmzTucNzU1xcTExKAWuSzsYTjYw3Cwh6UXET/oM5/DJpJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUN7EM6kn7V2FlX3De9cd12zphxepBuOOekZVmOlo973pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUUO/wjohXR8Q1EfGtiPhARNx/kIVJkmbXK7wj4jDgVcB4Zj4CWAU8f5CFSZJmN59hk9XAmohYDewL3DKYkiRJc4nM7DdjxJnAm4C7gE9l5qm7mGcDsAFgdHT02MnJyR0u37ZtGyMjI4uteUXZw3Co2sPWm++4b3p0Ddx61/Isd91hBw7kdquuh5mGrYf169dvyczxuebrFd4RcRBwKfA84Hbgw8AlmXnxbNcZHx/PzZs373De1NQUExMTcy5vmNnDcKjaw9hZV9w3vXHdds7dunpZlnvDOScN5HarroeZhq2HiOgV3n2HTZ4MXJ+ZP87Me4CPAE9YTIGSpIXrG943Ao+LiH0jIoATgWsHV5YkaXd6hXdmXgVcAnwN2Npdb9MA65Ik7UbvAbfMPBs4e4C1SJJ68hOWklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklRQ7/COiAdExCUR8W8RcW1EPH6QhUmSZrd6HvO+A/hEZj43IvYB9h1QTZKkOfQK74g4ADgeOAMgM+8G7h5cWZKk3YnMnHumiEcDm4BvA48CtgBnZuadO823AdgAMDo6euzk5OQOt7Nt2zZGRkaWpvIVYg/DoWoPW2++477p0TVw610rWMwS6NPDusMOXJ5iFmjYHkvr16/fkpnjc83XN7zHga8AT8zMqyLiHcBPM/N1s11nfHw8N2/evMN5U1NTTExMzLm8YWYPw6FqD2NnXXHf9MZ12zl363xGLodPnx5uOOekZapmYYbtsRQRvcK77xuWNwE3ZeZV3elLgMcstDhJ0uL0Cu/M/BHww4h4WHfWibQhFEnSCpjPa7ZXAu/vjjT5PvCHgylJkjSX3uGdmd8A5hyHkSQNnp+wlKSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSC5hXeEbEqIr4eEZcPqiBJ0tzmu+d9JnDtIAqRJPXXO7wj4nDgJOCCwZUjSeojMrPfjBGXAG8B9gf+LDNP3sU8G4ANAKOjo8dOTk7ucPm2bdsYGRlZbM0ryh6Gw2J62HrzHUtczcKMroFb71rpKhbHHnZt3WEHLvi669ev35KZ43PNt7rPjUXEycB/ZuaWiJiYbb7M3ARsAhgfH8+JiR1nnZqaYufzqrGH4bCYHs4464qlLWaBNq7bzrlbez0Fh5Y97NoNp04s6e3tSt9hkycCz4yIG4BJ4ISIuHhgVUmSdqtXeGfmn2fm4Zk5Bjwf+ExmvmiglUmSZuVx3pJU0LwHejJzCpha8kokSb255y1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBfUK74g4IiI+GxHXRsQ1EXHmoAuTJM1udc/5tgMbM/NrEbE/sCUiPp2Z3x5gbZKkWfTa887M/8jMr3XTPwOuBQ4bZGGSpNlFZs7vChFjwOeBR2TmT3e6bAOwAWB0dPTYycnJHa67bds2RkZGFlHuyrOH4bCYHrbefMcSV7Mwo2vg1rtWuorFsYddW3fYgQu+7vr167dk5vhc880rvCNiBPgc8KbM/Mju5h0fH8/NmzfvcN7U1BQTExO9lzeM7GE4LKaHsbOuWNpiFmjjuu2cu7XvyOVwsoddu+GckxZ83YjoFd69jzaJiL2BS4H3zxXckqTB6nu0SQDvBq7NzLcNtiRJ0lz67nk/ETgNOCEivtH9PX2AdUmSdqPXQE9mXgnEgGuRJPXkJywlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqaCh/Nnnlfx178X86vNiLGfPG9dt54wZy6vY8849SP/fuOctSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQX1Du+IeGpEXBcR34uIswZZlCRp93qFd0SsAs4DngYcDbwgIo4eZGGSpNn13fP+HeB7mfn9zLwbmASeNbiyJEm7E5k590wRzwWempkv6U6fBhyXma/Yab4NwIbu5MOA63a6qbXAbYsteoXZw3Cwh+FgD0vv1zPz4LlmWt3zxmIX5/1K6mfmJmDTrDcSsTkzx3sucyjZw3Cwh+FgDyun77DJTcARM04fDtyy9OVIkvroG95XAw+NiCMjYh/g+cDHBleWJGl3eg2bZOb2iHgF8ElgFXBhZl6zgOXNOqRSiD0MB3sYDvawQnq9YSlJGi5+wlKSCjK8Jakgw1uSChr68I6IEyLiyJWuYzGq91C9/ml7Qh/2MByGoYehfcOy++6USeB24F7g7Mz83MpWNT/Ve6he/7Q9oQ97GA7D1MPQ7HlHxOERccCMs54HXJqZx9PurBdExONXprp+qvcwn/ojYlefuh0K1dcD2MOwGOYeVjy8I+LhEfFx4ErgLyNi+guvfg7s201/iPbdA48bxtCo3sNC6s8hfMlWfT2APQyLCj2sSHhHxH4zTj4auCkzx4DPAH/Xnf8T4BcRsX9m/gT4DjAKjC1jqbOq3sNu6v8sv1r/SFf/dxmS+qdVXw9gD9jDgixbeEfEQRHx3oi4GjgnIg7utlaPBL7Y7c19DLg9Ik6i3Sn7A+u6m/gu7du/7l6umndWvYfd1L9uRv0f3UX9j+xu4jsrWf+06usB7KG7CXtYhOXc8z4e2A48nfYthX8BHNDVcOiMl+EXAS8Evgr8jPYDEGTml4ETgJ8uY807q97DbPWvokb906qvB7AHe1iszFzSP1oQvBT4HO27vdd2538IeFU3fSRwTnf5Y2njSqu6y0aAH3e3cxhwLfAK4D3A+cC+S13zntZD9fr3pD7swR4G9TeIPe+TgWcCbwQeD/xtd/6ngSd00z8EvgA8LTOvpm3x1gNk5jbgKuCxmXkzcBptTOlHwGsz838GUPOe1kP1+vekPuzBHgai748x7GD6aIOIeCztpcQXgCsy8xfAbwLfz8zPRMT1wFsj4inAFuDZEbE2M2+LiO8Cd0bEg4F3Ai+KiENo3xX+X7SXJ2TmZmDzIvvc43qoXv+e1kfXiz34nF42897znnEHHQ9cSDt05snAW7pZ7gW+ExFrMvN62suLR9LGiW6hHScJ8EvaS5C9gEtpX8t4KnAssCkz711wV3P3sKrr4Um0lz2leujqyoiYoOg66Po4oHofEfGg7v8TgPcW7eGQiHhQRIzTxnYr9rBP5ef0gvQZW6Ed1/jHwD8BfwTsDfwJ8PLu8oOAbwLH0O6Ec4Cx7rKTaXfA2m56K3AgbZD/48A+M5az16DGh4D9gJfQVshG2psS1XrYH7iC9n3qAK+uVP+Mx9LpwL/SPuxQqg/+71PJv0cbE52i/V5rtcfSfsAZtGGDO4CTCvawN/Ay4DLgH4CHAGdW6mExf3PueUfEocDlwATwPtpg/im0caPtAJn538BHgVd1D4ZDgId3N/F54EnA3Zl5OfBu4BLgPNpW/p7pZeXg9lT3o4XFCcC7gKcAz6G9KXFvhR46a4D7AUdFxFrgKNpeQon6I2Jv4BrgucBbM/M53UXHzFj+UPeRmRkRBwK/D7w9Mycy8zranlmJHiLiIbQhhROB1wI3AzfS3rAr83gCXk57Tr+d9pu6p3Snf1moh4XrsXVbQ/ul+OnTZ9AG+08Hvjrj/F8DbummX0776OhB3fUvAx48Y961y72VAh4wY/o1tBV6arEeTgfeCrwOeDHwDODqKvV3y/0IcOpO5z0PuKpKH7S9vb/qpqf3xE+p0gMtoO834/SFtA3qs6r00C3zMuAPuukXA6/sHktlntOL+esz5v1z4KvdgevQXoYcl5kX0fYADwXIzFuAayLiuMw8D/ge8EHajxdfmZk3Tt9gZt7WY7lLKjNvj4gDIuK9tGGTtbSVd1REjA5zDzPu+72Af6ftvZ6QmZcBRw57/Tu5EDg7Is6NiKmIeD3wFdpvpB7S1TbsfdwG/G5EnApsiYiLaHt7v9W9IhrqHjLzl9nexJsesw/aFy1dRlsPJZ7TwL8Ap0fEh4E3AI8CvkXr4eCurmHvYeHmsZWb3sO4CDizm34f8Dfd9AOBC+i2ZLTxqEcA91/pLdROfbyM9vJwE20M/EvA62kP4KHuAfgwba/pQNrxqq+lPVhfV2wdfJL2YYgjaE+kM4EvF1oPD+3q/XvaXtwLgbfRjgN+DW0jO9Q97NTP14FTuumLKz2nu+fwhbSdsTcAZwPXdY+vUuthvn+9jzbJzIyIw4FDaVs8ujuLiLicNqa8KrstWWbek5nfysyf913GcsjM87O923w+bZzyH2kvoT7GEPcQESO0Pb53AZ+gvVN+HPAC4KCIuIwhrn8nz87MN2fmD4E30w7jeicF1kPnRtrHoVdnG1e9vDvvctobshV6ICKmn/9X0t7sA3hTu6jM4+loYCrbXvN7aDs3H6DOY2nh5rmVewbtC1r2pm3xnkq7s14IPGalt0Tz7OUI4FPAg7rTLwKOWem6dlPv/Wmvei6gvdE0AXxqxuVDXf9u+vp12ptJD6zUB+3j0Vu66QfQXkEcU6mHrtZ9aRvOU3Y6/9Rh76HLnj8FLuhOr6XtWB5ZbT0s5G9eP8YQEV8EfgO4gXZs5Bsz85u9b2CFdUcJnEjb2BxNGzo5LzPv2e0Vh1D3IYJTgMnM/NFK1zMfEXE/2ob/NOC3aYd5nZ+Z21e0sHmKiDfRng/H0HYEzs62J15KRFwHvD4zPzj9OY6VrqmviDiK9jy+m7Yu/hn462yfiNyj9Q7v7jCvs4HrgYuze8OjkohYTft+g1/Qeij30ikiVgH3VnqC7UpEvJR2mOb7Kq6HaRHxMOAHFXuY8YG7R9PeBN9e8XHV7cg8FPhSZt610vUsl6H9GTRJ0uxW/Jd0JEnzZ3hLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQV9L8Giii4LM1vYwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }