diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 6a756e40e017c227ce39fcd710a0819ece637a2d..36e685091a6d2f29c2ad550e86a9f7c0f3545786 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -50,7 +50,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : " + "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ : " ] }, { @@ -90,12 +90,12 @@ "metadata": {}, "source": [ "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n", - "sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors P [X^2 + Y^2 ≤ 1] = π/4 (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + "sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -118,7 +118,6 @@ "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", - "1\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", "fig, ax = plt.subplots(1)\n", @@ -131,13 +130,13 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Il est alors aisé d’obtenir une approximation (pas terrible) de π en comptant combien de fois,\n", - "en moyenne, X^2 + Y^2 est inférieur à 1 : " + "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n", + "en moyenne, $X^2 + Y^2$ est inférieur à 1 : " ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -146,7 +145,7 @@ "3.112" ] }, - "execution_count": 4, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } diff --git a/module2/exo2/exercice.ipynb b/module2/exo2/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..0ce1a3c40f187a3b650d57b260e76c5874706c9a 100644 --- a/module2/exo2/exercice.ipynb +++ b/module2/exo2/exercice.ipynb @@ -1,5 +1,133 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Max de la liste" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23.4\n" + ] + } + ], + "source": [ + "number_list = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", + "print(max(number_list))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Min de la liste" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.8\n" + ] + } + ], + "source": [ + "print(min(number_list))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Moyenne de la liste" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14.113000000000007\n" + ] + } + ], + "source": [ + "avg = sum(number_list)/len(number_list)\n", + "print(avg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Médiane de la liste" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14.5\n" + ] + } + ], + "source": [ + "import numpy as np \n", + "print(np.median(np.array(number_list)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Ecart-type de la liste" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.334094455301447" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import statistics\n", + "statistics.stdev(number_list)" + ] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +144,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -