resultb

parent 454a3c55
...@@ -9,7 +9,7 @@ ...@@ -9,7 +9,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -22,7 +22,7 @@ ...@@ -22,7 +22,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -32,7 +32,7 @@ ...@@ -32,7 +32,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -47,7 +47,7 @@ ...@@ -47,7 +47,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -73,7 +73,7 @@ ...@@ -73,7 +73,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -83,7 +83,7 @@ ...@@ -83,7 +83,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -113,7 +113,7 @@ ...@@ -113,7 +113,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": 9,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -143,7 +143,7 @@ ...@@ -143,7 +143,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 10,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -169,7 +169,7 @@ ...@@ -169,7 +169,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": 11,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -193,7 +193,7 @@ ...@@ -193,7 +193,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 12,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -222,7 +222,7 @@ ...@@ -222,7 +222,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": 13,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -246,7 +246,7 @@ ...@@ -246,7 +246,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 14,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -275,7 +275,7 @@ ...@@ -275,7 +275,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 15,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -304,7 +304,7 @@ ...@@ -304,7 +304,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 16,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -315,7 +315,7 @@ ...@@ -315,7 +315,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 15, "execution_count": 17,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -362,19 +362,29 @@ ...@@ -362,19 +362,29 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 16, "execution_count": 34,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"fft de scipy.fft, a des problèmes de chargement, il se peut que nous utilisions une version de SciPy antérieure à 1.4.0. La fonction fft a été ajoutée dans SciPy version 1.4.0.. Pour résoudre le problème, nous pouvons utiliser la fonction fft de numpy à la place, puisque numpy fournit également des fonctions pour effectuer la transformée de Fourier\n"
]
}
],
"source": [ "source": [
"# Caractériser l’oscillation\n", "# Caractériser l’oscillation\n",
"import numpy as np\n", "import numpy as np\n",
"# from scipy.fft import fft # fft de scipy.fft, a des problèmes de chargement, il se peut que nous utilisions une version de SciPy antérieure à 1.4.0. La fonction fft a été ajoutée dans SciPy version 1.4.0.\n", "# from scipy.fft import fft \n",
"# Pour résoudre le problème, nous pouvons utiliser la fonction fft de numpy à la place, puisque numpy fournit également des fonctions pour effectuer la transformée de Fourier" "# fft de scipy.fft, a des problèmes de chargement, il se peut que nous utilisions une version de SciPy antérieure à 1.4.0. La fonction fft a été ajoutée dans SciPy version 1.4.0.\n",
"# Pour résoudre le problème, nous pouvons utiliser la fonction fft de numpy à la place, puisque numpy fournit également des fonctions pour effectuer la transformée de Fourier\n",
"print(\"fft de scipy.fft, a des problèmes de chargement, il se peut que nous utilisions une version de SciPy antérieure à 1.4.0. La fonction fft a été ajoutée dans SciPy version 1.4.0.. Pour résoudre le problème, nous pouvons utiliser la fonction fft de numpy à la place, puisque numpy fournit également des fonctions pour effectuer la transformée de Fourier\")"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 17, "execution_count": 35,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
...@@ -396,35 +406,168 @@ ...@@ -396,35 +406,168 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 18, "execution_count": 36,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"Frecuencia dominante de oscilación: 0.019356759976176297 ciclos/sem\n", "Dominant oscillation frequency: 0.019356759976176297 cycles/week\n",
"Amplitud máxima de oscilación en anomalías de CO2: 3207.2901558554163 ppm\n" "Maximum oscillation amplitude in CO2 anomalies: 3207.2901558554163 ppm\n"
] ]
} }
], ],
"source": [ "source": [
"# Calcular la transformada de Fourier de la serie temporal de anomalías de CO2\n", "# Calculer la transformée de Fourier de la série chronologique des anomalies CO2\n",
"co2_anomaly_fft = np.fft.fft(data['Oscilation'])\n", "co2_anomaly_fft = np.fft.fft(data['Oscilation'])\n",
"\n", "\n",
"# Calcular las frecuencias correspondientes a las componentes de Fourier\n", "# Calculer les fréquences correspondant aux composantes de Fourier\n",
"n = len(data)\n", "n = len(data)\n",
"frequencies = np.fft.fftfreq(n, d=1) # Frecuencias en ciclos por semana\n", "frequencies = np.fft.fftfreq(n, d=1) # Fréquences en cycles par semaine\n",
"\n", "\n",
"# Encontrar la frecuencia y la amplitud máximas\n", "# Trouver la fréquence et l'amplitude maximales\n",
"max_freq_index = np.argmax(np.abs(co2_anomaly_fft))\n", "max_freq_index = np.argmax(np.abs(co2_anomaly_fft))\n",
"max_freq = frequencies[max_freq_index]\n", "max_freq = frequencies[max_freq_index]\n",
"max_amplitude = np.abs(co2_anomaly_fft[max_freq_index])\n", "max_amplitude = np.abs(co2_anomaly_fft[max_freq_index])\n",
"\n", "\n",
"print(\"Frecuencia dominante de oscilación:\", max_freq, \"ciclos/sem\")\n", "print(\"Dominant oscillation frequency:\", max_freq, \"cycles/week\")\n",
"print(\"Amplitud máxima de oscilación en anomalías de CO2:\", max_amplitude, \"ppm\")" "print(\"Maximum oscillation amplitude in CO2 anomalies:\", max_amplitude, \"ppm\")"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Comment caractériser l'oscillation en calculant la transformée de Fourier donne des valeurs pas faciles à comprendre a priori, une autre manière est choisie pour caractériser l'oscillation\n"
]
}
],
"source": [
"# Comment caractériser l'oscillation en calculant la transformée de Fourier donne des valeurs pas faciles à comprendre a priori, une autre manière est choisie pour caractériser l'oscillation\n",
"print(\"Comment caractériser l'oscillation en calculant la transformée de Fourier donne des valeurs pas faciles à comprendre a priori, une autre manière est choisie pour caractériser l'oscillation\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAGDCAYAAABnZBdiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXeUZFd17//ddUPlzj0zGk1SACFEkISE5IDBgInGgYd5xhmbh1n2e7YfPPx+xg8b7OcMfjZeBmxsgok2xoDIIkkgo8BIKAckjSbHzt2Vbjq/P849t27ldG/X7en9WavXTFdVV526devcfb77u/chIQQYhmEYhmGY8ZAa9wAYhmEYhmG2MxyMMQzDMAzDjBEOxhiGYRiGYcYIB2MMwzAMwzBjhIMxhmEYhmGYMcLBGMMwDMMwzBjhYIxhxgQRvZeI3ur//3lEdDyK52LOH4joLUT0T+Mex2ZDRM8hokfGPQ6G2Sw4GGOYPiCiXyGi+4ioTESnieg9RDQ1ynMKId4ghPjjIcdySxTP1efrPZmIPklEC0S0SkT3EtEbiUjz708T0Z8R0VEiqhDRo0T0ZiKi0HO8w799nYgeJqJf6vGaE0T0N/5zbhDRY/7vc3G8x1EhorcR0UdGfI6WgFwI8adCiNeNNrqOr7eHiD5KRItEVCKiO4jox+N4rTav/SX/c90gIpuIrNDv7xVCfFsIcdlmjIVhkgAHYwzTAyJ6E4C/APBmAJMArgewH8BXicgc59jihoguAXA7gGMAni6EmATwMwCuAVD0H/ZJAC8A8DL/tl8E8HoAfxt6qhKAV0Aev18G8LdE9IMdXtME8HUAVwB4CYAJAD8IYBHAsyN8e5sGSRIz3xLRDIBbAFiQx3kOwP8D8DEielUMr6eHfxdCvFQIURBCFAB8FMBfqt+FEG+I+vUZJvEIIfiHf/inww9kILAB4NVNtxcAnAXwq/7vzwZwEMAagDMA/jr02B8G8B0AK5BBza/4t38QwP/1//88AMdDf/P/AXgcwDqABwH8tH/75QCqAFx/XCvNz+X//t8APAZgCcANAHaH7hMA3gDgUQDLAP4eAHV4/x8B8IUux+cF/nj2Nt1+nT/GSzv83Q0A3tThvtf5x7DQ5XUvB3CTf0wfAPATofs+6L+nL/jH73YAl4TuvwLAV/1jcwbAW/zbU6Hjvgjg3wDM+Pcd8I/bLwM4CmABwO/7970EMqix/c/kHv/2mwD8CYD/BFABcCmA1wJ4yB/XIQC/7j827z/G859jA8BuAG8D8JHQ2H/Cf78r/vNfHrrvMID/BeBeAKsA/hVApsPx+2MA9wNINd3+vwEcAUAA3gvgHU33fxbAG/3/7wbwKQDnADwB4LdCj3sbgH/3z581AK/r8ll+EKFzt8P34TDkYuheyMD+nwHsBPAl/1h+DcB06PHXo/6duwfA88Y9l/AP/3T7GfsA+Id/kvzjX2gdAHqb+z4E4OP+/28F8Iv+/wsArvf/v8+/WLwGgAFgFsCV/n3BRajNxedn/ItdCsB/9S9AF/j3/QqAW5rGEn6u50MGC1cDSAP4OwDfCj1WAPg8gCl/fOcAvKTD+z8N4LVdjs+fA7i5w31H4AcbTbdnAZzq8pqfAPChLq9pQAaabwFg+u93HcBloWOxBBkg65DKyyf8+4r+a78JQMb//Tr/vt8BcBuAPf5x+4fQ53vAP27v88f/TAA1+MEQmoIm/7abIAO3K/xxGABeDuASyGDnuQDKAK5udw40Py+AJ/vnwY/5z/W7/nEw/fsPA7jDP29mIIO+N3Q4hrcBeHub2y/y3+dlAH4EcvFA/n3TkAGjOi/vBPAH/mdwMWRw+eLQuG0AP+U/Ntvl8/wg+gvGboMMwC6EXAjdBeAq/7P6BoA/9B97IWQw/TL/tX/M/31+3PMJ//BPp5/EyOYMk1DmACwIIZw2953y7wfkhedSIpoTQmwIIW7zb/95AF8TQnxcCGELIRaFEHf3elEhxCeFECeFEJ4Q4l8hVax+U3Q/D+D9Qoi7hBA1AL8H4AeI6EDoMX8uhFgRQhwF8E0AV3Z4rln/fXZirsv94eMT5r2QasVXhnzN6yED3j8XQlhCiG9ABpevCT3mP4QQd/if20dRf38/DuC0EOKdQoiqEGJdCHG7f9+vQ6pdx/3j9jYAr2pKsb1dCFERQtzjv4dndhknAHxQCPGAEMLxP/8vCCEeF5KbAdwI4Dk9nkPxXyFVyq8KIWwA74AMDMPp3nf5580SgM+h8+fa6XM7Fbr/25CBmRrfqwDcKoQ4CeBayODmj/zP4BBkoPqzoee6VQjxGf8crvT5Hrvxd0KIM0KIE/7YbhdCfM//rD4NGZgBwC8A+KIQ4ov+a38VUrV+WQRjYJhY4GCMYbqzAGCu2fPic4F/PwD8GqRy8TARfTdkhN4LmfYaCCL6JSK6m4hWiGgFwNPQPrBpx25IVQoAIITYgFQGLgw95nTo/2XI4KYdi5DvsxMLXe4PHx8AABH9FeR7ebUQQgz5mrsBHBNCeKHbjqC/99ft89gP4NOhY/4QZKp1Zx/P24lj4V+I6KVEdBsRLfmv8TIM/7l6/vMP87l2+tzUbQv+5/MJ1IPcn4MMbAF5rHarY+W/l7eg8Vg1vPcIOBP6f6XN7+q97gfwM01j+2F0P6cYZqxwMMYw3bkVMh31yvCNRJQH8FJIozmEEI8KIV4DYAek2f/f/cccg0xL9Q0R7YdUGf47gFkhxBSkv0dVJ3YKYhQnIS9I4bHOAjgxyDh8vgbgv/S4/zoi2hu+kYieDRn4fCN029shj9mLhBBrPZ7zxf6423ESwN4mQ/w+9Pf+un0exwC8VAgxFfrJ+EpMLzp9JsHtRJSG9Fi9A8BO/3P9Iob/XAnyGA/9ubYpKng15HH4vv/7xyHVwf2QPsBP+bcfA/BE07EqCiHC6lOv9xMXxwB8uGlseSHEn49pPAzTEw7GGKYLQohVAG8H8HdE9BIiMvx03ycBHAfwYQAgol8gonlfrVjx/9yFVBJeSESvJiKdiGaJqFPqSJGHvJCd85/7tZBqkuIMgD1dKjk/BuC1RHSlHwD8KWRK5/Ag793nDwH8IBH9FRHt8sdzKRF9hIimhBBfgwxIP0VEVxCRRkTX++/7PUKIR/2/+T1IZeXHhBCLPV7zw5AX1E8R0VOIKOUft7cQ0csgDfklAL/rfx7Pg6zU/EQf7+fzAHYR0e/4LTmKRHSdf997AfyJH3iAiOaJ6Cf7PE5nABzoUTFpQvqbzgFwiOilAF7U9ByzRDTZ4e//DcDLiegFRGRA+t5qkEb1Qfl/kMUp/0xEu4goQ0SvAfD7AN6sVEshxPf88f4TgK8IIdS5fQeANSL630SU9T/3pxHRtUOMJWo+AuAVRPRif1wZv23InnEPjGE6wcEYw/RACPGXkCmYd0BWhqlWDy/w/SqANPo/QEQbkC0dftb3JB2FTEW9CdJUfjd6+IyEEA8CeCekKncGwNMhK/IU34CsqDtNRAtt/v7rAN4KqWKcglSCfrb5cf0ghHgcwA9AGtgfIKJV/3kPQprmAamcfRPAlyGrAD8CWe32P0JP9aeQ6tWjoX5Sb+nwmjUALwTwMGTV4xrkxX8OMqi0IKsKXwqZbns3gF8SQjzcx/tZhzR0vwIypfcogB/17/5byCrPG4loHdIwfl2752nDJ/1/F4nori6v/VuQQdUyZHB6Q+j+hyGVqEN+em13098/AumH+jvI9/0KAK/wj8dA+AHxD0MWMTwImRp+I2QRyr82PfzjkJ/Hx0J/7/qvfyVkJeUCZMDWKZDcNIQQxwD8JOR39hzkd/XN4Osdk2BUlQzDMAzDMAwzBnilwDAMwzAMM0Y4GGMYhmEYhhkjHIwxDMMwDMOMEQ7GGIZhGIZhxggHYwzDMAzDMGOkXVfxxDI3NycOHDgw7mEwDMMwDMP05M4771wQQsz3etyWCsYOHDiAgwcPjnsYDMMwDMMwPSGiI70fxWlKhmEYhmGYscLBGMMwDMMwzBjhYIxhGIZhGGaMcDDGMAzDMAwzRjgYYxiGYRiGGSMcjDEMwzAMw4wRDsYYhmEYhmHGCAdjDMMwDMMwY4SDMYZhGIZhmDHCwRjDMAzDMMwY4WCMYRiGYRhmjHAwxjAMwzBMR4QQePDkGjxPjHso5y0cjDFbgg/fehiPnlkf9zAYhmG2HfefWMPL3vVtvOXT93FAFhMcjDGJ59hSGW/97AP42B1Hxz0UhmGYbcda1QYAfOK7x/C2zz0w5tGcn3AwxiSerz54BgBwbr025pEwTG/ee/Pj+K2Pf2/cw2CYyLBcDwDwlF1FfOz2o6yOxQAHY0ziufHB0wA4GGO2BncfXcGdR5bHPQyGiQzbkcHYM/ZMwvEEFkvWmEd0/sHBGJNoVsoWvntYXtjObXAwxiSfiu0GSgLDnA+o83nvdA4AcGatOs7hnJdwMMYkmm88fBauJ3DVvilWxpgtQcV2YTkcjDHnD7YKxmY4GIsLDsaYRHPLowuYK6Tx/Mt2YL3qoGq74x7Sect/PraAU6uVcQ9jy1PlYIw5z7Ad6RHbO5MFAJxZ44Vx1HAwxiSacxs17JnOYudERv7O6lgsCCHwug8dxLu/+fi4h7LlqVid05TrVRsum5+ZLYY6ny+YzIIIOM3KWORwMMYkmuWyhemcgfliGgD7xuKianuo2C4OLWyMeyhbnortwvVE26DrFX93C17zvttQqjljGBnDDIdKU+ZMDXOFNM5yMBY5HIwxiWalbGMqZ9aDMVbGYmGlIqujDi+UxzySrY9KpbdLVZ5dr+GOJ5bwKx+4AzWHU+7M1kAFY4aWws6JNCtjMcDBGJNoVss2JrMGB2Mxs1KWTR1PrlbYlzciFatzMGY5HvbP5vDdw8u444mlzR4awwyFOpdNPYWdxQx7xmKAgzEmsdiuh/Wag+mciZm8CSIOxuJCBWNCyB0PmOEQQqDiB7M1tzGo9TwBxxN4+oWTAIAl7tXEbBEsV6bc9RRh52SGqyljgIMxJrGsVmSAMJUzYGgpzORM9ozFhDrWAPDEQmmMI9naWK4HZRVrVsaUCXpHURajhI85wyQZ2/VgaikQEXYWM1gqWZxmjxgOxpjEslKWysFUzgAAzBfTrIzFxGqlrtIcXuRgbFiqdj0A6xSMqZS7UiMZJunYjgdDIwDArkl5/p7lVGWkcDDGJBZ1sZrKmQA4GIsTdayzhoYn2MQ/NGG/XXN7CxWc5dMaCmkdy2VOUzJbA9v1YOgyXNjhtxk6u86pyijhYIxJLMt+gDCtlLECB2NxsVKxoacIT7mgiMOcphwaZd4H2ihjygStpTCVM7DKyhizRbBcAUOT4cIuPxg7vcpzcZRwMBYxdzyxhM9878S4h3FeEKQps3VlbGGjBiG4aWbUrFZsTOUMXDSbxxFOUw5Nxe4jGNNlMMbKGLNVsBzpGQMQNOBmE3+0cDAWMe/79iH8xZcfHvcwzgsCA3++7hmrObLCkomW1bKNiayBA3N5nFytcnuLIekajLn1YGw6Z2KFDfzMFsF2PZh+mnI6Z8DUUhyMRQwHYxFzdq2K9SoHC1GwXLagpQjFtA4A3GssQt76mftx6+OLwe8rFQtTfjAGAEcW2Tc2DNVQmrLWwTNmaClMZg028EfA1x86g6N8rsaO7dYN/ESEuQJXtkcNB2MRc3qtio2aw/vPRcBK2cZU1gCRnATmCxyMRYHrCXz4tiP43L0ng9vUTgc7/YB3gSfaoehXGZvKGUEanhme//mvd+P9//nEuIdx3iODsXq4kDU1Vs8jhoOxCHE9EQQKG6yOjcxK2cakb94HWBmLChUkhBUFFfgWM/J4r1dZtRmGfjxjaU2mKVcrNjxetI1E1fGCTMQX7j2FN3/ynjGPaGvzpn+7B1++/3TL7WEDP6CCsdYdJpjh4WBsRIQQeP47b8InDx7DwkYtaPi4xhezkVGpMwUHY9GggoJwP7G1ivSMFTMyJbzGi4mh6KuaUpdpSk+ALQ0jIISA7XooW/IY3vz9s/jknce5afGQCCHwmbtP4N/vPN5yn+W4gYEfkC1wwuc6MzpjC8aIKENEdxDRPUT0ABG9fVxjGQXHEzh0roTbDi01GBq5u/boLJdsTPs9xgBgMmvA0Ii9CiOiOmefXKnAcrxg26mpXD0YY2V3OLr1GbObDPxAfYN2ZnBcT0AIYMMv6FH/fvXBVmWH6Y3lenA9gbuPrbRUrNuuCAz8AJAxtAYVmBmdcSpjNQDPF0I8E8CVAF5CRNePcTxD4fh7dh1ZLOH0aj0Y4xXv6KxWGtOURMS9xiKg5is0ngCOL5expqpWswYKfrEEn7/D0U+a0vD7jAH1XnrM4Nj+3FsKgjF57L/64JmxjWkrU7Xk+bmwUcPJ1cZKybCBH5DBGHvGomVswZiQbPi/Gv7PljNQqNXv4cUSzoSCBE5Tjs5K2WpQxgDuwh8FtVCQcGSxHLRYmMqZ0LUUcqbGnrEhqVi9t0OSBn5fGWMT/9Co41n202Ub/jl78MgyF6AMQdmuL8DuObbScJ/lNBr4ORiLnrF6xohII6K7AZwF8FUhxO3jHM8wOK5aTVh4/OxGcDsrC6NhOR5KltvgGQM4GIsCqyEYKwUtFpQKWUjrQcqHGYyq48Iv/m1JU9aaOvADvD/lKKjzWJ2rpZqLvTNZCAF846Gz4xzalqQc8oA1B2Ph7ZAAIGuk2MAfMWMNxoQQrhDiSgB7ADybiJ7W/Bgiej0RHSSig+fOndv8QfbACVVD3f7EErKGBgBB6ocZDuWlmcq3Ucb8Ve8jp9dZWRgC5RkDgMOL9TTlpB/4FjM6LyaGpGK5KJgy1VvrVE2pp4JFBp+/w6M8eKWQZ+zaAzOYL6Zx26HFbn/KtCFsyL+7JRgTDQZ+9oxFTyKqKYUQKwBuAvCSNvf9oxDiGiHENfPz85s+tl7YodXvw6fXcPG8bJrJacrRCDYJb1bGCmksbtRgux5e9d7v4N03PT6O4W1pwsrY0aVyPfANgjGDz98+sV2vIbit2i6ypgZTS7WkKdVcoZq+AuAu/CNQD8b8NGXNQTGt4+K5PI4ucSPYQVHB1SXzedx3YhV/9qWH8Nc3PgJApSnrnrEspykjZ5zVlPNENOX/PwvghQC23D5CykQKAEIAu6eyyJsaKwsjshJsEt6qjHlCrtzWqw7O8pYcA6MUm/liGodDaUrlY2JlrH/edsMDeN2HDga/V1QwpstgbLlk4Xf//R6ULaehtYWupVDM6JymHAEVjFmuJ20NNQf5tI59Mzkc4WBsYFSa8gcvmUPZcvEPNx/Cv9x2BEDjdkgAkDY01ByP++RFiD7G174AwIeISIMMCv9NCPH5MY5nKJwmX8iuiQwmsganKUdk0U9FTuVaPWMA8O1HFwBwP6xhUEHBk3cWcMcTS1guSWVswm9rUczoOLXKQW4/HF+u4MRKJfi9YrnIGn4w5rq44/AS/u3gcfzMNXsbgjFALjQ4TTk8llMPBJbLFhxPoJDRkTM1nFuvyc/C1MY4wq1Fxe/X9tNXX4g901ncd2IVN/qVqVZzB37fjlNzPD7GETHOasp7hRBXCSGeIYR4mhDij8Y1llEIK2MAsHMijQlO84zMVx44jWJaxyXzhYbbVTB2y6PSP8j93AanFgRjRdiuwJcfOI1iRofuT7bFtMHVlH1Sc9yGdGTFdpEx6mlK1ZC0YrmwXA9EgJ6S6Z6pnMGtLUYgbBFRbYUKaR17Z3IAgGPLrI4NglLGpnMmfv25l+DSHQVYjuw9ZrteU9NX+X/2jUVHIjxjWxnHkxPCzom0/2+G0zwjslyy8MX7T+Onr76wZdU1X8gAAO45vgqAg7FhsFw5gf7oZTtw+QUT+P6ZDeyZzgX38/nbPzXHazDqV+2QMuZ4gZ+pYsugzdRSwV6rUzmTPWMjEA7GVMPtgp+mBHiz+0FRgVXOn3OV+lW1XdhN2yFlQvcx0TDONOV5gZoQnrSjiDNrNez005Rn1znNMyyfuus4LMfDz123r+W+uaL0NamN2DkYG5yaX5J+6Y4CvvTbz8FSyYJGdXNuMWOgbLlwXC9Qy5j21GyvRRnbUTT8NGVdGavaUhkLqwtTWQNHFnnrnmEJtw5RPR7zaR37Z2URFZv4B0NVU6oFsArKSjUHrte6NyXAyliU8Ew7IipN+eyLZmDqKVy6o4CJjI61CisLwyCEwMfuOIpn7Z/GU3ZNtNyfM/WgS3yKOBgbhlqTd2kmbzbsdFDwvWNK1WE6U3PchmrKwDOmpWA5oq6MWb4yFjJBT+eMwK/HDE7YInI2pIxN5+ROEkc50B0IlaZUiphSv5TlpsHAr/vBGO9PGRkcjI2I2g7p+otncf/bXozdU1kUM+y5GZaVso1D50p4yRW7Oj5G+caeunsCluOxVD4g4X5X7ahvFs7ncC9UmlLt5Ve1PekZa1LGgjRl6JjPFtJYqzoNwRzTP7bT3jNGRNg3k2NlbEDKlgtDo0ABU+qXWvA2tLYwlYGfz92o4GBsAFxP4HUf+m5DQ0HbU72DKJhoJ7I61qpOy2arTG9UZdremWzHx8wXZDD27AOzAFgdGxQ1garVbTOqqpJ9Y72xHA9C1Js/y9YWKd8z5gb7JVZUmjIUjM355/HiBqtjw2B3SFMC4PYWQ6D8jop6A3M5DzRsFO7/P7z9FzMaHIwNwEbNwdceOovbDy0Ft6nVWTifPpEx4HqC8+lDcNIPxi6cynV8zHwxDVNP4Zl7JwFwMDYo9Q2rqe39hbRMWbK62xuV8lX/qjRlWm+spqxadQO/Qim8vI/icIQ9YypNqVTd/bM5HF+qcB+sAShbDnJm3UaebUpTtvOMcVYiOtjAPwBKUShZdcVArYh1rdEADcgVRfjkZnqjlLHdU5mOj3n1tXvxjD2TQUNYDsYGo+Z4SOv1qr5m1AWN96fsjZoTLMeDMOUCLGtoMDSZpgxXU9pNvZrmCvL85b1WhyPsGVPVlEoZ2zuTg+V6OLNexQWTnVV2pk65qS+b+v9apTUYU34yFhyig5WxAVBVaOGLlJLK9VRIGcuy52ZYTq5UkDFSmGnakzLMc588j19/7iXBljKr3KtpIGpN3qVmipym7AshREgZc4P/Z8w2fcZst+W4szI2GuE0perXlvODhP2z3N5iUJSqq+jqGePWFpHDwdgABMpYKBhTBn6zKU0JyBXFAydXN3GEW58TKxXsnsp2VG3CBMEYK2MDIZWxzl2zlbLLacru2K6AsoXW7HohSUOfMUtVU3otBn7lGWNlbDjspt1PCmkdKb+h7q4Jqayf5WPbNxXbDdpZAPWAS82v4YIf7jMWPRyMDUDVbtyYFggpYw1pSqksfOS2I3j5u27hgGwATqxUceFUf2kFDsaGw/LTlJ2oV1OyMtaNcCWZ5XpByiYcjJVrjX3Gmi9oxYyOBTbwD4XyPqpWN/l0PZCYDYojOBjrl5Y0ZZOBvzFNKf+vronM6HAwNgAqDRFWxuw2nrEJP0i44Z6TAHh1NggnVyrY3afHY4KDsaGoOW7XYCytp2BoxJ6xHoQ779dsL+i51NjaorNnDJCVwayMDYfyjKn9a1VQBsiGulqKOAU8AM1pyozZ2cDPnrHo4WBsANoa+H1lzEi1pilVIQ97b/qjars4t17D7j6VMS1FKKZ19ub1gRAiMDk3p8uaISLuldcH4WDMct3gwqT2pqw5XjBXVNpUUwLAXDGNcxwwDIXKSqhCnnAwlkoRZvImtw0ZgLLttE1TtgvGDC0FPUUcjEUIB2MDoCbfjTaeMSN0cVNpHgVf1PpDNW68cLr/6qeJrMHKWB/ccM9J/MCffR2nV6tBNWU3Cmnen7IXtdCFqMEzZtZbWygVvV3TV0AqY6zeDIftekhRvWAqn26cd2fzJqeAB6BieciGqv8NTSrkan419UYfb9bQ2DMWIRyMDYCafMu1Rq8IAOip+omaMTQU0zp+7Kk7AbAy1i8n+2hr0cxE1ghKr5nO/MddJ+AJ4Ox6tacyBsgFxQaft11pSFO6XtAAU3nGao4XpNKqnYKxIqcph8Xy076qfVChKRibL3KgOwgVq1EZA+S1rJ1nDADSHIxFCgdjA9DOMxYoY00n6sdffz3e8apnQksRK2N9cjxo+Nq/MjaZ1VkZ68FyycJ/PrYAQKq60jPWuZoSkMEYLyK60+IZCxv4m+aDdh34AdlrbL3q8EVtCGxHwNRSQRDWHIzN5k0sljgY6wchBMpNHfgBeS7XlbHGczdrptjAHyEcjA2A6jNWsupbHTmelMq1VKOE+7QLJzGZM1DkTcP75uRKBUTArsn+lbFJTlP25MYHTwfNiUu11n5X7ShmDKxVbd7SqwsNaUrHDXqKqe2QFFqKOnvGCtxrbFhs14Ohp4IqykKTPWSukMbCOqcp+6Hmb+uVbVLGcqYWiAnNgkNG13ij8AjhYGwAlIHfE/UqEtsV0LXubQJYGeuPE8sVzBfSPVWbMByM9ebz954KVrwbNbtnawsAKKZ1PH5uA5f/wZfxnpse34xhbjkaDPxOvZoya+oNwdhM3uyojNUbv3LQMCiyOpUCr1iLZ6yQRsWuB8lMZ9S52y5NqQrRmhcSWVNDlTcKjwwOxgYgPPmqXmO268FIdW5QWkwbnO7pkzPrtYFUMYCDsV5YjofvPL6IF18h/YsbvjLWKxj7kSfP46m7J5HWNdx1dHkzhrrlaEhTOvU2FjnfM6aYzZt1z1gHZYx9Y4NjOdIzlu/gGVPbTXFFZW/KdvtgLKyUtShjBitjUcLB2AA0BmMywHJcrw9ljIOxflgtW5jKdd4GqR2TWQNV22towMnUKdUcuJ7Ak3YWg9/7MfD/1FUX4rO/+UN41v5pnFiubMZQtxwNTV+dkGfM1Fo2BLddAU+0+m54S6ThUUpjvoNnLAh0+dj2pOKrh5k2njFFeDsk9diqw56xqOBgbADCJlvV3sL2RMuKIcxE1uA+WH2yXLYx7Tdw7Bfuwt8d1edqrmCCSAZj/Rj4FbunMji5ysFYO6wWZcxBimTT3GZlTNEcjM3yZuFDY7ueb+CX53JrmpKVsX4JVF2z8RiGg7EWA7+RQpWVscjgYGwA2iljtuO1rBjCsDLWPytlC1PZwYIx1YWf21u0JzzJFkwdG30qY4rdU1mslO0IxCCxAAAgAElEQVSGCmJG0pimdFG2XORMHUTUkAZWW/MAbdoD6BomswYrY0Ngu3Ih3EsZ4y2RetPJM9YrTcmesejgYGwAwtVT6iLneKJhK6RmJjKsjPWD43pYqzpDpSkBYKnEx7gd6jzNpzXk07J3WD+eMYVqM6J6wDF1wvOBMvCri1eDMlborIwB0uC/XObztxNfuu8U/vFbrUUkgYG/g2dsxlckOdDtTTmUYg/TmKZsVsbYMxYlHIwNQHglHKQpXa9hK6RmihmpRngetwjohtqUemrANOXlF0wAAO4+xibzdqiNqnOmjnxaw3rVgeOJvpUxFYyd4GCsBTUfpKhu4FfKgqnVL2Jz+boylm5jaZjI6KzsduGzd5/EP9/yRMvtysB/9f5pvPqaPXjm3smG+3kj9v4JKoGbPWP++aylqKV9U8bQeDukCOFgbABqoZRk3cDf3TNWzOgQonE/S6aVlbKcMKcHVMZ2TmTwpB0FfPvRhTiGteUpKWXM1FHIGFjyj3P/njGljFXjGeAWRgVjhbQeGPjVxay5tYWiXRDMW3p1p+q4WNywWha0tm/gn8wa+MtXPRPFTOtCbo63m+qLcqc0pX8+t7PiZAwt6L3JjA4HYwNQtd0gWAgrY73SlABvidQLlaaZHFAZA4AfftIc7nhiibuYt6HeiFRDIa1hqSSDsX6VsZ0TGWgpwomVcmxj3KrUHBd6Sva5qjkuKmFlzD++GSPVYCxvt3DjIp/u1GwPjidaAla7x0IYkIUrbODvTaVDmjITBGOtxzljpGC5HlzO+kQCB2MDUHO8YJWrVhK216vpKwdj/bBaGU4ZA4AfvnQONcfDnUc4VdlMg2fM1LFcUspYf199LUXYNZFhZawNNdsLKictv5pSVaOp1haFtN5wgWurjGUM3qWjC6qFSHOLCuUZ68ZsPs1bIvWBam3RXE2pFhft5gulmvEiOBo4GBuAmuMin9aR1lMNfca6Nn31t+hYq9r40y8+hG88fGZTxrrVWPYN+INWUwLAdRfPQk8RpyrbUAp5xgppHcvlwZQxQPrG2DPWitpWKu1vCl5uY+DPmXrX9gCALEJZq/DWU51Q+x8uNLX/UBuFd2O2YLJnrA/KPTxj7Y6zuo99Y9HAwdgAqJVwIa0Hacp+PGOALK/+p28fwpfvP70pY91qrPgpiEEN/IBUH67eN41bHjsX9bC2PGEvSD6tB1ub9KuMAcCF01lu/NoG1a/N9IOxiu22KAk5U2sMxtqmKXVYrtdQIMTU6aaMtTueYXZPZbFUsnhLpC54nkDFcmHqqbYmfaBDmlJnZSxKOBgbgJrjIWNoyKW1QHGwenjGVJryvhOr8AQ4HdGB1bIForrHblCu3j+NR06vs3+hibLlwtRSMLRUw0bKgwRju6cyOL1W5WPbRM3xkDZSSOuan6Zs9Yzl0zoyZv1Yd0pTAtwrrxNKGWtujGs7vT1j+2ZyAICjS+x5bMe9x1fw5P/zJXz+3lMt5n2gh4Hf5GAsSjgYG4Cq7SKty73QSkGfse5S+YR/Abz72AoAYL3GE247lss2JrMGUl1Svt3YO5OF7QqcXWdvU5iy5SDndygP92EaZDP23VNZuB4f22YCz5iWCgz8WUMeYzUn9KOM8S4S3VGKYXO60XY9GHr3+eLAbB4AcGSRg7F2PH5uA44ncGKlgpzRLRhrp4zJ26pcURkJeu+HMArVLLOQ1ptaW3SppvQn2nuPrQJgZawTKxV7KPO+Ys+0XAEfX67ggslsVMPa8pRqbtAUM9/DSN6JoNcYH9sGVJoybaRQKjm+gb9JGTP1hv3+OrW2AMAVlR0I0pRDeMb2zcp54chiKZ7BbXFKNXls3/rjT23xiwFoOZ/DsGcsWlgZGwA1+eZDwZjdY6PwtJ6CoRHW/cev84TblpWyFSgEw7BnWgYJx5d5BRwmHCDk08OlKS+ak+rCY2c3oh3cFkctztJ6CutVB56oX6CUApZP6zC0VLBga5+mlJ8LK2PtUb2smvuF9eMZm8wamM4ZOMzKWFuUl+5nr92Ln7tuX8v9mabzueE+P3jjLvzRwMHYACiPSD6thfqMia7VlETU0IxwjVtctGVliE3Cwyj15tgSG83DhH1Mxcxwacq90znkTA0Pn16PfHxbGTUfmLoWNC3OmY0em7yfIs60aQarmAz2V+W5oRnPE7DcDp6xPvqMAcD+2TyOcjDWFqWMtVPFwre3rab07ytzMBYJYwvGiGgvEX2TiB4iogeI6LfHNZZ+qdnSwJ839frelD2UMaDxIsgl7O1ZqVgD70sZJmNo2FFMszLWRLj3VVgZGyRNmUoRnrSziEc4GGvAcjyZptRTgaqlgjEiwu7JTKDYBp35OzR9BThN2Y5whWlYGXM9AdfrNxjL4TCnKduilPNOXt0gGGszX6jrmsoSMaMxTmXMAfAmIcTlAK4H8JtE9NQxjqcrQghUHd/AH2ptYfcxIaiTdvdkBo4n2PDYhpWSPVRbizB7prM4zi0YGijV3ECdGTZNCQBP2VnE989wMBam5s8Hpp4KWoZkQ00zv/I/fwSv/aGL/Nu7BGO+cr7Km4W3oPxieVPDYqm+JZLtq2W9DPyAVMZOrlRgceuQFjZqbkuj1zD1vVZbj7MqCNrgYCwSxhaMCSFOCSHu8v+/DuAhABeOazy9sF0BIdBg4BdCyKavPbpAq8n2qn3TAHgF3IztelivOZjKDq+MAdLEz8FYIxXbDQKEwpDKGABctquIxZLVkirazoQ9Y4pwRVoxYwQLtXZ7VipMPYWsofG80AaljO2ZzsH1RNC0WAVjvTxjALB/JgdPsJ+0HWXLQSHd2bKQ6dL0VbXKYR90NCTCM0ZEBwBcBeD28Y6kM2qFltZlnzFPyJJe2xXQU/0pY1funQLA/YSaWR2h4WuYPdNZnFypcD+sEKWaE1RRFkZRxnYVAYBTlSFkawutwX/XrlcT0N0zBsjGr+wZa0X1sFLpXtXewnbld7yfNOWBOVVRycFYM6Ueylg3z5hqeLzOylgkjD0YI6ICgE8B+B0hxFqb+19PRAeJ6OC5c+PrsK5WaGkjFVzUSpbT1/5ok1kDeVPDpTsLANjE38xKOZpgbO9MDo4ncHqN+2EppIF/NM8YADzZD8YePt3yFd221BzXN/DXj2XzRsvB7YYGLUUtHc4Vk1mDqynbUFfGZDCmlNkgTdmngR8A+8baULacwMbQDkNLQU9Rx/mimNax4V/P3vLp+/C+bx2KZZzbgbEGY0RkQAZiHxVC/Ee7xwgh/lEIcY0Q4pr5+fnNHWAINSlkdC3o21SqOXD68Iy9/kcuxrtec1W9aopl3QZUJdooBn4g1N6Cu20DkD7H8GQb7jM2SDUlAMwV0pgrmKyMhWibpuygMmRNrXs/wozB80IbVFsL1UdQmfiV/6vXQhgAZvMm8qbGylgbSlZ3ZQyQC4lO17hCRse6H4x946Gz+NajvCXdsIyzmpIA/DOAh4QQfz2ucfRLzZfLZWsLlSt34Hqi63ZIAHDpjiJecPnOoJ8QpykbUcrYKK0tgPqEfYx9YwBksBDufaVrKWQM+ZXv5yLWzGW7iniETfwBtVA1paJTmjJraF39TZNZDsbaUXUa05TNylg/Ci8R4cBcHk8ssDLWTKnWXRkDgJ+7fh9eePmOtvcVM/VittWKjaUSb8o+LONUxn4IwC8CeD4R3e3/vGyM4+mKqoCU1ZTy5FVphX6kcqBu5F/nNGUDapPwUZq+AnIPRYCNugpVcp4PrXwLaR1pPQW5FhqMJ+0o4tA5vqABsqWN64kWZSzToV9TxtBgdlEjJzhN2RaljM0V08gYKZzxLQiDeMYA4JL5Ah4/x02LmynXnIb5oR2/99LL8YLLd7a9r+CnKWuOi4rtYnGDg7FhGdt2SEKIWwAMtxHhGAgb+JUyphQdvc/9FLmfUHs2/OMx7CbhirSuYb6YxqkV9owB9WaMYbWmkNYbejcNwlTOwEZNqsGdvE/nM3ceWULN8fCDl8w1eEjNPpSxV1+zB1fum+r43BMZNvC3Qxn4M7qGPdM5nFiRqnc9TdlfMHbxfB6fu/ckqrbbMWDejpQst8FLOiiFtIHjy+VgIbFYqkEIMdRib7szdgP/ViGYfPW6gX9QZSzYGomVsQaUzD3KpKDgdE8dFYyFj2s+rQ/sF1Ns975Cf/O1R/FXX3kEQHg+aKym7NTJ/LqLZ/GL1+/v+NzqvPW4EriBcNC7ZzqLY77qbbn9e8YAqYwJAU5VNhHeLm0YJvw0peqRZ7uCqyuHhIOxPglPCuripnre9DshEJE06nI6ooH1mgNTTw1c4deOYshQut0p+fvOhSv88n6achi2e8ftiuUGdgWllJuhNGXGSHXsZN6LiawBIYANa3se207UMxKphqbOg/QZA2QwBoBTlSFqjgvbFaMpYyoYC13TOFU5HByM9Ulg4Ne1oCpNnYC9tkMKM5E1uLVFE6Wag2IEqhggG21yE0JJuaa6l7d6xoahkJZp5O2qjFmuB8sPDmohD6laRPSqSutGYGHghVoDKvjNGDJNuVK2sV61Qx34+zuX1Wb37Hmso+aHUZSxQloufldCu0cslbgx9DCMzTO21aiq1hYhZWwlUMb6v7hJ5YYn3DAbVSfo5jwqxYzOrS18yr7KEp5sf/LK3Tg5pKeu3nF7mwZjjhcYx9ulKTulKPsh2BKpYmPP9IgDPY8IK2N7/WrpEyuVgfqMAVIdvnAqy8pYCKWcj6KMFTMG3KbejgusjA0FB2N9ElbGDE2uhuuesf5TE5ymbGWjj4qefpnI6Kw8+rQz8P/klcPvOKa2Tdm2ypjjBcbxcJBQV8ZGCMayqu3N9jy2nWhUxmR7i2NL9V02Bpl7L57PszIWIvCUjjD3qgWaKqwAkNj2FmtVGydXKnjKrolxD6UtnKbsk7CBH5Dy7HJQTTlImpKDhWbWI1TGJjhNGRDFyjdMkKbcpudvzfEC43jYQ5qOIBhTqs89x1dGHOX5ReDN01L1ps7L5YE9Y0C9vYUQXCQB1L2fuR59xrqh7CXhPYEXN5KZpvzALYfxynd/J7FFMhyM9Uk4LQHIiVdVkPRq+hqmmOZgoZmSFaVnTLZuUJP4diYKT0gYFTBv1Lbn+VsLKWNWaD5QylinrZD6Ye9MDlftm8Kn7zrBwQKAv//mY3j0zDpqjgdTk4URM3kTWUPD8eXB05QAcMmOAsqWy9ul+ZTaeEoHRRX1HF8uo5jRUUzrWEyoMrZasVG23MTaLDgY65MgLWHUlbGVijzpBlmd8YbArUTrGePGuop6mjIqZWy7e8bckDJWT1OmIzDwA8Arr96DR86s48FT23v/z4rl4q++8gg+e7fsC6bmXCLyKyrLAxv4AeASNvE3UGrjKR2UQkgZm8oZmCmYia2mVN/ZpXIyx8fBWJ+EO/ADMvVTr6YczDNWsd1gMmF8z1iEyhiwfQOGMGXLQVpPRdagdbv3GZPVlB6EEPVqSiOFtG/cH0UZA4BXPOMCGBrhP+46MfJYtzKq8GS1YgdbTin2zuRwbKkCyx3cM7ZjIg0AiVVuNht1nAsjtrYA5DZVk1kDM3kzsZ4xld1KarUnB2N9UnNcmKFtZPJpPQjQBvGMcbDQyno12tYW8jm3ZyotTMmKLsgFAC1FyJnatvSMCSGCydx2RYNtQSnjuRE7u0/lTDz/KTtwwz0nRxvsFkcpuisV2++YX59fA2XMGdwzlvWVywr3cgNQT1OO4hkL75oylTUxm08Hm7knDSsIxpJ5beBgrE9qttfQnykfWgUPVE3J/YQasF0PNccbaXUWZoKD3YCy5UbmF1MU0vq2VMYcT0BZuSzXa0xTGqMb+BVP2z2Jc+u14MKxHQmCsbLlK2ONwdha1cGir24M4hlTrUcqFvtJgboyNlI1ZWjenswamE20MiY/9+WEjo+DsT5plsvDisMgEwJvFt6IquiJ2jPGwa704kXVMkRRyOjbcruTcHBkO15DdbVSZ7IRHGu1WNvOyq4KEtYqtr8IDqUp/arT75+R/cIGmXtVsFy2ORgDgA1fGRulP1543p7MGZgtyGAsiUUoQZqSPWNbm5rTKJeHVwQDVVP6Jy/vnyhRQSl7xqLlC/eewtcfPovLdhUjfd5iWt+WacpwMGa5XsgzpiGtp/DUCybw1N2j9y8K+o1tw2OsCKcpm+fdZx2QHXG/89gCgMGyEmk9BSJWxhTlmoO8qQ29hRcgg2H1+SjPmOOJRBapqe9sUpUxbvraJy1pynQ4Tdl/TKuCjjJPCADqZvCoPGNKedzOwe7dx1bwW5/4Hp61bxp/+sqnR/rcai+67UYtHIw5jWlKIsIXf/s5kbzOBCu7oTSljZ3FRmVsRzGDp104gftPrMHQKPDw9gMRIWdoPPf6lCwXuQjm3ULaQNWuYSprYK4giyQWSjVM5owef7m5qEropBZwdI0iiGgPEf0vIvosEX2XiL5FRO8mopcT0bZS1WqO2zAphMvY9QFWFqriqswmUgD1YCyqNOV237IHAO49vgLXE3jXa66KzIunKLAy5vex85Ciwb77/aDSlKvbOhjz05RVG2XbaVDGAOBHL9sBYLBFsCJr6hyM+ZQtp8H7PCwqG6GUMSCZXfi3rGeMiD4A4P0ALAB/AeA1AH4DwNcAvATALUT0I5sxyCRQtb2OacqBlDGTlbEwQTAWUdCgpQh5U9vWwZg6t1TKK0oKaWNbKmOWW/++qqKTtK4NpMz0Ayu79fNXCNkyIbwIBoDnXTYPYLhgLGdqXE3pU6o5kfQgVMHYVK4ejCWxC79KUybVM9btk3inEOL+NrffD+A/iMgEsC+eYSWP9aqNyZwZ/D6sgV8pY6VteEFrh1JZolRwJrLbe5eDsuWCCMjo0VZSAnLi3Y7BmGpjA/hpylAz0iiZDKqtt98xVoQXqufWay3H+cq905jKGQO1FFLkTE5TKko1t8FuMyxq7p7IGsH5m8TFsEpTbjllrEMgFr7fEkI8Fv2Qksl61QlWAEBja4tBDPyqoodNpJKo05SADBi2tbJQc5A1RjPmdkK1tkhitVScWG6Tgd/fpidq6gb+7Xv+hpUrT7QuKrQU4YWX78RcwWz+055kTQ0VrqYE4KcpI/GM+cpY1gzZcJJ3jANlLKHBWM9Pgoh+HMAfA9jvP54ACCFEMrc+j4m1qhP0sAKGV8YMTZbCc3m1JA5lrJgxErky2yzKdvT9xRT5tA7XE6ja3sgd57cSVouB34tFGcsaGvQUbWsDf6npQt7uOP/RT14x1AU/a2i8EPYpWS72TEeRppRq2GTOSLQNR3nG1qoObNcbKs0dJ/2M5m8A/DKAWSHEhBCiuN0CMUCmKYuhbsONwdhgCkQuraG8DVM97VDKWJT9sIoZfVsHYxXLjS1QCgoktsFm4VXbxcv+9tv4zuMLra0tmgp6ooKIMJE1trky1nghz7Tpg5Uz9aBybxA4TVmnXHMiWbQFnrGsgYwh24cksUDNCjUQXk6gb6yfYOwYgPvFdstLhFAr4XD7hYY+YwN6F7i8us5GBL1umpHK2Pa9mJUtBzkjnq416juwHSoql0oWHjy1hgdOrLW0trCaOsNHyURG3+aeMachBRzlcc6aOqcpfaLaE/jAbA67JjLImVrQPkRttZQkao6HCyYzAIDlBG6J1M9Z/rsAvkhEv0dEb1Q/cQ8sSagLe9gzlhtyOyRA+ha2WzBmOR5e/y8H8cDJ1YbbN6pOpH4xgJWxcpzK2DbaLFxdtMuW2z5NGVcwdp4rY47r4dhSueP9JcvFLv+iCUQbjMmF8Pl/7vZCCBHZdmm/+AMHcNObnxdUFufSOip2so6x43pwPBGcV0n0jfVzlv8JgDKADIBi6GfboC7s4TSluijpqcEaDwIyxbndJoRTqxXc+OAZHDy83HD7Rs2JvBfWhO8Z265ibiWGPSkVKnDeDsqYSpeVbaehtYWspvRiSVMCsqLyfO4zdsM9J/GCv765o3pdsVxMZPWgSKpdmnJYtuNCuB2WH5xEoYxpKWr4jHJm8pQxVYBzwWQWQDLTlP18EjNCiBfFPpIEUw/GWg38g1RSKrKG1mJSPd9ZKcuJ13YbN0DeqDkoZKLt1FzM6EHFW5QT+VahbLmYiqn7tQqct8P+lMrwW2lSxmzfMzadH7yarx8mMgZOrlRiee4kcGq1CsvxsFZ1Gha4irIl+19N5UyUrEq0ypjJBn4AKPvBUhRNX5vJJbCxrvr+KmUsiV34+znLv0ZE2zwYU2nK+sRh+hsEG0P0usmn9W03Iaz4K33Ha1SrpDIW7YQwsc33/6zYbiSbVrejuK2UMTmBly230TPmxp2m1BO/N+VnvncCv/BPtw/1t2pxW+3g3VLpM9WzKh3hgipnanA80RBcb0dKfmYmiu2QmpFFEsk6f9X3d2dRFn0ksddYP7PJbwL4MhFViWjd/1mLe2BJYq2NMgbIqsihlDFTC74M24UVXxZ2mpWxavRpShU0b1ffmDTws2dsVJRnrGJ38ozFc4wnMkbiW1t87+gybn9icai/3fArcWt2+4CoJRiLMOhVSvl2N/GXAmUsnmAsaZkfda4VMgaKaX1resb8VhYpIUTG//+2a22hlLGJJkk9b+pD9SrJb0OpXF1cbLedMhZ9mhJIfjAmhMBXHzwD14vW2xargT+zDYOxJmWspjrwx2jgrzleR+UoCWzU3BaVu++/VcqY0/79Sc+jHqTaowx61fY/223+baaujEU/T+RNPXFbTinPZ1pPYaZgbtk0JYjolUT010T0TiL6qbgHNW7e9fVH8Y6vPBL83s4zBkiVYLj90fRttx2S8ow5XqtnrPm4jspEsKVMstWFu44u47/9y8GhFYZ2qCqpKLY5aUda12BqqcQHulFQVQZ+y2njGYun6StQT7Mn+RiXag6EwFALCRXIdwo2S5bsf6WCseaNwkchF3SIT+6x3QyUZyzqrASQTAO/2s7M1FO4cCqL48udq3nHRc+znIjeDeANAO6D3JfyDUT093EPbJx8/aEzeM/Njwcm2k5b9uSHTFPmtuGWHIFnLKSMCSH8XjfRBg7zfjPIs+vJ26w2zImVKoD6xBgFluvB9UQkGwB3opDZHouJZmXM1FLQUxR/mjKb/M3ClbLSvLjqBxVkdk9T6pjMygKJKI9zkrfr2UwCZSwOA386edc3pWyn9RT2zeS6tlYZF/0sOZ4L4MVCiA8IIT4A4GUAnhfrqMZMxXbhegIf/M5hADJNmTW0FhUsn9ahD9GsNGdqsN3tZSKtV1PWg7GqLQOHKMqrw6iKmTNr1UifN2rO+uMb5oLWCZV+ycZYRTqVNbBYSnagGwXVpj5jpp6Cqaf8YCzeNCWQbGVXLVAdd3hlrNYmTem4sqFuo4E/emUsacHCZqOUwXg8Y8lbrFlBMKZh32wOCxtW4qwW/ZzljwDYF/p9L4B74xlOMlBf1I/ffhTrVbtlk3DFxXN57JnODfz8W8G3cHihhOe/86bIVhCrldY05cKGvKDP5Qff1qQbGUPDdM7AqdVktwdQyl2zj24U1Io/rj5jAHBgLo8nFpK3soyahqavrhsEY1XHhe2KWA38ABLda0xdbIfxjdWrKVsXIWrP3oY0ZaSeMVbGAOn5A+LxjOVMDTXHi9wLOwoq8E8bUhkDkDh1rJ9gbBbAQ0R0ExHdBOBBAPNEdAMR3RDr6MZExXJxxe4JrNccfPG+Ux2DsT94xRV4/69cO/DzBxNCwroUh7nxwdM4dK6EB09FUzi7WpGGyXDgcXZdKkPzE9EGYwCwazKL06vbTxlTF5k4N/G+aC6PJxY24CVoso2D5mpKU0vB0FKBAT0uz9hkVrVmSe78oDxBzdXR/dDNM1YJFhM6nn7hJPbP5nDhVHaEkTaSNdRCOLnHdjNQeyPH4RmrbxaenGOs0pSmVg/GjiYsGOvnk/iD2EeRMCqWi2dfNIPHzm7gsbMbWGvaJFyhDbmfourtkjSTY5hbH5em8sWNaKpOAgN/aPI+uyaVoR3FGIKxiTROJT0Yi0EZC1/M4uLi+TyqtofTa1XsjvBCmTSUgV95xtJGCo4rAmUnvr0pt06acigDf5c+Y0pxy5kannbhJG5+84+OMMpWWBmTlCwXRNGqjoqwL6/ddXMcqGAsY6QwX5A2lqOLyQrG+mltcTNkqnISwASAR4QQN6ufUV6ciN5PRGeJ6P5RnidKhBAo2y7ypo59MzkcXSp3VMaGRfWASmqa0nE9fNfftmhxIxpvkDLwhydvFYzsKGba/s0obAllzH//w/huOlGO0ZiruGguDwB4YqEU22skgbAyVrOlMpbWU6FgbHsa+IUQQdBkDxiM1Rw32Jqm1sYzG7eym2XPGACpjOUMDakhBYVuqIKsJAW8Yc/YZM7AREZPnDLWTzXl6wDcAeCVAF4F4DYi+tWIXv+DAF4S0XNFQs3xIIT80u6byeHIYhnrVTvaYMw/WZPa+PX+k2vByjeKfixCCKwqA7/XmKbUUoTZGLaVuWAyg8WSleheTWfiSFPa8acpL54rAAAOnefBWNjTtFa1A8+Y2grKjEkZS/u7e6xVkjk/1Bwv8Iq5Ay4kwjs3tPOMqSApDmM5EArGEhQojIOS5cTSfR+op4KTZOJXnjH1nd03m8ORhAVj/XwabwZwlRBiEQCIaBbAdwC8f9QXF0J8i4gOjPo8UaIu3llDw96ZHG47tIh8WkcxwsakSTfw33ZIpiinckZgsh+Fqu0Fq+HmNOV8IR3L6kxVVJ5dq2Hf7OBFFnFTtd1AYYknTRlfMLZzIo2soeHQuY3YXiMJhNWT5bKNrJGC7Qqs+P7HuNKURORviZRMZSxchTboQiL8t+2avqoLeFyLCZWVSJJqMw5KNTeWfSmBujKWJPVRtVFR39n9M/nI/NBR0c9schzAeuj3dQDH4hlOK0T0eiI6SEQHz507F/vrhavR9s/mULJcnNuoRauMmclWxm59fBGX7ijgSTsKkXjG1MULaDbw19RwvtoAACAASURBVLAjBvM+IJUxAImtqFR+OWA4E3QngvPXiM8zRkS+if98V8bqF5PVslVXxmL2jAHATN7EmYSm2UsNwdhgC4n1BmWsm4E/nkBB16TqmORgrOa4ePvnHojVZlG2nMhbCimU2JAkZUyJAcpasHcmh+PL5URVfPYzm5wAcDsRvY2I/hDAbQAeI6I3EtEb4x0eIIT4RyHENUKIa+bn5+N+uSCaV2lKOQZEakRMuon03uMruGb/NGbz6Uj6SSnzPtC4kj67XovFvA/Ug7HTCe01pipJgeHaA3RCecbiTFMC0sR/vgdjYeV6pWLDbNp9IMoNrJt55p4p3HV0OZEVqw3K2ICqbjgY6+YZiytNCcjvRpKrKR86tY4P/Odh/NHnH4jtNaQyFlcwlrzrWy3UgR8A9s/mYLsiUYv1foKxxwF8BoD61n0WwCkARf/nvCLcNFMFY0DrVkijoFYO5QStHBSeJ7BSsbGjmMZswYxGGQsHY2FlbK2K+RjM+4A08ANIbEVleHcAOwZlLK7tkBQXz+VxbKl8XjcurthuUDFdtlyYmlTG1Go6TmXs2gMzWC7bOLSQvFRwuAp8pDRlG2VsMxYTOVNLVKDQjLoufPG+04FlJPLXsJxYeowB4dYWyTnGNceFnqLg+5zE9hY9IwwhxNs3YyBJIayM7Y0tGFN9xpJzsio2LLnn3ETWAIiwVLbgemLoNh5AvcdYMa0HgYftelgsWbEpY4W0jmJaT2xFZXh3gGirKeU5FUfJepiL5vPwhJzMLt1RiPW1xkXVdjGdMwPfZHNfsViDsYtmAAB3PLGMS3cka807SppyoyYXZnqK2m6HtBlNi7Omlsi5V6GOgamn8H+/8CA+/z+eE/lrbNScoRqW90O9tUVyxAbL8Rq+r/tmcpjJm4na/7XjbEJE/0hET+9wX56IfpWIfn6UFyeijwO4FcBlRHSciH5tlOeLgrAyljE07PQ9TVGmKdN6CilKpoFf9TaayBiYK5gQAlguj6aOqU7ic8V0MHmrC9zOiXiUMQDYOZlJbDB2dr0GPUUwtRTsSLdDcpCNqWQ9zIFZ2d7iyOL5m6qs2h5m8vXvfdpvbRH8HmPAe2A2h7lCGt89vBTbawzLKGlKVU05WzA7KGPxb+eVNbSgh1wSUV7iF16+A/efWIMQ0aeq5f6f8Rr4k6WMeQ22gr0zOdz11h/Di6/YNcZRNdJN7nk3gLf6Adn9AM4ByAB4EmS/sfcD+OgoLy6EeM0ofx8HzX1u9s/kcWathokIlTEiQt7UE9n0Va0UJrI6cp48BosbFuYKwytYKk05mzcDZSzOhq+KCyYzOJVUz9haDfPFNNYqduTKWJyqgmLGb0cSTkGfb1RsF3tn6k1tTT2F8CcVVwd+QM4R1x6YTmQwVuqjmtL1BP7yKw/j137oIuwILbhUW5C5QrqDZyz+xUTi05T+2KZy8jvmCUCL+HCUavEZ+DO6BqJk2XBqjrQZJJmOoxNC3C2EeDWAawH8PYBvA7gBwOuEEM8UQvytEOK82y043NoCQJCqjLqTcNbUUEngdkhhZWzW3zNy1MavKxUbhkaYzBpBNWXQ8DWmakoA2DWRwekEGTTDnF2vYkcxDV1LRVpNWbHc2M37QKhLfELbLwzCasVuW/lVsdwg6ARkMGaEropxpikB6Rs7vlxJlMkY6E8Ze2JhA/9w8yF8+YHTjX9bdYK5oJMyFvdiImvqiU5TqnNRWWOi7EMI+I3NLTc2X2kqRcgaGkoJCnjVDhpJpp8O/BtCiJuEEB8XQnxGCPHIZgxsXNQ9C/KLsC8IxqJdReTTyVTG1H54RT9NCQALTY1fDx5ewl9++eG+n3OlbGMya0LXKJhYVDVhHN33FTsm0ji3XktkRdrZtRp2TGRgaNRXF/MbHzjdVwPbzVLG1PchqY1JB+E3Pnonfv/T9zXcJoRAxW4MxtJ+a4v67/Ee56v3TwMA7jm2GuvrDEp43urUGkAp7CeWKy23F9I6MobWts9YxXJjM5YrckayqymVfaXoK1dRt1+wXNm0N84t03Kmnij1sdkzlkSSPboxUGlSxp7/lB14zpPmcMFUtEFD1kimVB4oY1kds4X2ythXHzyDf/jWoYGeczKr+yqQr4yt1UCEIOCLg+mcCU/UUyNJYmGjhrlCGnqqtzJ2eKGE13/4Ttz44Jmez1u2XWRjnGQVupZC3tTOC2XszFqtpU2HSqHN5OvKramnYGr1QCHulfaMn6baSNj5G+6P2MnAr8Z8YqXScnshoyNjpNp24C9ZTqw98oDkpylLfuVuxr8GRdn6BqgH03E1fQXUMU7OeVtzvNh2zIiKZI9uDFSbtpN5+p5JfPjXrot8FZxPJ+tkVaiL60TGwFTWQIqApSZlzPEEXE/0nV5bqViYypkwUhSY1c+uVzGbN6HHmMef9Pf4W02Yr0kIgdWKjamcIdXCHp4xVQCx3kfgU7GcoMt43Exkjb7GlHRqjotz640LDjUPTGUNkJ+ZNDWtSRmLd/qsb92TrHmiMU3Zfg5QRv2TK+2UMQMZXQu2qAlTsT1kYk9TaoksnlKothO675sbdMupXgSbscfkGQOSF/DWHDd2JXtUOBhromw50FLU4A2Jg2zCZFyFSjsVMzpSKcJMPo2Fpl5jSja3+gzGDp0rYfdUtkUZi6vHmGLaVxZGrQaNmortwvEEJrMGDC3VM02plIh2SkLLY2ubk6YEZMB+PqQpq7aHhQ2roWpNKeQ5UwtUcqmM1eeFuA3BSWyeCfTX2mK9ozJmo5jWke6gjFUtN/bFRNIChWbK/jHQ/PMramVMvfdCjMFYPq0nSmw4L9KURPRkInofEd1IRN9QP5sxuHFQsTxkDQ1E8QZj+YTJuIq1qo28qQWK1VzBbElTKt9XPw0/T65UcGq1imftm5L+KD8Y26g5kVaotmMqJ5WxlUqy1BsVwExkDOgp6qkwlv20Qj+esYq9OQZ+QAbs50Oasma7sFyvIbBUyknG0IKgKOwZS+up2OcIlaZK0h5/gF+JZ6oUWndl7Ox6rWGeUGnKtK61PZ+rjotMzOnfnKnLBVGEhTNRUvY38Q6UsajTlP51J85FW87UEuWJ3gppyn6uhp8E8F4A7wOQnKMbExXb2ZSLWTahq7O1ii0bvvrMFkwsljooY30EY3cdXQYgzciPnyvVAznXi3VlBtRLw1cSpoythnx5upbquVG4mjz7Sa2ULSfWrWTCTGSNhm2dtipV/zw+t1HDpB/AqwAoY2jBfGDqKThePRiLGy1FSOupxKXUNmoOpnImSlalY4pdpTKFAE6vVvHYuXVoqRQ2qg4umZcG/nZNXyuWi+x0vPOv8qkula1YC4iGRW3irRptR11NqZTNuFpbADIYC++/O25qdvKVsX4+DUcI8Z7YR5IQKpYba8NBhewzlkxlbCLUxmM2n8a9x1caHqMm4HZ9gpq568gKMkYKl18w0eCPshwP6Xy8X45AGUuYZ0ypSTJNST0nW7XC7EchKW9SawsAmMjoeOxs8s5hxWfvPoH9s3lcuXeq42OEEMGi4tx6LdhNIOwdVYZyU0/Bcf1gbJN8ebIFTrKCsVLNxUTWwImVSk8DPyBTlW/9zAOBGiWrKVOwXA+eJxp6ilVsN1AE40L1TFxYT2YwVrYc5MwYlbFa/Lsc5Ey9odBj3Fiud154xj5HRL9BRBcQ0Yz6iX1kY6Jib47n5sLpLJbLdos5ftysVx1MZOsx+nTOwHJTMKMmh36CsTuPLuMZe6ZgaCnpj3LrKc64ZWNl4E9cMBbq5SbTlN0nW5XO7ueiXNmk1haAVMaSmqYUQuD/fOZ+/Muth7s+LnwOL4TS8crPlA0pY2k9BUPfPGUMkG0Ykqagb9QcTGZVD6zurS0A2QrnxEoFSyULa9V6mhJonUOqdvyL4Xm/0fTCiP0T40K1p9FiCsbUfBJnZiKXsCKJmu0mPk3Zz+h+GcCbAXwHwJ3+z8E4BzVOylb8KzMAuHqf7CF015Hl2F9rENaqdkODW1NPtWxk7QTBWP3Lduvji/idT3yvwQRdtV08eHI1eK96ioK/tVwvdgO0oaVQTOuJM/DX05SGn6bsHtQqlaHXFi6Wo/oHbaaB345lu5ZRWS7bWK86PVPp4VRZuKIyvC1ag2fMP2c3a2JPYuXfRs3BVFam+txO1ZQ1BxdMStXps/ecBFBPDxZ9ZQxo9UFWbW/TlLHmCtqkULZc5NJ6bMFYqamXZhzk08lSxmrng4FfCHFRm5+LN2Nw46C6ScrYM/ZMQk9R4KlKCmuVRmO90SZYaOcZ+87jC/jM3ScbKi/vP7EK2xW4ep9ME+laCq4ngtTQZlzQJnNGEPwkBaWM1dOUvZQx38DfphVAGJX23ow+Y4D0vHkCieq0rTjs75nZMxgLHdOwUhL0GzRTjdWUgTK2ndOUTqA6d0xTVm3MFdKYK5h47OwGCmkdv/fSywHIC7UKuMLntGq0u92VMVUgoQeesYiVscAzFvP+n7YXeSA5LDIY2+JpSiIyiOi3iOjf/Z//TkTR7g2UIMqb5BnLGBqu2D2BOxOojIUN/IZvMA+rH8rjFE4xqBXu8eVycNu9x2Xn8Cv9YMzwJxfb3bxgbDpnJlAZq7cP6afpqwqyeikkZ3wz/c4Yt5gKo7yFSew1dnRRnoe9VMdOaUoVAKX1kIFf04LV9ealKZPVIsDz5FY6yo/ZzTNWSOu4cEru7Xn1/mn8xJW78Zs/egleePnOQBkLK5O2K/sXxu15zKd1ZA0tscqY2tJMS8ljFL1nzAGR3EMyLlQKNCnqmHU+bIcE4D0AngW5cfi7/f+ft4b+iu3G3nRQcdW+adx7fDUxJdZCCFlN2ZSmBBon3XbKmPLYHA9tf7JYqkFLEeb9tIAe9M3xZDCmxX+cp3JG8jxjfvsQ6aOjntWUShnrpZCoBpsXTGa7Pi4qVDo7ib3GAmWsx3crnCYLX5wbDPwqTWlI3yOwecFYxtRQ6aO/3GahLq6q6rRj09eai0JGx24/GHv2gWkYWgpvfvFTsHcmF6gUYWUsXMEaN/PFdCKVMSEESn5FdFzKWMnvYxbnZuxqu7Swd3BceJ7YFFvMqPQzumuFEL8shPiG//NayM3Dz0s2o+mg4ur906jYLh4+vb4pr9eLkuXCE2gw8OuBmlWfdJ02Bv66MlYPxlYrNiYyetCPSTXSdTyBmuvB0OPt0wTI9hZJa20Rbh+ip1I9qymVZ6zXRfnkilTGlBoRN+o8SaKJXyljvdOU8n4iNKTYg2DM0AJvjamF0pSbNEckbR9FVYnXM03pN3dV5+K1BxprvuqesfrnUwuCsfgvmnMFE+cSGIzVHA+eAHLpsIE/2mC8bDmxtrUA6gu1JKjmakF2PihjLhFdon4hootxHvcbK29i08xn+RsBjyNV+a3vn8NHbz/ScFu4yk+hlADb6aGM+f8/FkpTrlacoNcXUA/sHD9Nmd6ElcpU1khc09fVkPrYz3ZIKk3Vy8B/arUCPUWBJyZuJgJlLFnHFwgrY92PrQq6dhYzTQZ+eT439xkzN1kZS5pnTC0MCr7BvGOfMb9q8tkXzeDJOwt4ZlN7EZUiCyuTzfsCx8lcIY2F9WQt0oBQD7CwMhb5dkjuJgRjyVHG1IIr6Z6xfj6RNwP4JhEdAkAA9gN4bayjGiOVTezTtHsyg7lCGg+cXN2U1wvzrweP4XtHlvHz1+0Pbgv2pQx7xvyLjh1anQW9wtz6RNpRGQs9l0pTqkl3czxj0sDveiJYaY6btaodKAuGluqZSlNqRC8D/8mVKnZOZDbtfarPNpHK2NJgytie6SzuOb4S9L2q+KXwWooCpdxs6sC/GSStmrLUHIy1UcaEEIFn7EVX7MKLrtjV8hilLIbV9c0MxuaLaRxMmF8XqFsSsjG2tlit2EGwFBf1YGz8c4Mq0kl6a4uen4gQ4utE9CQAl0EGYw8LIZKn70aA6wnUHG9TJgMAICLMFUwslTb/hK3ZHtaaVi1qFRP+ohpt0pRBnzG7u4F/tWxhMqSMqTSlqubZnGpKE0LISSGs0o2TtYqD3VOy7L+fPmP9GvhPrlSC590MVNVt0jxj61U7SDlaPQJYNVHvmc7i4JFlrFZsTOfNhn5XDX3GtM2tpkxanzE1R0xkDRgdtvKqOR5sV6DQ5YKvgtkGZUxtQbUJi+G5QhrLZQu26wWfaRJQn3Xe1KFr8XjGFjZq2DkR7zxRT1OOf25Q16kt29qCiJ7v//tKAC8HcCmASwC83L/tvENNDJvVpwmQBvNxpHks18NGzWmYTPtNU4a3NFKoE/7EciWovFyt1BUgQPqjgHorhM0wVE4lsPFrY5qyt2esbwP/aiUwTG8GxYSmKY/4frGM0XurKeVZunBaHjdl6q5Y9T0SL5rLo5jWMZ0z69WUm+Q/UWnKpPRyUypoMdNZGVOpzGKXVFjQ2sIOq+t+angTAt35YhpCIHFNt4N9I9PxVVMublhBz7e4CBZqCQjGAs/YVg3GADzX//cVbX5+POZxjYXNlMkVk1kDK5XNnxCUYhBeufSbpmyrjPnPV3O8wBgrg7FQMUCLMhb/cZ7Oy/eSpPYW4fYh/VRTqgm620bhnidwerW6aZWUgFQ2s4aWuDSlSlFeuqPQd5+xPdM5APWKynC/q+c/ZQfu/sMXIZ/Wx5KmFKK/3S42g4bdI/y+gc2oTcK7KWPtWluEK1jjJqmNXyshZUyj6NOUQggslmqYLcTrKx23gT+8zdlWUcY6fluEEH/o//ePhBBPhO8jootiHdWYCLpub1LTTACYyppYraz0fmDEqMldpWWAerppokeaMtxFX1G1pZJQtT0cW6pgvpDGWtVpUMaUyhYoY5uRpvQ7hSfFxO964v9n783DJLnuKtFzY8t9qb2qq3pTt9TaWosl2bItGxvb4A3LeHmDwcwYPGb1g2GWj2Ezgwfeg/G8Gd4A34BhWMYLbxiDMWAb70ZeZFmyLbfU2rvVS3VXde25Z6z3/RFxIyOzconMjIjMyIrzffVJXVWdeTsz8sbvnnN+52eNnHJ0U/bwjFUtz5iq046yylZZhqpTLAcoUwJmR+U4SBFOMPP+DfMZXN3b7Pq7bKNesZgxdpCoO2YkEkJgnSMClylZQVgLaDJILzgPbOZEjf3XbsPk3zmOMm57xkZj4GdNLuPWUcksCUmJB0e8lymLNQ2qTu1i1C/ERQ4CR0ayN8iajvd+9Ds4v1nGF/7NK2yiYNwN/G7uhn/d5nsf83oh44CRMGMjysFipwYnq8FOvRmX3ZRyi8RwYs4csry6W0VZ1qAb1B6bAjS6KVl3YFAGfgBjE2/BWIOckxnrstkqmgFFN+zf78SOXS2YsRZBMmOAea2MGzN2rVBHLiEin5Sg9mCU2Ot5bCYFoBEPUuvQVR00M8YsE9Ux6ags1jRwBHZCfDu/I7sBd5t92JApHQZ+5hkLQAKes4eFj1cxVlUaVhmmJHjJjLHi02+ZkhCCTFwInBnTdAM//eFv43NPXLMZ8poSHOM6DLp5xm4khLwVQI4Q8hbH17sAjN+oew/Q6GQJjs7MJUTImtFVgvIDdjFWa5YpEyLfVCS17aZkxZjTM6bpjmKsZheYbZkxOUDPmGXaHxfPmM0sWOyjGW3RuWBgheuMtXnWO2SNscDXID1jgPnvGDsDv6whExcgCqTpGm0HxhBPpyRMJUW7AaUsa229o+yzEdxsSvM6GZessZIlsRNCLL9jZ89Yt2LMaeD/nw9ewFqhZjMYgURbZMzP09gxYwobVdSYTdnLU9oPtq1/70zK//ibTFwMnBl79PIevvjUBo5MJ20lwVngjjO66XGnYHrD8jB9YgwlAO/xc1GjQmM4cHAyJStWCjU1UBnCKVMy7FXVpsBXwCFTavs9Y60J/NMpCTMpCau7taZh2Ay2Z8zacIJgF9jruzsmxVjr6yJwHAwKO1KhFUzSnU3FcH6z0pkZs4uxoGVKcaQm6MevFHBus4z771i2v1eum7EKMZ6DohmglNrBw62oO/wkK1NJO5rl8k4Vr75pYd/vZ2ICfu57T+L728Q1+IGGTDkmnrG61mg+6WjgN6/xbp4xkTdjQ55YK+LTj6+jIut2t3UQ3ZRJSUBK4scua8zJ4rDPupfM2Lb1WWXFqJ8wmbFgizFWeN1yKItLO1VUFd2+34S2GKOUfgLAJwghL6aUPhjgmkaGIA2kDGzGW6Gm+t5u7EQ7mXK9WMdiyxpsZkzf303ZmsAfEzmsTCWwulttGobNYHdTysF5xniOIBsXUBgTmbL1dWE3INUwEOP2X3fMQ8KYsU4dlVf36khKfNPrHQSycREXtiqBPqcTH3rwIj7/5LXmYszKuHKO8mKvcytkTYfAmSzPylQCT18r2dEYx2ZT+36fEIJ//X2n/PnHtIEtU44JM2ZOj+jO6pZdyJQAEBc4PHh+GwCwV1Ps7sugbCJzmdj4MWPW3pgUeRSHGIf0nUu7eP8/PIG/fM+9TYf8rUCZsRHIlNa9iR0YaoruuK8HR7IMAjer+w4h5GcB3AKHPEkp/XHfVjUijILOzI0oeoGZ753M2FqhjhNzzTcg2zPm7KbUm5kxSs18tpjAY2U6iSeuFu3HbZYpg/eMAaZUWRgTA3+hJT7EntepU7S7d7FijBluO2WNrRVqWMrFOzJAfiGbEEbavi5r+r5Ow4qsYSol2deuonXOkpI1w75ZrUwl8MWnNvC8VVwyH9kowdY2Lin8xbqKjGXM57n2MmWJRVv0CBaNi7zN1BRrKgSOgOdIYLlfc5kYNkv1QJ7LLaqKhpjAQeA5+/A6CDP29XPb+M6lPawX6k2Hiq2yAkJMWd5vZOIiLu9Ue/+ih1AsbzObnVpT9cZ9fQwaYLrBzVX/IQCLAL4fwD8BWIEpVU4cRmHgZwb3oIuFhmfMwYy1iUYQ2siUrbMp2X/jFjN2ZbeGHYuJYswf0Cg8mC8iqMGtMYEbn2gAuxvNYhd6jDxhGwnbPDvdlK/sBZsxxpCNmzl5o8rBkjWjqSMPMIsBJzPWLd6iruq2XH54OglZM/DwBTOZ/dhs0qdVuwc7GI5LCn+xptnXrtiFGRM40tOG4Px5oaaipgQXuA0A85k4Nopjxow55kbyQzBjawVTbm8NDN4qy5hOSoFM6RiFTMm6/hkJUFW0pqkG4ww3d8OTlNJfA1ChlP4FzADY0/4uazRgJtkg37QGMxasjMZuYKw4KNZVlGVtn+dIaiNTNjxj1pgeNuBX4LEylYSiG3huowygVaZkOWPBjqeIiWNUjNWauymlNg0STjSYMWbgb39TvrRTxZHp4IuHbEKEZtCRMTeKlfbuZA/KdcvAz1jdLiZ+k9E1f4/FW3z1WTMO4+j06Jmxhkw5JsVYvRFY3C30NR0XerK0TvmsUFNR14KN75jLxLAxht2UrCBl+6XeowmlHdbsruDmYmi7LPsea8GQHUGnNfusM09uTdFRU3RwZPxzxtysjr2ae4SQWwHkABzzbUUjhCRwWMzGA4+2AIJlxgyD2sVVwSoO2Id3sYUZYzc0rV03pVXg2MnZIm/f0M5eLULgSJPkK7YyYwF9OCTLyD0OKNRUKxqAMWMNmbIdKnY3pbmB1lUdFVlrYkpKdRV7VRWHR1CMZUY8Eoldg873tyxrSEkNZqxbId4sU5qv30PP72ApFx+Lk3Ri3GRKx7xZgSMdQ197+cWAxnzKdEwwizFFD7STfSEbR1nWxsaPB5gH1VTMfF1YQ88gc8JZ1M1+Zkyx/ad+IxMXUJa1QFnz/cyYbhe4QVs4+oWbK/+DhJApAL8K4O8APAHgd3xd1Yjwz+45gm/88qt8n2jvRCYmgJBgizGlzQgkRmsfyjUzY+x0pnTpprSZMZHDYeuG9sTVInJWC7z9WLZnLLhoC8As+sapGMsmRHujZa9JJ/aGGXptz5iq46c/8m38u4991/6dyzvme8de+yCRHXHStp2yrTU6z6qKjnRcsE/C3ZixujUQHGgwY1VFHwu/GNBg6cdBptR0AxVFd3RTcu1zxmR3xVhc5EAI8OITM9irqqipeiCjkBjmreDXcZIqK4qGpNRsYdAHiLZY7yBTbpf9T99nyMQFUNroCA8CinU9OouxmqqNvXkf6FGMEUI4AEVK6S6l9AFK6XWU0nlK6R8FtL6JB8cR5BJioMWYkyko2MWYFRra4jtqJ1O2dlOyfCAnM1aWtX2dfaLdTRlctIX5PPw+X9GosFmS7cBJoNHU0MkX0pozVlMMPHethMeuFOzfuWxlYx2eHoFnzHqPRxX8KjvGcAENJjEda8iUSg+ZkjFjSUnAjOXNa9dJOQqMEzPG8sOauinbJfBbMnEvZOIiblzMYjmfMD1jHYJ2/cJ81irGxkiqrCkNZmxQz1hN0e0on9YiPoi5lAxsAkOQBzXmYWQ5jjXV9IyNe6wF0KMYo5QaAN4b0FoOLHKJYFP4nSwRu4mu7dVASOO0yNDOd7OfGWsY+OMib7M4uWRzMbaPGQtKphwjA/96sd4UYdKQKduvr2wxY6xIqCoaNssyVndr9nvCOpZG4hkbE5mSsbMsViETF2zm1a2BH2iwY8fHwLwPmE0vEs+NhWesMS6tV86Y5kpd+PUfuBm/9447kEuY4aBVOVjP2HzG/BxujFFHZUXR7ZzLhmesv2Jsvdj49zivm7qqoyRrgXnGWEEepIm/nUxZm4RizMLnCCH/lhBymBAyzb58X9kBQj5gZowxBSJP7A12rVDHfCa2r628nYymdZIphUZEAIB9zBh7rMA9YwLXlR0JEhstxZidM9apm9JKgmeMwbVi3TasOwNKMzEh8IwxYPTMmNLS0cvYG+dQ754GfkcBwHxj4yJTArBmvo5BMVZvDizmO8iU68V6E/vbCSfm0jg5n7Gv241SPeBuSnON18ZIpizL6tDM2JoVAA0059PZga8BesaAYJkxtUWmrCl64IzroHBzN/xxAD8L4AEA37K+HvHiyQkhryWEPE0IXWrPNgAAIABJREFUeY4Q8u+9eMwwIpsQAx1kzWZKzqZjdizBWptYC6Dh62IXuWFQMD9mq0TEbmrMSL6vGLNYoGqA45AAIMZz9kDoUcIwKDZKMhayjRuVzYx16qZUdCQlk+XhCHBxu5Hbw8JWL+/WsDKdHIlBlbEkxRHluNnxKmpzMeaUKbsa+FUdcSczZkm94yJTAqZ8Og4m88bsWke0Rct1W1d1bJbkvlhatk+sF+uBzKVkyCdFSDw3NsxYWdawulvDdbPmWDlCzNy1fnPGmHkfaGbG2BzOIAJfgcaM4yBzCNnhLNti4J8UZuwmSulx5xeAm4d9YkIID+APALzOerx3EEKGftwwIp+UAr2ZMZZoNh2DohuQNQNrhVrbUTqtMqXzlNbOwA+4Y8Y40sgd8xsxcTyYse2KAs2gzTJlL2ZM0ZCKmZ1ACZG3h98CsMNJzViL4P1igKObckTBr3KLgb9JpnSRM9bKjN13chZ3HM7j6Mx4yJSAGW8xFjJlvTmwuF20xartX+y/GKurweaMEULM4NcxYcbOXimAUuC2lZz9vU7xId3AzPscaS7GtivWkPBMUNEW5t5wda+G+//ga3j08p7vz6nqBkTeDA5m8n7VIf2OM9zcDb/u8nv94oUAnqOUnqeUKgD+PwD3e/C4oUMuIQSaM8ZuTnPWh7JQU7FWqGMxu/+GznMEhDQ8Tc5TWqtfJ9ZDpmQG/rpqBCZRAuMTbXHN8nI0y5TdPWMVudFdlZCai7EL2xVQSrG6Wx1JJyVgNm3EBG5kzJjSws42mDHR0U3Z+WbWyoy97Po5/O3PvtS+lscBcZEfD5my1mzgF/n9MqXd2dvH4cDpLQ1aTprPjk/W2JlVsynntKMYM+ND+tu7rhbqmE5JSMeEpgHzuxXzMzqVDMbOwJixv//uVXz38h4eubDj+3OqumGrDQmJR03RUFO0UDBjHctFQsgigGUACULInQCYBpIF4MXOvwzgsuPPqwBe5MHjhg75hDmup9OwaK/BblzM13HZGqjaaci0yHN2y7BTllBaJKIGM9ZBpnTMBwxKogSYgX/0N7NGMeaUKbv7QiqyjrTlIYmLPLbKZtF+3VwKz29VsFmWUVeNkWSMMWRGEO7I0IkZS8V4WESAC2ZsvMMgx44ZSzSYsVYJjR0W+jkc5B37RNBF8HwmZjPMo8aZKwUs5xNNBvtBmLG1PXM02nZZabpuGgOzg2GJGGv+0PNmEbZT8Z9wUPXGHFr2uXEG6Y4zur0r3w/gXTDHH/0Xx/dLAH7Zg+duV3Xsu+oIIT8B4CcA4MiRIx487fghlxBhUKCsaLYE4CfYzWk2Yxo5n75mTrdq5xkDzMJJbWHG4o5Ue2e0BQBcZ/ltWgefC45CUwpw040J/JgwY2Z1sJhzypTdTeZVRUM+ab5PjQgGHrccyuHRy7sDMRFeY1TzKSmltvzc6hnLxESbEVP0zoWM2U053ht1QuLtf9coUaypIARIO3KwWj1jl3eqiAmczbq7gfPQFjgzlonbxcKocWZ1r0miBMzX2Oi3GCvUsTKVRE3RUVWdxViws5eTEt9UsAdTjDVUl4TEo6qa3ZShNvBTSv+CUvpKAO+ilL7S8fUmSunfePDcqwAOO/68AuBqm3V8kFJ6N6X07rm5OQ+edvxgp/AHFG+htDBj3zhvbkbLU+1v6M4ZdOyUlpIEKLoBSqnDM9Yw8P/9e+/D625dbHocQohdkEl8cGZzSeBg0M5SYFBYL9ZBCJpOvnbOWAcpzRmgyU53c5kYjs8kcWW3huc2zEJ6FLEWDGw+ZdBQdWczSWs3Jd/oVNW6yJSaEahpfBAkRH4sQl+LdQ2ZmNAUWLxPptyt4nCfzSRZZzEWMIMxn4lhr6qOXAYuVFVc3K42SZTAgMxYoW5PkKgp+4uxoF5jQkhT+O92QMUYs34krX9/TQ2Hgd8NX/kPhJAfhjkCyf59Sun7h3zuhwFcTwg5DuAKgB8C8MNDPmYowU6GhZraVJ36BSbpzFk5O588cxXHZ1O4bTnX9vcFh0zJTjkJiQcqZjOAnTPm8N60biqNxzI3l0A9Y8zIrRuBNQ20w0axjtl0c3xIr25K5/gZtonOZ2I4NpuCQYHf/vRTWMjGRipTZgOOZmFwNmXYMqWsISHyZj4XG4fUoQjXdAOaQceeGRsnmdJZOAkct69QuLRTw+EOh7pOYL5DWQvWwA80gl83S/JIP0Nnrpjm9ttX8k3f77ebsqboKNRULObi1nXTYFSrivnZCMIKw5CJCyjWVZxayAQoU1rFmCigWFOhGTQUxZibO9MnYBrrNQAVx9dQoJRqMANlPwPgSQB/RSk9O+zjhhHMMxFU8CtjEVjejEGBH7/veMcPqVOmZJsvu7hlzUBd1SFwxFWhw0z8QRZjzMg96ngLM/C1NVS3czclpRSFmmoX63GpwYwdtXKwKrKO//7Ou0ZaUGTjAkojKMZk1Rloab63pXojcDTGm69JJ4mafQ7GnhmT+LFI4C/Wmm0UAkea2GZKKVYHHFhvX+MBvxeN4NfRmviZef/W5VaZcn/B2w2sY3IuHUNCEvYxY0EXJTMpCXcezuPkfDqQYsw8cJt7akLibTYuDOOQ3KxwhVL6Wj+enFL6KQCf8uOxw4RpK119J6COytZuynxSxNtesNLx950yJUuDZiZQRTOZMbfJ2eyDMipmbJS4VpT3z/5sM4idoaroUHVq36gS1o1qPhPHqcUMjs+m8N5XnsQLjkz5vPLuyCZGY+Bvx4xV5MYoHlHoPvfTzscbc2YsIQpjIlOqTWOOeL5ZQivUVJRkbSCGKZ8UsVGSA03gB5zM2Gizxs6s7uH4bGpf01O/zBg70OeTIlISj7W9xnUzCu/UB95+O2IChz/96vPYLvtf8KqaYTeHJSUeW9ZzhoEZc1OMfZ0QcppS+pjvqzmgmLMH1gazIbCbUDom4Pr5NN7ygpWuH1KB52zmhhUNTcyYprs+0bLiI9BuShdjcYLAtWIddx5pliGYh64dM8akv3ySsQYNZiwdE/Clf/sKH1frHqZnTAOlNNDgWSfT6TTwM59Kr/e9Ecky7swYh5qqB/76tqJYU5sKLbGFtWGdlCsDxKzYB44RGPiB0TNjj60WcPex/YNtOo2c6oTGniGZBnZHEV9RNKQCZohuWMgAAKZTMRTrWpOnyw9oRkOmTEi8PYppUoqx+wC8ixDyPAAZZhckpZTe5uvKDhByCTMJejOAkwPQuDlJAofP/sLLe/6+GW3RKlM6mTH3HWkiFzwzxkI9RxlvIWs6dioKFjLNzFgjZ6xzMZZr8Yz106kWBDJxwQ4PDpLZcCbr2wb+umaPkxGsqQW9Zcrx3qiTkgDdMDtHR8niFWoqbnHIlIy1YUXiMJ29rdd4UJhJSeA5go0RBr9ulmRcLdT3dVIC7DV2f4h0MmPJFnm7OsKuwhnLErNbUTCfbR+h5AVY6CvQXICN+2cccFeMvc73VRxwBJ0EzQqrmMC7OmlLzm5KvdUzpvfVkWYzYwHeVBhDMsph4ZslFmvRXEgx2badTNlajMUdBv5xgj2fsqYGuukp2n6ZsiRrWM43igHR4XdsBfs7Y8+MWa9pXRldMbZZkrFWqOOGhbT9PbsT2DCznQZJ32fItlzjQYHjCGbT0khHIj1mmfdvazHvA1Y3ZY9B4bsVBV87t4U33nYIu5bVJZ8Q943RGuXA7BnLirPtczGmaM5uykZ5EwZmrOcuRCm9CDOC4nut/6+6+XsR+sNcJrgkaCbpuGWnnDIl8y8w9kHRDMh9MGO2ZyxAmTLmYiyO32CBr60bEWto6CZTtko448aMZUc0EsnJdLJC2+kZA1jgbyeZMhzMGHvfq+rossZYevo9xxtSGm9du84cqZjADZSV2HrgCBLzmfhIh4V/93IBHAFuOZTd9zOB7+0Z+/h3ruC9H/0ONkuyvWdkEyISIo+6ath/n825HQVsX7TPJv6mnDHHtTQRxRgh5NcB/CKAX7K+JQL4sJ+LOoiYz8Rs9sRvKLoOnjOH0LqByBOHTGn+l836km0Dv7viihUfQbIRdjflCIuxNWt479I+Az/LGevNjDWiLfw7WQ4CmxkL2MTfxIy18YwB5nvfqXFDDolnjN1IRhlv8fCFXcRFDrceah7VAzSsC4Vac/RFP8gnzJv1KJLS5wM8CLfDY1cKODmftruAneBddFOybL2NUh17VQUJkUdc5O3rhkmVoxwLxGTKLZ+tOKpO7evS+W+dlNmUPwjgTbDiLCilVwFk/FzUQYTJjAVDlSua0dcNyJxB15zAzy505hkLRTflKIuxPasYa5n/KfDNNzQnWAgwCwV+2fWzePtdKzblPy5gTEjQwa9yG5my7Ii2ACyZshMzxropxzzagn22RtlR+fCFHdxxON/0uW09SBTrqs2S9otcojF/NWjMZ2Mj66aklFrJ+/slSgDgCWDQ7sUYK9K3ygr2qqrd8NMo4jX790ZVjE2nTDY/CGbMaeBnCAMz5uaTo1BKKSGEAgAhJOXzmg4k5jNx7FZVKJr/Q7TlPp9DbOqmtIoxh0xZ13TXJ+KRdFOOQzFWqCMp8faQZYaGTNmeGeMc42fuPDKFO0ccY9EO7EYavEzZeM3qqgFZ06Hoxj6ZsjczNt4bdSvDETTKsoazVwt47ytPNn2/lRkr1rSBmbG7j03jBUfyWPTRT9QJ85k4tisKtBGEQq8V6tgqK23N+4CVM9bDM8aGgW+WZOw5cglZthYr4qsjlCnzCREcCagYm1SZEsBfEUL+CECeEPIeAJ8H8Mf+LuvggfmA/KZxAbMo6acYEnmybzZl0tGh2J9MOYJuSqERwzEqrBXM4b2tDRMcR8CRzt2U2YQYaGL2IBgdM9aYtSdrOiqy+WenTCnxXPhDX0fMjH3n0i4M2uwXAxwZeda1W6yr+3Ky3OLW5Rz+5mdeOjJmjFKTWQoaZ1Y7m/cBdzljrEjfKssotGXGzFiU6ghlSo4jmEpKvo9EUnXqyBlr7AOhnk3JQCn9zwA+BuCvAZwC8D5K6e/5vbCDBtYhF4RvTNGMvqQZsV0Cf8zpGdMR79fAP5LQ19HJPOa8uPYt/wLPQe3QTZkf8OYWJDLx0XrGsnERsmagbDFz6VaZsgMzVg8JM5YYsWfs4ed3wBHsY2V5rrkTuFhTBzLvjxqNrLHgpcozqwUIHMGNi+2dP+b4uO6HSHZdmMyYgqmk5b9zXDeyZsCgoy1KplMSdnwueDtFW4zCi9gvenKW1uzIr1BKP2f9OUEIOUYpveD34g4S7ODXAIoxWe+XGXN2U7YJfVUNO8vLzWMBB9AzVqjh5de3H3Qvdmhfd45CGmfERQ4iT1CsjUamzCYEyJqBkmwWg07PWLduSjkknjF2wq+NqJvymxd2cMuhXFORC+wfcl+sa/tk+DCAHYRH0VF5ZrWAG5cyHT23rpgxpcGM7TqYsZRDpmQFW2rUxdgIPGMSz410JrFbuFnh/wbg3M1063sRPAQbyxHE6UxWjb5yvpwyJdt4U47QV1ntI4GfO3jRFqpuYKMkYynfmRlr1025N0R3WpAghJgp/CNlxnQ7bbvJM+ZCphx7ZsyWKYO/fhXNwKOX93BPm3R43h5ybwa/hpYZC3DvdYKZ908vt5coAXcJ/E5mrFBVkbM6U50GfmbiH5VnDDA7KtnsTL/QnDNm/vvDIFEC7ooxgVJql7PW/49XO9cEYDYdoEyp999N2ZozlnAyY1o/3ZSjY8ZG5RnbKMmgdH+sBYPIE6htNtxiSJgxwIzf2AtotipDgxkTIavGvigQwHzve8uU431qTrR0xQWJx68WUFcN3HNsf+OI4JApa6oOzaChODy0YjYdAyEIPIX/4nYVxbqG2zuY9wF3zFjVuo4v7VSh6IbNjCUcjR+MPRu5TBmAZ6xVpgyDeR9wV4xtEkLexP5ACLkfwJZ/SzqYEHkO0ykpEJlS0fQBuilbxyFZqeCqOczarWeMfVCCvAGOOoF/bc8cE9OpGDM7ptp7xsJSjF03l8LT66VAn5MxXpm4KVN2KsY6dVOuF+rIxoXxD30VG5+1oPHw82bYa6e5iYDJljOJOozMmMhzmE4Gs/c6ceZKAQBwuksxJrjIGWPdlFesfYb5TJ0GflumjI2yGIthr6b2Nfi8X2iGU6YcXVzKIHBzR/wpAL9MCLlECLkMMwD2J/1d1sFEUMGvct85Y226Ka0LnElTbn03Ahc8MzZqmfKqFfh6qKNMud8zRik1DfzJcNzcTi/ncX6rYgdQBgFZ0yHyBAnR7KZszWUDrGtXa7/5X96tDjS6J2hIAgeBIyMx8D98YRfXzabaTn1gzTi6Qe19IIyeMcCcjBF01tiZy3uICZw9TLsdXDFj1nXB4sjsbkor6LSq6KhYBdsow0+PzyZBKfBNq8D3GpRSixmzZEpxwpgxSuk5Sum9AG4GcDOl9CWU0uf8X9rBQ1AjkQYLfW3OGZN4HgLXMG3HXY9WCt4zRgiBxHc2cvuN9YJ5Yl3sKFNy+2TKiqJDN2homLHbVnKgFDhrnfaDAItoiVkm/UJNBc8RZJoM/HxHZuzyThWHp8a/GAPM033QxZhhUDxycQd3t5EogcbBSjMMO9YkLNdrK0aRwn/mSgE3H8raxUM7uCnG6qreNE2FecZsmVLRbJlylIXJ625dwkxKwv/46nlfHp9ZaexxSEymDEH6PuBuHFKMEPLDAH4OwC8QQt5HCHmf/0s7eJjLxLAVUDHWDzMl8KbUQym1uyl5niAmcPYm7FbqEUfAjLHnGxkztldHOiZ0lHAEjuyTKZn/Kiw3t1uXTanlsQCLMVkzu3hjIo+6qmOvpiAbF5qy3DoZ+A2D4vJuDUdmQlKMWf/GIHFus4y9qtrWvA80y5T2TMQQypSAVYwF7Bl7aq3Ydh6lE26ZsWUH686YMcaoVsZEpoyLPN5571F8/skNnNsse/74TL1xWmE4AsQnhRkD8AkA9wPQYI5EYl8RPMacJVPSHuMvhoXcZ+ir5BjZw5gxgSOQBM7ehMd5HBJ7vlHljLHA105wDmJnaOd/GmfMZWJYysUDLcZamTFzFExzb5EkkLbM2GZZhqIZODzVXjoeNyRHwIytWh6kE/Pptj+3Q1+bZMpwXK+tmM/GsFmWffUzOVGqqyjWtZ7MrNlN2fkQSSlFTdVx1HGocFobEhJvRVtYMuUIuykB4EdffBSSwOHPv3bB88dmxRhjbAkhSEqCLVeOO9y8MyuU0tf6vpIIyMZFKLoBWTN8NRWbMmU/0RaNkT1ss+I5gpjA4+vnzF6OY7PupmTZOWMB577EBM4eJh001gv1jhIlYJ7kWjfcRjEWnsblW5dzATNjOmKiWYyZCeryvmKgEzN2eacKAFgJgWcMMA87QY9DYiG6neZN8o5xSA0DfzgkoVYs55PQDYq1Qg0rAUjXV/e6+0gZejFjddUApWjyPk45DiRmEa/ZhfyoC5PZdAx3HM770uzDDl2i46CfivH26L5xh5s74tcJIad9X0kEOx/JbxO0ovcvUwKmJs+8Y4wZMyjwf7/lNO443Dkrp+mxRjAOiT1fJ++Q37haqONQh/R9gMmUzRtuGD04ty3ncH6zglJAeWOKFV7MDi4bJXnfxIJO8vQlqxg7EpJiLGkxHEGiZE80aH8Nio5B4ex6zYRUpjwxZx4mz20GI/pctVjH5R7MbK+cMcZ4ses4JnBNB/mkJDR1U45DZ2FC5CH7sBezPZQpOQDwG2+6Fe++77jnz+UH3Bxj7gPwLkLI8wBkAAQApZTe5uvKDiBYMVaqa3bumB+Q1f6iLdjF3cqM/cTLr0M+KeKNtx1y/VijyBkDuod/+gndoNguy1joKVN2YMZC0k0JALdaLfqPXynixSdmfH8+WTVsZgwwc6JuPdQcE9BpHNLlHetm2IOZGBckJSF4ZkxmBZYLZqyuIiHygX+uvQKTYs9tlPE9N7SflOElWAxFr+uP5zjoXQaFsyJrOiUhHRP2ecKSDpnSVDNG//5IAgfZh2u54Rlr/Btfe+ui58/jF9wUY6/zfRURADROoEwe8AuDhL4C5sXOTmkiz+Gd9x7t+7nFEXRTAmb0xii6KbcrMgyKttEADCJPUFcNGAbFRknG6m4V33x+F0C4mLGTc+YN7fJONZBijDFjTHIvy9q+KBBJMHOaDIM2DVy/vFvFQjY29hljDHGR933IcivKdQ2EdO7AY94c3ZIpwxprAQAzKQm5hIjzW94by9vhyl4NIk8w1+PQbc6m7FyMsQI9KfGYTUv77CfMa1hVdCRFvqm5ZVSI+dRM1a4YCxN6fnoopRcJIbcDeJn1ra9QSr/r77IOJtjsNzZjzw8YhpnF0m/oK2DSwHY3JTfYh3oUOWPA6JgxlhvXbdM1Q181vOOPv4GHHBk8h3Lxkc6S6xesENqrBVM0yKrpfXRm3LUWr40h8QbiXOO1vLRTDY1ECTCGI9gE/mJdQzomdLyBCw7GvFgP5ygkBkIIrptL4dxGcDLlUi7RdEBoh16eMTtZX+RxeDq5771KxQRslmTUFH0sJErAHD/mx8FY0RhRMPqCcxC4GRT+8wDeA+BvrG99mBDyQUrp7/m6sgMIp0zpF5hvqj/PGLH/Ljul8QOesEbaTTnKYqwHM1aoqThzpYA3nF7C2+9ewcpUEitTibE4ybpFOiaA5wj2qsF4xmTdQF4Sm1jefcUY7yjGHCzY6k4V917nP3vnFRKjMPDLWtcCi/k/WehrmFjcdjgxl8YDz2wG8lxX92o4lO9sXWDo1U3p9IJ94G237/v58dkUvvn8Do7NppCKjQdzKQn+qBRhZ8bcrPrdAF5EKX0fpfR9AO6FWZxF8Bi2gd/HYmyQ4chSSzclR9DzRNcJI5MpBX9Mo73AirH5LsWYwHG4sF0FpcBb71rGK07N4+R8OjQSGgMhBPmEiL1aQMWYqiMmcE3XckdmzLH5K5qBtWI9NJ2UwGhCX8sWM9YJgoMxN2XK8BdjGyU5kAaUK7u1np2UAMARAoOiY9xRTW0MAF/Mxfd1bZ9ayKCq6Hj2WskeqzVqmFE0wXjGwgQ3qyYAnK+cbn0vgsdgG5+f3ZTspjSoTKkZ1JYaB8HIZEqfTKO9sFk2i7FuDRmCg1Zn4alhRS4p2mOJ/AbrCnYyY605Y+zadRZjV/dqZhxASDLGALMYCzr0tSSrSHeJqhBaDPxhjbVguM7qqDzvc0elphtYL9ZdNY842cd2qPZI1j+1aI5aenajPDZjgfzy77KsxrAWY24+PX8G4CFCyMetP78ZwP/wb0kHF2lbpvTvZsZOJLE+LlinTKkbdGC/GGAyF+bImmBP0aOKttgsycjEhK5+DbZ5LGbjmM/0li7GGSYzNkaeMQery7BdsdjKbHhe66TIQ9UpVN0I7GZTrmuYSnXOuWsUY+YoqklgxgBz8sDtLqN6BsG1ktnU46YY4x2B2+3EjKrDM9YObO4lpUByTGTKmMBD0cyJLl7aMFTbghNOrsiNgf+/EEK+DDPiggD4MUrpd/xe2EFETDBbw0sBMGNuB3sDjhuaZkDTqb0JD4I33r6EG5cygUc2+NXB0wubJbmrXwxo3NROr4SbFQNMZupaMZiBy7LGmLHGjahdNyXQzIztVMzDzlSIYkNYMV9VdOQSwRRjJVnrOkidsdyqTlGshdvADwBHZ5IQOOLLqB4nruyasRZuZMpezFivmZOpmIAj00lc2qmOPPCVIeZoqunHLtMLEytTEkLuIYS8DgAopd+mlP43Sun/C+AwIeSuwFZ4wJCJCb56xmwDfx8XLEs01gyzm5IfolslJvC45VDwRUfMJ9NoL2yWZMz2Ksas9+J0yCVKwCyGgjLwK5puhVx2ZsbYxux873etiIipZHimG7BiLEipslTXOmaMAQ3GvFBTYVCEOtoCMK+VI9NJ32VKFvjqphjjucbe2w5uwlyZVDk2MqWw/zPpBVrHIYUN3Vb9AQBPtvn+E9bPIviATFzwtZuSjQTqq5uSa+6mHIYZGxVGFm1R7s2MsaaGiWDGEpIdWOs3ZM3oaeBnG79Tpty1hrBPd5Hgxg1JBzMWFMp1rWuiPrMrsOI27MwYACxk43bTjV9wG/gKuGDGrOI83oVhupEVY2MyFijWhq32AgpL4A+pTNntjjxDKb3Q+k1K6XMAwtMTHjKk44K/Bn69/25K0SFTDusZGxViIj86mbJXsCM3WcxYWdbapt57CUqpHV7MNvfWUTBAB5myqkASuLFhCtyAeYKCGomk6QZqqt69m9LaBzZKpizd2jwRRuSTou+HibVCDfmk6Cr3i3f48tqhpmhIiHzX7vYGMzYezKXkFzOmhVum7PbudCvb3U2FjtA30jHBVwP/IN2UkkOmHLabclSQeH/aqbuhruoo1bWezNgrTs1B1Q1fR2AFBebZKtRUX/89qk5BKZo8Y61+McDRTak3y5TTSSlUGW4J60bKogz8BjsQdivGWKFw9moRAHDSGikUZuQS/hdju1XVNSvrppuy16GCMWPjE21hrsPr7nZWsIa1GOu26s8TQn6LtOxYhJDfAPBFf5d1cJGJi/6Gvg5QjLENQfWgm3JUYEPNtQA7Kt0EvgLAy2+Yw398861BLMl3MJlwr+pvR6WT4WXNKO1CR+1TuNps4O/WJTiOYDfcmhLM9cv2oG6eMUIIBI5gdbeGuMjh+Gz4z+i5AHLyClV130D7TrCZsQ7zKd0k6x+bSeFl18/i7mNT/S3UJzgN/F5CmeBoi38D4E8APEcIedT63u0AHgHwL/1e2EFFJuavTMnYob4M/I6sprB6xpwbgBDQh5VljPUqxiYJTKry28TPTtWSwNnXcj6xv8CasYquHcdcx92qEqpOSqDBalQDGonE9qBuxRjQmJ14aiETykNaK3JJEYpmoK7qvoUu79UU1xE2vAfMmMBz+NC7X9TfIn1EuwOSF2AyZdCB4l6h46oppRVK6TsAvAbAn1tf30cp/SFK6VC9v4SQtxNCzhKCoXJqAAAgAElEQVRCDELI3cM81qQh7bOB3zlY1i2k1m7KEG66fm0A3eBmLuWkIW8zY/4WYw1mjAPHEUgC1zbnaj5rvvZrhUbcxm5FCR0zxtiPoEYisT0o3SMPkFkWblrK+r6mIMDYVT+lyr0BmDG9QwJ/VdVtCTsssGVKv7opJ3U2JaX0PIDzHj/v4wDeAuCPPH7c0CNjGfi9DsRjqMhWMdZHZ41TptT08MqUAFDXdFRkLZA5bW5GIU0aWFyE31IPK6qZRBkTuLaesZjAYzYtYb1Ys7+3WzU9Y2FC0Ab+smy+f26YMWDyirG9qooFn0KBC1XVdbMDK3Y754xpSPSRGTkOYJ9Zrz28E5sz5icopU9SSp8exXOPO9IxEbpBUfeJwWEyR6qP05To6EjTDRrKkwc7jf3hl8/hzvd/Dn/x9Qsd5715hc2SDELCFaEwLFiYb1CeMYk339cffuERvPaWxba/u5iLY91ixnSDYq8WXs9YUNEWNjPWqxjjJqsYY1K3X8yYqhsoyVrbg0M79PSMqfrYdEm6hd/RFmII70+Au3FIEQJExjESyU3rc79gzFg/nTVMg2fdlHwYuymtDeCTj61DpxS//ndnsVtV8K9efYNvz7lZljGdlALzqI0DMjEBHPFX5gEczJj1vv7S62/q+LuL2ThWrdTzQk0FpcB02DxjI5IpMz0YZMbc3LiU8X1NQcBvmZI9rttizE03pR/3CT/hV7SFphsQeRKqLmknfLtLEEI+Twh5vM3X/X0+zk8QQh4hhDyyubnp13LHBnYx5pOJv6poSErdc2laYcuUjBkLo0xpFURbZRk/9pJjuH0lhwfPbfv6nDtlBTPpcDEww4LjiNmR5rtnrGHg74XFXBzr1ogmZuQPGzMm8Rw4EqRMyQz83YsGniNYmUpMROAr4H83MPtctOv8bYfGbMpOOWP62Iw5couGZ8x7mTKsEiXQhRkjhJwG8McAlgF8GsAvUkp3rZ99k1L6wm4PTCl9tRcLpJR+EMAHAeDuu+/2V1caA7BcH79GIlWU/mltniMgxPKMhdTA75zF+ZKTM1gr1vGElY/kF3YqyoGSKBnySSk4z5iLYmwpl8BeVUVN0e30/TCNQgLMGImkJAQmU5brGniONI2aaoekxOO6ufBHWjDkkn4zY+b1594zNnw35bjBL5lS1Wmoi7FuK//vAP4DgNMAngHwVULICetnk3EMGkOwk6hfHZVVWUOqz7EYhBCIPAfVoKFlxmLWh5QjwD3HpjGfiWHD54HWO9WDWYyZzJi/njF2s+zlaQJMmRIA1ot1mxkL4/sSF/kAZUoV6ZjQU/L5r//sDvzaG28OZE1BIBMTQAhQ9KkYY8xY3zljXQaFh62b0i+ZUrFkyrCiWzGWppT+I6V0j1L6nwG8F8A/EkLuBTAUQ0UI+UFCyCqAFwP4JCHkM8M83iTBZsZkfzaDQZgxABA5AtXKGQsjM8Y2gNPLOWTiIuYzcVQUs7PSL+xWlNAxMF4giJEyz2+bw5yPzvRmZZZyZjG2Vqg1hoSHsBhLSjxqAeWMleTuQ8IZbl3OYWUqGcCKggHHEWTj/gW/2sWYa89Y525KTTeg6MbYJOu7RczHnLFJZcYIIcQelkcp/RKAtwL4EICjwzwppfTjlNIVSmmMUrpAKf3+YR5vktAw8PvnGUsNQGuLAmcn8IeRGWPF2L0nzLGqLG5iw6ehwIZBzQiFEN70h0U+IdpyoF+4sFXBXCbWdVwPw6JVjK0X6ti1boZhi7YAzGKsEqBM6ea1nUT4eZhgRV67gOJ26MaMVQfIjBwHMM+Y1wn8mjG5MuXvAGhqUaKUngHwKgB/4+eiDjL8LsYqso7kAJusyHNQdGrljIXvgl/OJ3AoF8frb10C0AgD9UuqLNRUGDScctiwyCcl3w38F7aqOO6CFQMcxVixjt2qgpjAha4DDQBm0zE7u85vlOrumLFJhJ/zKQtVBRzpnd/GwIoxo6UYqyk6PvyNiwD6y4wcB5gdj97Ppgy7TNnxiqCUfpT9PyEkbX6LViillwC8J4jFHUSkbJnSP2aMyTb9ICGaEklYmbGZdAxf/6VX2X9m40j8YsZ2quH1Jg2LfNKcr+rnSJnntyt45ak5V7+blATkEiLWC3VUFT2078mhfBxffjqYjvKy3HvA/aTCz27g3aqKXEJ03c0udGDGfuF/PYp/PLuOl5yYwRtOL3m+Tj9BCIHEc94n8E+wTAlCyE8TQi4BuAjgMiHkIiHkZ4JZ2sGEyHOIi5xvxVhFHswzxk6LqmHY7dZhxkLWX5nS9iaFUA4bFi84Yg4k/uJTG748flnWsFmSXfnFGJZycawV6qH28S3nk9goyZ5HArRDWT64MmUuIfpn4K+5T98HnLMpmwuXs2sFvOH0Ej76nnv7erxxQUzwoRgLebRFx5UTQn4VwA8AeAWldIZSOg3glQBeZ/0sgk/IxEWU6v5sBlWl/25KoFGMhZUZa0UuIUISON9kyjB37Q2Ll56cxXwmhr/59hVfHv/ClmnePz7rvhhbzMWxVqhhqyyH9j05lG943/wEpRSFmuqqU3USkUv4aeBXXGeMAZ2ZsZ2y4tu4piAQE3kfijEaapmyWxn5owDeYs2mBGDPqfw/APxzvxd2kDGVFPH0esmXcT2DdlOyYiyssylbQQjBXDrmn0x5gIsxniP4wTuX8eWnN7Bd9v71vbhdBQAc64MZW8zG8fiVIr67WsANC+FMi1/OJwAAV/ZqPX5zOHzj/A52KgpuW871/uUJBNvr/Nh/CzXVdScl4GTGGmupqzoqih7qQGlTpvTDMzaBzBgAUEr3HcEopTUA/gxOjAAAeOe9R/HtS3v4zNlrnj6uqhtQNGOgbspsQkShFl7PWDvMZ2PYKPnEjIU0XNQrvOUFK9AMir//7lXPH/uCFWtxbNZ9pMJLTs7i+vk03n//LfjF153yfE1BYHnKKsZ2/S3G/uQr5zGdkvDmO5d9fZ5xRT5pzgf2o3N1r6q6zhgDGtEWztmU29ZBbybEB72Y6L1MqemGq4kc44puK18lhLyq9ZuEkO8FsObfkiL88AuP4IaFNP6vTz2JuocdJyy9e5BuSrPdW7ES+MN7wTthBr/65xlLiHwou/a8wKnFDE7Op/FPz3hvOH9+q4KFbKwvhvdNtx/C5/719+Cfv/iY3VofNrCu0Kt7/smU5zbL+MJTG3jnvUd9a74Yd/g5EmmvqvTnGeP3M2OMbZ5Jh7fBIibwUQJ/C7qt/OcA/BEh5M8JIf8nIeS9hJC/gDma6L3BLO9gQuA5/PLrb8KlnSo+c3bds8etWoGRgzBjuYQIVaco1bXJYcYycc9lyrJssoc7FfVASpROrEwl7FO8l7iwVelLopwUxAQe85kYrvooU/7lQ5cg8Rx+9N6hoiRDDb+GhesGRbGuDe0Z254AC4Tkm4E/vPemjsUYpfQsgFsBPADgGIDrrP+/1fpZBB/x0pOzkAQOj18pePaYFXlwZoxtILIWztmU7TCfiaFQUz1jHw2D4hUf+DI++MB57FTCaxT3CtMpyfbOeYkL25W+zPuThEP5hK+esQvbFVw3lzqwsRYAkLMCWb0uxtjjDeYZaxQu22XzMzUbYs9YTOB8yRkTQsyMdRsUfhLAAqX0T1u+/zJCyFVK6TnfV3eAIfIcblzM4KyHw6yHZcYYJoUZY91ImyUZh6eHH+myVqxjqyzjgWc2UVX1UI7c8RLTSe+LsaqiYausePJ+hRHL+QSeXPNvwP1GST7QhRjgYMY8zhrbG8BHypP9MuVOxWTzw3zYiwnexzepugEpxMVYt5X/LoBSm+/XrJ9F8Bm3HMrh7NWiZ109NjM2YDclwyTkjAHAnJ015o0H56JlLP/u6h62SjKm+zgBTyKmUhKqiu6p73HVMq8f2GJsymTGZE3H0+vttufhsFmS7UDkg4pc0h+ZksVl5Pphxvg2MmVZgSRwoc6Biwm8D7MpJzfa4pg1/qgJlNJHYMqWEXzGLYeyKNRU+wY0LGxmbMCcMYZJYcbs+ZQemfhZ5EJV0XFlrxYxY9a/38s5lau75mu8YnUWHjQcysUhawZ+6kPfwhv+21c8NZkbBjWLsezBZsbyPnnG2Hs1iGdMb/GMzaQkEBLefdgMffVWptSMyY226HY8Opg7YcC45VAWADyTKlmr9tDM2IR0U85a3UhemcxZMcYQxmHUXoIVY15KlexgcmCLMStr7EtPb0IzKJ7wULLcq6nQDIq5EHfpeYGkxEPgiOfBrzsV8/H6iaRoNyh8uyyHOmMM8D6B3zAoijUt1EHF3e6qDxNC9s2gJIS8G8C3/FtSBIYbF7PgCPDEVW9M/FV5CGYsOXnMmNct7BdbzM/TId8wh4VfxVhM4A5swcCyxlgDw5Nr3kmVTK4/6MwYIcSXYeG7A3RBspyxZs+YgulUuN+jmMh5Gm2xVZah6AZW8uE9pHUrI/8VgI8TQn4EjeLrbgASgB/0e2ERgITE48RceiyYsbQkgCOAQTEx3ZRxkUdC5D0bCnxhu4pjMymIPMFnzl478MwYMyp7WYxd3qliZSoRaolmGNywkMGPvOgI3vWSY3jHHz/kqZl/04p5OaiFrhO5pPfF2E5VgciTvrxebKttjbY4MZf2dG1Bw+tB4atWh/GhEBdj3aItrlFKXwLgNwBcsL5+g1L6Ykqpd+FXEbrilkNZz4oxxowlB+im5DiCrMUkTQozBpijp3Y9KMYopbi0XcHRmaQ9KDvyjFmeMY+ZsZWpg2neB8wu69/6wdO4fiGDm5YynhZjzDs5H+KZh14hlxA976bcKZtD6vs5SBBCIHAEuxUFb/r9r+Kx1QK2y0qoOykBNpvSO8/Y1UkuxhgopV+ilP6e9fXFIBYVoYHrFzJYL9ZR8aANuKLokARuYJMjk/UmhRkDgHxS8kSm3CorqCg6jk4n8frTS3jZ9bO4aSnrwQrDi1xCBEeAHQ9vaqu71QPrF2vFzUtZPHutDFX3hmHYtJLd5w94tAUAX2TKnepgRRTPETx8YQdnVgv40DcuoKbqoU7fB0zPmKIZniUFsGJsOcR7w2Q4sScYzH/khdRTVbSBMsYY8pPIjKVET7r9Lu2YsRZHZ1M4PJ3Eh979or66piYRPEeQT0qeMWNlWcNuVT3QzJgTNy1loegGzm9WPHm8jaKMpMQjFeLIBK+Q98kzNsisWoEjeG6jDAD41GOmKBXmuZSAKVMatFl+HQZXdmvIxARk4+Hdc6NibMzBUpa3ysPHL1RkfSC/GAOTKfkQtw+3Ip+QPPGMXdgyOymPHtD8q06YSoqeecZYrMXh6fCefr0EY169kio3y3LEilnIJUTPZ1PuVJWBmno4jthFCwtKDX03pWjeQ7zyjV3Zq4daogSiYmzsMWN1zbARGMOgqmgDdVIy5CaQGcsnRU9a2C/uVMERRKxNC7wcibS6w2ItotcYAK6bS0HiOTy57k0xtlGsH/j0fYZcQkRJ1mB4xNwAJjM2SFMP229PzDVGgIXeMyaY9yGvOiqv7tVCLVECUTE29mAnoO2KB8yYMhwzNomesSnLMzbspnt5p4qlXAKSEH2knJhKSp6Fvh70wNdWiDyHE/NpPHut7MnjRen7DeSSEigFSnVvRvboBsVeTR2oqYflOr7qpgW7IJudAM8YAM9M/Ff2ajiUD/e1G905xhyMGdvyghmTI2asFfmkCMODTbdUV/saAHxQMJP2kBnbrSEh8qH3y3iJbFzwpLkHMIuxiBkzYWcQ1ry5dveqCijFQCPS2H57aiGD771xHhwJv0zJDq1ejEQqyxoKNRXL+XAz5pFTc8yRkHikJN4TmbKiDDe8ehKZsXyyMbKnn5lxraipOuLi4IXupIIxY5TSobPB1op1LOXiBzZjrB0kgfOkGKspOkqyFhVjFnIej0Ri7PD0AIwW229PLWbw6psX8IpT80MpHOMAJlN64Rlbs2MtImYsgs+YScc8kSmH7qZMMmZsci6bqSQ7AQ+36dZVA4moGNuH6ZQEVacoeVAwFKoR+9gKkeeg6sP7mljga2TgN5H3eFg4G4U0kGeMJ+AIcHI+jVxCxEtPznqyplGCyZReeMZY4OtyZOCP4De8knoqsobkEG3rk86MDYOaoiMuRh+nVrBWfi/iLXarg0UDTDJEnniSM8ZGIUXMmInGqDSvijHz+p9K9X+Y4DmCY7OpiWLeJQ89Y5OQMQZExVgoMJOKeeIZq8j6UMzYpCbwA8PPp6xHMmVbsFZ+Lw4Te1V1KCl5EiHyHBQPirFt6/0JuzHcK3gtU+4MMJeSYSETxz1Hpz1Zx7igYeAf/tq9ulcDz5HQN5+EW3g+IJhNSzizujfUY2i6gZo6XDflLUs5vPyGOdy6nBtqLeMEmxmrDCtT6pFM2QbTHs6n3KsqyCciZswJiec8YcZYA0uYQzO9hF+esUGY3T/7sXswaTbJmOhdtMVaoY6FTCz0ik1UjIUATKY0DApuwAtuvWjKEEu5wU8PuaSI//njLxz4748jcgkRhAzvGYsM/O3BmIDtIYsxRTPMBpSIGWuCyHNQteE9Y0Xr+s/Eo1sCAMRFHjGB85QZS0n8QHvEJO4rEu+dTLlVViZCXo9kyhBgJhWDZlAU64NvDKu7UWBmO/AcQTY+fNp2XTWQGEICnlTYOXlDyuwsYiAy8DdDFLzxjDFmLB0VYza8HBa+W1GG6mSfNHiZwL9VkidCXo+KsRBgxh6JNPgN7fJOFJjZCVNJEbtDbLqU0ogZ64CkJCAl8Xa33qBgN8V8ZOBvgleesVJdRULkIU7QqLNhkU96N59yuzLYkPBJhZeesa1yVIxFCAjsQtseYj7l6m4NhCD087v8QN5K4R8UbEOJuinbYzYTG3q2KpORI2asGV56xiKJshm5hOhZ6GvUCdwMljNWHTLyxjAotisKZjPhf22ju0cI0BiJNPjGsLpbw2I2Ho3raYN8Uhyqhb2umr6HyMDfHnPp2NDMGIvGiAz8zfAqZ6wkq3a3dAQTuYSIQs2b6QY7FSWaHOHATErCQjaGr5/bHupx9moqdINGzFiEYGCboIdixqqRRNkBw85PrEXFWFfMpiNmzC+IPAfdoEPPVo2Ysf3IJSS7sWEYGAbFVlmOZEoHOI7g9aeX8OVnNlEawgvN9pWoGBsQhJAPEEKeIoScIYR8nBCSH8U6wgIWDzCMZ2x1txaZ9ztgWGasppjFWOQZa4+5TAybwxZj1cjA3w6iYHZXq8ZwUmWxpiITxVo0IZcYvrEHMPfeumrgxHzag1VNDt542xIUzcAXntwY+DG2LMY97LM6gdExY58DcCul9DYAzwD4pRGtIxQQeA5TSXHgkUiqbmCtUMPhiBlri6mkhLKs2XJjv6irzDMWFWPtMJuOYa+qDpUptFdVIXAE6SEmSEwiWETAsFJlxIztRy4hoqLoQ3vynlovAjBnS0Zo4M7DU1jKxfEPZ9b6/rtPr5dQljX7kDcXMWODgVL6WUopE+O/AWBlFOsIE2bSMWyVBjulrRfqMGgUa9EJbJN89PJgwbpMpowM/O3BzLXDzFfdteZSRkPCm8G6H9Uhu9KKdQ3ZqBhrAsuuYrFAg+Lp9RIA4IaFqBhzgkmVDzyz6XrYvaIZeP/fP4Hv/90H8HtffNZWiyKZ0hv8OIBPd/ohIeQnCCGPEEIe2dzcDHBZ44Wp5OCdPZd3o1iLbnjxiRnwHMHXntsa6O9HBv7uYKfWQQ8TAFCoKXYqeoQG7GJsSPamVFej9P0W3GcN5P7Ck9eGepynrpVweDoRsbptcNfRKSi6gYvbVVe///989mn86deeR0Lk8dhqAVtlGQJHJmJv8K0YI4R8nhDyeJuv+x2/8ysANAAf6fQ4lNIPUkrvppTePTc359dyxx7DdPZEga/dkY2LuH0lh688O2QxFoW+tsWsxTBslusDP8ZuRY2iAdpA5E2mcJisMVnTIWtGJFO24MhMEjcuZvDZJ4Yrxp5eL+HUQtajVU0Wlq2opSt77tjHc5sV3LiYwZtuP4Sn10vYKsmYSUsDT6YZJ/hWjFFKX00pvbXN1ycAgBDyLwC8EcCPUEqH782ecGQT4sCdPau7NXAEWMqHe5Cqn7jv5CzOrO4NlLjdkCmjYqwdvGDG9mpqZN5vA9EDzxhL348M/PvxmpsX8MiFnYFnq8qajue3zAIiwn6w3MurLouxsmwyuKcWM9iuKHj6WmkiJEpgdN2UrwXwiwDeRCl1x08ecJjM2GDF2KXtCpZyiShduwvuu34OBgUePN9/7g3rpoxkyvaYs5mxwT1jhaoSpe+3gRcyZaMYi5ixVnzfzYsw6OBS5XMbZegGjcz7HTCTkiAJnOtirFTXkI4L9uv52JVCVIwNid8HkAHwOULIo4SQPxzROkKDfMLs+Ot30y3VVXzhyQ3cdXTKp5VNBu48kkdK4vHV5/r3Jda1qJuyG+Iij0xMGCr4dbeqIj8BvhCvYcuUfRj4DYPi2Wsl+88s5ylixvbj1uUslnLxgeMXnrFe54gZaw+OI1jOJ7Dqmhkzu35ZMUbpZJj3gdF1U56klB6mlN5hff3UKNYRJuQS5qm1X6nyfz18GSVZw7vvO+7HsiYGIs/hlkM5PHOt3PffrStRN2UvzA6RNVZXddRUPZIp20AU+mfGvvDUBl7zXx/A2asFABEz1g2EENy+ksdzm/3vCwDw1HoJEs/h2GzK45VNDg7l4+5lyrqGdEzAbDqGWStbbBJGIQHj0U0ZwQVy1o2oH6lS0w382dcu4IXHpnH74ShXtxemUoP58iLPWG/MpiU7oLFfFGrRkPBOGCRn7MJWBQDs7mHGjEXdlO2xPJXA1b0aBrE2r+7UsDIdWUS64VAu0bdMCTQiiSYhYwyIirHQgLXu9lOM/dMzm7iyV8O7XxaxYm6QT0gDJfHXVR0CR6INtwuGSeFn70nEjO3HIJ6x9aLZ1fqgNRewGDFjXXEon0BV0QfaG7bK8sTIaH5heSqBjZLcU2qXNR2KbtiHBtahOimvb3T3CAkGKcYu7Zi9ES88Nu3LmiYN+QGz3GqqHpn3e2A2HRuYGWNzQ6Noi/0YJNqCFWMPX9iFphs2GxwxY+2xbHWhu41fcGK7othyWoT2OJRPgFIznLwbytahgeW1MR9eVIxFCBS5hPmB7qcY26ko4IgZixGhN3JJEXXV6HssUl3VEY8yxrpiLh1DsT7YyCkWKxAxY/sxSAL/eqEOjphm6LNXi7ZnLB0xY22xnDfzGQcqxsoyZlKTUSz4BbdZY6WWYuyVN87jzXccwu2Hc/4uMCBExVhIMAgztlMx4wD4CQjECwL5AQpewJxNGZn3u4PlCa3u9p9k89yGaZ4+Hpmg90ES+veMrRfqeMkJM13+wfPbKNU1pCQ+2ic64JDFjLn1NTFouoHdqjoRQ6z9hNtirCw3y+lzmRh+94funJgu4OgOEhLYxVgfvoXdqoLpVLQRuAVjXvr1htSUSKbshesX0gAahVU/eOZaCStTCSSliLlpRb+eMcOg2CjVcctyFifn03jw3LY5CilizztiOiUhLrrPwmLYseT1mQmR0fzCYs5dsTvpDG5UjIUEksAhIfJ9M2PTkc/GNViO1V61P99Y5BnrjRNzgxdjz22UoyHLHdCvZ2ynqkDVKRazcdx3chYPPb+NjZIcmfe7gBCCQ/lE3zLlNhtiHR2IuyIu8phNx+xirFBV8SdfOb+ve9XOw4tN5sEhKsZChH5T+HcqCqZSk3nh+gEWH7LbJzNWV3XEomKsK1IxAcv5RN/FmKYbOL9ZsZm1CM2Q+mTGmEl6MRvHq29aQF018OC57YmRevzCcj6BK3v9zVZlxVjEjPXG8lSj2P34d1bxm598Euc2K02/0ypTThqiYixEMLv9+inG1Eim7AMsx6rQZ0dlPWLGXOHEfBrP9lmMXdiuQtEN3DAfMWPt0K+B/5rVSbmYi+NF100jExeg6NGQ8F5YzidwZbeGhy/s4M1/8DVXdpHtitk9HO3BvXFsJolz1t7wjPVfVnwxsD9HMmWEkSPbBzNGKcVuVYniAPpAQ6aMDPx+4ORcGuc2yzAM92ZzNrYnkinbQ+zTwL/uKMZEnsP33jgPIBqF1AuH8glslWX87uefwaOX9/Cxb6/2/DtbTKaMDPw9cdNSFlcLdexVFfszz6IsGFq7KScN0R0kRMgl3CfEF+sadINGp7I+kJR4iDzpi30EIs+YW1y/kEZdNfry3jxzrQxCgJPzkUzZDv16xlisBUstf83NCwAmV/rxCqwb+GvPbYMQ4KMPXeyZyL9dliFwJMpvc4GblswA1yfXSvZIurLcvA+X6hoknpvYSSdRMRYi9OMZY9lMUTHmHoQQ5AZI4a+pOhJRzlhPsIKqnzl/z2yUcHgqGb2+HSBy/XvGZtMxCJa8+T03zCEh8ljIxH1b4ySAxS9wBPj5V12Pc5sVfPP5na5/Z7tsdrNzUWRIT9xkBbg+8OymfY8r1VtlSnViJUogKsZChUGKsamoGOsL+aQ4kGcsJkTFQi+ctDoqz/XhG3v2Wgk3ROb9juA4AoEj7ouxYt2OEgBMefLTP/8y/MtoZFpXsGLsFafm8ZMvP4FMXMBffvNS17+zXZEj875LzGVimElJ+LtHr9rfq8j7ZcpJlSiBqBgLFfIJEVVF7znDCwB2GTMWecb6wlRSHMAzFjFjbjCVkjCblvDsNXfFmG5QPL9VwcnIvN8VIs+59oxdK9axkG1mwY7NppCa4JucF1ieSuDtd63gF159AxISjxcdn8ZT66Wuf2erHI1CcgtCCG5ayjZZGPYZ+OvaRMvpUTEWIrDoBTfsGAscjGTK/tCvTKnpBlSdRp4xlzi1mMGZKwVXv7tdkaHq1E5Aj9AeIk9cHdAAU6ZczEavZ7/gOYIPvP12nF4xR++kYgKqSvfRXtsVGTPR/usaNy2Zh66ppAhJ4FBqZcbkiBmLMCboZyRS5BkbDKZM6b4Yq1s3waib0h2+54Y5PL9DciUAACAASURBVLlWdDUWaaNoRgPMZyKppxskgXMlU9ZVHcW6hoVs9HoOi6TE9y7GykokU/YBZuK/fiGDTExo200ZMWMRxgLZPoqx3YoCSeCQjOSzvpBPiH0l8NesDTlixtzhNTcvAgA+98S1nr+7WTKLsbnIXN4Vpkzpwrpgs+VRgTAs4iLfdeh9TdFRVfRoLmUfYMXYDQtppOPCPs9YWVYnOoIlKsZCBMaMuYm3YKOQCIk6efpBPimi4tKXB8DekKMEfnc4PpvC9fNpV8XYRsnMxIqYnO5w6xlrsOWTe0MLCiYzpnWMt2CBr7NR4esaJ+fTeOHxabz6pgWkY0Jbz1gkU0YYC9ihpC66/XarStRJOQByVsODm9cYaBRjETPmHt93ywIeen6nZ4r5tSJjxqIbWjcIPHGVM8a8kFEQ9PBISgIMCsgdDm2NUUjRa+0WIs/hr37yxXjFqXmkYkJTtAWl1OymjGTKCOOAWeumxOSbbtiuKNEJeACwgtfNuBPAzBgDomKsH7zm5kXoBsWXn9no+nsbpTrySTGKDekBiedcjUOK4m68A/u81zr4xtgeHXl2B0OmhRmTNQOaQSPPWITxQCYmICnxWC/0LsZ2K0rkDRkA+SRjH10WY9ZmPKmp0H7g9HIOksDhiavFrr+3UZQj874L9OsZi5ix4cG8uNUOvrHLVoPKylQysDVNElo9Y4wly0QyZYRxACEEi9m4Pey3G0zPWMSM9Yt8wpIpXTJjrJsyIUUfJbfgOYLjMymc65HEv1GSMR+Z93tC5ElfnrF8tC8MDZYrWFO0tj+/uF1FSuKjnLEBkWphxiZ9SDgQFWOhw0I2jrVC99l+qm6gWNciOWIAsBsVC83thoqs4XErMytixvrDifkUzm9Wuv7OZknGfGTe7wmR51x5xnYrCrJxASIfbfvDIimZRUGneIuL2xUcmUlFDVQDItPiGSvVVev7k3uQmNwyc0KxlIvjoR4z0TZKLJ8pYhX6xWIuDknges5PrKs6Xv6fvoTtioJ0TNiXah6hO66bTeMzZ69B0QxIwv7igFKKjVI9uoZdQBK4fZ1n7bBbVSMPk0ewZcpOxdhOFacWoskRgyIdEyBrBlTdgMhzduZYxIxFGBss5EyZ0jA6yxKrO6ZfYXkqEdSyJgYiz+HmpSzOrO51/b0zqwVsVxT86htuwjd/5VWYjcId+8KJ+RR0g+LSTnt2bLeqQtVp5BlzgX48YxFb7g0aMuX+Ykw3KC7vVHF0JhX0siYGrOhivjHm4Y2iLSKMDRazcWgGxXYXGY3N92LDbSP0h9PLOTx+pdi14H34gslOvvUFK7ZkEcE9rpu1hoZ3kCpZxlgkU/aGyBOomjvPWDSr1ht0Y8au7tWg6hRHZyLz/qBgs1KZVPnMtRIIMXMKJxVRMRYyMDmsm4n/yq5ZjK1EzNhAOL2SQ1nWcGG7s6fp4Qs7uH4+HTENA+K6OXNT7WTib4xCimTKXhB5DqrhzjOWj4oxT5AUmWdsvzx8yVImomJscLCuSSa/n71axPEJH2gfFWMhw2LOvDmtF7oUY3s1zKalyFQ+IG6zhgE/1mGgtW5QfOvCLu45Ph3ksiYKmbiIhWwM5zY6MWNmMRal7/eG5FKm3KlG2YNewZYp20RbsENcJFMODiZTsmLsiatF3HIoN8ol+Y6oGAsZllgx1oUZW92tRRLlEDg5l0Zc5PDYavti7Kn1IkqyhnuOTQW8ssnCdbNpnN9qz4wx5jdixnpD5LmeMmVN0VFXjYjJ9QjdZMpL21VIAoelqKlnYKQdzNhuRcGVvRpuOZQd8ar8RVSMhQyz6Rh4jnSXKfdqUdjgEBCYib8DM/bIhV0AwD3HImZsGJyYT+HcRrntfL/NkoxMTLAZiAidIQqkJzNmDwmPZEpPwBL42xVjF7YrODyVAMdFsRaDwi7G6hqeWDPDoaNiLMJYgecI5tIxrHWQKQ2D4speLeqkHBKnl3M4e6UAvY2J/1sXd7GUi0cF75A4MZdGsa7tu5af2yjjS09vYCkfMQtu0Joz9r5PPI6f+ci3mn4nGoXkLTiOIC5ybUNfL25XcSySKIeCU6Y8e9U8FEcyZYSxA4u3AExT7kt/+4v43BPXAABbFRmKZkQy5ZC45/g0KoqOB89t7/vZerGOI9NRITYsXnb9LADgs2fX7e89fqWAN/3+V1Gqa/gPP3DLqJYWKrR6xs6sFvCpx9Zx3tEcYTNjUTHmGZKSsI8Zo5Ti0k4VRyLz/lBwMmOPXyliKRef+Gt3JMUYIeQ/EkLOEEIeJYR8lhByaBTrCCsWszHbwP8PZ67iyl4Nf/udKwBMvxgQdVIOi9fcvICppIiPfvPivp8VayqyicgIPSxOzmdw42IGn3xszf7eRx66BAD41M+9DC85OTuqpYUKZs5Yg8EtWplMf/nNS/b3bGYskik9Q0Lk9+WMlWQNVUW3vb0RBkNKambGJl2iBEbHjH2AUnobpfQOAP8A4H0jWkcosZRL2Ab+v/62WYQ98OwmNN2wYy0imXI4xAQeb7trBZ89e83OvGIo1lTkomLME7zh9BIevrCL9UIdmm7gHx9fw6tvWrC7hiP0hshz0A1qS+pFa3TMx761irrV7cdmrU5Fcyk9Q1Li9zFjW1YXcBQCPRw4jiAl8bi0U8X5rQpOL+dHvSTfMZJijFJadPwxBaB3YmEEG4fycZTqGj78jYt49PIe7j46hVJdw7cv7UWBrx7iHS88As2g+N+PrDZ9v1BTkY1HNzUv8PrblgAAn3psDQ+e38ZuVcUbrO9FcAdRMI3iqm6AUopiTcPp5Rx2qyo+/A2T2d2pKCAE0SHCQyQlHtWWaIutsslARsXY8EjHBfzj4+ugFPi+WxZGvRzfMTLPGCHktwghlwH8CCJmrC+87a7DOLWQwa/+7ePgCPA7b7sNAkfwpac3sLpbRS4hIhMVC0Pjurk07jk2hU8/3pDRNN1ARdGjm5pHODGXxk1LWXzwgfP4w386h5TE43tumBv1skIFyRr8reoG6qoBRTfw2lsX8YpTc/jNTz6JD33jIrbKMnIJEUI0JNwzJCR+n4F/uxwxY14hHRNQU3VcN5fCjYuTP+fTt08mIeTzhJDH23zdDwCU0l+hlB4G8BEA7+3yOD9BCHmEEPLI5uamX8sNFaZTEj76nhfh9HIOb7jtEE7MpXH3sSl84jtX8PknNnB4OmLFvMIdh/N45loZmmWQLlrjOXKJyU2CDhr/6a23gecIvvbcNl5z80IUVtwnRLsYo7ZEmU+K+MN33oVXnJrDr/3t4/jIQ5eiWAuP0c7Av8WKsUz0Wg8LZuJ/4+klEDL5MSG+3VEopa92+asfBfBJAL/e4XE+COCDAHD33XdHcqaFmXQMf/fel4JFNL36pgX85iefxA0LabzvjVEXmle4aSkLRTNwfquCGxYyKFjm6MjA7x1Or+TwyZ+7D3/4T+fxtrtWRr2c0EF0MGPs+swlRMRFHh/80bvx6cfX8I3z2xMfDRA0TGasuRjbLJtycFT4Dg8Wb/GG2w5Gf99IjveEkOsppc9af3wTgKdGsY6wgxACdmD4Fy85hjuPTOHOw/kobNBD3LRkdvE8uVbEDQsZu1Mtkim9RT4p4d+/7sZRLyOUEHnz865ohn19Mk+jJHC4/45l3H/H8sjWN6lIijxqqo66quMzZ9fxptsPYassYzopRXKwB1jJJ3HrsoobFtKjXkogGJXW8tuEkFMADAAXAfzUiNYxMRB5DncdjcbzeI0Tc2mIPMGTayXcfweamIcIEcYBktBgxphMGTG3/oN1U/79d6/i333sDE7MpbFVkjGTjlgxL/D+N98CTacHQqIERlSMUUrfOornjRChX0gCh5PzGTxpjeSIZMoI4waBa3jGosNCcEhIAmqKjovbVQDAuc0ytspyZN73CDGBR+wAWXMjLvX/b+/eo6qq9gWOfyeIAgql4PP6IM0kXqICgnoQ7R5NKzV1HDOGYt5Ko4e3kY88ds0sK6nbKZMy8zqsg8dDWtkpRycz9XgkTcXMQEzsKZqKmCIPlce8f+y1dxtBRNibtTf8PmOsAay19ly/+WM/fnuulxDXcGvn34sx68iDfNgJV2HdTVlWUUlhqeUEE3/vZvQpZhLflp5crqjkx4JiAH48U8yZostSjIl6kWJMiGsI6ezP6QuXKCi6JCMPwuV4GbspL9sdwC8jt87na9zE/sjJC4C1GJORMVE/UowJcQ2/H8R/gfOlZbT09KBVC3npCNdgu86YcQC/b0tP2xmWwnl8jGLsxzOWkbHsE4WUXK6Qy1qIepFXrBDXYL3g4OGThRSWluPv49VsDioVru/K64zJ3SEah3VkrLxS46Hg6GnLjdllZEzUhxRjQlxDu9Yt8fduwc8FJcZ9KeV4HOE67I8ZOy/3TW00Pl6/vw/07fb7vRPbSzEm6kGKMSGuQSlFUGBrfj5bYrkvpXzYCRdiHRm7bBzA7y9fFhqFdWQMqHILLxkZE/UhxZgQddC9nS8/FxRTeFFGHoRrsb/OmNzEvvFctRiTY8ZEPUgxJkQdBAW05vhvpRQUXZYPO+FS7G+HJF8WGo/1AH4fL08iut5oK4oDWsvImLh+bj+eXVZWRl5eHhcvXjQ7FNGEJXQsp++dnQBo08qDnJwckyNyX97e3nTt2hUvLykaHMF2zFi5plB2ozca35aWj8+ubX3w9FAEBfhyqvCSrSgT4nq4fTGWl5eHn58fQUFBcoabcJriS+V8n285W6qDnzedbvA2OSL3pLWmoKCAvLw8brrpJrPDaRKsH/5Fl8q5cKlcLvjaSKy7Kbu38wUs1yP09io2MyThxtz+VXvx4kUpxITT2X/blUs41Z9SioCAAPLz880Opclo36YVgW1a8e/cfLSWC742Futuym5GMfbM2DAulVeYGZJwY25fjAFSiAmna+Gh8FCKSq3x9JDnW0PI69WxlFIMuTmATd/+Ckgx1ljatGzBwJvaEX9LIGC9K4fkXtSPfMd3gLy8PMaOHUvv3r3p1asXs2bN4vLly9fdzooVK3j33XcBmDZtGhs2bKh1/TVr1nDixAnb3/fffz+HDh267u3W5NNPPyUqKopbb72V4OBgZs+ebVu2cuVKgoODCQ4OJiYmhp07d9qWJSYm0qdPH8LCwpg+fTplZWU1tr9nzx7i4+Pp06cPwcHB3H///ZSUlDgk9vo4d+4cb7zxxlWXK6Vso2NXFmPPP/98lb8HDRrkkJi01jz33HP07t2bW265hWHDhpGdne2Qtu09/PDDREZGEhISgo+PD5GRkURGRrJhwwYWLlzIli1bHL5N4VhDerenrEIDcquuxuLhoUifEcfw4I5mhyKaAq2120wDBgzQVzp06FC1eY2psrJSR0dH69WrV2uttS4vL9fTp0/Xs2fPblC7SUlJev369bWuM3ToUL13794Gbacm3377re7Zs6fOycnRWmtdVlamU1NTtdZaf/zxx7p///46Pz9fa611Zmam7tatm/7111+11lpv2rRJV1ZW6srKSn3PPffoN954o1r7J0+e1N27d9dffvml1tqSw/Xr1+uTJ086vC919eOPP+rQ0NAal5WXl2uttf7pTJH+5thv+kLp5SrLW7du7ZSYXn/9dT1q1ChdXFystdb6s88+0z179tSlpaUNbtvaJ3u15cDRzH7dNjW/nivVPeZ9onvM+0R/efSM2eEIIQzAPl2H+kZGxhpo69ateHt7c9999wHg6enJX/7yF1avXk1JSQnZ2dnExMQQGRlJREQEubm5ALz77rtERETQt29fpkyZAsCiRYt4+eWXq21j8eLFREdHExYWxoMPPojWmg0bNrBv3z4SExOJjIyktLSUhIQE9u3bB8C6desIDw8nLCyMefPm2dpq06YNCxYsoG/fvsTGxnLq1Klq20tJSWHBggUEBwcD0KJFC5KTkwFYunQpL730EoGBlqH5/v37k5SURGpqKgCjR49GKYVSipiYGPLy8qq1n5qaSlJSEnFxcYBl1GnixIl07NiRs2fPMm7cOCIiIoiNjeXgwYO23EyfPp2EhAR69uzJsmXLbO3VlMv8/HwmTJhAdHQ00dHRZGRk1NrOk08+yffff09kZCRz5sxh+/btDBs2jHvvvZfw8HAAZky9h3tGJxDTP5KVK1faHldaWkpkZCSJiYm2HIPli86cOXMICwsjPDyc9PR0ALZv305CQgITJ04kODiYxMRELK/ZqpYuXcrrr7+Or6/lmJQRI0YwaNAg1q5dy5tvvsncuXNt665Zs4ZHH30UgLS0NNtzbsaMGVRUVNjiWrhwIQMHDmTXrl3VtlcT+xHaoKAg/vznPxMXF0dUVBT79+9n5MiR9OrVixUrVtge89JLLxEdHU1ERARPP/10nbYjGqbTDd7c3MHyvJOLvgrhfprUq/aZj7M5dKLQoW2GdPHn6btCr7o8OzubAQMGVJnn7+9P9+7dOXr0KG+//TazZs0iMTGRy5cvU1FRQXZ2NkuWLCEjI4PAwEDOnj1bawyPPPIICxcuBGDKlCl88sknTJw4keXLl/Pyyy8TFRVVZf0TJ04wb948MjMzadu2LSNGjGDjxo2MGzeO4uJiYmNjWbJkCXPnzuXtt9/mqaeeqvL4rKwsnnjiiTr3NyoqinfeeafKvLKyMv7617/y2muvVWsjKyuLpKSkGtt/+umn6devHxs3bmTr1q1MnTqVAwcOAHD48GG2bdvGhQsX6NOnDw899BBHjhypMZezZs3i8ccfZ8iQIfzyyy+MHDnSdjmKmtp58cUXycrKsm1r+/bt7Nmzh6ysLNtZf6kr3qZYeRN0oxeDYgcyYcIEXnzxRZYvX257nL0PPviAAwcO8M0333DmzBmio6OJj48H4OuvvyY7O5suXbowePBgMjIyGDJkiO2xhYWFFBcX06tXr2q5zs7OZv78+cTFxZGSkgJAeno6CxYsICcnh/T0dDIyMvDy8iI5OZm1a9cydepUiouLCQsLY/HixTXmvi66devGrl27ePzxx5k2bRoZGRlcvHiR0NBQZs6cyebNm8nNzWXPnj1orRkzZgw7duyw9Vs4z5CbAzl6ukh2UwrhhppUMWYGrXWNByRb58fFxbFkyRLy8vIYP348vXv3ZuvWrUycONE2utSuXbtat7Ft2zZSUlIoKSnh7NmzhIaGctddd111/b1795KQkED79parQicmJrJjxw7GjRtHy5YtufPOOwEYMGAAn3/+eX27Xq2v9pKTk4mPj+cPf/jDdbW1c+dO3n//fQCGDx9OQUEB58+fB+COO+6gVatWtGrVig4dOnDq1Kmr5nLLli1Vjp8rLCzkwoULV22nJjExMVUuv/Duqjf54MMP8VCKY8eOkZubS0BAQK19mTx5Mp6ennTs2JGhQ4eyd+9e/P39iYmJoWvXrgBERkby008/VSnGrsaa6/bt29OzZ092795N7969+e677xg8eDCpqalkZmYSHR0NQGlpKR06dAAso7YTJky45jZqM2bMGADCw8MpKirCz88PPz8/vL29OXfuHJs3b2bz5s3069cPgKKiInJzc6UYawRT4npQqTWdb/AxOxQhxHVqUsVYbSNYzhIaGmorHqwKCws5duwYvXr1Ijw8nIEDB7Jp0yZGjhzJqlWrrlrA1eTixYskJyezb98+unXrxqJFi655gduadnlZeXl52bbt6elJeXl5jX3KzMykb9++1ZaFhISQmZnJ8OHDbfP2799PSEiI7e9nnnmG/Px83nrrrRpjsLY/duzYOsVujbdVq9+vbG2N/Wq5rKysZNeuXfj4VP9gqqmdmrRu3dr2+/bt2/niiy/4avdufH19SUhIaND/4Vox+Pv707p1a3744Qd69uxpm79//36GDh0KwKRJk3jvvfcIDg7m7rvvRimF1pqkpCReeOGFatv09vbG09Oz2vzrYY3bw8OjSh88PDxs/4/58+czY8aMBm1HXL9e7duweGyY2WEIIepBjhlroNtuu42SkhLbWZAVFRU88cQTTJs2DV9fX9uH6WOPPcaYMWM4ePAgt912G++99x4FBQUAte6mtH7gBwYGUlRUVOUMSz8/P9toj72BAwfyr3/9izNnzlBRUcG6detsH+B1MWfOHJ5//nmOHDkCWAqbV155BYC5c+cyb948W+wHDhxgzZo1tmPKVq1axWeffca6devw8Kj56fXII4/wzjvv8NVXX9nmpaWlcfLkSeLj41m7di1gKYACAwPx9/e/aqxXy+WIESNYvny5bb2adiPau1ourc6fP0/btm3x9fXl8OHD7N6927bMy8urxrNG4+PjSU9Pp6Kigvz8fHbs2EFMTEytcdibM2cOjz32GKWlpYBltG/nzp3ce++9AIwfP56NGzeybt06Jk2aBFjysWHDBk6fPg1Y8vHzzz/XeZsNNXLkSFavXk1RkeUCucePH7fFIoQQomZNamTMDEopPvzwQ5KTk3n22WeprKxk9OjRtssdpKenk5aWhpeXF506dWLhwoW0a9eOBQsWMHToUDw9PenXrx9r1qypsf0bb7yRBx54gPDwcIKCgmy7n8BycPXMmTPx8fGpckB2586deeGFFxg2bBhaa0aPHl3jKNTVRERE8OqrrzJ58mRKSkpQSnHHHXcAlt1Ux48fZ9CgQSil8PPzIy0tjc6dOwMwc+ZMevToYTs4f/z48bbj3aw6duzI3//+d2bPns3p06fx8PAgPj6e8ePHs2jRIu677z4iIiLw9fWtdizalUJDQ2vM5bJly3j44YeJiIigvLyc+Pj4KgeZXykgIIDBgwcTFhbGqFGjbP21uv3221mxYgURERH06dOH2NhY27IHH3yQiIgI+vfvbyskAe6++2527dpF3759UUqRkpJCp06dOHz4cB3+C/Doo4/y22+/ER4ejqenJ506deKjjz6yjfa1bduWkJAQDh06ZCvyQkJCeO655xgxYgSVlZV4eXmRmppKjx496rTNhhoxYgQ5OTm2/3+bNm1IS0uz7SoVQghRnaptV4qriYqK0tazBa1ycnK49dZbTYpICFEf8roVQjQHSqlMrXXUtdaT3ZRCCCGEECaSYkwIIYQQwkRSjAkhhBBCmKhJFGPudNybEM2dvF6FEKIqty/GvL29KSgokDd4IdyA1pqCggK8vb3NDkUIIVyG21/aomvXruTl5ZGfn292KEKIOvD29rbdfUAIIUQTKMa8vLyq3LJGCCGEEMKduP1uSiGEEEIIdybFmBBCCCGEiaQYE0IIIYQwkVvdDkkplQ9c7a7HgcCZRgynuZH8Oo/k1rkkv84l+XUeya1zNUZ+e2it219rJbcqxmqjlNpXl/s/ifqR/DqP5Na5JL/OJfl1Hsmtc7lSfmU3pRBCCCGEiaQYE0IIIYQwUVMqxlaaHUATJ/l1Hsmtc0l+nUvy6zySW+dymfw2mWPGhBBCCCHcUVMaGRNCCCGEcDsuW4wppboppbYppXKUUtlKqVnG/HZKqc+VUrnGz7bG/ABj/SKl1PIr2pqslPpWKXVQKfVPpVSgGX1yJQ7O7yQjt9lKqRQz+uNK6pHbPyqlMo3naKZSarhdWwOM+UeVUsuUUsqsfrkKB+d3iVLqmFKqyKz+uBpH5Vcp5auU2qSUOmy086KZ/XIFDn7u/lMp9Y3RzgqllKdZ/XIVjsyvXZv/UEplOT14rbVLTkBnoL/xux9wBAgBUoAnjflPAkuN31sDQ4CZwHK7dloAp4FA4+8UYJHZ/TN7cmB+A4BfgPbG3+8At5ndPzfLbT+gi/F7GHDcrq09QByggE+BUWb3z+zJwfmNNdorMrtfrjI5Kr+ALzDM+L0l8O/m/vx18HPX3/ipgPeBe8zun9mTI/NrzBsP/A3IcnrsZifvOpL8EfBH4Dugs13iv7tivWlULRa8gHygh/GkXQE8aHZ/XG1qQH6jgS12f08B3jC7P6401TW3xnwFFACtjHUO2y2bDLxldn9cbapvfq+YL8WYE/NrLHsNeMDs/rjS5KDnrhfwMTDJ7P642tSQ/AJtgJ1YijmnF2Muu5vSnlIqCEsF+xXQUWv9K4Dxs0Ntj9ValwEPAd8CJ7Ak9v+cGK7baUh+gaNAsFIqSCnVAhgHdHNetO6lHrmdAHyttb4E/AeQZ7csz5gnDA3Mr7gGR+VXKXUjcBfwhTPjdSeOyK1S6jMse34uABucHLJbcUB+nwX+FyhxerC48DFjVkqpNliGYP9ba11Yj8d7YSnG+gFdgIPAfIcG6cYaml+t9W9Y8puOZTfET0C5I2N0V9ebW6VUKLAUmGGdVcNqcvqzwQH5FbVwVH6NL2nrgGVa6x+cEau7cVRutdYjsYz0tAKqHe/UXDU0v0qpSOBmrfWHTg3UjksXY0Yh9T6wVmv9gTH7lFKqs7G8M5ZvBbWJBNBaf68tY4/vAYOcFLJbcVB+0Vp/rLUeqLWOwzIcnOusmN3F9eZWKdUV+BCYqrX+3pidB3S1a7YrltHdZs9B+RVX4eD8rgRytdavOj9y1+fo567W+iLwD2Css2N3Bw7KbxwwQCn1E5ZdlbcopbY7M26XLcaUUgrL7sQcrfUrdov+ASQZvydh2Sdcm+NAiFLKeqPOPwI5jozVHTkwvyilOhg/2wLJwCrHRuterje3xi6cTcB8rXWGdWVjOP2CUirWaHMqdfh/NHWOyq+omSPzq5R6DrgB+G9nx+0OHJVbpVQbu+KiBTAaOOz8Hrg2B773vqm17qK1DsJy4toRrXWCU4M368C6a01GAjSW3YoHjGk0lrP3vsAy+vIF0M7uMT8BZ4EiLKMKIcb8mVgKsINYDnQMMLt/Zk8Ozu864JAxyRk915lb4Cmg2G7dA0AHY1kUkAV8DyzHuFBzc54cnN8U47lcafxcZHb/zJ4clV8sI7naeO+1zr/f7P41kdx2BPYa7WQDrwMtzO6f2ZMj3xvs2gyiEQ7glyvwCyGEEEKYyGV3UwohhBBCNAdSjAkh+2Fs5wAAAc5JREFUhBBCmEiKMSGEEEIIE0kxJoQQQghhIinGhBBCCCFMJMWYEKJJUhY7lVKj7Ob9SSn1TzPjEkKIK8mlLYQQTZZSKgxYj+V2aJ5YriN0u27AVfiVUi201nLLLyGEw0gxJoRo0pRSKVgu7NgauKC1flYplQQ8DLQEvgQe0VpXKqVWAv0BHyBda73YaCMPeAu4HXhVa73ehK4IIZqoFmYHIIQQTvYMsB+4DEQZo2V3A4O01uVGAXYP8DfgSa31WeMWM9uUUhu01oeMdoq11oPN6IAQommTYkwI0aRprYuVUulAkdb6klLqP4FoYJ/lVnb4AMeM1Scrpf4Ly3tjFyAEy22+ANIbN3IhRHMhxZgQojmoNCYABazWWv+P/QpKqd7ALCBGa31OKZUGeNutUtwokQohmh05m1II0dxsAf6klAoEUEoFKKW6A/7ABaBQKdUZGGlijEKIZkRGxoQQzYrW+lul1DPAFqWUB1AGzAT2YdklmQX8AGSYF6UQojmRsymFEEIIIUwkuymFEEIIIUwkxZgQQgghhImkGBNCCCGEMJEUY0IIIYQQJpJiTAghhBDCRFKMCSGEEEKYSIoxIYQQQggTSTEmhBBCCGGi/wflcTw84LH27QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 720x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# Création du graphique pour montrer l'oscillation de la concentration de CO2 par an au fil du temps (300 dernières lignes du tableau)\n",
"plt.figure(figsize=(10, 6))\n",
"plt.plot(data['Date'][-300:], data['Oscilation'][-300:], label='Oscilation CO2 Concentration Over Time')\n",
"plt.title('Oscilation CO2 Concentration Over Time')\n",
"plt.xlabel('Year')\n",
"plt.ylabel('CO2 Concentration (ppm)')\n",
"plt.legend()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum oscillation amplitude in CO2 anomalies: 4.419807692307586 ppm\n",
"Minimum oscillation amplitude in CO2 anomalies: -4.191923076923047 ppm\n"
]
}
],
"source": [
"# Calculez la valeur maximale et minimale de la colonne 'Oscillation'\n",
"maximum_value = data['Oscilation'].max()\n",
"minimum_value = data['Oscilation'].min()\n",
"\n",
"print(\"Maximum oscillation amplitude in CO2 anomalies:\", maximum_value, \"ppm\")\n",
"print(\"Minimum oscillation amplitude in CO2 anomalies:\", minimum_value, \"ppm\")"
] ]
}, },
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cette forme de détermination ne donne pas de résultats car les données de concentration de CO2 de l'oscillation ne valent pas zéro mais ont de faibles valeurs, à la fois positives et négatives, donc la méthode correcte doit détecter ces passages par zéro\n"
]
}
],
"source": [
"# Trouver les indices où la concentration est égale à zéro\n",
"zero_indices = data.index[data['Oscilation'] == 0].tolist()\n",
"\n",
"# Calculer les temps entre deux passages à zéro consécutifs\n",
"times_between_steps = []\n",
"for i in range(1, len(zero_indices)):\n",
" time_between_steps = data.iloc[zero_indices[i]]['Date'] - data.iloc[zero_indices[i-1]]['Date']\n",
" times_between_steps.append(time_between_steps)\n",
"\n",
"# Calculer le temps moyen entre les passages à zéro\n",
"# average_time_between_steps = sum(times_between_steps, pd.Timedelta(0)) / len(times_between_steps)\n",
"\n",
"# print(\"Average time between zero steps:\", average_time_between_steps)\n",
"print(\"Cette forme de détermination ne donne pas de résultats car les données de concentration de CO2 de l'oscillation ne valent pas zéro mais ont de faibles valeurs, à la fois positives et négatives, donc la méthode correcte doit détecter ces passages par zéro\")"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Average time between zero crossings: 69 days 15:11:01.224489\n"
]
}
],
"source": [
"# Identifier les passages à zéro\n",
"crosses_by_zero = (data['Oscilation'] * data['Oscilation'].shift(1) < 0) & (data['Oscilation'] != 0)\n",
"\n",
"# Filtrer les lignes contenant des passages à zéro\n",
"data_crosses_by_zero = data[crosses_by_zero]\n",
"\n",
"# Calculer les temps entre les passages à zéro consécutifs\n",
"times_between_crosses = data_crosses_by_zero['Date'].diff().mean()\n",
"\n",
"print(\"Average time between zero crossings:\", times_between_crosses)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{ {
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment