
Latency and capacity estimation for a network connection
from asymmetric measurements

Alexandre D. Jesus

2020-05-30

1 Introduction

A simple and commonly used model for the performance of a network connection is given
by

T (S) = L+ S/C

where S denotes the size of a message in bytes, L denotes the latency of the connection in seconds,
and C denotes the capacity of the connection. This model T (S) denotes the time required to
send a message of size S.

In this work, we are interested in estimating the values L and C for a network connection given
sample values of S and T (S).

2 Reading the data

2.1 Dataset format

In this work we consider two datasets for two connections:

• A short on-campus connection: file://./liglab2.log.gz

• A connection to stackoverflow.com: file://./stackoverflow.log.gz

These files contain the raw output of a ping command. Each line is of the form

[TIMESTAMP] SIZE bytes from DOMAIN (IP): icmp_seq=ICMP_SEQ ttl=TTL time=TIME ms

where:

• TIMESTAMP denotes the date of the measurement expressed in seconds since January 1, 1970

• SIZE denotes the size of the message expressed in bytes, which corresponds to the variable
S of our model

1

file://./liglab2.log.gz
file://./stackoverflow.log.gz

• DOMAIN and IP denote the domain and IP address of the target machine, which should be
fixed for each file

• ICMP_SEQ and TTL are not relevant for our analysis

• TIME denotes the round-trip time of the message in milliseconds

An example line looks like this

[1421761682.052172] 665 bytes from lig-publig.imag.fr (129.88.11.7): icmp_seq=1
ttl=60 time=22.5 ms

2.2 Reading the data

To process these files we devise a function that takes a file as input and returns a dataframe with
the relevant data for our analysis

1 read_data <- function(path) {
2 if(!file.exists(path)) {
3 stop("File does not exist")
4 }
5 timestamp_r <- "\\[[0-9]+(\\.[0-9]+)?\\]"
6 size_r <- "[0-9]+[[:space:]]bytes"
7 time_r <- "time=[0-9]+(\\.[0-9]+)?"
8 all_r <- sprintf("%s.*%s.*%s", timestamp_r, size_r, time_r)
9 lines <- readLines(path)

10 ind <- grep(all_r, lines)
11

12 timestamps <- sapply(
13 regmatches(lines[ind], regexpr(timestamp_r, lines[ind])),
14 function(s) as.numeric(substr(s, 2, nchar(s)-1)),
15 USE.NAMES = F
16)
17

18 sizes <- sapply(
19 regmatches(lines[ind], regexpr(size_r, lines[ind])),
20 function(s) as.numeric(substr(s, 1, nchar(s)-6)),
21 USE.NAMES = F
22)
23

24 times <- sapply(
25 regmatches(lines[ind], regexpr(time_r, lines[ind])),
26 function(s) as.numeric(substr(s, 6, nchar(s))),
27 USE.NAMES = F

2

28)
29 df <- data.frame(
30 timestamp = timestamps,
31 size = sizes,
32 time = times
33)
34

35 df$timestamp <- as.POSIXct(
36 df$timestamp,
37 origin = "1970-01-01"
38)
39

40 df
41 }

In this function we start by checking if a file exists or not

1 if(!file.exists(path)) {
2 stop("File does not exist")
3 }

Then we define regexps that look for the timestamp, size and time data in a line

1 timestamp_r <- "\\[[0-9]+(\\.[0-9]+)?\\]"
2 size_r <- "[0-9]+[[:space:]]bytes"
3 time_r <- "time=[0-9]+(\\.[0-9]+)?"
4 all_r <- sprintf("%s.*%s.*%s", timestamp_r, size_r, time_r)

Then, we find all the lines with no missing data, and gather all the data

1 lines <- readLines(path)
2 ind <- grep(all_r, lines)
3

4 timestamps <- sapply(
5 regmatches(lines[ind], regexpr(timestamp_r, lines[ind])),
6 function(s) as.numeric(substr(s, 2, nchar(s)-1)),
7 USE.NAMES = F
8)
9

10 sizes <- sapply(
11 regmatches(lines[ind], regexpr(size_r, lines[ind])),

3

12 function(s) as.numeric(substr(s, 1, nchar(s)-6)),
13 USE.NAMES = F
14)
15

16 times <- sapply(
17 regmatches(lines[ind], regexpr(time_r, lines[ind])),
18 function(s) as.numeric(substr(s, 6, nchar(s))),
19 USE.NAMES = F
20)

Finally we aggregate this data into a data frame

1 df <- data.frame(
2 timestamp = timestamps,
3 size = sizes,
4 time = times
5)
6

7 df$timestamp <- as.POSIXct(
8 df$timestamp,
9 origin = "1970-01-01"

10)
11

12 df

and quickly check if the function is working correctly

1 head(read_data("./stackoverflow.log.gz"))

timestamp size time
1 2015-01-20 16:26:43 1257 120
2 2015-01-20 16:26:43 454 120
3 2015-01-20 16:26:43 775 126
4 2015-01-20 16:26:44 1334 112
5 2015-01-20 16:26:44 83 111
6 2015-01-20 16:26:44 694 111

4

3 Analysis of the dataset liglab2

3.1 Effect of timestamp on time

We start by looking at the effect of timestamp into time by plotting all samples from our
dataset.

1 dat <- read_data("./liglab2.log.gz")

0

100

200

14:00 15:00 16:00
timestamp

tim
e

This plot does not show an impact of the timestamp on time. Another way to look at this data
is through a bar plot that shows the frequency of time over certain timestamp intervals.

5

0

1000

2000

14:00 15:00 16:00
Timestamp

C
ou

nt

type

0 <= t < 10

10 <= t < 20

100 <= t

20 <= t < 50

50 <= t < 100

This plot also shows no significant impact of the timestamp on time. There are a couple of
intervals where the time seems to increase slightly but nothing too significant. Also we note that
the number of samples per timestamp period is consistent.

3.2 Effect of size on time

We start by plotting time over size

6

0

100

200

0 500 1000 1500 2000
size

tim
e

This plot shows that there is an increase in time after a certain size. To better determine at
what size this increase happens we zoom around that point.

0

20

40

60

80

1450 1460 1470 1480 1490 1500
size

tim
e

From this plot the increase in time seems to be after size 1480. As such, to be able to deal with
these two cases separately, we introduce a class column into the dataset.

7

1 dat$class <- NA
2 dat[dat$size <= 1480,]$class <- "small"
3 dat[dat$size > 1480,]$class <- "large"
4 dat$class <- as.factor(dat$class)

3.3 Estimating values of L and C

We will estimate the values of L and C for each of the two datasets previously defined.

3.3.1 Linear regression

To estimate the parameters of our network model we start by considering two linear regression
models (one for each class). For the class "small" we have the linear regression model

1 lmMod.small <- lm(time ~ size, data = dat[dat$class == "small",])
2 lmMod.small

Call:
lm(formula = time ~ size, data = dat[dat$class == "small",])

Coefficients:
(Intercept) size

3.2756742 0.0003263

From this model, we can estimate the latency and capacity values for the network model. In
particular the linear regression model gives us the equation

T (S) = 3.2756742 + 0.0003263× S

Then, since our network model is given by

T (S) = L+ S/C

we can estimate a latency L = 3.2756742 and a capacity C = 1/0.0003263 = 3064.664.

For class "large" we have the linear regression model

1 lmMod.large <- lm(time ~ size, data = dat[dat$class == "large",])
2 lmMod.large

Call:

8

lm(formula = time ~ size, data = dat[dat$class == "large",])

Coefficients:
(Intercept) size

5.289833 0.002579

From this we estimate a latency L = 5.289833 and a capacity C = 1/0.002579 = 387.7472.

Finally, we plot both the regression models against our samples

0

100

200

large small
class

tim
e

Note that these seem to be overestimating most of the data. In the next section we will look
into how we can improve this.

3.3.2 Quantile regression

If we look at a box plot of our data

9

0

100

200

large small
class

tim
e

it indicates that a first look at the points means that we mostly see outliers. We can zoom in
further to take a better look at the box plot.

0

1

2

3

large small
class

tim
e

As a result of this asymmetry in the data, its probably better to use quantile regression with
respect to the median.

10

1 library(quantreg)

1 rqMod.small <- rq(time ~ size, tau = 0.5, data = dat[dat$class == "small",])
2 rqMod.small

Call:
rq(formula = time ~ size, tau = 0.5, data = dat[dat$class ==

"small",])

Coefficients:
(Intercept) size

1.1390594059 0.0002475248

Degrees of freedom: 32667 total; 32665 residual

For the "small" class we have an estimated latency L = 1.139 and capacity C = 1/0.0002475248 =

4039.999.

1 rqMod.large <- rq(time ~ size, tau = 0.5, data = dat[dat$class == "large",])
2 rqMod.large

Call:
rq(formula = time ~ size, tau = 0.5, data = dat[dat$class ==

"large",])

Coefficients:
(Intercept) size

1.8853521127 0.0002464789

Degrees of freedom: 11369 total; 11367 residual

For the "large" class we have an estimated latency L = 1.885 and capacity C = 1/0.0002464789 =

4057.142.

We can see that the quantile regression gives a different estimate, and that the latency estimate
is significantly lower as expected.

We can plot our models

11

large small

1500 1600 1700 1800 1900 2000 0 500 1000 1500

0

100

200

0

50

100

150

size

tim
e

And zoom in to take a better look

large small

1500 1600 1700 1800 1900 2000 0 500 1000 1500

0

1

2

3

0

1

2

3

size

tim
e

Indeed there seems to be a better fit than with the linear regression which we plot below on a
similar scale.

12

large small

1500 1600 1700 1800 1900 2000 0 500 1000 1500

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

size

tim
e

4 Analysis of the dataset stackoverflow

Now we will perform a similar analysis on the stackoverflow dataset.

4.1 Effect of timestamp on time

We start by looking of the effect of the timestamp into the time.

1 dat <- read_data("./stackoverflow.log.gz")

13

110

120

130

140

150

160

16:30 16:40 16:50 17:00
timestamp

tim
e

Like in the previous dataset, there seems to be no significant impact of timestamp on time. We
can also look frequency bar plots.

0

100

200

300

400

16:30 16:40 16:50 17:00
Timestamp

C
ou

nt

type

0 <= t < 115

115 <= t < 140

140 <= t

This plot shows that there are a couple of intervals with a slight increase in time (e.g. around
16:40). However, this does not seem to warrant a separation of the data.

14

4.2 Effect of size on time

We start by plotting the points of time over size

110

120

130

140

150

160

0 500 1000 1500 2000
size

tim
e

This plot shows that the size seems to have an impact on time. If we zoom in

110

120

130

140

150

160

1440 1460 1480 1500 1520
size

tim
e

we see that this difference is after size 1480. As such we split the data into two classes.

15

1 dat$class <- NA
2 dat[dat$size <= 1480,]$class <- "small"
3 dat[dat$size > 1480,]$class <- "large"
4 dat$class <- as.factor(dat$class)

4.3 Estimating values of L and C

4.3.1 Linear regression

We again start by estimating the parameters of our network model with two linear regression
models (one for each class).

1 lmMod.small <- lm(time ~ size, data = dat[dat$class == "small",])
2 lmMod.small

Call:
lm(formula = time ~ size, data = dat[dat$class == "small",])

Coefficients:
(Intercept) size

1.132e+02 4.521e-05

For the class "small" (size less than or equal to 1480) the linear model gives us the equation

T (S) = 113.2 + 0.00004521× S

meaning that we can estimate a latency L = 113.2 and capacity C = 1/0.00004521 = 22119.

1 lmMod.large <- lm(time ~ size, data = dat[dat$class == "large",])
2 lmMod.large

Call:
lm(formula = time ~ size, data = dat[dat$class == "large",])

Coefficients:
(Intercept) size
120.053588 -0.001803

For class "large" we estimate a latency L = 120.053588 and capacity C = 1/ − 0.001803 =

−554.63. Note that a negative capacity does not make sense in terms of the network model.
However, we may assume that this is an artifact of our dataset.

16

A plot of the regression model against the data seems to indicate that both the models seem
to be overestimating the latency due to outliers. The same as it happened for the previous
dataset.

large small

1500 1600 1700 1800 1900 2000 0 500 1000 1500

110

120

130

140

150

110

120

130

140

150

160

size

tim
e

4.3.2 Quantile regression

As in the previous case we notice an asymmetry in the data, and the linear regression model
seems to influenced by the outliers.

17

110

120

130

140

150

160

large small
class

tim
e

As such, we will once again look into quantile regression with respect to the median.

1 library(quantreg)

1 rqMod.small <- rq(time ~ size, tau = 0.5, data = dat[dat$class == "small",])
2 rqMod.small

Call:
rq(formula = time ~ size, tau = 0.5, data = dat[dat$class ==

"small",])

Coefficients:
(Intercept) size

1.110000e+02 7.013151e-18

Degrees of freedom: 5015 total; 5013 residual

For the "small" class we estimate a latency L = 111 and a capacity C = 1/7.013151e − 18 =

1.425893e+ 17. Note that the capacity seems to have no impact.

1 rqMod.large <- rq(time ~ size, tau = 0.5, data = dat[dat$class == "large",])

18

2 rqMod.large

Call:
rq(formula = time ~ size, tau = 0.5, data = dat[dat$class ==

"large",])

Coefficients:
(Intercept) size

1.120000e+02 -4.405647e-19

Degrees of freedom: 1809 total; 1807 residual

In the "large" class we estimate a latency L = 112 and a capacity C = 1/ − 4.405647e − 19 =

−2.269814e + 18. Note that once again we have a negative capacity but that the slope is very
close to zero. As such, this seems to be an artifact of the data, and we could change the sign of
the slope to be positive with no significant detriment to our model.

Finally, we plot the model along with the data

large small

1500 1600 1700 1800 1900 2000 0 500 1000 1500

110

120

130

140

150

110

120

130

140

150

160

size

tim
e

This plot indicates that similarly to the previous dataset, the quantile model is closer to the
actual data.

19

	Introduction
	Reading the data
	Dataset format
	Reading the data

	Analysis of the dataset liglab2
	Effect of timestamp on time
	Effect of size on time
	Estimating values of L and C
	Linear regression
	Quantile regression

	Analysis of the dataset stackoverflow
	Effect of timestamp on time
	Effect of size on time
	Estimating values of L and C
	Linear regression
	Quantile regression

