21

parent eba81ebb
......@@ -9,7 +9,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
......@@ -21,7 +21,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
......@@ -30,7 +30,7 @@
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
......@@ -44,57 +44,431 @@
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"raw_data = pd.read_csv(data_file, skiprows=44)\n",
"raw_data"
]
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 5,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "unhashable type: 'numpy.ndarray'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-21-86c098ada4f0>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Visualizar el conjunto de datos\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m15\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m6\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mraw_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'CO2 Concentration'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'CO2 Concentration Over Time'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Year'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 3361\u001b[0m mplDeprecation)\n\u001b[1;32m 3362\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3363\u001b[0;31m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3364\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3365\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1865\u001b[0m \u001b[0;34m\"the Matplotlib list!)\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlabel_namer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1866\u001b[0m RuntimeWarning, stacklevel=2)\n\u001b[0;32m-> 1867\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1868\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1869\u001b[0m inner.__doc__ = _add_data_doc(inner.__doc__,\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mplot\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1526\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcbook\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnormalize_kwargs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_alias_map\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1527\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1528\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_lines\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1529\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_line\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1530\u001b[0m \u001b[0mlines\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_grab_next_args\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 404\u001b[0m \u001b[0mthis\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 405\u001b[0m \u001b[0margs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 406\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mseg\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_plot_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 407\u001b[0m \u001b[0;32myield\u001b[0m \u001b[0mseg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 408\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_plot_args\u001b[0;34m(self, tup, kwargs)\u001b[0m\n\u001b[1;32m 381\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mindex_of\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtup\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 382\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 383\u001b[0;31m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_xy_from_xy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 384\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 385\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcommand\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'plot'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axes/_base.py\u001b[0m in \u001b[0;36m_xy_from_xy\u001b[0;34m(self, x, y)\u001b[0m\n\u001b[1;32m 214\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxaxis\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myaxis\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 215\u001b[0m \u001b[0mbx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxaxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_units\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 216\u001b[0;31m \u001b[0mby\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myaxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_units\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 217\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 218\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcommand\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'plot'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/axis.py\u001b[0m in \u001b[0;36mupdate_units\u001b[0;34m(self, data)\u001b[0m\n\u001b[1;32m 1467\u001b[0m \u001b[0mneednew\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconverter\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mconverter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1468\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconverter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mconverter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1469\u001b[0;31m \u001b[0mdefault\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconverter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault_units\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1470\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdefault\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munits\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1471\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_units\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdefault\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/category.py\u001b[0m in \u001b[0;36mdefault_units\u001b[0;34m(data, axis)\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0;31m# default_units->axis_info->convert\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munits\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 115\u001b[0;31m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_units\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mUnitData\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 116\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/category.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, data)\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_counter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mitertools\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcount\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 181\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 182\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 183\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/opt/conda/lib/python3.6/site-packages/matplotlib/category.py\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self, data)\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0matleast_1d\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 198\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 199\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mval\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mOrderedDict\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfromkeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 200\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mval\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mVALID_TYPES\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"{val!r} is not a string\"\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mval\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mval\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: unhashable type: 'numpy.ndarray'"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3IAAAFpCAYAAADZWRqQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEpxJREFUeJzt3V+I5/dd7/HX210Lx+oxYvZI3SQYZNu4QnNox9gLxaic090IZxEUkorBICzhNOJlc3P0ojd6IUhp2mUpIfTGXGjQ9RAN50Z7oCeYDdS025IypJxkTSEbKxVaOGHb97mYSTuOszvfnfxmdt/M4wED+/1+P/Ob98WHWZ7z/f2p7g4AAABz/MDNHgAAAIAbI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGCYXUOuqp6sqjeq6kvXuF5V9YmqWq+ql6rqA6sfEwAAgLctuSP3VJJT17l+OsmJza+zST79zscCAADgWnYNue7+XJJvXGfJmSSf7Q3PJ7mtqt6zqgEBAAD4t1bxGrnjSV7bcnx58xwAAAD74OgKHqN2ONc7Lqw6m42nX+bd7373B++5554V/HgAAIB5XnzxxTe7+9hevncVIXc5yZ1bju9I8vpOC7v7fJLzSbK2ttYXL15cwY8HAACYp6r+716/dxVPrbyQ5OHNd6/8UJJvdvfXV/C4AAAA7GDXO3JV9WdJ7k9ye1VdTvKHSX4wSbr7XJJnkzyQZD3Jt5M8sl/DAgAAsCDkuvuhXa53ko+ubCIAAACuaxVPrQQAAOAACTkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIZZFHJVdaqqXq6q9ap6fIfrP1pVf11V/1hVl6rqkdWPCgAAQLIg5KrqSJInkpxOcjLJQ1V1ctuyjyb5cnffm+T+JH9SVe9a8awAAABk2R25+5Ksd/cr3f1WkqeTnNm2ppP8SFVVkh9O8o0kV1c6KQAAAEmWhdzxJK9tOb68eW6rTyb5mSSvJ/likt/v7u+uZEIAAAD+jSUhVzuc623HH07yhSQ/meQ/J/lkVf3Hf/dAVWer6mJVXbxy5coNDwsAAMCykLuc5M4tx3dk487bVo8keaY3rCf5WpJ7tj9Qd5/v7rXuXjt27NheZwYAADjUloTcC0lOVNXdm29g8mCSC9vWvJrkV5Okqn4iyfuSvLLKQQEAANhwdLcF3X21qh5L8lySI0me7O5LVfXo5vVzST6e5Kmq+mI2nor5se5+cx/nBgAAOLR2Dbkk6e5nkzy77dy5Lf9+Pcl/Xe1oAAAA7GTRB4IDAABw6xByAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGWRRyVXWqql6uqvWqevwaa+6vqi9U1aWq+vvVjgkAAMDbju62oKqOJHkiyX9JcjnJC1V1obu/vGXNbUk+leRUd79aVf9pvwYGAAA47JbckbsvyXp3v9LdbyV5OsmZbWs+kuSZ7n41Sbr7jdWOCQAAwNuWhNzxJK9tOb68eW6r9yb5sar6u6p6saoe3umBqupsVV2sqotXrlzZ28QAAACH3JKQqx3O9bbjo0k+mOTXknw4yf+oqvf+u2/qPt/da929duzYsRseFgAAgAWvkcvGHbg7txzfkeT1Hda82d3fSvKtqvpcknuTfHUlUwIAAPA9S+7IvZDkRFXdXVXvSvJgkgvb1vxVkl+sqqNV9UNJfj7JV1Y7KgAAAMmCO3LdfbWqHkvyXJIjSZ7s7ktV9ejm9XPd/ZWq+tskLyX5bpLPdPeX9nNwAACAw6q6t7/c7WCsra31xYsXb8rPBgAAuNmq6sXuXtvL9y76QHAAAABuHUIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhFoVcVZ2qqperar2qHr/Oup+rqu9U1W+sbkQAAAC22jXkqupIkieSnE5yMslDVXXyGuv+OMlzqx4SAACA71tyR+6+JOvd/Up3v5Xk6SRndlj3e0n+IskbK5wPAACAbZaE3PEkr205vrx57nuq6niSX09y7noPVFVnq+piVV28cuXKjc4KAABAloVc7XCutx3/aZKPdfd3rvdA3X2+u9e6e+3YsWNLZwQAAGCLowvWXE5y55bjO5K8vm3NWpKnqypJbk/yQFVd7e6/XMmUAAAAfM+SkHshyYmqujvJPyV5MMlHti7o7rvf/ndVPZXkf4o4AACA/bFryHX31ap6LBvvRnkkyZPdfamqHt28ft3XxQEAALBaS+7IpbufTfLstnM7Blx3/847HwsAAIBrWfSB4AAAANw6hBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMsCrmqOlVVL1fVelU9vsP136qqlza/Pl9V965+VAAAAJIFIVdVR5I8keR0kpNJHqqqk9uWfS3JL3X3+5N8PMn5VQ8KAADAhiV35O5Lst7dr3T3W0meTnJm64Lu/nx3/8vm4fNJ7ljtmAAAALxtScgdT/LaluPLm+eu5XeT/M07GQoAAIBrO7pgTe1wrndcWPXL2Qi5X7jG9bNJzibJXXfdtXBEAAAAtlpyR+5ykju3HN+R5PXti6rq/Uk+k+RMd//zTg/U3ee7e627144dO7aXeQEAAA69JSH3QpITVXV3Vb0ryYNJLmxdUFV3JXkmyW9391dXPyYAAABv2/Wpld19taoeS/JckiNJnuzuS1X16Ob1c0n+IMmPJ/lUVSXJ1e5e27+xAQAADq/q3vHlbvtubW2tL168eFN+NgAAwM1WVS/u9QbYog8EBwAA4NYh5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGEbIAQAADCPkAAAAhhFyAAAAwwg5AACAYYQcAADAMEIOAABgGCEHAAAwjJADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGAYIQcAADCMkAMAABhGyAEAAAwj5AAAAIYRcgAAAMMIOQAAgGGEHAAAwDBCDgAAYBghBwAAMIyQAwAAGGZRyFXVqap6uarWq+rxHa5XVX1i8/pLVfWB1Y8KAABAsiDkqupIkieSnE5yMslDVXVy27LTSU5sfp1N8ukVzwkAAMCmJXfk7kuy3t2vdPdbSZ5OcmbbmjNJPtsbnk9yW1W9Z8WzAgAAkGUhdzzJa1uOL2+eu9E1AAAArMDRBWtqh3O9hzWpqrPZeOplkvy/qvrSgp8PN8PtSd682UPADuxNblX2Jrcy+5Nb1fv2+o1LQu5ykju3HN+R5PU9rEl3n09yPkmq6mJ3r93QtHBA7E9uVfYmtyp7k1uZ/cmtqqou7vV7lzy18oUkJ6rq7qp6V5IHk1zYtuZCkoc3373yQ0m+2d1f3+tQAAAAXNuud+S6+2pVPZbkuSRHkjzZ3Zeq6tHN6+eSPJvkgSTrSb6d5JH9GxkAAOBwW/LUynT3s9mIta3nzm35dyf56A3+7PM3uB4Okv3Jrcre5FZlb3Irsz+5Ve15b9ZGgwEAADDFktfIAQAAcAvZ95CrqlNV9XJVrVfV4ztcr6r6xOb1l6rqA/s9EySL9uZvbe7Jl6rq81V1782Yk8Npt/25Zd3PVdV3quo3DnI+Dq8le7Oq7q+qL1TVpar6+4OekcNpwf/rP1pVf11V/7i5N72nAweiqp6sqjeu9dFre+2hfQ25qjqS5Ikkp5OcTPJQVZ3ctux0khObX2eTfHo/Z4Jk8d78WpJf6u73J/l4PL+eA7Jwf7697o+z8WZUsO+W7M2qui3Jp5L8t+7+2SS/eeCDcugs/L350SRf7u57k9yf5E8235Ed9ttTSU5d5/qeemi/78jdl2S9u1/p7reSPJ3kzLY1Z5J8tjc8n+S2qnrPPs8Fu+7N7v58d//L5uHz2fh8RDgIS353JsnvJfmLJG8c5HAcakv25keSPNPdryZJd9ufHIQle7OT/EhVVZIfTvKNJFcPdkwOo+7+XDb227XsqYf2O+SOJ3lty/HlzXM3ugZW7Ub33e8m+Zt9nQi+b9f9WVXHk/x6knOBg7Pkd+d7k/xYVf1dVb1YVQ8f2HQcZkv25ieT/EyS15N8Mcnvd/d3D2Y8uK499dCijx94B2qHc9vfJnPJGli1xfuuqn45GyH3C/s6EXzfkv35p0k+1t3f2fjjMhyIJXvzaJIPJvnVJP8hyf+pque7+6v7PRyH2pK9+eEkX0jyK0l+Osn/qqr/3d3/ut/DwS721EP7HXKXk9y55fiObPwV5EbXwKot2ndV9f4kn0lyurv/+YBmgyX7cy3J05sRd3uSB6rqanf/5cGMyCG19P/1N7v7W0m+VVWfS3JvEiHHflqyNx9J8kebn3+8XlVfS3JPkn84mBHhmvbUQ/v91MoXkpyoqrs3X0z6YJIL29ZcSPLw5ru1fCjJN7v76/s8F+y6N6vqriTPJPltf0nmgO26P7v77u7+qe7+qSR/nuS/izgOwJL/1/8qyS9W1dGq+qEkP5/kKwc8J4fPkr35ajbuFKeqfiLJ+5K8cqBTws721EP7ekeuu69W1WPZeEe1I0me7O5LVfXo5vVzSZ5N8kCS9STfzsZfS2BfLdybf5Dkx5N8avOux9XuXrtZM3N4LNyfcOCW7M3u/kpV/W2Sl5J8N8lnunvHt9yGVVn4e/PjSZ6qqi9m46lsH+vuN2/a0BwaVfVn2Xin1Nur6nKSP0zyg8k766HauLsMAADAFPv+geAAAACslpADAAAYRsgBAAAMI+QAAACGEXIAAADDCDkAAIBhhBwAAMAwQg4AAGCY/w/Tr8dYmL9HhQAAAABJRU5ErkJggg==\n",
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Date</th>\n",
" <th>Concentration</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1958-03-29</td>\n",
" <td>316.19</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1958-04-05</td>\n",
" <td>317.31</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1958-04-12</td>\n",
" <td>317.69</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1958-04-19</td>\n",
" <td>317.58</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1958-04-26</td>\n",
" <td>316.48</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>1958-05-03</td>\n",
" <td>316.95</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>1958-05-17</td>\n",
" <td>317.56</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>1958-05-24</td>\n",
" <td>317.99</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>1958-07-05</td>\n",
" <td>315.85</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>1958-07-12</td>\n",
" <td>315.85</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>1958-07-19</td>\n",
" <td>315.46</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>1958-07-26</td>\n",
" <td>315.59</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>1958-08-02</td>\n",
" <td>315.64</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>1958-08-09</td>\n",
" <td>315.10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>1958-08-16</td>\n",
" <td>315.09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>1958-08-30</td>\n",
" <td>314.14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>16</th>\n",
" <td>1958-09-06</td>\n",
" <td>313.54</td>\n",
" </tr>\n",
" <tr>\n",
" <th>17</th>\n",
" <td>1958-11-08</td>\n",
" <td>313.05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>18</th>\n",
" <td>1958-11-15</td>\n",
" <td>313.26</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>1958-11-22</td>\n",
" <td>313.57</td>\n",
" </tr>\n",
" <tr>\n",
" <th>20</th>\n",
" <td>1958-11-29</td>\n",
" <td>314.01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>21</th>\n",
" <td>1958-12-06</td>\n",
" <td>314.56</td>\n",
" </tr>\n",
" <tr>\n",
" <th>22</th>\n",
" <td>1958-12-13</td>\n",
" <td>314.41</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23</th>\n",
" <td>1958-12-20</td>\n",
" <td>314.77</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>1958-12-27</td>\n",
" <td>315.21</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25</th>\n",
" <td>1959-01-03</td>\n",
" <td>315.24</td>\n",
" </tr>\n",
" <tr>\n",
" <th>26</th>\n",
" <td>1959-01-10</td>\n",
" <td>315.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>27</th>\n",
" <td>1959-01-17</td>\n",
" <td>315.69</td>\n",
" </tr>\n",
" <tr>\n",
" <th>28</th>\n",
" <td>1959-01-24</td>\n",
" <td>315.86</td>\n",
" </tr>\n",
" <tr>\n",
" <th>29</th>\n",
" <td>1959-01-31</td>\n",
" <td>315.42</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3328</th>\n",
" <td>2023-06-10</td>\n",
" <td>424.01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3329</th>\n",
" <td>2023-06-17</td>\n",
" <td>422.93</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3330</th>\n",
" <td>2023-06-24</td>\n",
" <td>422.21</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3331</th>\n",
" <td>2023-07-01</td>\n",
" <td>422.80</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3332</th>\n",
" <td>2023-07-08</td>\n",
" <td>422.32</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3333</th>\n",
" <td>2023-07-15</td>\n",
" <td>421.43</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3334</th>\n",
" <td>2023-07-22</td>\n",
" <td>420.74</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3335</th>\n",
" <td>2023-07-29</td>\n",
" <td>420.88</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3336</th>\n",
" <td>2023-08-05</td>\n",
" <td>420.39</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3337</th>\n",
" <td>2023-08-12</td>\n",
" <td>420.30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3338</th>\n",
" <td>2023-08-19</td>\n",
" <td>418.96</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3339</th>\n",
" <td>2023-08-26</td>\n",
" <td>418.84</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3340</th>\n",
" <td>2023-09-02</td>\n",
" <td>418.50</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3341</th>\n",
" <td>2023-09-09</td>\n",
" <td>418.28</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3342</th>\n",
" <td>2023-09-16</td>\n",
" <td>418.52</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3343</th>\n",
" <td>2023-09-23</td>\n",
" <td>417.77</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3344</th>\n",
" <td>2023-09-30</td>\n",
" <td>417.89</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3345</th>\n",
" <td>2023-10-07</td>\n",
" <td>418.10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3346</th>\n",
" <td>2023-10-14</td>\n",
" <td>418.82</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3347</th>\n",
" <td>2023-10-21</td>\n",
" <td>418.85</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3348</th>\n",
" <td>2023-10-28</td>\n",
" <td>418.62</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3349</th>\n",
" <td>2023-11-04</td>\n",
" <td>419.07</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3350</th>\n",
" <td>2023-11-11</td>\n",
" <td>419.41</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3351</th>\n",
" <td>2023-11-18</td>\n",
" <td>421.18</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3352</th>\n",
" <td>2023-11-25</td>\n",
" <td>421.22</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3353</th>\n",
" <td>2023-12-02</td>\n",
" <td>420.28</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3354</th>\n",
" <td>2023-12-09</td>\n",
" <td>421.23</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3355</th>\n",
" <td>2023-12-16</td>\n",
" <td>422.57</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3356</th>\n",
" <td>2023-12-23</td>\n",
" <td>422.06</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3357</th>\n",
" <td>2023-12-30</td>\n",
" <td>421.76</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>3358 rows × 2 columns</p>\n",
"</div>"
],
"text/plain": [
"<Figure size 1080x432 with 1 Axes>"
" Date Concentration\n",
"0 1958-03-29 316.19\n",
"1 1958-04-05 317.31\n",
"2 1958-04-12 317.69\n",
"3 1958-04-19 317.58\n",
"4 1958-04-26 316.48\n",
"5 1958-05-03 316.95\n",
"6 1958-05-17 317.56\n",
"7 1958-05-24 317.99\n",
"8 1958-07-05 315.85\n",
"9 1958-07-12 315.85\n",
"10 1958-07-19 315.46\n",
"11 1958-07-26 315.59\n",
"12 1958-08-02 315.64\n",
"13 1958-08-09 315.10\n",
"14 1958-08-16 315.09\n",
"15 1958-08-30 314.14\n",
"16 1958-09-06 313.54\n",
"17 1958-11-08 313.05\n",
"18 1958-11-15 313.26\n",
"19 1958-11-22 313.57\n",
"20 1958-11-29 314.01\n",
"21 1958-12-06 314.56\n",
"22 1958-12-13 314.41\n",
"23 1958-12-20 314.77\n",
"24 1958-12-27 315.21\n",
"25 1959-01-03 315.24\n",
"26 1959-01-10 315.50\n",
"27 1959-01-17 315.69\n",
"28 1959-01-24 315.86\n",
"29 1959-01-31 315.42\n",
"... ... ...\n",
"3328 2023-06-10 424.01\n",
"3329 2023-06-17 422.93\n",
"3330 2023-06-24 422.21\n",
"3331 2023-07-01 422.80\n",
"3332 2023-07-08 422.32\n",
"3333 2023-07-15 421.43\n",
"3334 2023-07-22 420.74\n",
"3335 2023-07-29 420.88\n",
"3336 2023-08-05 420.39\n",
"3337 2023-08-12 420.30\n",
"3338 2023-08-19 418.96\n",
"3339 2023-08-26 418.84\n",
"3340 2023-09-02 418.50\n",
"3341 2023-09-09 418.28\n",
"3342 2023-09-16 418.52\n",
"3343 2023-09-23 417.77\n",
"3344 2023-09-30 417.89\n",
"3345 2023-10-07 418.10\n",
"3346 2023-10-14 418.82\n",
"3347 2023-10-21 418.85\n",
"3348 2023-10-28 418.62\n",
"3349 2023-11-04 419.07\n",
"3350 2023-11-11 419.41\n",
"3351 2023-11-18 421.18\n",
"3352 2023-11-25 421.22\n",
"3353 2023-12-02 420.28\n",
"3354 2023-12-09 421.23\n",
"3355 2023-12-16 422.57\n",
"3356 2023-12-23 422.06\n",
"3357 2023-12-30 421.76\n",
"\n",
"[3358 rows x 2 columns]"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data = pd.read_csv(data_file, skiprows=44, names = ['Date', 'Concentration'])\n",
"raw_data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Visualizar el conjunto de datos\n",
"plt.figure(figsize=(15, 6))\n",
"plt.plot(raw_data, label='CO2 Concentration')\n",
"plt.plot(raw_data['Date'], raw_data['Concentration'], label='CO2 Concentration')\n",
"plt.title('CO2 Concentration Over Time')\n",
"plt.xlabel('Year')\n",
"plt.ylabel('CO2 Concentration (ppm)')\n",
......@@ -111,7 +485,7 @@
"source": [
"# Visualizar el conjunto de datos\n",
"plt.figure(figsize=(15, 6))\n",
"plt.plot(raw_data[-300:], label='CO2 Concentration')\n",
"plt.plot(raw_data['Date'][-300:], raw_data['Concentration'][-300:], label='CO2 Concentration')\n",
"plt.title('CO2 Concentration Over Time')\n",
"plt.xlabel('Year')\n",
"plt.ylabel('CO2 Concentration (ppm)')\n",
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment