no commit message

parent 7994b226
......@@ -25,7 +25,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Les données de l'incidence du syndrome grippal sont disponibles du site Web du Réseau Sentinelles. Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet."
"Les données du nombres de cas de Covid-19 sont compilés par le ![Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)](https://systems.jhu.edu/) et sont disponibles sur GitHub. Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à un pays et s'il est composé de plusieurs provinces ou territoires, chaque territoires est sur une ligne distincte. Les colonnes correspondent aux nombres de cas cumulés chaque jour de Covid-19 à partir du 22 janvier 2020."
]
},
{
......@@ -38,6 +38,33 @@
"raw_data = pd.read_csv(data_url, skiprows=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous nous proposons de traiter les cas des pays suivant :\n",
" - Belgique\n",
" - Allemagne\n",
" - Iran\n",
" - Italie\n",
" - Japon\n",
" - Corée du Sud\n",
" - Portugal\n",
" - US\n",
" - Chine (à l'exeption de Hong Kong)\n",
" - France (à l'exeption des territoires et départements d'outre-mer)\n",
" - Royaume Unis (à l'exception des colonies)\n",
" - Pays-Bas (à l'exception des colonies)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pour plus de simplicité pour le traitement de ces données, nous isolons dans des dataframes les nombres de cas pour chaque pays.\n",
"Ainsi nous avons 12 dataframes avec en première ligne le nom du pays et les autres sont composées de la date et du nombre de cas cumulés."
]
},
{
"cell_type": "code",
"execution_count": 3,
......@@ -67,6 +94,15 @@
"Netherlands = temp[temp.isnull().any(axis=1)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Premièrement nous récupérons la liste de toutes les dates grâce à la transposé d'une dataframe. Ensuite nous transformons les dates du format \"mm/jj/aa\" au format \"jj-mm-aa\" pour plus de simplicité. \n",
"\n",
"Dans un second temps nous arrangeons les données en transposant et en supprimant les lignes inutiles comme le nom des provinces/états, la lattitude et longitude. Et nous changeons l'index pour que ce soit maintenant les dates."
]
},
{
"cell_type": "code",
"execution_count": 4,
......@@ -95,6 +131,13 @@
" return df1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous arrongeons ici les données en modifiant le nom du pays pour y rajouter \"en\" ou \"au\" pour l'automatisation des plots par la suite."
]
},
{
"cell_type": "code",
"execution_count": 5,
......@@ -113,25 +156,24 @@
"China = arrangement(China,False)\n",
"China['cumul']=China.sum(axis=1);China['cumul'][0]='Chine'\n",
"France = arrangement(France,True);France['cumul'][0]='en France'\n",
"UK =arrangement(UK,True);UK['cumul'][0]='au Royaume Uni'\n",
"UK =arrangement(UK,True);UK['cumul'][0]='au Royaume Unis'\n",
"Netherlands = arrangement(Netherlands,True);Netherlands['cumul'][0]='aux Pays-Bas'\n",
"\n",
"liste = [Belgium,Germany,Iran,Italy,Japan,Korea,Portugal,Spain,US,China,France,UK,Netherlands]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Maintenant que nous avons les données arrangées à notre convenance, nous traçons, pour chaque pays, 2 graphes. Le premier a en abscisse la date et en ordonnée le nombre de cas cumulés de Covid en échelle linéaire. Le second a en abscisse la date et en ordonnée le nombre de cas cumulés de Covid en échelle logarithmique."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/matplotlib/cbook/deprecation.py:107: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead.\n",
" warnings.warn(message, mplDeprecation, stacklevel=1)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAElCAYAAACWMvcuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmYHFXV+PHv6Z59Jpmsk33fIEBYEnaECaIgILiAoIiIKD/cV1TeVwUBFdTX7UVBRBYRiKD4Csi+DMhOEghZCJA9k32WJLPPdPf5/XFvJ52hu6dnqemZyfk8Tz9dVX3r1qme7jldVbfuFVXFGGOMGWhC2Q7AGGOMCYIlOGOMMQOSJThjjDEDkiU4Y4wxA5IlOGOMMQOSJThjjDEDkiW4fkBErhKRv3aivIrI9CBj6q7O7lMPbO+zIvJ8b22vO0SkXEQqsx1HeyKyXETKU7zWJ2MOkojcLiLXZlj2JhH5YdAxmX1ZgktDRD4lIgtFpF5EtojIIyJyQrbjMiYdETlKRB4WkZ0iUiMir4rIxd2tV1UPUtWKHgixT/BJOea/3/UisklEfhzEtlT1MlW9Joi6TWqW4FIQkW8BvwF+CowCJgJ/AM7OZlz7IxHJyXYM/YWIHAs8DTwLTAeGA18EPpTNuPqwzapaoqolwAnAJSLykWwHZXqGJbgkRKQUuBr4sqrer6oNqtqmqg+q6uW+zD6nJ9qfohGRdSJyuYi8KSINIvJnERnljwLrRORJERmabN2E9U/JMN7L/RHmZhH5XLvXKkTk8wnzKU/Vichkf3rzIhHZICJVIvLfCa/ni8hv/HY2++n8xH0Qke+KyHYfz0dE5HQReccfSfxXu00WiMjf/PuxWEQObbf/3xORN4EGEckRkbEi8g8R2SEia0Xka2nek+Ei8oCI7BaRV4Fp7V4/QESe8HG9LSKfSFPXMBG5ze9zrYj8n18+VEQe8vHU+unx7d7rNX7/1orIBSnqL/Sfp1oRWQEc2e71jPcb+AVwh6per6pV6ixS1U8k1PcFEVnl9/0BERnrl98kIr9st+1/+R97+3wmO4o5yT6mfL99Pb8XkX/79+oVEZmWpq5jRORFcUeoSyThtKn/vF8jIi/4uh4XkRHpYotT1bXAi8DsTOJOEtd3E76Hn5eESwXy3v8X+3xn25VN+53tTEz7PVW1R7sHcBoQAXLSlLkduDZhvhyoTJhfB7yMO/obB2wHFgOHA/m4X9lXJls3Yf1T/PRVwF/TxLoNOBgoBu4GFJjuX68APp9Q/rPA8ynqmuzX/RNQCBwKtAAH+tev9vtUBozE/TO4JmEfIsCPgFzgC8AOH88g4CCgGZiasE9twDm+/HeAtUBuwv6/AUzwsYSARb7+PGAqsAY4NcW+LADu9e/JwcCm+H77ZRuBi4Ec4AigCjgoRV3/Bv4GDPWxnuSXDwc+DhT5fbwP+L+EbewGZvn5MWnqvw74DzDM7++y+OehM/vt44gC89N8bk/2+3oE7nP4v8Bz/rUT/fsifn4o0ASMTfKZTBlzkm2mfb9x36Ua4Cj/+l3AghR1jQOqgdP9e/MBPz8y4fO+GpjpPzcVwHUp6ipn3+/sDP85ObkTcV+b8D3civucFwF3su/3sH3ZLn1nO4rJHvs+7AguueFAlapGulnP/6rqNlXdhPtn8Iqqvq6qLcA/ccmuuz4B3Kaqy1S1AZc4uuvHqtqkqkuAJbhEB3ABcLWqblfVHcCPgQsT1msDfqKqbbgEMwL4rarWqepyYDkwJ6H8IlX9uy//K6AAOCbh9d+p6kZVbcIdIYxU1atVtVVV1+AS8fntgxeRMC7x/Ejd0fcy4I6EImcC61T1NlWNqOpi4B+4ZNu+rjG403uXqWqtuiP5ZwFUtVpV/6GqjapaB/wEOClh9RhwsIgUquoW/x4k8wn/vtWo6kbgdwmvZbzfuIQUArak2A64v+GtqrrYfw6vAI4Vkcm4z6gC7/NlzwFeUtXNnYy5vUze7/tV9VX/nbsLOCxFXZ8GHlbVh1U1pqpPAAtxCS/uNlV9x39u7k1TF8BYfyS4G3gHeAWIHy1l/Dlh7/dwuao24r4bqXTnO9uZmPZ7luCSqwZGSPev/WxLmG5KMl/SzfoBxuJ+0cWt74E6tyZMN7I3zrHt6l/vl8VVq2rUTzf553T7vCduVY0Ble3qS9yvSez9Z7RTRHYC/4U7Qm5vJO7Xbar3ZRJwdLu6LgBGJ6lrAlCjqrXtXxCRIhH5o4is9/8gnwOGiEjY/+M6D7gM2OJPvx2QpH5I/zfszH7X4pLqmBTbiW9rT/2qWo/7vI9TVcX9MPmkf/lTuGTT2Zjby+T9TvWZS1bXue3qOoF99znTusBdgxuiqoOBIbjPaPzHUGc+J+3fj41JyqQq25nvbGdi2u/ZxfvkXsKdTvsI8PcUZRpwpyLiuvMB26cufwQyMsN1t+D+CcdNTFc33YtzM+4LFj8SmeiXddWeuEUkBIxvV1/iUBcbgbWqOiODenfgTpdOAFYmxJpY17Oq+oEM6toIDBORIaq6s91r3wZmAUer6lYROQx4HRAAVX0MeExECoFrcUde7+O94n/DxPc1cfsZ7beqNorIS7ij12dSFIv/DQEQkWLcGYtNftE9wOMich1wNPDRFPWki7m9zrzfHdkI3KmqX+iBuvahqrtE5G7c6ej4tjKNewvu8xs3IVVBuved7cn3csCzI7gkVHUX7prH78U1lCgSkVwR+ZCI/NwXewM4XVwDhNHAN7qxyXdwDS7OEJFc4Ae46yOZuBf4rIjMFpEi4Mp2r78BfMzvw3Tgkm7EeQ/wAxEZ6S/c/wjozr1sc0XkY/5I+Ru4630vpyj7KrBbXMOTQhEJi8jBIvKexg3+KPJ+4Cq/37OBixKKPATMFJEL/d81V0SOFJEDk9S1BXgE+IO4RiW5InKif3kQ7hf/ThEZRsJ7L65B0Vk+gbQA9bjrY8ncC1zh6x8PfLUr++19F/d5uFxEhvtYDhWRBf71u4GLReQwcQ2Efoo7db7O7+/ruB8ItwCPJUnqmcTcXsbvdwb+CnxYRE7170WBuAZO4ztcswMiUoI79RtP2p2J+17c+3qg/x7+KM2muvOd7cn3csCzBJeCqv4K+BYu2ezA/XL6CvB/vsiduOtT64DH2furryvb2gV8CfdPZRPuF1xGN82q6iO42xmeBlb550S/BlpxpwrvIPUpp0xci7ve8SawFNdoJqMbXVP4F+40Xi3uWt7H/PW49/BJ68O46ylrcRfWbwFKU9T9Fdypqa24C/y3JdRVB3wQ989ssy9zPal/VFyIu764EtdYKP5j5je4hgxVuMT8aMI6IdwR3mZcA4qTcH/jZH6MO021FvdZurOr+62qL+IakpwMrBGRGuBm4GH/+lPAD3HXbbbgWpe2v553D3AKLhmmkjLmJDF19v1OyV/vOxt3mjb+vbycrv8vGyv+Pjjc/gzDnfLrVNz+e/g73JHzKtxZIHA/bpKV7dJ3tiffy/1BvLWUMcaYHuKPqJYB+Zk0VhMRBWao6qrAg9uP2BGcMcb0ABH5qIjkibu/9XrgwR5oiW26wRKcMcb0jP+HO226Gne99YvZDcfYKUpjjDEDkh3BGWOMGZAswRljjBmQLMEZY4wZkCzBGWOMGZA6THD+bvofisif/PwMETkz+NCMMcaYrkua4HyXUfEOSm/D3Y1/rJ+vpHu9VxhjjDGBS3UEtxa4yU9PU9Wf47oqwg9BIb0QmzHGGNNlSROcqq7AjRMF0Op7Q1cAcSPtvqd/NWOMMaYvSTlcju/UFFxP148CE0TkLuB43AizxhhjTJ+VUU8mftiNY3CnJl9W1aqgAzPGGGO6I2WCE5Ej0q3oh0o3xhhj+qR0CS7ViMAAqqonBxOSMcYY033W2bIxxpgBKWUjkzgR+Uyy5ar6l54PxxhjjOkZHSY44MiE6QLg/cBiwBKcMcaYPqvTpyhFpBS4U1XPCiYkY4wxpvu60tlyIzCjpwMxxhhjelIm1+AexPdigkuIs4F7gwzKGGOM6a4OT1GKyEkJsxFgvapWBhqVMcYY000ZX4MTkcEkHPGpak1QQfU1I0aM0MmTJ3d5/YaGBoqLi3suoIBZvMHqT/H2p1jB4g1aX4l30aJFVao6sqNymZyivBS4BmgCYrjuuhSY2t0g+4vJkyezcOHCLq9fUVFBeXl5zwUUMIs3WP0p3v4UK1i8Qesr8YrI+kzKZXKbwOXAQdb/pDHGmP4kkwS3Gtdy0hhjjOmU6voWnlq5nTcrd7K0chc7m9r4/aeO4OBxpYFvO5MEdwXwooi8QsI4cKr6tcCiMsYY0+9U1bewo66FJ1Zs48XVVSxev5PWaAyAkvwcDhlXypQRxRTlhXslnkwS3B+Bp4GluGtwxhhj9nOqSmVtE+9sq+PJt7bx4upq1le7k30icODowVxwzESGFuVx8gFlzB4zmFBIejXGTBJcRFW/FXgkxhhj+qRYTNlY28jibRHeqljNS2uqeX1DLXXNEQCK8sIcP30Enz56EsOK8zh66jDGDy3KctSZJbhnfEvKB9n3FOV+c5uAMcbsL9qiMdbsaGDxhlo21jSyoaaRV9bWsKMu/u9/JaMHF/DhQ8dy0NjBzCgbxMxRJQwpystq3MlkkuA+5Z+vSFi2X90mYIwxA01VfQtrqxpYW9XAuqoG1lU3sHj9Trbubt5TJickjB1SyKHjh3DKgWU0bH6Xc087kUH5OYj07unGrugwwanqlN4IxBhjTNc1t0XZ3dTG7uY2djVF2N3c5uab2tjdHGF3UxuVO5tYvb2euuYIm3Y27Vk3JyRMGFbEYROGMHvsYIYW53HijBGMG1JITnhvl8UVFWsYXJCbjd3rEhsPzhhj+qhYTNm6u5l11Q2sq2pk884mahpbqalvdc8NrexsdEmtNZK+DWBBboiyQQXMKCuhpCCHC8dMYtboQUwZXsy4oYXkhrvS937fZuPBGWNMH9DQEmH1jnpWba/npdXVLKncyfrqRloSEldIYGhRHsOK8xhanMeMshKGFOUyuDCX0sJcBhe46cEFOW5+z7Ic8nN6p2l+X5LJKcqvJs7Hx4PraD0RuRU4E9iuqgf7ZcOAvwGTgXXAJ1S11r92BXAJEAW+pqqP+eVzgduBQuBh4OuqqiKSj0uyc4Fq4DxVXefXuQj4gQ/lWlW9wy+fAiwAhuGS9IWq2trRvhhjTE+LxZTtjTHufHk9//f6Jt7YuJNozPUNXFqYy7xJQzlp5kgmjyhm8vBiJg0vYkxpIeFebmrfn2VyBNdepuPB3Q7cwL5Het8HnlLV60Tk+37+eyIyGzgfOAgYCzwpIjNVNQrcCFwKvIxLcKcBj+CSYa2qTheR84HrgfN8Er0SmIdrDLNIRB7wifR64NequkBEbvJ13NiF98AYYzolEo2xfPNuXlxdzdMrt7Fi824aWqPAMmaNGsSXyqdx0NhSpo4sZtrIEktkPSCw8eBU9TkRmdxu8dlAuZ++A6gAvueXL1DVFmCtiKwCjhKRdcBgVX3Jx/IX4CO4BHc2cJWv6+/ADeKa9ZwKPBG/jUFEngBOE5EFwMnsbRV6h1/fEpwxJhDRmPLGxlr+/eZWHliymap619T+kHGlnDN3PKHdWzjvA0cza9SgftEqsb/J5AjulwnT3R0PbpSqbgFQ1S0iUuaXj8MdocVV+mVtfrr98vg6G31dERHZBQxPXN5uneHATlWNJKnLGGN6hKqycH0t97y6gadXbmdnYxt54RAnH1DG6XPGcOTkoYwpLQSgoqKKA0YPznLEA1cmCW4DsEVVmwFEpFBEJsevd/WQZD9dNM3yrqyTrq73BuRubr8UYNSoUVRUVKQq2qH6+vpurd/bLN5g9ad4+1OskL14VZU1u2K8siXCmzuibG1UCnPgiLIc5szI5+ARYYpz66C2jrdr4e0sx9tV/S3eTBLcfcBxCfNRv+zI5MXT2iYiY/zR2xhgu19eCUxIKDce2OyXj0+yPHGdShHJAUqBGr+8vN06FUAVMEREcvxRXGJd76GqNwM3A8ybN0+7MwZSXxlDKVMWb7D6U7z9KVbo/Xjrmtt49p0d3PD0KlZubSQ/J8RRU4bzrTljOfPQMRTlpf8Xa+9vsDJJcDmJLQ1VtVVEutonywPARcB1/vlfCcvvFpFf4RqZzABeVdWoiNSJyDHAK8BngP9tV9dLwDnA07515WPAT0VkqC/3QeAK/9ozvuyCdts3xpiMxGLKq+tq+NtrG3l46RZaIjEmDy/iuo8dwhlzxjCoH90IPdBlkuB2iMhZqvoAgIicjTsaSktE7sEdSY0QkUpcy8brgHtF5BLcqc9zAVR1uYjcC6zAXef7sm9BCfBF9t4m8Ih/APwZuNM3SKnBtcJEVWtE5BrgNV/u6oR+M78HLBCRa4HXfR3GGNOhqvoW/vryev6xuJKNNU0Mys/h3HnjOXPOWOZNGrpPjx+mb8gkwV0G3CUiN/j5SuDCjlZS1U+meOn9Kcr/BPhJkuULgYOTLG/GJ8gkr90K3Jpk+RrgqNRRG2PMXqrK8s27eXjpFu54cR2NbVGOmzacb31gJqceNLrDU5AmuzK50Xs1cIyIlACiqnXBh2WMMdkTjSn3LdzI/z69ik07mxCB0w4azbc/OIvpZSXZDs9kKOOfH6paH2QgxhiTbU2tUR5ZtoU/P7+W5Zt3c8TEIXzjlBnMP6CMESX52Q7PdJIdXxtjDPDosq1c+cAytu1uYcKwQn73ycP58JwxdgN2P2YJzhiz34rflH3r82t5ZNlWZo8ZzK/PO4xjpgwnZF1l9XuZdNV1LvCoqtaJyA+AI3AdGC8OPDpjjAnIc+/s4MaK1by0ppr8nBCXnzqLS0+cOiCHjdlfZXIE90NVvU9ETsD18/hLXP+NRwcamTHG9LDq+hb+vXQLjyzdyktrqhlUkMOXyqfxpfnTKcm3E1oDTSZ/0fj9aGcAN6rqv0TkquBCMsaYnqGqrK9u5OU11Ty9cjtPr9xOJKZMHFbED844kAuPnbRfjpO2v8gkwW0SkT8CpwDX+3HY7BjeGNMn7ahrYcWW3bywqorHlm9lfXUjACMH5XPx8ZM5Z+4EZo0elOUoTW/IJMF9AjcG2y9VdafvQ/LyYMMyxpjMNLREeHVtDc+vquLxJU1sfPRJAHLDwnHTRvD5903l2KnDmTay2FpE7mcyudG7EbhfRMpEZKJfvDLYsIwxJrn6lgjLNu3izcqdvLymhv+8u4O2qJKXE2J6KXz3tFkcMXEos8cOZrD1C7lfy6QV5VnA/+A6Qd4OTMQluIOCDc0Ys79TVVZs2c3i9bUsqXRJ7d3t9agf6GrisCIuOnYy8w8oY+6kobz8wn8oL5+e3aBNn5HJKcprgGOAJ1X1cBGZD6TqZ9IYY7plbVUDz7+7g6WbdvHcO1Vs3d0MwPDiPA6dMITTDxnDoROGMGdcKcOtdxGTRiYJrk1Vq0UkJCIhVX1GRK4PPDJjzICnqqyrbmThuhoWb6jlpdXVrPONQoYU5XLs1OHMP6CMY6cOZ/zQQruGZjolkwS303e0/BxuVIHtuCFtjDGmU5rboizbtIuF62tZtL6WxetrqW5ww00OLshh7qShXHz8FObPKmPCMEtopnsySXBnA03AN4ELcCNnXx1kUMaYgaGpNcqLq6t4eU01i9bXsmzTblqjMQCmjCimfFYZ8yYPZe6koUwfWWLdY5kelUmCKwO2+PHX7hCRQmAUUB1oZMaYfiMSjbG9roW1VQ28sqaaFVt2U1nbxJqqBlojMfJyQswZV8rFx09m7qShHDFpqPXObwKXSYK7DzguYT7qlx0ZSETGmD6voSXCovW1LN20i2dWbuf1jTuJxlzTxpDAjLJBTBhWxPtmjOCkmWUcOWWo9Rhiel0mCS5HVVvjM6raKiJ5AcZkjOmDNlQ3smhDDQ8v3cqzb+/Yc6rxoLGD+fz7pjBpWDHjhxZy2MQhdv+Z6RMySXA7ROQsVX0AQETOBqqCDcsYk02qSmVtE69sifD8Qyt4feNOFm+oRRXKBuXz6WMmMf+AkRwyrpQhRfZ71/RNmSS4y3CtJ2/w85XAhcGFZIzJho01jSyp3MnCdbU8vXI7G2pcc/38nPUcPK6Ur548g9MOGs2s0YMIW2MQ0w9k0lXXauAYf6uAqGpd8GEZY4LW3BZl6aZdvLauhkeWbmXppl0A5OeEOH76CL7wvinEdqzmU2fMtzHSTL+U8QBIqlofZCDGmN6xbNMu/lCximdW7qCpzY2GddiEIfzX6QdwwvSRTB1ZTEGuaxBSUbHOkpvpt7Iywp+IrAPqcC0yI6o6T0SGAX8DJgPrgE+oaq0vfwVwiS//NVV9zC+fC9wOFAIPA19XVfVD+vwFmIu7neE8VV3n17kI+IEP5VpVvSPg3TUm66IxZcFrG7jthXWs2l7PkKJcPj53HPNnlXHwuFJGDS7IdojG9LhsDmE7X1UTG6t8H3hKVa8Tke/7+e+JyGzgfFznzmOBJ0VkpqpGcSOLXwq8jEtwpwGP4JJhrapOF5HzgeuB83wSvRKYByiwSEQeiCdSYwaiNzbu5Pv/eJOVW+s4fOIQfnDGgXziyAnW0tEMeJmMJlAEfBuYqKpfEJEZwCxVfaiHYzkbKPfTdwAVwPf88gWq2gKsFZFVwFH+KHCwqr7k4/wL8BFcgjsbuMrX9XfgBnF9/pwKPKGqNX6dJ3BJ8Z4e3hdjsm5DdSO/euJtHl66lRElefz+U0dw+iGjrfsrs9/I5AjuNmARcKyfr8Td6N2dBKfA4yKiwB9V9WZglKpuAVDVLSJS5suOwx2hxVX6ZW1+uv3y+DobfV0REdkFDE9cnmSdfYjIpbijQ0aNGkVFRUXX9hSor6/v1vq9zeINVm/E+1Z1lN8udr3wHz82h4/OCFFc8zbPPvt2p+qx9zZYFm+wMklw01T1PBH5JICqNkn3fwIer6qbfRJ7QkTSDaCabFuaZnlX19l3oUu6NwPMmzdPy8vL04SYXkVFBd1Zv7dZvMEKOt53ttXxlT+8yIThJdx28ZGMH1rU5brsvQ2WxRusTJpHtfr+JxVARKYBLd3ZqKpu9s/bgX8CRwHbRGSM38YY3OCq4I6yJiSsPh7Y7JePT7J8n3VEJAfXQXRNmrqMGRCq61u4/O9vkpcT4i+XHNWt5GZMf5dJgrsSeBSYICJ3AU8B3+3qBkWkWEQGxaeBDwLLgAeAi3yxi4B/+ekHgPNFJF9EpgAzgFf96cw6ETnGH1F+pt068brOAZ5WVQUeAz4oIkNFZKjf9mNd3Rdj+pLK2kZO/c1/WLF5Fz8+6yDGlBZmOyRjsiqTG72fEJHFuFG9BdcUvztddY0C/unPcuYAd6vqoyLyGnCviFwCbADO9dtfLiL3Aitw49B92begBPgie28TeMQ/AP4M3OkbpNTgWmGiqjUicg3wmi93dbzBiTH93dUPrqC5Lcq/vnwCs8cOznY4xmRdygQnIke0W7TFP08UkYmqurgrG1TVNcChSZZXA+9Psc5PgJ8kWb4QODjJ8mZ8gkzy2q3ArZ2L2pi+bX11A0+8tY0vl0+35GaMl+4I7n/8cwHuvrEluCO4OcArwAnBhmaMydTtL64jLMKFx07KdijG9Bkpr8Gp6nxVnQ+sB45Q1XmqOhc4HFjVWwEaY9Kra27jvoWVnDlnjPVIYkyCTBqZHKCqS+MzqroMOCy4kIwxnXHvwkrqWyJccsLUbIdiTJ+SyX1wb4nILcBfcbcKfBp4K9CojDEZ2dXUxs3PrebIyUM5ZHxptsMxpk/JJMFdjGut+HU//xyuD0hjTJb99sl32VHXwp8+My/boRjT52Rym0Az8Gv/MMb0EeuqGrjz5XWcd+QE5owfku1wjOlzbKAnY/qp6x5ZSW44xDc/MDPboRjTJ1mCM6YfenVtDY8u38plJ02jbJC1nDQmmYwTnO9WyxiTZbGY8pN/r2D04AK+8D5rOWlMKh0mOBE5TkRW4FtOisihIvKHwCMzxiR1y/NrWFK5i++eNovCvHC2wzGmz8rkCO7XuIFCqwFUdQlwYpBBGWOS+9cbm/jZIys59aBRfPTwpEMZGmO8jE5RqurGdouiSQsaYwLz9MptfPveJRw1eRi/Pf9wG5nbmA5kch/cRhE5DlARyQO+ht3obUyvemVNNV/862IOHDOYWy6aR0GunZo0piOZHMFdBnwZGIcbMPQwP2+M6QX/eXcHn7v9NcYPLeT2i49kUEFutkMypl9IewQnImHgQlW9oJfiMcZ4u5vb+NnDb3HPqxuZNrKYu79wDMNL8rMdljH9RtoEp6pRETkb68XEmF5T29DKUyu388vH3mZ7XTP/76SpfPOUmXZa0phOyuQa3AsicgPwN6AhvrCrA54aY/a1q7GNJZU7WbJxJ8+vquK1dTXEFGaOKuGmC4/nsAnWDZcxXZFJgjvOP1+dsEyBk3s+HGMGLlWluqGVlTVR1r2wliWVu3hj407WVu353cisUYP4yvzpnHzgKA4ZV0o4ZC0ljemqTDpbnt8bgRjTX6gq9S0RdjdH2N3U5h7NEeqa90675zZ2N0XY3dzGrqY2Kmub2NXU5mtZQdmgfA6bMIRz5o7nsAlDOGR8KYOtAYkxPabDBCciw4ErgRNwR27PA1eranXAsRnT41SVmEJDazw5RXwiaqOuObJPUmqfpOLTdc1txDT9dorywgwuyGVwYQ6DC3IpG5TPnPFDmF5WQuOW1ZzzweMZPbjA7mUzJkCZnKJcgBsD7uN+/gLc9bhTggrK9A+xmFLfGqG5NUpTW5TmthjNbVH3iCRM7/NajKa2KC2RKJGoElUlGn+OtXu0WxaJxfyzEvPP0Ziyu66RgoUVe+bj5aIJZSIJ9WSiOC/M4MLcPUlq9OACZo4axOCCnH2Wu+dcBhXsO50bTn0HTkXFesaUFvbUn8EYk0ImCW6Yql6TMH+tiHwkqIB6g4icBvwWCAO3qOp1WQ6pz4nFlG11zayvbmR9dYN/bmRjbSO1ja3samyjriWCZpYv9pEbFgpywuSEhXAoRDgEYRHCYXHPofhj72s54RDhkJATClGQK37aPVdrI2NGl+6ZzwkJoYTX950PERahOD+cMkkNKsghJ02CMsb0D5kkuGdE5HzgXj9/DvBDNsAGAAAgAElEQVTv4EIKlr+37/fAB3A3rr8mIg+o6orsRpYduxrbWLWjntXb61m9o57VOxpYsbGR6icfpSUS21MuJyRMGFbEhGFFTBtZQmlhrj+SyaEwL0xBTpiC3DAFuaF2z/6Rs3e+pxtOVFRUUF5+eI/WaYzp/1ImOBGpw11zE+BbwF/9SyGgHnddrj86ClilqmsARGQBcDYQSIJrjcRojSpNrVEURdW9qeoPfdy0m2j/evw1NxUvs3fZPmXjRfYUdcvaojFqG9uoaWiltrGVmoZWVm+vZ9WOetZXNyY0eoC8cIjJI4oYXRTijMMnMml4MZOGFzF5eDFjSgvsqMYY06+kTHCqOqg3A+lF44DEzqMrgaOD2tj/u3Mhz7zdCE88GtQmOm304AKml5Vw5pwxTBrujsiml5UwfmgR4ZD4I6LZ2Q7TGGO6RTSDiygiMgeYTEJCVNX7gwsrOCJyLnCqqn7ez18IHKWqX21X7lLgUoBRo0bNXbBgQZe29+rWCJW1zeTn5yEAAuKmiJ+oizekk/gy2fe1xBN60q58vGyyugDCIaEkVxiUByW5QkmekB9Of4qwvr6ekpKSzu9slli8welPsYLFG7S+Eu/8+fMXqeq8jsplcpvArcAcYDkQvyijQL9McLgjtgkJ8+OBze0LqerNwM0A8+bN0/Ly8i5trJz4NaKurZ8NFm+w+lO8/SlWsHiD1t/izaSRyTGqOpDOV70GzBCRKcAm4HzgU9kNyRhjTE/LJMG9JCKzB0orQ1WNiMhXgMdwtwncqqrL062zaNGiKhFZ343NjgCqurF+b7N4g9Wf4u1PsYLFG7S+Eu+kTAp1eA1ORE4EHgS2Ai24yzuqqnO6G+H+QkQWZnK+uK+weIPVn+LtT7GCxRu0/hZvJkdwtwIXAkvZew3OGGOM6dMySXAbVPWBwCMxxhhjelAmCW6liNyNO03ZEl/YX28TyJKbsx1AJ1m8wepP8fanWMHiDVq/ijeTa3C3JVmsqvq5YEIyxhhjui+jG72NMcaY/qbDzgVFZLyI/FNEtovINhH5h4iM743gjDHGmK7KpPfc24AHgLG4fhwf9MsGNBGZICLPiMhbIrJcRL7ul/9CRFaKyJs+8Q9Jsf65fr2YiKRsVpuuPhG5QkRWicjbInJqB/He6n+ELOtsDAnlvyMiKiIjgozVly8QkVdFZImP8cd++TAReUJE3vXPQ9PU8VW/veUi8vMgY07x/h4mIi+LyBsislBEjkqx7qEi8pKILBWRB0VkcJCx+vKzfFzxx24R+UYm+9VRLD0dc5rv2lUisilhH07vbAyZlBOR4X779SJyQ6o429WV6n3L5DPZrf3qSrxJ6g6LyOsi8lCK17/p92GZiNwjIgVJyiT9u/nXOvW/JzCuJ/rUD+CNTJYNtAcwBjjCTw8C3gFmAx8Ecvzy64HrU6x/IDALqADmpdlO0vr8tpYA+cAUYDUQTlPPicARwLLOxuDLTsDd/L4eGBFkrH4dAUr8dC7wCnAM8HPg+37599O8v/OBJ4F8P1+Whff3ceBDfvp0oCLFuq8BJ/npzwHXBP3+tqs3jLuPdVIm+5UuliBiJvV37SrgOxnsX3djLQZOAC4DbsjwPU32ecj0M9mt/epKvEnq/hZwN/BQktfGAWuBQj9/L/DZTP9ufj7j/z1BPjI5gqsSkU/7jB8WkU8D1Rms16+p6hZVXeyn64C3gHGq+riqRnyxl3F9WSZb/y1VfTuD7aSq72xggaq2qOpaYBVuqJ9U9TwH1HQlBu/XwHchPjZPcLH6ulRV6/1srn+or+sOv/wOINXgul8ErlPVFl/f9iBjTvb++njjR2OlJOnT1JsFPOennwA+HmSsSbwfWK2q7+mNJ8V+pYulx2NO9V3LdOe6G6uqNqjq80BzJ7aZ7H3L6DPZiW30WLyJxF1iOgO4JU2xHKBQRHKAIpL315vy79bJ/z2BySTBfQ74BO4X4BbcgKf7VQtKEZkMHI47ykj0OeCRHtxUYn3JhvXJ+EvfGSJyFrBJVZd0YrVux+p/ML0BbAeeUNVXgFGqugXcFwgoS7H6TOB9IvKKiDwrIkf2RsztfAP4hYhsBH4JXJGi3DLgLD99Lvt29t0bsZ4P3NOJ8uliybRcVz8Tk9n3u/YVf4ruVklzurqbsfaUznwmg9qvTPwG92M2accdqroJ93negPufv0tVH09XYZr/kVnVYYJT1Q2qepaqjlTVMlX9SLJfggOViJQA/wC+oaq7E5b/NxAB7uqh7bSvL9mYNj3e5FVEioD/Bn7UiXV6JFZVjarqYbhfpkeJyMGZxoD7hTkUd1rzcuBeEUk5DlBA7+8XgW+q6gTgm8CfU5T7HPBlEVmEO5XTmq7SnoxVRPJwyfW+TMpnEEum5Todc5Lv2o3ANOAw3D/a/wko1p6S6WcykP3KhIicCWxX1UVpygzFHYFPwbW9KPZn7lKVT/o/si9IN6J3un94qqrXBBBPnyIiubg/3F2acGO7iFwEnAm8X/0JZ3H3Cx4ObFbVpBeNU5VLVh8ZDuvTxf3aEwPwPdwHeYn/Lo4HFotrMPGz3ohVVXeKSAVwGrBNRMao6hYRGYM7ukv2vlUC9/sYXhWRGDDCX9jvrff3IiB+Yf0+/Cmf9rGq6krc9RREZCbu9FBvfRY+BCxW1W0iMgHXSAzgJlW9Kd2KmX7OeyLmZN81Vd2W8PqfgIc6E0MnYu0pGX0mu7tf3XQ8cJZv2FIADBaRp4Dh/vWbcJeg1qrqDh/D/cBxIvIs7T4/qf5H9hma+iLkt5M8foRrhFCfar2B8sD9Av0L8Jt2y08DVgAjM6yngvSNTJLWBxzEvhfp19Bxw43JtGsskEkM7cquI3Ujk56MdSQwxE8XAv/BfZF/wb6NTH6eYv3LgKv99Ezc6TDpzfcXd82h3E+/H1iUYr0y/xzyn6nPBf3+Jqy7ALi4s5+bTD/nPRFzmu/amITpb+Ku6WUcQ2fLAZ+lE402knweMv1M9sh+dTbeJOuXk7yRydG48T+L/N/mDuCrmf7d2pWpIIuNTDJ9IwYBP8C1rLmeFK2DBtID10pJgTeBN/zjdNzF8o0Jy25Ksf5Hcb/oWoBtwGMpyqWsD3fqcDXwNr61Xpp478Gd7mjz270k0xja1bOO1AmuR2L15ecAr/v3dxnwI798OPAU8K5/HpZi/Tzgr37dxcDJWXh/TwAW4f6RvwLMTbHu13EtzN4BriPJP72efn/9OkW4X+OlndmvjmLp6ZhJ/V27E9fJ+5u4W5XGdDaGTsS6DtdopN6/D7O78HnI9DPZ7f3qbLwp6i8nSYLzr/0YWOn35U58y9BM/m7+tU7/7wnikbYnExEZhmtOegEui/9WVWtTrmCMMcb0Eemuwf0C+Biuc81DdG+TbmOMMabPS3kE5y+QtuBa7yQWig94mrQ3BmOMMaYvsM6WjTHGDEiZ3OhtjDHG9DuW4IwxxgxIluCM6cdEJOp7pF8ubmSGb4lI2u+1iEwWkU/1VozGZIslOGP6tyZVPUxVDwI+gLt/7MoO1pkMWIIzA541MjGmHxORelUtSZifihueZwQwCXeTbrF/+Suq+qKIvIwbzmQt7v7W3+FuQC/H9Tzye1X9Y6/thDEBsQRnTD/WPsH5ZbXAAUAdEFPVZhGZAdyjqvNEpBw3HtmZvvyluN6JrhWRfOAF4Fx1w9wY02+lvNHbGNNvxXuwzwVuEJHDgCiuf8RkPgjMEZFz/HwpMAN3hGdMv2UJzpgBxJ+ijOJGYbgS1w/gobjr7akGyBRcZ7qP9UqQxvQSa2RizAAhIiNxw53coO7aQymwRVVjwIVA2Betw3WgHvcY8EU/9AkiMlNEijGmn7MjOGP6t0I/Knourlu9O4Ff+df+APxDRM4FngEa/PI3gYiILAFuB36La1m52A/QuQP4SG/tgDFBsUYmxhhjBiQ7RWmMMWZAsgRnjDFmQLIEZ4wxZkCyBGeMMWZAsgRnjDFmQLIEZ4wxZkCyBGeMMWZAsgRnjDFmQAoswYlIkYj8UET+5OdniMiZQW3PGGOMSdSjCU5EzhCR+NAdtwEtwLF+vhK4tie3Z4wxxqTS00dwa3GdvQJMU9WfA20AqtrE3mE8jDHGmED1aIJT1RXAFX62VUQKAQUQkWm4IzpjjDEmcD0+moCqbvSTVwKPAhNE5C7geOCzPb09Y4wxJplARxMQkeHAMbhTky+ralVgGzPGGGMS9HiCE5Ej0r2uqot7dIPGGGNMEkEkuGfSvKyqenKPbtAYY4xJwgY8NcYYMyD1eCOTOBH5TLLlqvqXoLZpjDHGxAWW4IAjE6YLgPcDiwFLcMYYYwLXa6coRaQUuFNVz+qVDRpjjNmv9WZny43AjF7cnjHGmP1YkNfgHsT3YoJLpLOBe4PanjHGGJMosFOUInJSwmwEWK+qlYFszBhjjGkn8GtwIjKYhCNFVa0JdIPGGGMMwZ6ivBS4BmgCYrjuuhSYGtQ2gzJixAidPHlyl9dvaGiguLi45wIKmMUbrP4Ub3+KFSzeoPWVeBctWlSlqiM7LKiqgTyAd4ERQdXfm4+5c+dqdzzzzDPdWr+3WbzB6k/x9qdYVS3eoPWVeIGFmsH/7iDvg1uNazlpjDEmS9w/e4iqElMlFoOYKlFVNOaWR2MuIbgyEIu5stGYn/fT63dHWVq5a8/6sZhbHo0pkSTTkVhsz7LE5R86ZDRlgwoC3/cgE9wVwIsi8goJ48Cp6tcC3KYxxvS4SDRGU1uU5rYYzW1RWiJuuiUSpaUtRkvET0diex9tUVqjsX1eb43EaIvG9vyj37K1mXs2Ltznn39bNLZvkoi6RJE4H/UJKOYT0p55n5Cie6bdfI968fluV3HwuMH9PsH9EXgaWIq7BmeMMT0iFtM9yaN5T5KJsm5XlIXravYmn0g8IbmE0xyJ7SnbvkxzW4zG1ggNLREaWqM0tESob4nQ1Bol0s0skRcOkZ8TIi8nRG44RDgk5IaFluYYu7Rxz3w4JOSEQuSEQhTkCjkhIRwKkRMScsJuPhSKLxdEhLAIIYFQSAhJfDl+uSv/3jK41/zysK835OuT+DKJL3f1rVixnDmHHEI4BOLXz/WxxB85Ibd/OX5/wj6mnIT9G1QQZOrZK8itRFT1WwHWb4zJklhM9yaGyN4jm7ZojNZIjNb4cyRGW1RpjUZpi2jSxLJvEto3Ye1bdu90ayTNb+aXXuow/tywkJ8TJj8nREFueE/yKc7PobQoj3FDwxTn5VCcn0NhXpjC3DAFuSEKc8Pk54YpyA1T4NfNy3HJKz8nTH7u3kQWrz8vHCIUkqRxVFRUUF5+Ylf/DL2usPptymePynYYGQsywT3jW1I+yL6nKO02AWN6USymVDe0sr2umV2NbexubmN3c4S6Zne00tQWpak1SnNbdM90U5tLMjtqmvjp68/uSWDN/igobYLJkAgU+KRQkJAc4gmnOD+HYcWJiWPfhLTvei4BvbtyBXMPOzRtmbxwiJxwb3biZLIlyAT3Kf98RcKyfnmbgDH9QSymLN20izcrd7JiSx3vbqtjY20jVfWtRNOcYssLh9zRyZ4jlfgjxKA8YeyIEgpyQ3uWx5NGvEz8OT8nTF7YHb3ET8Xl+2c3L3sTT06Y3LA7xdaTKmre4cSZHbceN/uHwBKcqk4Jqm5jzF7NbVHuW7iRP1SsZsuuZgBKC3OZNXoQJ84YyajBBZQNzmdkST5Di/MYVJDD4IJcBhfkUpwfTns0406hze2tXTGmR9l4cMb0Uw0tEW75z1r+8tI6qhtaOWryML532gEcNWUYY0oLevzoyJj+xsaDM6afaW6L8s/XN/GrJ95hR10L7z+gjEtOmMKx04ZbUjMmQZCnKL+aOB8fDy6o7Rkz0G3f3cwdL63jnlc3UtPQyuETh3DTp+cyd9LQbIdmTJ/UOzcjODYenDGdFIspL6yu4u5XNvDEim1EVTnlwFFceMwk3jdjhB2xGZPGfjcenIiU4zqBXg4sUNWKrAZkTDuqyuZdzTy4ZDP3vLqB9dWNDC3K5XMnTOGCoycyaXj2O7s1pj8I8gjulwnTgY4HJyK3AmcC21X14ITlpwG/BcLALap6HS7p1uOuC9r4dCZrVN39aWt2NLB6Rz1rdtTzzrZ6lm/eRVV9KwBHTRnGtz4wk1MPGk1BbjjLERvTvwSZ4DYAW1S1GUBECkVksqquS1ZYRH6XZPEuXK/R/+pgW7cDN5DQgEVEwsDvgQ/gEtlrIvIA8B9VfVZERgG/Ai7o1F4Z0wl1zW1s3dXMll3NbNnVxJZdzby2ooXfLH+BNTvq2d0c2VM2PyfE1JElzJ9VxiHjSzlu2nCmlw3KYvTG9G9Bjui9EDhOVVv9fB7wgqoemaL8zcABwH1+0cdxpxEnAGtU9RsdbG8y8FD8CE5EjgWuUtVT/fwVAKr6s4R47lbVc1LUdylwKcCoUaPmLliwILMdT6K+vp6SkpIur9/bLF5HVWmJQkObUt+mNLThnluVhjalMQLNUaUpojRHoNk/N0X9c8St315pnjK2JMyY4hCji0OMLhbGFIcYXuj69utL7LMQLIu3a+bPn79IVed1VC7II7iceHIDUNVWn1RSmQ6crKoRABG5EXgcdwS2tAvbHwdsTJivBI4WkY8BpwJDcEd9SanqzcDNAPPmzdPy8vIuhOC4m2W7vn5v6w/xqrre1iNR5Zlnn2POkccRicZoi6l7ju7tmT2SsCwSixGJKvUtEXY2tbGrsZXaxjZ2Nraxq6mVnY1t7GzaO98WTf0DMDcsFOfnUJKfS0l+DiWDcijLz6GkIIeSPPdcNiif0aUFjCktZExpAaMGF/Di88/1+fc3rj98FhJZvMHqb/EGmeB2iMhZqvoAgIicDVSlKT8OKMadlsRPj1XVqIi0pF4tpWQ/hVVV7wfu70J9Jo2WSJTq+laq6luoa3a9sCf2yt7opxM71413ntsWdUknnpzctHtOTFr7LG/f9dRTT3Q59qK8MEMKcyktymNIYS4zykoYUpTLED8/pCiX0sI8vyyXIYV5lBbmUphn18SM6cuCTHCXAXeJSPwoqRK4ME35nwNviEgFLjmdCPxURIqBJ7uw/Urc6c248cDmLtRjcEdMW3Y1s2zTLpZt3s2aHfXsqGuhqr6FqvpWdjW1pV1fBIpywxTmhfd0mpufu7e39bycEEXhELnxYUH2TLs+DHNCIXLCQm44PnTI3tfXrV3DATOnp1nnveuX5OdQWpRLaWEu+TmWqIwZiIK80Xs1cIyIlOCu9dV1UP7PIvIwcBQuwf2XqsYT0uVdCOE1YIaITAE2AeeztwNok4GGlgjPvbODx5Zv5T/vVlHd4M44hwQmDiuibFABs0YP4viSfEbsebijm+L8HP8IU5KfQ2FuOLB7tirYSPnx1vWpMWZfgd/orar1nSh+JPA+Px0lwyMuEbkHKAdGiEglcKVPmF8BHsPdJnCrqi7vRCz7JVVlVW2Ux+5fyj8WV9IaiTGkKJf5s8o4fOIQDhpbyuwxg+30nDGmz+vNnkzSEpHrcAnuLr/oayJynKpekWY1AFT1kymWPww83HNRDmwvr6nmZw+/xZLKZkQ2cN68CZx92DiOnDzUxs8yxvQ7fSbBAacDh6lqDEBE7gBeZ9/x5EwA1lY18LOH3+LxFdsYU1rAxQfl8eWPnsiIkvxsh2aMMV0W2M9yETlXRAb56R+IyP0ickQHqw1JmC4NKjbjqCp3vbKeU3/9HC+squLyU2fxzHfKOWlCriU3Y0y/F+QR3A9V9T4ROQF339kvgRuBo1OU/xnwuog8w95WlHb0FpCWSJQf/d9y/rZwIyfNHMkvzp1D2aCCbIdljDE9JsgEF+/D4QzgRlX9l4hclaqwqt7jbxE4EpfgvqeqWwOMb79VVd/CZXcuYuH6Wr4yfzrf/MBMwqG+1YOGMcZ0V5AJbpOI/BE4BbheRPJJcko0yWnLeAfIY0VkrKouDjDG/U59S4SP3/gi23Y3c8OnDufMOWOzHZIxxgQiyAT3CeA04JequlNExpD8frb/SVOHAicHEdz+6saKVWyoaeSeLxzDMVOHZzscY4wJTJA3ejcC94tImYhM9ItXJik3P6gYzL6q61v4y0vr+dDBoy25GWMGvCBbUZ4lIu8Ca4Fn/fMjQW3PdOz6R1fS0hbjG6fMzHYoxhgTuCDv3r0GOAZ4R1Wn4K7FvRDg9kwa66oa+Ofrm/jkUROYOcrGGDPGDHxBJrg2Va0GQiISUtVngMMC3J5JobktypfuWkxRXg6XlU/LdjjGGNMrgmxkstN3tPwcblSB7UAkVWFxPfFeAExV1av9dbvRqvpqgDHuF75012Le2rqbWz4zjzGlhdkOxxhjekWQR3BnA43AN4FHgdXAh9OU/wNwLBDvV7IO+H2A8e0XXl5TzdMrt/PdUw/g/QeOynY4xhjTa4I8gisDtqhqM3CHiBQCo4DqFOWPVtUjROR1AFWt7WAEcJOB3z31LiNK8rn4+MnZDsUYY3pVkEdw9wGxhPmoX5ZKm4iEcfe+ISIj261vOum1dTW8uLqay06aSkGuDW9jjNm/BJngclS1NT7jp9Mdkf0O+CdQJiI/AZ4HftrTQYnIgSJyk4j8XUS+2NP19xWqyk8ffouRg/K54OhJ2Q7HGGN6XZAJboeInBWfEZGzgapUhVX1LuC7uE6XtwAfUdV0R3x7iMitIrJdRJa1W36aiLwtIqtE5Pt+O2+p6mW4nlbmdXqv+okHlmzm9Q07ufzUWTY4qTFmvxRkgrsM+C8R2SAiG4DvAZe2LyQiw+IPYDtwD3A3sM0vy8TtuG7BEusN4xqpfAiYDXxSRGb7187CHSE+1ZUd6+taIzF++fjbHDR2MOccMT7b4RhjTFaIqga7AXergKhqXYrX1+KuuyV2Zx+fV1WdmuF2JgMPqerBfv5Y4CpVPdXPX4Gr8GcJ6/xbVc9IUd+l+IQ8atSouQsWLMgkjKTq6+spKSnp8vqd9eT6Nv76VivfmpvPnJGdb0fU2/F2l8UbnP4UK1i8Qesr8c6fP3+RqnZ4Bi7wEb1Vtb6D16cEtOlxwMaE+UrgaBEpBz4G5AMPp4nrZuBmgHnz5ml5eXmXA6moqKA763dGY2uE7zxfwVFThvHVc47B3V7YOb0Zb0+weIPTn2IFizdo/S3ewBNcRzoa5bsbw+Uk+8+uqloBVHSxzj7v9hfXUVXfwk2fPqJLyc0YYwaKrCc4ghsupxKYkDA/Htjcxbr6jQfe2MzRU4Yxb3Kmly+NMWZgCizBiUgR8G1goqp+QURmALNU9aHEcgEOl/MaMENEpgCbgPOBTwW0rT6hNRJj1fZ6vnBiRpctjTFmQAuyFeVtQAuu+y1wR1TXpiosIkUi8gMRudnPzxCRMzPZkIjcA7wEzBKRShG5RFUjwFeAx4C3gHtVdXnXd6fvu/3FtURiyoFjBmc7FGOMybogT1FOU9XzROSTAKraJOkvCt0GLAKO8/OVuJ5PHkq5hqeqn0yx/GHSNCQZSN7YuJOfPeLGk503aWiWozHGmOwL8giu1fc/Ge96axruiC6Vaar6c6ANXEIkeUMR087OxlY+f8drjBtSyJIffZCxQ2zEAGOMCfII7krcKAITROQu4Hjgs2nKdzYhGu8Xj71NbWMbD37laEqLcrMdjjHG9AmBJThVfUJEFuNG9Rbg66qasqsuOp8QDVBd38Ldr27gomMnM3usXXszxpi4Hk9wSe5r2+KfJ4rIxFT3tXUhIRrciAGq8OFDx2Q7FGOM6VOCOIKL39dWgOvMeAkuYc0BXgFOSLNuAVDr45otIqjqcwHEOGAsWl9Lfk6Ig8eVZjsUY4zpU3o8wcXvaxORBcClqrrUzx8MfCfVeiJyPXAesJy948ApYAkujdU7Gpg6soT8HBsxwBhjEgXZyOSAeHIDUNVlInJYmvIfwd0Ibg1LOmFDTSPTRhZnOwxjjOlzgrxN4C0RuUVEykXkJBH5E+6G61TWANYEsBNiMWVDTSOThluCM8aY9oI8grsY+CLwdT//HHBj+0Ii8r+4U5GNwBsi8hQJtweo6tcCjLFf21bXTGskxsRhRdkOxRhj+pwgbxNoBn7tH+ks9M+LgAeCimcg2lDdCGAJzhhjksj6aAKqegeAiBQDzaoa9fNh3JhtJoX1NS7BTRpuCc4YY9oL8hpcZz0FJPYxVQg8maVY+oUN1Y2EQ2JdcxljTBKBJzh/ZJaJgsTRv/20HZqksb6mkbFDCsgN96XfKcYY0zcE9p9RRI4TkRX4lpMicqiI/CHNKg2JvaCIyFygKaj4BoK3tuxm1qhB2Q7DGGP6pCCvwf0aOBXfcERVl4jIiWnKfwO4T0Tio26PwQ1S2qNEZCrw30Cpqp7T0/X3loaWCKt31HPmHOuiyxhjkgn03Jaqbmy3KJqm7GvAAbhbC74EHKiqC1OVTyQit4rIdhFZ1m75aSLytoisEpHv++2sUdVLOrUjfdCKLbtRhUOsiy5jjEkqyAS3UUSOA1RE8kTkOyS50VtEvpsw+xFVXaaqS1W1TUR+muG2bgdOa1dvGPg98CFgNvBJEZndlR3pi96s3AVYgjPGmFREVYOpWGQE8FvgFFxny4/jRgiobldusaoe0X462XwH25sMPKSqB/v5Y4GrVPVUP38FgKr+zM//Pd0pShG5FLgUYNSoUXMXLFiQSRhJ1dfXU1JS0uX1k/njm828VR3jN/N7vh1OEPEGyeINTn+KFSzeoPWVeOfPn79IVed1WFBVe/wBhIFvZlj29WTTyeY7qGcysCxh/hzgloT5C4EbgOHATcBq4IpM6p47d652xzPPPNOt9ZM583f/0Qv//EqP16saTLxBsniD059iVbV4g9ZX4gUWagb/uwNpZKKqURE5m457MQE/gneS6WTznSHJtqXuCPKybtTbJ9Q0tDJjVPZ/SRljTF8VZCvKF0TkBuBvQEN8ob53wNND5f+3d+4xVxRnHIVBI68AAAtWSURBVH5+IsitcscgELEN2GqL1FprrLWo0ao11LZirLXR0qTRVKNY22o04i2pSi9qaEsvYq0XiEabqLVBa0RrFRQQECpeEMpFykVRuVQQePvHDHo82T3s4ds533eO75Nszu7sXH6zZ3Znd+adGeldQoXULe4Tj7u2If2VwNCK4yHAGzl+m44NW7bRp3uX9pbhOI7TYUlZwR0Vf6+tcDPguEpPZpZqIbPngeGSDgRWEYYcnJUorYaydfsOtmzbQd8eXsE5juPkkXKy5WNTxV2NpKnAaKC/pJXABDO7TdIFwHRCn+AUM1vUKE0peXvL+wD07u6rCzmO4+SRrIKT1A+YABxN+HJ7GrjWqqwoy8DMvpPj/gjwSNnptTdvbd4GQF9vonQcx8kl5Ti4acA64NsEi8Z1hP44p41s2BIquN5ewTmO4+SSsg+ur5ldV3F8vaTTEqb3seHNTfELzvvgHMdxckn5BfeEpDMl7RW3M4C/JUzvY8Oy9cEo1Rc6dRzHyaf0LzhJGwl9bgIuAe6Kp/YCNhH65Zw28Pr6zezfqyvduqQyQHUcx2l+Sq/gzMzXbynIwlXvMO355dQ7W9ozS9YzfKBfZsdxnFqk7IND0kjCFFofpGNmD6RMs5m4b/YK7pq5nP496+9LO/GQ/RIochzHaR1SDhOYAowEFgE7o7MBXsFFDOjTvTOzrzyhvaU4juO0HCm/4I40s5ZZnsZxHMdpLlJaUT7bSuuvOY7jOM1FyvXgjgEeAv4LbCVYVZqZjUySYEIkrQP+04Yo+gPrS5LTCFxvWppJbzNpBdebmo6i9wAzG7A7TykruNcIwwRe5MM+OMysLRVFUyJpthVZnK+D4HrT0kx6m0kruN7UNJvelH1wy83swYTxO47jOE4uKSu4xZLuITRTbt3l6MMEHMdxnEaQsoLrRqjYTqxw+7gOE/hDewuoE9eblmbS20xawfWmpqn0JuuDcxzHcZz2JNkwAUlDJP1V0lpJayTdL2lIqvQcx3Ecp5KU4+BuBx4E9gcGE/ribk+YXqlIGirpCUkvSVok6aLoPlHSYkkLYgXeOyf82Bhup6Rcq6Na8Um6XNJrkl6W9LXd6J0SXyYW1quhwv+lkkxS/5Rao/+ukp6TND9qvCa695X0mKRX42+fGnFcGNNbJOmmlJpzru8oSTMlzZM0W9IROWEPlfSspBclPSRp35Rao/+Doq5d27uSLi6Sr91pKVtzjXvtakmrKvJwSr0aiviT1C+mv0nSpDydVXHlXbciZbJN+doTvRlxd5L0gqSHc86Pj3lYKGmqpK4ZfjL/t3iurmdPMswsyQbMK+LWUTdgEHBY3P8E8ApwMKFPce/ofiNwY074zwAHATOAw2ukkxlfTGs+sA9wILAE6FQjnmOAw4CF9WqIfocC0wnj/fqn1BrDCOgZ9zsDs4AjgZuAy6L7ZTWu77HAP4B94vHAdri+jwInx/1TgBk5YZ8Hvhr3xwHXpb6+VfF2IoxHPaBIvmppSaGZ/HvtauDSAvlrq9YewNHAecCkgtc0qzwULZNtytee6M2I+xLgHuDhjHODgaVAt3h8L3Bu0f8tHhd+9qTcUn7BrZd0dnxT6CTpbODNhOmVipmtNrO5cX8j8BIw2MweNbPt0dtMILPZ1cxeMrOXC6STF983gGlmttXMlgKvAZlfCDGep4C39kRD5NfATwmGQEm1xrjMzDbFw85xsxjXHdH9DiBvkdzzgRvMbGuMb21KzVnXN+rd9TXWC3gjJ/hBwFNx/zHCKvfJtGZwPLDEMsag5uSrlpbSNefda0Uz11atZrbZzJ4G3qsjzazrVqhM1pFGaXorUegq+jrwpxre9ga6Sdob6E5G2a71v9X57ElGygpuHHAG4c1xNXB6dGs6JA0DPk/4yqhkHPD3EpOqjG8wsKLi3ErquOnrQdIYYJWZza8jWJu1xhefecBa4DEzmwXsZ2arIdxAwMCc4COAr0iaJelJSV9shOYqLgYmSloB/AK4PMffQmBM3B9L+FpupNYzgal1+K+lpai/PS0Tw/jovXZBbKKbohrN1W3UWhb1lMlU+SrCzYSX2Z1ZJ81sFaE8Lyc8u98xs0drRVjjGdmuJKvgzGy5mY0xswFmNtDMTst6g+zoSOoJ3A9cbGbvVrhfAWwH7i4pner4lOGtdJNXSd2BK4Cr6ghTilYz22FmowhvpkdI+mxRDYQ3zD6EZs2fAPdKytJRquYqzgfGm9lQYDxwW46/ccCPJM0hNOVsqxVpmVoldSFUrvcV8V9AS1F/dWvOuNd+B3wKGEV40P4ykdayKFomk+SrCJJOBdaa2ZwafvoQvsAPJNhQ9IgtcHn+M5+RHYEUK3rXelCamV1XdpqpkNSZ8MfdbRUD1CWdA5wKHG+xwVnS7YQ3mDfMLLPTOM9fVnyEN97KN/0h5DeB1ZuvDzQAPyMU5PnxXhwCzFUwmPh5I7Sa2duSZgAnAWskDTKz1ZIGEb7usq7bSuCBqOE5STuB/rFjv1HX9xxgV8f6fcQmn2qtZraYOB5U0ghC81CjysLJwFwzWyNpKMHYC2CymU2uFbBoOS9Dc9a9ZmZrKs7/EXi4Hg11aC2LQmWyrflqI18GxkTDlq7AvpIeB/rF85MJXUlLzWxd1PAAcJSkJ6kqP3nPyA6DldypB/w4Y7uKYLywqez0Um2EN9C/ADdXuZ8E/BsYUDCeGdQ2MsmMDziEj3bSv87uDTeGUWUsUERDld9l5BuZlKl1ANA77ncD/km4kSfyUSOTm3LCnwdcG/dHEJrD1MjrS+hzGB33jwfm5IQbGH/3imVqXOrrWxF2GvD9estN0XJehuYa99qgiv3xhD69whrq9QecSx1GGxnloWiZLCVf9erNCD+abCOTLxHW8ewe/5s7gAuL/m9VfmbQjkYmaSMPzTFXEixybiTHqqgjbgQrJQMWAPPidgqhs3xFhdvknPDfJLzRbQXWANNz/OXGR2g6XAK8TLTWq6F3KqG54/2Y7g+KaqiKZxn5FVwpWqP/kcAL8fouBK6K7v2Ax4FX42/fnPBdgLti2LnAce1wfY8G5hAe5LOAL+SEvYhgYfYKcAMZD72yr28M053wNt6rnnztTkvZmsm/1+4kTNa+gDDkaFC9GurQuoxgNLIpXoeD96A8FC2Tbc5XvXpz4h9NRgUXz10DLI55uZNoGVrkf4vn6n72pNiSzGQiqS/BDPW7hNr/FjPbUHpCjuM4jpNDij64icC3CHOWfc4+NAV3HMdxnIZR+hdc7FjdSrD6qYx814KnmbM4OI7jOE6Z+GTLjuM4TkuScqC34ziO47QbXsE5juM4LYlXcI7TxEjaEWekX6SwMsMlkmre15KGSTqrURodp73wCs5xmpv/mdkoMzsEOIEwfmzCbsIMA7yCc1oeNzJxnCZG0iYz61lx/EnC8jz9gQMIg3R7xNMXmNkzkmYSljNZShineithAPpowswjvzGz3zcsE46TCK/gHKeJqa7gotsG4NPARmCnmb0naTgw1cwOlzSasB7ZqdH/DwmzDF0vaR/gX8BYC8vcOE7TUvpAb8dx2p1dM9h3BiZJGgXsIMyPmMWJwEhJp8fjXsBwwhee4zQtXsE5TgsRmyh3EFZhmECYB/BQQn973gKZIkymO70hIh2nQbiRieO0CJIGEJY7mWSh76EXsNrMdgLfAzpFrxsJE6HvYjpwflz6BEkjJPXAcZoc/4JznOamW1wVvTNherw7gV/Fc78F7pc0FngC2BzdFwDbJc0H/gzcQrCsnBsX6FwHnNaoDDhOKtzIxHEcx2lJvInScRzHaUm8gnMcx3FaEq/gHMdxnJbEKzjHcRynJfEKznEcx2lJvIJzHMdxWhKv4BzHcZyWxCs4x3EcpyX5PwkOkkRcdsJcAAAAAElFTkSuQmCC\n",
......@@ -306,13 +348,6 @@
" axs[1].set_xlabel('Date')\n",
" axs[1].set_ylabel('Nombre de cas cumulé\\nEchelle log')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment