Pour exécuter le code de cette analyse, il faut disposer des logiciels suivants:
** Emacs 25 ou plus
Une version plus ancienne d'Emacs devrait suffire. Pour une version antérieure à 26, il faut installer une version récente (9.x) d'org-mode.
** Python 3.6 ou plus
Nous utilisons le traitement de dates en format ISO 8601, qui a été implémenté en Python seulement avec la version 3.6.
#+BEGIN_SRC python :results output
import sys
if sys.version_info.major < 3 or sys.version_info.minor < 6:
print("Veuillez utiliser Python 3.6 (ou plus) !")
#+END_SRC
#+BEGIN_SRC emacs-lisp :results output
(unless (featurep 'ob-python)
(print "Veuillez activer python dans org-babel (org-babel-do-languages) !"))
#+END_SRC
** R 3.4
Nous n'utilisons que des fonctionnalités de base du langage R, une version antérieure devrait suffire.
#+BEGIN_SRC emacs-lisp :results output
(unless (featurep 'ob-R)
(print "Veuillez activer R dans org-babel (org-babel-do-languages) !"))
#+END_SRC
* Préparation des données
Les données de l'incidence du syndrome grippal sont disponibles du site Web du [[http://www.sentiweb.fr/][Réseau Sentinelles]]. Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période d'observation. Nous téléchargeons toujours le jeu de données complet (rien d'autre n'est proposé), qui commence en 1984 et se termine avec une semaine récente. L'URL est:
L'indication d'une semaine calendaire en format [[https://en.wikipedia.org/wiki/ISO_8601][ISO-8601]] est populaire en Europe, mais peu utilisée aux Etats-Unis. Ceci explique peut-être que peu de logiciels savent gérer ce format. Le langage Python le fait depuis la version 3.6. Nous utilisons donc ce langage pour la préparation de nos données, ce qui a l'avantage de ne nécessiter aucune bibliothèque supplémentaire. (Note: nous expliquerons dans le module 4 pourquoi il est avantageux pour la réproductibilité de se limiter à un minimum de bibliothèques.)
** Téléchargement
Après avoir téléchargé les données, nous commençons par l'extraction des données qui nous intéressent. D'abord nous découpons le contenu du fichier en lignes, dont nous jetons la première qui ne contient qu'un commentaire. Les autres lignes sont découpées en colonnes.
table = [line.split(',') for line in donnees_lines]
#+END_SRC
Regardons ce que nous avons obtenu:
Afficher les 5 premières lignes du tableau
#+BEGIN_SRC python :results value
table[:5]
#+END_SRC
** Recherche de données manquantes
Il y a malheureusement beaucoup de façon d'indiquer l'absence d'un point de données. Nous testons ici seulement pour la présence de champs vides. Il faudrait aussi rechercher des valeurs non-numériques dans les colonnes à priori numériques. Nous ne le faisons pas ici, mais une vérification ultérieure capterait des telles anomalies.
Nous construisons un nouveau jeu de données sans les lignes qui contiennent des champs vides. Nous affichons ces lignes pour en garder une trace.
#+BEGIN_SRC python :results output
valid_table = []
for row in table:
missing = any([column == '' for column in row])
if missing:
print(row)
else:
valid_table.append(row)
#+END_SRC
** Extraction des colonnes utilisées
Il y a deux colonnes qui nous intéressent: la première (~"week"~) et la troisième (~"inc"~). Nous vérifions leurs noms dans l'en-tête, que nous effaçons par la suite. Enfin, nous créons un tableau avec les deux colonnes pour le traitement suivant.
Il y a deux colonnes qui nous intéressent: la première ~'week'~ et la troisième ~'inc'. Nous vérifions leurs noms dans l'en-tête, que nous effaçons par la suite. Enfin, nous créons un tableau avec les deux colonnes pour le traitement suivant.
#+BEGIN_SRC python :results silent
week = [row[0] for row in valid_table]
week = [row[0] for row in table]
assert week[0] == 'week'
del week[0]
inc = [row[2] for row in valid_table]
inc = [row[2] for row in table]
assert inc[0] == 'inc
del inc[0]
data = list(zip(week, inc))
donnees = list(zip(week, inc))
#+END_SRC
Regardons les premières et les dernières lignes. Nous insérons ~None~ pour indiquer à org-mode la séparation entre les trois sections du tableau: en-tête, début des données, fin des données.
Il est toujours prudent de vérifier si les données semblent crédibles. Nous savons que les semaines sont données par six chiffres (quatre pour l'année et deux pour la semaine), et que les incidences sont des nombres entiers positifs.
#+BEGIN_SRC python :results output
for week, inc in data:
for week, inc in donnees:
if len(week) != 6 or not week.isdigit():
print("Valeur suspecte dans la colonne 'week': ", (week, inc))
if not inc.isdigit():
print("Valeur suspecte dans la colonne 'inc': ", (week, inc))
#+END_SRC
#+RESULTS:
Pas de problème !
** Conversions
Pour faciliter les traitements suivants, nous remplaçons les numéros de semaine ISO par les dates qui correspondent aux lundis. A cette occasion, nous trions aussi les données par la date, et nous transformons les incidences en nombres entiers.
Nous faisons encore une vérification: nos dates doivent être séparées d'exactement une semaine, sauf autour du point manquant.
#+BEGIN_SRC python :results output
dates = [date for date, _ in converted_data]
dates = [date for date, _ in converted_donnees]
for date1, date2 in zip(dates[:-1], dates[1:]):
if date2-date1 != datetime.timedelta(weeks=1):
print(f"Il y a {date2-date1} entre {date1} et {date2}")
#+END_SRC
#+RESULTS:
** Passage Python -> R
Nous passons au langage R pour inspecter nos données, parce que l'analyse et la préparation de graphiques sont plus concises en R, sans nécessiter aucune bibliothèque supplémentaire.
Nous utilisons le mécanisme d'échange de données proposé par org-mode, ce qui nécessite un peu de code Python pour transformer les données dans le bon format.
#+NAME: data-for-R
#+NAME: donnees-for-R
#+BEGIN_SRC python :results silent
[('date', 'inc'), None] + [(str(date), inc) for date, inc in converted_data]
[('date', 'inc'), None] + [(str(date), inc) for date, inc in converted_donnees]
#+END_SRC
En R, les données arrivent sous forme d'un data frame, mais il faut encore convertir les dates, qui arrivent comme chaînes de caractères.
#+BEGIN_SRC R :results output :var data=data-for-R
data$date <- as.Date(data$date)
summary(data)
#+BEGIN_SRC R :results output :var donnees=donnees-for-R
donnees$date <- as.Date(donnees$date)
summary(donnees)
#+END_SRC
#+RESULTS:
:
: date inc
: Min. :1984-10-29 Min. : 0
: 1st Qu.:1993-09-09 1st Qu.: 4982
: Median :2002-07-22 Median : 15985
: Mean :2002-07-22 Mean : 61875
: 3rd Qu.:2011-06-02 3rd Qu.: 50502
: Max. :2020-04-13 Max. :1001824
** Inspection
Regardons enfin à quoi ressemblent nos données !
#+BEGIN_SRC R :results output graphics :file inc-plot.png
@@ -185,14 +193,14 @@ Voici une fonction qui calcule l'incidence annuelle en appliquant ces convention
pic_annuel = function(annee) {
debut = paste0(annee-1,"-08-01")
fin = paste0(annee,"-08-01")
semaines = data$date > debut & data$date <= fin
sum(data$inc[semaines], na.rm=TRUE)
semaines = donnees$date > debut & donnees$date <= fin
sum(donnees$inc[semaines], na.rm=TRUE)
}
#+END_SRC
Nous devons aussi faire attention aux premières et dernières années de notre jeux de données. Les données commencent en octobre 1984, ce qui ne permet pas de quantifier complètement le pic attribué à l'année 1985. Nous le supprimons donc de notre analyse. Pour la même raison, nous arrêtons en 2018. Nous devons attendre les données pour juillet 2019 avant d'augmenter la dernière année à 2019.
Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population française, sont assez rares: il y en eu trois au cours des 35 dernières années.
#+BEGIN_SRC R :results output graphics :file annual-inc-hist.png