resultb

parent 46c71c56
...@@ -301,7 +301,7 @@ ...@@ -301,7 +301,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -314,7 +314,7 @@ ...@@ -314,7 +314,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -329,7 +329,7 @@ ...@@ -329,7 +329,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -359,7 +359,7 @@ ...@@ -359,7 +359,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -389,7 +389,7 @@ ...@@ -389,7 +389,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -400,8 +400,8 @@ ...@@ -400,8 +400,8 @@
" df.dropna(inplace=True) # Supprimer les lignes incomplètes\n", " df.dropna(inplace=True) # Supprimer les lignes incomplètes\n",
" df.columns = [\"date\", \"size\", \"bytes\", \"from\", \"url\", \"ip\", \"icmp\",\"ttl\",\"time\", \"ms\"] # Nommez les colonnes\n", " df.columns = [\"date\", \"size\", \"bytes\", \"from\", \"url\", \"ip\", \"icmp\",\"ttl\",\"time\", \"ms\"] # Nommez les colonnes\n",
" df[\"time\"] = df[\"time\"].str[5:].astype(float) # Extraire le temps en ms et convertir en float (supprimer la chaîne \"time-\")\n", " df[\"time\"] = df[\"time\"].str[5:].astype(float) # Extraire le temps en ms et convertir en float (supprimer la chaîne \"time-\")\n",
" df[\"date\"] = df[\"date\"].str[1:18] # Extraire la date de la première colonne et la convertir au format \"datetime\"\n", " df[\"date\"] = df[\"date\"].str[1:18] # Les [ ] sont supprimés donc la date est extraite de la première colonne\n",
" df[\"date\"] = pd.to_datetime(df[\"date\"], unit='s')\n", " df[\"date\"] = pd.to_datetime(df[\"date\"], unit='s') # La date obtenue précédemment est convertie au format \"datetime\"\n",
" return df\n", " return df\n",
"\n", "\n",
"# Traiter les données ping pour liglab2 et stackoverflow\n", "# Traiter les données ping pour liglab2 et stackoverflow\n",
...@@ -411,7 +411,7 @@ ...@@ -411,7 +411,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -441,7 +441,7 @@ ...@@ -441,7 +441,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment