diff --git a/module3/exo1/analyse-syndrome-grippal.Rmd b/module3/exo1/analyse-syndrome-grippal.Rmd
index 771e78faac371f23c921f7f7aecc87f2100e9059..4f5f3015d0551eed842aa1c14b5530c3c13bce89 100644
--- a/module3/exo1/analyse-syndrome-grippal.Rmd
+++ b/module3/exo1/analyse-syndrome-grippal.Rmd
@@ -17,13 +17,18 @@ header-includes:
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
+setwd("C:/Users/blond/Documents/Thèse/Formations/RechercheReproductible")
```
## Préparation des données
-Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente. L'URL est:
+Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous réalisons une copie du jeu de données complet, qui commence en 1984 et se termine avec une semaine récente. L'URL est:
```{r}
data_url = "http://www.sentiweb.fr/datasets/incidence-PAY-3.csv"
+data_file = "incidence-PAY-3.csv"
+if (!file.exists(data_file)) {
+ download.file(data_url,data_file,method = "auto")
+}
```
Voici l'explication des colonnes donnée sur le [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):
@@ -42,9 +47,9 @@ Voici l'explication des colonnes donnée sur le [sur le site d'origine](https://
| `geo_name` | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |
La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skip=1`.
-### Téléchargement
+### Lecture
```{r}
-data = read.csv(data_url, skip=1)
+data = read.csv(data_file, skip=1)
```
Regardons ce que nous avons obtenu:
diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb
deleted file mode 100644
index c6f02f6f7b4b693b04a99b716e995581b4d8254d..0000000000000000000000000000000000000000
--- a/module3/exo2/exercice.ipynb
+++ /dev/null
@@ -1,32 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.4"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/module3/exo2/exercice_fr.ipynb b/module3/exo2/exercice_fr.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..3f54d35f04e128b8a50a30cf694923389911fbde 100644
--- a/module3/exo2/exercice_fr.ipynb
+++ b/module3/exo2/exercice_fr.ipynb
@@ -1,5 +1,2335 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence de la varicelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Date : 02/08/2024 \n",
+ "Auteur : Clara BLONDE\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Différentes librairies utilisées\n",
+ "\n",
+ "`%matplotlib inline` permet d'afficher les graphiques générés directement dans le document computationnel \n",
+ "`matplotlib.pyplot` gère les graphiques \n",
+ "`pandas` gère le traitement de données \n",
+ "`isoweek` gère le format des dates "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1990 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"https://www.sentiweb.fr/datasets/all/inc-7-PAY.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Voici l'explication des colonnes données sur le [site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "\n",
+ "|Nom de colonne |Libellé de colonne|\n",
+ "|---|---|\n",
+ "|week|Semaine calendaire (ISO 8601)|\n",
+ "|indicator|Code de l'indicateur de surveillance|\n",
+ "|inc|Estimation de l'incidence de consultations en nombre de cas|\n",
+ "|inc_low|Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation|\n",
+ "|inc_up|Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation|\n",
+ "|inc100|Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants)|\n",
+ "|inc100_low|Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants)|\n",
+ "|inc100_up|Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants)|\n",
+ "|geo_insee| Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/|\n",
+ "|geo_name| Libellé de la zone géographique (ce libellé peut être modifié sans préavis)|"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202430 \n",
+ " 7 \n",
+ " 8013 \n",
+ " 4547 \n",
+ " 11479 \n",
+ " 12 \n",
+ " 7 \n",
+ " 17 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202429 \n",
+ " 7 \n",
+ " 9424 \n",
+ " 6406 \n",
+ " 12442 \n",
+ " 14 \n",
+ " 9 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202428 \n",
+ " 7 \n",
+ " 9364 \n",
+ " 6498 \n",
+ " 12230 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202427 \n",
+ " 7 \n",
+ " 10247 \n",
+ " 7090 \n",
+ " 13404 \n",
+ " 15 \n",
+ " 10 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202426 \n",
+ " 7 \n",
+ " 14368 \n",
+ " 10399 \n",
+ " 18337 \n",
+ " 22 \n",
+ " 16 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202425 \n",
+ " 7 \n",
+ " 11174 \n",
+ " 8039 \n",
+ " 14309 \n",
+ " 17 \n",
+ " 12 \n",
+ " 22 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202424 \n",
+ " 7 \n",
+ " 12621 \n",
+ " 9357 \n",
+ " 15885 \n",
+ " 19 \n",
+ " 14 \n",
+ " 24 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202423 \n",
+ " 7 \n",
+ " 14657 \n",
+ " 11339 \n",
+ " 17975 \n",
+ " 22 \n",
+ " 17 \n",
+ " 27 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202422 \n",
+ " 7 \n",
+ " 11628 \n",
+ " 8361 \n",
+ " 14895 \n",
+ " 17 \n",
+ " 12 \n",
+ " 22 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202421 \n",
+ " 7 \n",
+ " 9701 \n",
+ " 6851 \n",
+ " 12551 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202420 \n",
+ " 7 \n",
+ " 13661 \n",
+ " 10209 \n",
+ " 17113 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202419 \n",
+ " 7 \n",
+ " 10083 \n",
+ " 6413 \n",
+ " 13753 \n",
+ " 15 \n",
+ " 9 \n",
+ " 21 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202418 \n",
+ " 7 \n",
+ " 13438 \n",
+ " 9514 \n",
+ " 17362 \n",
+ " 20 \n",
+ " 14 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202417 \n",
+ " 7 \n",
+ " 15303 \n",
+ " 11219 \n",
+ " 19387 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202416 \n",
+ " 7 \n",
+ " 18138 \n",
+ " 13540 \n",
+ " 22736 \n",
+ " 27 \n",
+ " 20 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202415 \n",
+ " 7 \n",
+ " 24929 \n",
+ " 17315 \n",
+ " 32543 \n",
+ " 37 \n",
+ " 26 \n",
+ " 48 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202414 \n",
+ " 7 \n",
+ " 16181 \n",
+ " 12544 \n",
+ " 19818 \n",
+ " 24 \n",
+ " 19 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202413 \n",
+ " 7 \n",
+ " 18322 \n",
+ " 14206 \n",
+ " 22438 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202412 \n",
+ " 7 \n",
+ " 12818 \n",
+ " 9128 \n",
+ " 16508 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202411 \n",
+ " 7 \n",
+ " 15973 \n",
+ " 12400 \n",
+ " 19546 \n",
+ " 24 \n",
+ " 19 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202410 \n",
+ " 7 \n",
+ " 14301 \n",
+ " 10761 \n",
+ " 17841 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202409 \n",
+ " 7 \n",
+ " 14337 \n",
+ " 10871 \n",
+ " 17803 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202408 \n",
+ " 7 \n",
+ " 15899 \n",
+ " 11991 \n",
+ " 19807 \n",
+ " 24 \n",
+ " 18 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202407 \n",
+ " 7 \n",
+ " 11294 \n",
+ " 8226 \n",
+ " 14362 \n",
+ " 17 \n",
+ " 12 \n",
+ " 22 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202406 \n",
+ " 7 \n",
+ " 12174 \n",
+ " 9020 \n",
+ " 15328 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202405 \n",
+ " 7 \n",
+ " 8814 \n",
+ " 6110 \n",
+ " 11518 \n",
+ " 13 \n",
+ " 9 \n",
+ " 17 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202404 \n",
+ " 7 \n",
+ " 9504 \n",
+ " 6566 \n",
+ " 12442 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202403 \n",
+ " 7 \n",
+ " 6948 \n",
+ " 4633 \n",
+ " 9263 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202402 \n",
+ " 7 \n",
+ " 7125 \n",
+ " 4852 \n",
+ " 9398 \n",
+ " 11 \n",
+ " 8 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202401 \n",
+ " 7 \n",
+ " 13305 \n",
+ " 9214 \n",
+ " 17396 \n",
+ " 20 \n",
+ " 14 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1726 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1727 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1728 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1729 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1730 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1731 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1732 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1733 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1734 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1735 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1736 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1737 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1738 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1739 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1740 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1741 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1742 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1743 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1744 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1745 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1746 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1747 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1748 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1749 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1750 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1751 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1752 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1753 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1754 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1755 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1756 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202430 7 8013 4547 11479 12 7 \n",
+ "1 202429 7 9424 6406 12442 14 9 \n",
+ "2 202428 7 9364 6498 12230 14 10 \n",
+ "3 202427 7 10247 7090 13404 15 10 \n",
+ "4 202426 7 14368 10399 18337 22 16 \n",
+ "5 202425 7 11174 8039 14309 17 12 \n",
+ "6 202424 7 12621 9357 15885 19 14 \n",
+ "7 202423 7 14657 11339 17975 22 17 \n",
+ "8 202422 7 11628 8361 14895 17 12 \n",
+ "9 202421 7 9701 6851 12551 15 11 \n",
+ "10 202420 7 13661 10209 17113 20 15 \n",
+ "11 202419 7 10083 6413 13753 15 9 \n",
+ "12 202418 7 13438 9514 17362 20 14 \n",
+ "13 202417 7 15303 11219 19387 23 17 \n",
+ "14 202416 7 18138 13540 22736 27 20 \n",
+ "15 202415 7 24929 17315 32543 37 26 \n",
+ "16 202414 7 16181 12544 19818 24 19 \n",
+ "17 202413 7 18322 14206 22438 27 21 \n",
+ "18 202412 7 12818 9128 16508 19 13 \n",
+ "19 202411 7 15973 12400 19546 24 19 \n",
+ "20 202410 7 14301 10761 17841 21 16 \n",
+ "21 202409 7 14337 10871 17803 21 16 \n",
+ "22 202408 7 15899 11991 19807 24 18 \n",
+ "23 202407 7 11294 8226 14362 17 12 \n",
+ "24 202406 7 12174 9020 15328 18 13 \n",
+ "25 202405 7 8814 6110 11518 13 9 \n",
+ "26 202404 7 9504 6566 12442 14 10 \n",
+ "27 202403 7 6948 4633 9263 10 7 \n",
+ "28 202402 7 7125 4852 9398 11 8 \n",
+ "29 202401 7 13305 9214 17396 20 14 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1726 199126 7 17608 11304 23912 31 20 \n",
+ "1727 199125 7 16169 10700 21638 28 18 \n",
+ "1728 199124 7 16171 10071 22271 28 17 \n",
+ "1729 199123 7 11947 7671 16223 21 13 \n",
+ "1730 199122 7 15452 9953 20951 27 17 \n",
+ "1731 199121 7 14903 8975 20831 26 16 \n",
+ "1732 199120 7 19053 12742 25364 34 23 \n",
+ "1733 199119 7 16739 11246 22232 29 19 \n",
+ "1734 199118 7 21385 13882 28888 38 25 \n",
+ "1735 199117 7 13462 8877 18047 24 16 \n",
+ "1736 199116 7 14857 10068 19646 26 18 \n",
+ "1737 199115 7 13975 9781 18169 25 18 \n",
+ "1738 199114 7 12265 7684 16846 22 14 \n",
+ "1739 199113 7 9567 6041 13093 17 11 \n",
+ "1740 199112 7 10864 7331 14397 19 13 \n",
+ "1741 199111 7 15574 11184 19964 27 19 \n",
+ "1742 199110 7 16643 11372 21914 29 20 \n",
+ "1743 199109 7 13741 8780 18702 24 15 \n",
+ "1744 199108 7 13289 8813 17765 23 15 \n",
+ "1745 199107 7 12337 8077 16597 22 15 \n",
+ "1746 199106 7 10877 7013 14741 19 12 \n",
+ "1747 199105 7 10442 6544 14340 18 11 \n",
+ "1748 199104 7 7913 4563 11263 14 8 \n",
+ "1749 199103 7 15387 10484 20290 27 18 \n",
+ "1750 199102 7 16277 11046 21508 29 20 \n",
+ "1751 199101 7 15565 10271 20859 27 18 \n",
+ "1752 199052 7 19375 13295 25455 34 23 \n",
+ "1753 199051 7 19080 13807 24353 34 25 \n",
+ "1754 199050 7 11079 6660 15498 20 12 \n",
+ "1755 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 17 FR France \n",
+ "1 19 FR France \n",
+ "2 18 FR France \n",
+ "3 20 FR France \n",
+ "4 28 FR France \n",
+ "5 22 FR France \n",
+ "6 24 FR France \n",
+ "7 27 FR France \n",
+ "8 22 FR France \n",
+ "9 19 FR France \n",
+ "10 25 FR France \n",
+ "11 21 FR France \n",
+ "12 26 FR France \n",
+ "13 29 FR France \n",
+ "14 34 FR France \n",
+ "15 48 FR France \n",
+ "16 29 FR France \n",
+ "17 33 FR France \n",
+ "18 25 FR France \n",
+ "19 29 FR France \n",
+ "20 26 FR France \n",
+ "21 26 FR France \n",
+ "22 30 FR France \n",
+ "23 22 FR France \n",
+ "24 23 FR France \n",
+ "25 17 FR France \n",
+ "26 18 FR France \n",
+ "27 13 FR France \n",
+ "28 14 FR France \n",
+ "29 26 FR France \n",
+ "... ... ... ... \n",
+ "1726 42 FR France \n",
+ "1727 38 FR France \n",
+ "1728 39 FR France \n",
+ "1729 29 FR France \n",
+ "1730 37 FR France \n",
+ "1731 36 FR France \n",
+ "1732 45 FR France \n",
+ "1733 39 FR France \n",
+ "1734 51 FR France \n",
+ "1735 32 FR France \n",
+ "1736 34 FR France \n",
+ "1737 32 FR France \n",
+ "1738 30 FR France \n",
+ "1739 23 FR France \n",
+ "1740 25 FR France \n",
+ "1741 35 FR France \n",
+ "1742 38 FR France \n",
+ "1743 33 FR France \n",
+ "1744 31 FR France \n",
+ "1745 29 FR France \n",
+ "1746 26 FR France \n",
+ "1747 25 FR France \n",
+ "1748 20 FR France \n",
+ "1749 36 FR France \n",
+ "1750 38 FR France \n",
+ "1751 36 FR France \n",
+ "1752 45 FR France \n",
+ "1753 43 FR France \n",
+ "1754 28 FR France \n",
+ "1755 5 FR France \n",
+ "\n",
+ "[1756 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Y a-t-il des points manquants dans ce jeux de données ? Non, aucun point manquant"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202430 \n",
+ " 7 \n",
+ " 8013 \n",
+ " 4547 \n",
+ " 11479 \n",
+ " 12 \n",
+ " 7 \n",
+ " 17 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202429 \n",
+ " 7 \n",
+ " 9424 \n",
+ " 6406 \n",
+ " 12442 \n",
+ " 14 \n",
+ " 9 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202428 \n",
+ " 7 \n",
+ " 9364 \n",
+ " 6498 \n",
+ " 12230 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202427 \n",
+ " 7 \n",
+ " 10247 \n",
+ " 7090 \n",
+ " 13404 \n",
+ " 15 \n",
+ " 10 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202426 \n",
+ " 7 \n",
+ " 14368 \n",
+ " 10399 \n",
+ " 18337 \n",
+ " 22 \n",
+ " 16 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202425 \n",
+ " 7 \n",
+ " 11174 \n",
+ " 8039 \n",
+ " 14309 \n",
+ " 17 \n",
+ " 12 \n",
+ " 22 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202424 \n",
+ " 7 \n",
+ " 12621 \n",
+ " 9357 \n",
+ " 15885 \n",
+ " 19 \n",
+ " 14 \n",
+ " 24 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202423 \n",
+ " 7 \n",
+ " 14657 \n",
+ " 11339 \n",
+ " 17975 \n",
+ " 22 \n",
+ " 17 \n",
+ " 27 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202422 \n",
+ " 7 \n",
+ " 11628 \n",
+ " 8361 \n",
+ " 14895 \n",
+ " 17 \n",
+ " 12 \n",
+ " 22 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202421 \n",
+ " 7 \n",
+ " 9701 \n",
+ " 6851 \n",
+ " 12551 \n",
+ " 15 \n",
+ " 11 \n",
+ " 19 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202420 \n",
+ " 7 \n",
+ " 13661 \n",
+ " 10209 \n",
+ " 17113 \n",
+ " 20 \n",
+ " 15 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202419 \n",
+ " 7 \n",
+ " 10083 \n",
+ " 6413 \n",
+ " 13753 \n",
+ " 15 \n",
+ " 9 \n",
+ " 21 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202418 \n",
+ " 7 \n",
+ " 13438 \n",
+ " 9514 \n",
+ " 17362 \n",
+ " 20 \n",
+ " 14 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202417 \n",
+ " 7 \n",
+ " 15303 \n",
+ " 11219 \n",
+ " 19387 \n",
+ " 23 \n",
+ " 17 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202416 \n",
+ " 7 \n",
+ " 18138 \n",
+ " 13540 \n",
+ " 22736 \n",
+ " 27 \n",
+ " 20 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202415 \n",
+ " 7 \n",
+ " 24929 \n",
+ " 17315 \n",
+ " 32543 \n",
+ " 37 \n",
+ " 26 \n",
+ " 48 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202414 \n",
+ " 7 \n",
+ " 16181 \n",
+ " 12544 \n",
+ " 19818 \n",
+ " 24 \n",
+ " 19 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202413 \n",
+ " 7 \n",
+ " 18322 \n",
+ " 14206 \n",
+ " 22438 \n",
+ " 27 \n",
+ " 21 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202412 \n",
+ " 7 \n",
+ " 12818 \n",
+ " 9128 \n",
+ " 16508 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202411 \n",
+ " 7 \n",
+ " 15973 \n",
+ " 12400 \n",
+ " 19546 \n",
+ " 24 \n",
+ " 19 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202410 \n",
+ " 7 \n",
+ " 14301 \n",
+ " 10761 \n",
+ " 17841 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202409 \n",
+ " 7 \n",
+ " 14337 \n",
+ " 10871 \n",
+ " 17803 \n",
+ " 21 \n",
+ " 16 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202408 \n",
+ " 7 \n",
+ " 15899 \n",
+ " 11991 \n",
+ " 19807 \n",
+ " 24 \n",
+ " 18 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202407 \n",
+ " 7 \n",
+ " 11294 \n",
+ " 8226 \n",
+ " 14362 \n",
+ " 17 \n",
+ " 12 \n",
+ " 22 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202406 \n",
+ " 7 \n",
+ " 12174 \n",
+ " 9020 \n",
+ " 15328 \n",
+ " 18 \n",
+ " 13 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202405 \n",
+ " 7 \n",
+ " 8814 \n",
+ " 6110 \n",
+ " 11518 \n",
+ " 13 \n",
+ " 9 \n",
+ " 17 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202404 \n",
+ " 7 \n",
+ " 9504 \n",
+ " 6566 \n",
+ " 12442 \n",
+ " 14 \n",
+ " 10 \n",
+ " 18 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202403 \n",
+ " 7 \n",
+ " 6948 \n",
+ " 4633 \n",
+ " 9263 \n",
+ " 10 \n",
+ " 7 \n",
+ " 13 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202402 \n",
+ " 7 \n",
+ " 7125 \n",
+ " 4852 \n",
+ " 9398 \n",
+ " 11 \n",
+ " 8 \n",
+ " 14 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202401 \n",
+ " 7 \n",
+ " 13305 \n",
+ " 9214 \n",
+ " 17396 \n",
+ " 20 \n",
+ " 14 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1726 \n",
+ " 199126 \n",
+ " 7 \n",
+ " 17608 \n",
+ " 11304 \n",
+ " 23912 \n",
+ " 31 \n",
+ " 20 \n",
+ " 42 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1727 \n",
+ " 199125 \n",
+ " 7 \n",
+ " 16169 \n",
+ " 10700 \n",
+ " 21638 \n",
+ " 28 \n",
+ " 18 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1728 \n",
+ " 199124 \n",
+ " 7 \n",
+ " 16171 \n",
+ " 10071 \n",
+ " 22271 \n",
+ " 28 \n",
+ " 17 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1729 \n",
+ " 199123 \n",
+ " 7 \n",
+ " 11947 \n",
+ " 7671 \n",
+ " 16223 \n",
+ " 21 \n",
+ " 13 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1730 \n",
+ " 199122 \n",
+ " 7 \n",
+ " 15452 \n",
+ " 9953 \n",
+ " 20951 \n",
+ " 27 \n",
+ " 17 \n",
+ " 37 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1731 \n",
+ " 199121 \n",
+ " 7 \n",
+ " 14903 \n",
+ " 8975 \n",
+ " 20831 \n",
+ " 26 \n",
+ " 16 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1732 \n",
+ " 199120 \n",
+ " 7 \n",
+ " 19053 \n",
+ " 12742 \n",
+ " 25364 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1733 \n",
+ " 199119 \n",
+ " 7 \n",
+ " 16739 \n",
+ " 11246 \n",
+ " 22232 \n",
+ " 29 \n",
+ " 19 \n",
+ " 39 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1734 \n",
+ " 199118 \n",
+ " 7 \n",
+ " 21385 \n",
+ " 13882 \n",
+ " 28888 \n",
+ " 38 \n",
+ " 25 \n",
+ " 51 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1735 \n",
+ " 199117 \n",
+ " 7 \n",
+ " 13462 \n",
+ " 8877 \n",
+ " 18047 \n",
+ " 24 \n",
+ " 16 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1736 \n",
+ " 199116 \n",
+ " 7 \n",
+ " 14857 \n",
+ " 10068 \n",
+ " 19646 \n",
+ " 26 \n",
+ " 18 \n",
+ " 34 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1737 \n",
+ " 199115 \n",
+ " 7 \n",
+ " 13975 \n",
+ " 9781 \n",
+ " 18169 \n",
+ " 25 \n",
+ " 18 \n",
+ " 32 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1738 \n",
+ " 199114 \n",
+ " 7 \n",
+ " 12265 \n",
+ " 7684 \n",
+ " 16846 \n",
+ " 22 \n",
+ " 14 \n",
+ " 30 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1739 \n",
+ " 199113 \n",
+ " 7 \n",
+ " 9567 \n",
+ " 6041 \n",
+ " 13093 \n",
+ " 17 \n",
+ " 11 \n",
+ " 23 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1740 \n",
+ " 199112 \n",
+ " 7 \n",
+ " 10864 \n",
+ " 7331 \n",
+ " 14397 \n",
+ " 19 \n",
+ " 13 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1741 \n",
+ " 199111 \n",
+ " 7 \n",
+ " 15574 \n",
+ " 11184 \n",
+ " 19964 \n",
+ " 27 \n",
+ " 19 \n",
+ " 35 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1742 \n",
+ " 199110 \n",
+ " 7 \n",
+ " 16643 \n",
+ " 11372 \n",
+ " 21914 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1743 \n",
+ " 199109 \n",
+ " 7 \n",
+ " 13741 \n",
+ " 8780 \n",
+ " 18702 \n",
+ " 24 \n",
+ " 15 \n",
+ " 33 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1744 \n",
+ " 199108 \n",
+ " 7 \n",
+ " 13289 \n",
+ " 8813 \n",
+ " 17765 \n",
+ " 23 \n",
+ " 15 \n",
+ " 31 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1745 \n",
+ " 199107 \n",
+ " 7 \n",
+ " 12337 \n",
+ " 8077 \n",
+ " 16597 \n",
+ " 22 \n",
+ " 15 \n",
+ " 29 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1746 \n",
+ " 199106 \n",
+ " 7 \n",
+ " 10877 \n",
+ " 7013 \n",
+ " 14741 \n",
+ " 19 \n",
+ " 12 \n",
+ " 26 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1747 \n",
+ " 199105 \n",
+ " 7 \n",
+ " 10442 \n",
+ " 6544 \n",
+ " 14340 \n",
+ " 18 \n",
+ " 11 \n",
+ " 25 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1748 \n",
+ " 199104 \n",
+ " 7 \n",
+ " 7913 \n",
+ " 4563 \n",
+ " 11263 \n",
+ " 14 \n",
+ " 8 \n",
+ " 20 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1749 \n",
+ " 199103 \n",
+ " 7 \n",
+ " 15387 \n",
+ " 10484 \n",
+ " 20290 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1750 \n",
+ " 199102 \n",
+ " 7 \n",
+ " 16277 \n",
+ " 11046 \n",
+ " 21508 \n",
+ " 29 \n",
+ " 20 \n",
+ " 38 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1751 \n",
+ " 199101 \n",
+ " 7 \n",
+ " 15565 \n",
+ " 10271 \n",
+ " 20859 \n",
+ " 27 \n",
+ " 18 \n",
+ " 36 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1752 \n",
+ " 199052 \n",
+ " 7 \n",
+ " 19375 \n",
+ " 13295 \n",
+ " 25455 \n",
+ " 34 \n",
+ " 23 \n",
+ " 45 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1753 \n",
+ " 199051 \n",
+ " 7 \n",
+ " 19080 \n",
+ " 13807 \n",
+ " 24353 \n",
+ " 34 \n",
+ " 25 \n",
+ " 43 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1754 \n",
+ " 199050 \n",
+ " 7 \n",
+ " 11079 \n",
+ " 6660 \n",
+ " 15498 \n",
+ " 20 \n",
+ " 12 \n",
+ " 28 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1755 \n",
+ " 199049 \n",
+ " 7 \n",
+ " 1143 \n",
+ " 0 \n",
+ " 2610 \n",
+ " 2 \n",
+ " 0 \n",
+ " 5 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1756 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202430 7 8013 4547 11479 12 7 \n",
+ "1 202429 7 9424 6406 12442 14 9 \n",
+ "2 202428 7 9364 6498 12230 14 10 \n",
+ "3 202427 7 10247 7090 13404 15 10 \n",
+ "4 202426 7 14368 10399 18337 22 16 \n",
+ "5 202425 7 11174 8039 14309 17 12 \n",
+ "6 202424 7 12621 9357 15885 19 14 \n",
+ "7 202423 7 14657 11339 17975 22 17 \n",
+ "8 202422 7 11628 8361 14895 17 12 \n",
+ "9 202421 7 9701 6851 12551 15 11 \n",
+ "10 202420 7 13661 10209 17113 20 15 \n",
+ "11 202419 7 10083 6413 13753 15 9 \n",
+ "12 202418 7 13438 9514 17362 20 14 \n",
+ "13 202417 7 15303 11219 19387 23 17 \n",
+ "14 202416 7 18138 13540 22736 27 20 \n",
+ "15 202415 7 24929 17315 32543 37 26 \n",
+ "16 202414 7 16181 12544 19818 24 19 \n",
+ "17 202413 7 18322 14206 22438 27 21 \n",
+ "18 202412 7 12818 9128 16508 19 13 \n",
+ "19 202411 7 15973 12400 19546 24 19 \n",
+ "20 202410 7 14301 10761 17841 21 16 \n",
+ "21 202409 7 14337 10871 17803 21 16 \n",
+ "22 202408 7 15899 11991 19807 24 18 \n",
+ "23 202407 7 11294 8226 14362 17 12 \n",
+ "24 202406 7 12174 9020 15328 18 13 \n",
+ "25 202405 7 8814 6110 11518 13 9 \n",
+ "26 202404 7 9504 6566 12442 14 10 \n",
+ "27 202403 7 6948 4633 9263 10 7 \n",
+ "28 202402 7 7125 4852 9398 11 8 \n",
+ "29 202401 7 13305 9214 17396 20 14 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1726 199126 7 17608 11304 23912 31 20 \n",
+ "1727 199125 7 16169 10700 21638 28 18 \n",
+ "1728 199124 7 16171 10071 22271 28 17 \n",
+ "1729 199123 7 11947 7671 16223 21 13 \n",
+ "1730 199122 7 15452 9953 20951 27 17 \n",
+ "1731 199121 7 14903 8975 20831 26 16 \n",
+ "1732 199120 7 19053 12742 25364 34 23 \n",
+ "1733 199119 7 16739 11246 22232 29 19 \n",
+ "1734 199118 7 21385 13882 28888 38 25 \n",
+ "1735 199117 7 13462 8877 18047 24 16 \n",
+ "1736 199116 7 14857 10068 19646 26 18 \n",
+ "1737 199115 7 13975 9781 18169 25 18 \n",
+ "1738 199114 7 12265 7684 16846 22 14 \n",
+ "1739 199113 7 9567 6041 13093 17 11 \n",
+ "1740 199112 7 10864 7331 14397 19 13 \n",
+ "1741 199111 7 15574 11184 19964 27 19 \n",
+ "1742 199110 7 16643 11372 21914 29 20 \n",
+ "1743 199109 7 13741 8780 18702 24 15 \n",
+ "1744 199108 7 13289 8813 17765 23 15 \n",
+ "1745 199107 7 12337 8077 16597 22 15 \n",
+ "1746 199106 7 10877 7013 14741 19 12 \n",
+ "1747 199105 7 10442 6544 14340 18 11 \n",
+ "1748 199104 7 7913 4563 11263 14 8 \n",
+ "1749 199103 7 15387 10484 20290 27 18 \n",
+ "1750 199102 7 16277 11046 21508 29 20 \n",
+ "1751 199101 7 15565 10271 20859 27 18 \n",
+ "1752 199052 7 19375 13295 25455 34 23 \n",
+ "1753 199051 7 19080 13807 24353 34 25 \n",
+ "1754 199050 7 11079 6660 15498 20 12 \n",
+ "1755 199049 7 1143 0 2610 2 0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 17 FR France \n",
+ "1 19 FR France \n",
+ "2 18 FR France \n",
+ "3 20 FR France \n",
+ "4 28 FR France \n",
+ "5 22 FR France \n",
+ "6 24 FR France \n",
+ "7 27 FR France \n",
+ "8 22 FR France \n",
+ "9 19 FR France \n",
+ "10 25 FR France \n",
+ "11 21 FR France \n",
+ "12 26 FR France \n",
+ "13 29 FR France \n",
+ "14 34 FR France \n",
+ "15 48 FR France \n",
+ "16 29 FR France \n",
+ "17 33 FR France \n",
+ "18 25 FR France \n",
+ "19 29 FR France \n",
+ "20 26 FR France \n",
+ "21 26 FR France \n",
+ "22 30 FR France \n",
+ "23 22 FR France \n",
+ "24 23 FR France \n",
+ "25 17 FR France \n",
+ "26 18 FR France \n",
+ "27 13 FR France \n",
+ "28 14 FR France \n",
+ "29 26 FR France \n",
+ "... ... ... ... \n",
+ "1726 42 FR France \n",
+ "1727 38 FR France \n",
+ "1728 39 FR France \n",
+ "1729 29 FR France \n",
+ "1730 37 FR France \n",
+ "1731 36 FR France \n",
+ "1732 45 FR France \n",
+ "1733 39 FR France \n",
+ "1734 51 FR France \n",
+ "1735 32 FR France \n",
+ "1736 34 FR France \n",
+ "1737 32 FR France \n",
+ "1738 30 FR France \n",
+ "1739 23 FR France \n",
+ "1740 25 FR France \n",
+ "1741 35 FR France \n",
+ "1742 38 FR France \n",
+ "1743 33 FR France \n",
+ "1744 31 FR France \n",
+ "1745 29 FR France \n",
+ "1746 26 FR France \n",
+ "1747 25 FR France \n",
+ "1748 20 FR France \n",
+ "1749 36 FR France \n",
+ "1750 38 FR France \n",
+ "1751 36 FR France \n",
+ "1752 45 FR France \n",
+ "1753 43 FR France \n",
+ "1754 28 FR France \n",
+ "1755 5 FR France \n",
+ "\n",
+ "[1756 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]\n",
+ "\n",
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire. Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite. Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ " sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde. Ceci s'avère tout à fait juste."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm8HUWZ9vOec7fse0JIAgkQCGGHGAIIshNEBVEUNxhBGZGZb1wYhZnBwQUFF1BEUBZlGWUVBWURTMIeEsKShEBCEghkzyXkJjfL3c6p74/u6q6ufqu6+ix37ef3u/ecU11bd1fVW+9aJIRAhgwZMmTIoCLX1R3IkCFDhgzdDxlxyJAhQ4YMMWTEIUOGDBkyxJARhwwZMmTIEENGHDJkyJAhQwwZcciQIUOGDDFkxCFDhgwZMsSQEYcMGTJkyBBDRhwyZMiQIUMMNV3dgVIxcuRIMXHixK7uRoYMGTL0KLz88svvCyFGJeXrscRh4sSJWLBgQVd3I0OGDBl6FIjoXZd8mVgpQ4YMGTLEkBGHDBkyZMgQQ0YcMmTIkCFDDBlxyJAhQ4YMMWTEIUOGDBkyxJARhwwZMmTIEENGHDJkyJAhQwwZccjQYzDrzY3YsLWlq7uRIUOfQEYcMvQYXHjHAnzyxue7uhsZMvQJZMQhQ4/C+oxzyJChU5ARhwwZMmTIEENGHDJkyJAhQwyJxIGIGohoPhEtJKIlRPR9P/1KIlpLRK/5fx9VylxORCuIaBkRnaakH0FEi/1r1xMR+en1RHSvnz6PiCZW/lYz9GQIIbq6Cxky9Cm4cA6tAE4UQhwC4FAAM4lohn/tOiHEof7fowBARFMBnAvgAAAzAdxIRHk//00ALgIw2f+b6adfCGCLEGIfANcBuKb8W8vQm5DRhgwZOheJxEF42O7/rPX/bFP1TAD3CCFahRDvAFgBYDoRjQUwWAgxV3jbwDsBnKWUucP//gCAkyRXkSFDhgwZOh9OOgciyhPRawA2AXhSCDHPv/RvRLSIiH5PRMP8tHEAVivF1/hp4/zvenqkjBCiA8BWACOYflxERAuIaEFjY6PTDWboHcgYhwwZOhdOxEEIURBCHApgPDwu4EB4IqK94Yma1gP4hZ+d2/ELS7qtjN6Pm4UQ04QQ00aNSjzIKEMvQik6h7aOIh5dvD7TV2TIUAJSWSsJIZoAPAVgphBio080igBuATDdz7YGwASl2HgA6/z08Ux6pAwR1QAYAuCDVHeSoVejlOX9F08uw9f/+AqeWf5+xfuTIUNvh4u10igiGup/7wfgZABLfR2CxCcBvO5/fxjAub4F0iR4iuf5Qoj1AJqJaIavTzgPwENKmfP9758GMFtk270MCkoZDeuaPIe5pp1tFe5Nhgy9Hy5nSI8FcIdvcZQDcJ8Q4u9EdBcRHQpvU7cKwL8CgBBiCRHdB+ANAB0ALhFCFPy6LgZwO4B+AB7z/wDgNgB3EdEKeBzDuRW4twy9CKIE3iGzaMiQoXQkEgchxCIAhzHpX7KUuQrAVUz6AgAHMuktAM5J6kuGvoty+MiMB82QIT0yD+kMPQ7vb2/FSb94Cu9u3mHNlxlDZ8hQOjLikKHH4e8L12Fl4w78/rl3urorGTL0WmTEIUOPQFlipcxLIkOG1MiIQ4YeAXWBd13qM6lShgylIyMOGXoEuqNCurmlHZf88RVs3t5anQYyZOhCZMQhQ49AKet7tcNz3fvSajyyeD1+M2dlVdvJkKErkBGHDD0CnE+k6+KfmbJmyJAeGXHI0CPAre9JTvSZziFDhtKREYcMvR4Z45AhQ3pkxCFDjwDHJCSKlTLWIUOGkpERhww9A2VZK2W8Q4YMaZERh26K11Y3Yeuu9q7uRrdBaYH3MtYhQ4ZSkRGHbohCUeCs3zyPC25/qau70m1Qnod0hgwZ0iIjDt0QRX8lXLi6qYt70n1Qmp9DxbuRIUOfQUYcMvQIlKU3yFiHDBlSIyMO3RCZ/jQO9ZG4Pp+McegZEELg3pfeQ2NzFoakOyEjDt0QWRTRyiJ7nt0bSzc047t/Xowr/vp6cuYMnYaMOHRDZJxDHNkz6b3oKHgvd03Tzi7uSQYVicSBiBqIaD4RLSSiJUT0fT99OBE9SUTL/c9hSpnLiWgFES0jotOU9COIaLF/7XryvZiIqJ6I7vXT5xHRxMrfaoaejHJ2/73BpPWax5di4mWPdHU3qopsA9C94MI5tAI4UQhxCIBDAcwkohkALgMwSwgxGcAs/zeIaCqAcwEcAGAmgBuJKO/XdROAiwBM9v9m+ukXAtgihNgHwHUArqnAvVUMc1du7lTLoWySMOjjh/3c9FTvj/yajfvuhUTiIDxs93/W+n8CwJkA7vDT7wBwlv/9TAD3CCFahRDvAFgBYDoRjQUwWAgxV3imJ3dqZWRdDwA4iVxDbnYCPnfLizjzN893Wnu9YTGrNDJT1t4LOd6zUd+94KRzIKI8Eb0GYBOAJ4UQ8wCMEUKsBwD/c7SffRyA1UrxNX7aOP+7nh4pI4ToALAVwIhSbqg3INtBxdEdD/vJUBlk76d7wok4CCEKQohDAYyHxwUcaMnO7deEJd1WJlox0UVEtICIFjQ2NiZ1u8cimytxZOEzei/km81iYHUvpLJWEkI0AXgKnq5goy8qgv+5yc+2BsAEpdh4AOv89PFMeqQMEdUAGALgA6b9m4UQ04QQ00aNGpWm6z0KvWmSrP6g6y1QesrTXLSmCW9tbLbm6U1jI0P3hou10igiGup/7wfgZABLATwM4Hw/2/kAHvK/PwzgXN8CaRI8xfN8X/TUTEQzfH3CeVoZWdenAcwW3XAWXPHX19HcUv1geN3uxkvEnGWbcOxP5+DRxesT8+5s68CnbnoBSzdsY6+XMhp6ms7hEzc8j1Ove8aap/vNivIhp3pvvLeeDBfOYSyAOUS0CMBL8HQOfwdwNYBTiGg5gFP83xBCLAFwH4A3ADwO4BIhRMGv62IAt8JTUq8E8JiffhuAEUS0AsC34Fs+dTfc9eK7+O3T5VmNbN3VjhWbknaHZTXRbfDmem+hX7Rma2Lel1ZtwcvvbsFVj7zJXi/nkXT35/nyu1uwo7XDKW83v5WS0BvvqTegJimDEGIRgMOY9M0ATjKUuQrAVUz6AgAxfYUQogXAOQ797XJ0FMsbyp/57Vws29iMVVefYc7US2aLlPlXwvqqFEayJ3AOW3e141M3vYAT9nMTk3rPoQfcWArIV5tZ6XUvZB7SaVHm+F2WIFP2muhlk6QCt6PShrTVdefn2dZRBAAsXpvMXQG9Zt/AortzeH0NGXFIic4Yv71lkside9fdTvffYQfPyPEh9ZaxEUXm59AdkRGHlOgMPXlvmSRpluakvOpjT7vk94QFNU0XhRC48uEleGMdr7zvaegJ76cvIiMOKdEZA7kbGmqVhUrcjyoacq2tJ+gccn4ni5ZntGFrS/BdQKBxeytuf2EVzvv9vKr3rzOQ+Tl0T2TEISU6RazUCW10BtKKTEqtPwnd+XnKW7A9oxk/mRV8FyLMm+sJ1C8FuvN76ovIiENK5HPVn5Dvbt4BoHzLqK5GaK1UPkryc6hAu9WGXODT7Joll9FbiENw6z17uPc6ZMQhJWoqRBxsi8H3HlpSkTa6GpVcu3r7upFGIS33DL2ENoROcF3cjwxRZMQhJWrylXlkNqagt4le09yPKa9KTFPLpnvAA3XtoYBAsdjLOIeu7kAGFhlxSInaCnEONgWk7VpPgoy6XhEnuJLaL7vZqiMIV+34zlWdQ0+4vzTIFNLdCxlxSIl8vvrEIUMcZYXstlz71r2v4fifzQl+t3UU8fdF6zp9oXLnHMKx0xn6r85A6CGdoTshIw4pka/Qds229vQWuuFiieOOsJI/zXvPsf3kd/Xgq2uxanMYOfaX/3wL//anVzFn2SZLqXQoFAWufWIZmna2xa4d+oMnAQA72wqxayZI4tA7SIPKPXVxRzJEkBGHlKjU+LVxDt053EMaVFLsoepo3n5/R6qyaRad9b5PQdPOykXfnb10E66fvQLf/9sbZdclhAieRW/ROfSS4d7rkBGHlKjU7qZvKaTDG3r6rUY8+cbG1HW0F4pO+ZZvbA5MgWcvLX33X8l3IOMntbS7cwcmqHY9vYU2SPSWTVFvQUYcugh2zqF3IBArKWnn/34+vnrngtR1FRhqyomNTrnuGXzkZ09he2sH1jbt8trvBGp77ZNv4eV3Y+dTee1XcDHf2VqApJO9hXMIPaS7tBsZNGTEISUqtbsRlo1wT7TaeGnVB7h7flQXEFgrOdxO0jrHOQTa3sWWHXH5fhqkXXevn7Ucn7ppLnstsC6qgJZgxk9mYeHqJgC9iDiI6GeG7oGMOKRE5cRKvYtzOOe3c3H5g4sjaWFU1vLviOMcbNimnNhXSuuVXKiCqiq0ln/nz4u86noHbYiMjxufWoFNzS2W3Bk6Cxlx6CL0BVPWUqyVTISE0znYduLthdKebzXWW1El66LewjlIrG3ahZ8+vgzfuOe1ru5KBmTEITUqJfKxboR7C92o4OKVlnNQ81ebDruavVZ6Mc/1ktmrv5/mFrcjUzNUF4nDi4gmENEcInqTiJYQ0X/46VcS0Voies3/+6hS5nIiWkFEy4joNCX9CCJa7F+7nnyhNBHVE9G9fvo8IppY+VutDMpdaMJIpb1LrGRDJe4nbRDCztTbvJNgWiutlSq90S9Xh7G9tQMrNm2vUG9Kh/6m0m4EMlQHLnuPDgDfFkLsD2AGgEuIaKp/7TohxKH+36MA4F87F8ABAGYCuJGI8n7+mwBcBGCy/zfTT78QwBYhxD4ArgNwTfm3Vh2UO2zD+P2WNnqJyCmNWClpoSukFBN1pwXmPx/wdQQVrrdcB+kv3TYPJ1/7dGU6Uwb08d4XRK49AYnEQQixXgjxiv+9GcCbAMZZipwJ4B4hRKsQ4h0AKwBMJ6KxAAYLIeYKbzTcCeAspcwd/vcHAJwkuYruhrI5B/+ztymkOVTyDablHAplvqie8A5yZVKHV99rsl7/2l0v4665q8pqoxRkxKF7IJXU0hf3HAZAHkH1b0S0iIh+T0TD/LRxAFYrxdb4aeP873p6pIwQogPAVgAj0vStp8Dl5K/eMjeI9XQoDUmcgBACd734Lpu/uzxOV+bHlXOstkL68SUbcEUnhI/X77YbMX3dBu9vb8X6rbs6tU1n4kBEAwH8GcA3hBDb4ImI9gZwKID1AH4hszLFhSXdVkbvw0VEtICIFjQ2Nrp2vaIo1yxTzmfbYtfVO6cNW1siC22pqORJcEnP5Ik3NuKKv74e/G5td/OoNqEay67re7312Xec8lWqj10uxtSa7+rx3x0x7Uf/xFE/md2pbToRByKqhUcY/iiEeBAAhBAbhRAFIUQRwC0ApvvZ1wCYoBQfD2Cdnz6eSY+UIaIaAEMAxNxNhRA3CyGmCSGmjRo1yu0OK4xyx22dfx6EzdSyq+fGeb+fhyv++jre395akfoqcT9JVexojVq4LFpjF5mU215JdTo+iKsefdMpX6U4h6Ru/fXVtRVpx9i+9rS7evxn8OBirUQAbgPwphDiWiV9rJLtkwDktu1hAOf6FkiT4Cme5wsh1gNoJqIZfp3nAXhIKXO+//3TAGaLLt/O8Ci3UzV+yG/XWEHVRmNzKz5/y4tYvrE5SNvU7BGFciPQhkIl96dWqbd+/ewVSp0pKq2ipKZY4VdeKalS0k79G/dWz+/grrmrcMHt0XAq3cmYoC/DhXM4BsCXAJyoma3+1DdLXQTgBADfBAAhxBIA9wF4A8DjAC4RQsiIYxcDuBWeknolgMf89NsAjCCiFQC+BeCyitxdCsxZugnbWx3sq8tcvWoDzsG8UnQmXfz7onV4YeVm3P9yqA5q900vy1V4VvSYUOaZVEXkXsVHX2lxSaXOc+DW4s5aoDmdRiZW6h6oScoghHgO/H7qUUuZqwBcxaQvAHAgk94C4JykvlQLG7a24Mu3v4STpozGbf/yIWvecoetC3HoTMgXq0YMbatw36o119V6u6dtWxSVXm+ryTno41MIAZMB4dqmXehXm8fwAXWV6U/GOXQL9BIfy8pg0dqtiXnKXehqfbFSa4eFcyiviVTgJnygD1E68uji9W6clVo35DGh5aPTNpNVJDJpOEKXvNXUOegbBNt6fczVszHtR09WpC9JbWXoPGTEQUFzS/IBL+VaK9V2U4U016a816UbtuHrf3wFl/kB35xRQWsl7rm7ro3dRUqRRlzi4tdRKVcgrl/67j2JWFVyQS/XRyVDZZARB4SDUV2wj/vpHHz4msqbjgXEwcI5TJvouYwM619b8fZ12NYXOUd3tHoiJ3k+gnPdFeqH2pfOQjX0PmkWUBeZf6WOkOaIg56U7eZLxxnXP4srH66+v0ilkREHhLskdbK998FOrNkSXwwrJVay6RzGDe0HADhq7+r7AZZiUaRjjuHEteA8hwoIlsp57t3lhLE0nIOLTqpSYiXOikrvaWc+w25qqFgylqzbhttfWNXV3UiNjDgg3WEs5QzbJ5ZsQJvPndiUvnIRqfYc2bC1JbAW4cVKbvjy7S+x6cHT7IS5XomDdKqNNO+zEpzD0g3bMP8d/nQ6FTzn0HW+B72MNvRYJFor9QVIsRK3EVv9wc7I71IH7vKNzbjorpeD3zadg1wXqj1J5q8KFw6uKSEE1m/dFUQVTYvwsJ/yUU4d6dwcqkdk0uy+Xc6jSNI5zPzlswCAVVefYc3HEgf9dycu2Jkpa/dAxjkgHIzcXDv2p3Miv0tlr5s1Sx+b2CDgHLpYHNJRFDjqJ7Nx6f0Lvf6k7I5LeHJX9GRRw35jBgEATpoyxrlMh4PHXOV0DvG0uM6Bf/6bttlPbSsUBc76zfOY9eZG5/703Dfdu5ARB6g6B4fZVsLI3dbSjrNvfCGSZtuNd8WZulxb0mImjSJ6c5khN1jxlhB4eOG6+AXXOsvoTyUwYqBn/y+9413Q4cI5lMnlcMR7R2sHtu5sj4e0MNQx/cezrG3sbOvAa6ub8O93v+rcrx68D+hVyIgDwp2Ty1QrZdw+t/z9WJob51BdJO3GS9mtq4tAGj8H27P/8aNv4lnmGXZ/LYO38Xhh5WYA6RY9F1PWcj2kw/DxYdpxP52DQ37whDUY3oW3v4SD/vcfqdpKI5rsrWKldzfbD4XqbsiIA0LlnwvnUMqCqXofS3QHhXQUnK17+lo+2NEWfK9UVNZbDFFK1WpdTHK7AtvbQnFimrFTcHj4Jk5kY4KoR4KY8PGb/fdn0znMWropJiY1Qd5GR1Hg+39zNOfsnbQB33kgpZ9QFyMjDlAmR5W2orsY4mBbJ8JrnWk+GE/TnZFKtZzsiXO9q/vsopCuYQ6RfnTxehz541l4YWWc09IhN0Uufg6l6nzUMfSH51c5lemtnMPWXclOtt0JGXGAasrqnjcNOLNEW/yYzrJWUuvn2tInaan9qZYy2ZVWdaViXygMQJpeuJiy1jBipQWrtgAA3li3zbktm3e8LY8LSgng1ztJQ89DRhwQ7m5copDe+hwv4rCBE1fZJoBcTLt6kpS7qIdOcCna7PK79lApJlK1OtrZVsCutjgXycHFCS6fQsFtg5uHdGnvpZRyXJEPdrThp48v7dHhvLvpycdGZMQBiilrlernFIe2ORPqHDpRrMQsyuUGZ+3J5qeV6rkqSvjZP5bh0B884VTORSHNcQ4SNz/ztlM7gMGUNeG3K0rjHOJlvvfQ67jxqZV4ahnvjZ8Ga5t2ORPpSqJnkYbMCQ5f/sN8NPrml9U6k5c7NMe2owrESlXpTYikXXrFZL9dTCNSOcGVMQS4sif+4unIb1s0XhUupqw2yAObVMx7ezNGDqrH3qMGRtJdPKRLHQulEAeuiHxuLrqYJBxz9WxM23MYHrj46LLrSoMexjhkxGHOsvAs6mq9PE5cZRviXWGtxCqktVnayCw4TnV3NXVIgTTPXF8wKzl8XJzguL7axvBnb34RQNxjmuPwYkklvsKSiAp3X/7n755Zid2GNODQCUNL65CPBe9uKat8KViSQg/UHZCJlRRUSybIcf82kYvoBM6hvVDEr2etsObRJ3baqKw9WKrkhNs0/ZM+fl53OB/EBJdnVymi6yI+LFXUXxrnEC8jufpX32vCWb95vrTOZEiFjDgoqBbXxyqky9Q5vN24HcdcPRsTL3vE6GC0q62AVe/zjjcPvrIGbyvXFjMLWaWUf05Eopuw3Gn2Bxu32Tmpj/36uZL74fLIKkV8uXNMYqasJRKikhTSTFpPE8n0BmTEQUG1BiA3sVx0DjacecPzwU6+pYNXrl38x5dx/M+fYs1mddn30g3NJfXDBnnfXc1BlKQYtxTpKBRZxWglh4/LosouoiW09enfzmXq1nUOJVSMOFfisuHoyYYMvQmJxIGIJhDRHCJ6k4iWENF/+OnDiehJIlrufw5TylxORCuIaBkRnaakH0FEi/1r15PPhxNRPRHd66fPI6KJlb/VZFRLIZ02HLaLzkH1UDX1+pm3Go1tcXX/ad57Wp4KcQ7dVOewsy3dsacSjyxej3/5Ax+mvGIIfF0679mp3u0xU9YSqYNODB5ZvD6xDNdSteZmBjNcOIcOAN8WQuwPYAaAS4hoKoDLAMwSQkwGMMv/Df/auQAOADATwI1ElPfrugnARQAm+38z/fQLAWwRQuwD4DoA11Tg3lKjWsPPxcEsWkB+uE3IJF0Jr3CMp92hHUhSrlipUgEE5eFHOky3raeb2r/uybfMjVoe6RZlEXXpjwm2hd+Jc6gg3djW0o7DfxieA+1SNRcWRod+H3MdPLfZ++qhtOG+Bau7ugslI5E4CCHWCyFe8b83A3gTwDgAZwK4w892B4Cz/O9nArhHCNEqhHgHwAoA04loLIDBQoi5wpsVd2plZF0PADiJkla8KqBaTbIT3UnnYM6jdjUxgJ71Kl8nUP5ZvpVSrB88foi1fh3yKNYkcGFNJGwexqZxokZJdeFKXEKo2F9B5ajDNi20g4sp6z3z34ul6Yg785U2xyo1MztbZHXn3FWd2l4lkUrn4It7DgMwD8AYIcR6wCMgAEb72cYBUMnlGj9tnP9dT4+UEUJ0ANgKIHZGJhFdREQLiGhBY2OjfrlsVE/nEIdd55BMHFTfiaThXnrYi9LKVboeF5GCumC7RgAdUB+35Ja12I51NHZHSf/VP5c79cEEl8i8aU1ZbdAJXsySlWnrhjl2azcAeHezflhWaYOhUhu3zlZndIWzXaXgTByIaCCAPwP4hhDCZrDLvUVhSbeViSYIcbMQYpoQYtqoUaOSupwaVZNrcoyDlXOQxcyZVN8JYVgLy50H5TrBVWweOoqP0ldbvV3sNsYCSId14Xdoo5ILXdKxoNxYeH87L15T0aoZS5QqqqzUzOzsoH4t7WWGGehCOBEHIqqFRxj+KIR40E/e6IuK4H9K8401ACYoxccDWOenj2fSI2WIqAbAEADJh99WGOUuNvcvWI2Jlz0SUewBJmslcz0iNeeQJFZidA4JbQP8RE6z8wvzpikTTyt3YTC1XvL7NoqVQrh4Qtt9XezmzLsNbmDTXdfetDv4UpfUOJEprZ5K7ds62zTC1SO+O8LFWokA3AbgTSHEtcqlhwGc738/H8BDSvq5vgXSJHiK5/m+6KmZiGb4dZ6nlZF1fRrAbFFF4eCp1z0dU74C5S9Cd734LgDgPe3caT52TbIpq+0BqPGakiZcNPqqMC4MhaKI1MURh5Ji5TgUse3iq8XRObGrDEwhjdRutpa5Y3TR16Q1kVaR9B637NQ2OCUH3ov+ttVjInhAdTiHdww+QJWEi6d7GnSmzsSFczgGwJcAnEhEr/l/HwVwNYBTiGg5gFP83xBCLAFwH4A3ADwO4BIhhOQtLwZwKzwl9UoAj/nptwEYQUQrAHwLvuVTNdDaUcBbG7fjfx+OHzxS7iIk35teC6uPtrzjggN1UAcJN2CeX/E+28Z1T76FSZc/ysrlN25riUwe3QMYSLfzS883APPeiTOM5dKGUkNifOzXz2L6Vf+M98ewVKnpLpY8tm4lPWcigxWc4wvSs+ky/Uv++Erkd8l6K+0ubUYOtmNU1f6ZrNec+qM0f8LPnyq5HlcUKhALSkVnSsUSYysJIZ6DmXCfZChzFYCrmPQFAA5k0lsAnJPUl0pgyw5PFlzLDUTLInTkpOHswiXRtLMtOAYwZkrJiXUsb1kSBxt3oU4yfaJ/sKMNX7h1ntJWeO13frROLupnPkeRxVEeb6kilcy2QgNZJdpTdhvEOuypj/zsw8bhwVfXKt0oTaz1+lpeteZCrMoVJyQ5EBL4x+sSzRVIfo964L5SxUFxzsGc1xZlVr1SzmahsxXSru/DFUUhkOsku94+5yEtF1XO+sHGOXxo4vBYWrEo0OGb6p187TPY1tLB1sP7OZj7KFlRW55i5BCZaMYd2hGO6nXbopXPUeLkKU2slK7MxMsewYtvh4RJfZw/OfugxPJ6oEPjAsu8bpf7MxorKRecOAdLUys32UUeRPy7ciXeaRWzJTsyau3Yjkyxcu4R020+y8ML12HmL5+x63K0+7j1WffQ5qWg0udPdOZxFn2OOAQDJ6XiM0fA56ZPwOhB9UHaf9z7Gvb5b08y9v72cKcVO0GN64dN51DU+spA5Rz0bPpuxV38QImLRhrfh2D361wixLl+BFEAqFP8FlxEf3qIdL39j/7qWdw5dxUrHnJZNF12rqaQJtF+mdu67p9vJebh4Cri3rYruoFIuqVSRed6760mqdZLyQ/9P+55FUs3NNs3Vdo1qSesFiquc+hElXofJA7epy3yIwdvUFNkcP1t4To2b3xx5sRK5j7KAWWXSZuJg344PU+cmDQhEncmacIoyH49tawR/1iyARu2uh18b6oHcFuYYyHStQf0xvpt+N5DS1hHwnKU52pqpUwY7Y70jMGAI/HesC36LpJKlRx4z2EuhNfM9agmsaY65PzdvN0cEFGf9/1q84aclUGld/qdKRbrc8RBgt03WxaefI58ljj57egHtaQVKwU6B6tCWq0rmtFFzske8GJI5/pmAqcPAIB/vetlfPLG8kMtu+wgdQdpU4/VmmSEVe7+n3mrEZ/57dwTdbSWAAAgAElEQVTw3o3WSuGFDoc42OVMdDIoHVyJt8sxpCpKV0hHYdPP2giHurEw5ZJ7guk/nmVpI/q7f111iUMloDrSdaafRp8jDmFYgnQPOUfezsRl7ukLA99WNO2X/3wLF925AEC4+zM1tSlh1xcnTm6cS1EIo0NdmMd+3dav9RbOwbYzVa+pBNwkooiJlRz6/NwKL+YPN/n+3z2vYv6qD4IQEw4O0lUHET8+BjUkn991zNWz8RvNuzmp75Xysu9Xa15y3H00+HSXjYM+F3pCQD81FEu3slbqreCecZJYKUdulLtdZ6WZPLoo8pdKuIVgcTe0pe+M9N2ivrt3FSsViyK1Q906ywFAlRrI5YqVZJ/bC0X8+NE32TJSvMBtqPX7MMrNleSJIwdglRY6opIgEEv09xgxILHs2qZdqQ9uKnXHqpezOn+6RgQw5HMZGzERbGebL5UAdV3KOIcqwmYimCRWIiIntj2mkGaK3GuJ1hiaspYGXWTAMy4msZK9br3YS6sq5MhuXTRCqBPl5mdCSxP13R05KRqWS97T9bOW4w/PrwJXqMHf0XILru4T4rLXHNKvNvh+wO6D2TxqU7/94uGJeSJ9MHAO1XKSqlSttvlj092q9N50iy5cQBpiVQnYHPtcESUOZVfn3m7nNdU9YJs7trGVI/OE1KFPgLTU3kXnYKu/aacW14epx8Q5JPU1nZuDTflY2ih32R1Omzgs8lu+j1/PjopSXlvdFHxv8DkH7v51y6OcYdaoXVOHQN5mv6mUnrLboFjqXxR/DVNbKkqlDUnPNWlcmHwUKrVTz0c4Bx5OnEMsobqr7dD+tThl6piy6ojMo4w4VA+2Z5s3zXp41DtnsC3XUS51D3UObhUJAfz55TXBLt4ltpNJSZ5IHCo0OvVmbLVGxEoO+3Y9h0lBLw9DAoB+vmKSU5i6rh/bWjoCQqQSP9OOVn+Wd14wPZaHO3Hu3otmsP1a27TLSEzKRdIzMHk323bqcQ7XIlZSY4mVMQR1kWu1d+IdRRExxS4FNuOTaqLvEQfLw6217PByvs7BxanFRaxk64vUOaThHL59/0Kc89u5mL10I67VDrHh6uGD8YnENlMppB1FRYn1QF1ok/PrOgG3oynlp3teDlLRq2Zx4RyIGBNcxJ93Pkc4cq8RnhOclvecm17AG+ttAZNLh8plcTA9Yj1Z5ap1Z03ba4oSWD5j0sK5cVsLjtT1dVVebNsLRT4aQwqoPcyIQxVhe7S22C458jgLbqH51n2vRduIOcHxrXLvecuOttRiJTXbBbcvcLJhZ4MBunAOqZzg3OtxrbYU4xIXRyTZn3JPYHvyzY1+pjBNt57i6iFDvrjLhgjy689w/bbS/Ehc8MO/v2HPYHgm+vNU54/urW+3WCsPLe0FPL0sfgZMtTmH9o4iasrkHCI+TeV2KAX6nLWSbWK/+LZZuZrLEeprcmgrFFEsisgu78FXoqy8PuDSDMDDfvhkqBx1LFOK/J5TDAoBvPqefYeYqimbw1OKatTMLqewqTlGD6p34xz8TxsdEdon4Fk5qSfKyf5FuB3D2qD3iuMcYqFYgoYqt1DU1+TKEtV8bvoEPPDyGvaaTecQEy3aOE1LOS5dCBEZK0dfPTsmbtXrrQbaCsL5ZEITMrFSpyF8uBMve8S5FBGh3l+02xIciJzFSoby0rvWdeAmZZu9NC635uTwbYUivq5F40zblgp7GAM37sq7FsJJtatkqskR2h0iY8ru2BSm3BkLJ+4/OiJTlsxnaj0JESsyc1F+c3jlilMiv01jadzQfkZrKlcMH1BX0jkS+jt3HVqmBVJN/ea9UW6eIwxA5WMf6WgvFFGXJ3z8kN1LrsOFMFYDfY44JD1ck2drngj1NZ7SMiniZtzPwCRWqsybThrfl96/MHYil4sHLwcXhfQ8P2heqaESgOgCrypZ0zot1eR5UaAOueActVfsdFolj/dpq032T72/7a38edL68+F0E9ZYRIaOeCLQaDnTI8jnPN1FOSPR5HMB2H1wZJGLj98bT3zzOEwc0d/Yhlr9lp3t/El7Sp6/vrYO7zn4mVR7J95RKKI2n8PEEf1Ljiab6Rw6CUmPdqcvIqiriT6aHIVp+kIba8ORXU7qy9INzU5+FS4L9lbtAPlSQwm7jM3VWzwHq3KU16Z55HSetFK6JkdO9yrbr7d48AbPWUQS2f4JCAzr7/k6HDgueWdO4O/NFOHXU0jz9xWGelHL8Xlr8p7XfzkblZxFxKWnq0zc3xd5sckmjuiPfccMws1fmobJowfG5p5XT7Smt5gwLXqepHkKVH8n3l4QqK3JGaPousAWR62a6HvEIeHhyjgm+s46R57OAUg+5auS1F2va8Wm+KQoJfBjqex0mnuz5UyqxkQEnHZfSp58jmKBCPn+uBMQGzEmRaw0ZnADHv/Gsfjfjx/A16f95jgH46lzMD/DHFGM4zC97tpcrvwVx7LwxTdKYcKPH10KIIxrNWxAHU6ZOsYp3AtH8Eu5jWqutUIItBWKqM2F25VSiHB7R1gm4xy6EHLQDaiP6upzOQocfZJeUEwhbZiZpfhMnHztM/F6XIa4rhgslXNIk9eqkLbXlJazicZcCr/ncxSLNcX3x/+0ZHUxCQ45Bw9TdhuMhto8vjhjj1jZ55a/H+kzZ61ksnQynQQHGDgHC5chUB59sC18cT+HeB6VKHrEPHnh5/pbCjdcTYW07E9tPhfZNKTFcT+bE3zPOIcqIjF2kP/06xmxkpz4iWGtY8pWe19sA7Rc00pTH+43WJckt5Xc2KX3L/TzmvPETghzbD+t3Na02Ohwe4byfZnLyYVOiKi+YN8xce9nXfkfP6RIYNlGPsotwSJWIoopwU33V5svXdwR9MVvij8rPcSIAXUsl6t6V5uCW8aU1y7zIjFHdTkHuSmprcnFNg2lolsRByL6PRFtIqLXlbQriWitdqa0vHY5Ea0gomVEdJqSfgQRLfavXU/+zCGieiK610+fR0QTK3uLUSQ93EB0oOVTqX9aX4AkltsajMxl0erEAZPOWsnCOZTYaauCVuYB8KevHok5lx7vebU71OtChDmFdExXEnRPRJbnNAp4iXtfWo0l69I7teXzFD+q1tB+TT5XtqgiT3GOeuuudqzfuss3KQUWXXkq9hk9MJFzCDZgCQdW6XNm0Rq7CbYJ1Zw70qqxNh8e7Fnus+5uYqXbAcxk0q8TQhzq/z0KAEQ0FcC5AA7wy9xIRDJg+k0ALgIw2f+TdV4IYIsQYh8A1wG4psR7cYLLs/3OAwuxWTN923vUwNCGXQjr4qZ7ky7dYJ/gNictl1g0leAu6mtyGD8s+eD2NEPTHoFT++1wD8999wSndokIR+89EpNGDnCOpBuKlZIJWoRzgIg4T0Y5h3hZY58ZFbyNMHBiJfm7oSbvdI657K8Q5S2S0slLFd8d/7M5OOons73nAGBwQ20k/IzpeUir4CTu+1ezolEAPnFD/KyQlZu2J/a9moutDNhYl6fgGXHnaKxs3G49oEhFtyIOQohnALiG3jwTwD1CiFYhxDsAVgCYTkRjAQwWQswV3qi4E8BZSpk7/O8PADiJXLaHJcJFPn/fgrjIpX9dPpDjCgE89Bp/ChwA3D0/GnF1RcIgtelL0yxs1jYS6nELDpdWIW1baJ2rCTB+WP/0ZyY4nsEhF6u1TZYzJwLOIaywUBT488VHB79V8UG5ozhpY2C6Wl+biyn0Tc+gJjBlLX3RkeEh2pWBvMUP/igggr7kcuH4MYn65NSP3bv286VVWxL7dXGCzw5QXc5BGrf0q6vBwHpvj8yZNZ/0i6dx/M+fcqqzWxEHC/6NiBb5YicZBnMcAHVlXOOnjfO/6+mRMkKIDgBbAZiNzcuEq1gJAC4/fUqge1AnXFEA67a6x8PvKAoct+8ojBhQx7Zl4xySDt8BgGbO5ltDktzdNaigq5lu0jV9spercyDD9xyls0S6e/57iXnU6lo7ith/7OAgNHNO4S5VbiCxB8x92fptM41sqMnHqjObsuaM184/ak9j+5E6/I1FgVH8FxUOytMn+MTByDnE/USA8ohXV2Fnu0cI+tflAwOXHa28eW1zC+8Lo6NUE/RSUCpxuAnA3gAOBbAewC/8dG7qCku6rUwMRHQRES0gogWNjfE4KZWAOgiHD6gLXN/ra0LOoShE4BDngqIQGN6/Nia2kW3ZFm6XncI9L5nPhgjaSpJ5J9bA12Pre/mK9lL1EuF3Z6IHu6hQ5vE+Q0izZjk2AqsU6GIle/tvN+6Ipdk4Spt6Mw3nUGsRK7ky8HkpMmE67ImVKKgv0NsY+iOfY9RZTjhxCgAwsD5dRKBq7sR3Ss6hNo/+dZI4uBEBE9QjQ6uNkoiDEGKjEKIghCgCuAWAjDW8BsAEJet4AOv89PFMeqQMEdUAGAKDGEsIcbMQYpoQYtqoUaNK6XoqzqFfXT6QEdb7jiyAN6AaLM5SOopCsFE0Q86h+otoou7CkTrEAqlZCYC5ntglJi+7YKUULBHCPo8dYj54RYjkXVnQH6Vj0tFKpkgRi5S1B2UT+snJnF38KTh4fg6xylh4pqx8S65iMRnNmDMZ/uuraxXOIRyrpk1FjhEr/W3RereOANh3zEDnvNVGi+9QW1+bC7ircmnRJ298IVGHWSmURBx8HYLEJwFIS6aHAZzrWyBNgqd4ni+EWA+gmYhm+PqE8wA8pJQ53//+aQCzRRWNj5Pt68PdT0NNHpNGescu1qnmaCkVeFI5aSpj5xyS63cx1UzKQyhNRm7z4LaLnJL7XOquTiUgUSWora3kdyr7o2abODJ6LGdNTgmamOKBypAs//zWR4K0pAgnan/nrtwcfPcOptI5B7MYxxvP8euuhFgqW3/+xLLYtQ3bWiJiJbnom/oTzDHl3pt28nGROKRVV1aTc5BLSU0uF8TIqsSxpHfOfbfsOlzgYsp6N4C5APYjojVEdCGAn/pmqYsAnADgmwAghFgC4D4AbwB4HMAlQgjJB10M4FZ4SuqVAB7z028DMIKIVgD4FoDLKnVzHJLezWV/Xhx8b6jN4/++ciRu//KHUJvPRcRKnNWBrc0cE+5A/uJ2rKHy22URdelDgs6hRIW0bbA/vNB88EyMi2KINndfLnNfd4gLF3W7CCz5/GyZ1/u84fOH4SdnHxTJE+4QRcQRLSmWlbRsUeML2XUO0Wf4uVteVK7FH5KpJtvpho5DIrhnPTpx0IZPZHJEwYJpEplJnYM6rtRu/OFfPmTti2ufJaohwt/e2oGmnW3BPeRziEgdysWf5pn1YpVEooBOCPE5Jvk2S/6rAFzFpC8AcCCT3gLgnKR+VApJr2bBu6Fss19dDiMH1uP4/UYDiDrBpXnHRW2hCPoid1HMCM3nCMWCqMjCDyTvWErVOdg4h5WMHN1UD5uHeVumfpqIRo7I6XwM4dAn/frRe48MZMnyWo1BrJQUrPFjB48N+ivxyntmObst2B031kyLkqfY5smiqwWb7RwUr42wX7IfNk4G0Iip8kx2s4gGvTbSUYdqMA7HXjMbW3a24+DxQ4I+qYYKPQV9z0M6xcupy2tKZ4VzsO0Apk8aHvntEYd4GAcb5yAnictOwynqaAKj4xoYTM/y8EKzSa+1Hq0xru1KzKMo52DvTzJxEJHPyDW/dgpUxdHzBFrao4pEvY5DJgwN+iuxyhJV1Lbj58RBpnsjmMWkLsThyW8eZzw/WkIG0lNFfKbNyqAGj9g2K4pbtfqkxT+9aLTyi7U04120ZisAr895ZWOpwiWwZlehzxGHNKitiY40V52DPj49cz7CUi2SpKzjB39bEquD8zo1wSF0UGI9hNKOQDVZkSSJ3dZvDf0JOgpF9swFts8pxUqqh7RdB5KsjxLaZ0ThLKJt2zgHjhDJBdZVZm7LxVVhujfOUCLok8MhNZPHDErsszQHV/0cTIvi4AYvku02JYpwVIdk708lOIcn39iIdU12U/WW9oLzRlONdaXft74xLDWUfjXQ54hDGjqtn+Ck6gFsi23sPAeDWEliDnN8odQBuERcdRIrJSmkFWUhgJhPRthW+P3pt8zmxG8khH343TMrg+8nXfs0vvZ/L8fysDqHtNZKpBIZi84B7mIlnRAA8VDf0ghBYoJixuwRoihcRThcf3SwxMHKOQhwzyaJI1DrsEGafZPi56C+W7Vv/eu8vDsVk021G0mEyJU2yDDq3GP56p0LcNZv4h7XEisbt2PKFY87c81qlFx9TKvz8qllm7DPfz+GxT7HAXStGKrvEYcUz7o2pxOH8AXb1lp9N1AU0R1NYIttqcM1Amyl8hBFB+oFH55kyBnmWfW+WaeQhAbFT+Rdg/ikZD8HzVopybYeSBYVyjyAyjmE7UhFqZSJC0Sd4M47aiI+vM/IoB793lw5hlOnjpEFLIpkN7HSL845JDiLgbuepEtwRX0KsRIp3HmYFn5Poler3k8+4AcADhnvifEGN/Bq103N5nAWz/qbovnvuAWOUDkH/b2r1pFz/BMbX37Xq7ejUMT//PV1dBX6HHFIwzvoTmtq4L1lFltj3ePZ83MIf8vdkU2MkUbn4BKSOsmGn+Adhp4EtRpXCycOtkN1uLYkzGsosXlIsa236xySR0bIOUjWIby296iBWp7o9VyOMGMvTxdVdGiLw81fOgK//vxhQdMm4sk9I24c9avLR3bzOlw5Bx16v+S7jiiklZervy8gOjdUwmkSG8mjWg/dY6hTH7/38amoq8lh/LDo6XMuOgAZUK9frZsjbD6nSAJiOgdzuZdWbcEfO8kyiUOfIw6um9HdhzTEFr+QcxD4qyW20s42XfkYHdRSHm/VWxjYUA4uuoK2hIWfKKoENCGyo0vMbYa08rG3VSrnEMLdQ9pBrKQt6dFFTSqiw/r05xPmSVZ+c9htSIMiojHne37F5lga11yOFIU0cz1vOsBag8716BsRySWqXJzpdDNi0nIOxKF/fR6nHTAGVxoOVtJRX5PHweOGOJ03oUOqBVxFger54Gnaq/b51knoe8TBMR/3XrjzgTm83bgjYp0iOYf7/vUoAHFrJg6TR8udaPlcAZB8ZKKrLF/tz842npgcs8+IRNnvEXsOs2eASeeQjOhiooiDLM9SOLAOMZ2DNVN8AY8YNJTAO6j3JRd1V/A7Yo86mAwsSmUMdbNdyTmo+h/TkFXDjyi9jF3XUSwKjB3Sz4kjleA2Di5OavJkQVfikI/oHMzEQW/ZFnOtM9D3iEMZxNhE/Tnc8szbkTZzRJg+aTiW/nBmcIi9XsuPzjoQr1xxCu7/2lH4wpF7+m0l96sSnIPrmcNqU/KYRxVD+tU6KtFd8sRl8y4TMsrxKTqHhP4kn9Phfa7Z4sm19R2zal6q6xzkdUDqHKxNsVDvXW2bi/TpAiK7dQ+vu0juuG62W69wDoHOwThmJQHlxU4mUabw83En5xkDU1L8nbu8l7Scg6dz4DeW6k/p+RxEplWe0ciBvIFINdEHiYPbrGQdsILJnVxeHaOqE1xDbT5yLoSKUYPqMXxAHT40cbgxrj0HN84hSawUHeimKpN2vAPq8o5hxpPzcM6Gaa161Hg+tm61dhTY8A/R/ngV3CEnsXZd7uabW9rx0qotMXNeNeS7is9MGw8XxM848H5/94FFqct6/aEg9hT3PvRH3bSzjT1jQn8OMc6hJtQ5yAXP7JTnfQomjetTAOFxv9z40JXL137mkKAuvRdOoWj8vruazeZy5YuVTjtgN6e2Kom+RxzKKMst6h+aGBWP/PuJ+wCIxtyRTnBhPcl9cXG3v8FXThaYrbo+blvbixVxuEla912d6Vw9v/Vs6YlD9IAZU2C2+xasSVT+JXWZ/BApjy3eACDqbQ+Eojudc+COEOWgLhaqWGllY/KhNtw7IUiFvduO+czfPI+P/fq5eD2xsaZzDqG1EuchHVE+M+1GxWl2zoFbsOs0k/Tdh/YL6tI3aE6Wf/57SDMWTUcM25rLdA6dDFd2npfBxlnD+792dCQPZ4onneCCPA59cdFvSGsSTnH43ZlTIr9bOwp4ZrnZL0GfU6Z2k55fPme2fonW48JdAP9YsiFWfxqojlcC5t2e25kP0Tx6VXLB1k8R1PMXS9Q5RIgDhe9CFxmOHFgfK8tqHAjWs6h16CbHgwzhsfX3H3hI50IRX+LCp1yOWispWZR2isI7lpUbH7pJriyWy8XHc5JI9PW1W3HDnBWA39bOtg5c/H8vY8NW8yFRxaKIiBQj1yzjTpUI/Mlyzki10PeIg+NE4BXS8prlhUpLJP/3pm0taOsoRtt1YEe5uPbbNNlpm2/C2k9Rwsldkt7F1o6iVbSkL5of2Y8PiZ70/Opr3M4ktuWRobWLQsRO0eNkyoD5kRIUYiXMxMHlfA59THA6BQGzCWhOYRmjmwe3MRnlHMJFXRcr3v+1o5i+82IluUCyXVCe1XDNKfLk/UfjsW8cGyvCeX+HOgdexKc+R9Wii4MkNHodQkTFNzaooU7SBJIEgJ/9IxQ9FosCf1+0Ho+9viFIZ0OrCHWzpxMHc1smi67OQp8jDhwWXXkqbvrC4Yn5TKyhCrkAy0HwX3/xnFjmvR13mLEttKrZrMSv/rk8Wl7EF4fB/WqD72cdunukXzYZqX5pzOD47tPrj7EK/OisA7HbkAbfjNM+S+UO7R3GkU46CRZFXMxg4hz+/e5X2fSokjj0jNXBWbncet40LSWBc/BFWKY+BgSfEZclYdLIAdh/rNJ3pQl9Fz5JCyMOmBZ/758LJ6MvoqcdsFvgI0BaX/QxIiMNRE6CUw/zYcRK0YU//DG0f13gTKg24xkA8M6EJlGOZz2l57U/B1WE11EUYX8hxWXxMg3aKZKR9iwTysV/qZroe8SBed6DG2pjoTK4jCbWUIVuqaEfBgMo81qrRt1xck4zuvhgym7eYqHGJVLXpYPHhw5BHnEIr112+hQ8990T4n3yYdqhy4k67+24Lf0nDt09sGV3jVN0AnN2bvCciyJmnWLyJDZZY+k6h0ENtWw+XS4NAHuPjuonEvUtfhsm4iBPTCsUo1ZYLrvCOZceHxw1qZcrVYwndQ6AwNL1zbHrXFsS6g5eRYFRbssDkEx+DpE+MUp7Pa80BZf3tPqDnWhpLxpHnL4AB2Ilxss8SS+nbrB+NWt5KGrzi+1qj5uMjx7cYJQ6sLogZRPRlehzxMH0uF0MD1zC7g5siIZwDsvG25JZ5I5QhgZX8wsh0NzSjpWN23HXi++ydarButSF6cvHTMQ/vnEc6mpyaOsoRu4xT4RxQ0MP8LhZZvR3cMIZgHtfeg+fvflF6CCEooNL/mQ/3N22oEmu474Fq0s6gEiF6ucg++iK0YOi3FOSmFxyKSZzy+Cs5WJ0+SxF70jw2mppL0SCGJrANSGtlYQAvn3/QraNsI/6gs8vHcViXG4vn0fUz8FAHJgDUPX6wt26h9N/9SwAxESQEjG9gp9AFJ/LSe9CJ/zyzHFZzBRSxuTUWs3DhspF3yMOhnfhopBNEiv97NMH47PTJvh5NBFE5Hu0scENNThy0vDIwFPb+twtL+KkXzxt7LMqVoq0Q4T9dhuE+nwOrR2FqFKcUaaq0CdBcMKZEPiuciBStD8UiA5Wf2CPapl0kA0A/Hr2itRRNrk+uYTs5hDfqXs1HOnvXBu08AnS+sXEdcln2l4oRsUmJSinyacOv316ZWJegF+EpHWPU+tapojPhTJ6OM5BEkWVi0t0gtOUzXweYF3TrsDPQxevDetf63edb6wml4tFAy4ohMPWPwlpfCD7a4pGbIqt5Eocfnimm+d3JdH3iINhoOgLtmkyma4BwDnTJgSTRmf5bcHQOooiZlGhtvX6Wj6Ok1zsuQEZ4RLy5FlMKNfVSJF6fiBOLNSzkU2QYgoXJzjbDk3dlZYRvsnrE4V9FsKNQzRBdrl/XR4HjRtibMsU6Vo+w0IxqmgfOYDX79ggFdJ6qBYTWPEFSItaG0JfjPQ8qghUfaZ8OPJ4bKWIzoHpW5Sz0olDqLTeohwhqjsDjvI5v5jOwf8cWJ/HDq2MFCuZholpsxKKy+zl4tZKhobUjgKYouibBhmCBVYafY84lMHFyfkgD/PgoLPFw/2Jf47i6BSKlbxcHUURM0c1DaZoWx5U4sBGtUTcnFaXGcfESP51KVqp8y1ObIOZKLpTl/jL14/Gny+OWtDY7uvovUcE3zkv7DSI6BwgYvcp4TIsoiax8etS1GNSxst33FEU+NRNLwDwwoh8+gg3J7hIWyStjNwGNG+tFPWXUKEaNgDx56OKzo7xFcReO/H6aiI6B++iKfQKp3MwOXkKERIeIH4Wgkm/IX8PqK+JEZSknbxRF5dQPpjP2sbJ9f2pxFi3HKsWXM6Q/j0RbSKi15W04UT0JBEt9z+HKdcuJ6IVRLSMiE5T0o/wz51eQUTXkz9LiaieiO710+cR0cTK3mIUxlehi5W4LP4LXrymKZI+/79Pwuxvf8TP45f3X/qIAXUY1FCDz35oj1hTclwUikXUGoL8mcbO0/95fJAnyapBnl+tKm0/44u/Pjd9Au7+6ozYcjawvgbPX3YiZl96PI7bdxS+9/GpkfsytxVPO2yPYThsQtRZ0FaNutiUC48wiqBNvXt7jRoQ5EuEsjvkiIy0VpLt6Yu+qnOQmLbnsLKi2zo7E7IDWvaZr0RGJa5hfFfUxao2n8P3PjbVbyy+QOYDnYOnkH5rYzMuuH1B2A1VHxfTKMSjBav5VY7bJM+P3Z//c2B9TYxzkO/GtIkwcZ62I3/Vcqk4BwUqN91ZegoXzuF2ADO1tMsAzBJCTAYwy/8NIpoK4FwAB/hlbiQiKZi9CcBFACb7f7LOCwFsEULsA+A6ANeUejMuMIY5digrF2N9tzF6UAP28kM268rmlvZCEKI7aEvL01GIW7jYfCrGD+uHPUcMCOqJcg7xfkuTvYuVA3Uk5/CTsw/GUXvzgfLGDe2HgXsZlmwAACAASURBVPU1uPOC6djbX0SThmWO4RyAuJLWRmTqDZYwpSDKOSD2om/xzVWdFln5KfjDmzzOITTlvPTU/SLXVZ2DhMlhLglS+e2yTpgczjjlr+zjkH61OH6/0Xjga0fhgg9PiocxiRkweJ9eKI4oQp2D9+z0g6CS7kHXCwT9NhCD4HcQqoPPV5vPxUSySePA6ETpf5osjELrQ3edg/ok1fWhs+LxJc5CIcQzAHQj/TMB3OF/vwPAWUr6PUKIViHEOwBWAJhORGMBDBZCzBXeqnCnVkbW9QCAk8hEtisA06vQm+QV0t5nc4s50JkeYqOxuTXmYKWLHXidgxxMXD8o8rnN0h9ZlxD2GEyJZ/MyAdFM9bgstLY89Uyc/LHKwfJ/veSY5AZkfxQPaRl/50sz9gyuD/HFJ/p97THcs+H/nzP2D/QLqqUN97wCUY8/ynQCInUOv54d+qtwi8PEEf1jabG2fOW3izK7IPiDjKRCWq3imydPxg2fPwwf2ddzgpw2cTgbvdQUzl7AzDnkiHxLLYuolBErtRV4zkFARHbqcWLBp0vU5nMoiijxlJFQU4euMLR19dkHAVA3e3of3dqpjXBI3Ydz4DBGCLEeAPxPaYM5DsBqJd8aP22c/11Pj5QRQnQA2ApgBKoFw3PVpzq3CMoJ0NpuJt2qyGje25sxa+kmvPeB/aSzQlFEZKdeW94nx6bKyaFb06jX9LrKPW6Qm7SmfOrgNS10pgE+9/ITIxNB4hd+sDQAARfjAiI1KqsXxuCHZx0YXOfO6v78kXsEYsKvHLsX/jcQqfl9L/LEdFtLBxq3twbtxc458HfA/1iyMUjjHsNJ+49xuC93zkEI4BM3eMdenn7gbtjPj+WUz8UV0jX5HD528O6xkBUmCyS1P4DPOWh9CjgHP3yG1ahB46p3tnUEkQHuvWiGl0e5L3XDo1drMpuVhE9uyFTuoVTHM07RDoSE0XQmvO1ZqNfU9SEpwnKlUGmFNLf9FJZ0W5l45UQXEdECIlrQ2GiOE2SD+aD15A7IPDbnFHVwv/zeFkMmP49fTUexGJtsNoW0vOaqmOLCBMT7becc1J0hh6P2GoGGmnzApUj84MxwId5rlBqM0HNe0jF2SD/WiWygIY5PEjyFq8DC1U1oL4jYYJP3pa4JOfIWyaAO7d6LnPLCxyOL1geEWL8Nzh+hnOBqqn6Dw7GTR8ba+M7MKWGsIwqV6Lb+SLGkCpNzYlGI2NkhcgE3RaVVdUy6yGjq9/6B3z39NmpyhCP9UPfqHItaPfELr/qMhvSrDd6t3ITI/q3ZshOXMv4ekToN6U2+kYr+PmTd5fo5qHNCd7StFkolDht9URH8z01++hoAE5R84wGs89PHM+mRMkRUA2AI4mIsAIAQ4mYhxDQhxLRRo/jYP6UiZmFiEefYxDOynieWbIiFuwjzRMHpHMJjQuPlj1QOCxqiWZWoZoNhvx12/PbLiWa8d180I4hto07S4/Y1xGgSgvUmBXiLEPX9pFlOpR3/mf6B8bGq/d/vK2Gd9VvU713AbGI7cmBdwO3p3MUnDvHCmajHz7LiHsO9RPvEy92/euyk4LvcIaubmeED6hSxF0VMfb36+M2Inh7jHPzPu+etxudvmRe51uJz2tyG55H/92EcqJgF65Z8EqpCVhVx2uIPScKhpquvRNYpFd7/ef8iLN1g9xQ3Ye7bm2P9AcLxz/k5FIoiFljSBJUYt3RzzuFhAOf7388H8JCSfq5vgTQJnuJ5vi96aiaiGb4+4TytjKzr0wBmi3JlIBaYanbRcgSLhFV2733OWdZoDHTHHatYk9dNS/22mA5/69R9Y+1JXHz83vjSjD1x3lETI+2pXZ7JxIZPun+VlbfBVecgBPDMWzz3x1sCRcu6QveQNtX7xvpQSarnVgPmee3zOodj9hmBPUcMCO5fzzNsQB2O328URigcn82fJgkC8UX0v8+YGuu3Ol7ra3KBQlMeQqPWwb07YtL1e5M/H164NlZeGmRwnIO+KTKNM9X02sQ5mJS9ptcv51y7/0DKjSZcKAr8/rlVkTQZhYB7F7e/sAq/mRN3YgyegZKWI2DWtz+Co/cegUJRdAr34GLKejeAuQD2I6I1RHQhgKsBnEJEywGc4v+GEGIJgPsAvAHgcQCXCCHkXVwM4FZ4SuqVAB7z028DMIKIVgD4FnzLp2pBfbfnHDEei688FQCjc2DKBiIIq7G/e1+KQuBn/1iKxuZWo1hJCIHTD4wu5urOWp+kg+pr8MOzDkQ/xUKKtN08Z1efqJBOECupbblGZf3RI2+y19KG5bb3h6KH2YN/zipiobn9z1CGzZeTllrB/bP6nyjx5CxPXOwxyOuoVUbOcZ91+VzwDuU9tCg6NJ5YxfujG1DYTK+/cOQekXrUNmxWT9fPCjlvPSKxbCsawM/DnEuPB+Ad8rN5e2ukPbU1aT4un2G5W9K1Tbvw3Ir32WtcdIX1TfYoAiryRNh71MBAUjDvHVa4UlEkCnKFEJ8zXDrJkP8qAFcx6QsAHMiktwA4J6kflYL6/gfU14SB2HSpkmVH5xIXyAaZ4+3GHcHOIW7KGg6mof2jugVV18AdVanDJURCIufAsMUcOMsWDhx9lSIRTqxUahgNXWyiV8PVahIrqTJs03NWCZHJ3FUdP5z+yuVepUL6npdC+4+vfHhSJA8X9j2XC0VEOSLcMXdVpAzLOTDdiS3qQfl4BTVKVFa9jTjh8X7PXroJD722LkgVXBmdOPiZ1Ki0qzbvMD7PQKwUhNkvjzpY94wpTnaU4O753Ol74LHXNxjDwlcSneOH3Y2gLm62E6ZsnINV55BCPKUORt1CR/VzUPv8+SP3iFmSuLQXPXmLyZNQh21nePnpU5R8juw50wspV2XOLoo+11RipShhlNX85etH45X3mtj3FTPbjCmk+QU871vj2EKmkG/OGbYVvxlT+I1IPUw/9eZMtvUBY0NRrsHUH9O9cnlsxhpqyHJTPbKpXZawIKHYRUTq4pquy+djprASobVSyBGWA9sc4uZPmv2OfIcydIbpniqJvhc+Q/muvpyYtRIzUDi5oQ6X9y3bUgmSHj5DtW6IyGiJn5S2Hui7eXbxThIrGcrO/6+T8K8f2VvJ53oSXDxN999w6Z4p0FlYZ7TPj73uKQAP22MYLvzwJLYtU/9Vj1uec4AvVpK/uXcRndjcUHpqWbIlnovoSY6VQlFg4oj+mLGXH+oaZuLlqiCPif7kZsbyOrj5Y6jGKrpVObnFa7YG6Vzf62py+J0hOKHkHKRvQ1pV5ylToybHttJJB4X9/JxDYmn/9ZcwwKXsqwwt3xlnPfQ94qA807ScWRAi2zpwXcRK5OcN0+I6B+9Td3QyWTVZ23PYzSdVo4tWJEYPboj85o5eDOpQvnMEVvaBu6eotVJY1mTxFJSjKLFabgjrrELvmn7vwsA5SK5ADQkdzxMlaNwi+P721lgahyQxiOQcCv65GPL40NAPI16Gdbpk3oeJc3CJtrtDiatkEvnoHMifvnpkWI//KQC8tTF8n1zLr6/diifeCP1Kpu4eBrALrZV4zoEbo5Gdv3ZNj+2kIimis2rBxkGKknVRWDXR54iDOoSiYiU9l1kxZ9vVpCE4KiExTbaOgsB9C0L/QZPzkbUd6OaKfB4bkvwcwv6YrZXUZBfP72i9Sj1K2ZaEqKS6zsFWr4R+KlzYH7mI8OEz8j6HJtszKa3lYiTr4vIkwfM2tufJBwu2N2bDiMGSc4iXOXyPYfFErm6DlZFNNCPv66ePh0dtmvwl9Dk2Qolcq0Yh2Ec5kEl9lAf4RKBDYWVOO2AMbvriEcHvQKwkOQetv7ZNoNcPe35VB5Skr4y8c8v7r2Uc96qFPkccWMWW9l3PJ8Ep+HQ4KaQVrkBC96KWg2X1lmh63mAlotet51GJHa9sd6NqLhyIy87Xtihyi5aJ6CaFrE5SkOvPL58jfHfmlEhaOLHDT+555XLeYnTPS+8Z+5wjikzsUolDfU0ObZqzmXryn+wP4O3Co8RB5oi2c/bh42KiElN/YuJNg8JVPc/aRFBVyF+62MRkyqq2p37/9xMne/Ur4tpDJgzFYOUkQF1Eo8+LjoQgRvpzUdeFB79+NP7nY3Gz4vAMbYE/zXtPuW5tKkDIOWRipYpDfaSq4s9F5yAXBOugScE5qIP54YXrItfIQIjiOofk5j0rGntfkrqtbZ6NsJ5TrXznqglCDbAzJUwb2j+c4MkTOMm6LIq///uHY46FuteuEHFPa68twsrGHcFBRyzB1XQOX/nwXtb+m1Bfk4spJT9+yO6R36rptReiJcr96Y951CD+XAl5Gw0KRxXnHOJik798/Wh8aGLosMmJp2Lj1zDuI8TB/xQCxthKoYgyTNtnVPTYV/k8JLE2eTeriJx3beEcDpugEWpNrDT/nQ+wQ9nYqGPlCYtjXCZWqiLU93/g7opnppbPFP8esFNtN2slf6Ao7/faz0QVUnLy6QPU5A+h1633KclaKWm3GoqVkjgHcz3qATkc9yL1B9wiEuW6wx9JcyRJQe5mCux9qudv6Hb+Xj5+F6znkbFxrvnUQThhyuh4HodZWVeTQ2t7ESMHmkOohH4OInJmSKgT4Rf4eJ+9z/HDwjhZJisjlWvU62fFbAYio+scItZ8ylhU8/33GfvH+qdWc6rm/Fmjm7Jqw6TAzPOoziHad6lz+OmnDmbu3ft8drlnbKA7yKqP4dnlvK8EAPSry+O4fUdhzOD0B0SlRZ8jDhK3nDcNpx80Nvitj1ub/blN8ZSCcYi0sZuu2DVYRsWtmpLbISJN3h+/t/mr7E414Y4uTBtQF4+eqmKvkdEAeVd/6mA8+PWj2fMBAGCp76XMh8/gUSgKqxLUCxpnRpzzMhMm+SoKxfjhTACjN2IV6+FixNXh9clRrFQoWkWcqrVShHOQCulYu3w93DOJE4dkrsBFPCV/6psiVRwUlBDhO1l19Rn4qDKfc4bNlQpVrFQsCmzdFXW048rK/v3ys4fGHmCQn2MY/YIvrfLirZl0jEkY0q8Wd14wHSdOSQ7OWC76HHGQu789Y9FCvZdjsspRr9lsjJ0cmPxPdeHXw2eYLKNMnqkS3FkIhHRmeld9MuarGCwQKjt754VHxvKp/ZmxdzS4bkNtHofvMSzmJSwhHRJNilwOXBTQSL8TdA4unAMCsZJXUXshfjiTuWwUnpjL+85Fn/XyJFckOQercYTKORSK4W5aMWX91OHxEwp1cDoyk0I6msbvnqNpfKMFha0+ef8xkfO6IzqHYjwumVqviwd5R7GIG+aswJotUY9lTmRZKAqccdBYnHXYOKPOwdWJketvd0LfIw4G4i7fjekYQACozSUrg9x28t6nuvDrC4XJaoNToAJeML7/OWP/IBJnpIxmXjpxhDnk9YHjBuMLR+4Zr8NvVg1Mxp1lq85T06PQxVwSUp6aZp7834vvWjkD9YxhF/CioOjvQsKCZIOaRw/TbuuDDnlQjYuyvVj0CJLs8/+cMRUjBtRhzJB6fPf0/WL5Y/3hdvwOO1+XBVB/BMHcUOaYDL8hIedhW0cRBYvlGGDXScm2hQAeXbw+dp0jLOpz1JuVm0aX95dkSFLF8HLO6HvEwf/UX4aLO3ouRwEraoKLtRI3cE0nwemDW++3nLhD+9fiK8fuZWDvPTHOpJEDcMSewyJRME19i8FPvnt+aGFRyzwLVZRi3YkyY18SDG7hNU2Ve15abTyPGADunPtu5HfSKXOsDtlPlCaY7YV4oETAvrEIK1Pym+U4icjnyLNCsiwisosFISJh4U87YDe8fMUpqK/JRwiUqVk2YJ4DxxUfq1zdyZsi/Z2NHeqJYNc27YLp4CV5WzbOQVUSc3VwXFlHMeTA9CK/fWplpG0bTDqbsJ2MOHQ6QoocfRumXZyOuhIWFx1yAX3wlTCCpb7QmtjiOCfhfdr6T/AmQHuhiD2H84fvfPsUL9KraUhyk4cTi6jZTDtRz0Y/3pIkWrX5XEzRattJHXTlE8ZrOm78wuEJOZh78j/X+oHSCsz5G4DboqA+E1exEneWhTTRlWK+vZgDkHRrJY4Y5SPE3MA5+J/qgmXazETLJXMXJvFUhDhofidS/LijtQO/e/ptNvpxGOrGJgL2PouCfzZcWfWgJ73EEv/4U5cNYpI+xhTRuTPR54iDRIxzyEt5rB3qLuZW//zhtJC7LtUqQRezyMGi6zd0BbXMZ/OUJiJ0FIvYuqudtbIBQp2H+bzhODguapCykJl3ooQmTfn37VP2xQXHTAx+69xNpfZRe1pEagBP3PW2Owpu1koc1Ndkemd66oD6uOJftiVFnFxNsv6XVn2AdubMEL0PRmKueFoHfYzlTSaWiTGzFKgckS4GlYTZFAEVUM/r9uq57fz4XFWjxHLGA/ruvVgUwQaBuy5PKHQTi9oJp3ra24NfP9qlwoqjzxEHk86hhpkAHCRxGNKvFiczDkNpdA4q9KNHZRRH/UhAfUDaQk6o7T2/YjOaWzqMFjJyF2skDkynOdHK6EGh1ZVxJ0rAlh1RXcD+YwdHnRLZkuXh4PFDIh61bN+YNN2mvEOx/FHhZoygcg78u5igcXecuEovahInAsDVjy31yzDv0EUM6H+mjQzgwjnUGqzvVI5Z9zsJFMlWkVG0zzYjByGAViYMi17/g696nP6fX/EiFuhzc7p/CJdp3H/hyD2Cszy+80D0xLkceeeVS8jT9K4++yBnr/VKo+8RB/A23rpY5sP7xBW7QChWMukoXBYITkKy+9BobJWAc9AGoD5ByYFzcBFlyPsy+QToLPbYIQ0Y1r82lo/zZOX6o3NEccVktHCp+jnVYW7q2MGWnHy7AEegi7zOwUlvlZz/B2cekNgnbqcby6MbLySIdYwqECmeSuEv4tWdnMfk51C0WEY56QcDsayvJGaKqASEOwFOn2tNmnGDTisll2LqnhoheGXjjsg1IsKpU0M/DLlZTBJjVxN9jziYOAdl0dxr1ADcyrChQDiYTZOTS9Xt/bkppnunyomsh4fQOQc5cWwTRr1k0k3IdNPuUOUIAOD7nzjA6HAXfDfs/4niu3G9X/HbcaMON3z+sMjvGz8f6hhcFlQuh7rDF75DGfe83bjGZEKt6xhcLKNsYiWJRiasiUowbJwekBQ2Jg69j9FxSPjjV+Km0LKIahGo98ukEObytDtwDg+8vCZ2DYhviHTaaAq3YXMmNMdWit6P3DzV19h9iaqJvksctPenTvYpuw2K2FWrkAPKtBhzE+z2L0/X+pC80MlqmnZFdyv6iViyG7aFLxoanM8jFypb1844OHQyqjXsaKLxqvh6vPhC0Yb6xxzqooVdjTeG9osqsgcrIgnTIzpwXMhRcH3eb7dBALzYPB1Fz6+C07ek8XEBzIRaf5esrsDBWkjv4vKN8Yi0LtZlqmLbBE6BajN3/fQR43EMw52HIiyzQrYmZ+dyuT7bTG3VI2JVJIXF1q/KtsxWet5hUAtXN7H9VctlnEMXILRV0lhVZSbZJrmclCaRAJe8R8zhLhmyD6+vjQ7cKf5CJUEJxMrLE8+vQw5C+2EtYdl6A5VRazez13HOQSfGejddxUp6eA+VIzSZml758VCMY9r1TZ84HP1r88EiqFvQAI5iJaUP5jGUvPDHzEQN53ioaG6NH7WZVIeX7sFGHJqZYzxtnINx0fPz2Ew5ZfBJNbqtqW05ztI44F1wzCQA8fvVx5ZOnJLESkTe+nPmb55n+6LOTalzSDK9rib6HHGQ0MeFOlFdFlrdmzK8TsbBIeGyznF1PPudE/BFzUHNRSFtC00uUetwiIgqBTFxDpG2jGIKisnx9cXfYZ1lodcTVbgmc3vGfYEvEpD95jgHtezB43lfEjWPSSGt33uSrsAEffGTi545v70eG3HgIvHqHFBkc2HiPP0Rqo8PFfKd2iIV6Eprm8JexYgBdQGH3J7AruqXw7A6JiJr9tYnij5/ef89ljgQ0SoiWkxErxHRAj9tOBE9SUTL/c9hSv7LiWgFES0jotOU9CP8elYQ0fXkGj+6BJhEOqr81yqiceia5EIaanN4+N+OYfqQWAU7cCcM72+ccDYHLJenGcbdceMcTAtbVOdg6A/iE1s6NoV5oqXjYiceeu9V6yzTTtFtofXqDnZ0jNhRfQc/OiseggSIPhNXziHJBNUENc9+YwbhbCVUhku7AfxkG3HgRES2UwtNnIPMYrPzl/fV2mEO1x46kZp386FzX3hf3z/zAMVyMZ3Ood3Slkw3za9cjiLPS95/TxcrnSCEOFQIITW4lwGYJYSYDGCW/xtENBXAuQAOADATwI1EJGfYTQAuAjDZ/5tZgX6xcHHysi20LvoCObi+fMykWIx9ey9CuJLHgDgYlJtqHsC8qNe6iJVyaj12EQRgP9hE5VCW/nBmcEqZxAe+ZciE4f3wx68cGTPvNEFvU32XJn2LOpnN6yNBCIE/PL8KQLLOwbTQPvVWeASoqxMcLy9PFj1F+uPADSfpHGw79cP2GIZxusWdxc+hLs8Te5dhL+eXbv4dbUtyDsXI70hbJDdEYdrpB441msrqoi59eIeWUSYO1aw7y1G0j6FYqXcppM8EcIf//Q4AZynp9wghWoUQ7wBYAWA6EY0FMFgIMVd4K++dSpnKw6CQVn/bdmVJfhBAOHhNRMaFc3BlnmQ2V51DAyMrB8LFziXKJwAMqo+bsXpthXn++eYmNk+OomIDTvkvTYkH1NWwu1IjtO6rRNMUE8tNFOa9t5ufeRsAL1ZzUe6qkUNd9Vac3tolVIdavy3qS+Dxa7r3xJb8erQ24kpzRaxkGIdOZ2O7iJViCmmmvwyXkqNQT6XPBZ1YxM5/cDBltW2Y1DnctNPT4XDxyzoL5RIHAeAJInqZiC7y08YIIdYDgP8pA9aPA7BaKbvGTxvnf9fTYyCii4hoAREtaGxMPoSd7zAvg1TFGLZdlhNx8Geiq9x89yENiXmO2WcEm55PIEQAsEI5N9nEpro4AcrJTwSMM5x560LTiCjxsJLQXDGdhFFfcFWZ7e0vrGLLuOhkVBt17zeXh69TxSGKLsKsc9DESqy83NBRtVzEp8I81WVdxnvXinKiUiDeT5u1knQGKwXSWsl27kGgkC7y813NoxIZIgrq13UOUrR58fF7A4gSByK1Lb5PRGQUlxGi6866pl0givs/dSbKJQ7HCCEOB3A6gEuI6DhLXu6RCUt6PFGIm4UQ04QQ00aNGpW+t3CLZW9baF0CYslJYSIyhykej3U1Obxw+UnW+g7bYyjuuiBuEx5t0/wq129tCb7vYRDP1AZOcOY25GSqzeWc5OVGsUku5Bx+cvZBbB5KWLD+87T9YmnHTh4Zc140mSTr/dHb5foTWQwSrINMxEHVVRifoe4Yxi1sWp4Ze8U3D+qYsEgdg/qNVjbavfKiUs7KSt+AhdDFiFweE/TnJhfrSF+CwHvSWsn8voZrhMqkc5BVyPYi3u658NjWJH8RibsunI4fnnkAxgyux4iB9TGdQ32NeZ51BsoiDkKIdf7nJgB/ATAdwEZfVAT/U8oW1gCYoBQfD2Cdnz6eSa8KAlNWnXV3MDEE3DiHwPfAMEh2G9KAj/kWEZ+ZZlcSAt6OxURonlrmcVCuxwaepp2GJSHFSnrsJhX2Yzw9qFeMSkeEHtKHTrAvNC7iGYkff/Kg2HNqcFDoRTkH08SOWppw/XLxNm5QZMh66AgTzj96T+v1Tx0+PnIKmoQqprBbs3mfrouaCTYLQP26K2HkoItQP6Edj6rWLzdzXK0yRI0uujHpHKRYUs6VSX4spW+dsi8GNtQEoiAz9xn93VCbx5eOmoh5/3Uy8jmKPJO2QtHIWXYWSm6diAYQ0SD5HcCpAF4H8DCA8/1s5wN4yP/+MIBziaieiCbBUzzP90VPzUQ0w7dSOk8pU3GEnIN54C7fFHell3AjDvadGABs3Obt5ne2mi0uZKyWof2TWfDNO+KmhBxMC0AgZ3WwVnLVb0zZjQ9Xofo5JCm2jRZGTDpn0cSFuYj3RyEOxt1zVE/CLjakfucrUnU+piCIKh79f8fik4fFNxBqLKB9xwxkFxK1fhffHbN9vht10Bd8m7WSiTgkhcQHPAKiFrfFuZLvzBYoUScCtYz+rbWjgGseXxppT56EWF+Tw5B+tUEIjk3N/FxMOvxIfSbthaLTs6gmyml9DIDniGghgPkAHhFCPA7gagCnENFyAKf4vyGEWALgPgBvAHgcwCVCCDnCLwZwKzwl9UoAj5XRLytCnUM0XZ0Aaw0+DEBoRWNDQBwsi6g8LvDR1+OHjEjIyTXcgTiUe5JUbaAnse0wfeLgaBl1xcem8nly4UlwSUdl2hyKdCSZ/dlMDCWMkVIJ2KGcG8FyDhGxEt+W6hXtIjIwvQ514TLV49qWHPsmIuAq2Ygtfrq1kgMRNm0WdKj3xs0z2Za0+mHPHvGLqZFWgXjoDQBY19QSuy7HW1tHEYMV7sO0fsQMDSy6pfYO0eWcQ8mqcCHE2wAOYdI3A2CF6EKIqwBcxaQvAMAbhlcYJp1DJI/lms05R0KOW5cF28U/gQtwF6unTNlknYMSXY5Vm35DfbDcOQReG2EmcxgS/Yvel3h6qWZ/Lv3RLU04RaGLzkHtt8vkN9XTvy58tqY+q+k2wrm91SN6Zq4pvPC56RP4TIh7ENsU1KZxX5PPIUfJ4VJUJTJ3/6EvRNGYx/RsA52D0saaLTuD75KIyvHWVihGwrQYueEkhb3y+94Fq9HV6HMe0sGYK28ttcLFMU3Ctqjv8Ceti1ipYpyDVTbtIFbyP8cOaXAy1TRxIaYDVfTrKpJ2naYFJ2ryaRZzqeEaOKWs+uyMC09E1GPrrQeTh+zpB4W6o7yByKhtuYgoTMRKdTb7ydkHG8vHvdz1xVD9br75tDtmPjCh9/nqe03GOk1TRj431fjkLSYu1VH+GenTJw2PhBU/7+iJi1y7swAAEqdJREFUbL02PWd3RJ8jDhIupzWViiRlqgrbJJG7Hu6wFx0uYYxd+mEVK/l5NmxrMefxy08aaT5Uxy2+UPQz3pd4WqmO9S6KUhfzW7VobY2d6Mk6k2Da8Q9qqA2esZlzCMtyHt06TMR183a3c7h12msLn2G7d5WQ/e5LRyS2yxIHLS3N4UzyuanEoYN59x+aOBxv/mAmjp08KsK1mgi6S8ys7oS+RxxSeDjbMHoQb4oHhC/dSaxkEdHIrrocYVquWEmKBGx9lpyMDS4DXl0YkiKTmhYRp/OaHeFCrIjsTldA1JnKtFNPS8RtsXWkmMtIHJQF0UWWb9qx72IOwrH1xwQXDg0ICeKxk0caretM9QZp2vjgxllNjljiK+tT9TqSUMy59PhI3n6cEYRhTOu9TIr6+s2T97Verzb6HHEwmbKqMMnKVXzv47yyFQAafWsFt/g35mtyspmC3KlwMQG0YcSAepyw36jYeQhpkfb8XJNYKVCSGuuIXtnf4SAfPbwDV5dtYidxDq+v3Rp8N+340xJx245fnvXBLVBAlGg8uWSjsR553oiJOLT4xOHwPXizY4mkfZdriBrpm+JKSLl3plfPn3dOGMX4W8h21cVbEgrTGexL1oXv3sztRi8knROthpLvCvQ94uCgkDZ5/3L1cGhu8XbYTg5zlkkizUprXYhMmTvpfI7why9PZ52pJJJ2hq5wUwB7n6bb0ifa9wyWUQAw+9sfAeAWxMxs0RQ/g0LHV47dK/huWmhdzFdV2HQFH/hHrRodypSH12zh+sYMbrC21eLHMOJ8S1QkxR1TCaNtuI4e7N2Py/wB+LGvGyeYiDK3EZSmsqoTXEeh6EVOdbIwc3vHXODA4/YNnXtNRL+z0AeJg9mdXsJkgllqWzbYAuYFYiVH2+9qw8XHQxIQu0ls+N0oVkowr9Qnu1QOcth9aD8MH1CHy0+fwl7fbYjbuddJ93/QuDA0hmmhTUvEbeIg2R+X+Du24SG7ZCJch/kcg8kzWiKJ+I5VnrNtfEglsi08xhlqjCqm3/kc4axDQ+c40zgzh5PJRUxZTaf/SbgQBP2eD9w9HtZdDa/Sz0FPVE10XVSnLkIgVrLkGeAgVjpiz+RDv112PsMHmHUXcvK7yIuHO5i7Th49MDGPDUkyUiAkDra5Qg6cg0zd2cbveNPQwobaPF654hT3Amx7YYPnHMF7tat9MhHrtGIll0XHxbrHZuYrNyGmBfvjh+yOI/caHjsqVsfIgfWsVY/E0P51mLLbICzd0Bwze02Lg8cPwSOLPR8hI/fppw8fUGfchdvEf3L+vbDyfWzc1mrV/bm8VbWbq64+g69HeQddzTn0PeJgiMqqwra7e+MHp6G9ICKmaybYdpqDGmrQ3NKBaz8TcxUJEOgcLJP/kPFDsHDNVnxxhj3EAgA8ZAiY5goXziFpoQGAlY3hAmJaROe/8wGA+El4QbnONvVQmvvowbx4xemsD8eQGWngQnBMUVCB8OhZ26YoiTAA0YXWtHmS783GVNfV5BL9iVRu2vTY5TyeZtnI2ZT5HQUBIQQ+f8s8AMAgy/NxM8RIzqN2J+McOhkh52B+U7bJpjofJcEWp0i2YItOObihFsAua3/u+9pRaOsoOomeyl2YXDghSdBsfZY6GRtaLAe5JNVfDaitucZEYuvxi7oeXuQCm7ijf10eO9sKxsOHAOCHZx2IG2avwAG7l6cAlb345WcPZeMdAaEJso04DKjLo62jaH3HLYoFlUmEJwmR7SwQ2calp+6Li4/fJ0ivyRE6isWInslmreaiHknrFNvVxKHP6hxsfGC5m9J9x3jiG5fF1Eak/vO0/bDH8P5Wn4H6mjwGNSRzMUD5vhBuOgfvs9y1O8nqqbM5B9fAjEnoX5vHyIF1+PEn+Wi0pcDWH2kKawpwCACH7zEMv/+XD5UdrkFyTrX5nJEjlO/VRaz0p6+YIxG/+PbmWLs65EbFFmFAPruafE4ztc2hoygiFmo26yLOD0KHy5hVn1tDJlbqGpQqVnLBCfuNxlsbt1tZ+YH1Nf+/vXMPkqK64vB3dhc0wCIsC8vKaxd5riRBQWRRBCwR0FSwyliRKA9JGUxIxWgegpLyD2KVSSWWz4pSCUQTH0nUGExMLE2JFWMSgfgCEXyUZUAqYkBepoLgyR99G5qd6d6enZ6ent3zVU1N7+07Pb89c2du33PvOZd97dxBzxgzgBljBkTWKYRiJ60LmZAudqfX9l6e8sDhOD1x8//ko6a6ig0ripv/yLlmjJFMKdxZbfGtEqfzjBo5+Keibnp6uhH8vElDQ+v4P+xRadvDov5rqoQjRzR2tuM4N4JxlshX2cihfMRZylqsy8LPVRPVGO6/cjLL5ozhpBgTyVnB/wJERa3q0dVKxb1Xe3dZIsLk4XXFvUkBBNXEceGlSaw9sFOQfCz4M0KHOxdnOrp7SJQ5wHktDQAsOWd4aB1/tVFUIGFYGvqaauHwJ9pu4KPPYbfsNWqlY5yFLsdF2VdwVtaKJGwnuCDF3vUuaG2if+0JzI6I7myu78lV03I3Kcky/rrvKPfUJzEmpOMQp3OJcrclTZzYjHIRR0+SEeXh+C6jcM5334mG3uGr9PxVcVGjnYtPH8TrK2fTFNEGPnZuoKhAQt90+UYObeccovA1zzq1IbROL7fkuDFi58ejedky0Ma6rFuplIweWMv6G84rt4zE8UcOUQ03TpxDHOK8PqGYPAD+8t0Z0RWCsRkRbqVzRvWnNSKQMC7rvj091p0mtBMr456LveEphKjP5WvTT+FLk4bSN2IhxndmjebGtZtp7BP+Iyoi7e7yV4hbqW0am+oqb+Sw52C8vFK+daPu9n1PQt+IRJq+67eYbVSTost1DnHcSkZ+/DmHqDs6f+RQ7G9RnN/9M4fX8dD6ZFIbR61ogXgpNgDuWzwpET1Rd8RtiTNySKO9+xG/UW4cEYnsGAAWTmliQeuwojs0/64/ajdAf4Oe3W02y+pWXcWRI8qj/9wR671+vngSD2/cHplzzbdLVNv2P8q2W5eWgy7oVvLIekbEJHngyjO5bnb+6OBC8Bt+r4iIXE1o5OAHmuXbH9gn3w5ppeLZbbuOHsfZ0yMN4mTSvdKl9OgRI7NvsfhLlHt/qvh7ziRGOv58QZRb6d3d3j4Nz715fDR2tXMrxU0ZM6qhlusvGBupu+0mQfnwz8WJei815VeQMnPGDWRUQ68ObwxTiUw5pZ4pp9QXfZ2VF41j6sj+kcsi/dFFsS7TKSPqQ6NIg/Tp0e3o3r2lZFdg68f62vLf1QE88tUpPPbijsg79aUzRrB0xojQ80myfM4YbnhsEy2NuWkhysFRt1KEfWqc+2j66ONXBe4+eIjN7x0fgBlMx9ERRjfUsuSc4ZEBq0P6eiPYuJlwS0mX6xyG9evJsH7hQ/b2Mk92ZWpP7MbFIakjfPzgrqi0IEnyzLem8+F/S985BIkTLZwG44f0ieyo0+bM4f14+tpp5ZZxFN/dFrXK9Pll5/LEqztZ0Np0XPnOvbl7ltxUZGxKVZWw/IKxkXUGu6SfUfMSaZGZzkFEZgO3AdXAT1X15rQ1bPv+nNTXz3c2zm8ZyMq5p3LJxPDtJOt7deeDA4c4b2zxMRx9e3Zv14edJFGrUYxsMXpgLevf2RP5nR7Q+0QWndUceZ1JzXX8eklrwury01zfk5UXjWNWS/nbWSbmHESkGrgLmAO0APNEJJnUqAXQvaYqc2vYK42qKmF+a1PkCpGfXO7FSYxsqE1LVtH4K01WXJh6szQ6yIoLW7j1i+OZ1FxcPMzUEcW7ZOMiIsyfPIwBvcs/Os3KL+Ek4E1VfVtVDwEPAXPLrMkoEWc01XHv4klcO7O8O10Vgr82PY3U6EYynNitmotOG9Shye1pgX0VBte1v79LZyQrbqVBQHBN4nYgPLGKUfEEv3yVwOpFZ/Dwxu2cHBHAZHQe7nVLkl97bx9jGytnhJskWRk55Ovac6aRROQrIrJBRDbs2rUrz0sMozQMqevBNTNHpRpMZpSflpN7d9nPPCudw3YgOIM5GHivbSVVXaWqE1V1Yv/+lXXnaRiGUUlkpXNYD4wUkWYR6Q5cCqwtsybDMIwuSybmHFT1sIh8HXgSbynralXdXGZZhmEYXZZMdA4AqvoE8ES5dRiGYRjZcSsZhmEYGcI6B8MwDCMH6xwMwzCMHKxzMAzDMHIQTXI7rRQRkf3A1pDTQ4F327nEScDeDNXprJrT1tSVbW2ai6+TNc1x6xWie7Sqth/2raoV+QA2RJzbFeP1qzJWp1NqrlTdptk0Z0FPKXRH/XYGH53VrfRhjDqPZ6xOZ9Wc5PuZrdN5L9OcznvFqRO3XlK6j1LJbqUNqjqx0HNZxTSnRyXqNs3pUImaoTDdcetW8shhVQfPZRXTnB6VqNs0p0MlaobCdMeqW7EjB8MwDKN0VPLIwTAMwygRFdE5iMhqEXlfRDYFyj4rIn8TkVdF5HER6e3Ku4vIGlf+sohMD7xmgit/U0RulxImak9Q8zoR2SoiL7lH8Rsvh2seIiLPiMgWEdksIle78joReUpE3nDPfQOvWe7suVVEZgXK07R1krpTsXehmkWkn6t/QETubHOtVGydsOas2nmmiGx09twoIucGrpXZNt2O7o7ZOs6SpnI/gHOA04FNgbL1wDR3vBhY6Y6XAmvc8QBgI1Dl/n4BaMXbXOiPwJwK0LwOmJiSnRuB091xLbANb0/vHwLLXPky4AfuuAV4GTgBaAbeAqrLYOskdadi7w5o7gmcDVwF3NnmWqnYOmHNWbXzacDJ7ngcsCNtO5dAd4dsXdIPJmFjNXH8D+0+js2ZDAFec8d3AZcH6v0Zb4/qRuD1QPk84J4say7mg01I/++AmXjBho2BRrvVHS8HlgfqP+m+PKnbOgnd5bR3e5oD9RYR+KEtp607qrkS7OzKBfgP3k1Eptt0mO5ibF0RbqUQNgGfd8eXcGwnuZeBuSJSIyLNwAR3bhDejnM+211ZmhSq2WeNGw5+r5RD2SAi0oR3N/IPoEFVdwK4Z39Ymm/v70GU0dZF6vZJ1d4xNYdRFlsXqdkn63a+GHhRVf9H9tt0kKBun4JtXcmdw2JgqYhsxBt2HXLlq/E+uA3ArcDzwGFi7lNdYgrVDHCZqn4amOoe80stUkR6AY8A31TVfVFV85RpRHlJSUA3pGzvAjSHXiJPWUltnYBmyLidReRU4AfAEr8oT7UstWm/flvd0EFbV2znoKqvq+r5qjoBeBDPb4yqHlbVa1R1vKrOBfoAb+D9+A4OXCLvPtUZ04yq7nDP+4EH8FxkJUNEuuE1xvtV9VFX/G8RaXTnG4H3XXnY3t+p2zoh3anau0DNYaRq64Q0Z9rOIjIY+C2wQFXfcsVZb9Nhujts64rtHPwZdxGpAlYAd7u/e4hIT3c8Ezisqq+5Idh+EZnshlUL8Px4mdXs3Ez1rrwb8Dk811Sp9AnwM2CLqt4SOLUWWOiOF3LMbmuBS0XkBOcOGwm8kLatk9Kdpr07oDkvado6Kc1ZtrOI9AH+gDcn9Ve/ctbbdJjuomyd1oRKkZMxDwI7gY/xevAvA1fjzeBvA27m2ERvE96kzRbgaWBY4DoTnWHeAu70X5NVzXirPTYCrwCbgdtwq2pKpPlsvKHyK8BL7nEB0A9vkvwN91wXeM0Nzp5bCazeSNnWiehO094d1PwOsBs44NpUS5q2Tkpzlu2Md9N2MFD3JWBA1tt0mO5ibG0R0oZhGEYOFetWMgzDMEqHdQ6GYRhGDtY5GIZhGDlY52AYhmHkYJ2DYRiGkYN1DoZRAkTkKhFZUED9Jglk8DWMclNTbgGG0dkQkRpVvbvcOgyjGKxzMIw8uGRnf8JLdnYaXuDiAmAscAvQC/gAWKSqO0VkHV5OrLOAtSJSCxxQ1R+JyHi8aPgeeAFUi1V1j4hMwMur9RHwXHr/nWG0j7mVDCOc0cAqVf0MXrr1pcAdwBfUy4+1GrgpUL+Pqk5T1R+3uc59wHXuOq8CN7ryNcA3VLW1lP+EYXQEGzkYRjj/0mN5an4JXI+3kcpTLutxNV6KFJ9ftb2AiJyE12k864ruBX6Tp/wXwJzk/wXD6BjWORhGOG1zy+wHNkfc6R8s4NqS5/qGkRnMrWQY4QwVEb8jmAf8Hejvl4lIN5c/PxRV3QvsEZGprmg+8KyqfgjsFZGzXfllycs3jI5jIwfDCGcLsFBE7sHLgnkH3paitzu3UA3e5kyb27nOQuBuEekBvA1c4cqvAFaLyEfuuoaRGSwrq2Hkwa1W+r2qjiuzFMMoC+ZWMgzDMHKwkYNhGIaRg40cDMMwjBysczAMwzBysM7BMAzDyME6B8MwDCMH6xwMwzCMHKxzMAzDMHL4P82kpKNE5/PhAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXeYXGd59/+5Z2brbG/aJmnVJUuWZVsW7gUDNiUxBDvYSbAJJAZ+DoG8JG+AvG+68wKBkEACxKEZYjAGTDAGGxwXHOMiS7LVe90qbS9Tdtrz++OcMzuzM1tm6+zu/bmuvXb2OWWemT0z33OX577FGIOiKIqiJOKa7wkoiqIo2YeKg6IoipKCioOiKIqSgoqDoiiKkoKKg6IoipKCioOiKIqSgoqDoiiKkoKKg6IoipKCioOiKIqSgme+JzBVqqqqTFNT03xPQ1EUZUGxe/fuLmNM9UT7LVhxaGpqYteuXfM9DUVRlAWFiJydzH7qVlIURVFSUHFQFEVRUlBxUBRFUVJQcVAURVFSmFAcRGS5iDwrIodF5KCIfNQe/2sRaRWR1+2ftyUc80kROSEiR0XkloTxy0Vkv73tiyIi9nieiHzfHn9FRJpm/qUqiqIok2UylkME+LgxZhNwJXCfiFxkb/uCMWab/fNzAHvbncBm4FbgyyLitvf/CnAvsM7+udUe/wDQa4xZC3wB+Mz0X5qiKIoyVSYUB2NMuzFmj/14EDgMNIxzyG3Aw8aYYWPMaeAEsENE6oASY8xLxmo/923gnQnHPGg//iFws2NVKIqizAbRmHbBHI+MYg62u+dS4BV76I9EZJ+IfENEyu2xBqA54bAWe6zBfjx6POkYY0wE6Acq0zz/vSKyS0R2dXZ2ZjJ1RVGUOC29fjb93yc52NY/31PJWiYtDiJSBPwI+JgxZgDLRbQG2Aa0A593dk1zuBlnfLxjkgeMecAYs90Ys726esIFfoqiKGlp7gkQisY43eWb76lkLZMSBxHJwRKGh4wxjwIYY84bY6LGmBjwH8AOe/cWYHnC4Y1Amz3emGY86RgR8QClQM9UXpCiKMpEBMIRAAaDkXmeSfYymWwlAb4OHDbG/FPCeF3Cbu8CDtiPHwPutDOQVmEFnncaY9qBQRG50j7n3cBPEo65x358O/CMHZdQFEWZcfyhKABDKg5jMpnaStcA7wX2i8jr9tingLtEZBuW++cM8EEAY8xBEXkEOISV6XSfMSZqH/dh4FtAAfCE/QOW+HxHRE5gWQx3Tu9lKYqijI0jDoPDKg5jMaE4GGNeIH1M4OfjHHM/cH+a8V3AljTjQeCOieaiKIoyEwTUcpgQXSGtKMqSI+5WGg7P80yyFxUHRVGWHIGQBqQnQsVBUZQlx4jloOIwFioOiqIsOfxhOyCtlsOYqDgoirLkCKjlMCEqDoqiLDn8dsxBs5XGRsVBUZQlR3ydQ1CzlcZCxUFRlCWH41byhaJanXUMVBwURVlyOJYDgC+krqV0qDgoirLkCIRHxEHjDulRcVAUZcnhD0UozrOqB2nGUnpUHBRFWXL4Q1GqS/IAXeswFioOiqIsOQKhKDXFjjhoxlI6VBwURVlShCIxIjHDspJ8QN1KY6HioCjKksJJY3UsBw1Ip0fFQVGUJYXfbhFaU6yWw3ioOCiKsqRw1jhUFecCGpAeCxUHRVGWFI5byZvroSjPo+IwBioOiqIsKRzLodAWB+0Glx4VB0VRlhRORdaCXDfF+R6NOYyBioOiKEuKQNxycFOUr26lsVBxUBRlSeFPFIc8tRzGQsVBUZQlxWi3kloO6VFxUBRlSZESkFZxSIuKg6IoSwpHHApy3BTl5ahbaQxUHBRFWVIEwlHyPC7cLolnK8W0G1wKKg6Koiwp/KEIhbluAIrzrZ4O2g0uFRUHRVGWFP5QlMJcSxSK7IY/GpRORcVBUZQlRSAUpcC2HIrytRvcWKg4KIqypLAsB1sc1HIYExUHRVGWFIFQlIKc5JiDWg6pqDgoirKk8IcTA9I5gDb8SceE4iAiy0XkWRE5LCIHReSj9niFiDwlIsft3+UJx3xSRE6IyFERuSVh/HIR2W9v+6KIiD2eJyLft8dfEZGmmX+piqIoYwWktTLraCZjOUSAjxtjNgFXAveJyEXAJ4CnjTHrgKftv7G33QlsBm4FviwibvtcXwHuBdbZP7fa4x8Aeo0xa4EvAJ+ZgdemKIqSggakJ8eE4mCMaTfG7LEfDwKHgQbgNuBBe7cHgXfaj28DHjbGDBtjTgMngB0iUgeUGGNeMsYY4NujjnHO9UPgZseqUBRFmUkSA9LeXA1Ij0VGMQfb3XMp8AqwzBjTDpaAADX2bg1Ac8JhLfZYg/149HjSMcaYCNAPVKZ5/ntFZJeI7Ors7Mxk6oqiKECy5eB2Cd5ct1oOaZi0OIhIEfAj4GPGmIHxdk0zZsYZH++Y5AFjHjDGbDfGbK+urp5oyoqiKElEojFC0RiFOZ74WFG+Ft9Lx6TEQURysIThIWPMo/bwedtVhP37gj3eAixPOLwRaLPHG9OMJx0jIh6gFOjJ9MUoiqKMhz880svBoTg/h0FtFZrCZLKVBPg6cNgY808Jmx4D7rEf3wP8JGH8TjsDaRVW4Hmn7XoaFJEr7XPePeoY51y3A8/YcQlFUZQZw+kCV5AgDkV52tMhHZ6Jd+Ea4L3AfhF53R77FPBp4BER+QBwDrgDwBhzUEQeAQ5hZTrdZ4yJ2sd9GPgWUAA8Yf+AJT7fEZETWBbDndN8XYqiKCkkdoFz0D7S6ZlQHIwxL5A+JgBw8xjH3A/cn2Z8F7AlzXgQW1wURVFmC6cLXOEoy6GjPzhfU8padIW0oihLhhG3UkJAWvtIp0XFQVGUJYPjVvKODkhrzCEFFQdFUZYM/nQBae0GlxYVB0VRlgyBsBNzGHErFedpN7h0qDgoirJkSJetpPWV0qPioCjKkmGsdQ6gZbtHo+KgKMqixRiDL8EiiFsOOamWw4CKQxIqDoqiLFpeONHFZX/3VHwdgz8UJdftwuMe+eorUbdSWlQcFEVZtJzq9DEcibG3pQ+AQCiS5FICKMrTbnDpUHFQFGXR0ue3Cuod7RgEkns5OJR7LXHoHNRV0omoOCiKsmjpD4wSh3A0xXKoLsojP8dFc29gzueXzag4KIqyaOkLhAA40mG1oAmksRxEhBUVhZzr8c/5/LIZFQdFURYtA7blcKbbTzAcxR+KJDX6cVhRUUizikMSKg6KoixanJhDNGY4cWEoqUVoIstty0HbyIyg4qAoyqKlPxBmXU0RYMUd0gWkwbIc/KEo3b7QXE8xa1FxUBRl0dIXCHPJ8jJy3S6OnrfEIZ3lsKKiEEDjDgmoOCiKsigxxtAfCFNZlMuamiKOdgwSCI9tOQAad0hAxUFRlEVJMBwjFIlRVpDLxtpi260USarI6tBYblsO3SoODioOiqIsSpw1DqUFOWyoLaZjIEgwHKMgJ9VyKMh1U1Ocp26lBCbsIa0oirIQcdY4lBXmUFeWHx9P51YCdK3DKNRyUBRlUdLvH7EcNtYWx8fHEweNOYyg4qAoyqKkL8GtVFuSH6++WpAm5gDWWof2gSDDkeiczTGbUXFQFGVRkhhzEBE21pYA41sOxkCr1lgCVBwURVmkOG6lskKr6uoG27WUbp0DwIpKXeuQiIqDoiiLkv5AGLdL4m1AHXEoTJOtBLrWYTQqDoqiLEr6AqG4SwngjRtruG5dVdy9NJrqojzyPC61HGxUHBRFyWpa+wIT3s0/treNO776YlLhvP5AhNKCnPjf9WUFfOcDb6C0MCfdKXC5JF6AT1FxUBQly/nUo/v50H/uHnefn+5t49UzvfQkFM7r84eSxGEyWGsdNCANKg6KomQ5Hf1BDrUPxAPMozHGsOdsL2BZGQ4DgfCUxKFZS3cDKg6KomQ53b4QxsCusz1pt5/r8cdLbbcliENfIBzPVJosyysKGRqO0DuGEC0lVBwURclaYjFDr9/64t95Or047LatBoCWhDUK/VO0HEDTWUHFQVGULGYgGCYas1w8r4wjDsV5Hgpz3XG3UixmlesuU3GYMhOKg4h8Q0QuiMiBhLG/FpFWEXnd/nlbwrZPisgJETkqIrckjF8uIvvtbV8UO79MRPJE5Pv2+Csi0jSzL1HJFjoHh9n+90/x4smu+Z6KskBw3EUNZQUcaO3HH4qk7LPnXB/bVpRRX1YQdysNDkcwBkqmIA4ugRMXhqY/+QXOZCyHbwG3phn/gjFmm/3zcwARuQi4E9hsH/NlEXFWnHwFuBdYZ/845/wA0GuMWQt8AfjMFF+LkuXsPttD11CIH+5ume+pKAsEJ/vo1i21RGKG1871JW0fDIY52jHAZSvKaSgriFsOI6ujczN6voJcN2trijjQ2j8Ds1/YTCgOxpjngfT2XCq3AQ8bY4aNMaeBE8AOEakDSowxLxkrDeDbwDsTjnnQfvxD4GbHqlAWFwdaBwB45sgFItHYPM9GWQh0D1ni8OaLluGSVNfS3uZ+YgYuW1lOQ3kBbX1BILmuUqZc3FDGvpb+JZ+xNJ2Ywx+JyD7b7VRujzUAzQn7tNhjDfbj0eNJxxhjIkA/UJnuCUXkXhHZJSK7Ojs7pzF1ZT440NaPS6DPH+bVM70TH6AseRzLYWVlIRfVl7DzdHfS9j3nehGBbcvLaCgroMcXwh+KJPVyyJSLG0roGhqmYyA4/RewgJmqOHwFWANsA9qBz9vj6e74zTjj4x2TOmjMA8aY7caY7dXV1ZnNWJlXjDEcaO3n1i215Hpc/PJQx3xPSVkA9PiGAajw5rKjqZLXzvURioxYnbvP9rK+ppjSghwaygoAaOsLTs9yaCwDYH/L9FxLwXCUPn9o4h2zlCmJgzHmvDEmaoyJAf8B7LA3tQDLE3ZtBNrs8cY040nHiIgHKGXybixlgXBhcJiuoRA7miq4bm0Vvzx4fsmb7crEdPtCFOV5yPO42bGqguFIjP2tVtwhFjPsOdfLZSutL/N6Wxxa+wL0OTGHKYjDRXUluF3C/mnGHT7z5BF+68svTusc88mUxMGOITi8C3AymR4D7rQzkFZhBZ53GmPagUERudKOJ9wN/CThmHvsx7cDzxj91lh0OAG+LQ2lvGXzMlr7AhxqH5jnWSnZTo8vRIXXCipf0WR5r524w8nOIQaDES5bYY03lNvi0BuIWw6ZZiuBFZReV1PEvmlaDkfaBznV5Usq6bGQmLCHtIh8D7gRqBKRFuCvgBtFZBuW++cM8EEAY8xBEXkEOAREgPuMMU5bpQ9jZT4VAE/YPwBfB74jIiewLIY7Z+KFKdnFgdYBRGBTXQlNVV5E9vPLg+fZXF8631NTspgeX4hyWxwqi/JYW1PEo3taATjXba1FuGylJQ7LivNwu4S2vgChaIz8HBf5Y5TnnoiLG0p55sgFjDFMNT+mpc+a3+H2Aa5ZW5V2n4Nt/Xz+l8f48u9eNuW5zhYTioMx5q40w18fZ//7gfvTjO8CtqQZDwJ3TDQPZWFzoK2f1VVevHkevHketq8s56lD5/mTN6+f76kpWUz3UIja0vz433dc3siXnjnBZ588CkBtST6rq7wAeNwuakvyae0LkOt2TSne4LC1sZQf7G6hrT8Yj2VkQiQao93OnBpPHH51rJNnjlygucfPumXFafeZLyYUB0WZCQ629nPFqor432++aBn/8PMjNPf4WW6vSlWU0fT6Q1xUP9J/4YM3rOGDN6zBH4rQNRiiMM+ddGfvrHUoL8yhrCCzNQ6JbGmwLNr9LX1TEofzg8NE7JXdh9rGdp86LUk7B4ezThy0fIYy63QPDdPWH2RLggvpTZuWAdadk6KkwxhDty9EpTf1S74w18OKykKqivKSxuvL8uMxh+lYDpvqSvBMIyjtfOkX5rrHja05K7o7h4an9DyziYqDMusctO+cNjeM3AGuqvJSkOPmVKdvvqalZDm+UJRQJBYPSE+GhvICOgaC9PhCYzb1mQz5OW7WLyueclC6pdeKN1y/rpqTnUNJ6beJOIv2OgdVHJQlyIE26wOWGHwWEVZWFnK2W8VBSU+PvTo6E3GoLysgGjOc7vJNy3IAK+6wv3VqK6Wd6rA3b6ohHDVj1mpyLIeuoezLaFJxUGadg60DrKgoTPmwrqrycnqBiMP5gSBhLfkxp3TbC+AqizKwHOz4QDhqprTGIZEtDaX0+cNJZcAd7v7GTu7/2aExj23p9VNdnMelK6w1GOlcSwPBMIPDViHBLnUrKUuRA239bGlIbeq+stJLc48/XpI5WwmGo7zxc8/xyK7miXdWZgxnfUCFN2+CPUdIDB7PhOUApI077G3ui9cKS0dLb4DG8gJWVRWRn+PicBpxSGxMpG4lZcnRHwhzttufdj1DU2Uh4ahJ+pBkIwPBML5QlI7+pV1rZzKM1cpzKjjlutMFpMfCWQgHU6urlMiG2mLcLknJNgqGo/QHwlwYHPt6aO0L0FheiNslbFhWPK44lBfmqOWgLD2OdgwCJKUjOjTZ+elnsty1NBS0TP+h4dReAsoIe5v7uPTvfsmRjplZ+T5iOUxeHApzPZTbojCV1dGJ5Hnc1Jbkp9y8ODcJY93tR2PWDU+jLVSb6ko41D6QErtwMpouWV6m4qAsPZrtjlpNld6Ubc7Yme7s7rrliIJ/ODrBnkubF050ETMjK5enS48vRJ7HRWFuZiuHnRpLmfZySEdtaT5t/aPEwa7WOhCMEAynXhMXBoOEoyYuDhfVl9DnD6dUeW3tC5LjFjbVldA1FCKWZe5VFQdlVmnu9SNi5Z+PpqY4j/wcF2e7FojlkKYLmTKC08t5MDgz71P3kFVXKdPyFU7cYboxB4C60nzaR7kTzyd8yaezHpwAtjOPTXWW1TzatdTWF6CutICa4jyiMUNfYOZccjOBioMyqzT3BFhWnE+eJ/Xuz+USmiq9We9WGoxbDioOY+FUSAUrRjMT9PiGM3IpOcQthxkQh/qyAtr7g0kuocTYU7rFa84ah8Zya+X/xlpr5fPh9sGk/dr6AtSX5VNdbAXcsy0oreKgzCrNvX6WV4xdfmBlZWH2u5XsO2GfupXG5FSXL14meyAwMyKaWJE1E9bUFJHjFioySIEdi7rSfEKRWFJl1Y4JLAcnluC4lYrzc1hRUZgS2LbEoSC+yjvb4g4qDsqs0tobYHn52LWTmiq9nOuevXTWmVib4MQcfOpWGhPHagCrr/NMMFbpjIl4z/bl/PyPr6Mkf2bcSkCSa+n8QJDifKss3YUx3EpVRXlJVVY31SVnLEWiMToGrKJ+juWg4qAsGcLRGO39I1kb6Wiq8hKy95tJojHD/3rkda79zDMEQtO744+Lg7qVxmTP2V7KCnOoLs6bQbdSKKM1Dg65HteMFbGrK7Wu3URx6OgPsqmuBJGxYw4No675rY1lSb0dzg8OEzMkWQ7qVlKWDG19AWIGGsepurqy0tp2dgZdS9GY4U9/sJdH97RyfmA4HiidKk6A1TdNkVnM7D7by6XLyygtyJmRgHQwHMUfima0Ono2qCtzLIeRm5fzA8M0lhVQ6c0dQxz8KTdEV66uBOClk1YPbMf1VF9WQEm+h1y3K+uK76k4KLOGk7Uxnltp1QyvdYjGDH/2g738+LVW/uimtXhcwq9Pdk3rnEPD1p2wBqTT0x8Ic/zCEJevLKck3zMjlsNU1jjMBlXePHLcEi+QF4sZzg8EWVaaT3VxPp2jFsLFYoa2vmCKOFzSWEpRnocX7WvRWTvRUFaAiFBdnEfXYHbVV1JxUGYNZ43DeG4lK5PJxZkZSmf90jPHefS1Vj7+5vX86S0b2La8jBftu7WpMpRgOWRbLno28Jodb7hsZTkl07AcPvrwa/z7r04C2SMOLpewrCQ/bjl0+0JEYobaEivLaLTl0Dk0TCgai2cqOXjcLnasqohfi619juVgWSZVRblqOShLh+ZeP26XxIN66XC5ZMYylnzDEb7xwmlu2byMj9y8DoCr11axv6Uv3lN4KiR+2QXSLHpa6uw524vbJVzSWEZxfg4DU3ivjTE8eaCDf332BL7hyJRKZ8wW9aUF8ZiDs8ZhWUk+1UWp4jCSxpp6Q3T1mkpOd/lo6wvQZjckKsy1AtuW5aDioCwRWnqtPG6Pe/zLrKnSOyOlu3+wq5mBYIQP3rAmPnb1mkpiBnbaTemnwmCCO0mD0qnsPtfLxtpivHke262U+XvU5w8zHIkxGIzw49da6bErss635QBW3MGxHBxxqC3Np6Ykj86h4aQ1EI4rtTFN9zinVeiLJ7vjaawOVUV5ajkoS4fmHv+48QaHpiovZ7v903LZRGOGr//6NJevLOeyFeXx8UtXlJGf4+LXJ6YedxhK+LLToHQy0Zjh9XN9XL7Ses+L83MYDIYz7oHglKjwuIQHXzxD95BjOWSerTTT1Jbm09EfJBYz8TUOtbblEI6a+PoOSFgdncZy2LCsmApvLi+e6KKtL5giDj2+7CqhoeKgzBrNveOnsTqsrCxkOBJLqT2TCb842EFzT4A/vG510niex80VTRXxLJGpMDQcidf3UcshmaMdg/hC0bg4lBR4CEcNwXBm60va7YDvnTuWc/zCEI/va8ftkvh6gvmkvrSAcNRqWXq+P4hLrBhBfGVzwh1/S6+fSm9u3F2UiMslXLWmkl+f7KK1L5BUXrzaLqHR68+eoLSKgzIrBMNROgeHJ2U5rKqcXsaSMYYHnj/FyspC3nzRspTtV6+p4uj5wbh/2B+K8MuDHZO+ux0ajlBbYsVNVBySOX7Brrpr1w9yFp5luhCu3b4x+OD1a6j05vJ6cx/lhbm4XJnVVZoNRhbCBegYCFJVlIfH7aLGFocLAyPicKrTx4rKsa/5a9ZUcX5gmKHhSJI4xNc6ZJFrScVBmRXiaazjrHFwWOmks3ZNLSi9+2wvrzf38YFrV+FO82Vy9Ro7x/xUN/5QhPd941Xu/c7ueG/riRgKRqgpsT68uko6GSeryPlyc+70M01nbe8L4HEJ9WUF3LVjBZAdwWgYWQjX1hekY2CYWlssRiyHkTTXQ20DbE5Tnt7BuRaBUW4l67VmUzqrioMyKzSPk7UxmrqSfPJzXJzsTN9ndyK+/2ozJfkebr+8Me32LQ2lFOd7ePrwed7/rVfZecYKTh87P5h2/0SGI1FC0ViC5aAxh0R6fCFcMlIB1emh0J9hfaX2/iDLSvJxu4Tfu3IlbpdkRTAakhfCnbfnCVBj/3Ys0nM9fgaHI2xJ09jKYWVlYdxiSKxUnI0lNFQclFmhxV7jMBnLweUS1tYUTerLOh1HOga5ZHlZWj8vgNslXLm6kp+83sYrp3v43B2XkOMWjo/R9D0RJxjtfCH41XJIoscXSnL/lNiWQ8Zupf5A3H1TW5rPn9+6gfdcsXxmJztFKr255HpcdPQH6RgIxm8UvLluCnLccXE40Ga1E93SMLY4iFhxB0huaVqVhZVZVRyUWaGlN0Cux0V10eSyTdYvK+b4+cwth1jMcLJziDXVRePu9+ZNyxCBf7z9Em6/vJFVVd5JPZ9TV8kRhyG1HJLo9YcoT7jDd2IOmaaztvcHqUv4srz3+jW889KGmZnkNBGx1uqc6vLRHwjH3UrOyman+N6B1gFy3MK6ZeNfi++7uonfv6Ypbi0AFOd5yPO4sspymP9UAGVR0mzXl5lsQHHDsmIe3dNKvz9MaQa9f9sHgvhDUdbWjP+BvGN7I2/cVBP3ja+tKUopoZwOZwGcE3PQEhrJOA15HBy3UiaWgzGG9v4gt2wee7HkfFNbks/rzX3AyI0CWA2rnLv9g239rF9WnLZ3SSJbGkpTrAsRsdY6qOWgLHaaewIpJQTGY71dRfPYhcxcSyds19BE4uB8+BzW1hRzrsefts1jIo7lUFGYS67bpd3gRtHrD1GR0I4zHpDOIObQ4wsRisTGXUk/39SXFcS/uGtLkmMFnYPWQrgDrf3jxhsmoqo4uxbCqTgos0Jzr5/lkwhGO6y3u2Ud7UgWh4d3nuN/jneOedxkxWE062qKiBk4PUFNJyfmUJTvwZvn1j7So+jxhZKa6hTkuPG4JKNsJac0hZMVlI0kCldt6chNhuNWausP0usPs6Vh7EyliaguyqNrSLOVlEXMYDBMnz88qWC0Q31pPkV5Ho4nBKWHI1H++qcH+dwvjo553IkLQ5QV5mSc9uj4hScKSjuWQ3G+VQdH1zmMEIsZev3hJMtBxFq4lolbyalQms2WQ+LcRruV+gNh9thl4TePE4yeiOri9CXA5wsVB2XGaRnVJnEyiFiBvKMJ4rC3uZ9gOMa+1n66xzC3T14YYm11UcZN6FdVeXEJnJggQ8qpq1SU56Eoz6PrHBIYCIaJxkxSQBqsuEMmbqW45VCWzeJgXcveXDfFCR3mnKDyc0c7cQlsqp2e5dDjG561roiZouKgzDiJteozYcOyYo52DMZXLjslL4yB58dwLZ3oHMrYpQRWWY2Vld6JLYegYzl4KMxz6zqHBHrGqJxaYtdXmizt/UFy3EJVFtRRGgtHuBKtBhgRh18du8DamiIKcscPRo9HVXEeMUPWlNCYUBxE5BsickFEDiSMVYjIUyJy3P5dnrDtkyJyQkSOisgtCeOXi8h+e9sXxb7VE5E8Efm+Pf6KiDTN7EtU5ppeuxBZpkXT1i8rptcfjvtdXz7Vzaa6Eiq9ufzqaKo49PhC9PhCUxIHsOIUE7uVwnhcQp7HpZbDKJwvsdGWQ3GGlVnb+wMsK8nPilIZY1FvWw6jxaGm2Pq7ayg0rWB04rlPTGL9zVwwGcvhW8Cto8Y+ATxtjFkHPG3/jYhcBNwJbLaP+bKIOFL6FeBeYJ3945zzA0CvMWYt8AXgM1N9MUp20Gd/aWSSkgqwwQ5KHz8/SDAcZfe5Xq5eU8n166t5/nhXSsVK50O0ZorisK6miDNdPsLRsYvEDQUjFOV7EBEKc90ac0hgpHJqquWQSU+H9r5g/Ms3WykrzCE/xxVf4+CQuFZhOvEGgGvXVlGc7+G7r5yb1nlmignFwRjzPDC6GP5twIP24weBdyaMP2yMGTbGnAZOADtEpA4oMca8ZCyfwbdHHeOc64fAzZKpA1nJKvoDYVxiLezJBCdIfPT8IK+d6yM8ma05AAAgAElEQVQUiXHV6kpu3FBNjy/E/tb+pP3jmUoTLIAb7/kiMTNuL4nB4QhF9uvw5nnUrZTAeJZDJt3g2gcCWR1vACsm9le/sZl7rm5KGq/05uJ8W20Zp6bSZPDmebjj8uX8fH97vG/EfDLVmMMyY0w7gP27xh5vAJoT9muxxxrsx6PHk44xxkSAfqCSNIjIvSKyS0R2dXaOnd6ozC/9gTAlBTkZuwmqi/IoL8zh2PlBXjrVjUvgilUVXLeuGhEr6JfIiQtDFOS4M45tOKyrcSyVsc34oWCCOOR6tHxGAk63tsRsJbAD0pOMOcRiho7+YFansTrctWMF25aXJY153K645XTRNMUB4O6rVhI1hoeywHqY6YB0um8DM874eMekDhrzgDFmuzFme3V19RSnqMw2ff4wZQWZuZTAujtbbwelXz7Zzeb6UkoLcqjw5rK1sYznjl1I2v9E5xCrq71T9lWvqS5CZPx01sFgJL6wSy2HZHp9IQpy3ClB2JL8HPyhKJFx3HUOXb5hwlGT1WmsE1FVlMeqKm9SFtNUaarycuP6ar77yjlCkcx6Ysw0UxWH87arCPu386ltARKrZTUCbfZ4Y5rxpGNExAOUkurGUuaAf3v2BP/27Ilpn6cvEKa0cGoVNR1xeL25L16gDODG9dXsbe6j1zeSyXHywtQylRwKci2rYzxxGEp0K+W6CUVj8/6hzRZ6fOG0lVOL48X30ltZgVA0npHWEV8At3DF4b1XreTe61dPvOMkuefqJrqGhvn5/vYZO+dUmKo4PAbcYz++B/hJwviddgbSKqzA807b9TQoIlfa8YS7Rx3jnOt24BmTaY9BZUZ47PU2fvxa67TP0x8Ix0s4Z8r62mJ8IatM9lWrR8Thhg3VxAz8j93u0zccobUvMOV4g8O6mqJxs0OGhiMU2XeEXlsk1LVk0eMbTisOI/WVUt+nYDjKlf/vaf71GesmpM3uAFc/RddgNvC7b1gZ70ExE1y/rprVVV6++eIZTlwY4skDHXz7pTNzft1NGDEUke8BNwJVItIC/BXwaeAREfkAcA64A8AYc1BEHgEOARHgPmOMY4d/GCvzqQB4wv4B+DrwHRE5gWUx3Dkjr0zJmLb+AOFoDGNMxovKEun3h1iZweroRDbYNZbcLmF700gv6EsayygvzOHRPS28/eI6TnVaQeTpWA4A65YV8+uT3URjJm2joMHEmEOe3So0FKVsai9vUdHjD6cEo2H8hj/nevz0B8J8+bmT/PYVy2m3e0ePzgJayrhcwt1XreSvf3qIN/3Tr5K23X1V05zNY0JxMMbcNcamm8fY/37g/jTju4AtacaD2OKizB9Dw5H4nV7XUCgpRS9T+gJhyjJMY3VYb2csWQ16Rs7hdgkfvGENn37iCPc9tIebNloxp+mKw9qaIkKRGM09fprsjnSJDA2H4192Tr8ITWe16PENszrNexYv250mndWpZRUIR/nn/z5GSX4OuR5X1nR9yxbu3LGCUDRGpTePNTVF3PfQHl443pVd4qAsDTrsOziwmqRPVRxiMcPANNxKZYW5XL2mkrek6QX9oRvWkOt28bePH+K5Yxdwu4SVlalfTpngVIM90jGQIg7haIxgOBa3HJzfKg4Wvb4w5WliSyOWQ+r75IjDuy9r5PuvNnNRfQl1pfnTslQXI/k5bu69fk387+vWVfGz/e1EojE87rkpbKHlMxRgxPcLI7WRpsLgcISYYcriAPDdP7yS912zKu2291+7in9+zzYiUcOqKi+5nuldwhtri3G7JG0/aV9CXSWAQjsrRzOWrKKIQ8MRKryp/2fnf5/OrXS600dVUR6fettGvLkeDrQOJJXAVtJz7boqBoMR9o1a6zObqOWgACNZIzA9cei3S2dMRxwm4p2XNrAqjTtjKuTnuFlbXcSBNB+6wYRy3TASkF6KJTSGhiMcOz/IZSusOFCvz/o/V6QpkeK4ldIFpE93+1hVVUhlUR4funEN//iLows6GD1XXL2mCoBfH++K/w9mG7UcFMAKRoO1qrml1z/l8/TbfuayKaayTpZLlpdxyagFSVNlc0MJB9JYDvFy3XnJ4rAUs5U+94uj3PHVl+KlUZyie+ksh6J4w5/0MQdH2N9/zSo21hYnJR4o6anw5rK5voQX7Gy9uUDFQQGs+jZVRXk0VXmnZTn0BawvjakGpOeDLfWldA4Oc2FUyQJHHEYsB7c9vrTcSsFwlB+/1ko0ZjjQaonoiDikWg5ul1CU50lxKw0Gw3QODrOqykoiKMh18+THrud337Byll/B4uDadVXsOdc7ZzEvFQcFsHox15fl01heMC3LoW8O3EozzWa77MHouEO8C1xC+QxYen2knzp0Pm4ROvWtevxjWw6Qvr7SmS7rulpVpXnAU+HatVWEo4adZ+ZmjbCKgwJAe1+AulJHHAJMdR1i3K20gMTBqYkzOu4wGO8CZ4lCQY4bkaWXrfTIrmYaygpoKCuIv0c9dvOldNlKkL4y62m7wKFjOSiZcUVTBbkeF78+PjeuJRWHRcZUu0i128XPGssLGY7EkhqdDwbD8QY+E+GIQ8kCEofi/BxWVXnHsRys1+JyCYU5bnyhpeNWaun188KJLm6/vJGtjaUJlkMYkbFjSyUFqZbD6U4fIrCyUi2HqZCf42b7yvI5izuoOCwien0htv71L3j68PmMjhsMhhkajsQtB0jOWPqHnx/mN770wrh9Dxz6/CHyc1zk50y9I9Z8cFF9CQfaki2HoWFL6JyYAzjF95aO5fCj3a0YA7df3siWhlJrhbM/TK8vRFlBTtpV5WAJ7uiYw+muIepLCxbctZFNXLuuiiMdg3PSa1rFYRFxonMIXyjKU4cyE4eRHr4FLLfLXiSKwwsnuuj2hXj5VPeE5+oPhCkrWHirXbfUl9LSG4hn44BlOYhAYcKXmTfPM6bl8OXnTvDIrua02xYisZjhB7ubuWZtJcsrCrnYbmZzoK2fHl8obV0lh5L81ID06W7/jKUgL1WuXWultL54cvatBxWHRYQTSM40YOW4jOpL8+O9EZxzdfQHae6xtj95oGPCc/X5p146Yz7Z0pAalB4cjlCU60kqCT5eN7iHdzbzk9enX7gwW3j5VDctvQF+e7tVaNkRh/2tE4tDcX5OklvJGMPpziEVh2myub6U333DChrLZ981p+KwiHC+xE91+ugamrzZ6SyAqy3Nx5vnocKbG7ccHKFZXeXlFwfPTxjT6LMb/Sw0Ntv9fw8muJacFqGJjOdW6vWF6PFNvj1mNhMIRfn7nx2mrDCHWzbXAlbHt8bygrg4jBWMhpGYg5PY0OMLMRCMpK1fpUwet0u4/10Xc/nK2V8bouKwiEhMQd2VgfXQ1h9EZKTBuZOxBPDq6R68uW4+cvNauoaGee1c77jnGghMrdHPfFPhzaW+ND+exw/JvRwcvLlu/GncSsORKIPDEXp8s+8Lnm2MMfzvH+3jcMcAX/jtbUkxgosbSjnQ2k+PP0Rl0XhupRyiMRN/r87YmUrpCvUp2YmKwyKipTfAxQ2l5Hlc7Dw9/pd4Iu19AWqK88ixC3olrnV49UwPl60s502blpHrdvHEBK6lhepWAqtBfGJQejADy8FZ39HrC085DThb+PfnT/HTvW386Vs2cNPGmqRtWxpKOdvtp3toeFzLwamo68QdnBLr6lZaOKg4LCJaegOsqvKybXkZO89MHDx2aO8PUpvQw7exvJBWOzh79PwgVzRVUJyfw3XrqnjyQMe4X359gdCCWgCXyOb6Ek53+eJf/oNpLQdP2tpK3UNWIDsUjcVXVi9Enj/WyWeePMLbt9bx/924JmW7E3eIGcYPSBc4JTSs9+J0lw+PS+LZcEr2o+KwSIjGDG19ARrLC9ixqoJDbQMMTrLJe3t/gPqEZiuN5QUMR2L84mAHxliLbwBu2VJLa18gbQVTsMosBMOxWa+rNFtsqS/FGNjb0gfAUHCkl4PDWH2kexLal/Yu0LhDLGb4u8cPsbrKyz/evjVtGW1HHGB8cSiOF9+z3osz3T5WVBTOWblpZfrof2qR0DEQJBIzLK8oZMeqCmIG9pzrm/A4Y0x8AZzDcjsT4tE9reS4hUtXWAXu3rRpGW6X8MSB9L1tnRWxC9VyuGJVBeWFOXz6iSNEbAsgxXLIc+MLRVKsp56EFNjuBRp3eObIBY5fGOIjb1wXb2w0mnJvbjyjLV0XOIcSW1RfPtVNJBrjVKdPXUoLDBWHRUJLjxUjaCwv4LIV5bhdwqunJw5KDwQi+EPRpAbvjun/yukeLm4ojQckK7y5vGFVxZgprX0LXBxKC3K4/10Xs6+lny8/d9LKVspLfi3ePA/GWJ3MEulJyA5LtCIWEv/+/Ekaygp4+9a6cfdzrIfxurdtqC1mU10Jn/vlMW7+p19xqkvFYaGh4rBIaLazixrLC/HmedhcXzKp9Q7tA9ZxdWUj4tCQ4Be+YlVF0v7Xr6/mZKcv3rchkZFy3QtTHADednEdv3lJPV98+ji+UDQ1ID1Gw59EQViI4rD7bA+vnunlD65bFU9MGIuLGy1xGM+tVJjr4fGPXMtXf+8ySgtyCEVi8RpWysJAm/0sElp6/YhAvf0lf0VTBd95+SzDkSh5nrHLFbTbHeAS3UqFuR4qvbl0+0LsaEoWhw21I20137C6Mmmbk7GzEFdIJ/K3t23m5VPdXBgcjrtHHLwJrUITW6n22GVDguHYghSHr/7qFGWFObzniuUT7vs7O1ZQXjjiXhoLt0u4dUsdt2yu5XSXb9otXZW5RS2HBYIxhv0t/WNmCrX0BlhWnB8XgiuaKghFYuxvGb+toNPkp74suVVjY3kBIrB9ZbI4bLTF4ej5wZRzOaUnFqpbyaGsMJfPvHsrQEovbccXPzpjqccXoqGsgFyPKyn+sBA4cWGIpw6d5+6rmsaMNSRS7s3ld96wYtJ9n0WE1dVFY9ZhUrITFYcFwqN7WvmNf32Bv/npobQC0dzjT0oTvKKpHJfA93aOX+unoz+IS6C6KPlLcEtDKdtXllM6ykVUW5JPSb6HIx2p4uC4lUYfsxC5aWMNT3/8Bt52cbL/vSjeDS7VrVTpzaOiMJeeoYUlDl9/4TT5OS7uuUqb7igjqFtpgfA/xztxCXzrxTOEojH+/rYtSTV/WnoDXJHQbrGyKI8P37iGf3v2JDdsqOY3L6lPe962viDLSvJTUgz/5jc3E00jQiLCxtoSjo0hDi4Zaau50FlTndp3oDDeDS7VclhV5WVoOJfeBWQ5xGKGpw518JaLaqksSu3qpixdFseneJFjjOHlUz289eI6VlYU8uXnTjIcjvGPt2/F5RIi0RgdA8F4RVWHj71pPS+f6uFTj+5nW2MZKyoLeeVUN3/3s0MMBiOsqynmcPtAUqaSg8ftGvPi2FBbzH+93ooxJsm10Oe36iq5FrH7YKQbXKrlcPnKCvyhKN0LKOZwoK2frqEQN22snu+pKFmGupWygGA4Svc4hfLOdPvpGAhy1epK/uyWDXz05nX8aE8Lv7RLc7f3B4nGTMrq0xy3i3+5cxsugY98bw//+4d7ec8DL9MfCLO5voRzPT4uDAbZ2liW0Xw31BYzGIzQ1p/cc7l/gdZVygSnj3RiCY1YzNDrD1PhzaG8MHdBBaSfPdKJCFy/TsVBSUYthyzgS88c5+Gdzfz6E29M2wjF6aNw5epKRISPvHEtD71ylv96rZVbt9TS3OuscUgt49tYXshn3r2VDz+0hwNtA3zwhtV87Ob1FNgpmdGYyThQ6GQsHe0YSMpY6QuEF3wweiK8aQLSA8Ew0ZihwpuHbzi6oMThuWMXuKSxTF1KSgpqOcwCh9sH4mWwJ8PRjiG6fSGeP9aZdvtLJ7upLs5jTbWVCuhxu3jH1nqeOXKB/kA4XkF1+Rg13t96cR1f/b3L+dkfX8sn37opLgzAlDJI1i9z0lmT4w79/hClC7R0xmRJTGV1cMSg0ptLhTeXwWCEUGTirnnzTY8vxOvNfdy4Qa0GJRUVh1ng97/5Kn/5kwOT3t+pgPr4vtSyFFa8oTtuNTi869IGQtEYTx5op6U3gEusfgxjceuWWjbWzswipNKCHOpL8zk6WhyWgFsp1+Mi1+1KamTjiEO5LQ5AUke5bOX5Y50YAzdtqJl4Z2XJoW6lGaZraJiOgSDDZ6LEYmZSwdlWuxPbfx8+TyAUTbqzP93l48LgMFeNWnC2tbGUVVVe/uu1NupK86ktySfXM3dav6G2OEUcloJbCawV5IltVLsTLAfHouj2hagpGVuss4Fnj16g0pubVExPURzUcphhnC/MXn+Yk51DE+7fHwgzGIxw04Zq/KEozxy5kLT9pXi8IXkxmohw27Z6Xj7dzZ5zvTRWzH7bwEQ21JZwsnOIcNRyn8RixrIcFsEah4lYVeVN+t/2prEcerM87hCNGZ4/1skN66sXdXaZMnVUHGaYw+0j5axfPTNxw51W+w70ty5rpLo4j5/ubUva/vKpHpaV5KUtWvbObQ0YY2UzzXWd/I21xYSjhtNdVhOXweEIxiz81dGTYXWVlzPdPmJ2y9TuUTGHxLFsZW9LH73+MDduVJeSkp5piYOInBGR/SLyuojssscqROQpETlu/y5P2P+TInJCRI6KyC0J45fb5zkhIl+Uya7Lz0KOdAxSVZRHVVEer06i8J0Tb1hZWcjbL67j2aMX4jXwjTG8dDI13uDQZDf2gfSZSrPJ6KC0U4hvKYjDqmovwXCM9gEr6aDHF6Iw101+jjsuDtmesfTckQu4BK5fVzXfU1GylJmwHG4yxmwzxmy3//4E8LQxZh3wtP03InIRcCewGbgV+LKIOM71rwD3Auvsn1tnYF7zwpGOATbVFXNFUzk7J1Ey24k3NJQV8I6tdQxHYvz3YWv9wslOH11Dw1w5Kt6QyDu3WSufl8+x5bCmxovbJRztsCylvoD1ZbhQG/1kwuoqa+X0abv1Za8vFG+ZWVaQg0j2isNwJMpXnjvJ1144zfamiiXx/1KmxmwEpG8DbrQfPwg8B/y5Pf6wMWYYOC0iJ4AdInIGKDHGvAQgIt8G3gk8MQtzm1Ui0RjHzg/xvqubqC3J54kDHbT1Bagfp3plS2+AAvuOs7zQanL/rV+f4cUT3Tx71EptvXrN2OLwrksb2XOuj+vmeBFTnsfN6ipvPMayGMp1T5bVdkrxqa4hrl1XRbcvRGWR9SXrcbsoLcjJSnF45VQ3n3h0P6e7fLxp0zL+5rbN8z0lJYuZruVggF+KyG4RudceW2aMaQewfztOzQYgsQpciz3WYD8ePZ6CiNwrIrtEZFdnZ/o1AbPNiye7CIRS20SC1QoxFImxsbaYHXYfhIlcSy29fhrKCxARXC7hN7c1sLeln18c7ODK1RV8/Z7t45Y6Li3M4Yt3XTpuGutssaG2mAOtA/xodwvf23nOms8ScCvVFOfhzXVzyrEc/KGk3gYV3tysq8waixnu++4eIrEY3/r9K/jaPdsnLLmtLG2mazlcY4xpE5Ea4CkROTLOvuniCGac8dRBYx4AHgDYvn372F3uZ4nzA0F+5z9e4XffsIL733VxyvbD7dZd9MbaEtYvK8Kb62bXmV5u25ZW6wDLrZQYTP7Ym9bx9ovr2FRXnPX9djfXl/L4vnY+/oO95HpcXNFUzoo5zpqaD0SEVdVeTtnB+O6hEGsTivRlY2XW/a1WDaV/fs82btR1DcokmJY4GGPa7N8XROTHwA7gvIjUGWPaRaQOcHIzW4DETiKNQJs93phmPOs4Y38ZfP/VZv7wutU0jcogOtIxgMclrKnx4nG7uGxl+SQshwCXJNQ2ys9xxzttZTt3X7WSDbVFrKz0snKJNY9fXVXEa81WNlqPL9VyOGe3bc0Wnjtq11Bar6uhlckx5U+ziHhFpNh5DLwFOAA8Btxj73YP8BP78WPAnSKSJyKrsALPO23X06CIXGlnKd2dcExW4XzgDfD5p46lbD/SPsia6qKkhjtHzw+mbakJVtnnPn94zjONZgpvnoc3blzGmuqiJSUMYK11aOkN0O8PEwhHKR8lDtmWyvrcsQtsbSwbt7WnoiQynU/0MuAFEdkL7AR+Zox5Evg08GYROQ682f4bY8xB4BHgEPAkcJ8xxnHefxj4GnACOEmWBqObe/y4BP7gulX8dG8bB1qTu6wd6RhkY11x/O8rmiowBnafS289OGscGuY400iZPqurvRgDe2zroXKUOPT6QmN27Ztrep0aSmo1KBkwZXEwxpwyxlxi/2w2xtxvj3cbY242xqyzf/ckHHO/MWaNMWaDMeaJhPFdxpgt9rY/MtnyqRrFuR4/9WUF3HfTWsoKc/jsL47Gt/UHwrT2BZLqF21bXkaOW9h5Ov1iuNY+p5qqisNCw0ln3W0vdBztVorEDAPBSNpj55rnj1s1lLTAnpIJS8sXME3O9fhZUVFISX4O9924luePdcYrqTopnYmWQ0Gum+0rK3j41XPxeEUiTn0eFYeFxyo7nXXXWeveZ7Q4QPasdfjV0U7KC3My7tuhLG1UHDLgXE8gno3z3qtWsrrKyx99dw9HOgY4Yi8G2zSq8umn330xArz/W6+mxB5aewPkelxUebWW/kKjKM9DTXEerzf3AdkrDrGY4VfHOrl+ffWUyrMrSxcVh0niD0XoGhqOt+LMz3Hz4Pt3UJDr5r1f38nThy9QVpjDspLkL/qVlV7+/b3bae718+GHdscL1YFlOTSWFWjhswXKaruMBkBlgsDPtTj0+kK8/Yv/w+1feZG//ekh/uu1VgbsEiz7W/vp9oXUpaRkjIrDJGnusRvqJOTxL68o5NvvfwOhSIxfHetkY21x2hpIO1ZV8Onf2sqLJ7v5+8cPxcdb+gIajF7ArLLjDm6XUJw/khU+15VZP/3EEY50DBIzhu/uPMvHvv8613/2Wb72P6f45aEObQOqTAnt5zBJnDTW0Yu8NtQW883fv4Lf+9orbFtenu5QAN59eSOvN/fxn6+c4w+uW83yikJae/1cdNGyWZ23Mns4nfnKC3OTrL+5rMy660wP39/VzL3Xr+ZTb9tEJBpjb0s///L0cf7+Z4cBuKSxVNuAKhmjlsMkaR5DHAAuW1HO8//7Jv7kzevGPcd9N63FJfDA86cIhKJ0DYW0hMECximjXuFNLhlSmOshP8dFj294Vp8/HI3xFz8+QH1pPh+92br2PG4Xl68s59vv38FDf/AGrl1bxT1XN83qPJTFiVoOk+Rcj5+iPA/lYxSWq5rEnVltaT7vvqyR7+9q5m0X1wFzX2pbmTlW2yUz0i0sqyjMpceXfvHjTPHNX5/m6PlB/v29l8d7WydyzdoqrlmrJbmVqaGWwyRp7vGzvKIwbUwhEz54wxoi0Rj3/9yKPWjMYeHSWF6AxyVJwWiHiqLcWbUcznb7+MJTx3nTphreoq5JZRZQcZgk1hqH6X+Rr6ry8raL6zjQaqW+6hqHhUuO28W7L2vkhjSZQMuK82nrC87K84YiMT7yvdfIcQt/c9uWad+wKEo6VBwmgTEmvgBuJvjwjWsAyHELNcXZ3YReGZ/P3L6V396+PGV83bJiTnYOEYrE0hw1PT775BH2tfTz2du3asxKmTVUHCZB5+Aww5FYUhrrdNhcX8qbNtWwprpIFyYtUjbWFhOJGU51Dc3oeZ85cp6vvXCau69aya1b6mb03IqSiAakJ4GTxjpT4gDwxbsujS+gUhYfG2qtMipHOwaT6m1Nh+6hYT7+yF421ZXwqbdtmpFzKspYqOUwCcZa4zAdCnM9Wj55EbOmugiPSzhi19yaCR7b20avP8zn7thKfo574gMUZRqoOEyCcz1+RFD/rjJpcj0u1lQXxQsyzgSP72tnY20xm+sXRjMoZWGj4jAJzvX4qS3J17s1JSM21BbPmDi09QXYfbaXd2zVOIMyN6g4TAJnjYOiZMKG2mJa+wLxInjT4Wf72gF4x9b6aZ9LUSaDisMkaE4o1a0ok2WjHZQ+NgPWw+P72ri4oTSlb7mizBYqDhMQDEfpGAiqOCgZE89YOj89cTjb7WNvS7+6lJQ5RcVhHILhKP/wc6uy5epqvWNTMqOhrIDiPM+04w6P2y6lt6s4KHOIrnMYg6Mdg3z04dc40jHI71/TxC2ba+d7SsoCQ0RYX1s87XTWx/e1c+mKMi3SqMwpKg42vb4Q//zfxzjZ6aOl109zb4Dywhy++ftXcNOGmvmenrJA2VBbzM/2tWOMyagGUkuvn30t/bx2rpfD7QP85TsumsVZKkoqS04czg8EeXxfOx+4dlXS+P0/P8x/vdbKloZSNjeU8vatdbzv6lVUF2uTFGXqbKwt5ruvnOP8wDC1pZOro/XQK2f5ix8fAKz6W1euruBdlzbM5jQVJYUlJw6PvNrM5586RlVRLrdtsz5w+1r6+OHuFj54w2o++VYtS6DMHBuWWUHpIx0DkxKHExeG+LvHD3HN2kr+/NaNbKgtJs+j62uUuWfJBaQ/fOMatq8s5y9+fICz3T6MMfztTw9RVZTLH920dr6npywynLpKkwlKh6Mx/tcjr5Of4+YLv72NrY1lKgzKvLHkxMHjdvEvd12KS+Aj33uNR/e0sutsL3/6lg0U56fv8qYoU6W0MIfakvxJicOXnj7OvpZ+/t+7LqamREu5K/PLkhMHsFIMP3v7Jexr6efPfriXi+pKuCNNTX5FmQk21RXz9JEL/GBXM9GYSbvPztM9/OuzJ/ityxp468WasqrMP0tSHABu3VLL3VetxAB/+RsXaV8FZdb45Ns20VTl5c9+uI93fOkFXjjelbT9QGs/H3jwVVZWevnr39w8T7NUlGTEmPR3MtnO9u3bza5du6Z1jljM0NoX0LpJyqxjjOHxfe189hdHaO4J8BuX1PN/37GJfn+Y9zzwMgU5bh750FVa+VeZdURktzFm+4T7LWVxUJS5ZjgS5avPneLfnj1BXo6LPI8bEfjBB40OE1kAAAlJSURBVK/SuknKnDBZcViybiVFmQ/yPG4++qZ1PPmx69jaWAoY/vMDb1BhULKOJbfOQVGygdXVRTz0B1cSjRmNdylZiVoOijKPqDAo2UrWiIOI3CoiR0XkhIh8Yr7noyiKspTJCnEQETfwb8BbgYuAu0REK40piqLME1khDsAO4IQx5pQxJgQ8DNw2z3NSFEVZsmSLODQAzQl/t9hjSYjIvSKyS0R2dXZ2ztnkFEVRlhrZIg7ponIpCzCMMQ8YY7YbY7ZXV1fPwbQURVGWJtkiDi1AYnGjRqBtnuaiKIqy5MkWcXgVWCciq0QkF7gTeGye56QoirJkyZryGSLyNuCfATfwDWPM/RPsPwgctf8sBfozeLpM9wdYAZzL8JipPp/Ob3rPl+n+05nbVJ5vsc0vkanMVec3wmzNrwpwKj6uNMZM7Jc3xizIH2BXwuMHMjw2o/3tYzqnMVedXxbPbzpz0/lNf646v9mfX+L35WR/ssWtNF1+Osv7A/RN4ZipPp/Ob3rPl+n+05nbVJ5vsc0vkanMVec3wlzMb1JkjVspU0Rkl5lEZcGF+nyZovObOtk8N8j++SWS7XNdqvObynkXsuXwwCJ/vkzR+U2dbJ4bZP/8Esn2uS7V+WV83gVrOSiKoiizx0K2HBRFUZRZQsVBURRFSUHFIQERaRSRn4jIcRE5KSL/Yi/KG2v/j4nInDWgFpGhuXquqSAi7xIRIyIb53su4zHR+ygiz4nInAYts/3aS/P8ei3OANl4LTqoONiIiACPAv9ljFkHrAeKgPEW430MmLcPaBZyF/AC1gr3SWOXbF+y6LU3K+i1OE1UHEZ4IxA0xnwTwBgTBf4EeL+IeEXkcyKyX0T2ichHROSPgXrgWRF5dq4mKSJFIvK0iOyx53ObPd4kIodF5D9E5KCI/FJECuZyXsA1wAewP5AicqOIPC8iPxaRQyLyVRFx2duGRORvReQV4Kq5mmfCfG8UkccT/v5XEXnfXM/DZkFce6PRa3HG5ptN12IcFYcRNgO7EweMMQNYS9n/AFgFXGqM2Qo8ZIz5IlZxwJuMMTfN4TyDwLuMMZcBNwGft+88AdYB/2aM2Yy1mObdczivdwJPGmOOAT0icpk9vgP4OHAxsAb4LXvcCxwwxrzBGPPCHM4zG1ko195o9FpcxKg4jCCkKRNuj18PfNUYEwEwxvTM5cTSzOcfRGQf8N9YfS+W2dtOG2Netx/vBprmcF53YTVpwv59l/14p7GaOEWB7wHX2uNR4EdzOL9sZqFce6PRa3ER45nvCWQRBxl1dyMiJVilxE+R/sM7H/wuUA1cbowJi8gZIN/eNpywXxSYE1NeRCqxXCNbRMRgFU80wM9Jfd+cv4P2h3S+iJB8c5Q/1o5zwEK59kaj1+LMkE3XYhy1HEZ4GigUkbshHpj6PPAt4JfAh0TEY2+rsI8ZBIrneJ6lwAX7w3gTsHKOnz8dtwPfNsasNMY0GWOWA6ex7sx2iFWK3QW8BytImA2cBS4SkTwRKQVunse5LJRrbzR6Lc4M2XQtxlFxsDHWUvF3AXeIyHHgGJZP9VPA17D8v/tEZC/wO/ZhDwBPzEVQ0P5yGAYeAraLyC6sO7cjs/3ck+Au4Mejxn6E9T69BHwaOID1IR2935zivI/GmGbgEWAf1nv62nzNKduvvdHotTgzZOO1mIiWz1ggiMglwH8YY3bM91wmi4jcCPypMeYd8z0Xh4X4PmYbC/E91Gsxc9RyWACIyIewAmj/Z77nspDR93H66Hs4MyyE91EtB0VRFCUFtRwURVGUFFQcshQRWS4iz9orTQ+KyEft8QoReUqsGjxPiUi5Pf5mEdltr1TdLSJvTDjXkyKy1z7PV0VLBCiTZCavw4RzPiYiB+b6tSiZoW6lLEVE6oA6Y8weESnGWkj0TuB9QI8x5tMi8gmg3Bjz5yJyKXDeGNMmIluAXxhjGuxzlRhjBuzVqz8EfmCMeTjtEytKAjN5Hdrn+y2sdNOtxpgtc/6ClEmjlkOWYoxpN8bssR8PAoexVqDeBjxo7/Yg1gcVY8xrxpg2e/wgkC8iefa2AXvcA+SSvYuqlCxjJq9Du+bR/wL+fu5egTJVVBwWACLSBFwKvAIsM8a0g/XBBWrSHPJu4DVjzHDCOX4BXMBaPPXDWZ6ysgiZgevw77AW9/lnfbLKtFFxyHLsu60fAR9LsADG238z8Bngg4njxphbgDogD6u8gKJMmulehyKyDVhrjJnXhWfK5FFxyGJEJAfrA/mQMeZRe/i87Qd2/MEXEvZvxFr1ebcx5uTo8xljgsBjWC4BRZkUM3QdXgVcbtdfegFYLyLPzc0rUKaCikOWYgePvw4cNsb8U8Kmx4B77Mf3AD+x9y8DfgZ80hjz64TzFCV8iD3A28iOMgfKAmCmrkNjzFeMMfXGmCasOkfHjDE3zv4rUKaKZitlKSJyLfA/wH4gZg9/Csvf+wiwAqvmzh3GmB4R+T/AJ4HjCad5C1ZZ5cex3Elu4BngT5wS0IoyHjN1HRpjEi2LJuBxzVbKblQcFEVRlBTUraQoiqKkoOKgKIqipKDioCiKoqSg4qAoiqKkoOKgKIqipKDioCizgIh8yOkJPcn9m7RSqZJNeOZ7Aoqy2BARjzHmq/M9D0WZDioOipIGe6HWk1iLvS4FjgF3A5uAfwKKgC7gfcaYdrsUxIvANcBjdnnrIWPM5+y6Ql8FCoGTwPuNMb0icjnwDaxCdC/M3atTlIlRt5KijM0G4AFjzFZgALgP+BJwuzHG+WK/P2H/MmPMDcaYz486z7eBP7fPsx/4K3v8m8AfG2Oums0XoShTQS0HRRmb5oT6QP+JVTZiC/CUVXIIN9CesP/3R59AREqxRONX9tCDwA/SjH8HeOvMv4T/v707Rk0oCqIw/B8wTfq07iQLEQnijoJpksZ9pLRzA2LnFhIJsb0WXhvve0IeKQT/r5xieN15M8VcaRjDQep3eVvmB9hc+dP//UPvdPSXboZrJanfOMk5CCbAGng615I81HcLepVS9sBXkudaegFWpZRvYF8P2wFM///zpeGcHKR+W2CW5IPTldE34BNY1LXQCHjl9BzmNTPgPckjsAPmtT4HlkkOta90M7zKKnXwrLTunWslSVLDyUGS1HBykCQ1DAdJUsNwkCQ1DAdJUsNwkCQ1junqVqFx2qoCAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ " sorted_data['inc'][-100:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " ## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année N au\n",
+ "1er août de l'année N+1. \n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er septembre de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er septembre.Comme l'incidence de syndrome grippal est très faible en automne, cette modification ne risque pas de fausser nos conclusions. Encore un petit détail: les données commencent en décembre 1990, ce quicrend la première année incomplète. Nous commençons donc l'analyse en 1991."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1991,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHARJREFUeJzt3X9wndV95/H3x8iRDLWJDDLxD8DuxGFiSGriO7a7yXZL3Npm08FmCok2NGgWz7gBNiWdnQE7sMMsuDPQ2dm0nkxYPKFgIPxw3TJ4u3hBmM3U2zq25UAKhrhSAjEODhIrB5vMWEX2d/+4R/WVkKXnSlf3lz6vmTv3uV895+g8fnT9vc855zlXEYGZmVkWUyrdADMzqx1OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmDZVuQKldeOGFMX/+/Eo3w8ysphw4cOC9iGgZbb+6Sxrz58+no6Oj0s0wM6spkn6eZT93T5mZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZjWg+/hJvvzgHrpPnKx0U2ySc9IwqwGbd3Wy/61eNr/YWemm2CRXd/dpmNWTy+7aSV//6X99/fjewzy+9zCNDVM4tOnqCrbMJitfaRRwF4BVm923X8U1i+fQNDX/Vm2aOoU1i+ew+46rKtwym6ycNAq4C8CqzawZTUxvbKCv/zSNDVPo6z/N9MYGZk1v+si+/tBj5eDuKdwFYNXtvQ/6uGHZpXx16SU8se8wPWdJCoUfejZd+5kyt9ImC0VEpdtQUrlcLopde6r7+Ek2PfcGLxz8JSc/PE3T1CmsuvwT3PmlTw/7ic6smgz90DPAH3qsGJIORERutP3cPUVxXQBm1cbjHlZO7p5KsnYBmFUbf+ixcnLSSB782pmrsk1rr6hgS8yK5w89Vi4e0zAzM49pmJlZ6TlpmJlZZpmShqQ/lXRQ0muSnpTUJGmmpHZJnem5uWD/jZK6JB2StKogvkTSq+lnmyUpxRslPZ3ieyXNLyjTln5Hp6S20h26mZkVa9SkIWku8CdALiKuAM4BWoENwK6IWAjsSq+RtCj9/HJgNfBdSeek6h4A1gML02N1iq8DjkXEJ4FvA/enumYCdwPLgKXA3YXJyczMyitr91QDME1SA3Au8A6wBtiafr4VWJu21wBPRURfRLwJdAFLJc0GZkTEnsiPvj86pMxAXduBFekqZBXQHhG9EXEMaOdMojEzszIbNWlExC+A/wYcBo4C70fEC8BFEXE07XMUmJWKzAXeLqjiSIrNTdtD44PKREQ/8D5wwQh1mZlZBWTpnmomfyWwAJgDnCfpj0YqMkwsRoiPtUxhG9dL6pDU0dPTM0LTzMxsPLJ0T/0e8GZE9ETEh8DfAv8GeDd1OZGeu9P+R4CLC8rPI9+ddSRtD40PKpO6wM4Hekeoa5CI2BIRuYjItbS0ZDgkMzMbiyxJ4zCwXNK5aZxhBfAGsAMYmM3UBjybtncArWlG1ALyA977UhfWCUnLUz03DikzUNd1wEtp3ON5YKWk5nTFszLFzGwS8zLwlTPqMiIRsVfSduBHQD/wMrAF+A1gm6R15BPL9Wn/g5K2Aa+n/W+NiFOpupuBR4BpwM70AHgIeExSF/krjNZUV6+ke4H9ab97IqJ3XEdsZjXPy8BXjpcRsbrWffwk/+nJl/nOV6/0An51wMvATxwvI2KGv42x3ngZ+MrzKrdWl/xtjPXJy8BXnq80rC75E2n9GlgG/plbPs8Nyy6l54O+SjdpUvGVhtUlfyKtX/7um8py0rC65S8mMis9z56ymuWZUWal49lTNm7VfgOVZ0aZlZ+7p+ysqvUGKs+MMqscd0/ZR1T7DVTdx0+y6bk3eOHgLzn54Wmapk5h1eWf4M4vfbrmuqncxWbVwt1TNmbVPl21nmZGuYvNao27p+wjauE/5VqfGeUuNqtVTho2rGr/T7nW5+rvvv2qs3axmVUzJw0bVq3/p1ztauFqzmw4ThpmFVLtV3Nmw/HsKTMz8+wpMzMrPScNMzPLzEnDzMwyc9IwmwDVvm6X2Vg5aZhNAN/pbfXKU27NSsh3elu985WGWQlV+7pdZuPlpGFWQr7T2+rdqElD0mWSXil4HJf0TUkzJbVL6kzPzQVlNkrqknRI0qqC+BJJr6afbZakFG+U9HSK75U0v6BMW/odnZLaSnv4ZqU3cKf3M7d8nhuWXUrPB32VbpJZyRR1R7ikc4BfAMuAW4HeiLhP0gagOSLukLQIeBJYCswBXgQ+FRGnJO0DbgN+CDwHbI6InZJuAT4bEV+X1ApcGxFfkTQT6AByQAAHgCURcexsbfQd4Wbl5e8EqQ8TdUf4CuCnEfFzYA2wNcW3AmvT9hrgqYjoi4g3gS5gqaTZwIyI2BP5TPXokDIDdW0HVqSrkFVAe0T0pkTRDqwuss1mNoE8U2xyKXb2VCv5qwiAiyLiKEBEHJU0K8Xnkr+SGHAkxT5M20PjA2XeTnX1S3ofuKAwPkwZM6sgzxSbnDJfaUj6GHAN8Nej7TpMLEaIj7VMYdvWS+qQ1NHT0zNK88ysFDxTbHIqpnvqauBHEfFuev1u6nIiPXen+BHg4oJy84B3UnzeMPFBZSQ1AOcDvSPUNUhEbImIXETkWlpaijgkMxurYmeK+S75+lBM0vgPnOmaAtgBDMxmagOeLYi3phlRC4CFwL7UlXVC0vI0XnHjkDIDdV0HvJTGPZ4HVkpqTrOzVqaYnYXfmFZOxcwU89hHfcg0e0rSueTHFn4zIt5PsQuAbcAlwGHg+ojoTT+7E7gJ6Ae+GRE7UzwHPAJMA3YC34iIkNQEPAZcSf4KozUifpbK3AR8KzXlzyLi4ZHaOtlnT931zKt8f99hblh6CZuu/Uylm2P2kbGPAR77qC5ZZ0/5S5jqRLFvTE+TtHLpPn7yrN+H7r+96uEvYZpkih2UdFeBlYvvkq8vXrCwTmR9Y3qapFWCvw+9fjhp1JEsb8zdt1911q4Cs4ny4NfO9HpsWntFBVti4+WkUUeyvDHdVWBm4+ExjQlSzVNfvaCemY2VZ09NEE99NbNaknX2lLunSswDzWZWz9w9VWLFTn2t5m4sM7OhnDRKrNiBZt8vYWa1xN1TEyDL1Fd3Y5lZLfKVRpGydCc9+LUcm9ZewaI5M9i09opBU2EHeFlpqxR3idaWajtfThpFKlV3ku+XsEpxl2htqbbz5Sm3GU3ESp1//FgHLdObBnVjDXdVYlYKXm22tpT7fHmV2xLzSp0Gtb06sP+Ga0u5z5dXuS0xdyfVt6z9xtXWVVAM/w3Xlmo9X549VQSv1Fm/CpPBcHfw18tsN/8N15ZqPF/unrJJLWu/8WTs2qnlrjgrnrunrOpU29RByD71uVq7CiZSLXfF2cRx95SNW9ZPpKN1AVVCMcmgGrsKJkK9dMXZxHD3lI3baCv6VvtUT099HmwydsWZV7m1Msj6ibTavy3Q3yo32GTsirPsPKZhY+bxgPrlL+qys/GVho2ZxwPqV6Wuvjxjq/plutKQ9HFJ2yX9RNIbkn5b0kxJ7ZI603Nzwf4bJXVJOiRpVUF8iaRX0882S1KKN0p6OsX3SppfUKYt/Y5OSW2lO3QrhayfSLMs4mjmGVvVL9NAuKStwO6I+J6kjwHnAt8CeiPiPkkbgOaIuEPSIuBJYCkwB3gR+FREnJK0D7gN+CHwHLA5InZKugX4bER8XVIrcG1EfEXSTKADyAEBHACWRMSxs7XVA+FmtafaJ0tMBiW7T0PSDOB3gIcAIuJfIuJXwBpga9ptK7A2ba8BnoqIvoh4E+gClkqaDcyIiD2Rz1SPDikzUNd2YEW6ClkFtEdEb0oU7cDq0dpsZrXFXxVQO7J0T/0m0AM8LOllSd+TdB5wUUQcBUjPs9L+c4G3C8ofSbG5aXtofFCZiOgH3gcuGKGuQSStl9QhqaOnpyfDIZlZNfFkidqRJWk0AJ8DHoiIK4FfAxtG2F/DxGKE+FjLnAlEbImIXETkWlpaRmiamVUrz9iqDVlmTx0BjkTE3vR6O/mk8a6k2RFxNHU9dRfsf3FB+XnAOyk+b5h4YZkjkhqA84HeFP/dIWV+kOnIzKym1ML9Mp7dleFKIyJ+Cbwt6bIUWgG8DuwABmYztQHPpu0dQGuaEbUAWAjsS11YJyQtT+MVNw4pM1DXdcBLadzjeWClpOY0O2tlipmZlZ1nd2W/T+MbwPfTzKmfAf+RfMLZJmkdcBi4HiAiDkraRj6x9AO3RsSpVM/NwCPANGBnekB+kP0xSV3krzBaU129ku4F9qf97omI3jEeq5nZmHg9rjO89pSZ2Sgmw3pcXhrdzKxEPLvrDC8jYmaWgZfCyXP3lJmZuXuq3lTjt96Z2eTjpFEjPNXPzKqBxzSqnKf6mVk18ZVGlfNCbmZWTZw0qpyn+pmNnccCS89JowZ4ITezsfFYYOl5yq2Z1R1/qVPxPOXWzCatYscC3Y2VnZOGmdWdYscC3Y2VnafcmlldyrLsh6e0F89jGmY2aU2G1Wuz8piGmdkoPKW9eO6eMrNJzavXFsfdU2Zm5u4pMzMrPScNqzqeM29WvZw0rOp4zrxZ9fJAuFUNz5k3q36+0rCq4WXgzaqfk4ZVDc+ZN6t+mZKGpLckvSrpFUkdKTZTUrukzvTcXLD/Rkldkg5JWlUQX5Lq6ZK0WZJSvFHS0ym+V9L8gjJt6Xd0Smor1YFbdfIy8GbVLdN9GpLeAnIR8V5B7M+B3oi4T9IGoDki7pC0CHgSWArMAV4EPhURpyTtA24Dfgg8B2yOiJ2SbgE+GxFfl9QKXBsRX5E0E+gAckAAB4AlEXHsbG31fRpmZsUrx30aa4CtaXsrsLYg/lRE9EXEm0AXsFTSbGBGROyJfKZ6dEiZgbq2AyvSVcgqoD0ielOiaAdWj6PNZmY2DlmTRgAvSDogaX2KXRQRRwHS86wUnwu8XVD2SIrNTdtD44PKREQ/8D5wwQh1DSJpvaQOSR09PT0ZD8nMzIqVdcrt5yPiHUmzgHZJPxlhXw0TixHiYy1zJhCxBdgC+e6pEdpmZmbjkOlKIyLeSc/dwDPkxyveTV1OpOfutPsR4OKC4vOAd1J83jDxQWUkNQDnA70j1GVmZhUwatKQdJ6k6QPbwErgNWAHMDCbqQ14Nm3vAFrTjKgFwEJgX+rCOiFpeRqvuHFImYG6rgNeSuMezwMrJTWn2VkrU8zMzCogS/fURcAzaXZsA/BERPxvSfuBbZLWAYeB6wEi4qCkbcDrQD9wa0ScSnXdDDwCTAN2pgfAQ8BjkrrIX2G0prp6Jd0L7E/73RMRveM4XjMzGwcvjW5mZl4a3czMSs9Jw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDLLnDQknSPpZUl/l17PlNQuqTM9Nxfsu1FSl6RDklYVxJdIejX9bLMkpXijpKdTfK+k+QVl2tLv6JTUVoqDNjOzsSnmSuM24I2C1xuAXRGxENiVXiNpEdAKXA6sBr4r6ZxU5gFgPbAwPVan+DrgWER8Evg2cH+qayZwN7AMWArcXZiczMysvDIlDUnzgC8B3ysIrwG2pu2twNqC+FMR0RcRbwJdwFJJs4EZEbEnIgJ4dEiZgbq2AyvSVcgqoD0ieiPiGNDOmURjZmZllvVK4y+A24HTBbGLIuIoQHqeleJzgbcL9juSYnPT9tD4oDIR0Q+8D1wwQl1mZlYBoyYNSX8AdEfEgYx1aphYjBAfa5nCNq6X1CGpo6enJ2MzzcysWFmuND4PXCPpLeAp4IuSHgfeTV1OpOfutP8R4OKC8vOAd1J83jDxQWUkNQDnA70j1DVIRGyJiFxE5FpaWjIckpmZjcWoSSMiNkbEvIiYT36A+6WI+CNgBzAwm6kNeDZt7wBa04yoBeQHvPelLqwTkpan8Yobh5QZqOu69DsCeB5YKak5DYCvTDEzM6uAhnGUvQ/YJmkdcBi4HiAiDkraBrwO9AO3RsSpVOZm4BFgGrAzPQAeAh6T1EX+CqM11dUr6V5gf9rvnojoHUebzcxsHJT/QF8/crlcdHR0VLoZZmY1RdKBiMiNtp/vCDczq4Du4yf58oN76D5xstJNKYqThplZBWze1cn+t3rZ/GJnpZtSlPGMaZiZWZEuu2snff1nbnl7fO9hHt97mMaGKRzadHUFW5aNrzTMzMpo9+1Xcc3iOTRNzf/32zR1CmsWz2H3HVeNq95ydXc5aZiZldGsGU1Mb2ygr/80jQ1T6Os/zfTGBmZNbxpXveXq7nL3lJlZmb33QR83LLuUry69hCf2HaZnHFcH5e7u8pRbM7Ma1n38JJuee4MXDv6Skx+epmnqFFZd/gnu/NKni7p68ZRbM7NJYKK6u87G3VNmZjWulN1do3H3lJmZuXvKzMxKz0nDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLbNSkIalJ0j5JP5Z0UNJ/TfGZktoldabn5oIyGyV1STokaVVBfImkV9PPNktSijdKejrF90qaX1CmLf2OTkltpTx4MzMrTpYrjT7gixHxW8BiYLWk5cAGYFdELAR2pddIWgS0ApcDq4HvSjon1fUAsB5YmB6rU3wdcCwiPgl8G7g/1TUTuBtYBiwF7i5MTmZmVl6jJo3I+yC9nJoeAawBtqb4VmBt2l4DPBURfRHxJtAFLJU0G5gREXsi/yUejw4pM1DXdmBFugpZBbRHRG9EHAPaOZNozMyszDKNaUg6R9IrQDf5/8T3AhdFxFGA9Dwr7T4XeLug+JEUm5u2h8YHlYmIfuB94IIR6jIzswrIlDQi4lRELAbmkb9quGKE3TVcFSPEx1rmzC+U1kvqkNTR09MzQtPMzGw8ipo9FRG/An5Avovo3dTlRHruTrsdAS4uKDYPeCfF5w0TH1RGUgNwPtA7Ql1D27UlInIRkWtpaSnmkMzMrAhZZk+1SPp42p4G/B7wE2AHMDCbqQ14Nm3vAFrTjKgF5Ae896UurBOSlqfxihuHlBmo6zrgpTTu8TywUlJzGgBfmWJmZlYBDRn2mQ1sTTOgpgDbIuLvJO0BtklaBxwGrgeIiIOStgGvA/3ArRFxKtV1M/AIMA3YmR4ADwGPSeoif4XRmurqlXQvsD/td09E9I7ngM3MbOyU/0BfP3K5XHR0dFS6GWZmNUXSgYjIjbaf7wg3M7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMLDMnDTMzy8xJw8zMMnPSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJz0jAzs8ycNMzMSqz7+Em+/OAeuk+crHRTSs5Jw8ysxDbv6mT/W71sfrGz0k0puYZKN8DMrF5cdtdO+vpP/+vrx/ce5vG9h2lsmMKhTVdXsGWl4ysNM7MS2X37VVyzeA5NU/P/tTZNncKaxXPYfcdVFW5Z6ThpmJmVyKwZTUxvbKCv/zSNDVPo6z/N9MYGZk1vqnTTSsbdU2ZmJfTeB33csOxSvrr0Ep7Yd5ieOhsMV0SMvIN0MfAo8AngNLAlIv5S0kzgaWA+8Bbw5Yg4lspsBNYBp4A/iYjnU3wJ8AgwDXgOuC0iQlJj+h1LgP8HfCUi3kpl2oC7UnM2RcTWkdqby+Wio6Mj+7+AmZkh6UBE5EbbL0v3VD/wnyPi08By4FZJi4ANwK6IWAjsSq9JP2sFLgdWA9+VdE6q6wFgPbAwPVan+DrgWER8Evg2cH+qayZwN7AMWArcLak5Q5vNzGwCjJo0IuJoRPwobZ8A3gDmAmuAgU/9W4G1aXsN8FRE9EXEm0AXsFTSbGBGROyJ/OXNo0PKDNS1HVghScAqoD0ietNVTDtnEo2ZmZVZUQPhkuYDVwJ7gYsi4ijkEwswK+02F3i7oNiRFJubtofGB5WJiH7gfeCCEeoyM7MKyJw0JP0G8DfANyPi+Ei7DhOLEeJjLVPYtvWSOiR19PT0jNA0MzMbj0xJQ9JU8gnj+xHxtyn8bupyIj13p/gR4OKC4vOAd1J83jDxQWUkNQDnA70j1DVIRGyJiFxE5FpaWrIckpmZjcGoSSONLTwEvBER/73gRzuAtrTdBjxbEG+V1ChpAfkB732pC+uEpOWpzhuHlBmo6zrgpTTu8TywUlJzGgBfmWJmZlYBWabcfgHYDbxKfsotwLfIj2tsAy4BDgPXR0RvKnMncBP5mVffjIidKZ7jzJTbncA30pTbJuAx8uMlvUBrRPwslbkp/T6AP4uIh0dpbw/w84zHXy0uBN6rdCPGycdQHXwM1aPWjuPSiBi1q2bUpGETT1JHlvnR1czHUB18DNWjXo5jKC8jYmZmmTlpmJlZZk4a1WFLpRtQAj6G6uBjqB71chyDeEzDzMwy85WGmZll5qQxAST9laRuSa8VxH5L0h5Jr0r6n5JmpPjHJD2c4j+W9LsFZX4g6ZCkV9Jj1jC/bqKO4WJJ/0fSG5IOSrotxWdKapfUmZ6bC8pslNSV2ryqIL4kHV+XpM3pPp1aO4aKnItij0HSBWn/DyR9Z0hdNXEeRjmGmnlPSPp9SQfSv/kBSV8sqKsi56IkIsKPEj+A3wE+B7xWENsP/Lu0fRNwb9q+FXg4bc8CDgBT0usfALkKHcNs4HNpezrwz8Ai4M+BDSm+Abg/bS8Cfgw0AguAnwLnpJ/tA36b/LIwO4Gra/AYKnIuxnAM5wFfAL4OfGdIXbVyHkY6hlp6T1wJzEnbVwC/qPS5KMXDVxoTICL+nvxNioUuA/4+bbcDf5i2F5FfWp6I6AZ+BVR8bneUZ3XjmjiGcrT1bIo9hoj4dUT8X2DQN//U0nk42zFU2hiO4+WIGFj26CDQpPxKGRU7F6XgpFE+rwHXpO3rObOm1o+BNZIalF92ZQmD19t6OF2G/5dKXcJq4lY3LptxHsOAip6LjMdwNrV0HkZTK++JQn8IvBwRfVTJuRgrJ43yuYn8F1gdIH9p+y8p/lfk/2g6gL8A/pH88isAN0TEZ4B/mx5fK2uLmfDVjcuiBMcAFT4XRRzDWasYJlat52EktfSeGNj/cvJfLPfHA6FhdquZaaxOGmUSET+JiJURsQR4knx/ORHRHxF/GhGLI2IN8HGgM/3sF+n5BPAEZe4q0cSvbjzhSnQMFT0XRR7D2dTSeTirGntPIGke8AxwY0T8NIUrei7Gy0mjTAZmeUiaQv47z/9Hen2upPPS9u8D/RHxeuquujDFpwJ/QL6Lq1ztLcfqxjVxDJU8F2M4hmHV2Hk4Wz019Z6Q9HHgfwEbI+IfBnau5LkoiUqPxNfjg/yVxFHgQ/KfKtYBt5GfbfHPwH2cubFyPnCI/KDai+RXmoT8DJIDwD+RH0T7S9JMnjIdwxfIXzL/E/BKevx78t+ouIv81dAuYGZBmTvJX0EdomA2CPmB/dfSz74zcOy1cgyVPBdjPIa3yE/E+CD9/S2qwfPwkWOotfcE+Q+Hvy7Y9xVgViXPRSkeviPczMwyc/eUmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmltn/B3v28ZbrUIyxAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2020 221186\n",
+ "2023 366227\n",
+ "2021 376290\n",
+ "2002 516689\n",
+ "2018 542312\n",
+ "2017 551041\n",
+ "1996 564901\n",
+ "2019 584066\n",
+ "2015 604382\n",
+ "2000 617597\n",
+ "2001 619041\n",
+ "2012 624573\n",
+ "2005 628464\n",
+ "2006 632833\n",
+ "2022 641397\n",
+ "2011 642368\n",
+ "1993 643387\n",
+ "1995 652478\n",
+ "1994 661409\n",
+ "1998 677775\n",
+ "1997 683434\n",
+ "2014 685769\n",
+ "2013 698332\n",
+ "2007 717352\n",
+ "2008 749478\n",
+ "1999 756456\n",
+ "2003 758363\n",
+ "2004 777388\n",
+ "2016 782114\n",
+ "2010 829911\n",
+ "1992 832939\n",
+ "2009 842373\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +2346,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-