{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Subject 1: CO2 concentration in the atmosphere since 1958" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/weekly/weekly_in_situ_co2_mlo.csv\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_file = \"weekly_in_situ_co2.csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url, data_file)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "raw_data = pd.read_csv(data_file, skiprows=44)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "raw_data = pd.read_csv(data_file, skiprows=43)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Visualizar el conjunto de datos\n", "plt.figure(figsize=(15, 6))\n", "plt.plot(raw_data, label='CO2 Concentration')\n", "plt.title('CO2 Concentration Over Time')\n", "plt.xlabel('Year')\n", "plt.ylabel('CO2 Concentration (ppm)')\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "raw_data = pd.read_csv(data_file, error_bad_lines=False)\n", "raw_data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Cargar datos desde el archivo CSV local\n", "file_path = \"https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/weekly/weekly_in_situ_co2_mlo.csv\" # Reemplaza con la ruta correcta a tu archivo\n", "\n", "data_file_co2 = \"weekly_co2_in_situ_co2.csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(file_path, data_file_co2)\n", "\n", "data_co2 = pd.read_csv(file_path, skiprows=43, sep=r'\\s+', engine='python', parse_dates=[0], index_col=[0])\n", "\n", "# Verificar los primeros registros de datos\n", "print(data_co2.head())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_co2\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Visualizar el conjunto de datos\n", "plt.figure(figsize=(15, 6))\n", "plt.plot(data_co2.index, label='CO2 Concentration')\n", "plt.title('CO2 Concentration Over Time')\n", "plt.xlabel('Year')\n", "plt.ylabel('CO2 Concentration (ppm)')\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Visualizar el conjunto de datos\n", "plt.figure(figsize=(15, 6))\n", "plt.plot(data_co2)\n", "plt.title('CO2 Concentration Over Time')\n", "plt.xlabel('Year')\n", "plt.ylabel('CO2 Concentration (ppm)')\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Subject 4: Latency and capacity estimation for a network connection from asymmetric measurements\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_url_latency_campus = \"https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/weekly/weekly_in_situ_co2_mlo.csv\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_file_campus = \"latency_campus.csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file_campus):\n", " urllib.request.urlretrieve(data_url_latency_campus, data_file_campus)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "raw_data_campus = pd.read_csv(data_file_campus, skiprows=1)\n", "raw_data_campus" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_url_latency_remote = \"https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/weekly/weekly_in_situ_co2_mlo.csv\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_file_remote = \"latency_remote.csv\"\n", "\n", "import os\n", "import urllib.request\n", "if not os.path.exists(data_file):\n", " urllib.request.urlretrieve(data_url_latency_remote, data_file_remote)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "raw_data_remote = pd.read_csv(data_file_remote, skiprows=1)\n", "raw_data_remote" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }