Commit d4b18a45 authored by Dorinel Bastide's avatar Dorinel Bastide

Proceeded to completing the exercise, first attempt

parent 8e98e7ad
#+TITLE: Some Title #+TITLE: On the computation of pi
#+AUTHOR: Dorinel Bastide #+AUTHOR: Dorinel Bastide
#+DATE: Today's date #+DATE: Today's date
#+LANGUAGE: en #+LANGUAGE: en
...@@ -11,84 +11,77 @@ ...@@ -11,84 +11,77 @@
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script> #+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/lib/js/jquery.stickytableheaders.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script> #+HTML_HEAD: <script type="text/javascript" src="http://www.pirilampo.org/styles/readtheorg/js/readtheorg.js"></script>
* Some explanations * Table of Contents
This is an org-mode document with code examples in R. Once opened in 1. Asking the math libraryo
Emacs, this document can easily be exported to HTML, PDF, and Office 2. * Buffon's needle
formats. For more information on org-mode, see 3. Using a surface fraction argument
https://orgmode.org/guide/.
When you type the shortcut =C-c C-e h o=, this document will be * 1 Asking the math library
exported as HTML. All the code in it will be re-executed, and the My computer tells me that $\pi$ is /approximatively/
results will be retrieved and included into the exported document. If
you do not want to re-execute all code each time, you can delete the #
and the space before ~#+PROPERTY:~ in the header of this document.
Like we showed in the video, Python code is included as follows (and
is exxecuted by typing ~C-c C-c~):
#+begin_src python :results output :exports both #+begin_src python :results output :exports both
print("Hello world!") import math
print(math.pi)
#+end_src #+end_src
#+RESULTS: #+RESULTS:
: Hello world! : 3.141592653589793
And now the same but in an Python session. With a session, Python's * 2 * Buffon's needle
state, i.e. the values of all the variables, remains persistent from Applying the method of [[https://en.wikipedia.org/wiki/Buffon%27s_needle_problem][Buffon's needle]], we get the approximation
one code block to the next. The code is still executed using ~C-c
qC-c~.
#+begin_src python :results output :session :exports both #+begin_src python :results output :exports both
import numpy import math
x=numpy.linspace(-15,15) import numpy as np
print(x) np.random.seed(seed=42)
N = 10000
x = np.random.uniform(size=N, low=0, high=1)
theta = np.random.uniform(size=N, low=0, high=math.pi/2)
print(2/(sum((x+np.sin(theta))>1)/N))
#+end_src #+end_src
#+RESULTS: #+RESULTS:
#+begin_example : 3.128911138923655
[-15. -14.3877551 -13.7755102 -13.16326531 -12.55102041
-11.93877551 -11.32653061 -10.71428571 -10.10204082 -9.48979592 * 3. Using a surface fraction argument
-8.87755102 -8.26530612 -7.65306122 -7.04081633 -6.42857143 A method that is easier to understand and does not make use of the
-5.81632653 -5.20408163 -4.59183673 -3.97959184 -3.36734694 $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim
-2.75510204 -2.14285714 -1.53061224 -0.91836735 -0.30612245 U(0,1)$, then $P[X^2 + Y^2 \leq 1]=\pi/4$ (see [[https://en.wikipedia.org/wiki/Monte_Carlo_method]["Monte Carlo method"
0.30612245 0.91836735 1.53061224 2.14285714 2.75510204 on Wikipedia]]). The following ocde uses this approach:
3.36734694 3.97959184 4.59183673 5.20408163 5.81632653 #+begin_src python :results output file :session :var matplot_lib_filename="C:/Users/Utilisateur/mooc-rr/module2/exo1/PictureRes.png" :exports results
6.42857143 7.04081633 7.65306122 8.26530612 8.87755102 import matplotlib
9.48979592 10.10204082 10.71428571 11.32653061 11.93877551 matplotlib.use('Agg')
12.55102041 13.16326531 13.7755102 14.3877551 15. ]
#+end_example
Finally, an example for graphical output:
#+begin_src python :results output file :session :var matplot_lib_filename="./cosxsx.png" :exports results
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np
np.random.seed(seed=42)
N = 1000
x = np.random.uniform(size=N, low=0, high=1)
y = np.random.uniform(size=N, low=0, high=1)
plt.figure(figsize=(10,5)) accept = (x*x+y*y) <= 1
plt.plot(x,numpy.cos(x)/x) reject = np.logical_not(accept)
plt.tight_layout()
fig, ax = plt.subplots(1)
ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)
ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)
ax.set_aspect('equal')
plt.savefig(matplot_lib_filename) plt.savefig(matplot_lib_filename)
print(matplot_lib_filename) print(matplot_lib_filename)
#+end_src #+end_src
#+RESULTS: #+RESULTS:
[[file:./cosxsx.png]] [[file:Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 19:29:22) [MSC v.1916 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
Note the parameter ~:exports results~, which indicates that the code C:/Users/Utilisateur/mooc-rr/module2/exo1/PictureRes.png]]
will not appear in the exported document. We recommend that in the
context of this MOOC, you always leave this parameter setting as It is then straightforward to obtain a (not really good) approximation
~:exports both~, because we want your analyses to be perfectly to $\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller
transparent and reproducible. than $1$:
#+begin_src python :results output :exports both
Watch out: the figure generated by the code block is /not/ stored in import numpy as np
the org document. It's a plain file, here named ~cosxsx.png~. You have 4*np.mean(accept)
to commit it explicitly if you want your analysis to be legible and #+end_src
understandable on GitLab.
#+RESULTS:
Finally, don't forget that we provide in the resource section of this
MOOC a configuration with a few keyboard shortcuts that allow you to
quickly create code blocks in Python by typing ~<p~, ~<P~ or ~<PP~
followed by ~Tab~.
Now it's your turn! You can delete all this information and replace it
by your computational document.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment